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Abstract

An essential function of the nervous system is to direct reward-seeking behavior in order to

maximize the acquisition of preferred rewards. This process requires a method for evalu-

ating all available outcomes on a common scale and using these valuations to organize the

appropriate behavioral response. The ventral pallidum (VP) is a key node in a basal ganglia

circuit hypothesized to convert limbic information, like reward values, into reward-seeking

actions. Previous work has linked VP neural activity to the availability and palatability

of rewards, and VP has been functionally implicated in the motivation to pursue rewards.

Open questions include how VP encodes the values of multiple available rewards and whether

its activity contributes to preference-driven behaviors. For this dissertation, we conducted

a series of electrophysiological and optogenetic experiments to characterize the role of VP

in navigating scenarios with multiple rewarding outcomes. First, we demonstrated that,

following reward delivery, the activity of a majority VP neurons reflected the value of the

delivered outcome relative to the locally available options; notably, this activity preceded

and outnumbered reward-specific activity in nucleus accumbens, the most frequently studied

input to VP. Further analysis of VP activity revealed that, consistent with a reward predic-

tion error signal, a subset of neurons’ reward-evoked activity incorporated the outcomes from

the most recent previous trials. The prediction error hypothesis was further supported by

optogenetic manipulations of VP activity during this epoch, which altered rats’ engagement

in the reward-seeking task according to changes in their estimate of the task’s value. In a

final set of experiments, we linked VP neural activity to the evolution of rats’ choice behav-

ior under changing physiological conditions and demonstrated a causal role for VP outcome
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signals in driving behavioral preference. Our results not only establish VP as a crucial site

for encoding reward preferences; they also provide insight into fundamental principles of re-

ward signaling in the nervous system, with particular consideration for the interface between

prediction errors and preference, both static and dynamic.

Thesis advisor: Patricia H. Janak, Ph.D.

Reader: Marshall G. Hussain Shuler, Ph.D.
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Chapter 1

Introduction

How do we choose which rewards to pursue? The evaluation of outcomes in the environment

is critical for adaptive behavioral responding, but the incredible complexity of the reward

space makes this a difficult task. This point can be illustrated by the conundrum of deciding

which restaurant to go to for dinner. Often, hungry individuals must choose between dozens

or hundreds of options that vary on many dimensions, such as food served, distance away,

price, and probability of being open. With so many factors to consider, it becomes clear that

assigning a single value to each option is not trivial. Unsurprisingly, given this complexity,

numerous brain regions have been implicated in reward value processing (Louie and Glim-

cher, 2012; Schultz, 2015). How value is represented in the nervous system and how these

representations instruct individual’s choices are areas of active investigation.

For this dissertation, we explored the role of an understudied basal ganglia nucleus, the

ventral pallidum (VP), in preference-based value signaling and reward-seeking behavior. VP

has been linked with reward-seeking behavior (Smith et al., 2009; Root et al., 2015), espe-

cially within the context of a major input, the nucleus accumbens (NAc); however, despite

many functional demonstrations of a role for VP in reward processing, in vivo observations

of VP neural activity during reward-seeking tasks are lacking. Throughout the course of

the experiments presented here, we characterize a prominent relative value signal in VP

that tracks shifting preference across different task and physiological conditions. We also

demonstrate that VP activity contributes to value-based behavioral responding. To fully
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appreciate these results, we first summarize the historical context of research on VP and on

value signaling, broadly:

1.1 The ventral striatopallidal system.

The ventral pallidum (VP), given its name by Heimer and Wilson (1975), was first identi-

fied anatomically as a major site of efferent connections from the nucleus accumbens (NAc)

(Heimer and Wilson, 1975; Nauta et al., 1978). The prevailing theory for NAc function

was that it integrated limbic information from inputs like amygdala, hippocampus, ventral

tegmental area (VTA), and frontal cortex and linked it with motor output (Mogenson et al.,

1980). VP quickly became a likely candidate to relay these limbic-related motor outputs

from NAc as many studies identified functional connections from hippocampus, amygdala,

and dopamine inputs, through NAc, and onto VP (and from there onto mediodorsal thala-

mus), largely using locomotion and (anesthetized) electrophysiological recordings as readouts

(Jones and Mogenson, 1980; Yim and Mogenson, 1983; Mogenson and Nielsen, 1984; Yang

and Mogenson, 1985; Swerdlow and Koob, 1987; Root et al., 2015; Smith et al., 2009). Thus,

NAc and VP, collectively known as the ventral striatopallidal system, were canonized as the

most ventral portion of the highly parallel basal ganglia circuits, specializing in limbic pro-

cessing (due to their connectivity with ‘limbic’ regions) (Alexander et al., 1986; de Olmos

and Heimer, 1999; Groenewegen et al., 1999).

A growing number of studies have probed the role of this circuit in reward-related be-

haviors by manipulating the connectivity between these two regions. For instance, normal

connectivity between NAc and VP was necessary for cues paired with reward delivery to

invigorate reward-seeking actions in a Pavlovian instrumental transfer protocol (Leung and

Balleine, 2013); similarly, inhibition of VP-projecting NAc cells reduced attraction to reward-

predicting cues (Smedley et al., 2019). On the other hand, disconnection of NAc and VP

enhanced the attribution of motivational salience to a reward-predicting cue (Chang et al.,

2018), demonstrating that connections between NAc and VP have important but varying
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roles in the valuation of and responding to reward-related stimuli in different tasks. There is

also evidence for the importance of NAc-VP connectivity in reward consumption. Normaliz-

ing plasticity between NAc D2 MSNs and their downstream targets in VP reversed deficits

in hedonic responses and motivation to work for natural reward following cocaine exposure

(Creed et al., 2016); accordingly, pharmacological inhibition of NAc D2 MSN terminals in VP

increased motivation to work for food reward (Gallo et al., 2018). Additionally, NAc and VP

contain reciprocally connected µ-opioid-agonist-responsive hotspots that readily alter rats’

reward intake and expression of pleasure (Smith and Berridge, 2007; Richard et al., 2013a).

This collection of findings is consistent with the notion that VP is a crucial downstream

mediator of NAc reward-related functions.

One area of inquiry that is lacking from studies of NAc and VP is in vivo recordings of

activity in each region during tasks that require integration of reward information and exe-

cution of reward-related behavior. More precisely, how and when reward-related information

is represented by neurons in each region, and when connectivity between NAc and VP is

necessary for proper reward processing, remain unclear. In fact, a number of existing in vivo

recording studies challenge the idea that VP simply inherits limbic information from NAc. In

an instrumental task with cues indicating reward availability, cue-evoked excitations in VP

individual neurons frequently preceded cue-evoked activity in NAc neurons, indicating that

NAc cannot be the sole source of these VP responses (Richard et al., 2016). Similar patterns

emerged when comparing VP to other striatal regions–the rostromedial caudate (Fujimoto

et al., 2019) and the internal-capsule-bordering dorsal striatum (White et al., 2019). Addi-

tional studies of neural activity in behaving animals are required to clarify the contributions

of NAc and VP to specific features of reward processing. In this dissertation, we examine

the activity of neurons in this circuit in tasks with differentially preferred rewards and, in

turn, how this activity relates to reward-seeking actions.
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Figure 1.1

Figure 1.1. VP inputs and outputs.

1.2 Evolving views of ventral pallidum.

Since the recognition of VP as a distinct region, a considerable amount of research has been

conducted to characterize VP function, extending beyond its connectivity with NAc (Smith

et al., 2009; Root et al., 2015). In recent years, there has been increasing emphasis on

identifying inputs to and outputs from VP beyond the classic ventral striatopallidothalamic

pathway (Fig. 1.1). Notable non-NAc inputs to VP neurons include central amygdala, the

bed nucleus of the stria terminalis, preoptic area, lateral hypothalamus, and VTA (Hnasko

et al., 2012; Knowland et al., 2017; Tooley et al., 2018; Stephenson-Jones et al., 2020). Mean-
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while, work on VP outputs has focused on lateral habenula (Knowland et al., 2017; Tooley

et al., 2018; Faget et al., 2018; Stephenson-Jones et al., 2020), lateral hypothalamus (Prasad

et al., 2020), rostromedial tegmenetal nucleus (Tooley et al., 2018), and VTA (Mahler et al.,

2014; Knowland et al., 2017; Tooley et al., 2018; Faget et al., 2018), including direct inner-

vation of dopamine neurons (Tian et al., 2016). These findings encourage reinterpretation

of some initial findings on VP (Smith et al., 2009; Root et al., 2015) within the context of a

broader circuit, with special focus on VP contributions to reward value processing given the

known functions of the newly emphasized interconnected regions (Schultz, 2015; Keiflin and

Janak, 2015).

Another layer of heterogeneity has been added to the understanding of VP anatomy by

characterizing different cell types in ventral pallidum. Unlike other pallidal structures, VP

contains a small proportion of glutamatergic cells in addition to GABAergic cells, and these

populations are mostly non-overlapping (Knowland et al., 2017; Tooley et al., 2018; Faget

et al., 2018). Interestingly, there is a strong divergence between the effects of manipulations

of VP GABAergic cells and glutamatergic cells on behavior, with GABAergic activity gener-

ally linked to appetitive behaviors and positive reinforcement whereas glutamatergic activity

is linked to avoidance (Tooley et al., 2018; Faget et al., 2018; Stephenson-Jones et al., 2020;

Prasad et al., 2020). Other notable cell types include cholinergic and parvalbumin-positive

neurons, which contribute to depressive-like phenotypes (Tooley et al., 2018; Faget et al.,

2018). The fact that subsets of VP neurons mediate distinct behaviors has garnered in-

creasing interest in VP as a site for bidirectional control of motivation and learning; these

findings also support the theory that VP could serve as an interface between value signaling

and reward-seeking behavior, a concept we explore in this dissertation.

1.3 Preference and relative value.

How are neural representations of value measured? One of the most straightforward methods

of studying neural correlates of reward value is to present individuals with rewards whose
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values differ along one, easily interpretable dimension and look for neurons whose activity

scales accordingly. This approach has been exploited by many studies that have provided

fundamental insight into value coding in VP and closely related regions, including NAc and

VTA. One of the most common dimensions to manipulate is the size of the reward. In NAc

(Bissonette et al., 2013; Cooch et al., 2015; Goldstein et al., 2012; Roesch et al., 2009; Webber

et al., 2016) and in VP (Tachibana and Hikosaka, 2012; Avila and Lin, 2014a,a; Fujimoto

et al., 2019; Stephenson-Jones et al., 2020), neural responses evoked by rewards and reward-

predicting cues reflect the differences in magnitude of the outcomes. This approach has also

been useful for characterizing the firing of dopamine neurons in the VTA and their adherence

to a reward prediction error-style of encoding (Takahashi et al., 2011; Roesch et al., 2007;

Tobler et al., 2005; Cohen et al., 2012; Eshel et al., 2015). Another approach is to vary the

concentration of sucrose solution, which affects the palatability (and caloric content) of the

outcomes without affecting the volume; this approach has revealed neurons in NAc whose

activity scales with palatability (Taha and Fields, 2005; Wheeler et al., 2005; Villavicencio

et al., 2018).

In addition to these manipulations of aspects of the primary reward, many studies have

examined how the conditions for obtaining the reward impact signaling in this circuit. In par-

ticular, cue- and reward-evoked activity of dopamine neurons (or dopamine release) has been

examined when rewards are delivered after varying delays (Roesch et al., 2007; Kobayashi

and Schultz, 2008; Day et al., 2010; Takahashi et al., 2011, 2016), requiring different amounts

of effort (Day et al., 2010; Gan et al., 2010), and with varying probabilities of being delivered

(Fiorillo et al., 2003; Nakahara et al., 2004; Sugam et al., 2012; Lak et al., 2014; Eshel et al.,

2015; Tian et al., 2016). To some extent, the impact of these reward features on firing in

NAc has also been explored (Roesch et al., 2009; Day et al., 2011; Tian et al., 2016), but

only minimally in VP (Tian et al., 2016). One theme that emerges is that there are cells

across the entire circuit that are sensitive to each of these manipulations.

Of the above results, some of the most compelling data on value signaling come from
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studies that vary multiple reward features in the same task. From these, a common ob-

servation is that the firing of many neurons reflects an integration across all of the varying

features, placing each outcome onto a common scale, termed subjective value (Lak et al.,

2014; Louie and Glimcher, 2012; Schultz, 2015). Subjective value allows comparison of each

reward relative to the other available rewards; these relative values then inform individuals’

behavioral preferences when choosing a reward. The fact that neural correlates of subjective

value have been found in humans, including ventral striatum (Kable and Glimcher, 2007),

has lent credence to this coding scheme underlying preference.

One implication of a subjective valuation system is that the exact same reward can have

different subjective values in different scenarios. Thus, looking for differences in neural activ-

ity for the same stimulus in changing task conditions is a key test for relative value coding.

One implementation of this phenomenon is through the contrast effect (Flaherty, 1999), a

behavioral phenomenon where the amount of consumption (or seeking) of a first reward is

altered when a better (or worse) second reward is also offered (compared to individuals who

only receive the first reward). This style of experiment has been adapted for electrophysiol-

ogy studies that have found individual neurons whose activity for the same reward depends

on its ranking among available options. There have been several reports of this in NAc

(Taha and Fields, 2005; Webber et al., 2016; Cromwell et al., 2005; Wheeler et al., 2005)

as well as amygdala (Bermudez and Schultz, 2010; Saez et al., 2017), orbitofrontal cortex

(Tremblay and Schultz, 1999; Saez et al., 2017), and parietal cortex (Louie et al., 2011). We

use a similar approach to characterize VP activity in Chapter 2.

Another key component of subjective value is the physiological state of the individual.

A popular theory is that the purpose of rewards is to reduce homeostatic drive (Hull, 1943);

a complementary theory is that the pleasantness of a reward depends on internal metrics

of satiety in a process known as alliesthesia (Cabanac, 1971). It follows that neural repre-

sentations of a reward’s value will track the physiological need for that reward (Keramati

and Gutkin, 2014; Schultz, 2015). Across the brain, there have been many observations of
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individual neurons whose reports of reward value track changes in satiety (de Araujo et al.,

2006; Bouret and Richmond, 2010; Burgess et al., 2016; Livneh et al., 2017; Allen et al.,

2019; Livneh et al., 2020), including in VP (Fujimoto et al., 2019; Stephenson-Jones et al.,

2020).

While these results demonstrate that reduced hunger or thirst changes representations

of food and liquid outcomes, respectively, a more nuanced question is how physiological

state can differentially impact the relative values of different outcomes. One example of

this phenomenon is sensory-specific satiety (Rolls et al., 1981). Feeding an individual to

satiety on one reward reduced the activity of individual neurons in orbitofrontal cortex and

hypothalamus to that reward but preserved the responses to other rewards that were not fed

to satiety (Rolls et al., 1986, 1989); this finding also extended to reward-predicting stimuli in

orbitofrontal cortex (Critchley and Rolls, 1996). Whether sensory-specific satiety similarly

impacts firing of individual neurons in VP is a question we address in Chapter 4 of this

dissertation.

Another example of reward-specific changes in neural encoding due to physiological state

was demonstrated by manipulating salt appetite. Although highly salty solutions typically

produce aversive behavioral responses, induction of a salt appetite through sodium depri-

vation causes an increase in hedonic responses to salty solutions (Berridge et al., 1984).

This type of procedure was used to probe physiological state-dependent neural firing in VP

(Tindell et al., 2006, 2009). Before deprivation, VP activity to oral infusions of salty water

was much lower than following sucrose; after deprivation, when both salt and sucrose solu-

tions produced hedonic responses, the salt-evoked activity actually exceeded sucrose (Tindell

et al., 2006). In a similar experiment with the addition of specific reward-predicting cues,

there was an increase in the number of neurons with responses for the salt-predicting cue

following deprivation, even before presentation of salty water in the newly deprived condition

(Tindell et al., 2009). Importantly, in both studies, the neural response to sucrose (and as-

sociated cues) was unchanged. These data demonstrate that VP value representations (both
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for primary reward and for predictive stimuli) are sensitive to reward-specific physiological

changes.

The studies on VP mentioned above have found promising evidence that VP encodes the

value of available outcomes, but many questions remain. Does the reward-evoked activity of

individual VP neurons shift for the same reward when the value of the other available rewards

changes (as seen with the contrast effect)? Within an individual session, can individual VP

neurons track the relative values of rewards that are differentially impacted by a changing

physiological state, or does this shift occur on a slower timescale on a population level?

These questions motivate our work in this dissertation, with the ultimate goal of clarifying

both the robustness of relative value coding in VP and the general properties of relative

value signals in the nervous system.

1.4 Expectation and reward prediction error.

In much of the work summarized above, the primary goal was to find the neural correlates of

a reward’s value. Perhaps at odds with this experimental goal, the subject (rodent, primate,

or otherwise) is constantly updating its understanding of the experimental environment.

Knowledge of the parameters of a task is a serious confound to the interpretation of neural

responses to rewards and reward-predicting stimuli because this neural activity often incor-

porates the animal’s expectations. One common solution is to conduct extensive training

before beginning recordings in hopes that the neural representations (and the animal’s un-

derstanding) of the task have stabilized. Another solution is to intentionally engage with the

learning aspects of the task and include (or even focus on) them in the course of analysis.

One popular framework that formalizes the way individuals adapt to their environment is

reinforcement learning (Sutton and Barto, 1998). Reinforcement learning posits that animals

are able to exhibit flexible behavior by integrating information about past interactions with

the environment to make predictions about the future that guide their behavioral responses.

Predictions are updated when the achieved outcome is different than what was expected;
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these deviations are known as reward prediction errors (RPEs), and they are used to itera-

tively update future predictions. This type of iterative updating of estimates of task value

was used in Rescorla and Wagner (1972) to describe how animals learn about Pavlovian

conditioned stimuli, particularly compound stimuli.

In the simplest version of Pavlovian conditioning, a neutral stimulus such as a light or tone

(referred to as the conditioned stimulus) will begin to produce conditioned responding in an

individual when it is reliably followed by a rewarding (or averisve) unconditioned stimulus,

like food (Pavlov, 1927). In the phenomenon known as blocking (Kamin, 1968), when A is

a conditioned stimulus that has been paired with an unconditioned stimulus and reliably

produces conditioned responding, and X is a novel stimulus, simultaneous presentation of

A and X prior to the unconditioned stimulus will not cause X to acquire any ability to

promote conditioned responding; learning about X is ‘blocked.’ This process can be explained

mathematically within an RPE framework, as first demonstrated by Rescorla and Wagner

(1972):

∆VA = αAβ(λ− VAX)

∆VX = αXβ(λ− VAX)

where ∆VA and ∆VX are the changes in the strengths of the associations between each cue

and the unconditioned stimulus, αA and αX are cue-specific learning rates (how quickly the

associations are updated), β is the learning rate common to both cues, λ is the asymptote of

learning (basically, the value of the unconditioned stimulus), and VAX is the total associative

strength of both cues (estimated as VA + VX). If A has already been paired extensively with

the unconditioned stimulus, then VA = λ, so VAX = λ and ∆VA and ∆VX (the prediction

errors) will both be 0. Thus, the associative strength of both cues remains unchanged across

trials, so learning to X is blocked.
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This equation can be simplified to describe trial-based learning more generally:

δ(t) = o(t)− V (t)

∆V = α · δ(t)

where the change in the reward-associated value of the task (∆V ) is equal to the prediction

error on the current trial (δ(t)), or the difference between the value of the outcome received

on that trial (o(t)) and the expected value for that trial (V (t)), scaled by a learning parameter

that determines how quickly the association is updated (α). This model does a good job of

capturing trial-by-trial dynamics of the reward-evoked activity of dopamine neurons (Bayer

and Glimcher, 2005), and it provides a potential explanation for changes in relative value

signaling across evolving reward conditions (Padoa-Schioppa, 2009; Saez et al., 2017). We

use this equation to characterize a role for expectation in VP relative value signaling in

Chapter 3.

The Rescorla–Wagner model describes changes in expected value across trials, but it does

not capture within-trial dynamics. Temporal difference (TD) learning is a key component

of reinforcement learning that recasts predictions in terms of time steps rather than trials as

the interval of learning (Sutton, 1988; Sutton and Barto, 1998). This means that there is a

prediction error (δ) for each time step (Schultz et al., 1997):

δ(t) = o(t) + γV (t+ 1)− V (t)

where o(t) is the value of any outcome received at the current time step, V (t) and V (t+ 1)

are the value estimates for the current and subsequent time steps, and γ is a discounting

factor that allows rewards sooner in the future to have a greater impact on the estimate.

TD learning captures many of the key observations of dopamine neurons (Schultz et al.,

1997; Nakahara et al., 2004; Pan et al., 2005). Most famously, an expected delivery of fruit

juice produces a phasic burst of activity in dopamine neurons corresponding to a positive
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prediction error. After extensive exposure to a conditioned stimulus that predicts the juice

reward, the burst of firing corresponding to a positive prediction error transfers to the cue,

and no change in firing occurs at juice delivery. Finally, omission of juice following presen-

tation of the conditioned stimulus produces a pause in firing corresponding to a negative

prediction error. TD learning provides a framework for describing why each of these error

signals occur at each phase of the trial, and it has inspired scores of studies examining the

precise nature of neural encoding of predictive cues and their associated outcomes, including

many of the studies of value we noted above.

Because the activity of dopamine neurons resembles a full TD prediction error, one area

of inquiry has been to determine the source of each component of the error calculation, with

the idea that dopamine neurons compute RPEs locally by integrating distinct elements of

the signal relayed from distinct input regions (Keiflin and Janak, 2015; Tian et al., 2016;

Watabe-Uchida et al., 2017). Work on upstream contributors to dopamine neuron RPE

calculation has revealed that individual regions are critical for different elements of the

RPE: lateral habenula contributes to the coding of negative RPEs (Matsumoto and Hikosaka,

2007; Tian and Uchida, 2015) via the rostromedial tegmental nucleus (Jhou et al., 2009; Hong

et al., 2011), orbitofrontal cortex contributes to expectancy-related RPE signaling, including

adapation following repeated reward presentations (Takahashi et al., 2011), and ventral

striatum appears necessary for proper temporal specificity of RPEs (Takahashi et al., 2016).

Locally, GABAergic neurons in the ventral tegmental area contribute to the computation by

providing an expectancy-related subtraction (Eshel et al., 2015).

A pioneering study on the neural activity of monosynaptic inputs to dopamine neurons

revealed a mixture of reward and expectation signals across many brain regions (including

VP) rather than distinct components (like value or outcome) in each region, and, notably,

there were very few upstream neurons encoding full RPEs (Tian et al., 2016), maintaining

the idea that, by and large, RPE is calculated within dopamine neurons themselves (Watabe-

Uchida et al., 2017). On the other hand, given a recent report of TD error-like signaling in
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VP (Stephenson-Jones et al., 2020), and the fact that Tian et al. (2016) only examined VP

neurons that synapse directly onto dopamine neurons, the existence of TD learning signals

(and RPE signals more generally) in VP needs further clarification. Our data in Chapter 3

and 4 address this possibility.

1.5 Main objectives

As summarized above, there are a number of questions about the role of VP within the ventral

striatopallidal circuit and within the context of value signaling that need to be resolved. Our

main goal in this dissertation was to design a series of well-controlled behavioral tasks that

would allow us to explore the influence of preference, relative value, and expectation on

reward-related neural activity in VP, with comparisons to signaling in NAc. Furthermore,

with the addition of optogenetic manipulations inspired by our electrophysiological findings,

we aimed to link the reward-related activity we observed in VP with a behavioral output.

The experiments are presented as follows:

For Chapter 2, we recorded from NAc and VP in a task contrasting two calorically

equivalent and similarly palatable rewards. This approach allowed us to characterize the

influence of preference (rather than reward magnitude or caloric value) on reward-evoked

neural activity in each region and compare the timing of these representations. We went

on to examine the relative nature of VP value signaling by recording during sessions with

additional reward combinations.

