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Abstract 

The development of Adverse Outcome Pathways (AOPs) is becoming a key component of 21st 

century toxicology. AOPs provide a conceptual framework that links the molecular initiating 

event to an adverse outcome through organised toxicological knowledge, bridging the gap from 

chemistry to toxicological effect. As nuclear receptors (NRs) play essential roles for many 

physiological processes within the body, they are used regularly as drug targets for therapies 

to treat many diseases including diabetes, cancer and neurodegenerative diseases. Due to the 

heightened development of NR ligands there is increased need for the identification of related 

AOPs to facilitate their risk assessment. Many NR ligands have been linked specifically to 

steatosis. This paper reviews and summarises the role of NR and their importance with links 

between NR examined to identify plausible putative AOPs. The following NRs are shown to 

induce hepatic steatosis upon ligand binding: aryl hydrocarbon receptor, constitutive 

androstane receptor, oestrogen receptor, glucocorticoid receptor, farnesoid X receptor, liver X 

receptor, peroxisome proliferator-activated receptor, pregnane X receptor, and the retinoic acid 

receptor. A preliminary, putative AOP was formed for NR binding linked to hepatic steatosis 

as the adverse outcome. 
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Introduction  

AOP Development 

The impact of 21st century life has led to increased demand for safer and more sustainable 

chemical products, whilst at the same time reducing the amount of animal testing (Patlewicz et 

al., 2015). Animal testing has been integral to toxicology studies for over 50 years; however, 

the need for more modern alternative toxicological approaches is now a key focus for 

toxicologists and regulatory scientists alike (NRC, 2007). For instance, the results gained from 

animal testing require many presumptions and extrapolations in order to predict human health 

effects and this process is still controversial due to both scientific and ethical reasons (NRC, 

2007). Current chemical safety assessments require faster testing with the use of fewer animals, 

at the same time the number of chemicals being tested are rapidly increasing worldwide, 

making the cost of chemical safety assessment substantial (Patlewicz et al., 2015). The 

constraints of the modern chemical safety assessments, along with the increased cost of testing, 

have induced a new mind-set among toxicologist aiming to replace the more traditional 

extensive phenotypic animal testing with a more mechanistic based approach relying on the 

use of toxicokinetics, computational models and in vitro testing (Patlewicz et al., 2015; Vinken, 

2013). The momentum of this change has led to big strides in the development of in vitro assays 

for use in high throughput screening and high content screening (seen in projects such as the 

United States Environmental Protection Agency’s (US EPA’s) ToxCast programme) (Cohen 

et al., 2010; NRC, 2007) and the development of computational approaches. Computational 

models are integral to the development of integrated alternative methods to identify organ level 

toxicity and ultimately leading towards the replacement of animal testing (Cronin and 

Livingstone, 2004). These models traditionally include the use of (quantitative) structure-

activity relationships ((Q)SARs). QSARs are mathematical models that predict biological 

activity of chemicals from structure or physicochemical properties, whereas a SAR is a 
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qualitative association between a specific molecular substructure and biological activity 

(Cronin and Livingstone, 2004). 

(Q)SARs are currently used successfully for the prediction of single dose acute toxicity and 

specific endpoints such and mutagenicity, however, the use of QSARs for the prediction of 

repeat dose systemic toxicity, carcinogenicity and reproductive toxicity poses a real challenge 

for computational scientists (Alder et al., 2010; Gocht et al., 2015; Hartung et al., 2011). This 

has led to the development of integrated testing strategies which use a combination of 

computational models (such as structural alerts, read across, QSARs and modelling) along with 

in vitro testing in order to develop alternative methods. The integration of alternative methods 

with pathways of toxicity has, in part, also catalysed the formation of the Adverse Outcome 

Pathway (AOP) framework concept (Ankley et al., 2010; Groh et al., 2015; Vinken, 2013, 

2015). An AOP describes the causal linkage between a molecular initiating event (MIE) and 

an adverse outcome at individual or population levels (Patlewicz et al., 2015). The data-

richness of an AOP is critical for driving its practical application therefore the process of data 

mining to find mechanistic connections is receiving considerable interest (Patlewicz et al., 

2015). Repeat dose systemic organ toxicity is currently an area of considerable interest for 

AOP development, with the liver being prominently researched due to its integral links to drug/ 

chemical metabolism and effects. The structure of an AOP consists of a molecular initiating 

event (MIE) which is then linked via key events and ends in a particular adverse effect (as 

summarised in Figure 1) (Ankley et al, 2010; AOP wiki, 2015). As seen in Figure 1, the key 

events recorded within an AOP usually consist of the transition from the initiating event, to 

cellular, tissue and organ-level responses and may also be extrapolated to organism (or even 

population / ecosystem for environmental effects) (Vinken, 2013, 2015).   

