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We present the first cosmological measurement derived from a galaxy density field subject to
a ‘clipping’ transformation. By enforcing an upper bound on the galaxy number density field in
the Galaxy and Mass Assembly survey (GAMA), contributions from the nonlinear processes of
virialisation and galaxy bias are greatly reduced. This leads to a galaxy power spectrum which is
easier to model, without calibration from numerical simulations.

We develop a theoretical model for the power spectrum of a clipped field in redshift space, which
is exact for the case of anisotropic Gaussian fields. Clipping is found to extend the applicability
of the conventional Kaiser prescription by more than a factor of three in wavenumber, or a factor
of thirty in terms of the number of Fourier modes. By modelling the galaxy power spectrum on
scales k < 0.3hMpc−1 and density fluctuations δg < 4 we measure the normalised growth rate
fσ8(z = 0.18) = 0.29± 0.10.

I. INTRODUCTION

The spatial distribution of galaxies encodes a wealth of
information relating to the composition and evolution of
the Universe. The apparent positions of galaxies in red-
shift space offers a glimpse into both the density and ve-
locity perturbations associated with dark matter. These
in turn are influenced by a number of phenomena in fun-
damental physics, such as the mass of the neutrino and
the nature of gravity. However two key factors have thus
far restricted our view: (a) the advanced stages of grav-
itational collapse are highly unpredictable and (b) the
uncertainty associated with galaxy bias, defined as the
manner in which the galaxy distribution reflects the dark
matter distribution. In Fourier space, conventional anal-
yses impose a maximum wavenumber beyond which the
data points are considered unpredictable and are sim-
ply discarded. For example, despite utilising numerical
simulations to calibrate the non-linear power spectrum,
recent studies of redshift space distortions typically trun-
cate the power spectrum at k < 0.2hMpc−1 [1] or exclude
galaxy pairs closer than 25h−1Mpc [2]. While most of
the nonlinear behaviour is successfully disposed of, so too
is much of the cosmological information.

A number of different methods have been proposed to
allow smaller clustering scales to be exploited. A phe-
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nomenological model has been developed by Kwan et al.
[3], and expanded by Linder and Samsing [4], to model
the power spectrum based on fits to numerical simula-
tions. Reid et al. [5] extract information from small-scale
clustering in BOSS using a model for the halo occupa-
tion distribution. While achieving a significant increase
in precision, this technique also relies heavily upon cali-
bration from numerical simulations. Alternatively, vari-
ous local transformations have been explored as a means
of reducing the influence of nonlinearities, such as Gaus-
sianisation [6, 7] and the logarithmic transformation [8].
In Simpson et al. [9] it was shown that simply enforcing
a maximum density could greatly increase the number
of Fourier modes that could be modelled with the stan-
dard set of theoretical tools. Recently it has also been
found to enhance the observational signature in models
of modified gravity which invoke a screening mechanism
[10]. This clipping technique serves as the focus of the
present work.

Our inability to model the small scale power spectrum
is not the only source of information loss. More funda-
mentally, the onset of nonlinear gravitational collapse de-
grades the amount of information held by the power spec-
trum [11]; this loss occurs for any non-Gaussian field. To
extract some of this missing information, we can either
perform additional measurements, such as higher-order
statistics, or manipulate the field prior to evaluating the
power spectrum. Previous attempts to extract cosmolog-
ical information from the spatial distribution of galaxies
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beyond the conventional two point statistics include mea-
suring three-point statistics [12–14], Minkowksi function-
als [15], and the shapes of voids [16]. Local transforma-
tions also appear promising in restoring this information
to the power spectrum (see for example [8, 17–19]). Car-
ron and Szapudi [19] present a transformation that is op-
timised for extracting information from the power spec-
trum of a Poisson-sampled field. Our approach differs
slightly: instead of optimising the extraction of all infor-
mation from the observable galaxy density field ρg, we
seek to selectively extract only the predictable informa-
tion from the field. At the highest values of ρg both the
nonlinear structure of the dark matter and the environ-
mental impacts on galaxy formation present formidable
obstacles in interpreting its value. Conversely, regions
closer to the mean density are expected to behave in a
more predictable and robust manner. The action of clip-
ping preserves the location of galaxy clusters as useful
information while discarding information relating to the
precise value of their density contrast.

Clipping is already known to be a highly effective
technique for improving the theoretical modelling of the
galaxy bispectrum [20] and power spectrum [9], when ap-
plied to fields in real space. Before we can apply this tech-
nique to data from real surveys, it must first be verified
in redshift space. It would also be desirable to develop
a deeper understanding of why it has been successful.
These are two of the goals of this paper. The third is to
apply clipping to the GAMA survey in order to obtain a
low-redshift measurement of the normalised growth rate
fσ8.

In §II we review the theoretical background associated
with the two point statistics of clipped fields and con-
sider its extension to anisotropic fields. This theoretical
framework is placed into a cosmological context in §III,
where we develop a model for the form of the clipped
galaxy power spectrum. In §IV we apply clipping to sim-
ulated dark matter and galaxy fields in redshift space,
with the results illustrated in §V. The GAMA dataset
is introduced in §VI, while the main results of this work
are presented in §VII before our concluding remarks in
§VIII.

II. STATISTICAL PROPERTIES OF CLIPPED
FIELDS

Clipping is a local transformation characterised by the
application of a saturation value δ0 to a scalar field δ(x)
such that

δc(x) = δ0 (δ(x) > δ0)

δc(x) = δ(x) (δ(x) ≤ δ0),
(1)

yielding the clipped field δc(x). In this section we ex-
plore the statistical properties of δc(x), with particular
attention paid to its autocorrelation

ξc(r) ≡ 〈
[
δc(x)− δ̄c

] [
δc(x + r)− δ̄c

]
〉 , (2)

and corresponding power spectrum Pc(~k). We note that
the clipping transformation induces a non-zero mean in
δc(x), which is why must be careful to specify the more
general form of the autocorrelation function, as defined
by (2). In the analysis of cosmological fields the sub-
traction of the mean is conventionally omitted from this
definition, since the mean is usually zero by construction.

We begin by reviewing the special case where δ(x) is an
isotropic Gaussian field before generalising to anisotropic
and higher-order fields.

A. Isotropic Gaussian Fields

For the case of Gaussian fields we may invoke Price’s the-
orem [21, 22] to evaluate the two-point statistics associ-
ated with the clipped field δc(x) in terms of the original
correlation function ξ(r):

∂ξc(r)

∂ξ(r)
=

∫∫
∂g[δ1]

∂δ1

∂g[δ2]

∂δ2
p(δ1, δ2, r)dδ1dδ2 , (3)

where g[δ] is the local transformation defined by (1), ξc(r)
is the correlation function of the transformed field, and
p(δ1, δ2, r) is the joint probability distribution for a Gaus-
sian process

p(δ1, δ2, r) =
1

2πσ2
√

1− ρ(r)2
exp

[
2ρ(r)δ1δ2 − δ2

1 − δ2
2

2σ2 [1− ρ(r)2]

]
(4)

The functional derivative of the clipping transforma-
tion is unity below the threshold, and zero above the
threshold. This simple behaviour permits an analytic so-
lution of the clipped correlation function ξc(r), which is
given by [9]

ξc(r) = f2
c ξ(r) + σ2

∞∑
n=1

[
ξ(r)

σ2

]n+1

Cn(u0) , (5)

where σ2 is the variance of the field prior to clipping, u0

is the normalised threshold value u0 ≡ δ0/
√

2σ, fc is the
fraction of the field which lies below the threshold

fc =
1

2
[1 + erf (u0)] , (6)

and Cn(x) is the distortion coefficient

Cn(x) =
H2
n−1(x)

π2n(n+ 1)!
e−2x2

, (7)

where Hn(x) is the Hermite polynomial of order n. Be-
yond a scale-independent reduction in amplitude, clip-
ping induces a distortion in the shape of the correlation
function. However provided the slope of the spectral
power is not too steep (|n| . 3), and the clipping remains
weak (u0 & 1), the leading order correction makes only a
small contribution to the resultant power. Furthermore,
terms at higher values of n decay rapidly.
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B. Anisotropic Gaussian Fields

For the more general case of anisotropic Gaussian fields

we may express the two-point correlation function ξ(r, ~θ)
in terms of both the pair separation r and the orienta-

tion vector ~θ. In deriving the expression given by (5)
we made use of the joint probability distribution for a
Gaussian process as given by (4), which is not directly
applicable to anisotropic fields. However we can proceed
by applying this single-parameter transformation sepa-

rately at each fixed value of ~θ, which in itself constitutes
a single-parameter Gaussian process. Since the variance

of each subspace is the same, σ2 = ξ(r=0, ~θ) for all ori-
entations, the transformation maintains the same func-

tional form for all values of ~θ. Therefore the expression
(5) can be generalised to anisotropic fields.

Transforming to Fourier space leaves us with the ex-
pression for the clipped power spectrum

Pc(~k) = f2
c P (~k) + σ2

∞∑
n=1

Cn (u0)

[
P (~k)

σ2

]∗(n+1)

, (8)

where the notation ∗n represents a self-convolution of or-
der n. In practice it is computationally more straightfor-
ward to evaluate the higher order terms using powers of
the correlation function, rather than performing multiple
convolutions of the power spectrum. Further details of
this calculation, as applied to mock cosmological density
fields, can be found in Appendix B.