For Chapter 3, we developed a modeling approach within the Rescorla–Wagner prediciton

error framework to identify the influence of recent outcome history on the VP reward-evoked

signaling. Our findings motivated an optogenetic test of a role for this VP signal in updating

value estimates as they pertain to task engagement.

For Chapter 4, we implemented two novel behavioral tasks that assessed shifting be-

havioral preference across evolving physiological state and compared this preference to VP

neural reports of relative value at the time of the cue and the reward outcome. We also
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investigated the link between VP activity at these time points and choice behavior.

In Chapter 5, we summarize our results, consider limitations of our work, and discuss

open questions for the future.

1.6 General Methods

The experiments presented in this thesis use a combination of behavioral, electrophysiolog-

ical, and optogenetic approaches. Here, we present the methods that were common across

these experiments. Specific task details are presented in the respective chapters.

Animals.

Subjects were male (and female, where noted) Long-Evans rats from Envigo weighing 200-

275g at arrival and single-housed on a 12hr light/dark cycle. Rats were given free access

to food and water in their home cages for the duration of the experiment (unless otherwise

noted). All experimental procedures were performed in strict accordance with protocols

approved by the Animal Care and Use Committee at Johns Hopkins University.

Reward solutions.

Reward solutions were 10% solutions by weight of sucrose (Thermo Fisher Scientific, MA)

and maltodextrin (SolCarb, Solace Nutrition, CT) in tap water, or tap water alone. Before

behavioral training, rats were given free access to sucrose and/or maltodextrin solution in

their home cages depending on the rewards used for the experiment.

Surgical procedures.

Rats were anesthetized with isoflurane (5%) and maintained under anesthesia for the dura-

tion of the surgery (1-2%). Rats received injections of carprofen (5 mg/kg) and cefazolin

(70 mg/kg) prior to incision. Electrophysiology. Drivable electrode arrays were prepared

with custom-designed 3D-printed plastic pieces assembled with metal tubing, screws, and
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nuts. 16 insulated tungsten wires and 2 silver ground wires were soldered to an adapter that

permitted interfacing with the headstage (Plexon Inc, TX). The drives were surgically im-

planted in trained rats. Using a stereotactic arm, electrodes were aimed at either NAc (AP

+1.5 mm, ML +1.2 mm, DV -7 mm) or VP (AP +0.5mm, ML +2.4mm ML, DV -8mm).

The base of the drive and the adapter were secured to the skull with 7 screws and cement.

The ground wire was wrapped around a screw and placed superficially in brain tissue in a

separate craniotomy posterior to the recording electrodes. Optogenetics. First, 0.7 µL

of virus containing the archaerhodopsin gene construct (Han et al., 2011) (AAV5-CamKIIa-

eArchT3.0-eYFP, 7 ∗ 1012 viral particles/mL from the University of North Carolina Vector

Core), channelrhodopsin (AAV5-hsyn-hChR2(H134R)-EYFP, 1.7 ∗ 1013 viral particles/mL

from Addgene, gift from Karl Deisseroth) or their respective control virus (AAV5-CamKIIa-

eYFP, 7.4 ∗ 1012 viral particles/mL from the University of North Carolina Vector Core, or

AAV5-hsyn-EGFP, 1.2 ∗ 1013 viral particles/mL from Addgene, gift from Bryan Roth) was

delivered bilaterally to VP through 31 gauge gastight Hamilton syringes at a rate of 0.1 µL

per min for 7 minutes controlled by a Micro4 Ultra Microsyringe Pump 3 (World Precision

Instruments). Injectors were left in place for 10 min following the infusion to allow virus to

diffuse away from the infusion site. Injector tips were aimed at the following coordinates in

relation to Bregma: +0.5 mm AP, +/-2.5 mm mediolateral, -8.2 mm dorsoventral. Then,

rats were implanted with 300 micron diameter optic fibers constructed in house, aimed 0.3

mm above the center of the virus infusion. Optic fiber implants were secured to the skull

with 4 screws and dental cement.

Histology.

Animals were anesthetized with pentobarbital. Rats were perfused intracardially with 0.9%

saline followed by 4% paraformaldehyde, after which brains were extracted and post-fixed

in 4% paraformaldehyde for 24hrs. Brains were then transferred to 25% sucrose for at

minimum 24hr before being frozen on dry ice and sectioned into 50um slices on a cryostat.
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Electrophysiology. Following the injection with pentobarbital, electrode sites were labeled

by passing a DC current through each electrode. Following sectioning, slices were stained

with cresyl violet to determine recording sites. Optogenetics. For slices from rats from

the optogenetic inhibition experiments, we performed immunohistochemistry for GFP and

substance P (SP), in order to identify the localization of virus expression and fiber placement

within the borders of VP. Sections were washed in PBS with bovine serum albumin and triton

(PBST) for 20 minutes, and incubated in 10% normal donkey serum in PBST for 30 minutes,

before incubating in primary antibody (mouse anti-GFP 1:1500 Thermo Fisher #A11120,

RRID: AB 221568; rabbit anti-SP 1:6500 Immunostar #20064, RRID: AB 572266) in PBST

overnight at 4°C. Sections were then washed with PBST 3-times, incubated in 2% normal

donkey serum in PBS for 10 minutes, and incubated for 2 hours in secondary antibody in

PBS (Alexa Fluor 488 donkey anti-mouse 1:200 Thermo Fisher #A21202, RRID: AB 141607;

Alexa Fluor 594 donkey anti-rabbit 1:200 Thermo Fisher #A21207, RRID: AB 141637).

Sections were then washed with PBS 3-times, mounted on coated glass slides in PBS, air-

dried, and coverslipped with Vectashield mounting medium with DAPI. For slices from

rats from the optogenetic stimulation experiments, we determined there was enough native

fluorescence from the virus, so we mounted directly on coated glass slides and coverslipped

with Vectashield mounting medium with DAPI.

Recording and spike sorting.

During recording sessions, rats were tethered via a cable from their headstage to a com-

mutator in the center of the chamber ceiling. Electrical signals and behavioral events were

collected using the OmniPlex system (Plexon) with a 40kHz sampling rate. Spikes were

sorted into units using offline sorter (Plexon); following initial manual selection of units

based on clustering of waveforms along the first two principal components, units were sep-

arated and refined using waveform energy and waveform heights at various times relative

to threshold crossing (“slices”). Any units that were not detectable for the entire session
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were discarded. Event creation and review of individual neurons’ responses were conducted

in NeuroExplorer (Nex Technologies, AL). Cross-correlation was plotted for simultaneously

recorded units to identify and remove any neurons that were recorded on multiple channels.

Optogenetic manipulations.

At least 5 weeks after surgery and completion of operant training, rats were habituated to

patch cord connections. Rats were connected bilaterally (inhibition) or unilaterally (stim-

ulation) via ceramic mating sleeves to a 200 µm core patch cord (bifurcated for inhibition

group), which was then connected through a fiber-optic rotary joint (Doric), to another patch

cord which interfaced with either a 532nm (inhibition) or 473nm (stimulation) DPSS laser

(Opto-Engine LLC). The time of laser delivery was initiated by TTL pulses from MedPC

SmartCTRL cards to a Master9 Stimulus Controller (AMPI) which dictated the duration of

stimulation.

1.7 Disclosures

One published manuscript and one preprint have been reformatted to comply with the re-

quirements of this thesis (Ottenheimer et al., 2018, 2019a).
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Chapter 2

Ventral pallidum encodes relative reward value

earlier and more robustly than nucleus accum-

bens

This chapter is adapted from Ottenheimer et al. (2018).

2.1 Introduction

A collection of anatomical (Alexander et al., 1986; Groenewegen et al., 1999; de Olmos and

Heimer, 1999) and experimental (Chang et al., 2018; Creed et al., 2016; Leung and Balleine,

2013; Smith and Berridge, 2007) studies have led to the prevailing view that VP serves

primarily as a major output of NAc within the striatopallidal system (Root et al., 2015; Smith

et al., 2009). A serious limitation thus far in the characterization of this circuit is the lack

of comparative observations in NAc and VP on a timescale relevant for the reward-related

processing in which the circuit is functionally implicated. Understanding the transformation

of reward-related information across the ventral striatopallidal system during a seconds-

long behavioral response requires temporally precise measurements of neural activity in each

region. Previous work has identified neurons in both NAc (Ambroggi et al., 2011; Bissonette

et al., 2013; Cooch et al., 2015; Goldstein et al., 2012; Nicola et al., 2004; Roesch et al.,

2009; Setlow et al., 2003; Taha and Fields, 2005; Wheeler et al., 2005; Roitman et al., 2005;
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Villavicencio et al., 2018) and VP (Avila and Lin, 2014a,b; Itoga et al., 2016; Lin and

Nicolelis, 2008; Richard et al., 2016, 2018; Smith et al., 2011; Stephenson-Jones et al., 2020;

Tindell et al., 2006, 2009) with phasic responses to rewards (and their predictive stimuli)

that track outcome value, but it is unclear how reward-related neural responses in VP result

from activity in NAc, as the classic model of ventral striatopallidal function would predict.

In fact, a recent comparison of activity in NAc and VP in the same behavioral task found

that the onset of cue responses in VP frequently precedes their onset in NAc (Richard et al.,

2016), leaving the question of whether VP acts exclusively downstream of NAc in this reward

processing circuit.

To further interrogate the respective roles of VP and NAc in reward processing, we set

out to measure neural activity in a task with multiple reward outcomes. In addition to

permitting a comparison of the onset of phasic activity in response to reward outcome, this

approach allowed us to track over time the reward-specific information contained within the

spiking activity of individual neurons and neural ensembles in each region. Surprisingly,

we found that a much greater proportion of VP neurons was reward-selective than neurons

in NAc. Moreover, the reward-specific information signaled by both individual neurons

and ensembles in VP preceded that signaled by NAc neurons. Further, we found that VP

neurons reliably and rapidly tracked relative value across a variety of reward conditions. The

flexibility of this VP value signal and its abundance within the neural population establish

VP as a robust value signaler and suggest it does so at least partly independently of its

classical input, NAc, encouraging consideration of VP as an important reward processing

center rather than simply a relay for reward-related information to motor outputs.
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2.2 Materials and Methods

Behavioral task.

Rats were trained to respond to a 10s white noise cue by making an entry into the reward

port. The cue terminated upon port entry, and 500ms following port entry, 110µl of either

reward was delivered into the metal cup within the reward port. Sucrose and maltodextrin

trials were pseudorandomly interspersed throughout the session such that rats could not

detect the identity of the reward until it was delivered. Individual licks were recorded

with a custom-built arduino-based lickometer using a capacitance sensor (MPR121, Adafruit

Industries, NY) with a 1kHz sampling rate. Each cue was separated by a variable intertrial

interval (ITI) that averaged 45s. During the ITI, the reward cup was evacuated via vacuum

pump, flushed with 110µl of water, and evacuated again. Maltodextrin, sucrose, and water

were each delivered via separate infusion pumps (Med Associates, VT) and separate metal

tubes entering the cup. There were a total of 60 trials per session. After we started recording,

on some sessions, we presented the rewards in blocks of 30 trials each (data presented in

Chapter 3).

Preference test.

To assay rats’ preference for sucrose or maltodextrin, we performed two 60-minute two-bottle

choice tests, during which rats had free access to 10% solutions of each reward. Bottles were

weighed before and after to determine the amount of each solution consumed by each rat.

The first test was following recovery from surgery and prior to recording. The second was at

least a day after the final session with sucrose and maltodextrin and prior to any subsequent

sessions with different reward outcomes (see below).
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Recording.

Following a week of recovery in their home cages (and the first two-bottle choice test), rats

were trained on the task again until they became accustomed to performing the task while

tethered. Once they responded on at least 40 of 60 trials, recording sessions began. We

continued to record from the same location for multiple sessions if new neurons appeared on

previously unrecorded channels; if multiple sessions from the same location were included in

analysis, the same channel was never included more than once. If no neurons were detectable

or following successful recording, the drive was advanced 160µm, and recording resumed in

the new location at minimum two days later to ensure settling of the tissue around the wires.

Additional sessions with altered reward outcomes.

For 3 of the rats with electrodes in VP (VP2, VP3, and VP5), we conducted an additional

session with water (replacing sucrose) and maltodextrin (VP3 did not complete the session,

likely due to low motivation to pursue the new reward outcomes). The session was otherwise

unchanged from those with sucrose and maltodextrin. Subsequently, all three rats were tested

in sessions with all three outcomes available. The three trial types were pseudorandomly

interspersed throughout the session. The total number of trials was expanded to 90 to permit

equivalent amounts of each reward to the previous sessions.

Initial neural analysis.

Analysis of neural activity was performed in MATLAB (MathWorks, MA). Event-related

responses were found by constructing peristimulus time histograms (PSTHs) for spikes fol-

lowing each event. Neurons were determined to be modulated by an event if the spike rate

in a custom window following each presentation of the event significantly differed from a 10s

window prior to cue onset according to a Wilcoxon signed-rank test (p < 0.05, two-tailed).

For these tests, we analyzed activity 500ms after the cue, the 1000ms centered on port entry,

and 1000ms after reward delivery.
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Optimal bin size for averaged PSTH activity was determined as described previously

Ambroggi et al. (2011). Briefly, the optimal bin size for each neuron was found using Akaike

Information Criteria (AIC). For our data, we used the smallest possible bin size that showed

less than a 10% change from the optimal AIC value. This bin size, referred to as the

deflection point, typically ranged from 20 to 100ms. The spiking activity across these bins

was smoothed with a LOWESS function.

To visualize the normalized activity of neurons, the mean activity within each of the

smoothed, optimally-sized bins of the PSTH plots for each neuron was transformed to a

z-score with the equation (Fi – Fmean)/Fsd, where Fi is the firing rate of the ith bin of

the PSTH, and Fmean and Fsd are the mean and the standard deviation of the firing rate

during the 10s baseline period. Color-coded maps of individual neurons’ activity and average

activity traces were constructed based on these z-scores.

Licking analysis.

PSTHs for visualizing licking activity around reward solution delivery were constructed as

for neurons (above) with a fixed bin size of 100ms and LOWESS smoothing. To test for

differences in the duration of the licking bout and the number of licks on sucrose and mal-

todextrin trials, we ran a three-way ANOVA on the raw licking data for the fixed effect

of reward and the random effects of session and subject, with session nested within subject

(with trial as our n). We also ran this test on the number of licks 1-4.5s post reward delivery,

an epoch in which we noticed a visible difference in the average lick rat (Fig. 2.1d). We

further characterized this difference in licking activity by finding the mean duration of the

interlick intervals following the first 30 licks of each reward. We ran a three-way ANOVA

for the fixed effects of reward and interval no. and the random effect of subject (with trial

as our n).
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Classification of neurons as reward-selective.

For the analysis of reward-selective activity during reward consumption, we segmented the

time surrounding reward delivery into overlapping 600ms bins advanced by 100ms. We only

included trials in which the rat began licking within 2s of reward delivery to ensure the rat

sampled the reward on each included trial. Neurons were significantly reward-modulated for

a given bin if they there was a significant interaction (p<0.01) for that neuron between the

effect of baseline (-22 to -12s from reward delivery) vs bin firing and the effect of reward

solution (with trial as our n) in two consecutive bins. This approach minimized the amount of

noise in the classification (measurable as the number of neurons classified as reward selective

prior to reward delivery) while still permitting relatively brief reward-specific responses to

register. We then further classified these reward-selective neurons by the reward for which

they had greater normalized firing in that bin, found with the equation (Fb – Fmean)/Fsd,

where Fb is the firing rate of each bin, and Fmean and Fsd are the mean and the standard

deviation of the firing rate during the 10s baseline period. This same analysis was used to

classify neurons from the sessions comparing water and maltodextrin.

To choose which bins best captured the population of reward-selective neurons across

both regions, we plotted the cumulative onset of reward selectivity for all neurons as a

fraction of the total population (Fig. 2.6a,b). We chose to include all neurons that were

reward-selective in any of the bins from 0.4 to 3s, which captured the majority of phasic

reward-specific responses following reward delivery in both regions. To determine which of

these neurons were significantly excited or inhibited by either reward (Fig. 2.6g,j,m,p), we

performed a Wilcoxon signed-rank test comparing on each trial the (raw) firing rate during

the -22 to -12s baseline window from reward delivery to the firing rate in each of the bins

centered 0.4-3s for each reward (p < 0.05 cutoff, two-tailed). A neuron was considered

excited or inhibited by a given reward if it had a significant increase or decrease in spikes for

any of the bins 0.4-3s post reward delivery. We also plotted the cumulative onsets of reward

selective neurons as a fraction of total reward selective neurons in each region to compare the
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timing of the onsets in each region and compared the distributions with a two-way ANOVA

with the main effect of region and the random effect of subject (Fig. 2.6d).

To classify neurons as reward-selective with three reward outcomes, we performed the

same ANOVA analysis as before with the water condition added to the effect of reward,

looking for an interaction between the effects of reward and baseline vs bin firing (with trial

as our n). We then further classified reward-selective neurons by the outcome for which

they had the greatest spiking in that bin and found, as before, if a neuron was significantly

inhibited or excited by any of the outcomes in any bin 0.4-3s with Wilcoxon signed-rank tests

(p < 0.05 cutoff, two-tailed). Because there were three outcomes, we also performed a two-

way ANOVA on the effect of reward outcome (and random effect of subject) on the average

normalized firing 0.8-1.4s post reward delivery (the bin with the most number of reward-

selective neurons) of all selective neurons with greatest firing for sucrose (Fig. 2.12c) as

well as pairwise comparisons between the three rewards (Tukey test, correcting for multiple

comparisons).

Quantification of average activity based on current and previous reward.

To examine how average activity in each region was affected by previous reward, we nor-

malized the average activity of all neurons in each region to their baseline firing rate in a

window -22 to -12s from reward delivery. We chose to quantify the average activity 0.8-1.3s

post reward delivery (marked with blue lines in Fig. 2.10a,c), a period we visually identified

as having the best evidence of previous reward-modulated activity. Thus, the activity of neu-

rons was normalized with the equation (Fr – Fmean)/Fsd, where Fr is the mean firing rate

0.8-1.3s following reward delivery for each of the four current/previous reward combination,

and Fmean and Fsd are the mean and the standard deviation of the firing rate during the

10s baseline period on all trials. We then performed ANOVAs testing the effects of reward

and previous reward (and random effect of subject) on the normalized activity of neurons

in that window for each region (with neuron as our n). To compare the regions, we also
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performed a test on all the neurons from both regions with the added factor of region.

Linear models.

To find the impact of previous trials’ outcomes on current trial firing, we fit linear models

(“fitlm” in MATLAB) to the firing rate of each neuron on each trial according to the outcomes

on the current trial and the previous 6 trials. For this analysis, we used the same window

as above, 0.8-1.3s post reward delivery, and normalized the activity for each neuron on each

trial to the activity of that neuron during baseline period -22 to -12s from reward delivery

on all trials. The normalized activity on each trial was paired with a corresponding vector

of seven 0s and 1s indicating the reward outcome (0 for maltodextrin and 1 for sucrose) on

the current and previous six trials (this required exclusion of all trials preceding the seventh

completed trial). This convention caused positive coefficients to indicate a positive influence

of receiving sucrose rather than maltodextrin on firing rate for that trial and vice versa. We

then found the coefficients for each of the seven relative trials for each neuron as well as

whether there was a significant impact of that relative trial on firing rate (p < 0.05, two-

tailed t-test). We then did the same analysis but shuffled the trial outcomes to find what

values would be expected by chance. For each region, we performed ANOVAs testing the

main effects of shuffled vs true data and trial relative to current (and the random effect of

subject) on coefficient and then performed Tukey tests correcting for multiple comparisons

to find differences on each trial between the coefficients and their shuffled data (p < 0.05).

We tested for significant differences in the proportion of neurons with significant coefficients

between true and shuffled data from both regions, as well as between the true data from

each region, with chi-squared tests for each relative trial (p < 0.05).

Emergence of responses to water and maltodextrin.

To track how the average activity of reward-selective neurons changed on water and mal-

todextrin trials across the session with those two reward outcomes, we normalized the mean
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activity of the reward-selective neurons identified in Fig. 2.11c-e on each trial to their base-

line activity in the 10s window -22 to -12s from reward delivery. We focused our analysis

on each neuron’s normalized activity 0.8-1.8s following reward delivery, an epoch we visu-

ally identified as representative of the maltodextrin excitations and water inhibitions. Thus,

neurons were normalized with the equation (Ft – Fmean)/Fsd, where Ft is the mean firing

rate 0.8-1.8s following reward delivery on each trial, and Fmean and Fsd are the mean and

the standard deviation of the firing rate during the 10s baseline period on all trials. We

then plotted the average activity according the number of trials the rat had completed (Fig.

2.11f). We performed a two-way ANOVA (reward X trials of reward) on the normalized

activity of the neurons from each rat across each respective trial of each reward (with each

neuron’s normalized activity on each trial as our n). This approach required capping the

total number of trials included in the test at the maximum number of trials for the reward

with the least number of completed trials.

Decoding.

For single unit decoding, a linear discriminant analysis (LDA) model (the “fitcdiscr” function

in MATLAB) was trained on each neuron’s spike activity for one 600ms bin on 80% of trials.

This model was then used to classify the remaining 20% of trials as sucrose or maltodextrin.

We performed this 5 times in a 5-fold cross-validation approach and averaged performance

across all 5 repetitions to find that unit’s accuracy. We also conducted the analysis with the

trial identities shuffled to determine the accuracy on shuffled data. We then repeated this

analysis for every neuron in each region for each bin. If there were fewer than 7 spikes across

all sucrose or maltodextrin trials, we excluded that neuron for that bin to avoid errors from

creating an LDA model on a dataset with too little variance. To determine when accuracy

in each region improved over shuffled data, we found all bins when the mean accuracy of

the true data exceeded the 99% confidence interval of the shuffled data for at minimum

2 consecutive bins. To ensure that our results were not affected by the greater number of
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neurons in VP (423 versus 182), we took 20 random selections of 182 of the unit models from

VP and recalculated the confidence intervals to evaluate if it would affect the results (by and

large it did not; see Results). To compare accuracy in our standard window of 0.4-3s after

reward delivery (Fig. 2.6) across regions, we performed an ANOVA testing the effects of

shuffled vs true data (whether or not the accuracy came from a shuffled data model or a true

data model), region, and bins (and the random effect of subject) with each neuron model’s

true or shuffled accuracy in each bin as our n. We also performed an ANOVA testing the

effects of shuffled vs true data and region (and the random effect of subject) to compare the

accuracy of the most accurate bin in each region (with the shuffled and true data from each

neuron in the respective bin from each region as our n). To compare only reward-selective

neurons (Fig. 2.9), we performed the same tests but included only neurons classified as

reward-selective in Fig. 2.6.

To look at how model classification accuracy increased with additional units, we pooled

together separately recorded units. This approach requires matched numbers of trials, so

we only included neurons recorded during sessions with at least 20 trials of each reward.

Subsequently, when training our pseudoensemble LDA models, we restricted the analysis to

20 (randomly selected) trials of each reward. We found the 5-fold cross-validated accuracy

for models trained on the activity of randomly selected levels of 10, 25, 50, 100, and 150 units

from each region. For each level, we performed the analysis 50 times. We then performed a

two-way ANOVA on the effects of pseudoensemble size and region on the accuracy at each

level’s peak bin (with each repetition at that peak bin for each level as our n). We also

performed a two-way ANOVA on the effects of pseudoensemble size and region on the time

of most accurate bin for each LDA model replicate (with each repetition’s peak bin time at

each level as our n). We also performed these analyses on pseudoensembles containing only

reward-selective neurons as classified in Fig. 2.6 (Fig. 2.9).
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Statistical analysis.

We used analysis of variance (ANOVA) tests (the “anovan” function in MATLAB) to test

for main effects and interactions, Tukey tests for pairwise comparisons corrected for mul-

tiple comparisons (“multcompare” in MATLAB), and chi-squared tests for contingencies

(“crosstab” in MATLAB). For all ANOVAs testing behavioral and neural data across sub-

jects, we included the random effect of subject to account for non-independence in the data.