 

FIGURE 1 HERE 
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A number of free-to-use tools are available for the scientific community to contribute towards 

the development of AOPs. These have recently been formalised into the Adverse Outcome 

Pathway Knowledge Base (AOP-KB) which was released in September 2014 (AOP-KB, 2015). 

The AOP-KB is an online space dedicated to gathering all the work undertaken worldwide on 

the development of AOPs into one easily accessible web-site. The AOP-KB is an Organisation 

for Economic Co-operation and Development (OECD) initiative involving collaborations with 

the European Commission’s Joint Research Centre (JRC), US EPA and the US Army Engineer 

Research and Development Center (ERDC). It gathers four individually developed platforms 

in one place; the AOP wiki, AOP xplorer, intermediate effects database and effectopedia, as 

well as allowing for third party applications and plug-ins. The AOP-KB allows a contributor 

to build an AOP within the AOP wiki by entering information about MIE and key events 

associated with a particular AOP. As scientists understand that mechanistic pathways are 

diverse and not homologous, the AOP-KB allows the links between different MIEs, key events 

and AOPs forming a branching connection which can be visualised via the AOP xplorer 

platform. The AOP-KB allows users to gain insight into currently known AOPs, add 

information, comment on particular AOPs and review work that has already been carried out 

by other stakeholders/ users. The AOP wiki has been successful at engaging scientists to add 

details for mechanistic pathways they have data/ knowledge on allowing the progression of 

AOP development. 

Due to their involvement in many essential processes within the body, the search for novel 

ligands for Nuclear Receptors (NR) has recently been intensified in order to elucidate possible 

preventative / therapeutic treatments for a wide range of diseases including diabetes, cancer, 

cardiovascular diseases, atherosclerosis, neurodegenerative diseases and obesity (Love, 2006). 

However, the induction of some NR ligands has been linked to the development of drug 
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induced liver injury (DILI) such as liver steatosis, due to the bio-activation of drugs (or 

metabolites) and / or the induction of hepatotoxic pathways (Love, 2006). The mechanisms 

behind these hepatotoxic pathways and the chemical structures of the ligands that induce them 

must first be understood before the definition of the characteristics for binding (which would 

be essential for the development of structural alerts) can take place. NRs are linked to onset of 

hepatic toxicity, especially hepatic steatosis. 

Hepatic Steatosis 

Hepatic steatosis is induced via the excessive accumulation of fats (triglycerides) within the 

hepatic parenchymal cells (hepatocytes) of the liver (Reddy and Roa, 2006; Zafrani, 2004; 

Nguyen et al., 2008). Hepatic steatosis usually occurs as the first stage of fatty liver disease, if 

the cause persists steatosis typically progresses to steatohepatitis (inflammation of the liver 

cells), cirrhosis (scarring of the liver) and liver cancer (Reddy and Roa, 2006). The onset of 

hepatic steatosis is associated with many different causes including alcoholism, diabetes, 

obesity and mitochondrial dysfunction (Reddy and Roa, 2006). Morphologically, hepatic 

steatosis presents as the accumulation of both large (macrovesicular) and small (microvesciular) 

intra-cytoplasmic fat droplets within hepatocytes which cause cytoplasm displacement. The 

macrovesicular fat droplets are found in cases of alcoholic, diabetic or obese patients and also 

present in cases of malnutrition such as immune deficiency syndrome. Macrovesicular steatosis 

gives rise to a large single vacuole of fat which fills the cytoplasm of hepatocytes and leads to 

the displacement of the nucleus (Zafrani, 2004). Microvesicular steatosis is present mostly in 

steatosis induced via β-oxidation of fatty acids (either mitochondrial or peroxisomal) and 

presents as the formation of many smaller fat droplets leaving the nucleus at the centre of the 

hepatocytes (Zafrani, 2004). The diagnosis of steatosis is made when lipid content in the liver 

exceeds 5–10% of the liver’s total weight (Zafrani, 2004).  
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This critical review assesses NR induced hepatic steatosis considering the availability of 

information from extant AOPs. The purpose is to demonstrate, through relevant AOPs, the 

linkage of the receptor mediated molecular initiating event to adverse outcome. There are 

currently two AOPs listed on the AOP wiki that have hepatic steatosis as their adverse outcome 

(AOP wiki, April 2015). The first is aryl hydrocarbon receptor (AHR) leading to hepatic 

steatosis, for which there is strong evidence but it is currently under construction. The second 

is liver X receptor (LXR) activation to liver steatosis, which is under construction and the 

weight of evidence is unspecified (AOP wiki, April 2015).  

NRs linked previously to the onset of liver injury are summarised in Table 1.The aim of this 

study was to utilise the information captured in Table 1, gathering the current knowledge of 

the mechanistic pathways of NRs, in order to investigate which are associated with the adverse 

outcome of hepatic steatosis.  