In line with the definition of the correlation function
(2), our definition of the power spectrum in (8) is speci-
fied in terms of the mean subtracted field. For a clipped
Gaussian field the mean is given by

δ̄c = δ0(1− fc)−
σ√
2π

exp(−δ2
0/2σ

2) . (9)

In practice, it is not critical to account for this constant
offset since it only contributes to the power spectrum at
k = 0.

C. Second Order Anisotropic Fields

In order to gain insight into how higher order terms
respond to clipping, we repeat the procedure above using
the square of a Gaussian random field, e(x) ≡ δ2(x) −
σ2. The correlation function of this second order field,
clipped at e = δ0, is well approximated by [9]

ξc(r, e) = a2ξ(r, e) +O
(
ξ2(r, e)

σ2

)
, (10)

a2 =
1

π

[√
πerf(u′0)− 2u′0e

−u′2
0

]2
, (11)

u′0 ≡
√
δ0 + σ2

√
2σ

, (12)

where σ refers to the standard deviation associated with
the original Gaussian field, and a2 quantifies the ampli-
tude of the power spectrum relative to the original field.
Following the same line of reasoning given in the previous
subsection, we can generalise this result to the anisotropic
case:

Pc(~k, e) ' a2P (~k, e) . (13)

As before, the clipped two-point statistics of a second or-
der field maintain the same shape as the unclipped case,
at least for weak transformations. Note that when clip-
ping at equivalent thresholds, u0 = u′0, the higher order
field is subject to a significantly stronger suppression of
its two point statistics than for the Gaussian case, and
this trend strengthens with yet higher order fields.

D. Hybrid Fields

Practical applications of clipping will inevitably in-
volve the superposition of a Gaussian field with other
components that contaminate the desired signal, partic-
ularly where the amplitude of the field is large. In this
scenario, clipping can assist in extracting the power spec-
trum associated with the original Gaussian field.

Consider a hybrid field h(x) that is a linear combina-
tion of a Gaussian field δ(x), a higher order field δ2(x),
and a nuisance field δX , which characterises some un-
known departure from the model:

h(x) = α1δ(x) + α2(δ2(x)− σ2) + δX(x) . (14)

Upon clipping at a given threshold δ0, and provided the
nuisance field is constant where h(x) < δ0, we can sub-
tract the mean to remove any residual contribution from
δX

hc(x) = α1δc + α2(δ2
c − σ2) , (15)

where the component fields δc and δ2
c are now also clipped

fields. This result is important as it shows that we can
cleanly remove any trace of our nuisance field δX . In most
practical applications the recovery will be imperfect, as
the nuisance field is likely to vary outside of the clipped
region. However this is a much better state of affairs than
the conventional approach - be it perturbation theory or
a model of galaxy bias - where we assume that the extra
terms missing from our model (as specified by δX) vanish
everywhere. With clipping, we can now make the much
more reasonable approximation that δX only vanishes
where h(x) is small.

The two component fields δc and δ2
c each experience

their own distinct thresholds, which may be found by
solving (15) with the condition hc(x) = δ0. The power
spectrum of hc(x) is given by

Pc(k) = α2
1PcL(k) + 2α1α2Pc12(k) + α2

2Pc22(k) . (16)

where PcL(k) and Pc22(k) denote the power spectra asso-
ciated with the clipped δ(x) and δ2(x) fields respectively.
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The cross spectrum Pc12(k) vanishes in the limit of a
high threshold, but becomes increasingly prominent as
the threshold is lowered. In order to estimate Pc12(k),
we may decompose it as

〈δ(1)
c δ(2)

c 〉 = 〈r1r2〉 − 〈r2δ
(1)〉 − 〈r1δ

(2)〉 , (17)

where the residual fields are defined as ri ≡ δ(i) − δ(i)
c .

Provided the clipping is weak, δ0 > σ, the residual fields
are closely related r2 ' 2t0

α2

α1
r1, where t0 is the thresh-

old experienced by the Gaussian field. This may be re-
expressed in the form

Pc12(k) ' −
[
2t0
(
f−1
c − 1

)
PL(k) +

α1 − α2

2t0α2
P22(k)

]
.

(18)
Since Pc12(k) may be expressed as a linear combination
of the first and second order power spectra, we can now
rewrite (16) in the form

Pc(k) ' aLPL(k) + a2P22(k) . (19)

where aL and a2 are the apparent amplitudes of the orig-
inal linear and second order spectra. This result helps
explain why the simple model used in Simpson et al.
[9] was particularly successful at reproducing the clipped
dark matter power spectrum, without explicitly account-
ing for the cross-spectrum Pc12(k).

Adopting this higher order model, rather than relying
on the linear solution from §II B, holds two advantages.
First of all weaker clipping thresholds can be used, allow-
ing the power spectrum to maintain a high amplitude. In
addition, the inclusion of a higher order term potentially
allows the degeneracy between linear bias and σ8 to be
lifted. The disadvantage of this approach is the difficulty
in estimating a2, which could either be calibrated from
simulations, or simply treated as an additional free pa-
rameter.

III. GALAXY DENSITY FIELDS

Galaxy redshift surveys continue to develop an intri-
cate mozaic of the low redshift Universe. By convolving
the point-like positions of galaxies with a suitable kernel,
a continuous density field can be generated. These galaxy
fields are heavily influenced by both nonlinear structure
and galaxy bias, which have proved highly challenging
to model. In each case, it is the highest density regions
which are particularly troublesome, and this motivates
the application of clipping. The three dimensional na-
ture of the data ensures that clipping can be applied
very efficiently. Selecting a threshold that affects only
∼ 1% of the field’s volume typically leads to a reduction
in large scale power by a factor of two. Maps which are
two dimensional projections, such as those derived from a
photometric survey, could also be subject to clipping but
a greater proportion of the area would need to be clipped
in order to achieve the same degree of suppression.

In this section we explore the consequences of clipping
a galaxy density field in redshift space. We shall work in
the distant-observer approximation such that all line-of-
sight displacements may be considered parallel.

A. Galaxy Bias

If we model the fractional overdensity of galaxies δg ≡
ρg/ρ̄g−1 as an arbitrary function of the local dark matter
density [23],

δg =

∞∑
k=0

bk
δkm
k!

, (20)

then applying the clipping transformation suppresses
higher order bk terms in the same way that higher or-
der terms in perturbation theory are suppressed. The
simplest extension to the linear bias model would be the
introduction of b2, which for the case of Gaussian dark
matter fluctuations leaves us with a hybrid field as de-
fined in (14). With a sufficiently low clipping thresh-
old, the linear bias parameter b1 dominates such that
the clipped galaxy power spectrum is highly insensitive
to the initial value of b2. This linearisation process was
demonstrated explicitly in Figure 4 of Simpson et al. [9].
Even in the context of more complex models of galaxy
bias, such as those induced by tidal fields [24], we ex-
pect a similar behaviour. Non-linear contributions to the
galaxy bias still predominantly arise in regions where δ
is large, and these are the regions suppressed by the clip-
ping transformation.

There is however a fundamental limit on how much
we can shield ourselves from the influence of the high-
est density regions, and this stems from the estimation
of the mean number density. In defining the fractional
overdensity, δg ≡ ρg/ρ̄g − 1, the quantity ρ̄g necessarily
incorporates the abundance of galaxies across the whole
volume, prior to clipping. Unlike dark matter perturba-
tions where the total particle number is conserved, no
such restriction applies to galaxy bias. For example if
baryonic effects reduce the abundance of galaxies in clus-
ters such that the total galaxy count across the survey
volume is lowered by a small fraction y, then the inferred
amplitude of fluctuations across the rest of the volume
are overestimated by

δ̂g ' δtg(1 + y) + y, (21)

where δtg is the true fractional perturbation.

B. Redshift Space Distortions: Linear Model

Whilst the true spatial distribution of galaxies is ex-
pected to be statistically isotropic, their redshift-inferred
distances receive an additional displacement due to their
peculiar velocities, generating a statistically anisotropic
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configuration. This permits a measurement of fσ8,
where the logarithmic linear growth rate is given by
f ≡ d ln δ/d ln a, and σ8 defines the amplitude of linear
perturbations.

An additional source of anisotropic clustering arises
from inaccuracies in the assumed geometry of the Uni-
verse, which is required when converting the observed
values of angles and redshifts into a Euclidean frame-
work. This can potentially generate false measurements
of the growth rate [25]. In this work we shall consider the
background expansion to be fixed to a flat ΛCDM model
with Ωm = 0.27 unless specified otherwise.

Clipping in redshift space carries additional compli-
cations. The small scale velocity dispersion associated
with the ‘Fingers of God’ effect will tend to move galax-
ies out of the high density peaks, and potentially into a
surrounding region that lies below the clipping thresh-
old. We should therefore expect the removal of non-
linear effects to be less efficient in redshift space. The
velocity dispersion also causes the power spectrum to
steepen at larger wavenumbers along the line of sight.
This strong spectral slope enhances the relative ampli-
tude of the higher order terms in (8), so these should not
be neglected.