2.3 Results

To test encoding of multiple rewards in NAc and VP, we chose to compare responses to 10%

solutions of sucrose and maltodextrin, two palatable carbohydrates with equivalent caloric

value but distinct tastes (Nissenbaum and Sclafani, 1987; Sako et al., 1994; Treesukosol

et al., 2011). After multiple days of free access to the sucrose and maltodextrin solutions

in their home cages, rats began training on the behavioral task. On each trial, 110µL of

reward solution was delivered into a metal bowl contingent upon rats’ entry into the reward

port during a 10s white noise cue (Fig. 2.1a). Trials with presentation of a given solution

were pseudorandomly interspersed throughout the session, an approach that obscured the

reward identity from the rat until the solution was delivered into the reward cup. Once rats

responded to the cue on 80% of trials, we implanted drivable tungsten electrode arrays in

either NAc or VP (Figs. 2.1b, 2.2). To evaluate reward preference, we conducted 60-minute

two-bottle choice tests prior to and following the first and last recording sessions with sucrose

and maltodextrin; rats consistently showed a preference for sucrose (Fig. 2.1c).

Neural recording sessions began after rats recovered from surgery. To monitor consump-

tion during the task, we recorded each rat’s individual licks during each recording session.

The overall licking pattern was similar for both rewards; there was no significant main effect

of reward on the total number of licks (F(1,3142) = 1.24, p = 0.29) or the total duration

of licking (F(1,3142) = 0.303, p = 0.59) within the 15 seconds following reward delivery.
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However, rats licked slightly, but significantly, more for the preferred reward, sucrose, dur-

ing the period 1-4.5s following reward delivery (23.2 vs 22.3 licks; F(1,3142) = 66.0, p =

5.3E-6; Figs. 2.1d, 2.3). Complementarily, the interlick intervals following the first 30 licks

of each trial were significantly shorter on sucrose trials (Fig. 2.1e; F(1,3000) = 33.3, p =

0.000084). This accelerated consumption of sucrose echoes the rats’ preference for sucrose

over maltodextrin in the two-bottle choice test (Fig. 2.1c).

2.3.1 More Neurons in VP Fire Reward-selectively than in NAc

We collected neural activity from 6 rats with electrodes in NAc (182 neurons, 4-49 per rat,

median 32, 36 sessions) and 5 rats with electrodes in VP (436 neurons, 32-137 per rat, median

86, 25 sessions). Neurons in both regions responded to reward-related events: cue onset,

port entry (PE), and reward delivery (RD) (Fig. 2.4), consistent with prior findings (NAc:

Bissonette et al. (2013); Cooch et al. (2015); Goldstein et al. (2012); Nicola et al. (2004);

Roesch et al. (2009); Setlow et al. (2003); Taha and Fields (2005); Carelli et al. (2000); Janak

et al. (2004) VP: Avila and Lin (2014a,b); Lin and Nicolelis (2008); Richard et al. (2016);

Tindell et al. (2006); Ahrens et al. (2016). In order to evaluate reward selectivity, we focused

on the neural activity following reward delivery, when the rats first detected the identity of

the reward and consumed it. Initial inspection of the peri-event histograms of individual

neurons’ spiking reveal instances of reward-specific firing in each region (Fig. 2.5).

To more precisely determine the presence and onset of reward-selective responding, we

divided the time surrounding reward delivery into overlapping bins with a sliding window

of 600ms advanced by 100ms. For each bin, we found the number of neurons whose firing

rates were significantly differentially modulated across sucrose and maltodextrin trials (see

Methods) and further categorized these neurons by which reward elicited greater firing. We

conducted this analysis for all neurons from each region (Fig. 2.6a,b), as well as for each

individual rat to ensure general consistency across subjects and recording locations (Fig.

2.7). Notably, the peak number of reward-selective neurons in any given bin was greater
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in VP than in NAc (33% vs 10%, χ2 = 34.3, p = 4.7E-9) and this bin with peak reward

selectivity was earlier in VP (centered at 1.1s) than in NAc (centered at 1.9s) (Fig. 2.6a,b).

We compared the time course of selectivity in each region by subtracting the proportion of

selective neurons in VP from the proportion in NAc in each bin (Fig. 2.6c), revealing that

at no point was there more reward selectivity in NAc than in VP, as might be expected if

the reward-specific information originated in NAc. We also compared the onset of reward-

selective responses in each region and found that the distribution of onsets was earlier in VP

than in NAc (Fig. 2.6d).

To characterize the activity of reward-selective neurons in each region, we identified neu-

rons that met our criteria for reward selectivity in any of the bins centered 0.4-3s after reward

delivery, a period of time that captured the majority of phasic reward-selective responses

across both regions (Fig. 2.6a,b). We then plotted these neurons’ individual and averaged

activity on sucrose and maltodextrin trials (Fig. 2.6e-p). Within this time window, 24% of

neurons in NAc and 52% of neurons in VP were at one point reward-selective, a significantly

greater proportion in VP (χ2 = 39.9, p = 2.6E-10). In both regions, we found that most

of the reward-selective responses were excitations for sucrose; some of these cells were also

inhibited for maltodextrin (Fig. 2.6e-g,k-m). A smaller subset of reward-selective cells in

each region had greater firing rates for maltodextrin, often due to an inhibition for sucrose

(Fig. 2.6h-j,n-p). Thus, despite only minimal differences in licking behavior for each reward,

a substantial proportion of neurons in both VP and NAc fire in a reward-selective manner,

and these reward-selective responses are represented in a greater proportion of the recorded

population in VP than in NAc.

2.3.2 VP Units and Ensembles Decode Trial Type Earlier and More Accurately

than NAc

The analysis above indicates differential encoding of two rewards, sucrose and maltodextrin,

with most selective units showing greater responding for sucrose, the preferred reward, over
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maltodextrin. To complement this analysis, we used linear discriminant analysis (LDA) to

test when and to what extent neural activity in each region could be used to predict reward

identity. Using 5-fold cross-validation, we determined how accurately LDA models trained

on the spike activity of individual neurons could classify trials as sucrose or maltodextrin.

We conducted the analysis for each neuron in each region across each of the 600ms bins we

used in Fig. 2.6. We compared these results to LDA models trained on the same data with

the trial identities randomly shuffled. Models trained on single unit activity classified trial

type at rates above chance in both VP and NAc (Fig. 2.8a). Focusing on our window of

interest from Fig. 2.6 (0.4-3s post reward delivery), we found that VP single unit accuracy

improved over shuffled data more than NAc (shuffled vs true X region: F(1, 31150) =

11.5, p = 0.0019). When comparing the most accurate bin in NAc (centered at 1.4s) to

that in VP (centered at 1s), there was a noticeable shift in classification accuracy in the

cumulative distribution function (CDF) (Fig. 2.8b), corresponding to a significantly greater

improvement in accuracy over shuffled data in VP (shuffled vs true X region: F(1,1154) =

13.6, p = 0.00037). Notably, VP single units first improved over shuffled data for the bin

centered at 0.5s, whereas NAc single units first improved over shuffled data at 0.9s (purple

and green lines in Fig. 2.8a). To control for the possibility that the earlier improvement

over shuffled data in VP relative to NAc was due to the larger number of neurons recorded

in VP, we conducted the analysis 20 more times with 182 randomly chosen VP units. The

first bin significantly more accurate than shuffled data ranged from 0.4-0.6s (median 0.5s),

consistently earlier than 0.9s in NAc.

Although the data from individual neurons points to more reward-selective activity in VP

than NAc, an alternate explanation is that reward-specific information is more distributed

across neurons in NAc than in VP. If so, including additional neurons in the model should

improve the accuracy of the NAc decoders relative to VP. To overcome the limited number of

sessions in NAc with greater than 5 neurons, we pooled neurons together into pseudoensem-

bles to compare how much information is contained within larger groups of neurons in each
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region. We ran the same analysis as before using LDA models trained with the spiking

activity of 10, 25, 50, 100, and 150 neurons randomly selected from each region. Increasing

the number of neurons improved accuracy in both regions (Fig. 2.8c,d), contributing to a

significant main effect of ensemble size on peak bin accuracy (F(4,490) = 237, p = 4.3E-

113). Pseudoensembles in VP had greater peak accuracy than those in NAc across all levels,

evident in a main effect of region on peak bin accuracy (F(1,490) = 212, p = 3.3E-40; Fig.

2.8e). Notably, pseudoensembles in VP reliably reached 100% decoding accuracy with 100

neurons; NAc pseudoensembles reached at most 97% with 150 neurons, the upper bound

we could test with our dataset (Fig. 2.8e). The smaller difference in accuracy between the

two regions with 150 neurons was reflected in a significant interaction between ensemble size

and region on decoder accuracy (F(4,490) = 8.73, p = 8.2E-7). Nevertheless, although there

was comparable accuracy across regions with increasing neurons, VP pseudoensembles con-

tinued to achieve peak accuracy earlier than those in NAc (Fig. 2.8f; main effect of region:

F(1,490) = 289, p = 2.5E-51). Overall, our results from these decoding analyses confirm

that VP neurons more reward-specific information than NAc neurons and indicate that this

information arises and peaks earlier in VP than in NAc.

While our initial decoding analysis included all neurons from each region regardless of

their status as reward-selective or not, we were also interested in directly comparing the

amount of reward-specific information contained in the reward-selective population in each

region, so we conducted the same decoding analyses but restricted our sample to those

neurons classified as reward-selective in Fig. 2.6. The accuracy of single unit models trained

exclusively on reward-selective neurons was much closer across regions (Fig. 2.9a); VP no

longer improved over shuffled data more than NAc in the window 0.4-3s post reward delivery

(shuffled vs true X region: F(1, 13612) = 0.0952, p = 0.7617) nor when comparing the peak

bin in each region (shuffled vs true X region: F(1, 504) = 3.46, p = 0.080). Nevertheless, there

continued to be a noticeably earlier rise and peak in accuracy for VP models than for NAc

(Fig. 2.9a). For pseudoensemble models, we were limited by the number of reward-selective
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neurons in NAc, but we found that with groups of 10 and 25 neurons, there was a main effect

of region on peak bin accuracy (F(1,196) = 38.9, p = 2.7E-9; Fig. 2.9e) and time of peak

accuracy (F(1,196) = 54.8, p = 3.8E-12; Fig. 2.9f), indicating that VP pseudoensembles

consisting of reward-selective neurons are more predictive and achieve peak accuracy earlier

than NAc reward-selective pseudoensembles. Overall, these data provide some evidence

that, even among the reward-selective population, VP neurons represent reward-specific

information earlier and more strongly than NAc.

2.3.3 VP Reward Signal Reflects Previous Outcome

Because the predominant reward-selective response in both regions was increased spiking for

the preferred reward (sucrose) relative to maltodextrin, and given the results from previous

recording studies (Taha and Fields, 2005; Wheeler et al., 2005; Tindell et al., 2006, 2009;

Webber et al., 2016), we hypothesized that this reward-specific signal reflects relative reward

value. If so, we would predict that the report of relative value would depend on recent re-

ward history, which we can approximate by analyzing trials according to both the current

and previously received reward. For instance, the relative value of sucrose would be greater

following trials where rats received maltodextrin, and the relative value of maltodextrin

would be lesser following sucrose trials. To look for evidence of such a scheme, we plotted

the mean activity of all neurons in NAc and VP for each of the four combinations of previous

and current reward (Fig. 2.10). While there was some evidence for previous-reward modula-

tion of reward response across the population of neurons in NAc (Fig. 2.10a,b), VP neurons

showed very prominent modulation of the reward-related response according to our predic-

tion: greater firing for sucrose following maltodextrin trials and lesser firing to maltodextrin

following sucrose (Fig. 2.10c,d). When analyzing the contribution of reward and previous

reward to the neural activity in each region 0.8-1.3s following reward delivery (marked with

vertical blue lines in Fig. 2.10a,c), we found a significant main effect for previous reward in

VP (F(1,1724) = 10.1, p = 0.022) but not in NAc (F(1,704) = 0.0167, p = 0.90), though a
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test including data from both regions did not find a significant interaction between previous

reward and region (F(1,2428) = 3.89, p = 0.055).

We next sought to more quantitatively assess the impact of previous outcomes on the

reward-evoked signals in each region by using a linear model approach that predicts a neu-

ron’s firing rate based on the reward outcomes on the current trial and each of the prior six

completed trials (Bayer and Glimcher, 2005). The weights of the coefficients assigned to each

trial reveal how strongly the outcome from that trial factors into the neuron’s firing rate on

the current trial. For both the current trial and the previous trial, only VP models showed,

on average, coefficients that deviated from chance (Fig. 2.10e). Consistent with our relative

value hypothesis and with our observations in Fig. 2.10c,d, the direction of the coefficients

indicated a strong positive impact of receiving sucrose on the firing rate in the current trial

and a negative impact of sucrose received on the previous trial. We also found that more

neurons in VP had significant coefficients than in NAc for both the current and most recent

trial (Fig. 2.10f), reflecting the stronger impact of reward outcome on VP firing. We found

no impact of previous trials beyond the most recent on reward-related firing in either region.

Thus, firing in VP at the time of reward reflects the previously received outcome.

2.3.4 VP Signals Reward Value Relative to Currently Available Options

Our results comparing VP neural responses to sucrose and maltodextrin are consistent with

a relative value signal, but a stronger test of this hypothesis requires changing the relative

value of the reward outcomes and looking for a corresponding change in neural activity.

Such an approach has demonstrated that neurons in NAc report relative value (Taha and

Fields, 2005; Wheeler et al., 2005; Webber et al., 2016), but it is unclear whether VP neural

reports of a reward’s value are relative to other currently available outcomes. We tested for

relative value by conducting an additional session for VP rats in which sucrose was replaced

with water, an outcome much less rewarding (in rats that are not water-restricted) than

both sucrose and maltodextrin solutions (Treesukosol et al., 2011; Sclafani et al., 1987). We
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predicted that, if VP neural activity reflects relative value, then the predominant reward-

specific neural response would be excitations for maltodextrin, which in this scenario is the

preferred outcome. Alternatively, if VP activity reflects absolute value, then the neural

responses would remain suppressed to maltodextrin as in the sessions with sucrose and

maltodextrin (Fig. 2.6k).

Two rats successfully completed this session type, contributing a total of 125 neurons

(79 and 46, respectively). Water was much less preferred than maltodextrin, evident in the

mean lick rate for each outcome (Fig. 2.11a). By calculating the number of reward-selective

neurons across 600ms bins, we saw an even greater proportion of neurons in VP showed

reward-specific responses for any given bin (59% at 1.3s) (Fig. 2.11b). We plotted the

activity of neurons that met our criteria for reward selectivity during any bin within the 0.4-

3s window we used in Fig. 2.6 (Fig. 2.11c,d); 70% of neurons were reward-selective during

this time, a significantly greater proportion than the 53% in sessions these two rats completed

with sucrose and maltodextrin (χ2 = 9.68, p = 0.0019); this higher proportion may reflect

the considerable difference in value between water and maltodextrin compared to the similar

value of the two appetitive reward outcomes, sucrose and maltodextrin. Consistent with

our first prediction, the vast majority of these reward-specific neurons were excited by the

preferred reward, maltodextrin, and most were also inhibited by the less preferred outcome,

water (Fig. 2.11e).

Because this session was the first time rats experienced water and maltodextrin together,

we were able to observe the emergence of the excitations for maltodextrin delivery, which

previously produced a reduction in firing in reward-selective cells (Fig. 2.6k), and the emer-

gence of inhibitions for the novel outcome, water. By averaging together the normalized

activity of the reward-selective cells with greater firing for maltodextrin (the same group of

neurons from Fig. 2.11c-e), we tracked the population’s responses across each trial of each

reward (Fig. 2.11f). In both rats, there was a noticeable increase in firing for maltodextrin

and decrease in firing for water among this population of reward-selective neurons through-
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out the session, reflected in a significant interaction between the effects of reward and the

number of trials in both rats (VP2: F(14,1500) = 17.0, p = 2.1E-39; VP5: F(27,1960) =

22.7, p = 6.2E-96). In fact, despite being classified as having greater firing for maltodextrin

than water, in neither rat did these neurons start out with greater firing for maltodextrin.

These data demonstrate that neurons in VP modulate their responses within minutes to

reflect the relative value of available outcomes in an altered reward landscape.

2.3.5 VP Activity Orders Three Outcomes by Relative Value

Finally, to test whether reward-selective neurons in VP can reflect the relative value of

more than two options, we conducted additional sessions for VP rats where we reintroduced

sucrose along with maltodextrin and water for a total of three possible reward outcomes.

We recorded activity from 254 neurons in 3 rats (83, 104, and 67 neurons, respectively)

across 4 total sessions. As before, we looked for neurons with significant reward-selective

responses across the three outcomes for each 600ms bin and classified them by the reward

that elicited the greatest firing. At most, 77% of the population was significantly modulated

by reward outcome (for the bin at 1.1s), the majority of which had greatest firing for sucrose

(Fig. 2.12b). We then looked at the activity of reward-selective neurons with greatest firing

for sucrose during any bin in our standard 0.4-3s window. Remarkably, this population

showed on average a large excitation for sucrose, a smaller excitation for maltodextrin, and

an inhibition for water, consistent with the rats’ relative preference for the three rewards

(Fig. 2.12c,d). As a whole, this population had significantly different mean normalized

firing rates for the time period 0.8-1.4s after reward delivery for all three reward outcomes

(F(2,561) = 441, p = 0.000014; all pairs of rewards: p < 1E-6, Tukey test correcting for

multiple comparisons). Therefore, rather than simply indicating good and bad options, VP

can reliably report the relative value of multiple outcomes in a complex reward space.

36



2.4 Discussion

Our data here demonstrate that neurons in both NAc and VP fire in a reward-selective

manner, but this reward-specific firing is much more prevalent in the VP neural population.

This relation is evident in both the larger number of neurons in VP that fire selectively for

sucrose and maltodextrin, as well as the greater decoding accuracy of LDA models trained

on the spiking data of neurons in VP. Moreover, both the onset and peak of reward-specific

information in VP precedes those in NAc. We also found that neurons in VP tracked the

relative value of the reward outcomes across three different conditions: on a trial-by-trial

basis in sessions contrasting sucrose and maltodextrin, in a new session replacing sucrose

with water where maltodextrin became the preferred outcome, and, finally, in sessions with

all three outcomes. Thus, our data demonstrate a robust reward valuation signal in VP that

is unlikely to be fully explained by its classical NAc input.

2.4.1 Reward-selective Encoding Despite Highly Controlled Stimuli

Previous work has shown that neural responses in NAc for orally consumed rewards and

their predictive stimuli are modulated by the location (Robinson and Carelli, 2008), motor

response (Roitman et al., 2005), size (Bissonette et al., 2013; Cooch et al., 2015; Goldstein

et al., 2012; Roesch et al., 2009; Webber et al., 2016), and concentration (Taha and Fields,

2005; Wheeler et al., 2005; Villavicencio et al., 2018) of the reward outcomes. In VP, reward-

related neural responses are known to be modulated by reward size (Avila and Lin, 2014a,a;

Stephenson-Jones et al., 2020) and the rat’s physiological need for a given reward (Tindell

et al., 2006, 2009). Here, we controlled for all of these factors by choosing two reward

solutions (sucrose and maltodextrin) with equivalent caloric value that were delivered in the

same location and elicited nearly identical motor responses in rats in a normal physiological

state. Thus, aside from their chemosensory properties, the two rewards differed only in the

rats’ preference for each, suggesting that the reward selectivity reported here was based on
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preference or identity. Because the dominant response in both regions was greater firing

rate for the preferred reward, sucrose (Fig. 2.6e,k), it is likely that preference is the major

contributor to the reward-selective responses we observed in each region. If NAc and VP

neural activity primarily coded reward identity, we would expect equivalent numbers of

biased responses for each reward, along with greater rigidity of reward-specific coding in VP

across changing reward contexts, two conditions that were not met. Still, the existence of a

small proportion of cells in both regions with greater firing for maltodextrin (Fig. 2.6h,n)

could be indicative of the presence of some identity-based encoding.

2.4.2 VP As a Reward Processor Independent of NAc

Due to its well-defined anatomical role as an output of NAc within the ventral striatopallidal

pathway (Alexander et al., 1986; Groenewegen et al., 1999; de Olmos and Heimer, 1999),

most studies on the role of VP in reward processing have been within the context of NAc

function. Such experiments have established an important role for this pathway in reward-

related behavior (Chang et al., 2018; Creed et al., 2016; Gallo et al., 2018; Leung and Balleine,

2013; Richard et al., 2013a; Smith and Berridge, 2007); however, because these studies use

longer timescale manipulations, they do not clarify how reward-related information arrives

in each region and when NAc and VP connectivity is necessary for proper reward processing,

questions readily answered with in vivo observations of neural activity in each region during

a reward-processing task.

A recent study of NAc and VP activity in vivo found that the onset of VP excitatory

neural responses to a cue indicating reward availability typically precedes the onset of cue-

evoked neural responses in NAc, demonstrating that NAc cannot be the primary source of

excitatory VP cue responses and, therefore, that VP does not act exclusively downstream

of NAc in the processing of cues predicting reward (Richard et al., 2016). Likewise, in the

present work, we found that reward-specific information arises and peaks earlier in VP than

in NAc. This reward-specific information is largely contained within phasic excitations to
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the preferred reward; therefore, given that NAc inputs to VP are predominantly inhibitory

(or produce a biphasic response) (Root et al., 2015; Chrobak and Napier, 1993; Hakan et al.,

1992; Maurice et al., 1997; Mitrovic and Napier, 1998), it is unlikely that this reward-specific

excitation originates in NAc. Nevertheless, our data do not exclude the possibility that

certain aspects of NAc activity, such as the inhibitions we observe around the time of port

entry and reward delivery (Fig. 2.4b,c), are permissive of the reward-selective responses in

VP, which do not arise until 0.4s following reward delivery (Figs. 2.6b,2.8a); additionally,

later-occurring inhibitions to sucrose in VP (Fig. 2.6b,n,o) could originate from earlier

sucrose-specific excitations in NAc (Fig. 2.6a,e,f). Together, our findings support the notion

that VP processes certain aspects of reward independently of NAc, and they highlight the

importance of studying other inputs to VP, such as amygdala (Mitrovic and Napier, 1998;

Maslowski-Cobuzzi and Napier, 1994), lateral hypothalamus (Baldo et al., 2003; Ho and

Berridge, 2013), and prefrontal cortex, which, in addition to direct projections (Zaborszky

et al., 1997), could provide input via the subthalamic nucleus (Turner et al., 2001; Maurice

et al., 1999), a route that is reported to be faster than through striatum (Nambu et al., 2002;

Ryan and Clark, 1991).

One caveat to our conclusions is that the neural data from each region were collected from

separate animals. This approach introduces the possibility that variations in each subject’s

task performance and reward preference and subtle changes in the experimental conditions

could contribute to the differences observed between these two groups. We were careful to

control for as many of these elements as possible, but future recordings performed in the

same animal would provide definitive evidence that reward-specific information arises in VP

prior to NAc and features more prominently in the VP neural population.

In our recordings, we sampled a large proportion of the anterior-posterior extent of medial

NAc shell and core and the majority of the anterior-posterior and medial-lateral axes of VP

(Fig. 2.2). Despite previous evidence in NAc and VP for subregion heterogeneity in reward-

related function (Root et al., 2015; Smith et al., 2009; Richard et al., 2016; Castro and
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Berridge, 2014; Kelley, 1999; Pecina and Berridge, 2005; Richard et al., 2013b; Smith and

Berridge, 2005), we saw no meaningful differences in reward selectivity across our recorded

location (Figs. 2.2, 2.7), which is consistent with a previous report of uniformly distributed

relative value responses in NAc (Taha and Fields, 2005), although high density recordings

in NAc and VP subregions are required to make definitive conclusions. Given the current

data, our observations on the timing and magnitude of reward-selective signaling in NAc and

VP appear to hold true across subregions in both structures, but the data do not preclude

differences in lateral NAc shell and more rostral portions of ventrolateral VP, which we did

not record from in our study, nor do they preclude different functions for a relative value

signal dependent on local and long-range connectivity.