TABLE 1 HERE 

Nuclear Receptors 

Those NRs associated with liver injury (Table 1) were studied with the objective of compiling 

knowledge to support the development and extension of an AOP with NR activation being the 

MIE and hepatic steatosis being the adverse outcome and ultimately allowing for the creation 

of (chemistry-based) structural alerts (although this is not the purpose of this investigation). 

The following summarises the pertinent information found within the literature for each NR: 

Aryl Hydrocarbon Receptor (AHR) 

The AHR is a ligand-activated transcription factor that is involved in the regulation of the 

biological response to aromatic hydrocarbons (Nebert et al., 2004). Research has shown the 

AHR regulates xenobiotic metabolising enzymes, for example cytochrome P450. AHR is 

located within the cytosol when in its inactive form bound to its co-chaperones. Upon ligand 
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activation, the co-chaperones dissociate and AHR translocates to the nucleus. Once at the 

nucleus AHR undergoes dimerisation to AHR nuclear translocator (ARNT) which elicits a 

change to gene transcription (Elferink et al., 1990). Activation of the AHR is known to induce 

many toxic responses such as teratogenicity, immunotoxicity, tumour promotion and lethality 

(Pelclova et al., 2006). Due to its abundance within the liver, activation of the AHR has been 

shown to cause the onset of hepatic steatosis (Boverhof et al., 2006; Li et al., 1994; Niittynen 

et al., 2007). The AHR has been linked to hepatic steatosis though its ability to upregulate 

CD36 and to activate the PPARα receptor (see PPARα section). CD36 maintains uptake and 

intracellular trafficking of fatty acids and is also essential for the esterification of fatty acids 

into triglycerides. Up-regulation of CD36 via the AHR receptor causes increased fatty acid 

influx from the peripheral tissues (Figure 2) leading to the accumulation of triglycerides within 

the liver causing the formation of micro and macrovesciular fat droplets (He et al., 2011; 

Kawano et al, 2010). The accumulation of micro and macrovesciular fat droplets, as previously 

discussed, induces nucleus distortion, mitochondrial disruption and endoplasmic reticulum 

stress causing fatty liver which leads to hepatic steatosis when the lipid concentration reaches 

5-10% of total liver weight (Dentin et al 2006; Miquilena-Colina et al.,2011). 

 

Constitutive Androstane Receptor (CAR) 

The CAR, also called the nuclear receptor subfamily 1, group I, member 3(NR1I3) (Base et al., 

1994), is an orphan nuclear receptor that is an essential regulator of drug metabolising enzymes 

(Yamamoto et al., 2004). Recent studies have highlighted its importance for the control of 

enzymes such as CYP450s (Honkakoski et al., 1998; Sueyoshi et al., 1999), multidrug-resistant 

proteins (MRPs) (Cherrington et al., 2002; Kast et al., 2002) and UDP-glucuronosyltransferase 

(UGT) (Sugatani et al., 2001; Xie et al., 2003). Investigations have determined that CAR is 
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involved in the regulation of both bile acid (Saini et al., 2004) and bilirubin (Huang et al., 2004; 

Moreau et al., 2008; Xie et al., 2003) induced liver injury. 

CAR forms a heterodimer with RXR upon ligand binding; this mediates transcriptional up-

regulation of target genes (Suino et al., 2004). Analogous to PXR, CAR has a highly conserved 

DNA Binding Domain (DBD) and a moderately conserved Ligand Binding Domain (LBD) 

(Suino et al., 2004). Similar to the PXR NR, CAR activation can be induced via a wide range 

of chemicals such as the antiemetic chlorpromazine, the anti-inflammatory drug 

acetaminophen and the barbiturate phenobarbital (Moreau et al., 2008). Studies have shown 

that PXR and CAR share some chemical ligands with results showing them to have different 

ligand binding and activational properties (Maglich et al., 2009; Osabe et al., 2008). 

Investigations revealed that most CAR agonists, instead of inducing activation by direct 

binding, induce CAR translocation from the cytoplasm in to the nucleus (Maglich et al., 2009; 

Osabe et al., 2008). The predominant difference between CAR and other ligand-dependant 

nuclear receptors is that CAR is constitutionally active (Suino et al., 2004). 

CAR activation has been shown to affect lipid homeostasis (Moreau et al., 2008). Studies have 

demonstrated that upon agonist binding and activation, CAR facilitates fat accumulation and 

leads to enhanced hepatic steatosis in vivo (Xie et al., 2003).  The activation of CAR leads to 

increased expression of PPARγ (see this section) and Sterol Regulatory Element Binding 

Protein-1c (SREBP-1c) (Moreau et al., 2008; Wada et al., 2009). SREBP-1c expression leads 

to up-regulation of lipogenic enzymes essential for de novo lipogenesis (lipid production within 

the cell). Its activation via the CAR receptor leads to increased de novo synthesis (Figure 2) 

and causes lipid accumulation within hepatocytes (Azzout-Marniche et al., 2000 Foretz et al., 