On all but the largest scales, the real space cosmologi-
cal density field at low redshifts is not well described by
a Gaussian field. It may instead be considered as a su-
perposition of a Gaussian component δr(1) and an extra
field δX representing the conglomeration of all nonlinear
corrections.

δrm = δr(1)
m + δXm . (22)

The δX field is largest where the linear approximation
is most strongly violated – both from the truncation of
higher order terms in perturbation theory and more fun-
damentally from the assumption of a single-valued and
curl-free velocity field. The matter density field is traced
by the galaxy number density field, which again may be
decomposed into a Gaussian component, with a linear
bias factor b, and a residual term such that

δrg = bδr(1)
m + δXg . (23)

Now moving to redshift space, the Gaussian compo-
nent is described by the Kaiser model [26], which relates
the real space linear density perturbations with those in
redshift space, which we couple with a Lorentzian model
of the velocity dispersion:

δs(1)
g (k, µ) =

b+ fµ2√
1 + k2σ2

vµ
2/2

δr(1)
m (k) , (24)

where µ ≡ k‖/k is defined as the relative fraction of the
wavevector that extends along the line of sight. The pair-
wise velocity dispersion σv effectively smooths the field
along the line of sight. Theoretically this quantity is
given by

σ2
v =

f2H2
0

3H2(z)π2

∫
Pθθ(k)dk , (25)

where Pθθ(k) is the velocity power spectrum [27]. In
practice we shall treat σv as a free parameter, due to the
uncertain behaviour of nonlinear motions.

The clipped galaxy field δscg can be represented as the
sum of a clipped Gaussian field and a residual term δx.
Therefore the resulting power spectrum may be expressed
as the sum of three terms, the two autocorrelations and
the cross-spectrum

P sc (k) = P scL(k) + 2P sc1x(k) + P sxx(k) . (26)

Given that the nonlinear terms encapsulated by δX dom-
inate the clustering statistics at larger values of δ, it ex-
periences a much greater loss of power than the linear
component. Therefore we should expect that after clip-
ping the first term remains the dominant contribution
to the total power over a broader range of scales. Our
simplest model for the clipped galaxy power spectrum is
therefore encapsulated by

P sc (k, µ) ' P scL(k) ,

= C
{
P sg (k, µ);u0

}
,

(27)

where C denotes the transformation defined by (8), u0

is the normalised clipping threshold experienced by the
Gaussian field as given by (6), and

P sg (k, µ) =
b2(1 + βµ2)2

1 + (kσvµ)2/2
PL(k) , (28)

where P sg (k, µ) is the Gaussian contribution to the galaxy
power spectrum in redshift space, PL(k) is the linear mat-
ter power spectrum in real space, and the anisotropy pa-
rameter β ≡ f/b quantifies the level of anisotropy in the
galaxy power spectrum induced by linear velocity pertur-
bations.

For the case of a hybrid field such as the one defined
in (14), then as clipping is applied, and nonlinear con-
taminations are suppressed relative to the linear contri-
butions, we should expect the recovered value of β to
be closer to the theoretical value for a given kmax; alter-
natively, we should be able to achieve the same level of
systematic error in β at a higher kmax. The actual level
of error and/or smallest scale to probe must be deter-
mined empirically using simulations, as described in the
following section.

C. Redshift Space Distortions: Nonlinear Model

Our base model is defined by the set of four parameters
{β, bσ8, σv, aL}, and relies upon the recovery of the linear
matter power spectrum. However the linear power spec-
trum decays rapidly towards higher wavenumbers, and
by k ∼ 0.5hMpc−1 is typically an order of magnitude
lower than the contribution from the one-loop correction
to the power spectrum. Therefore despite the suppres-
sion of higher order terms, the inclusion of a suppressed
one-loop term substantially improves the model for the



6

real space power spectra of matter and galaxies [9]. Fur-
ther motivated by the results of §II D, we introduce an
extended model with the additional parameter ε, which
accounts for a higher order contribution to the power
spectrum

P sc (k, µ) = aL
b2(1 + βµ2)2

1 + (kσvµ)2/2
[PL(k) + εP1loop(k)] . (29)

The parameter aL is the coefficient of the linear power
which contributes to the clipped power spectrum, as de-
fined in the model of (19). In general the value of aL

cannot be determined a priori. It may be evaluated em-
pirically by considering the fractional change in ampli-
tude of the large scale clustering of the field,

aL = lim
r→∞

ξc(r)

ξ(r)
. (30)

IV. SIMULATIONS

In order to test our theoretical models, we construct
mock density fields for both dark matter and galaxies.
These are derived from numerical simulations, and trans-
formed into redshift space using the distant observer ap-
proximation. In this section we summarise our methods
for generating and modelling the power spectra associ-
ated with clipped cosmological fields, and for the estima-
tion of their covariance matrices.

A. Number Density Fields in Redshift Space

For our mock dark matter field we utilise the z = 0
snapshot from the Horizon Run 2 simulation [28], which
consists of 6,0003 particles within a periodic box of size
7,200h−1Mpc. The amplitude of linear perturbations is
σ8 = 1/1.26, with a matter density Ωm = 0.26. The
redshift-space density field is defined by considering a
19203 grid using a Nearest Grid Point (NGP) scheme,
where the particles are displaced along one axis in accor-
dance with their peculiar velocity. This leaves us with
a grid size of 3.75h−1Mpc corresponding to a Nyquist
frequency of kN = 0.84hMpc−1.

The mock galaxy catalogues are taken from Guo et al.
[29], which applies a semi-analytic model to the halo
merger trees of the Millennium-I simulation [30]. Follow-
ing Simpson et al. [20] we use the two snapshots at z = 0
and z = 0.687 in order to explore different amplitudes of
matter perturbations and growth rates. With σ8 = 0.9,
the z = 0 snapshot possesses a slightly higher amplitude
of fluctuations than the Horizon simulation. Applying a
stellar mass cut of log10(M∗/M�h) ≥ 9 leaves us with a
distribution resembling that found in our GAMA sam-
ple [31]. Number density fields are formed on both 1283

and 2563 grids across the 500h−1Mpc box, with Nyquist

frequencies of kN = 0.8hMpc−1 and 1.6hMpc−1 respec-
tively. The standard deviations are 3.1 for the coarse grid
and 6.0 for the high resolution field.

In order to evaluate the true value of β we need the
linear bias parameter. The ratio of the real space galaxy
power spectrum with that of the Millennium simulation’s
dark matter field gives b = 1.125± 0.01 at z = 0, on the
largest available scales. At z = 0.687 this increases to b =
1.29 ± 0.02, while the growth rate is well approximated
by f(z) ' Ω0.55

m (z).

B. Threshold Selection

After constructing each number density field, we apply
the clipping transformation defined by (1). In order to
select a suitable threshold value δ0 we require an appro-
priate metric for defining the strength of clipping. For
the case of a Gaussian field, the normalised threshold
u0 ≡ δ0/

√
2σ provides a natural measure for this in re-

lation to the standard deviation of the field. However
when working with fields that are highly non-Gaussian,
we do not know a priori what impact a given threshold
will have. Some degree of iteration is therefore required
in order to reach the desired reduction in power, charac-
terised by aL.

When working with the simulations, rather than quot-
ing absolute values of the threshold δ0, we choose to work
in terms of the fraction of mass (or galaxies) removed.
This way fields with larger fluctuations naturally adopt
higher thresholds δ0.

The disadvantage of a stronger (lower) threshold is
a larger drop in the amplitude of the power spectrum,
which in turn reduces the maximum wavenumber avail-
able before the shot noise contributions dominate. Very
strong thresholds also induce a large contribution from
the cross-power P12(k), as given by (18), further re-
ducing the power. The optimal choice of threshold is
therefore one that adequately suppresses contributions to
the power from nonlinear structure and nonlinear bias,
while maintaining a relatively high amplitude of the lin-
ear power spectrum. As shown in Figures 6, 7, and 8 of
Simpson et al. [20], the decay of the higher order term
rapidly outpaces the contribution from the linear power
spectrum, such that a factor of two reduction in linear
power is sufficient to eliminate approximately 80% of the
nonlinear power.

For each field we explore a range of threshold values,
since it is important to verify that different thresholds
generate consistent parameter constraints. Performing a
likelihood analysis that combines the power spectra de-
rived from different thresholds may further improve pa-
rameter constraints. However an estimation of the covari-
ance between the different spectra is beyond the scope of
this work, here we shall only consider the analysis of each
threshold separately.
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C. Methods

The theoretical model for the clipped power spectrum
is evaluated with the following procedure

• Apply the redshift space model defined in (28) to

determine P̂ s(k, µ) from the linear power spectrum
evaluated by CAMB [32] combined with the chosen
parameter values of b, f , and σv.

• Interpolate the power spectrum onto a 3D grid
matching the specifications of the NGP lattice gen-
erated from the simulations.