2.4.3 A Relative Value Signal in VP

Our data show that VP neurons can flexibly signal a reward’s value relative to the other

currently available outcomes. A similar scheme has been shown for a small fraction of

reward-selective neurons in NAc by varying the concentrations of available sucrose solutions

(Taha and Fields, 2005; Wheeler et al., 2005) or the magnitude of reward (Webber et al.,

2016). Previous work has shown that VP can signal differences in value based on size (Avila

and Lin, 2014a,a), physiological need (Tindell et al., 2006, 2009), and associative learning

(Itoga et al., 2016). Of particular interest is the finding that the VP neural responses

to heavily salinated water (normally an aversive stimulus) is greater than that of sucrose

when rats are salt-deprived (Tindell et al., 2006); however, in that study, there was no

significant reduction in firing for sucrose once it became the less preferred reward, perhaps

because salt water and sucrose were administered in separate blocks, hindering a direct

comparison. In our experiments, we have shown that the VP neural response to the same

reward (maltodextrin) in the same physiological state is altered when that reward’s value

relative to the other available outcomes changes (Fig. 2.11), the hallmark of a relative value

signal. The robustness of this signal across the population invites consideration of the (to
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our knowledge, unexplored) role of ventral pallidum in the contrast effect (Flaherty, 1999).

Despite multiple demonstrations of neural correlates of negative and positive contrast in both

rat and primate NAc (Taha and Fields, 2005; Webber et al., 2016; Cromwell et al., 2005;

Wheeler et al., 2005), NAc lesions affect only instrumental but not consummatory contrast

effects (Eagle et al., 1999; Leszczuk and Flaherty, 2000); the strong relative value signal in

VP makes it an appealing candidate to contribute to both of these effects.
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Figure 2.1

Figure 2.1. Experimental design and reward preference results.

(a) Sucrose or maltodextrin solution was delivered 500ms following rats’ entry into the reward
port during a 10s white noise cue. Trials of each reward were randomly interspersed
throughout the session such that reward identity was unpredictable to the rat.

(b) After training, drivable 16 electrode arrays were implanted in either nucleus accumbens
(n=6) or ventral pallidum (n=5).

(c) Rats’ preference (percentage sucrose consumption of total consumption) during 1hr free
access to 10% solutions of sucrose and maltodextrin. Tests were after surgical recovery
(Initial) and after final session with sucrose and maltodextrin (Final).

(d) Average lick rate on sucrose (orange) and maltodextrin (pink) trials during the task. Shading
is SEM. Black bar indicates greater number of licks on sucrose trials 1-4.5s post reward
delivery (F(1,3142) = 66.0, p = 5.3E-6). See also Fig. 2.3.

(e) Interlick interval duration following the first 30 licks on sucrose (orange) and maltodextrin
(pink) trials. Inset: mean interlick interval duration across all 30 intervals. Asterisk indicates
significant main effect of reward on duration (F(1,3000) = 33.3, p = 0.000084).

42



Figure 2.2

Figure 2.2. Recording locations.

(a) Dashed lines demarcate nucleus accumbens shell and core and ventral pallidum. Placements
are color coded by rat. The posterior portion of VP2’s placement included extended
amygdala.
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Figure 2.3

Figure 2.3. Elevated licking for sucrose across all rats.

(a) Mean lick rate for each individual NAc rat on sucrose (orange) and maltodextrin (pink) trials
(n is each included session). Gray box indicates time of interest (1-4.5s following reward
delivery) when licking is consistently greater for sucrose than for maltodextrin.

(b) As in (a), for VP rats.
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Figure 2.4

Figure 2.4. Event-evoked responses in NAc and VP.

(a) Left: All NAc neurons sorted by firing rate 500ms following cue onset. Right: Neurons
significantly inhibited (blue) and excited (yellow) by cue onset. Shading is SEM.

(b) As in (a), for the 1000ms centered on port entry (PE).

(c) As in (a), for the 1000ms following reward delivery (RD).

(d-f) As in (a-c), for neurons from VP.
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Figure 2.5

Figure 2.5. Example reward-selective neurons.

(a) Perievent raster (top) and histogram (bottom) of a reward-selective neuron from NAc1
aligned to reward delivery for all (left), sucrose (center) and maltodextrin (right) trials.
Green diamond is cue, orange circle is final sucrose lick, pink circle is final maltodextrin lick.
Perievent histogram constructed with 75ms bins and smoothed with a Gaussian filter over 3
bins.

(b) As in (a), for a reward-selective neuron from VP5.
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Figure 2.6

Figure 2.6. More neurons in VP fire selectively for sucrose and maltodextrin
than in NAc.
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Figure 2.6. More neurons in VP fire selectively for sucrose and maltodextrin
than in NAc.

(a) Top panel: fraction of NAc neurons meeting criteria for reward selectivity as a function of
time after reward delivery. Plotted are total fraction of reward-selective neurons (blue) and,
of those, neurons with greater firing for sucrose (orange) and greater firing for maltodextrin
(pink). Bottom panel: Cumulative distribution of reward selectivity over time after reward
delivery.

(b) Same as (a), for VP.

(c) Subtraction of VP reward selectivity from NAc in each bin. Negative values indicate more
selectivity in VP.

(d) Cumulative distribution of reward selectivity onsets as a fraction of total reward-selective
neurons. Asterisk indicates significantly earlier onsets in VP (F(1,290) = 12.7, p = 0.00071).

(e) Mean normalized firing rate for sucrose-selective neurons (neurons with greater firing for
sucrose in any bin centered at 0.4-3s) on sucrose (orange) and maltodextrin (pink) trials.
Shading is SEM.

(f) Heat maps of the normalized activity of individual sucrose-selective neurons on sucrose and
maltodextrin trials.

(g) Number of neurons with maltodextrin inhibitions (pink), sucrose excitations (orange), or
both (blue).

(h) Mean normalized firing rate for maltodextrin-selective neurons (neurons with greater firing
for maltodextrin in any bin centered at 0.4-3s) on sucrose (orange) and maltodextrin (pink)
trials. Shading is SEM.

(i) Heat maps of the normalized activity of individual maltodextrin-selective neurons on sucrose
and maltodextrin trials.

(j) Number of neurons with maltodextrin inhibitions (pink), sucrose excitations (orange), or
both (blue).

(k-p) As in (e-j), for VP neurons.
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Figure 2.7

Figure 2.7. Reward-selective neurons in each rat.

(a) Histogram of the fraction of neurons in each NAc rat that meet criteria for reward selectivity
in overlapping 600ms bins (advanced by 100ms) (see Figure 2a). Plotted are the total
fraction of reward-selective neurons (blue) and, of those, neurons with greater firing for
sucrose (orange) and greater firing for maltodextrin (pink).

(b) As in (a), for VP rats.
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Figure 2.8

Figure 2.8. VP activity decodes trial identity earlier and more accurately than
NAc activity.
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Figure 2.8. VP activity decodes trial identity earlier and more accurately than NAc
activity.

(a) Average cross-validated decoding across 600ms overlapping bins relative to reward delivery.
Decoding accuracy for NAc (purple), VP (green), and data with shuffled trial identity from
each region (black). Shading is SEM. Purple (NAc) and green (VP) lines indicate consecutive
bins where accuracy exceeds 99% confidence interval of corresponding shuffled data.

(b) Cumulative distribution of accuracies in the bin with the greatest average accuracy in each
region (centered at 1.4s in NAc and 1s in VP) and the corresponding shuffled data from that
bin in each region.

(c) Average cross-validated decoding accuracy relative to reward delivery time of linear
discriminant analysis models trained on spiking data of 20 randomly selected groups of 10,
25, 50, 100, or 150 neurons in NAc and corresponding models trained on data with trial
identity shuffled. Shading is SEM.

(d) Same as (c) for VP pseudoensemble models.

(e) Average accuracy of each replicate for the bin with peak accuracy for each pseudoensemble
size in each region. Asterisk indicates significant main effect of region on accuracy (F(1,490)
= 212, p = 3.3E-40).

(f) Average peak accuracy time post-reward for each replicate of each pseudoensemble size in
each region. Asterisk indicates significant main effect of region on peak accuracy time
(F(1,490) = 289, p = 2.5E-51).
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Figure 2.9

Figure 2.9. Decoding trial identity with only reward-selective neurons.
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Figure 2.9. Decoding trial identity with only reward-selective neurons.

(a) Average cross-validated decoding using individual reward-selective neurons (from Fig. 2.6)
across 600ms overlapping bins. Decoding accuracy for NAc (purple), VP (green), and data
with shuffled trial identity from each region (black). Shading is SEM. Purple (NAc) and
green (VP) lines indicate consecutive bins where accuracy exceeds 99% confidence interval of
corresponding shuffled data.

(b) Cumulative distribution of decoding accuracies in the bin with the greatest average accuracy
in each region (centered at 1.6s in NAc and 1s in VP) and the corresponding shuffled data.

(c) Average cross-validated decoding accuracy relative to reward delivery time of linear
discriminant analysis models trained on spiking data of 20 randomly selected groups of 10 or
25 reward-selective neurons in NAc and corresponding models trained on data with trial
identity shuffled. Shading is SEM.

(d) Same as (c), but for for VP reward-selective neurons.

(e) Average accuracy of each replicate for the bin with peak accuracy for each pseudoensemble
size in each region. Asterisk indicates significant main effect of region on accuracy for 10 and
25 neuron ensembles (F(1,196) = 38.9, p = 2.7E-9).

(f) Average peak accuracy time post-reward for each replicate of each pseudoensemble size in
each region. Asterisk indicates significant main effect of region on time of peak accuracy for
10 and 25 neuron ensembles (F(1,196) = 54.8, p = 3.8E-12).
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Figure 2.10

Figure 2.10. Previous reward outcome impacts current reward firing.

(a) Normalized activity of all neurons in NAc on sucrose (orange) and maltodextrin (pink) trials
of each reward, separated by reward outcome on preceding trial; darker lines indicate that
sucrose was the prior trial’s reward.

(b) Normalized reward-related activity of every individual neuron in NAc on trials with each
combination of previous and current reward.

(c) Same as (a), for VP. Asterisk indicates a significant main effect of previous reward on
normalizing firing rate in VP (F(1,1724) = 10.1, p = 0.022) between the vertical blue lines.

(d) Same as (b), for VP.

(e) Mean coefficient weights for the impact of the current and previous 6 trials on normalized
firing rate in the same epoch as (a,c) for each neuron in NAc (purple), VP (green), and
corresponding data for each neuron with the outcomes shuffled (black) for each region. Error
bars are SEM. Asterisks are p < 0.05 for Tukey tests comparing VP coefficients to shuffled
data, corrected for multiple comparisons.

(f) Proportion of the neural populations in VP (green), NAc (purple), and corresponding shuffled
neurons (black) with significant coefficients for each of the relative trials. Asterisks represent
p < 0.05 for chi-square tests on both the distribution of neurons across all four conditions
(true and shuffled data from each region) and across the true data from each region.
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Figure 2.11

Figure 2.11. VP reward-selective activity adjusts to reflect relative value of
new outcomes.

(a) Lick rate on water (blue) and maltodextrin (pink) trials. Shading is SEM.

(b) Fraction of VP neurons that meet criteria for reward selectivity relative to reward delivery
time: all reward-selective neurons (dark blue) and, of those, neurons with greater firing for
maltodextrin (pink) and greater firing for water (light blue). Dashed lines indicate the
window (0.4-3s) for which reward-selective neurons were selected for (c) and (d).

(c) Average normalized firing rate for neurons with greater firing for maltodextrin on water
(blue) and maltodextrin (pink) trials. Shading is SEM.

(d) Heat maps of the normalized activity of individual neurons on water and maltodextrin trials.

(e) Number of neurons with maltodextrin excitations (pink), water inhibitions (light blue), or
both (dark blue).

(f) Emergence of maltodextrin (pink) excitations and water (blue) inhibitions among
reward-selective neurons across each completed trial of the session. Plotted as mean
normalized activity 0.8-1.8s post reward delivery; error bars are SEM.
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Figure 2.12

Figure 2.12. VP neurons report the relative value of three reward outcomes.

(a) Lick rate on sucrose (orange), maltodextrin (pink), and water (blue) trials. Shading is SEM.

(b) Fraction of neurons in VP that meet criteria for reward selectivity relative to reward delivery
time: all reward-selective neurons (dark blue) and, of those, neurons with greatest firing for
sucrose (orange), maltodextrin (pink), or water (light blue). Dashed lines indicate the
window (0.4-3s) for which reward-selective neurons were selected for (c-e).

(c) Mean normalized firing rate of neurons that are reward-selective for any bin 0.4-3s post
reward delivery and have greatest firing rate for sucrose. Shading is SEM.

(d) Normalized firing rate of individual neurons included in (c). Neurons in all three plots are
sorted by amount of firing on sucrose trials in the bin with the most number of neurons with
greatest firing for sucrose.

(e) Distribution of neurons in (c) and (d) according to sucrose excitation, maltodextrin
excitation, and water inhibition.
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Chapter 3

A quantitative reward prediction error signal

in ventral pallidum

This chapter is adapted from Ottenheimer et al. (2019a).

3.1 Introduction

In Chapter 2, we described a flexible relative value signal in ventral pallidum (VP). We

observed this both in the ability of the signal to rescale to reflect the relative values of a new

set of rewards (Figs. 2.11, 2.12) and a more local adjustment in response to the previously

received reward (Fig. 2.10). Flexible representations of the reward landscape are a key com-

ponent of reinforcement learning, a well-established approach for describing how individuals

interact with environments to maximize reward (Sutton and Barto, 1998). Reinforcement

learning frameworks formalize the notion that individuals integrate information about past

rewards to make predictions about the future. Deviations from these predictions, known as

reward prediction errors (RPEs), are used to iteratively update future predictions (Rescorla

and Wagner, 1972).

One remarkable extension of reinforcement learning to neuroscience was the discovery

that midbrain dopamine neurons encode RPEs (Schultz et al., 1997) and do so over local

timescales (Bayer and Glimcher, 2005). Despite the influence of the discovery of dopamine

neuron RPE signaling, little is known about how related brain regions contribute to the
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calculation of RPEs to drive learning. VP has dense reciprocal connectivity with dopamine

neurons in the ventral tegmental area (Watabe-Uchida et al., 2012; Beier et al., 2015; Root

et al., 2015; Tian et al., 2016; Faget et al., 2018). Recent studies show some evidence for RPE

encoding in VP (Tian et al., 2016; Stephenson-Jones et al., 2020). With this collection of

results in mind, we reexamined the data from Chapter 1 through the lens of RPE signaling.

We also conducted additional electrophysiology studies to test the adherence of VP activity

to an RPE signal in different scenarios. By adapting and fitting computational models to

predict the spike counts of individual neurons, we were able to demonstrate that an RPE

model predicts key features of VP neural activity. We also found that the activity of VP

outcome-sensitive cells predicted subsequent task engagement, and optogenetic manipulation

of VP altered task engagement in a manner consistent with the model, providing a possible

explanation for the purpose of this signal.

3.2 Materials and Methods

Behavioral tasks.

In addition to the data from the tasks in Chapter 2 (which here are called random su-

crose/maltodextrin and random sucrose/maltodextrin/water), this chapter includes

data from two additional tasks. Blocked sucrose/maltodextrin: For the same group of

rats as the random sucrose/maltodextrin task, additional blocked sessions were performed

on roughly alternating days with the random sucrose/maltodextrin task. In blocked ses-

sions, sucrose and maltodextrin were presented 30 trials in a row for a total of 60 trials.

The order of the rewards switched each blocked session. Predictable and random su-

crose/maltodextrin: A new group of rats (n=4) was trained on a task with the same trial

structure (with a shorter ITI of 30s) but with three possible auditory cues. One predicted

sucrose delivery with 100% probability (30 trials), one maltodextrin with 100% probability

(30 trials), and one, as in the random sucrose/maltodextrin task, predicted each reward with
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a 50% probability (60 trials). For these rats, we maintained the electrode wires in the same

position for the duration of the experiment. Each wire from these rats only contributed to

the included dataset once.

Optogenetic manipulations.

Note: the rats from the inhibition and excitation experiments here performed the respective

experiments from Chapter 4 first. Inhibition. For this experiment, rats were trained on a

variation of the random sucrose/maltodextrin task where instead of maltodextrin delivery,

rats received sucrose + bilateral continuous (5 sec, 15-20 mW) photoinhibition of VP. For

these sessions the reward volume was reduced to 55µL and the total number of trials was

increased to 90. In our analysis, we only included rats who completed at least 30 trials

and had both fibers and viral expression in VP. This resulted in 7 rats in each group: 4

males and 3 females in the ArchT3.0 group, and 2 males and 5 females in the YFP group.

Excitation. For rats with ChR2, on half of trials, rats received sucrose + unilateral 40Hz

pulsed photoexcitation of VP for 2 sec (10ms pulse width, 10-12mW). Because rats were

implanted bilaterally, we stimulated the side with maximal effect and minimal off-target

effects as determined in prior experiments. We only included rats who completed at least

30 trials and had their stimulated fiber and viral expression in VP. This resulted in 5 males

and 5 females in the ChR2 group, and 3 males and 4 females in the GFP group.

PSTH creation.

Peri-stimulus time histograms (PSTHs) were constructed using 0.01ms bins surrounding the

event of interest (generally, reward delivery). PSTHs were smoothed using a half-normal

filter (σ = 6.6) that only used activity in previous, but not upcoming, bins. Each bin of the

PSTH was z-scored by subtracting the mean firing rate across 10s windows before each trial

and dividing by the standard deviation across those windows (n = no. of trials). PSTHs for

licking were created in the same manner (without z-scoring) using 0.05ms bins and σ = 8.
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Model fitting.

For each neuron, we took the spike count, s(t), within the 0.75-1.95s post-reward delivery

time bin for each trial and fit Poisson spike count models. For the random and blocked

sucrose/maltodextrin tasks, we fit the following three models.

RPE model

δ(t) = o(t)− V (t)

V (t+ 1) = V (t) + α · δ(t)

s(t) ∼ Poisson(exp(a · δ(t) + b))

where V (t) is the expected value, δ(t) is the RPE, o(t) is the outcome and α is the

learning rate. For the tasks with sucrose and maltodextrin outcomes, we coded o(t) = 0

for maltodextrin, and 1 for sucrose. For the tasks with sucrose, maltodextrin, and water

outcomes, we coded o(t) = 0 for water, 1 for sucrose, and ρ for maltodextrin, a free parameter

we estimated during model fitting. To map RPEs to spike counts, we used a as a slope (gain)

and b as an intercept (offset) parameter. This affine-transformed RPE was mapped through

an exponential function, to avoid negative values, and used as the rate parameter for a

Poisson distribution.

Current outcome model

s(t) ∼ Poisson(exp(a · o(t) + b))

Unmodulated model

60



s(t) ∼ Poisson(exp(ln(s)))

where s is the mean firing rate.

For the predictable and random sucrose/maltodextrin task, we added the following three

models

RPE + cue model

δ(t) = o(t)− V (t)

V (t+ 1) = V (t) + α · δ(t)

If a sucrose-predicting cue was given

s(t) ∼ Poisson(exp(a · δ(t) + b− Vsucrose))

If a maltodextrin-predicting cue was given

s(t) ∼ Poisson(exp(a · δ(t) + b− Vmaltodextrin))

If a non-predictive cue was given

s(t) ∼ Poisson(exp(a · δ(t) + b))

where Vsucrose and Vmaltodextrin are free parameters for the values of the sucrose- and

maltodextrin-predicting cues, respectively.

Current outcome + cue model
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If a sucrose-predicting cue was given

s(t) ∼ Poisson(exp(a · o(t) + b− Vsucrose))

If a maltodextrin-predicting cue was given

s(t) ∼ Poisson(exp(a · o(t) + b− Vmaltodextrin))

If a non-predictive cue was given

s(t) ∼ Poisson(exp(a · o(t) + b))

Unmodulated + cue model

If a sucrose-predicting cue was given

s(t) ∼ Poisson(exp(ln(s)− Vsucrose))

If a maltodextrin-predicting cue was given

s(t) ∼ Poisson(exp(ln(s)− Vmaltodextrin))

If a non-predictive cue was given

s(t) ∼ Poisson(exp(ln(s))

To estimate predictive cue effects on firing at the time of the cue, we fit the Unmodulated

model and Unmodulated + cue model, with Vsucrose and Vmaltodextrin sign-flipped.

We also considered RPE models in which the predictive cue allowed for partial to full

cancellation of RPEs.
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If a sucrose-predicting cue was given

η(t) = o(t)− ((1− w) · V (t) + w · Vsucrose)

If a maltodextrin-predicting cue was given

η(t) = o(t)− ((1− w) · V (t) + w · Vmaltodextrin)

If a non-predictive cue was given

η(t) = o(t)− V (t)

s(t) ∼ Poisson(exp(a · η(t) + b))

We fixed Vsucrose = 1 and Vmaltodextrin = 0 and set w as a free parameter. If w = 0, this

is equivalent to the RPE model, and if w = 1, the predictive cues allow for full cancellation

of the RPE (η(t) = 0). Intermediate values of w allow the predictive cues to partially cancel

the history-based RPE. This model was best for a negligible number of neurons.

We only analyzed trials in which the rat licked within the first two seconds of reward

delivery, to ensure that they sampled the outcome. For all RPE models, V (1) was initialized

to 0.5. For all models with a slope parameter, we constrained the slope, a, to be > 0, as

our work in Chapter 2 found only a trivial fraction of VP neurons preferentially encoding

maltodextrin. We found maximum likelihood estimates for each model and selected the best

model using Akaike information criterion (lower AIC indicates a better fit, after taking into

account the number of parameters). We used 10 randomly-selected starting initial values for

each parameter to avoid finding local minima.
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Correlation and RPE tuning curves for real and simulated neurons.

For neurons best fit by the RPE model, we report correlations between real and predicted

spike trains, as well as RPE tuning curves for real and predicted spikes. For each neuron,

we estimated the Pearson correlation coefficient between real spikes and 501 independent

model-generated spike count trains, using parameters estimated from the same neuron, and

report the median correlation. The median-correlated spike count is plotted in Figure 3.2e,

3.5i. We also compared the mean and standard deviations of real vs simulated spike counts in

Figure X. To generate RPE tuning curves for real spikes, we took z-scored spike counts and

binned according to estimated RPEs. We performed this procedure for all RPE neurons and

report the average tuning curve. To generate tuning curves for predicted spikes, we simulated

spike trains using neuron-derived parameter estimates and followed the same procedure.

Outcome history-based linear regression.

To estimate how the outcome of the current and previous trials affected the firing rate of the

current trial, we conducted a complete-pooling linear regression analysis. We z-scored the

firing rate of each neuron using the baseline activity across the set of 10s bins prior to each

trial and combined the firing rates of all neurons of interest. Similarly, our design matrix

included the current and ten previous trial outcomes for all neurons of interest. For the

random sucrose/maltodextrin task, we gave maltodextrin a value of 0 and sucrose a value of

1. For the random sucrose/maltodextrin/water task, water was given a value of 0, sucrose

was given a value of 1, and maltodextrin was given a value of 0.75 for RPE cells and 0.8 for

current outcome cells, the values which achieved the maximum R2 for the linear regression.

Video analysis.