1999; Nguyen et al., 2007). Lipid accumulation can lead to the production of micro and 

macrovesicular fat droplets within hepatocytes if the CAR agonist is not removed, resulting in 
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a fatty liver which leads to the onset of hepatic steatosis (Azzout-Marniche et al., 2000 Foretz 

et al., 1999; Nguyen et al., 2007). 

oEstrogen Receptor (ER) 

The ER, which is also known as the nuclear receptor subfamily 3, group A, member 1/2 

(NR3A1/2), is essential for the normal development and maintenance of the sexual and 

reproductive functions in both males and females (Heldring et al., 2007). ER signalling is 

linked to a wide range of physiological effects in biological systems such as the immune, 

cardiovascular, musculoskeletal and the central nervous system in both men and women 

(Gustafsson, 2005). The ER has two receptor subtypes ERα (NR3A1) and ERβ (NR3A2), 

which share 53% homology of their LBD (Gougelet et al., 2005). Although they share this 

homology, the two receptor subtypes have noticeable differences in their binding specificities 

(Gougelet et al., 2005). However, both ER receptor subtypes have strong affinity for 17β-

estradiol with the main difference in binding being the strong affinity ERβ has for 

phytoestrogens (Kuiper et al., 1997). 

ERα blockers/ antagonists are used therapeutically for the treatment of breast cancer. ER 

agonists have been linked to the development of hepatotoxicity such as hepatic steatosis due to 

their ability to inhibit respiration leading to increased accumulation of triglycerides within the 

liver (Bandypadhyay et al., 2006; Foster, 2012; Lelliot et al., 2005; Moya et al., 2010; Shimizu 

et al., 2007).  

Studies have shown that both ER-α agonists and antagonists can lead to the onset of hepatic 

steatosis, although the mechanisms behind this are not yet fully understood (Lelliott et al., 2005; 

Moya et al., 2010). It was determined that ERα activation causes increased malonyl-CoA levels 

within the cell (Bandypadhyay et al., 2006; Lelliott et al., 2005). Malonyl-CoA is essential for 

energy homeostasis; its regulation determines the rate of cellular fatty acid β oxidation within 
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the mitochondria and fatty acid synthesis within the cytosol (Foster, 2012). At lower 

concentrations, malonyl-CoA acts as a substrate for the enzyme malonyl coenzyme A-acyl 

carrier protein transacylase during fatty acid synthesis, a rate limiting step for the elongation 

of fatty acids. When the concentration of malonyl-CoA within the cytosol is high, it acts to 

inhibit the carnite acyltransferase 1 transporter which prevents the transport of fatty acids into 

the mitochondrial matrix and therefore inhibits mitochondrial β oxidation (Foster, 2012; Lelliot 

et al., 2005). ERα activation causes increased concentrations of malonyl-CoA causing the 

inhibition of mitochondrial β oxidation and thus preventing the breakdown of fatty acids. This 

leade to the accumulation of triglycerides which, as previously discussed, can result in the onset 

of hepatic steatosis (Bandypadhyay et al., 2006; Foster, 2012; Lelliot et al., 2005; Moya et al., 

2010) 

Farnesoid X receptor (FXR)  

The FXR, which is also known as the nuclear receptor subfamily 1, group H, member 4/5 

(NR1H4/5) (Forman et al., 1995), is an essential modulator of lipid and glucose homeostasis 

(Claudel et al., 2005). The FXR has two receptor subtypes FXRα (NR1H4) and FXRβ 

(NR1H5). The endogenous ligand for the FXR receptor is bile acids (Laffitte et al., 2002). After 

FXR ligand binding has occurred, FXR binds to DNA segments termed FXR response elements 

(FXREs), which can elicit activation or repression of the FXREs. FXR can act as a monomer 

or can form a heterodimer with RXR (Claudel et al., 2003). Upon activation via bile acids, the 

FXR regulates bile acid synthesis, bile acid transport, bile acid conjugation and also impacts 

on lipid and glucose metabolism (Claudel et al., 2005). The FXR is highly expressed within 

the liver and intestine (Howard et al., 2000). Studies have demonstrated that the FXR can also 

be activated via triterpenoids (e.g. forskolin) (Zhao et al., 2004) and polyunsaturated fatty acids 

(e.g. arachidonic acid) (Iser et al., 1975). The weak FXR agonist ursodeoxycholic acid is the 

only bile acid used therapeutically. Ursodeoxycholic acid is used for the treatment of gallstone 

https://en.wikipedia.org/wiki/Acyl_carrier_protein
https://en.wikipedia.org/wiki/Acyl_carrier_protein
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disease and cholestatic liver diseases (Claudel et al., 2005). As the FXR plays a pivotal role in 

energy and bile acid metabolism, it has been identified as a promising target for the treatment 

of dyslipidaemia and liver disorders (Claudel et al., 2005). However, this would require the 

development of highly specific FXR modulators and will require extensive research before it 

becomes a reality (Claudel et al., 2005). Chenodeoxycholic acid, demonstrated to be the most 

naturally potent ligand of the FXR, was taken to clinical trials to be used as a potential therapy 

for the treatment of gallstone disease and/ or hypertriglyceridemia (Biddie et al., 2002). 