• Transform to the 3D correlation function ξ(σ, π)

• Evaluate the clipped 3D correlation function
ξc(σ, π) using (5). We find it sufficient to truncate
the series expansion at nmax = 4 in order to estab-
lish sub-percent accuracy. This step is discussed
further in Appendix A.

• Apply the inverse Fourier transform to determine
the expected 3D power spectrum as a function
of wavenumber magnitude k and orientation µ,
P sc (k, µ). The power spectrum is assigned to lin-
early spaced bins, with widths of ∆k = 0.025,
∆µ = 0.2. We maintain the same binning
scheme throughout this work. Note that the mean
wavenumber contributing to the bin is in general
at higher values of k than the bin centre, due to
the abundance of modes within a spherical shell dk
scaling as k2.

A four-dimensional likelihood grid is constructed,
L(Pc(k, µ)|aL, σv, β, bσ8), where the parameter set relates
to the model given by (27) and (28).

With the clipped power spectrum alone as the only
source of information, we would have little knowledge of
how strong the applied clipping has been, and therefore
aL is poorly constrained. However the drop in power
relative to the original (unclipped) power spectrum pro-
vides us with some extra information that can assist
in constraining the range of aL values. We therefore
make use of the fractional loss of power experienced at
k < 0.1hMpc−1 and µ < 0.6, to provide some external
information for the value of aL. At higher values of k
and µ the larger contributions from nonlinear structure
mean that they experience a greater drop in power.

We assign flat priors of 0 < aL < 1, 0 < β < 2, 0 <
bσ8 < 2, and for the velocity dispersion we use a broad
Gaussian prior σv/

√
2 = 300± 300 kms−1, as defined in

(28). Our results are largely insensitive to the particular
choice of priors.

D. Covariance Estimation

The large volume of the dark matter field in the Hori-
zon Run 2 simulation, (7,200h−1Mpc)3, permits a direct

estimation of the 70 × 70 covariance matrix associated
with the P (k, µ) bins by considering the covariance of
power spectra evaluated from 350 subvolumes, each of
size (960h−1Mpc)3. To evaluate the covariance matrix
we employ the Ledoit-Wolf shrinkage estimator [33], fol-
lowing the prescription

Σ = δ?F + (1− δ?)S, (31)

where Σ is our estimated covariance matrix, and δ? is
the shrinkage constant. S is the sample covariance ma-
trix, defined as the ensemble average over N = 350 sub-
volumes

Sij = 〈∆Pi∆Pj〉 , (32)

where ∆Pi represents the deviation in power in the ith
P (k, µ) bin from the sample mean. The shrinkage target
F is defined in terms of the sample covariance

Fij =

{
Sij , (i = j)

r̄
√
SiiSjj , (i 6= j)

(33)

r̄ =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

Sij√
SiiSjj

. (34)

where N = 350. The shrinkage constant δ? is estimated
using publicly available code [34]. We emphasise that
this approach yields a considerably improved estimate
of the covariance matrix than simply using the sample
covariance S alone.

For the galaxy sample associated with the Millennium
simulation, the volume is considerably smaller and there-
fore a direct estimate of the covariance matrix would be
prohibitively noisy. Instead we only estimate the diago-
nal terms of the covariance matrix, again using the vari-
ance of subvolumes. The estimation of off-diagonal terms
is determined by using the dark matter covariance as a
template, such that

Cij = corr(i, j)
√
CiiCjj . (35)

where corr(i, j) is the correlation matrix from the dark
matter power spectrum.

E. Shot Noise Estimation

For the conventional unclipped power spectrum, the
discrete nature of sources leads to an additional contri-
bution of power, which if we assume to be Poissonian in
nature is given by Ps = n̄−1. As clipping smooths the
field above the threshold value, the shot noise contribu-
tion is reduced. Approximating the noise field as Gaus-
sian allows us to utilise (6) to estimate Ps ' f2

V n̄
−1,

where fV is the fraction of the volume of the field lying
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below the clipping threshold. In this work the typical
volume fraction is of the order ∼ 1%, and therefore the
correction to the shot noise is negligible.

The power spectra of clipped fields are highly robust
to changes in the number density of sampled points [9].
The only noticeable consequence appears to be that fields
with higher shot noise possess noisier power spectra and
can therefore not utilise as wide a range of wavenumbers.

V. RESULTS FROM SIMULATIONS

First we present the power spectra from the dark mat-
ter and galaxy fields, at different clipping thresholds, be-
fore reviewing the results of the likelihood analysis.

A. Clipped Power Spectra

The panels in the left hand column of Figure 1 compare
the dark matter power spectrum from the Horizon Run
2 simulation with the linear theory prediction in each of
five angular bins. Within each panel the uppermost set
of points represent the power from the original unclipped
field, while the central set is generated after applying a
logarithmic transformation ln(1 + δ). The lowest set of
point corresponds to a field subject to a clipping trans-
formations, (1), with a threshold value δ0 chosen such
that 20% of the mass is removed. Each dashed line cor-
responds to the model based on the linear power spec-
trum given by (28) where the amplitude is rescaled to fit
the transformed spectra. The form of the real space lin-
ear power spectrum and the anisotropy parameter β are
assigned values according to the simulation parameters.
The value of β ≡ f/b is derived using the linear growth
rate f ' Ω0.55

m and the linear bias b = 1 since we are
working directly with the dark matter. No error bars are
displayed in these panels because the statistical error is
considerably smaller than the marker size. The bins in
k and µ were chosen to match the power spectra derived
from the GAMA survey.

For such an evolved field the linear theory prescription
given by (28) typically holds only on very large scales.
Even at k ∼ 0.1hMpc−1 the model overestimates the
power in the highest µ bin by almost 10%, consistent with
the findings of Jennings et al. [35]. However once either
transformation is applied, the linear formalism of (28)
provides a significantly improved description. Agreement
with the clipped spectrum is better than 5% within the
range (k < 0.5hMpc−1;µ < 0.8). This improvement
in the modelling occurs due to the strong suppression
of higher order terms in perturbation theory [9]. The
leading cause of tension with the model appears to be
within the highest µ bin, which is perhaps unsurprising
since these modes receive contributions from very small
physical scales, due to the velocity dispersion of galaxies.
The central set of points illustrate the response of the
power spectrum to another local transformation, the log-

arithm of the number density, ln(1 + δ). Neyrinck et al.
[8] demonstrated that this can help linearise the power
spectrum of the real space dark matter field. We find that
considerable linearisation also occurs when applying the
log transform to the dark matter field in redshift space.
The shape of the linear theory power spectrum defined by
(28) is recovered to better than 10% for k < 0.4hMpc−1.

The central column of Figure 1 is in the same format
as the left column, but illustrates the galaxy power spec-
trum from the Millennium Simulation at z = 0 before
and after applying transformations to the number den-
sity field. As before, the uppermost set of points in each
panel represent the original unclipped field. The lowest
set of points are generated by clipping 20% of the galax-
ies, which brings the data points closer to the shape of
the linear model (28), as given by the dashed line. To
obtain the value of β for the model requires a combina-
tion of the linear bias, which is estimated from the ampli-
tudes of the largest Fourier modes in the simulation to be
b = 1.125, and the growth rate f(z=0) = 0.47. As quan-
tified in §IV A, the true value of the linear bias is only
an estimate, however it remains a subdominant source
of uncertainty. The error bars in the central and right
hand columns are significantly larger than those in the
left hand column, reflecting the considerably smaller box
of the Millennium-I Simulation (500 Mpc/h) compared
to that of the Horizon Run (7,200 Mpc/h).

Deviations between the clipped spectrum and the lin-
ear model remain lower than 10% for all data points at
k < 0.3hMpc−1. Unlike the case of dark matter, it is
the lowest µ bin that causes the greatest tension with
the model. This may be due to the local motions of
galaxies causing them to be displaced from their high
density regions, which would make the clipping process
less efficient, leaving behind a considerable proportion of
the nonlinear contributions to the power spectrum. The
middle set of points in Figure 1 correspond to the loga-
rithmic transformation, but now only a modest degree of
linearisation is observed. This reduced effectiveness can
be attributed to the sampling noise from the galaxy fields
with n̄ = 0.01Mpc−3. Due to this sensitivity to the level
of shot noise, we shall focus on the clipping transform for
the remainder of this work, which by contrast is largely
insensitive to shot noise.

The right hand column of Figure 1 explores the power
spectra for a different sample of galaxies at a different
redshift, z = 0.687. Here both the linear bias b = 1.29
and growth rate f(z= 0.687) = 0.77 have changed from
those of the central column, yet the outcome is similar,
in that the application of clipping significantly improves
the performance of the Kaiser model defined in (28). As
with the low redshift galaxy sample, the departure from
linearity is less than 10% for k < 0.3hMpc−1.