During recording sessions, videos were taken at 30 frames per second of the rats as they

performed the task. During the optogenetic sessions, videos were taken at 6-8 frames per

second. These videos permitted analysis of movement around the behavioral chamber. We

64



used DeepLabCut (Mathis et al., 2018; Nath et al., 2019) in Python to determine the location

of the rat’s head in each frame. DeepLabCut generates a likelihood for the location of each

feature in each frame, and we discarded any frames below 0.95. We further processed the

X-coordinate and Y-coordinate traces to remove outliers above 2 standard deviations of the

median across moving 1s bins. These traces were used to calculate the location of the rat

within a 0.2s window surrounding each cue onset and the locations of the rat in 0.2s bins from

the last lick within the first 15s after reward delivery (or 15s even if rats were still licking)

until the next cue onset for rats from the recording sessions, or from the final port exit within

the first 10s after reward delivery (or 10s even if the rats were still in the port) until the

next cue onset for rats from the optogenetic sessions. To find the average distance from the

port during this time period, we found the area under the curve for distance from the port

and divided by the total time. To compare this measure across sucrose and maltodextrin

(or sucrose + laser trials), we found the average across all trials of each type for each rat

and compared the two groups with a Wilcoxon signed-rank test. For the electrophysiology

experiment, this measure was then correlated (Spearman’s) to the activity of each RPE

neuron in our bin of interest on each trial. To compare to shuffled data, we produced 1000

correlations for each neuron with shuffled trial order and compared the true mean to the

distribution of means from the 1000 shuffled populations. For the optogenetic experiment,

we calculated for each rat the fractional change in distance from the port produced by the

laser by dividing the difference (laser - no laser) by the no laser value. We compared the

values from these two groups with a Wilcoxon rank-sum test.

Evolution of activity across session.

To visualize how the reward-evoked activity of neurons changed across each reward block in

the blocked task, we plotted the mean activity within our bin of interest (0.75s-1.95s post-

reward delivery) for 5 groups of 3 trials at a time, equally spaced throughout the completed

trials of each reward (and applied the same approach to the random sucrose/maltodextrin
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task, as well). To assess the impact of session progress on firing rate, we pooled the activity

on each trial for all neurons of interest (say, RPE cells in sessions with sucrose block first) and

the proportional progress throughout the session (of total completed trials) for the respective

trial and performed a linear regression.

Statistical analysis.

Data are presented as mean +/− s.e.m. unless otherwise noted. Statistical analyses were

performed in MATLAB (MathWorks) on unsmoothed data. Specific tests are noted in the

text, figure legends, and throughout the methods.

3.3 Results

3.3.1 Ventral pallidum neurons signal prediction errors according to reward

preference

We began by analyzing the activity of the VP neurons (n = 436) presented in Figs. 2.6-2.10.

To recap, on each trial, rats responded to a 10-second white noise cue that indicated the

availability of 10% solutions of either sucrose or maltodextrin contingent upon entry into

the reward port (Figure 3.1a). In this task (“random sucrose/maltodextrin”), there was

only one cue, which predicted sucrose or maltodextrin reward with equal probability. This

task design ensured rats could not accurately predict upcoming rewards (Figure 3.1b). In

addition to the observation that VP neurons reflected the rats’ preference for sucrose with

increased firing rates (Figure 3.1e), we also saw that the previous outcome modulated the

reward signal in a direction consistent with reward prediction error (RPE) coding (Figure

3.1f). For example, receiving sucrose on the previous trial increased expectation of future

sucrose, leading to decreased firing when sucrose was delivered on the current trial. The

expected trend held true for all combinations of past/current outcomes, suggesting that VP

neural activity might contain an RPE signal.
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Intrigued by the possibility of RPE signaling in VP, we expanded upon our prior findings

by quantifying the impact of current and previous outcomes on reward-evoked firing in VP.

We applied a linear regression that has previously been used to quantify the effect of reward

history on dopamine neuron firing (Bayer and Glimcher, 2005). Consistent with our findings

in Fig. 2.10, across all neurons, only the current trial and previous trial significantly impacted

firing rates at the time of the outcome (Figure 3.1g). While this pattern of regressors is

consistent with RPE coding, it is on a much shorter timescale than has been observed for

dopamine neurons (Bayer and Glimcher, 2005; Mohebi et al., 2019), and is shorter than

typical history effects in other brain regions (Kepecs et al., 2008; Padoa-Schioppa, 2009;

Asaad and Eskandar, 2011; Cai and Padoa-Schioppa, 2012). One limitation of our linear

regression approach is it assumes that VP is largely homogeneous, which risks introducing

bias into coefficient estimates. This leaves open the possibility that VP contains subsets of

neurons that encode reward history on a longer timescale.

To identify neurons in VP sensitive to reward history, we developed three models to fit

the firing rates of individual neurons, corresponding to three potential patterns of neuronal

activity. The first model, ‘RPE,’ fit spike counts as a function of estimated RPEs (Figure

3.1h). This model generated trial-by-trial value estimates (V ) which constituted reward

predictions. On each trial, an RPE was generated by the difference between actual and

predicted rewards, and this RPE was multiplied by a learning rate (α) before updating V

for the next trial (Rescorla and Wagner, 1972). Small values of the learning rate allow

for integration of reward history multiple trials into the past. We also fit two additional

models to serve as controls, one in which the spike count was determined only by the current

outcome (‘Current outcome’), and one with no impact of outcome (‘Unmodulated’). We

used maximum likelihood estimation to fit the models to each neuron and selected the most

parsimonious model using the Akaike information criterion (AIC), which selects the best-fit

model after penalizing for model complexity. This classification process revealed that 17%

of neurons were best described by the RPE model, and another 29% were best fit by the
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current outcome only (Fig. 3.1h); notably, of the 47% of neurons we had previously classified

as sucrose-preferring (Fig. 2.6), 74% were classified as either RPE or current outcome here,

suggesting the modeling approach relatively faithfully captured reward preference-encoding

neurons.

We plotted the mean activity of each subset of neurons for each combination of previous

and current outcome and found agreement between firing rate and the predictions of each

model (Figure 3.1i). We then performed the same reward-history linear regression on each

subset of neurons rather than the entire VP population; this revealed an exponential decay-

like influence of multiple previous trials on firing of neurons best fit by the RPE model,

indicating that VP neurons modulated by reward history were in fact integrating information

over a more extended period of time (Figure 3.1j). Indeed, the mean (median) learning rate

across all neurons was 0.56 (0.52); this corresponds to an exponential learning process with

a half-life of 0.84 (0.94) trials, indicating that neurons accumulate information over ∼ 4.22

(4.72) trials to reach a steady-state value estimate. Thus, given the closely matched caloric

value and motor responses to each reward, these data indicate that some VP neurons signal

a history-based RPE according to reward preference.

3.3.2 VP encodes reward preference RPEs more robustly than nucleus accum-

bens, a key input structure

We next asked how faithfully VP neurons encoded RPEs. Our fitting procedure allowed us

to recover trial-by-trial estimates of RPEs, based on parameter estimates for that individual

neuron as well as the outcome history for that session. We found that the activity of both

individual neurons (Fig 3.2a) and the average across all RPE neurons (Fig 3.2b) were strongly

correlated with model-derived RPEs. Importantly, this approach revealed a finer dynamic

range of firing than was revealed by only looking at current and previous outcomes (Fig.

3.1i). We next generated RPE tuning curves for these neurons and, as expected, found a

strong monotonic relationship (t3,961 = 40.3, p < 10−10, linear relationship between RPEs
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and z-scored firing rates). As a stronger test, we used parameters estimated for each neuron

to simulate RPE-correlated spike counts and generated an ‘ideal’ RPE tuning curve. We

observed a clear overlap between real and simulated tuning curves (Fig. 3.2d). Finally, we

quantified the correlation between predicted spikes and real spikes and found good agreement

(Pearson’s correlation coefficient: mean - 0.34, median - 0.31; Fig. 3.2e-f).

To contextualize the robustness of the RPE responses in VP, we ran the same analysis

on neurons (n = 183) recorded during the same task in nucleus accumbens (NAc) (Fig.

2.6i), a relevant comparison region because NAc is a major input to VP and, like VP, has

reciprocal connections with dopamine neurons in the ventral tegmental area (Groenewegen

and Russchen, 1984; Lu et al., 1997; Watabe-Uchida et al., 2012; Beier et al., 2015). We

found fewer cells whose activity was fit best by the RPE model in NAc than in VP (8% versus

17%, χ2 = 8.3, p < 0.01) and by the current outcome model (14% in NAc versus 29% in VP,

χ2 = 13.6, p < 0.001) (Figure 3.2c). Moreover, NAc neurons classified as RPE-signaling were

described less well by the model than similarly classified VP neurons. This was evident by a

poorer match between real and simulated neuron tuning curves (mean squared error between

real and simulated tuning curves; bootstrapped 95% confidence intervals: [1.23 1.38] in VP,

[1.45 1.78] in NAc; Figure 3.2d) and in poorer correlation between model-predicted and

actual spiking for individual RPE neurons (Pearson’s correlation coefficient: mean - 0.18,

median - 0.15; Wilcoxon rank-sum test p < 0.001; Figure 3.2e-f). Since striatal activity

has been a focus for studies examining the influence of reward history on outcome-evoked

signaling (Asaad and Eskandar, 2011; Stalnaker et al., 2012; Kim et al., 2013; Bloem et al.,

2017; Shin et al., 2018), it is notable that VP, typically thought of as inheriting its firing

from NAc, has more robust RPE signaling than NAc.

3.3.3 VP RPE activity mediates trial-by-trial task engagement

According to reinforcement learning, the function of an RPE is to update the estimate of the

current state’s value (V ) (Sutton and Barto, 1998). The existence of RPE-like signals in this
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task raised the question of whether there were corresponding changes in value estimates which

could be read out through rats’ behavior. Because the rats were freely moving, the decision

to participate in the task represented a trade-off between reward seeking and competing

interests, including rest, grooming, and exploring the behavioral chamber (Niyogi et al.,

2014). Changes in the estimated value of the task could impact rats’ engagement in the

task. To determine whether rats adjusted their behavior in response to reward outcomes,

we analyzed videos (n = 13) from the recording sessions of four of our five VP rats (Mathis

et al., 2018; Nath et al., 2019). To estimate task engagement on a trial-by-trial basis, we

calculated the average distance from the port in each intertrial interval (ITI). This analysis

revealed instances where rats traveled far from the reward port and, in some cases, remained

far from the reward port at the beginning of the next trial (Figure 3.3a). Rats typically

moved further from the port during the ITI following maltodextrin (Figure 3.3b).

The next question was whether VP activity is related to this measure of engagement.

Because there were only two possible outcomes, essentially every sucrose delivery is a positive

prediction error, and every maltodextrin delivery is a negative prediction error. Thus, the

activity of both Current Outcome and RPE cells would correspond with an increase or

decrease in value estimate on sucrose and maltodextrin trials, respectively. To see if the

activity of these cells related to task engagement, we calculated the correlation between the

reward-evoked activity of VP cells and the distance from the port during the following ITI on

each trial. There was, on average, a negative correlation between the activity of VP Current

Outcome (n = 111 in these sessions) and RPE cells (n = 60) following reward delivery and

distance from the port during the following ITI (p < 0.01 compared to shuffled data) but

not for Unmodulated cells (p = 0.92, figure 3.3c). The negative correlation indicates rats

traveled around the chamber and remained far from the reward port after activity of these

neurons was low (i.e. negative prediction errors); conversely, they remained closer after high

activity.

The correlation between VP neuron activity and task engagement suggested that VP neu-
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rons could influence this measure, a possibility we explored with an optogenetic approach. In

a new group of rats, we injected virus containing either the inhibitory opsin ArchT3.0-eYFP

(n = 7) or eYFP alone, as a control (n = 7), into VP and implanted an optic fiber aimed at

VP. We then trained these rats on a similar task; port entry during a 10s cue earned a sucrose

reward, but on half of trials, we inhibited VP for 5s beginning at onset of sucrose delivery,

mimicking a negative prediction error (Figure 3.3d-e). Much like maltodextrin delivery (the

less-preferred option), optogenetic inhibition of VP increased rats’ typical distance from port

during the following ITI (p < 0.02, Wilcoxon signed-rank test); however, this was not true in

control rats (p = 0.81) (Figure 3.3f-h). We then performed the complementary experiment

by injecting channelrhodopsin-containing virus (n = 10) or GFP control (n = 7) into another

group of rats. Rats were trained on the same task, and on half of trials, we stimulated VP

for 2s at 40Hz, approximating a positive prediction error (Fig. 3.3j). Stimulation of VP

increased subsequent task engagement, decreasing distance from port during the following

ITI (p < 0.001, Wilcoxon signed-rank test), but not in control rats (p = 0.30). Thus, VP

activity is instructive of task engagement-related behavior, suggesting that outcome-related

signals in VP are used to update an estimate of value that motivates task performance.

3.3.4 An expanded value space reveals stronger RPE signaling in VP

One shortcoming of our previous experiment contrasting sucrose and maltodextrin is that

the similar palatability of the outcomes may not fully probe the limits of value signaling and

would thus constrain our ability to identify RPE neurons; maltodextrin delivery does not

typically strongly inhibit responses at the time of reward (Figure 3.1e). In Chapter 2, we

found that delivering water, an outcome that was less rewarding than maltodextrin, more

strongly inhibited firing rates (‘random sucrose/maltodextrin/water’ task; 3.5a-c). We hy-

pothesized that this expansion of the dynamic range of firing would reveal additional RPE

neurons. We applied the same models as before to neurons recorded during this task (n=254)

to identify cells with firing that reflected outcome history-based RPEs, current outcome only,
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or no modulation, with an additional free parameter to estimate the value associated with

maltodextrin (on the scale of water (0) to sucrose (1)). As we hypothesized, a greater pro-

portion of neurons was best fit by the RPE model than in the random sucrose/maltodextrin

task (31% versus 17%, χ2 = 20.0, p < 0.00001; Figure 3.5d). Trial history regressions re-

vealed an impact of many previous trials on these neurons (Figure 3.5e). We observed graded

changes in firing rates as a function of estimated RPEs for individual neurons (Figure 3.5f);

this relationship was consistent in the population-average PSTH (Figure 3.5g). The firing

rates of these RPE neurons monotonically increased as a function of estimated RPEs, and

this relationship was consistent with tuning curves for simulated RPE neurons (Figure 3.5h).

Moreover, the model’s predictions of trial-by-trial spiking for each neuron was robust and

stronger than we found in the random sucrose/maltodextrin task (Pearson’s correlation coef-

ficient: mean - 0.49, median - 0.48; Wilcoxon rank-sum test between VP-RPE correlation in

’random sucrose/maltodextrin’ vs ‘random sucrose/maltodextrin/water’ task, p < 0.00001;

Figure 3.2e-f). Thus, with outcomes spanning an expanded value space, we found more

neurons that encode RPEs, and do so more robustly.

3.3.5 VP RPE neuron firing adapts to repeated reward presentations

Repeated presentation of the same reward (or sets of rewards) can produce an adaptation

in neural responses as the outcome becomes expected (Roesch et al., 2007; Takahashi et al.,

2011, 2016), a phenomenon consistent with reinforcement learning. We investigated whether

VP neurons also attenuate their reward-evoked firing to repeated outcomes by analyzing the

activity of neurons (n = 348) recorded during a variation of the sucrose and maltodextrin task

where each reward was presented in blocks of 30 trials (Figure 3.6a). We fit the neural activity

to the same three models and found a similar number of RPE neurons during this task as in

the random sucrose/maltodextrin task (Figure 3.6c). Compared to activity in the random

task (Figure 3.6e), RPE neurons in the blocks task had noticeably elevated firing for sucrose

trials relative to maltodextrin at the time of cue onset and port entry, consistent with an
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acquired reward-specific expectation after repeated trials, and a slightly attenuated difference

in firing for the two rewards following reward delivery (Figure 3.6d). To determine how the

reward-evoked activity evolved across each block, we plotted the activity in 3-trial bins evenly

spaced throughout the session (Figure 3.6f-h). RPE neurons demonstrated notable reward-

specific adaptations: a reduction in activity within sucrose blocks (t804 = −5.7, p < 10−7

for a linear model fitting neural activity to session progress for RPE neurons recorded with

sucrose block presented first; t882 = −8.5, p < 10−10 for RPE neurons when sucrose block

was second) and an increase within the maltodextrin block when maltodextrin was second

(t697 = 4.3, p < 0.0001) although not when it was first (t821 = 0.38,p = 0.71), resulting in a

significant interaction between the effects of session progress and outcome on the firing rates

of RPE neurons in both session types (sucrose first: t1501 = −6.8, p < 10−10, sucrose second:

t1703 = −6.4, p < 10−9); this was in contrast to neurons best fit by the Current outcome and

Unmodulated models (all p > 0.05 for interaction between session progress and outcome).

This interaction was also not present in RPE neurons from random sucrose/maltodextrin

sessions where rewards were not presented repeatedly within a block (t3959 = 1.7, p > 0.05).

The same reinforcement learning model, therefore, that describes neurons sensitive to trial

history when rewards are randomly interspersed can also identify neurons in VP that exhibit

adaptation across blocks.

3.3.6 Cued information impacts VP firing separately from outcome history-

derived information

RPEs are frequently modulated by specific cue-reward associations, as is the case for the

midbrain dopamine system (Fiorillo et al., 2003; Eshel et al., 2015, 2016; Tian et al.,

2016). To assess whether VP neurons that encode outcome history are also sensitive to

cue-based modulation, we trained rats to associate a ‘non-specific’ cue with unpredictable

sucrose/maltodextrin (like the random sucrose/maltodextrin task), and two ‘specific’ cues,

the first which predicted sucrose with 100% probability and the second which predicted
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maltodextrin with 100% probability (Figure 3.7a.) As before, consumption of sucrose and

maltodextrin was nearly identical across conditions (Figure 3.7d), as was the latency to go

to the reward port following cue onset (Figure 3.7b).

We recorded from VP neurons (n = 487) during this task and found once again a promi-

nent difference in activity on sucrose and maltodextrin trials (Figure 3.7e). To quantify how

specific predictive cues modulated outcome-evoked firing rates, we augmented the RPE,

Current outcome, and Unmodulated models with two free parameters to estimate the con-

tribution of the new cues; thus, each neuron was fit with six models (Figure 3.7f). Remark-

ably, we found that most neurons (∼ 78%) were best fit by the cue-agnostic models (Figure

3.7g). We alternatively considered a model in which the specific cues allowed for partial to

full cancellation of the RPE, but this model was best for a negligible number of cells (see

Methods).

We first focused on the neurons without significant cue effects on their outcome signaling

to compare with our previous findings. Outcome history regression revealed that these RPE

neurons, like previously, incorporated information from multiple previous trials (Figure 3.7h).

Firing rates varied smoothly as a function of that trial’s estimated RPE (Figure 3.7i), and

RPE tuning curves closely matched those of simulated neurons (Figure 3.7j).

With the existence of history-dependent RPE neurons established in this task, we next

sought to determine how the specific cues impacted firing. RPE cells were no more likely

than Current Outcome or Unmodulated cells to exhibit significant impact of cues on outcome

signaling, suggesting RPE responses and predictive-cue responses are independent effects

(χ2
2 = 3.86, p > 0.14; Figure 3.7g). In our models, cues were permitted to take on any

value; therefore, to better understand how cue information impacted outcome signaling, we

plotted the weights for each predictive cue for all neurons with cue effects (Figure 3.7k); we

included all neurons because RPE neurons with cue effects were rare (7 of 487 neurons). If cue

information is incorporated into outcome signaling in a traditional RPE fashion, sucrose cues

should have a positive value and maltodextrin cues should have a negative value. We observed
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that, although this particular combination (positive sucrose and negative maltodextrin) was

the most common parameter estimate, it did not differ from chance (exact binomial test,

0.321 [0.235-0.417] mean [95% CI], p > 0.09 compared to null of 0.25), and in fact there was

a whole variety of values assigned to each cue.

A possible reason for the lack of a robust relative value effect of the cues is that rats may

not have properly learned the cue-reward associations present in this task. To verify that

the significance of the cues was properly learned, we estimated the effect of the specific cues

on activity at the time of cue onset, an epoch known to be sensitive to reward value (Tindell

et al., 2009; Richard et al., 2016, 2018; Tachibana and Hikosaka, 2012; Fujimoto et al., 2019;

Ottenheimer et al., 2019b). Here we found that 29% of neurons were impacted by cue

identity (Figure 3.7m). Cells whose cue-evoked firing reflected a positive value for sucrose

and a negative value for maltodextrin were the most common category (Figure 3.7n), and

this distribution of parameters significantly differed from chance (exact binomial test, 0.411

[0.329-0.497] mean [95% CI], p < 0.0001 compared to null of 0.25). This finding indicates

that the relative values of sucrose and maltodextrin are represented in the firing evoked by

their respective predictive cues, providing evidence of neural learning of cue significance.

Therefore, we interpret the diverse impact of predictive cues on outcome signaling that is

largely distinct from the impact of outcome history as evidence that these two sources of

prediction are separately represented in the VP neural population in this task where the

cues do not overtly influence behavior (Fig. 3.7b).

3.4 Discussion

We investigated the influence of outcome history on reward-evoked firing in ventral pallidum

(VP) through the lens of reward prediction error (RPE) signaling. Random presentations

of two highly palatable outcomes, sucrose and maltodextrin, revealed a subset of neurons

in VP that reflected an RPE generated from previously received outcomes and consistent

with a preference for sucrose. This RPE signal correlated with measures of task engagement
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in the following trial, and optogenetic manipulation of VP following reward delivery altered

subsequent task engagement. When a third outcome with a much lower preference (water)

was introduced, the expanded range in outcome values revealed additional RPE-encoding

neurons in VP. We further found that RPE neurons in VP demonstrate adaptation when the

same reward is presented repeatedly. This series of findings is strong evidence for encoding of

history-based RPEs by VP neurons that contribute to task performance. We then introduced

a task where sucrose and maltodextrin were on some trials preceded by faithfully predictive

cues. We found that a smaller subset of neurons, largely distinct from the reinforcement

learning RPE population, incorporated the predicted information into their outcome-evoked

signaling. The data suggest that, in tasks with highly palatable outcomes, VP contributes

to outcome history-based RPE computations that guide engagement of task-related reward-

seeking behavior.

A longstanding view is that RPEs are rare outside of dopamine neurons because dopamine

neurons compute RPEs locally by integrating distinct elements of the signal relayed from

distinct input regions (Keiflin and Janak, 2015; Tian et al., 2016; Watabe-Uchida et al., 2017).

In particular, a study of the neural activity of monosynaptic inputs to dopamine neurons

revealed a mixture of reward and expectation signals across many brain regions (including

VP) rather than distinct components (like value or outcome) in each region, but, notably,

there were very few upstream neurons encoding full RPEs (Tian et al., 2016), maintaining

the idea that, by and large, RPE is calculated within dopamine neurons themselves (Watabe-

Uchida et al., 2017).

Here, we describe a robust RPE signal in VP. Our innovation in the present work (beyond

our initial findings in Chapter 2) was implementing a computational modeling approach that

allowed us to identify individual neurons whose firing was consistent with RPEs. We found

that these neurons integrated reward history over several trials (Figure 3.1j). Learning

over a long timescale is consistent with normative Bayesian learning models that predict a

reduction in learning rates (equivalently, an increase in reward history integration) in stable
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environments, like the ones we used (Behrens et al., 2007). Notably, this kind of outcome

history-modulated signal is similar to that observed in dopamine neurons (Tobler et al., 2005;

Bayer and Glimcher, 2005; Mohebi et al., 2019).

How can we reconcile our current findings with previous observations that RPEs are rare

outside of ventral tegmental area (Watabe-Uchida et al., 2017), even in VP (Tian et al.,

2016)? An important distinction is that we focused our analysis on outcome history-based

prediction errors rather than cue-based prediction errors. Outcome history-based modulation

depends on an expectation of value derived from the combination of previously received

outcomes, whereas cue-based modulation depends on the expected value associated with a

specific predictive cue and has close ties to temporal difference learning (Sutton, 1988; Sutton

and Barto, 1998). Previous work in VP has focused exclusively on cue-based RPEs and found

mixed evidence of such encoding (Tindell et al., 2004; Tian et al., 2016; Stephenson-Jones

et al., 2020). In our present work, we also saw limited evidence cue-based modulations

of outcome signaling (Figure 3.7). None of the prior studies reported analysis of outcome

history-based RPEs in the recorded population, so it remains unknown whether VP inputs

to dopamine neurons are enriched for history-based RPEs relative to other inputs, and how

the VP signal compares to the dopamine neuron signal.