However, the adverse side effects such as diarrhoea and liver toxicity such as hepatic steatosis 

lead to the withdrawal of this drug as a therapy and has shown the need for further 

understanding of the effects FXR activation induces (Biddie et al., 2002). FXR activation is 

linked to increased expression of PPAR-α (see this section) causing increased accumulation of 

triglycerides within the liver culminating in hepatic steatosis (Figure 2) (Pineda Torra et al., 

2003). 

Glucocorticoid Receptor (GR) 

GR, also known as the nuclear receptor subfamily 3, group C, member 1(NR3C1) is essential 

to the maintenance of various metabolic and homeostatic functions within the body (Anbalagan 

et al., 2012). Cortisol is the naturally occurring ligand for the GR within mammals, it is 

produced via the adrenal gland and is a cholesterol-derived steroid hormone (Lewis-Tuffin et 

al., 2007). Upon ligand binding the GR undergoes a conformational change that triggers its 

translocation to the nucleus, where it induces transcriptional activation of target genes 

(Buttgereit et al., 2012). Post-translational modifications can also occur (such as 

phosphorylation, acetylation and ubiquitination), these can alter the function of the GR target 

genes (Vilasco et al., 2011).  

Therapeutically GR agonists were first used in 1940 for the treatment of rheumatoid arthritis 

(cortisone) (Anbalagan et al., 2012). Since then they have been developed and used for many 
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other chronic inflammatory conditions such as eye infections, asthma (budesonide), skin 

infections (dexamethasone) and for immunosuppression (prednisone) in transplant patients. 

GR agonists have also been developed for the treatment of certain cancers due to their 

antiproliferative and antiangiogenic properties (prednisone) (Chourbaji et al., 2008).  

Upon agonistic binding to the GR anti-angiogenic, anti-inflammatory, proapoptotic and anti-

proliferative effects are induced in the musculoskeletal (Bultink et al., 2013; Weinstein et al., 

2010), nervous (Tronche et al., 1999), visual (Edelman, 2010; Kiernan et al., 2009), 

cardiovascular (Fardet et al., 2012), immune (Silverman et al., 2012; Zen et al., 2011), 

reproductive (Harris et al., 2011), integumentary (Coenraads et al., 2012; Sevilla et al., 2012), 

respiratory systems (Hakim et al., 2012),  and on glucose/ liver metabolism (Rose et al., 2010) 

within the body.  

Studies have shown that when under stress the GR signalling induces glycogenolysis and 

gluconeogenesis within the liver to replenish glucose levels (Biddie et al., 2012; Jia et al., 2009). 

This is an adverse effect of GR agonists and has been linked to the onset of Cushing’s disease, 

Addison’s disease and to the development of hepatic steatosis (Jia et al., 2009; Letteron et al., 

1997). GR agonist have been shown to induce hepatic steatosis due to their ability to both 

inhibit mitochondrial fatty acid β oxidation and to upregluate CAR expression (see CAR 

section), both actions lead to increased accumulation of triglycerides within the liver which can 

lead to hepatic steatosis (Figure 2) (Jia et al., 2009; Letteron et al., 1997) 

Liver X Receptor (LXR) 

The LXR, also known as the nuclear receptor subfamily 1, group H, member 2/3 (NR1H2/3), 

is an adopted orphan NR that upon activation forms a heterodimer with RXR to induce 

transcriptional activation of its target genes (Janowski et al., 1996). The LXR became an 

adopted NR when it was discovered that endogenous oxysterols serve as LXR ligands (Schultz 
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et al., 2000). LXR has two isoforms LXRα (NR1H3) and LXRβ (NR1H2), which are both 

essential for the regulation of cholesterol and lipid metabolism (Rippa et al., 2000). Studies 

have determined that LXRα is expressed mainly in the liver and small intestine whereas LXRβ 

is expressed ubiquitously, with only low expression within the liver (Rippa et al., 2000). 