Figure 2 displays three subsections of the 70× 70 cor-
relation matrix (14 bins in k, 5 bins in µ) associated with
the unclipped dark matter field. The coupling of modes
becomes particularly apparent towards higher wavenum-
bers, k > 0.25hMpc−1. It is interesting to note that
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FIG. 1. The redshift space power spectra P (k, µ) from the simulations described in Section IV, divided into five angular bins.
The three columns are dark matter from the Horizon simulation (left); galaxies at z = 0 from the Millennium simulation
(middle); and galaxies at z = 0.687 from the Millennium simulation (right). Within each panel the original power spectrum
is shown as black set of data points while the red and blue sets correspond to the power spectra generated after the number
density field has been subject to logarithmic and clipping transformations respectively. The clipping threshold is chosen such
that it lies below 20% of the mass. The dashed lines represent the linear model specified by (28). For the case of the transformed
spectra, the amplitude of the model is rescaled to fit the data.
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FIG. 2. Three subsections of the 70 parameter correlation matrix from the power spectrum P (k, µ) of the unclipped dark matter
field in the Horizon simulation. The left hand panel corresponds to the lowest bin in wavevector orientation, 0 < µ < 0.2,
while the centre panels relates to the highest bin, 0.8 < µ < 1. Each section consists of ten bins in wavenumber k. The right
hand panel is subsection of the correlation matrix associated with the cross-correlation between those two µ bins. The growing
off-diagonal correlations towards smaller scales, particularly apparent in the lowest µ bin, is an indicator of the nonlinear
structure that generates mode coupling. The correlation matrix was estimated by following the prescription described in §IV D.

these off-diagonal terms fall by approximately 20− 30%
after clipping has been applied. This decorrelation of
neighbouring bins was previously observed in the real
space power spectrum [9].

The shrinkage constant also reduces considerably after
the application of clipping. From the unclipped field we
find a shrinkage constant of δ? = 0.25. Thresholds se-
lected to remove 5% and 10% of the dark matter yields
shrinkage constants of 0.18 and 0.14 respectively, reflect-
ing the increasingly Gaussian nature of these fields.

In Figure 3 we explore the efficacy of fitting the power
spectra of clipped fields with the non-linear model, spec-
ified by (29), which is based on the model of the real
space power spectrum presented in Simpson et al. [9].
The simulations in question are the same as those used
in Figure 1. The data points used to fit the model pa-
rameters are k < 0.4hMpc−1 and µ < 0.8. The upper
set of data points corresponds to the original field, with
the dashed line now making use of the one-loop power
spectrum. The middle and lower sets of data points re-
late to clipping 10% and 20% of the mass respectively.
Now that an extra contribution from the one-loop power
spectrum is included, the data points in the lower µ bins
are much better accounted for, compared with the linear
model in Figure 1. However the highest µ bin appears
significantly underestimated.

We conducted further investigations by evaluating the
power spectra of dark matter haloes in the Millennium
simulation, before and after clipping, at the same two
snapshots as the aforementioned galaxy catalogues. A
very similar trend is found, whereby the clipped spectra
are readily described by the model for k < 0.4hMpc−1.
Since these power spectra appear very similar to those
displayed in Figure 3, they are not shown here.

B. Growth of Structure

First we attempt to recover the correct cosmological
parameters from the clipped power spectra, using only
the linear model given by (28):

P sc (k, µ) = C
{
b2(1 + βµ2)2

1 + (kσvµ)2/2
PL(k);u0

}
. (36)

Our basic set of parameters is {β, bσ8, σv, aL}. The nor-
malised growth rate fσ8 may be derived from these via
the following relation:

fσ8 = βbσ8 . (37)

Figure 4 shows the constraints on fσ8 when applying the
linear model to the three different fields from the simula-
tions, as a function of the maximum wavenumber kmax.
In each case the true value of fσ8 is illustrated by a hori-
zontal dashed line. The points have small horizontal off-
sets for clarity, and appear in order of increasing clipping
strength. The squares, triangles and inverted triangles
correspond to clipping thresholds below 5, 10 and 15% of
the field respectively. The shaded regions represent their
68% confidence limits. For reference, the maximum like-
lihood points from the original unclipped field are shown
as black circles.

Results from the dark matter field are shown in the
left hand panel. Removing only 5% of the mass is found
to be sufficient to correct for much of the nonlinear be-
haviour on scales k . 0.3hMpc−1. Similar behaviour
is seen in the central panel of Figure 4, which uses the
z = 0 galaxy sample, with a true value of σ8 = 0.9. In
the right hand panel we find that the galaxy sample at
z = 0.687 also significantly improves the recovery of the
underlying cosmology when using the linear model on
scales k . 0.3hMpc−1. The shaded regions are signifi-
cantly broader in the central and right hand panels, re-
flecting the considerably smaller box of the Millennium-I
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FIG. 3. A similar format to Figure 1, except here the dashed lines represent the best-fit non-linear model, as given by (29).
The central and lower sets of data points correspond to different clipping thresholds, removing 10% and 20% of the mass
respectively.
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FIG. 4. Marginalised constraints on the normalised growth rate fσ8 from the simulations, when using only the linear power
spectrum (27) to model the data. The three shaded regions arise from the power spectra after clipping 5% (squares), 10%
(triangles), and 15% (inverted triangles) of the mass from each field. The horizontal dashed lines indicates the true values of
fσ8 within each snapshot.

FIG. 5. The same format as Figure 4 except we now fit the data using the nonlinear model defined by (29), with a uniform
prior −1 < ε < 1.

Simulation (500h−1Mpc) compared to that of the Hori-
zon Run (7, 200h−1Mpc).

In the context of the more general model (29), which
invokes additional contribution controlled by the ε pa-
rameter, we know that for very weak clipping ε will be
positive and when the clipping is very strong ε becomes
negative as the contributions from cross spectra such as
P12(k) dominate. Therefore there is inevitably a thresh-
old at which ε vanishes and the linear model offers a good
fit to the data. This is represented by the inverted trian-
gles in Figure 4.

C. Nonlinear Model

We repeat our analysis using the extended model de-
fined by (29), which introduces an extra parameter ε to
control the amplitude of the clipped one-loop power spec-
trum, which is otherwise fully specified in terms of the
linear power spectrum. Figure 5 shows the constraints
derived on fσ8 from the three simulated fields clipped
with the same thresholds as Figure 4. The extra free-
dom in the real space matter power spectrum leads to
significantly improved measurements at weaker clipping
thresholds. In the case of dark matter we find that the
maximum likelihood is within 10% of the true value for
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FIG. 6. The same format as Figure 5 except here we only make use of intermediate wavevector angles (0.2 < µ < 0.8).

each kmax ≤ 0.4hMpc−1 and for each threshold. Simi-
larly in the galaxy field both clipping thresholds return
more consistent constraints, and with only a modest loss
of precision compared to the simpler linear model. How-
ever we find that the extreme values of µ are responsible
for the bulk of the tension between the model and the
data. It may be the case that more complex models such
as those outlined by Taruya et al. [36] may provide a bet-
ter description of the anisotropies in the clipped power
spectrum. An exploration of these models in the context
of clipped fields is beyond the scope of this work. Re-
stricting ourselves to 0.2 < µ < 0.8 improves agreement
between the model and data to better than 2% across
all wavenumbers k < 0.5hMpc−1. This is reflected in
Figure 6 where the tendency to overpredict fσ8 at the
highest values of kmax is resolved.

VI. DATA

The galaxy redshift surveys that have the greatest po-
tential to benefit from clipping are those with a high num-
ber density of galaxies. A densely sampled field ensures
that shot noise is low out to high wave numbers, even
after the drop in the amplitude of the power spectrum
due to clipping. The GAMA survey provides an excellent
basis for the first application of clipping to a real galaxy
field. In this section we present details of the survey, and
how the power spectra were generated.

A. The GAMA Survey

The Galaxy and Mass Assembly (GAMA) project [37–
40] is a multi-wavelength photometric and spectroscopic
survey. The redshift survey, which has been carried out
with the Anglo-Australian Telescope (AAT), has pro-

vided a dense, highly-complete sampling of large-scale
structure up to redshift z ∼ 0.5. The primary target
selection is r < 19.8 (where r is an extinction-corrected
SDSS Petrosian magnitude), using TilingCatv41.

Following Blake et al. [41], we analyzed a highly-
complete subsample of the survey dataset known as the
GAMA II equatorial fields. This subsample covers three
12×5 deg regions centred at 09h, 12h and 14h30m, which
we refer to as G09, G12 and G15, respectively. Galaxy
redshifts were obtained from the AAT spectra using a
fully automatic cross-correlation code that can robustly
measure absorption and emission line redshifts [42]. We
restricted the redshift catalogue to galaxies with “good”
redshifts (NQ ≥ 3). In order to obtain high-resolution
measurements of the density field we restricted our anal-
ysis to the redshift range 0.002 ≤ z ≤ 0.25, where
the galaxy number density exceeds 10−2 h3 Mpc−3. In
the (G09, G12, G15) regions we utilized (32076, 37382,
36538) galaxies in our analysis. The comoving volume of
each region is approximately 6.4× 106(h−1Mpc)3 [41].

The survey selection function at each point, used in the
calculation of the galaxy overdensity, was determined by
combining the angular completeness map of the survey
(which has a mean value of 97% across the three regions)
with an empirical fit to the galaxy redshift distribution,
performed after stacking together the data in the three
regions to reduce fluctuations due to cosmic variance.
Full details of the method are described in Section 3.2 of
Blake et al. [41].