Another intriguing possibility is that VP does not update the values of particular cues,

but rather updates estimates of average environmental reward over behaviorally-relevant

timescales. Theories and experiments have suggested that average environmental reward

signals are critical for invigorating behavior (Niv et al., 2007; Yoon et al., 2018; Bari et al.,

2019; Wang et al., 2013; Hamid et al., 2016). Intriguingly, subtle manipulations of VP

slow response vigor (Richard et al., 2016) and gross manipulations are typically associated

with motivational deficits (Farrar et al., 2008; Smith et al., 2009). Both of these effects are

consistent with a role for VP in computing average reward. Our finding that the activity of

VP RPE and Current Outcome cells correlates with subsequent task engagement, and that

optogenetic manipulations of VP alter subsequent task engagement, additionally supports
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this idea (Figure 3.3). Future experiments that incorporate tasks with greater motivation

and learning demands will inform more definitive conclusions.
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Figure 3.1. A subset of ventral pallidum neurons signal preference-based
reward prediction errors.

(a) Reward-seeking task, in which entering the reward port during a 10s white noise cue earned
rats a reward.

(b) The white noise cue indicated 50/50 probability of receiving sucrose or maltodextrin
solutions, as seen in example session (right).

(c) Percentage sucrose of total solution consumption in a two-bottle choice, before (“Initial”)
and after (“Final”) recording.

(d) Mean(+/−SEM) lick rate relative to pump onset.

(e) Mean(+/−SEM) activity of all recorded neurons on sucrose (Suc) and maltodextrin (Mal)
trials.

(f) Mean(+/−SEM) activity of all recorded neurons on trials sorted by previous and current
outcome. Dashed lines indicate window used for analysis in (g-h,j) and all equivalent analysis
in subsequent figures.

(g) Coefficients from a linear regression fit to the activity of all neurons and the outcomes on the
current and preceding 10 trials.

(h) Schematic of model-fitting and neuron classification process. For each neuron, the reward
outcome and spike count following reward delivery on each trial were used to fit three
models: RPE, Current outcome, and Unmodulated. Akaike information criterion (AIC) was
used to select which model best fit each neuron’s activity (right).

(i) Mean(+/−SEM) activity of neurons best fit by each of the three models, plotted according
to previous and current outcome.

(j) Trial history linear regression for each class of neuron.
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Figure 3.1

Figure 3.1. A subset of ventral pallidum neurons signal preference-based
reward prediction errors.
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Figure 3.2

Figure 3.2. RPE encoding is more prevalent and robust in VP than in NAc.
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Figure 3.2. RPE encoding is more prevalent and robust in VP than in NAc.

(a) Raster of an individual VP neuron’s spikes on each trial, aligned to reward delivery, and
sorted by the model-derived RPE value for each trial. Green shaded region indicates window
used for analysis.

(b) Population averages of all VP RPE neurons identified in Fig. 1. The trials for each neuron
are binned according to their model-derived RPE.

(c) Proportion of the population in VP and NAc classified as RPE, Current outcome, or
Unmodulated. There were more RPE (p < 0.01) and Current outcome (p < 0.001) cells in
VP than in NAc.

(d) Mean population activity of simulated and actual RPE neurons according to each trial’s RPE
value for VP (top) and NAc (bottom).

(e) The model-predicted and actual spikes on each trial for one RPE neuron each from VP (top)
and NAc (bottom). These neurons were the 85th percentile for correlation for each respective
region.

(f) Distribution of correlations between model-predicted and actual spiking for all RPE neurons
from each region.
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Figure 3.3

Figure 3.3. VP activity mediates trial-by-trial task engagement.
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Figure 3.3. VP activity mediates trial-by-trial task engagement.

(a) All locations of a rat from an example session during the intertrial interval (ITI) following
sucrose delivery (left) and maltodextrin delivery (right). Each circle is one location during a
0.2s bin. X marks the location at cue onset for the subsequent trial. Chamber is 32.4cm x
32.4cm (approximately 306 x 306 pixels).

(b) Average distance from the port during ITI following sucrose (orange) and maltodextrin
(pink) trials. Gray lines represent average for one subject in one session. * = p < 0.05,
Wilcoxon signed-rank test.

(c) Distribution of correlations between individual VP neurons’ firing rates on each trial and the
distance from the port during the subsequent ITI. * = p < 0.01 for significant negative shift
in mean correlation coefficient (vertical lines) compared to 1000 shuffles of data for both RPE
and Current Outcome neurons.

(d) Optogenetic inhibition of VP with ArchT3.0.

(e) Experimental approach to evaluate the contribution of VP to task engagement. Rats received
a sucrose reward on every completed trial; on 50% of trials, they also received laser inhibition
(left). Specifically, entry into the reward port during the 10s cue triggered delivery of sucrose
500ms later and 5s of constant green laser (right). We then evaluated the rats’ distance from
the port in the subsequent ITI.

(f) All locations of a rat from an example session during the intertrial interval (ITI) following
sucrose delivery without laser (left) and with laser (right). Each circle is one location during
a 0.2s bin. X marks the location at cue onset for the subsequent trial. Chamber is 29.2cm x
24.4cm (approximately 542 x 460 pixels).

(g) Average distance from the port in the ITI following sucrose with and without laser for
animals receiving a control virus (YFP, left) or the ArchT3.0 virus (right). Individual rats’
data shown in gray lines. * = p < 0.02, Wilcoxon signed-rank test.

(h) Fractional change in ITI distance from port for each group of rats, displayed as a box plot
(median, 25th and 75th percentiles) and for individual rats. * = p < 0.02, Wilcoxon
rank-sum test.

(i) Optogenetic stimulation of VP with ChR2.

(j) Like (e), but entry into the reward port during the cue triggered delivery of 2s of blue laser
at 40Hz, 10ms pulse width (right).

(k) All locations of a rat from an example session during the intertrial interval (ITI) following
sucrose delivery without laser (left) and with laser (right).

(l) Average distance from the port in the ITI following sucrose with and without laser for
animals receiving a control virus (GFP, left) or the ChR2 virus (right). Individual rats’ data
shown in gray lines. * = p < 0.001, Wilcoxon signed-rank test.

(m) Fractional change in ITI distance from port for each group of rats. * = p < 0.001, Wilcoxon
rank-sum test.
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Figure 3.4

Figure 3.4. Placements for optogenetic experiments.

(a) Expression of ArchT3.0:YFP and fiber tip placement for the rats included in the ArchT3.0
group for the optogenetic experiment.

(b) Expression of ChR2:GFP and fiber tip placement for the rats included in the ChR2 group for
the optogenetic experiment.
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Figure 3.5

Figure 3.5. An expanded value space reveals stronger RPE signaling in VP.
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Figure 3.5. An expanded value space reveals stronger RPE signaling in VP.

(a) A white noise cue indicated 1/3 probability each of receiving sucrose, maltodextrin, or water,
as seen in the example session (right).

(b) Mean(+/−SEM) lick rate relative to reward delivery.

(c) Mean(+/−SEM) activity of all recorded neurons on sucrose, maltodextrin, and water trials.

(d) Fraction of the population of neurons recorded in this task best fit by each of the three
models.

(e) Trial history regression for each of the three classes of neurons.

(f) Raster of an individual neuron’s spikes on each trial, aligned to reward delivery, and sorted
by the model-derived RPE value for each trial. Green shaded region indicates window used
for analysis.

(g) Population average of all RPE neurons. The trials for each neuron are binned according to
their model-derived RPE.

(h) Mean population activity of simulated and actual VP RPE neurons according to each trial’s
RPE value.

(i) The model-predicted and actual spikes on each trial for the RPE neuron with the 85th
percentile correlation.

(j) Distribution of correlations between model-predicted and actual spiking for all RPE neurons.
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Figure 3.6

Figure 3.6. VP RPE neuron signaling adapts across reward blocks.
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Figure 3.6. VP RPE neuron signaling adapts across reward blocks.

(a) A white noise cue indicated an overall 50/50 probability of receiving sucrose or maltodextrin
solutions, but the order of trials was structured into blocks of thirty trials, as seen in example
session (right).

(b) Mean(+/−SEM) lick rate relative to pump onset.

(c) Proportion of neurons best fit by each of the three models in the random and blocked
sucrose/maltodextrin tasks.

(d) Mean(+/−SEM) activity of all RPE neurons from the blocks tasks aligned to cue onset and
to reward delivery.

(e) Mean(+/−SEM) activity of all RPE neurons from the random sucrose/maltodextrin task
aligned to cue onset and to reward delivery.

(f) RPE model simulations (left) and mean(+/−SEM) activity of RPE, Current Outcome, and
Unmodulated cells from the random sucrose/maltodextrin task, plotted in bins of three trials
evenly spaced throughout all completed sucrose and maltodextrin trials.

(g) As in (f), for blocked sessions with sucrose first.

(h) As in (f) and (g) for blocked sessions with maltodextrin first.
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Figure 3.7

Figure 3.7. Cue- and history-derived information are processed separately by
VP neurons.
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Figure 3.7. Cue- and history-derived information are processed separately by VP
neurons.

(a) Three distinct auditory cues indicated three trial types: a 50/50 probability of receiving
sucrose or maltodextrin solutions, a 100% probability of receiving sucrose, or a 100%
probability of receiving maltodextrin, as seen in the example session (right).

(b) Median latency to enter reward port following onset of cue for each trial type, plotted as the
mean(+/−SEM) across all sessions for each rat (gray) and the overall mean.

(c) Percentage sucrose of total solution consumption in a two-bottle choice, before (“Initial”)
and after (“Final”) recording.

(d) Mean(+/−SEM) lick rate relative to pump onset for each trial type.

(e) Mean(+/−SEM) activity of all neurons recorded in the predictable and random
sucrose/maltodextrin task, aligned to reward delivery.

(f) Schematic of cue model-fitting and neuron classification process. The reward outcome and
spike count from each trial were used to fit six models: RPE, Current outcome, and
Unmodulated with and without the cue effect, which allowed a different weight for the
impact of each cue. Neurons were classified according to Aikake information criterion.

(g) Fraction of the population best fit by each model.

(h) Outcome history regression for each class of neurons with no cue effect.

(i) Mean(+/−SEM)activity of all RPE neurons with no cue effect. The trials for each neuron
are binned according to their model-derived RPE.

(j) Population activity of simulated and actual VP RPE neurons with no cue effect according to
each trial’s RPE value.

(k) Scatterplot of each cue effect neuron’s weight for sucrose cues and maltodextrin cues. The
percentage of neurons falling in each quadrant is indicated.

(l) Mean(+/−SEM) activity of neurons with sucrose values > 0 and maltodextrin values < 0,
consistent with a value-based cued expectation modulation.

(m) Neurons with cue effects for cue-evoked signaling, rather than reward-evoked signaling, as in
(g).

(n) As in (k), for activity at the time of the cue rather than time of reward. * = p < 0.0001 for
exact binomial test compared to null of 25%.

(o) As in (l), for activity at the time of the cue rather than time of reward
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Figure 3.8

Figure 3.8. Placements for predictable and random sucrose/maltodextrin rats.

(a) Recording locations for rats from predictable and random sucrose/maltodextrin experiment.

93



Chapter 4

Dynamic preference encoding in ventral pal-

lidum guides choice behavior

4.1 Introduction

In Chapters 2-3, we investigated VP encoding of stable reward preferences (sucrose > mal-

todextrin > water) and how this signal may impact preference-driven reward-seeking. In

many circumstances, however, individuals’ valuations of individual reward outcomes can

vary across contexts, including physiological state (Hull, 1943; Berridge, 2004; Keramati and

Gutkin, 2014; Schultz, 2015). For instance, when rats are salt-deprived, heavily salinated

water, which is normally aversive, becomes as palatable sucrose, and VP neural activity

reflects this change (Tindell et al., 2006, 2009). Despite this and other work (Fujimoto

et al., 2019; Stephenson-Jones et al., 2020) demonstrating an impact of physiological state

on VP activity, this has yet to be tested in a scenario when rats are working for multiple

distinct outcomes that are differentially impacted by physiological state as it evolves across

an individual session (Rolls et al., 1986, 1989; Critchley and Rolls, 1996).

For the present experiments, we had two goals. First was to determine whether the VP

relative value signal we previously characterized would reflect a dynamic preference for two

rewarding outcomes. Second, building upon our prediction error findings in Chapter 3, was

to determine whether the timing of information about the identity of the reward outcome
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determined when relative value signaling occurred. By designing two tasks where thirsty

rats chose between a small volume of sucrose and a large volume of water, we were able to

show that rats’ behavioral preferences evolved with physiological state and that a majority

of VP neurons track these changes. Moreover, consistent with a reward prediction error

framework, the timing of this dynamic relative value signal depended on when information

about the outcome was revealed. We further demonstrated that VP activity is sufficient to

alter choice behavior but not necessary for online execution of a choice.

4.2 Materials and Methods

Water restriction.

Rats were water restricted overnight prior to behavioral sessions. Rats were given at least 3

hours of access to water each day, and restriction never continued for more than 10 consec-

utive days. Rats were maintained above 90% baseline body weight. The restriction (and all

behavior) was conducted in strict accordance with protocols approved by the Animal Care

and Use Committee at Johns Hopkins University.

Behavioral tasks (electrophysiology).

The behavioral apparatus consisted of two retractable levers (Med Associates), one on each

side of a reward port. Rats were trained to associate each lever with a distinct reward: 55µL

of sucrose or 110µL of water. The pairing of rewards with levers was counterbalanced across

rats but remained the same for each rat across days. Rats were first trained on FR1 with

both levers present then were moved to a mixture of forced- and free-choice trials with lever

retracting upon successful press. Once rats were trained, the levers remained extended for the

duration of the session. For the ‘Specific Cues’ task, trial types (forced sucrose–30% of tri-

als, forced water–30% of trials, or choice–40% of trials) were announced by distinct auditory

cues (white noise, pure tones, or siren, assignments counterbalanced). Trials were randomly
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interspersed throughout session. If the rat selected the incorrect lever on forced trials, both

levers retracted for 10s, and then the rat could correct its mistake upon reinsertion. Cues

remained on until the rat selected a correct lever, which triggered vacuum-mediated evacua-

tion of any residual liquid in the reward cup and delivery of the lever-associated reward 2 sec

later. There was a 20-45 sec inter-trial interval following reward delivery before the next cue

onset. Rats had experienced >= 10 sessions with final contingencies when recording started,

and all performed above chance on forced choice trials (57%-97% accuracy, median 65%).

After we completed recordings from these sessions, rats were trained on the second task,

‘Uncertain Outcome.’ In this task, there were two trial types–forced (60% of trials) and

choice (40% of trials). Instead of distinct auditory cues announcing forced sucrose and water

trials, a novel auditory cue (lower frequency siren) indicated that the rat should go directly

to the reward port, which terminated the cue and triggered random delivery of sucrose or

water 2 sec later. Lever presses had no effect on these trials. Choice trials remained the same

as Specific Cues. Sessions were self-paced; we generally stopped the session after 90 minutes.

In total, 5 rats completed these sessions and had electrodes successfully targeted to VP. We

analyzed one session from each rat for each of the two tasks, selected to have water prefer-

ence in first quarter of trials, sucrose preference in final quarter, and relatively monotonic

transition. Electrodes remained in the same location for the duration of the experiment.

Optogenetic manipulations.

Inhibition. For this experiment, rats were trained on a variation of the sucrose/water choice

task where all trials were choice trials. Both levers extended at trial start concurrent with

the onset of a white noise cue. Both levers retracted and cue terminated after the choice

press, which triggered reward delivery 2 sec later. The rewards were 55µL of sucrose or

165µL of water. Lever assignments were counterbalanced. Rats received 20 days of training

on the final task before test. On the test session, on half of trials, rats received bilateral

continuous (15 sec, 15-20 mW) photoinhibition of VP, beginning 5s prior to cue. In our
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analysis, we included all rats with both fibers and viral expression in VP. This resulted

in 8 rats with ArchT3.0 (5M, 3F) and 8 rats with YFP (3M, 5F). Excitation. For this

experiment, a new group of rats were trained on a sucrose/maltodextrin choice task where

they earned 55µL of either reward. Trial frequency was 30% forced sucrose, 30% forced

maltodextrin, and 40% choice, randomly interspersed. The available levers extended at trial

onset, and all extended levers retracted after a press was made, triggering reward delivery 2

sec later. Lever assignments were counterbalanced. Rats received 12 days of training on the

final task before testing. On test session, maltodextrin delivery was paired with unilateral

40Hz pulsed photoexcitation of VP for 5 sec (10ms pulse width, 10-12mW), parameters we

selected for being maximally reinforcing (Faget et al., 2018). Although rats were implanted

bilaterally, we stimulated the right hemisphere only in all rats for this test for consistency

and for a stronger test of sufficiency. We only included rats who had their right fiber and

viral expression in VP. This resulted in 11 rats with ChR2 (5M, 6F) and 9 rats with GFP

(4M, 5F). For intracranial self-stimulation (ICSS), the same rats were given access to two

previously occluded nosepoke ports in the same behavioral chambers. Entry into one port

triggered 1s of 40Hz stimulation (10ms pulse width, 10-12mW) of the right hemisphere.

Analyzing trials in session quarters.

Because the sessions were self-paced, each rat completed a different number of trials (88-

149, median 99 for Specific Cues; 126-175, median 157 for Uncertain Outcome). To analyze

changes across the session, we elected to group rats’ trials into quarters of total completed

trials rather than dividing sections by a set number of trials. Since individual rats could

have different levels of thirst and overall motivation, this method of grouping should ensure

that motivation level is roughly matched within quarters across rats performing the same

task.
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Behavioral analysis.

We estimated preference across choice trials by smoothing the rats’ choices (0 for water and

1 for sucrose) with a Gaussian filter (σ = 5). We then estimated preference on forced trials

by assigning each forced trial the smoothed preference of the nearest choice trial. Preference

within a given quarter was calculated by finding the fraction of choices from that quarter

that were sucrose; this was then linearly transformed from -1 to 1. For analysis of lever press

latency, we log-transformed the time interval between cue onset and first correct lever press.

The mean latency and licking per quarter was calculated per session, so each session only

contributed one point to each quarter.

PSTH creation.

Peri-stimulus time histograms (PSTHs) were constructed using 0.01ms bins surrounding the

event of interest. PSTHs were first smoothed on an individual trial basis using a half-normal

filter (σ = 3) that only used activity in previous, but not upcoming, bins. Then, the PSTH

across all trials was smoothed with another half-normal filter (σ = 8). Each bin of the

PSTH was z-scored by subtracting the mean firing rate across 10s windows before each trial

and dividing by the standard deviation across those windows (n = no. of trials). PSTHs

for licking were created in the same manner (without z-scoring) with only one round of

smoothing after PSTH creation, σ = 25.

GLM.

To determine the influence of time and outcome on cue- and reward-evoked firing, we fit

a generalized linear model (GLM) with a Poisson distribution to the unsmoothed, binned

activity of each neuron on forced trials (‘fitglm’ in MATLAB). For cue activity, we used

a bin 0-0.75s following cue onset, which captured the majority of the phasic response to

the cue (Fig. 4.3). For reward activity, we used a bin 0.75-1.95s following reward delivery

to remain consistent with Chapter 2, where we saw this was a bin particularly sensitive to
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modulation by previous outcome. We only included trials where the rat was in the reward

port during reward delivery. For the GLM’s predictors, we used trial number as a proxy for

time, the outcome on each trial, and the interaction between these two predictors (‘Outcome

X Time’). Significant predictors were determined by the fitglm function in MATLAB with

a cutoff of p < 0.05.

Correlations with latency and preference.

We calculated correlations for cue activity with lever press latency and reward activity with

preference using the non-parametric Spearman’s ρ. We chose this test because we wanted

to assess co-variance among the variables of interest without assuming a linear relationship.

For cue activity and lever press latency, we included all trials (including choice trials). For

reward activity and preference, we only looked at forced trials.

Model fitting.

For each neuron, we took the spike count, s(t), within the 0.75-1.95s post-reward delivery

time bin for each forced trial and fit the following four Poisson spike count models. We only

included trials where the rat was in the reward port during reward delivery. For all but the

Unmodulated model, we used a as a slope (gain) and b as an intercept (offset) parameter to

map the model values to spike counts.

Unmodulated model

s(t) ∼ Poisson(exp(ln(s)))

where s is the mean firing rate across all trials.

Satiety model
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Sat(t) = 1− t/tend

s(t) ∼ Poisson(exp(a · Sat(t) + b))

where tend is the total number of trials.

Preference model

For sucrose trials

Pref(t) ∼ 1

1 + e−k·(t−t0)

For water trials

Pref(t) ∼ 1− 1

1 + e−k·(t−t0)

s(t) ∼ Poisson(exp(a · Pref(t) + b))

where k is the steepness of the curve, and t0 is the midpoint (in trials). The convention

for the logistic function was to approximate sucrose preference (increasing throughout the

session), so it needed to be inverted for water trials. Pref was then normalized from 0 to 1

across all trials in the session before being transformed into spikes.

Mixed model

SWP(t) = w · Pref(t) + (1− w) · Sat(t)

s(t) ∼ Poisson(exp(a · SWP(t) + b))

where Pref and Sat are found as above, and w determines the relative contribution of
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each to the satiety-weighted preference (SWP).

For all models with a slope parameter, we constrained the slope, a, to be > 0, as our

previous work demonstrated the majority of outcome-selective VP neurons are positively

correlated with value. We found maximum likelihood estimates for each model and selected

the best model using Akaike information criterion (lower AIC indicates a better fit, after

taking into account the number of parameters). We used 20 randomly-selected starting

initial values for each parameter to avoid finding local minima.

When plotting the reward value estimates from the model fits (Fig. 4.6), we used Sat,

Pref, and SWP, respectively. To find the logistic function estimate of behavioral preference

(rather than neural activity), we used ‘nlinfit’ in MATLAB and the same equation we used to

find Pref above, but applied to the choices on each trial. To calculate the correlation between

behavioral and neural estimates of preference, we used the Pref component from fitting the

Mixed model to each neuron. The t0 from the Mixed model gave us the neural estimates of

midpoint. To compare indifference point accuracy within session versus across sessions we

took the median distance to behavioral indifference points from the sessions each neuron was

not recorded from for all neurons best fit by the Preference or Mixed model (which we call

‘preference-encoding’ neurons). To compare the similarity of indifference point estimates

within session versus across session, we took the median distance to all other preference-

encoding neurons’ estimates from the same session and the median distance to all other

preference-encoding neurons’ estimates from the other sessions for each preference-encoding

neuron.

4.3 Results

4.3.1 Dynamic preference driven by physiological state.

With the goal of evaluating how dynamic preferences are encoded by ventral pallidum, we

designed two tasks where thirsty rats earned either a 55µL sucrose reward or a 110µL water
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reward (Fig. 4.1). The choice component of both tasks was the same: on 40% of trials, a

‘choice’ auditory cue indicated that rats could press either of the available levers, triggering

delivery of the associated reward into the reward port 2 sec later. These trials allowed us

to assess the rats’ preference for sucrose versus water across the session (Fig. 4.1c-d). In

the ‘Specific Cues’ task (Fig. 4.1a), the remaining 60% of trials were either forced sucrose

or forced water trials, each indicated with a distinct auditory cue and requiring the rat to

press the correct associated lever, triggering delivery of that reward 2 sec later. Because

the outcome on forced trials was indicated by the cue, we could evaluate how cue-evoked

behavior and neural activity evolved as rats’ preferences shifted. In the ‘Uncertain Outcome’

task (Fig. 4.1b), the remaining 60% of trials were forced trials where the rats responded to

a single auditory cue by going directly to the reward port, which triggered delivery of either

sucrose or water 2 sec later with 50/50 probability (much like the tasks from Chapters 2-3).