Investigations have shown that upon LXR activation, intestinal cholesterol absorption (Rippa 

et al., 2002) and hepatic cholesterol synthesis (Rippa et al., 2000) are reduced, whereas the 

expression of genes involved in cholesterol mobilisation (Peet et al., 1998), bile acid synthesis 

(Zaghini et al., 2002), reverse cholesterol transport (Peet et al., 1998) and cholesterol excretion 

into the bile (Grefhorst et al., 2002) are increased. Treatments with LXR agonists have shown 

to be preventative against atherosclerosis during in vivo studies. This has led to the creation of 

a potential therapeutic drug target against atherosclerosis (Rippa et al., 2000). However, LXR 

activation has been linked to the development of hepatic steatosis (Janowski et al., 1996). LXR 

activation is shown to cause up-regulation of: carbohydrate responsive element binding protein 

(ChREBP), SREBP-1c, fatty acid synthase (FAS) and SCD1. ChREBP is crucial for mediating 

the body’s response to glucose on glycolytic and lipogenic genes, it is required for the induction 

of FAS (responsible for transporting triglycerides into cells) and acetyl-CoA carboxylase (ACC) 

(essential enzyme involved in de novo synthesis). Therefore, the induction of ChREBP via 

LXR agonists leads to increased accumulation of lipids inside hepatocytes as more lipids are 

transport into the cell via FAS induction and more lipids are produced via ACC induction 

(Dentin et al., 2006). Similarly, increased SREBP-1c mRNA expression also leads to up-

regulation of lipogenic enzymes ACC and FAS (Nguyen et al., 2007). Up-regulation of the 

SCD1 enzyme leads to increased fatty acid production as it is the rate limiting step in the 

production of unsaturated fatty acids (Zhang et al., 1999). In summary, LXR activation induces 

all the above mentioned pathways, these collectively cause the accumulation of de novo fatty 

acids within the liver resulting in the production of mico and macrovesicular fat droplets within 
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hepatocytes, thus creating a fatty liver and ultimately leading to hepatic steatosis (Kawano et 

al., 2010; Rosen et al., 2008; Zafrani, 2004). 

 

Peroxisome Proliferator-Activated Receptor (PPAR) 

The PPARs, also known as Nuclear receptor subfamily 1, group C, member 1-3 (NR1C1-3),  

are orphan receptors that form heterodimers with RXR upon ligand-induced activation, leading 

to transcriptional regulation of target genes (Issemann et al., 1990). There are three PPAR 

isoforms, namely PPARα (NR1C1), PPARβ (NR1C2), and PPARγ (NR1C3) (Kliewer et al., 

1994). PPARα was the first to be discovered 20 years ago (Lee et al., 1995). PPARα mediates 

increased hepatic peroxisome expression causing increased concentration and density of 

peroxisomes within the liver (Peters et al., 2005). PPARβ and PPARγ share a sequence 

homology to PPARα however they are not involved in peroxisome proliferation (Issemann et 

al., 1990). Studies have shown that PPARβ and PPARγ can interfere with NF-Kβ and API 

signalling through protein-protein interactions (Peters et al., 1997; Satoh et al., 2013). All 

PPAR isoforms are encoded for by separate genes, have different expression levels within 

various tissues and are expressed by all mammalian species (Dreyer et al., 1992). PPARα is 

essential for the down regulation of apolipoprotein CII mRNA expression However; the 

mechanism behind this pathway is not understood (Misrahi et al., 1987).   

PPARγ agonists are used to regulate glycaemia in type II diabetics. PPARα agonists are used 

to treat atherosclerosis. PPARγ and PPARα dual agonists are used to improve glycaemia and 

the condition of the cardiovascular system in patients with type II diabetes. PPARα and PPARγ 

ligands have been shown to cause hepatic steatosis due to lipid accumulation (Honkakoski et 

al., 1998; Misrahi et al., 1987). The mechanisms behind PPARα and PPARγ induced hepatic 

steatosis differ: 
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PPARα 

The production of energy (in the form of ATP) in the liver is controlled by both mitochondrial 

and peroxisomal β-oxidation (Nguyen et al., 2007; Reddy and Roa, 2005). Peroxisomal β-

oxidation involves the oxidation of long or very long chain fatty acids and results in less ATP 

production than mitochondrial β-oxidation. One of its key enzymes is the fatty acyl-CoA 

oxidase (AOX) which catabolises the dehydrogenation of fatty acids into acetyl –CoA 

(Hashimoto et al., 1999).  

The PPAR-α receptor acts as a sensor for fatty acids and is responsible for the transcriptional 

activation of the AOX enzyme in the liver. Upon antagonistic binding to the PPARα, down 

regulation of the AOX enzyme follows leading to the inhibition of microsomal β-oxidation 

(Figure 2). This causes an accumulation of fatty acids within the liver, if PPARα antagonism 

continues, the build-up of triglycerides will also continue which will eventually lead to the 

production of micro and macrovesciular intra-cytoplasmic fat droplets within hepatocytes. As 

discussed previously, micro and macrovesciular fat droplets induce nucleus distortion, 

mitochondrial disruption and endoplasmic reticulum stress (Figure 2) (Nguyen et al., 2007; 

Reddy and Roa, 2005; Zafrani, 2004). These effects result in a fatty liver which becomes 

diagnosable as hepatic steatosis when lipid weight is between 5-10% of the total liver weight 

(Kawano et al., 2010; Rosen et al., 2008; Zafrani, 2004). 