B. Estimating the Clipped Power Spectrum

The clipped power spectra for each GAMA region were
determined for a given overdensity threshold δclip as fol-
lows:

1. The galaxy distribution was binned on a common
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3D grid to the selection function, with a resolu-
tion of 2h−1 Mpc. We denote the gridded distri-
butions from the data and random samples as D(~x)
and R(~x), respectively. The random catalogues are
sampled from the selection function constructed for
the GAMA survey data, which combines the an-
gular completeness in each survey region with an
empirical smooth redshift distribution fit to a com-
bination of the three regions.

2. The distributions were smoothed using a Gaussian

kernel G(~x) = e−(~x.~x)/2λ2

. We take λ = 2h−1 Mpc
for our analysis. We denote the smoothed fields by
sm(D) and sm(R).

3. The overdensity field for each region was estimated
as δ(~x) = sm(D)/sm(R)− 1, where the normaliza-
tion of R was fixed such that 〈δ〉 = 0.

4. The mean overdensity of each region in the redshift
range z < 0.25, relative to the average of all three
regions, was estimated using the measured number
of galaxies as δreg = (−0.0922, 0.0580, 0.0341) for
(G09, G12, G15). The effective clipping threshold
applied to the locally defined fluctuations within
each region was then adjusted to δclip,eff to ac-
commodate these mean density fluctuations, where
1 + δclip,eff = (1 + δclip)/(1 + δreg).

5. For any grid cell with δ > δclip,eff , the unsmoothed
gridded data value was lowered to D = R (1 +
δclip,eff).

6. The power spectrum of the clipped gridded data
field D was measured using Fast Fourier Trans-
form (FFT) techniques following Section 3.3 of
Blake et al. [41]. The optimal-weighting estimation
scheme of Feldman, Kaiser & Peacock (1994) was
applied, assuming a characteristic power spectrum
amplitude P (k) = 5000h−3 Mpc3. We binned the
power spectrum by k and µ, where µ is the cosine

of the angle of the wavevector ~k with respect to the
line-of-sight, using bin widths ∆k = 0.05h Mpc−1

and ∆µ = 0.2. The integral constraint correction
to the power spectrum was included in the esti-
mation process (using the Fourier transform of the
window function).

7. The amplitude of the measured power spectra was
corrected for the mis-estimate of the mean density
of the region, through multiplication by a factor
(1 + δreg)2.

8. The convolution matrix, which is used to project a
model power spectrum P (k, µ) to form a compar-
ison with the data given the survey window func-
tion, was determined using the method outlined in
Section 3.3 of Blake et al. [41], in which the full FFT
convolution is applied to a series of unit model vec-
tors, and an equivalent matrix is constructed row-
by-row.

9. The covariance matrix of the power spectrum mea-
surement in (k, µ) bins was estimated by evaluat-
ing the sums described in Section 3.4 of Blake et al.
[41]. Initially the measured power spectrum in each
bin was used to specify the cosmic variance compo-
nent. This produces an error estimate that is corre-
lated with the data. To resolve this we modified the
computation using an iterative procedure in which
the best-fitting (convolved) theoretical model was
determined and the covariance was re-estimated us-
ing that model. Two iterations were used to ensure
convergence.

We repeated the above analysis for three different clip-
ping thresholds δ0 = {8, 5, 4}. These values were se-
lected on the basis of generating a suppression of linear
power between 30 and 60%. This provides an appropri-
ate balance between the elimination of nonlinear struc-
ture and maintaining a high degree of signal to noise.
The three thresholds affect approximately 0.7%, 2.1%,
and 3.2% of the field in terms of volume, and approx-
imately 6.4%, 15%, and 20% in terms of galaxies. The
latter quantity is defined as the fractional reduction in
the value of

∑
D(~x) due to clipping.

Unlike non-local transforms such as those used for re-
constructing the baryon acoustic oscillations, clipping
commutes with the window function. This facilitates our
interpretation of clipped power spectra, since the clipping
transformation associated with the full (non-windowed)
universe can be evaluated first, before compensating for
the impact associated with the window function of the
survey.

VII. RESULTS FROM GAMA

In this section we perform a likelihood analysis to es-
timate the normalised growth rate fσ8 at z = 0.18. The
effective redshift of power spectrum measurements in the
GAMA regions was determined by Blake et al. [41]. The
methodology from Section IV is applied to each of the
clipped galaxy power spectra from each of the three fields
of the GAMA survey.

Figure 7 illustrates the effect of the clipping transfor-
mation. The solid bars represent the probability density
function of the galaxy density field within the G09 region,
defined in terms of 40 bins which are spaced equally in
log(1 + δ). The hollow bars show the resulting distribu-
tion function if we then apply a clipping transformation
with a threshold of δ0 = 4. The distribution function
remains unaltered below the threshold value δ0, while all
contributions from greater overdensities are compressed
into the bin associated with the threshold value.

A. Clipped Power Spectra

The panels in Figure 8 illustrate the anisotropic power
spectra derived from the three fields (G09, G12, and
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FIG. 7. The solid bars represent the probability density func-
tion for the galaxy density field within the G09 GAMA region.
The hollow bars demonstrate the effect that applying a clip-
ping threshold of δ0 = 4 would have on this field. A vertical
dotted line demarcates the underdense and overdense regimes.

kmax Unclipped δ0 = 8 δ0 = 5 δ0 = 4
0.1 0.41± 0.07 0.34± 0.19 0.35± 0.19 0.32± 0.19
0.2 0.43± 0.08 0.23± 0.10 0.26± 0.10 0.24± 0.11
0.3 0.25± 0.05 0.19± 0.07 0.22± 0.08 0.22± 0.08
0.4 0.14± 0.02 0.14± 0.04 0.18± 0.05 0.19± 0.06
0.5 0.02± 0.01 0.06± 0.04 0.16± 0.05 0.22± 0.06

TABLE I. The maximum likelihood fσ8 values and their
associated 68% confidence intervals, when fitting the linear
model to the GAMA data. Each column represents a differ-
ent clipping threshold while each row represents a different
kmax condition. Table elements associated with a value of
χ2
red < 1.2 are highlighted in bold. There is a strong covari-

ance between nearby table elements, so we do not attempt to
combine constraints from different clipping strengths in this
work.

G15). As with the simulations, the power spectrum is di-
vided into five equal bins in µ, spanning 0 < µ < 1, while
the wavenumber bin width is taken to be ∆k = 0.05.
Within each field the three sets of points correspond to
the power in the field before (black) and after the ap-
plication of clipping thresholds δ0 = 8 (red) and δ0 = 4
(blue). At each clipping strength, the dashed line reflects
the linear model, with the maximum likelihood values of
β, σv, and bσ8. Estimates of the aL parameter are shown
in Figure 9. These are determined by the fractional drop
in P (k, µ) for k < 0.1hMpc−1 and µ < 0.6, after clipping
is applied.

B. Linear Model

Following the procedure outlined in Section V B, we
use the clipped power spectra from the three GAMA re-
gions to measure the normalised growth rate fσ8(z =

kmax Unclipped δ0 = 8 δ0 = 5 δ0 = 4
0.1 2.77 1.50 1.31 1.26
0.2 3.68 1.00 0.88 0.73
0.3 2.81 1.26 1.05 1.08
0.4 2.66 1.35 1.01 1.00
0.5 3.06 1.87 1.31 1.21

TABLE II. The reduced χ2 values for a variety of clipping
thresholds and maximum wavenumbers, when fitting the lin-
ear model to the GAMA data.

0.18). Here we shall present results which combine the
likelihoods of the three regions. Individual results from
the three separate regions can be found in Appendix C.

First we employ the linear model defined by (28) and
(27), while fixing the shape of the linear power spectrum
to the fiducial model. The left hand panel of Figure 10
show the maximum likelihood values and 68% error bars
associated with fσ8, under a range of different clipping
thresholds and kmax values. As before, the squares, trian-
gles and inverted triangles correspond to clipping thresh-
olds of δ0 = 8, 5 and 4 respectively. The shaded regions
represent their 68% confidence limits. For reference, the
maximum likelihood points from the original unclipped
field are shown as black circles. Their confidence lim-
its are suppressed for clarity, as they do not provide an
acceptable fit to the data.

With the unclipped data the constraint on fσ8 is
highly sensitive to variations in kmax, which is consistent
with the behaviour found in the simulations. Since the
model inevitably underestimates the amount of real space
power towards larger k, this leads to an under-estimation
of σv which in turn biases the estimate of β to be low.
Applying a high clipping threshold (δ0 = 8) show a mod-
est improvement in terms of consistency and goodness of
fit. Stronger thresholds of δ0 = 5 and δ0 = 4 provide a
much improved agreement with the model, and more con-
sistent results towards higher wavenumbers. The maxi-
mum likelihood values are displayed in Table I, and the
reduced χ2 values are can be found in Table II. The power
spectra associated with the clipped fields are found to ad-
here to the linear theory prediction more closely than the
original field. From the simulations we expect a signif-
icant systematic error to arise at kmax & 0.3hMpc−1,
so for the linear model we use k < 0.2hMpc−1 to find
fσ8(z = 0.18) = 0.26 ± 0.10. Constraints from the
clipped fields show a more consistent result across the
range of wavenumbers than the original field, and also
have a much improved goodness of fit.