Because the outcome was obscured from the rat until delivery, we could evaluate how the

reward-evoked neural activity we characterized previously (in Chapters 2-3) would track the

changing preference.

In both tasks, rats (n=5) demonstrated dynamic preference, initially preferring water

when thirsty at the beginning of the session and switching to preferring sucrose by the

end of the session (Fig. 4.1d). This was largely driven by a reduced motivation to consume

water, evident in maintained licking for sucrose across the session but consistently decreasing

licking for water (Fig. 4.1e-f). Thus, we succeeded in training rats on a task where, despite

unchanging task conditions, the rats’ demonstrated a preference that shifted according to

physiological state, allowing characterization of VP encoding of internally-driven changes in

preference.

4.3.2 Dynamic reward encoding occurs when outcome identity is revealed.

We recorded the activity of individual neurons from VP while rats performed the Specific

Cues (n=164) and the Uncertain Outcome (n=210) tasks. We were particularly interested
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in analyzing the activity of these neurons following the onset of the reward-predicting cues

and following delivery of the rewards, two time points sensitive to reward prediction error

(Schultz et al., 1997) and demonstrating strong reward value correlates in VP (Tindell et al.,

2004, 2006, 2009; Smith et al., 2011; Richard et al., 2016, 2018; Ottenheimer et al., 2019b;

Stephenson-Jones et al., 2020) (also, Chapters 2-3) (Figure 4.2a). To evaluate how (or if) this

VP activity changed across the session, we implemented a generalized linear model (GLM)

that assessed the impact of outcome, time (in numbers of trials), and the interaction between

these two predictors (‘Outcome X Time’) on the activity of individual neurons on forced

trials at each time point (Figure 4.2b). We then asked how many neurons from each task

were significantly modulated by each predictor (Fig. 4.2c). We were especially interested in

neurons whose activity was predicted by Outcome X Time and had more positive slopes for

sucrose and more negative slopes for water; that is, neurons whose activity tended to increase

for sucrose and decrease for water as the session progressed. Remarkably, we found that the

the timing of this activity within a given trial was highly dependent on the task. In the task

with Specific Cues, 35% of neurons had cue-evoked activity that followed this pattern and

22% had reward-evoked activity with this pattern. In the task with Uncertain Outcome, 4%

of neurons had cue-evoked activity in this pattern (essentially noise, since there was only one,

non-specific cue) and 71% had reward-evoked activity with this pattern. These proportions

follow a prediction error framework, where outcome-specific responses are encoded by the

earliest predictive stimulus; Specific Cues increased the number of VP neurons with outcome-

specific activity at the time of cue (p < 1e− 14) and decreased the number of neurons with

outcome-specific activity at the time of reward (p < 1e− 20, chi-squared test) compared to

the task with Uncertain Outcome. Unlike typical demonstrations of prediction error signals,

these outcome-specific representations evolved across the session as the relative values of the

outcomes shifted. Our next step was to characterize this evolving cue- and reward-evoked

firing in the Specific Cues and Uncertain Outcome tasks, respectively, and determine whether

it aligned with the shifting behavioral preference.

103



4.3.3 Activity evoked by specific cues tracks reward-specific task performance.

We first examined the activity of the cue-evoked Outcome X Time neurons in the Specific

Cues task (Fig. 4.3). These neurons were notable for their pronounced excitations (above

baseline activity) to the water cue at the beginning of the session, which decreased and

eventually became inhibitions (below baseline activity) by the end of the session (Fig. 4.3a-

c). On the other hand, sucrose cue-evoked activity remained stable across the session (Fig.

4.3a-c). The ranking of the average activity evoked by each cue switched midway through

the session, echoing the switch in behavioral preference (Fig. 4.1d). These data are notewor-

thy for demonstrating that individual VP neurons’ cue-evoked representations are not just

dependent on physiological state (Fujimoto et al., 2019; Stephenson-Jones et al., 2020) but

also specific to the cue’s associated reward (and the impact of physiological state on that

reward), a phenomenon previously seen across days (Tindell et al., 2009) but not on a per

neuron basis as physiological state changes within session.

When applying the prediction error framework to behavior, the transfer of reward sig-

naling from the outcome to the cue is thought to be accompanied by the development of a

conditioned behavioral response specific to value of the conditioned cue (Schultz et al., 1997;

Fiorillo et al., 2003; Cohen et al., 2012). Therefore, we wondered if rats’ behavioral responses

in the Specific Cues task would parallel the changes in cue-evoked value representations we

observed in these VP neurons. Specifically, we looked for a link between the neural activity

evoked by each cue and the latency for the rats to press the appropriate lever, a measure

previously used to infer the individual’s motivation to respond to the cue (Richard et al.,

2016). First, we examined how the latency to press the lever evolved across the session (Fig.

4.3d-e). Within individual sessions, the latencies evolved independently for each reward,

with a notable increase in latency to press the water lever on forced water trials; while rats

were quicker to respond to the water cue than the sucrose cue at the beginning of the ses-

sion, this ranking switched midway. Broadly, these changes in latency mirrored the change

in cue-evoked activity from the Outcome X Time neurons (Fig. 4.3c).
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These data suggested that the specific cue-evoked value representations in VP could in-

vigorate behavioral responding. To explore this idea more closely, we asked, across all trial

types, how well the activity of these neurons predicted the latency to lever press (Fig. 4.3f).

Many individual neurons had strong negative correlations between cue-evoked firing and

latency, indicating greater motivation to press the lever following high cue-evoked activity

(Fig. 4.3g). Across the population, Outcome X Time neurons were particularly enriched for

negative correlations with latency compared to the other neurons (p < 0.0000001, Wilcoxon

rank-sum test), demonstrating that this population of neurons with cue-specific value rep-

resentations was closely linked with the motivation to respond to each cue. This finding

provides a possible link between prediction error signals and flexible behavioral responding.

4.3.4 Ventral pallidal activity is necessary for normal cue-triggered responding

but not choosing a reward.

The results from the cue-evoked Outcome X Time neurons in the Specific Cues task left us

with two testable questions: is this neural activity necessary for normal behavioral respond-

ing to the cue – this had been shown previously in a similar task (Richard et al., 2016) – and is

VP necessary for executing preference-generated reward choices? We trained a new group of

rats on a modified version of the task where all trials were choice trials (Fig. 4.4a). As before,

rats increasingly preferred sucrose across the session (Fig. 4.4d). Prior to training, these rats

were implanted bilaterally with optic fibers and virus containing either the inhibitory opsin

ArchT3.0 (n=8) or a control construct (eYFP, n=8) in VP (Fig. 4.4b). During the test ses-

sion, on half of trials, we photoinhibited VP bilaterally, beginning 5 sec before cue onset and

terminating 10 sec after, disrupting normal VP activity during the execution of rats’ choices

(Fig. 4.4c). As seen previously (Richard et al., 2016), inhibition of VP during cue presenta-

tion increased the latency to respond to the cue (Fig. 4.4e-f). Despite this disruption of the

rats’ behavioral response, photoinhibition did not affect the choices the rat made (Fig. 4.4a);

there was a significant change in preference across the session (F3,56 = 30.5, p < 1e− 11) but
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no difference between trials with and without laser (F1,56 = 0.4, p = 0.54) nor interaction

(F3,56 = 0.16, p = 0.92). These data suggest that the VP reward-specific cue representations

we observed (Fig. 4.3) motivate specific reward-seeking actions but are not necessary for

making a choice.

4.3.5 With uncertain outcomes, reward-evoked activity closely matches behav-

ioral preference.

We next examined the reward-evoked activity of Outcome X Time neurons in the Uncertain

Outcome task. On forced trials, receiving the reward resolves the uncertainty of which

reward will be delivered; within a prediction error framework, this signal should reflect a

positive error when receiving the preferred reward and a negative error when receiving the

the non-preferred reward. Therefore, water-evoked activity should decrease across the session

as it becomes less preferred, and sucrose-evoked activity should increase. Interestingly, in

contrast to cue-evoked activity, this was indeed the case for reward-evoked activity in these

neurons; there were increases for sucrose and decreases for water across the session (Fig. 4.5a-

b). Again, the ranking of the activity of these neurons for the respective rewards switched

during the session (Fig. 4.5c), mirroring the switch in behavioral preference from these

sessions (Fig. 4.1d). To see how closely the neural activity tracked behavioral preference,

we compared the activity of individual neurons on forced water and sucrose trials with the

choice-derived preference for the respective reward, revealing a strong relationship between

the two (Fig. 4.5d). We computed the correlation between these two measures and found,

on average, a stronger positive correlation between Outcome X Time neurons’ activity and

preference on both sucrose (p < 1e− 13) and water (p < 1e− 24, Wilcoxon rank-sum test)

trials in comparison to other neurons (Fig. 4.5e). Therefore, these neurons followed the

general pattern of a preference-derived error signal.

Nevertheless, we noticed that, on average, the neural responses to sucrose and water

do not change symmetrically across the session (Fig. 4.5b-c) as might be expected for an

106



error signal driven purely by preference. Since the overall value of the task declines as the

rats become sated, we hypothesized that the reward-evoked activity in VP may reflect a

combination of satiety and preference. To evaluate how well satiety and preference capture

VP activity, we designed a series of models incorporating these features that could be fit to

the activity of individual neurons (similar to our approach in chapter 3) (Fig. 4.6). The first,

‘Unmodulated,’ has no reward-specific or satiety-related modulation. The second, ‘Satiety,’

is a linear approximation of declining motivation that decreases uniformly with each trial.

The third, ‘Preference,’ is a logistic function with midpoint and steepness as free parameters.

The final, ‘Mixed,’ is a linear combination of Satiety and Preference with an additional free

parameter determining their relative weights. We fit all four models to all neurons from

the reward-evoked activity in both tasks and determined which best described each neuron

using a Maximum Likelihood Estimation (MLE) approach with Akaike information criterion

(AIC) as our selection metric. The example neuron in Fig. 4.6a shows value estimates

from the best fit of each model; the Mixed model clearly captures the asymmetric reward-

specific firing changes best. Across the population, the Mixed model best described the

most number of neurons (Fig. 4.6b), accounting for 56% of the neurons from the Uncertain

Outcome task. Together with the neurons best fit by the Preference model (which did have

symmetric reward-evoked firing, as seen in Fig. 4.6c), 71% of neurons encoded preference in

some capacity in the Uncertain Outcome task, 96% of which were also classified as Outcome

X Time by the GLM. In comparison, 30% of neurons in the Specific Cues task encoded

preference, of which 66% were also classified as Outcome X Time (but 92% of Outcome X

Time neurons were classified as preference encoding with MLE, suggesting MLE was a more

sensitive classification approach than the GLM).

In addition to establishing the influence of satiety and independently confirming the

greater prevalence of reward-evoked preference encoding in the Uncertain Outcome task, the

MLE approach also provided the opportunity to compare neural estimates of preference,

which were provided by the fit of the logistic function component of the Preference and
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Mixed models, to behavioral preference. To acquire behavioral estimates of preference,

we fit the same logistic function from our neural models to the choices from each session

(Fig. 4.6d). Visual inspection revealed that preference estimates from the behavior agreed

well with the mean estimates from the preference-encoding neurons from their respective

sessions (Fig. 4.6e), and this was also evident in the distribution of correlation coefficients

comparing each neuron’s preference estimate to the behavioral estimate from that session

(Fig. 4.6f). Notably, the estimates from preference-encoding neurons were better correlated

with the behavioral estimate than the estimates from Unmodulated and Satiety neurons

(Fig. 4.6h, p < 1e − 20, Wilcoxon rank-sum test). The logistic function also explicitly

estimates the indifference point, when the preference for the two rewards is ambivalent;

there was generally high agreement between neural and behavioral estimates of indifference

point among preference encoding neurons (Fig. 4.6g), which outperformed the remaining

neurons (Fig. 4.6i, p < 1e − 14, Wilcoxon rank-sum test). Additionally, the indifference

point estimates tended to be more similar among preference-encoding neurons from the

same session than between sessions (Fig. 4.6k, p < 1e − 8, Wilcoxon signed-rank test),

demonstrating consistency among the predictions from simultaneously recorded neurons.

These metrics indicate that, despite being derived completely independently of the choice

behavior, the preference-encoding neurons’ estimates of preference approximated the rats’

choice behavior well, lending credence to the idea that VP reward-evoked signals are derived

from preference.

4.3.6 Optogenetic simulation of a positive prediction error at reward delivery

biases choice behavior.

If VP reward-evoked activity signals a preference-based error signal, then manipulations of

VP activity at the time of the outcome, mimicking a prediction error, should be able to

artificially update the value of the preceding actions. We wondered whether simulation of a

positive prediction error after receiving a less-preferred outcome would shift rats’ preference
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to that option in the future. Previous work in mice has linked stimulation of VP GABAergic

cells to place preference, intracranial self-stimulation, and the choice to participate in a

task with both appetitive and aversive outcomes (Faget et al., 2018; Stephenson-Jones et al.,

2020), setting a precedent to reinforce behavior with VP stimulation. To test our hypothesis,

we trained a new group of rats on a modified version of the Specific Cues task with sucrose

and maltodextrin as rewards, paralleling the experiments in Chapters 2-3. In this version

of the task, available rewards were indicated by lever insertion, and lever pressing led to

lever retraction and delivery of the associated reward 2 sec later (Fig. 4.8a). Prior to

training, rats were implanted with optic fibers and virus containing the excitatory opsin ChR2

(n=11), permitting stimulation of VP, or a control virus (EGFP, n=9) (Fig. 4.8c). Once rats

established a behavioral preference for sucrose, we ran a test session where we stimulated

VP unilaterally for 5 sec (40Hz, 10ms pulse width) concurrent with maltodextrin delivery,

or whenever the rat first entered the reward port thereafter (Fig. 4.8b). Impressively,

pairing maltodextrin with VP stimulation shifted rats’ preference from the sucrose lever to

the maltodextrin lever on choice trials (Fig. 4.8d, p < 0.000001 relative to controls, Tukey

test, corrected for multiple comparisons); this shift could be tracked within the session as

the rats experienced additional laser-paired maltodextrin trials (Fig. 4.8e). Surprisingly,

this shift in preference persisted for at least one additional day when laser stimulation was

withheld (p < 0.00001, Tukey test), demonstrating that VP stimulation produced long-

lasting learning.

How well do these results map onto a prediction error framework? According to the

predictions of TD(λ) reinforcement learning (Sutton and Barto, 1998), this fictive positive

prediction error should impact the most recent preceding events according to their eligibility

traces, which decay with time. Since port entry is the most recent event preceding stimula-

tion, in addition to the observed effect of stimulation on lever pressing, we should also see

some impact on port entry behavior if VP stimulation approximates a TD prediction error.

Indeed, there was an increase in port entry rate on test session for ChR2 rats relative to con-
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trols (Fig. 4.9a). We also found that stimulation of VP supports intracranial self-stimulation

in these rats (Fig. 4.8f), confirming the reinforcing properties of VP stimulation. Overall,

our data establish that VP activity induces persistent behavioral preferences through its

reinforcing properties in a manner consistent with reinforcement learning.

4.4 Discussion

In this chapter, we addressed two questions that were raised in the course of the prior

experiments. We previously observed, at a population level, that VP reward-evoked neural

activity can flexibly report relative value when the available rewards change (Figs. 2.11,

2.12). It remained unclear whether individual VP neurons would track the relative values of

the same rewards as they changed within an individual session. Second, our observation that

the outcome-evoked signal in VP many ways resembled a reward prediction error (Figs. 2.10,

3.1, 3.2) left open the possibility that, with sufficiently learned specific cues, the error signal

we observed would transfer to the predictive stimuli. In this chapter, we also investigated a

link between this VP value signal and value-based decision-making by introducing a choice

component to the task and manipulating VP activity optogenetically.

4.4.1 VP reports of relative value vary with physiological state and behavioral

preference

We previously found that the reward-evoked activity of a majority of VP neurons reports

the relative value of available options in a task with random presentations of rewarding

outcomes (Chapter 2). In those experiments, the individual values of the rewards was not

(necessarily) changing; rather, the value of the reward relative to the other outcomes in the

session changed. Here, we tested how VP would report the relative values of rewards whose

value changed within the session due to evolving physiological state. We accomplished this

by using a small volume of sucrose solution and larger volume of water as our outcomes,

and then we water restricted our rats prior to the session. Importantly, we wanted to be

110



able to track preference across the session, so we incorporated choice trials that permitted

a behavioral readout of rats’ preference as well as an opportunity to link VP activity with

choice behavior.

Remarkably, we found the 71% of the neurons we recorded during the Uncertain Outcome

task tracked the changing values of sucrose and water across the session (Fig. 4.2c). In

particular, the reversing of sucrose- and water-evoked firing (Fig. 4.5b-c) and the positive

correlations between these neurons and behavioral preference demonstrated that ventral

pallidum signaling flexibly tracks the relative values of rewards across physiological states.

This result is reminiscent of findings that satiety impacts ventral pallidum event-related

firing (Fujimoto et al., 2019; Stephenson-Jones et al., 2020; Tindell et al., 2006, 2009). Here,

we build upon these studies by demonstrating that individual VP neurons have distinct

representations of the relative values of two rewards as they are differentially impacted by

physiological state and the behavioral preference for them switches. Moreover, the strong

agreement between neural and behavioral estimates of the rats’ preference for sucrose versus

water (Fig. 4.6) and the ability of optogenetic stimulation of VP to alter a sucrose versus

maltodextrin preference (Fig. 4.8) suggest the VP signaling helps direct value-guided choices.

Our data are reminiscent of reports of individual neurons in OFC and hypothalamus

whose responses diminish for rewards (and their predictive cues) fed to satiety but remain

intact for other rewards (Rolls et al., 1986, 1989; Critchley and Rolls, 1996). Our data build

upon these findings by demonstrating a link between this physiologically sensitive reward-

specific encoding and choice behavior. Future work should examine the interplay between

homeostatic, value, and decision-making circuits in this setting.

4.4.2 Does VP activity reflect a temporal difference prediction error?

Across our data sets, there were many instances where the VP outcome activity resembled

a trial-based prediction error (Rescorla and Wagner, 1972) where the expected value of

the trial is updated iteratively with each outcome; the error between this expected value
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and the value of the achieved outcome is what we observe in many VP neurons (Chapter

3). Within the reward-learning field, particularly regarding dopamine activity, temporal

difference (TD) learning is a more prominent framework to describe neural error signals

(Sutton, 1988; Sutton and Barto, 1998; Schultz et al., 1997; Nakahara et al., 2004; Pan

et al., 2005). The key advance of the TD model over Rescorla-Wagner is that it allows

predictions to update within a trial, not just across trials. Within this framework, the

reward-related neural response should transfer to the earliest predictive stimulus. Previous

reports of TD learning signals in VP are mixed (Tindell et al., 2004; Ito and Doya, 2009; Tian

et al., 2016; Stephenson-Jones et al., 2020). In the majority of our experiments, there was a

cue that announced reward availability but not the identity of the reward, so the cue could

not acquire a reliable prediction of the outcome, and we were not able to assess adherence to

TD learning. In one experiment (Fig. 3.7), we included a mixture of ambiguous and specific

cues in hopes of testing whether the reward-specific signal would transfer to the specific

cues. Although we did see reward-specific predictive signaling at the time of cue in some

neurons (Fig. 3.7m-o), the reward-evoked error signal was largely intact (Fig. 3.7g-l). This

result is inconsistent with TD learning, which predicts no error signal at the time of reward

delivery when the outcome is faithfully predicted by cues. Nevertheless, this interpretation is

confounded by the fact that rats did not appear to be using the cues to guide their behavior

(Fig. 3.7b).

In Chapter 4, we revisited the possibility that VP signaling reflects a TD prediction error,

this time with two separate tasks in one group of rats. Rats were first trained on the Specific

Cues task, where there were three trial types, all indicated by distinct auditory cues. In

this task, the cues were much more salient than in Fig. 3.7 because they informed the rats

which levers they could press (and incorrect presses led to a 10 sec timeout). With this new

task, we found that more neurons reflected the changing value of the outcomes at the time

of cue than at the time of reward (Fig. 4.2c). Afterwards, the rats were trained on the

Uncertain Outcome version of the task, where lever-pressing on forced trials was replaced
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with an entry into the reward port (same as Chapters 2-3), and the cue was no longer distinct

for each forced trial type. Here, there was no outcome value tracking at the time of the cue

(since the cues were the same for both outcomes), but, remarkably, the number of neurons

whose reward-evoked activity reflected the changing values of sucrose and water dramatically

increased compared to the Specific Cues task (Fig 4.2c). Our results demonstrate that, in

the presence of faithfully predictive (and behaviorally relevant) stimuli, error signaling in

VP transfers to the earliest stimulus, consistent with the predictions of TD learning.

One major caveat to the TD learning interpretation of VP signaling is that cue-evoked VP

activity appears to be model-based rather than model-free; that is, the cue-evoked activity

tracks the value of the predicted outcome as it changes due to physiological state (Fig. 4.3, see

also Tindell et al. (2009)). A strict interpretation of TD learning as a model-free algorithm

would require the value of the cue to be updated only when there were prediction errors at

the outcome; although there was less prediction error signaling at the time of outcome in

the Specific Cues task, it is possible that the value of the cue could be reduced iteratively

each time the rat receives water in a sated state. TD learning cannot, however, explain the

robust activity for the water cue at the beginning of the session since the last time the rat

experienced the water cue was in the sated state the previous session. Dopamine neurons

also signal a mixture of model-based and model-free errors, and a combination of the two

systems is a likely explanation in both cases (Schultz, 2013; Langdon et al., 2018).

Some aspects of TD learning, however, can help us interpret the effects of the optoge-

netic manipulation in Fig. 4.8. In this experiment, we stimulated VP concurrently with

maltodextrin delivery if rats were in the reward port or as soon as they entered the reward

port thereafter. Therefore, according to TD(λ) learning (Sutton and Barto, 1998), this fic-

tive positive prediction error should affect both preceding actions: the port entry and the

maltodextrin lever press. Indeed, the port entry rate on test session increased for ChR2 rats

relative to controls (Fig. 4.9a). The next most recent event, and the most reliable predictor,

was pressing the maltodextrin lever, a measure which also increased in test session (Fig.
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4.8d). The persistence of the maltodextrin lever preference but not the increased port entry

rate on the first recovery day could reflect a) the greater reliability of maltodextrin lever as

a predictor of stimulation in the test session and b) slower updating due to its more distal

position and decayed eligibility trace. Overall, these data are consistent with many aspects

of TD learning and suggest that VP signals behaviorally instructive prediction errors.
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Figure 4.1

Figure 4.1. Dynamic preference driven by physiological state.
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Figure 4.1. Dynamic preference driven by physiological state.

(a) Schematic of ‘Specific Cues’ task, where there were three trial types, each with a unique
auditory cue. Correct lever presses on forced choice trials led to delivery of the associated
reward.

(b) Schematic of ‘Uncertain Outcome’ task, which rats were trained on after the Specific Cues
task. The choice trials (and cue) were the same, but the forced trials had a novel auditory
cue and required entry into the reward port rather than a lever press, after which either
reward was delivered.

(c) Example Uncertain Outcome session, depicting choice trials (colored, longer lines) and forced
trials (black, shorter lines) for sucrose (top) and water (bottom), overlayed with preference
(green), found by smoothing across choice trials.

(d) Preference in each task for each of the 5 rats, found from the proportion of sucrose choices in
each of the four quarters of trials. We divided the session into quarters to account for
different numbers of completed trials from each rat.

(e) Mean(+/−SEM) lick rate relative to reward delivery across the four quarters of trials, split
into forced sucrose trials (left) and forced water trial (left). Sessions from both tasks are
combined here.

(f) Mean(+/−SEM) lick rate across 13 sec, capturing nearly all of the reward-related licking
(top), and within the bin used for neural analysis (0.75-1.95s post-delivery).