PPARγ 

PPARγ activation leads to increased expression of SREBP-1c, increased expression of fatty 

acid translocase CD36 (CD36), and cellular differentiation (Al Sharif et al., 2014; Miquilena-

Colina et al., 2011; Rippa et al., 2000) (Figure 2). Increased SREBP-1c mRNA expression 

leads to up-regulation of lipogenic enzymes such as ACC (catalyses elongation of the fatty acid 

chain in de novo lipogenesis) and FAS (multifunctional enzyme responsible for catalysing 

many steps in de novo lipogenesis) (Azzout-Marniche et al., 2000 Foretz et al., 1999; Nguyen 
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et al., 2007). CD36 maintains uptake and intracellular trafficking of fatty acids and is also 

essential for the esterification of fatty acids into triglycerides. The increased expression of 

SERBP-1c and CD36 are known to induce accumulation of de novo fatty acids. De novo 

lipogenesis is the process of lipid production inside the cytosol of a cell and is necessary for 

energy homeostasis within mammals (Nguyen et al., 2007). Increased production of de novo 

fatty acids has been demonstrated to cause accumulation of triglycerides within the liver which 

ultimately results in the onset of hepatic steatosis (Figure 2) (Postic and Girard, 2008; Rippa et 

al., 2000; Peraza et al., 2006). 

Pregnane X Receptor (PXR) 

The PXR is also known as the steroid Nuclear receptor subfamily 1, group I, member 2(NR1I2) 

(Venkatesh et al., 2011). PXR is an adopted orphan nuclear receptor that upon ligand binding 

forms a heterodimer with RXR, this mediates transcriptional up-regulation of target genes 

(Gonzalez et al., 1991). 

PXR can be activated by both small (e.g. estradiol 268Da) and large molecules (e.g. rifampicin 

823 Da). The naturally occurring ligands for PXR are steroids pregnenolone and progesterone. 

The synthetic ligands that have been shown to bind to PXR are glucocorticoid agonists and 

antagonists (Bertilsson et al., 1998). The PXR is known to bind a large range of structurally 

unrelated chemicals. X-ray crystal structures of the PXR-LBD have shown it to have a larger 

LBD compared to other NRs. This may account for its promiscuous binding (Watkins et al., 

2001). Therefore, PXR has low substrate specificity and can be activated by many different 

chemicals. 

Research has demonstrated that the PXR is essential for the modulation of hepatic drug 

metabolism (Li et al., 2012). Metabolic clearance especially via the phase I cytochrome p450 

enzymes (CYP450), is vital for endogenous (bile acids) and exogenous (xenobiotics) 
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detoxification and essential to the survival of an organism (Waxman et al., 1999). Both the 

CYP3A and CYP2B isoenzymes mediate the metabolism of many clinical drugs and can be 

induced by substrate binding, therefore they are up-regulated to meet hepatic requirements 

(Smith et al., 1993). The PXR and CYP3As are both highly expressed within the liver 

(Bertilsson et al., 1998).  Studies have determined that PXR up-regulates hepatic CYP3A 

expression along with other CYP450 enzymes. This was demonstrated via the use of PXR 

Knock Out (KO) mice. The mice were both viable and fertile, however upon dosing with 

xenobiotics the PXR KO mice developed severe hepatotoxicity as CYP3A could not be up-

regulated. These studies established that PXR is the central mediator of CYP3A induction 

(Hoekstra et al., 2009; Smith et al., 1993; Xie et al., 2000). Studies showed that upon ligand 

binding PXR forms a heterodimer with RXR and binds to the Direct Repeat 3 (DR3) site on 

the CYP3A promoter this mediates transcriptional activation (Bertilsson et al., 1998). The 

mechanisms underlying PXR activation are still unknown.  

It has been shown that PXR agonists induce a decrease in plasma LDL cholesterol levels (Bitter 

et al., 2014) and the onset of hepatic steatosis (Bitter et al., 2014; Kaisimanickam et al., 2013) 

in vivo. Research has shown that PXR agonists increase the expression of PPARα (see PPAR 

section) which leads to increased triglyceride accumulation within the liver which can lead to 

hepatic steatosis (Figure 2) (Moreau et al., 2007).  