Extracting robust constraints from higher wavenum-
bers requires a higher order model, since at these scales
the amplitude of the linear power spectrum falls far below
the non-linear contributions.



16

0.1 0.2 0.3 0.4

k (h/Mpc)
0.1 0.2 0.3 0.4

k (h/Mpc)

G12 G15

10
2

10
3 G09

0 <µ < 0.2

10
2

10
3

0.2 <µ < 0.4

10
2

10
3

k
P
(k

,
µ

)(
M
p
c/
h
)2

0.4 <µ < 0.6

10
2

10
3

0.6 <µ < 0.8

0.1 0.2 0.3 0.4

10
2

10
3

k (h/Mpc)

0.8 <µ < 1

FIG. 8. The galaxy power spectra Pg(k, µ) measured within the three GAMA regions, each divided into five angular bins.
Within each panel the original power spectrum is shown as the upper set of data points while the middle and lower sets
correspond to the power spectra generated after the number density field has been clipped with thresholds of δ0 = 8 and δ0 = 4
respectively. These thresholds generate a drop in large scale power of approximately 30% and 60%. The upper dashed line
is generated from the conventional model given by (28). The lower dashed line is the fiducial model for the clipped linear
power (27). At each clipping strength β and σv are set to their maximum likelihood values. The theoretical lines differ slightly
between each region since each has been convolved with the window function of their respective region. For visual clarity a
small horizontal offset is applied to the black and blue data points.
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FIG. 9. Estimates of the fractional drop in linear power in
each of the three GAMA regions as a result of applying clip-
ping thresholds of δ0 = 8 (upper points) and δ0 = 4 (lower
points).

C. Non-linear Model

The central panel of Figure 10 shows the constraints
on fσ8 when using the extended model defined by
(29). Again we find consistent behaviour between dif-
ferent clipping strengths, and across a variety differ-
ent maximum wavenumbers. The extra degree of free-
dom does not appear to significantly weaken the con-
straints. Guided both by the performance of simula-
tions, and the goodness of fit between the data and
the model, we adopt our benchmark measurement to be
fσ8(z = 0.18) = 0.29 ± 0.10, using k < 0.3hMpc−1 and
δ0 = 4. This measurement is consistent with that derived
from the linear model, and serves as the central result of
this work. Our result is consistent with the findings of
Blake et al. [41], who used the same (unclipped) galaxy
field to determine fσ8(z = 0.18) = 0.36± 0.09. The full
set of constraints on fσ8 is presented in Table III, while
the reduced χ2 values are displayed in Table IV.

A more conservative approach is to restrict our analy-
sis to intermediate wavevectors, 0.2 < µ < 0.8, and the
results are shown in the right hand panel of Figure 10.
While the susceptiblility to systematic errors has been re-
duced, there is also a substantial loss of precision. There-
fore even when making use of the full range of wavenum-
bers, k < 0.5hMpc−1, the resulting confidence interval
is found to be fσ8 = 0.35± 0.17.

While a significant improvement in precision is
achieved by increasing the kmax value up to 0.3hMpc−1,
thereafter the gain is not as great as one might expect
from the increased abundance of Fourier modes. One of
the key limitations remains the degeneracy between the
anisotropy parameter β and the velocity dispersion σv.
Their joint likelihood is illustrated in Figure 11, for two
different values of kmax. Clearly if additional information
were available to measure or predict the value of σv, sub-

kmax Unclipped δ0 = 8 δ0 = 5 δ0 = 4
0.1 0.41± 0.07 0.34± 0.19 0.35± 0.19 0.32± 0.19
0.2 0.39± 0.08 0.23± 0.11 0.27± 0.11 0.25± 0.11
0.3 0.27± 0.07 0.27± 0.11 0.30± 0.11 0.29± 0.10
0.4 0.28± 0.05 0.20± 0.08 0.22± 0.08 0.21± 0.07
0.5 0.34± 0.04 0.32± 0.08 0.32± 0.10 0.30± 0.09

TABLE III. The same format as Table I but now using the
nonlinear model defined by (29).

kmax Unclipped δ0 = 8 δ0 = 5 δ0 = 4
0.1 2.77 1.50 1.31 1.26
0.2 3.12 0.96 0.88 0.76
0.3 2.04 1.36 1.12 1.12
0.4 2.34 1.39 1.02 1.02
0.5 2.55 1.86 1.42 1.27

TABLE IV. The reduced χ2 values associated with each of
the maximum likelihood values presented in Table III.

stantial improvements in the measurement of fσ8 could
be made. Another factor which limits the gains available
from smaller scales is the shot noise. Its fractional im-
portance is amplified by the reduction in the amplitude
of the power, which becomes particularly apparent at the
lowest threshold.

VIII. DISCUSSION

We have developed the clipping procedure proposed in
Simpson et al. [20] to enable its application to anisotropic
fields, and applied this new analysis technique to the
z < 0.25 sample from the GAMA survey. A simple model
based on the linear power spectrum is used to measure
the normalised growth rate fσ8(z = 0.18) = 0.26 ± 0.10
at kmax = 0.2hMpc−1. Employing a higher order model
from perturbation theory allows the use of higher wave
numbers, while still not requiring numerical simulations
for calibration. For this case we find fσ8(z = 0.18) =
0.29 ± 0.10 when using kmax = 0.3hMpc−1 and density
fluctuations δg < 4. These results alone are not in signifi-
cant tension with expectations from the Planck data [43]
within the context of a standard ΛCDM model. How-
ever, they do add to a growing body of evidence that
appears to prefer a lower amplitude of density perturba-
tions at low redshifts. Such evidence includes weak grav-
itational lensing [44], galaxy clusters [45], and a number
of other measurements of redshift space distortions [46].
This trend is also visibly apparent in Figure 12, but there
are several possible explanations for this behaviour. One
interpretation of this is the reduction in the quadrupole
generated by nonlinear motions, relative to the Kaiser
prediction, as illustrated in Figure 2 of [35]. However
our result would be largely insensitive to this effect. An-
other interpretation is the presence of nonlinear galaxy
bias. An additional isotropic contribution to the power
dilutes the strength of the anisotropic clustering signal.
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FIG. 10. Constraints on fσ8 from the power spectra of the galaxy field from GAMA. Results from the linear model are
presented in the left hand panel, while those from the nonlinear model are illustrated in the central panel. The right hand
panel uses the same model as the central panel but only includes intermediate wavevector angles (0.2 < µ < 0.8). Within each
panel the squares, triangles and inverted triangles correspond to clipping thresholds δ0 of 8, 5, and 4 respectively. The circles
represent the maximum likelihood points when using the original field without clipping.
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FIG. 11. The joint likelihood contours at 68% and 95% when
evaluating the GAMA power spectra with δ0 = 4, using the
linear model. The degeneracy with the velocity dispersion σv

limits the gain in measuring the anisotropy parameter β when
utilising higher wave numbers. The dashed contours show the
degeneracy when fitting kmax = 0.3hMpc−1, while the solid
contours represent kmax = 0.5hMpc−1.

This effect can be seen in Figure 5 where, before clipping
is applied, the inferred value of fσ8 is significantly lower
than the correct value even when using k . 0.1hMpc−1.
The simplest forms of nonlinear bias are strongly sup-
pressed by clipping, but others such as stochastic bias
are likely to remain, and therefore merit further investi-
gation. It is also important to note that most studies of
redshift space distortions rely upon a prior on the range

of possible background geometries based on results from
WMAP. The portion of the error budget associated with
the Alcock-Paczynski effect in each survey will therefore
be highly correlated [25, 47, 48].

As was found to be the case in real space [9], the pre-
ferred range of clipping thresholds are typically those
that reduce the linear power by around 25−50%. For our
galaxy field this corresponded to thresholds in the range
4 < δ0 < 8. Higher thresholds lead to weaker clipping,
which is less effective at removing the problematic con-
tributions from nonlinear structure. Meanwhile stronger
clipping from lower thresholds leads to reduced signal-to-
noise, and may also induce a significant cross-correlation
between the Gaussian and residual fields.

At present the precision of our measurement of the
growth of structure is limited by the degeneracy with
the velocity dispersion σv. By applying a group finding
algorithm to the galaxy catalogue it may be possible to
reduce the influence of the Fingers of God. This would
also improve the efficiency with which clipping removes
peaks in the density field.

Previous measurements of redshift space distortions ei-
ther rely heavily on calibration from numerical simula-
tions, or on more complex approaches to perturbation
theory. Each of these rely on certain model-dependent
assumptions, such as a linear bias model. Clipping is a
complementary approach as it can identify whether the
galaxy bias is showing signs of scale-dependence. The
degree of covariance between parameter constraints ob-
tained from the clipped analysis and a conventional non-
linear analysis has yet to be quantified, however poten-
tially these two approaches could be combined to yield
considerable additional information within the same sur-
vey volume. It may also be beneficial to perform a com-
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bined analysis of power spectra from multiple clipping
thresholds.