116



Figure 4.2

Figure 4.2. Dynamic reward encoding occurs when outcome identity is
revealed.
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Figure 4.2. Dynamic reward encoding occurs when outcome identity is revealed.

(a) Windows for used for neural analysis relative to task events.

(b) Schematic of the generlized linear model (GLM) used to predict individual neurons’ activity
at time of cue and reward.

(c) Proportion of neurons from each task with significant impacts of Outcome, Time, and
Outcome X Time at the time of cue and time of reward. We focused our additional analysis
on the Outcome X Time neurons at time of cue for the Specific Cues task and at the time of
reward for the Uncertain Outcome task (marked in green).
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Figure 4.3

Figure 4.3. Cue-evoked activity tracks reward-specific task performance.

(a) Raster from example Outcome X Time neuron from the Specific Cues task, aligned to sucrose
(left) and water (right) forced trial cues. Shading indicates window for neural analysis.

(b) Mean(+/−SEM) sucrose cue- (left) and water cue-evoked (right) firing for all Outcome X
Time neurons from the Specific Cues task across the four quarters of trials. Gray shading
indicates window for neural analysis (including in (c)).

(c) Mean(+/−SEM) binned firing for these neurons.

(d) Latency to press lever (log-transformed) across all sucrose (left) and water (right) forced
trials from an example Specific Cues session.

(e) Mean(+/−SEM) binned firing for Specific Cues sessions.

(f) Approach for calculating correlation between cue-evoked firing and latency to lever press.

(g) Correlation between firing rate for sucrose (orange), water (blue), and choice (green) trials
and log(Latency) for an example Outcome X Time neruon.

(h) Distribution of correlation coefficients for Outcome X Time (blue) and other (gray) neurons.
Mean of each group marked with vertical line. * indicates p < 0.0000001 for Wilcoxon
rank-sum test comparing the groups.
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Figure 4.4

Figure 4.4. Ventral pallidal activity is necessary for normal behavioral
responding but not choosing a reward.
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Figure 4.4. Ventral pallidal activity is necessary for normal behavioral responding
but not choosing a reward.

(a) Task design for optogenetic inhibition experiment. All trials were choice trials, indicated my
lever insertion and white noise cue. Levers were retracted and cue terminated after choice
was made.

(b) Optic fibers and virus containing ArchT3.0 (or YFP control) were implanted bilaterally in
VP.

(c) During the test session, on half of trials, VP was photoinhibited bilaterally for 15 sec,
beginning 5 sec before cue onset.

(d) Preference for each of the 8 rats from each group, found from the proportion of sucrose
choices in each of the four quarters of trials.

(e) Mean log(Latency) on trials with and without laser for YFP (left) and ArchT3.0 (right) rats.
There was no effect of laser on YFP rats (p = 0.31) but there was for Arch rats (p < 0.01,
Wilcoxon signed-rank test).

(f) Difference in log(Latency) between trials with and without laser for YFP (left) and ArchT3.0
(right) rats. The difference was greater in ArchT3.0 rats (p < 0.001, Wilcoxon rank-sum test).

(g) Preference across the session for YFP rats, split into trials with and without laser. Although
there was a significant change in preference across the four quarters
(F3,56 = 54.0, p < 1e− 15), there was no effect of laser (F1,56 = 0.13, p = 0.72) nor interaction
(F3,56 = 0.12, p = 0.95).

(h) As in (g) for rats with ArchT3.0 in VP. Quarter: F3,56 = 30.5, p < 1e− 11, laser:
F1,56 = 0.4, p = 0.54, interaction: F3,56 = 0.16, p = 0.92.
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Figure 4.5

Figure 4.5. Reward-evoked activity closely matches behavioral preference.

(a) Raster from example Outcome X Time neuron from the Uncertain Outcome task, aligned to
sucrose (left) and water (right) delivery on forced trials. Shading indicates window for neural
analysis.

(b) Mean(+/−SEM) sucrose- (left) and water-evoked (right) firing for all Outcome X Time
neurons from the Uncertain Outcome task across the four quarters of trials. Gray shading
indicates window for neural analysis (including in (c)).

(c) Mean(+/−SEM) binned firing for these neurons.

(d) Normalized firing of an example Outcome X Time neuron on forced water trials overlayed
with water preference (top) and the same neuron on sucrose trials with sucrose preference
(bottom).

(e) Distribution of correlation coefficients between firing rate and preference for Outcome X Time
(blue or orange) and other (gray) neurons on forced water trials (top) or forced sucrose trials
(bottom). Mean of each group marked with vertical line. * indicates p < 1e− 24 for Wilcoxon
rank-sum test comparing the groups on water trials, and p < 1e− 13 for sucrose trials.
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Figure 4.6

Figure 4.6. Models of VP reward-evoked activity accurately predict behavioral
preference.
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Figure 4.6. Models of VP reward-evoked activity accurately predict behavioral
preference.

(a) Example fits for the three models we considered to describe the activity of VP neurons in the
Uncertain Outcome task at time of reward delivery: Satiety, Preference, and Mixed, which
linearly combined Satiety and Preference (a fourth model, Unmodulated, stayed at the mean
firing rate for the whole session). Mixed was best able to capture the changes in activity in
this example neuron.

(b) Classification of neurons based on their reward-evoked activity, split by task. Classification
was achieved by finding the model that best described the activity of each individual neuron,
determined with Akaike information criterion (AIC). Neurons classified as Preference or
Mixed were considered preference-encoding.

(c) The mean(+/−SEM) activity across quarters on sucrose (orange) and water (blue) trials for
neurons from the Uncertain Outcome task best fit by each model.

(d) From two example sessions, the choices of the rats across the session and the preference
estimate from fitting a logistic function (the same one contributing to the Preference neural
model).

(e) The mean(+/−SEM) estimate of preference from the preference-encoding neurons from these
sessions.

(f) Correlation between neural estimate and behavioral estimate of preference for each neuron
from each of the example sessions.

(g) Estimates of the indifference point (sucrose and water equally preferred) from the neural and
behavioral models (+/−SE).

(h) Across all Uncertain Outcome sessions, preference-encoding neurons had preference estimates
with higher correlations with the behavioral estimate than estimates from the remaining
neurons (p < 1e− 20, Wilcoxon rank-sum test).

(i) Preference-encoding neurons’ estimates of indifference point were also closer to the
behavioral estimate than estimates from non-preference-encoding neurons (p < 1e− 14,
Wilcoxon rank-sum test).

(j) Among preference-encoding neurons, the estimate of their parent session’s indifference point
was not better than the estimate of other sessions’ indifference point (p = 0.16, Wilcoxon
signed-rank test), perhaps reflecting the similar indifference points across sessions.

(k) Among preference-encoding neurons, the estimate of indifference point was more similar to
other neurons from the same session than neurons from other sessions (p < 0.00000001,
Wilcoxon signed-rank test).
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Figure 4.7

Figure 4.7. Weights for Mixed model fits.

(a) Distribution of weights (w) for Satiety, Preference, and Mixed neurons when fit with the
Mixed model, revealing separate clusters for each group.
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Figure 4.8

Figure 4.8. Stimulation of VP at reward delivery biases choice behavior.
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Figure 4.8. Stimulation of VP at reward delivery biases choice behavior.

(a) Task design for optogenetic stimulation experiment. Rats chose between sucrose and
maltodextrin. Trial type was indicated by lever insertion. Levers were retracted after press.

(b) During the test session, on maltodextrin trials (both forced and choice), VP was
photostimulated unilaterally for 5 sec at 40Hz, beginning with maltodextrin delivery, or
whenever the rat first entered the port thereafter.

(c) Optic fiber and virus containing ChR2 (or GFP control) were implanted bilaterally in VP,
but only the right hemisphere was stimulated in this experiment.

(d) Preference for sucrose versus maltodextrin on choice trials at baseline (after training), on test
session, and for 5 recovery days after without laser. There was a significant interaction
between day and group across these 7 sessions (F6,126 = 10.6, p < 0.00000001). Post-hoc
Tukey tests (corrected for multiple comparisons) revealed a significant difference between
groups on test day (p < 0.000001) and the first recovery day (p < 0.00001).

(e) Preference (smoothed) on choice trials across the session for individual rats (left) and
averaged for each group (right).

(f) Intracrancial self-stimulation (1s, 40Hz) of VP via nosepoke port. Rats made more nosepokes
on laser-paired port than on the unpaired port during the 1 hr session (p < 0.001, Wilcoxon
signed-rank test).

(g) ChR2 rats earned more stimulations during the 1 hr session than control rats (p < 0.0001,
Wilcoxon rank-sum test).
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Figure 4.9

Figure 4.9. Impact of VP stimulation on port entries.

(a) Port entries per minute for all rats from the baseline, test, and recovery sessions. * =
p < 0.03, Tukey test corrected for multiple comparisons, for difference between GFP and
ChR2 groups on test day.

128



Figure 4.10

Figure 4.10. Placement for electrodes, fibers, and virus.

(a) Placements for electrophysiology recordings. Rat 2 was excluded from analysis.

(b) Placements for ChR2 experiments.

(c) Placements for ArchT3.0 experiments.
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Chapter 5

General discussion

Our initial goal for this thesis was to examine how reward processing systems in the brain

represent information about highly palatable outcomes. We chose to study the ventral

striatopallidal system because of its well-theorized role in integrating information about

rewards in order to direct an appropriate behavioral response. An initial question was

whether nucleus accumbens (NAc) and ventral pallidum (VP) would have distinct neural

responses to sucrose and maltodextrin at all given their equivalent caloric content, volume,

and associated motor responses in our rats. In NAc, the answer was mixed; although many

neurons were modulated during reward consumption (Fig. 2.4), only a fraction of these

responses were specific to sucrose or maltodextrin (Fig. 2.6). On the other hand, a majority

of neurons in VP had responses that were reward-specific, and these responses tended to

occur earlier than in NAc (Figs. 2.6, 2.8). Remarkably, nearly all of these responses were

phasic excitations to sucrose and, often, inhibitions to maltodextrin. This robust, uniform

response that matched the rats’ preference for sucrose motivated additional exploration of

value signaling in VP.

The next step was to test whether VP signaling fit the properties of a relative value

signal. We were able to do this by conducting additional recording sessions in the same rats

where water was added as another outcome, first replacing sucrose and then all together.

We were particularly interested in seeing whether the VP activity following maltodextrin

delivery would change when maltodextrin was no longer the least preferred option. In both
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session types this was the case; maltodextrin now evoked increases in VP activity. We were

even able to see this shift within the first session with water instead of sucrose (Fig. 2.11). It

was also notable that VP activity reflected the relative value of all three outcomes when they

were presented in the same session (Fig. 2.12), which spoke to the robustness and flexibility

of the signal.

We next examined the role of expectation in the signal we characterized. In the task

the rats performed, the trials were demarcated by a single white noise cue that announced

reward availability but did not indicate which reward the rats would receive. We chose this

setup to limit the rats’ expectation of which reward they would receive. Nevertheless, we

observed that VP activity was sensitive to the previous outcome (Fig. 2.10), indicating that

rats may have formed an expectation of upcoming reward based off of the recent outcome

history rather than cued information. We wondered whether the activity of neurons in VP

was consistent with a reward prediction error across trials. We developed a model fitting

and classification approach that identified VP neurons whose activity was consistent with a

prediction error integrating the outcomes on multiple previous trials (Fig. 3.1). Moreover, we

found VP neurons followed this pattern of a trial-level prediction error in several conditions

(Figs. 3.5, 3.6, 3.7).

Since we found neural evidence of trial-to-trial updates of expectation, we wondered

whether the rats were adjusting their behavior accordingly. We analyzed the movements of

the rats following reward delivery and preceding the onset of the cue for the next trial and

found that their task engagement during this inter-trial interval was influenced by the just-

received outcome, a measure that correlated with the activity of VP neurons (Fig. 3.3). We

next asked if the activity of VP neurons drives this behavioral adaptation. We transiently

inhibited or stimulated VP neurons following reward delivery using optogenetics and found

a similar modulation of task engagement, suggesting that the reward-evoked activity in VP

does influence adaptive behavior.

Although all of these experiments harnessed rats’ varying preferences for the delivered
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outcomes, none of them actually assessed their behavioral preference during the recording

session. Moreover, they focused on stable preferences, whereas many preferences vary across

different conditions. To address these points, we designed a task that allowed a more rigorous

test of VP preference encoding. Thirsty rats chose between a large volume of water and a

small volume of sucrose in a mixture of forced and free choice trials. Rats demonstrated an

evolving preference by switching from choosing water to choosing sucrose as they became less

thirsty. This changing preference was reflected in the activity of VP neurons, with remarkable

agreement between behavioral and neural reports of the relative values of water and sucrose

(Figs. 4.5, 4.6). Additionally, the timing of this preference-sensitive signal depended on

when the identity of the outcome was revealed, following the pattern of a reward prediction

error framework (Fig. 4.2).

With a tight link between VP activity and preference established, we wondered if VP

activity informs rats’ choices. When we optogenetically inhibited VP during the execution

of the choice, we saw no impact on the choices the rats made (Fig. 4.4), indicating VP is

not necessary for the expression of preference. On the other hand, optogenetic stimulation

of VP following choice execution, at the time of reward consumption, was able to reverse

rats’ preference from sucrose to maltodextrin over the course of a single session, an effect

that persisted to the following session (Fig. 4.8). These results suggest that VP activity at

the time of the outcome instructs rats’ behavioral preferences.

Our work here helps to clarify the role of VP in encoding reward preference and driving

certain reward-seeking behaviors. There are some limitations of our studies that should be

considered when interpreting our results, and there are many open questions remaining. We

discuss these here.

5.1 Behavioral tasks.

In all of the experiments we conducted, the outcomes on the majority (if not all) of the trials

were outside of the rats’ control. Moreover, the behavioral response (at least for sucrose and
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maltodextrin) was nearly identical regardless of the outcome. This leaves the question: why

have an outcome-specific neural response at all? And why bother keeping track of which

outcomes have been delivered?

One explanation could be that the reward-evoked activity is related to the experience

of consuming the reward. In fact, VP is one of the few regions functionally linked to the

experience of pleasure that comes from consuming palatable rewards (Smith and Berridge,

2007; Smith et al., 2009). This explanation is not consistent with the changes in VP firing

we observed according to recent history, and when the available options were changed, unless

the hedonic experience of consuming the rewards is also shifting. If so, we were unable to

detect this just by examining lick traces; one potential future approach would be to video

record the mouth movements of the rats, which are the best-established readouts of hedonia,

while recording from VP.

Another explanation is that, even though rats have (little or) no control over which

rewards they receive in these tasks, they still keep track of the statistics of reward availability

because of how useful this information is generally for adaptive behavioral responding. We

do see some evidence of adaptive behavioral responding in the rats’ proximity to the reward

port following sucrose and maltodextrin delivery, even though the currently received reward

is not predictive of the subsequent reward. An important next question, then, would be to

see whether VP value estimates guide behavior when the animal needs to adjust its behavior

to changing reward statistics in order to maximize reward (Parker et al., 2016; Bari et al.,

2019). Our data that optogenetic stimulation of VP can alter choice preference suggest that

VP activity could be important for choice behavior in a dynamic decision-making task.

Another instance where task design limited our ability to interpret the results was in the

predictable and random sucrose/maltodextrin task, where we aimed to explore an influence

of a specific cue representation on outcome signaling (Fig. 3.7). Overall, we did not observe

a consistent effect of specific predictive cues on outcome signaling in this task. There are

considerable confounds for the conclusion that cue-mediated predictions do not impact VP
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outcome signaling, however. First, there is no behavioral evidence that these cues were

used by the rats; the latency to respond to each cue was similar. This may have been

due to the similar behavioral relevance of the two highly palatable outcomes (sucrose and

maltodextrin). Indeed, in tasks where the outcomes elicit different behavioral responses, VP

cue-evoked activity readily discriminates among trial types (Tindell et al., 2009; Tachibana

and Hikosaka, 2012; Richard et al., 2016, 2018; Ottenheimer et al., 2019b; Stephenson-Jones

et al., 2020), whereas we only saw a modest difference in cue-evoked firing for each cue. A

version of this task where the outcomes differed more in value might reveal a larger influence

of cue-based expectation on VP signaling, both at the time of cue onset and outcome.

In the tasks where rats were able to choose between water and sucrose, we were able to

see a shift in the timing of VP value encoding depending on whether the cues predicted a

specific outcome. In some ways, this addressed the question we asked with the predictable

and random sucrose/maltodextrin task. What allowed us to see an effect of cue-based

expectation in this task? For one, the rats were first trained on a version of the task with only

specific cues; there were no trials intermixed where the outcome was uncertain. Moreover,

the behavioral response for each trial type was distinct–the cue indicated which lever the rat

needed to press. Finally, because the value of the rewards changed independently throughout

the session due to the effects of satiety, the outcome may have been more behaviorally relevant

than sucrose versus maltodextrin.

Because the outcome was never uncertain in the first choice task, we had to train rats

on a new task without specific cues (or lever presses) to analyze neural activity in uncertain

outcome conditions; in this second task with no specific cues, there was no possibility for

cue-mediated expectation and, consequently, we saw a robust outcome-specific signal at the

time of reward delivery. Unfortunately, because these were separate tasks (on separate days),

we could not compare the activity of individual neurons on trials with certain or uncertain

outcome. Thus, one future direction would be to take the strengths from the sucrose versus

water task that permitted a robust cue-mediated expectation and apply them to a new task
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that would allow a within-session comparison of the effects of specific versus non-specific

cues. This would permit more rigorous conclusions on temporal difference error encoding in

single neurons in VP.

5.2 RPE encoding in this circuit.

One major question this work leaves open is how the activity we observed in VP might

relate to the activity of dopamine neurons in VTA given their smilarity in coding schemes.

In our data, we saw more RPE-like activity in VP than in NAc, another input to midbrain

dopamine neurons, leaving the possibility that VP is a privileged provider of outcome history-

based predictions to dopamine neurons. There are multiple routes for VP activity to reach

VTA given multiple demonstrations of VP synapses not only onto VTA neurons but also onto

other VTA input nuclei like lateral habenula and rostromedial tegemental nucleus (Hong and

Hikosaka, 2013; Tian et al., 2016; Knowland et al., 2017; Tooley et al., 2018; Faget et al.,

2018). Stimulation of VP GABAergic neurons increases the number of putative midbrain

dopamine neurons expressing Fos, consistent with an indirect mechanism for modulating

features of dopamine neuron RPE signaling (Faget et al., 2018). In songbird, VP has been

shown to send performance-related error signals to the ventral tegmental area during singing

(Chen et al., 2019; Kearney et al., 2019). On the other hand, VTA could be the source of

VP RPE signals; in addition to dopaminergic innvervation of VP (Root et al., 2015), VTA

also has dense glutamatergic projections to VP, which could provide the early onset phasic

responses we observed in VP (Hnasko et al., 2012). Future work should untangle a uni- or

bidirectional role of error-related signals in these regions, as well as possible unique roles of

each population in adaptive behavior. A combination of projection-specific recordings and

manipulations (perhaps simultaneously in both regions) would help clarify this question.

Additionally, because NAc is not the likely source of the signals we characterized in VP, the

role of other VP inputs like central amygdala, lateral hypothalamus, preoptic area, and the

bed nucleus of the striatum should be investigated (Knowland et al., 2017; Tooley et al., 2018;
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Stephenson-Jones et al., 2020), and a broadening of the conceptualization of information flow

in this circuit is in order.

5.3 Ventral pallidum anatomy.

Prior to being termed the ventral pallidum, this region of the brain was known as substantia

innominata (‘unnamed substance’), which also included the region now known as extended

amygdala. These regions were designated from the expression patterns of certain receptors

and connectivity patterns with other regions, but their separate identities have been de-

bated (de Olmos and Heimer, 1999). Our work has some relevance to this debate. There

were instances, because they are neighboring regions, when we recorded from or stimulated

extended amygdala as well as ventral pallidum (Figs. 2.2, 3.4, 3.8). In all instances, the

patterns of neural activity and effects from the stimulation were the same as data from rats

with placements fully in VP. It is possible that drawing a precise line between these regions

masks a gradient of responses and functions.

As an increasingly complicated picture of cell types with distinct connectivity patterns

emerge in mouse VP (Knowland et al., 2017; Tooley et al., 2018; Faget et al., 2018; Stephenson-

Jones et al., 2020), it will be important to see whether the same anatomy applies to rat VP

(and beyond). One particularly impactful finding is the opposing effects of stimulating

GABAergic and glutamatergic cells in VP on behavior (Faget et al., 2018; Stephenson-Jones

et al., 2020). It would be useful to know whether those trends hold in rats and whether the

functional subtypes of neurons we classified (reward-selective, RPE-encoding, etc.) map onto

a certain neurotransmitter type (or projection pattern). Given one report that the activity

of GABAergic neurons in VP tends to correlate positively with value, we could speculate

that the neurons we studied are likely to be GABAergic (Stephenson-Jones et al., 2020).

With increasing numbers of transgenic rats and viral tools available, these questions should

be answerable in the near future.
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5.4 Beyond reward.

In our experiments, the outcomes ranged from palatable to neutral orally ingested stimuli.

There are many reinforcing stimuli in the environment beyond the reward landscape we

explored, and it is possible the kinds of value signals we characterized in VP could integrate

them as well. For instance, a role for VP has been established in social behaviors, maternal

behaviors, aversion, and drug abuse (Smith et al., 2009; Root et al., 2015). Initial reports

demonstrate that VP activity scales with aversive stimuli along with reward (Tian et al.,

2016; Stephenson-Jones et al., 2020). Thus, VP activity is a compelling neural substrate for

continued exploration of representations of competing (or synergistic) reinforcing stimuli of

different modalities.

5.5 Cell classification.

A number of conclusions in this dissertation are derived from the numbers of neurons classi-

fied into a given category – for instance, reward-selective cells in the task contrasting sucrose

and maltodextrin. For that particular metric, the inclusion criteria were selected to minimize

noisy classification (cells counting as reward-selective before rewards were delivered, which

could only arise due to chance); this entailed meeting a p < 0.01 cutoff for two consecutive

time bins. As with many statistical cutoffs, neurons classified as selective or not are not

necessarily two separate populations of neurons. Rather, the classification is judgment of

how well the selectivity of those neurons can be distinguished from noise. There are many

factors that could impact the ability to distinguish reward selectivity from noise, including

the magnitude of the test stimuli. For this reason, it is hard to make the distinction between

more neurons being recruited to report relative value in the sessions with water, or whether

it is just easier to statistically identify the neurons when the stimuli span a wider range in

value.

This issue is also relevant for the model fitting and classification procedure. Model selec-
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tion with Akaike information criterion makes a judgment about which model most parsimo-

niously describes the activity of a neuron based on the error between the model’s predictions

of a neuron’s spikes on each trial and the actual spikes of that neuron. Thus, RPE neurons

and Current Outcome neurons are not necessarily different populations of neurons; it is just

a distinction of whether the RPE model did enough of a better job than the Current Out-

come model in describing those neurons’ spikes. Again, this leads to a difficult interpretation

of there being more neurons classified as RPE-encoding in the task with water. This not a

unique problem to our data; many studies looking for RPE correlates demonstrate a whole

distribution of responses with no clear distinct subpopulation of RPE-encoding cells (Taka-

hashi et al., 2011; Engelhard et al., 2019). The approach of classifying neurons into distinct

subgroups is a practice that should be carefully considered across the field.

One place we explored the distribution of model fits more carefully was for the Satiety,

Preference, and Mixed models (Fig. 4.7). By looking at the relative weight of satiety and

preference in the Mixed model fits for neurons from all three categories, we were able to see

whether these neurons were really distinct categories. Interestingly, these populations did

separate fairly well, with separate peaks in the distributions, suggesting there are separate

sets of neurons that encode satiety, preference, or a mixture between them, although the

exact mapping of these firing patterns onto more loaded concepts like preference and satiety

could be debated, and other explanations are possible. The application of these models to

the firing rates of neurons from other regions in similar tasks could lend additional support

for this interpretation.
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