Retinoic Acid Receptor (RAR) 

The RAR, also called nuclear receptor subfamily 1, group b, member 1-3 (NR1B1-3), is 

divided into three subtypes: RARα (NR1B1), RARβ (NR1B2) and RARγ (NR1B3). Bound 

together with the retinoid X receptor (RXR) as a heterodimer, RAR regulates genetic 

expression as transcriptional repressors in absence of ligands. RAR is important for regulating 

of cellular proliferation and differentiation (Liu et al., 2014). All three subtypes of the RAR are 
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activated by all-trans retinoic acid and 9-cis retinoic acid, which are derivatives of vitamin A 

(Liu et al., 2014). Ligands are used in pharmacological treatment of dermal diseases, such as 

Acne vulgaris, Psoriasis vulgaris, Keratosis pilaris and specific types of cancer, e.g. acute 

promyelocytic leukemia (Alizadeh et al., 2014; Leyden et al., 2005). Effects of RAR agonists 

include changes in lipid metabolism, which may cause hepatic steatosis and eventually liver 

inflammation, fibrosis and finally liver failure. Teratogenic effects and neural disorders, such 

as nausea and headache, have been also reported from retinoids (Biesalski et al., 1989; Moya 

et al., 2010; Shalita et al., 1988). Moya et al (2010) demonstrated that the retinol forms of RAR 

agonists are able to induce steatosis in hepatocytes, however, the retinoic acid forms were not 

able to induce this same effect. The difference in these toxic responses are not yet understood 

but the mechanistic route for the onset of steatosis is suggested to be via the up regulation of 

lipid synthesis leading to increased accumulation of triglycerides within the liver (Figure 2) 

(Moya et al., 2010). 

 

AOP Formulation  

All the findings from the NR literature are summarised in Table 2 below. As can be seen the 

AHR, AR, CAR, ER, FXR, GR, LXR, PPAR, PXR, RAR, RXR and THR are all associated 

with hepatic injury, however, only AHR, CAR, ER, FXR, GR, LXR, PPAR, PXR, RAR and 

RXR (Table 2 - highlighted with *) have been shown to induce hepatic steatosis upon binding. 

Upon studying the mechanistic information gathered it was noted that activation of those NR 

associated with the onset of hepatic steatosis followed a similar chain of events. Activation of 

these NRs leads to triglyceride accumulation within the hepatocytes which then ultimately 

results in hepatic steatosis. Using the evidence found within the literature and the AOPs found 

on the AOP wiki, an AOP pathway for NR induced hepatic steatosis is proposed (Figure 2). 

TABLE 2 HERE 
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FIGURE 2 HERE 

The AOP pathway reported in Figure 2 has been adapted from the diagram available on the 

AOP wiki website (AOP, May 2015). The AOP pathways 1-7 (blue arrows) are extracted from 

the original figure and AOPs 7-10 (green and orange arrows) have been added. The AOPs 1-6 

that have been highlighted green and the arrows that are green show the NR pathways that have 

been studied within this critical review and further strengthen the evidence for these AOP 

pathways. For all AOPs within Figure 2, the chemical is the NR agonist and the MIE is the 

binding of these agonists within the NR binding pocket to initiate activation of the NR. The 

key event is triglyceride accumulation and the adverse outcome is hepatic steatosis. The key 

events of this AOP (Figure 2) are affirmed via the literature search carried out within this 

review; however, the molecular processes between the MIE and the key events should be 

explored further.  

 

Conclusion 

The links between the chemical structure of NR ligands and the biological responses of the NR 

they bind to have been elucidated, this has provided knowledge of the toxicological pathways 

linked to these NR, specifically to the adverse outcome of hepatic steatosis. However, more 

work will need to be carried out to form this AOP, with the next essential step being the 

formation of structural alerts. This critical review has given an example of how current AOPs 

can be extended and developed via the use of literature review in order to bring together 

different (in vitro, in vivo and in silico) existing mechanistic / toxicological knowledge for a 

particular AOP. To conclude, this study has highlighted the importance of the promotion of the 

AOP concept to the scientific community to gain wider participation and has shown the way in 

which AOP formation can be developed and extended using current knowledge. 
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Table 1: Nuclear Receptors associated with liver injury and their abbreviations 

Nuclear receptor name Abbreviation 

Arhyl Hydrocarbon Receptor  AHR 

Constitutive Androstane Receptor  CAR 

oEstrogen Receptor  ER 

Farnesoid X Receptor  FXR 

Glucocorticoid Receptor  GR 

Liver X Receptor  LXR 

Peroxisome Proliferator-Activated Receptor  PPAR 

Pregnane X Receptor  PXR 

Retinoic Acid Receptor  RAR 
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Table 2: Summary of the effects on the liver following activation of Nuclear Receptors 

Nuclear 
receptor 

Agonist effect on liver 
Antagonist effect on 

liver 

AHR Induces hepatic steatosis* - 

CAR Induces hepatic steatosis* - 

ER Induces hepatic steatosis* Induces hepatotoxicity 

FXR Induces hepatic steatosis* - 

GR Induces hepatic steatosis*   

LXR Induces hepatic steatosis* - 

PPAR PPAR γ Induces hepatic steatosis* PPARα 

PXR Induces hepatic steatosis* - 

RAR Induces hepatic steatosis* - 

RXR Induces hepatic steatosis* - 
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Figure Titles  

 

 

Figure 1. Structure of an AOP adapted from Ankley et al (2010) 

 

Figure 2. Updated AOP for steatosis, developing that presented by Vinken (2013) 
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