Clipping may also be applicable to a number of other
cosmological fields, which we shall consider in turn.
Cosmic Microwave Background:
In the early Universe, cosmological perturbations are
know to be highly Gaussian. A recent analysis of the Cos-
mic Microwave Background (CMB) from Planck severely
limits the amplitude of local departures from Gaussian-
ity fNL = 2.5± 5.7 [49]. Applying a clipping transforma-
tion to the CMB anisotropies is unlikely to be beneficial,
since the Gaussian component is already highly domi-
nant. However it may be of interest to identify whether
features such as the lack of power on large angular scales,
and the power asymmetry on the sky, remain intact after
clipping, or are exacerbated.
Lyman-α forest:
At later times, the cosmological perturbations are again
detectable in the absorption lines of quasars. This tech-
nique has been used to detect the baryon acoustic oscil-
lations in BOSS [50]. In this case the observed tracer
already experiences a transformation similar to clipping,
in that the highest density regions form damped Lyα
systems. The results of Section II may be generalised to
other local transformations. For example the transfor-
mation relating the local density to the observed flux F
is often approximated as

g(δ) = exp [−A(1 + δ)α] , (38)

which can be used in conjunction with (3) to directly
compute the flux correlation function in terms of the lin-
ear power spectrum.
Weak Gravitational Lensing:
The shapes of high redshift galaxies are coherently dis-
torted by the intervening matter perturbations. Cosmic
shear offers the most direct insight into the dark matter
distribution at lower redshifts, yet uncertainties in the
small scale power spectrum limit the amount of cosmo-
logical information that may be extracted. Gaussiani-
sation of the convergence field have been proposed by
several authors, such as Seo et al. [60], Joachimi et al.
[61], Yu et al. [62]. However as highlighted in [61], in the
presence of shape noise the benefits of the transformation
are minimal. This is due to the substantial reduction in
the amplitude of the resulting power spectrum. Apply-
ing clipping here with a suitably high threshold may be
advantageous as it can suppress the strongest sources of
nonlinearity while still preserving a high level of signal
to noise. But the observable field appears in a projected
two-dimensional form, due to the broad lensing kernel, so
the identification and suppression of peaks is a less effi-
cient procedure compared with the full three-dimensional
data that can be acquired from the distribution of galax-
ies.
Galaxy Clustering:
Cosmological information from the galaxy power spec-
trum can be split into three categories: geometric infor-
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FIG. 12. Comparison of measurements of fσ8 as measured
from anisotropic clustering in galaxy redshift data. These
include 6dGFS [51]; WiggleZ [52]; BOSS [53, 54]; BOSS P(k)
[55]; VVDS [56]; SDSS-II [57, 58]; VIPERS [59]; GAMA [41].
The dotted and dashed lines represent theoretical predictions
for a flat LCDM cosmology, as given by [Ωm, σ8] pairs from
the maximum likelihood values from Planck [43] using only
polarisation [0.286; 0.796], and the full dataset [0.3156; 0.831].

mation from the baryon acoustic oscillations; primordial
information from the broader shape of the power spec-
trum; and gravitational information from the degree of
anisotropic clustering.

Local density transformations such as clipping amelio-
rate nonlinearities associated with high density regions.
One form of nonlinearity for which this is not the case is
that associated with the smoothing of the baryon acous-
tic peak in the galaxy correlation function. Non-local
transformations are more appropriate for this form of
peak reconstruction, as demonstrated in [63–65], where
the signal can be largely restored by reversing the inferred
large scale displacements.

The large-scale shape of the galaxy power spectrum is
sensitive to a variety of cosmological parameters such as
the matter density, the spectral index, and the neutrino
mass. The precision of these parameter measurements is
limited by the uncertain nature of galaxy bias, which is
expected to be linear on very large scales k . 0.1hMpc−1

but not on smaller scales where the vast majority of the
information resides. Clipping can greatly assist in lin-
earising the galaxy bias, thereby ensuring the clipped
galaxy power spectrum bears a close resemblance to the
clipped dark matter power spectrum. Interpreting the
shape is less straightforward since stronger clipping leads
to a change in the shape of the power spectrum, but this
is fully specified by the transformation defined in (5).
Overall, then, we see considerable scope for further ap-
plications of the method presented here.
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Appendix A: Spectral Distortion

First we view how rapidly the series expansion given
by (8) converges on the numerical solution. Taking the
z = 127 snapshot as our fiducial Gaussian Random Field
(GRF) we apply clipping and evaluate the true clipped
power spectrum, Pc(k). We then generate an estimate

of the clipped power, P̂c(k), by truncating the series of
(8) at n = 0, 2, 4. Figure 13 illustrates the ratio of the
true and estimated power spectra in each case. In order
to establish sub-percent precision in the estimated power
spectrum, it is sufficient to stop at n = 2 provided the
parameter aL > 0.5. Throughout this work we evaluate
terms at n ≤ 4.

Appendix B: Clipped Anisotropic Fields

In this section we explore the consequences of (8) by
performing numerical tests on anisotropic fields. We take
the z = 127 Millennium-I density field in real space and
impose a distortion along one axis consistent with the
prescription of [26]:

δs(k, µ) = δr(k)(1 + βµ2)
1√

1 + k2µ2σ2
v/2

, (B1)

where µ is the cosine of the angle between the wave vector
and the line of sight, and the longitudinal amplification
factor β ≡ f/b. This leaves us with an anisotropic GRF
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FIG. 13. The convergence of series given in (8) to the nu-
merical solution, as the number of terms in the summation is
increased from n = 0, 2, 4. For this case the sample GRF was
clipped at the 0.7σ level, resulting in an approximately 40%
loss of power on large scales.

whose power spectrum recovers the standard form

P (k, µ) = P r(k)(1 + βµ2)2 1

1 + k2µ2σ2
v/2

. (B2)

In Figure 14 we can see that the fractional change in
the angle-averaged power spectrum induced by clipping
is slightly reduced when the velocity dispersion σv is in-
troduced. The larger gradient in P (k) leads to a stronger
contribution from higher order terms in (8). However in
all cases the dashed line of the model successfully repro-
duces the behaviour of the data points.

Next we evaluate the power spectrum from the mock
galaxy fields at lower redshifts. Figure 15 repeats the
analysis of Figure 3 but now with a smoothing length of
1.95 Mpc/h. The sets of parameter constraints derived
from these two different smoothing lengths are found to
be highly consistent with each other.

Appendix C: The GAMA Regions

Figures 16 and 17 present constraints on β and fσ8

from the three separate GAMA regions. In each case the
results appear consistent between the three regions, and
across the three thresholds within each region.

The clipping statistics for each field are presented in
Table V.

Appendix D: Anisotropic Clustering

Here we present constraints on the anisotropy parame-
ter β from the clipped galaxy power spectrum. To do so
we marginalise over the three model parameters (aL, σv,
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FIG. 14. The fractional change in the angle-averaged power
spectrum of the field described by (B2), where we have set
β = 0.5 and we explore σ = 0 and σ = 5, each evaluated at
two different clipping thresholds (removing 5% and 10% of the
mass). The real-space density field is taken from the z = 127
snapshot of the Millennium-I simulation. Larger values of σ
can be seen to slightly reduce the effects of clipping on small
scales. This arises from the contribution from terms in (8),
which involve the self-convolution of the power spectrum. The
horizontal dotted lines are the estimated clipped power when
only using the first term from (8), while adding in the second
leads to the dashed lines, which are in good agreement with
the numerical results.

Region δ0 fV fm
9 4 0.025 0.169
12 4 0.037 0.210
15 4 0.035 0.217
9 5 0.016 0.119
12 5 0.024 0.157
15 5 0.024 0.165
9 8 0.005 0.047
12 8 0.008 0.065
15 8 0.008 0.081

TABLE V. The fraction of the field volume fV and the effec-
tive fraction of the galaxies fm subject to clipping from each
of the GAMA regions, for each of the three threshold values.

bσ8) while fixing the shape of the linear power spectrum
to the fiducial model.

Figure 18 illustrates the confidence intervals derived
from the combination of the three fields. The maximum
likelihood values for β are plotted as a function of the
maximum wavenumber used to compare to the model.
The behaviour closely reflects that of fσ8, as seen in the
central panel of Figure 10.
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FIG. 15. The same format as Figure 3 but we now use a finer grid to define the number density field, at 1.95 Mpc/h instead of
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FIG. 16. Constraints on the anisotropy parameter β from the three individual GAMA regions, from left to right: G09, G12,
G15, for the case of the unclipped galaxy field and three clipping thresholds δ0 of 8, 5, and 4.

FIG. 17. Constraints on fσ8 from the three individual GAMA regions, from left to right: G09, G12, G15, for the case of the
unclipped galaxy field and three clipping thresholds δ0 of 8, 5, and 4.

D. C. Martin, K. Pimbblet, M. Pracy, R. Sharp, E. Wis-
nioski, D. Woods, T. K. Wyder, and H. K. C. Yee,
Mon.Not.Roy.As.Soc. 432, 2654 (2013), arXiv:1303.6644
[astro-ph.CO].
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