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Abstract 

Particle separation is a technological area where microfluidics shows promises 

towards miniaturization, specificity, and throughput. We study here the mechanisms 

for particle separation in deterministic lateral displacement (DLD), a size-based 

microfluidic particle separation method. The experiments are also designed to be a 

model system for colloidal transport on solid-water (SWI) and air-water (AWI) in 

subsurface. To mimic particle transport around the obstacles in DLD we developed a 

simple but versatile microfluidic platform in which the particles’ trajectories are tracked 

during their motion around an individual solid (PDMS) or fluid (bubble) obstacle.  

The trajectories of individual particles passing an obstacle are analyzed using a 

collision model1. In this model there are two types of particle–obstacle collisions. The 

hydrodynamic collisions are reversible with symmetric trajectories around the obstacle. 

The touching collisions are irreversible with asymmetric trajectories. We characterize 

the type of collision for particles transport via both pressure-driven flow and gravity-

driven transport. Only hydrodynamic collisions are observed with pressure-driven flow 

as the particles follow symmetric trajectories with respect to the obstacle. We also do 

not observe adsorption of the particles to either the AWI or SWI. In contrast, we observe 

both symmetric and asymmetric particle trajectories for gravity-driven particle 

transport. We observe a transition from symmetric to asymmetric trajectories as the 

impact point between the particle and the obstacle moves from the top to closer to the 

center of the obstacle. We find that the transition between symmetric and asymmetric 
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trajectories depends on the particle size and show that we can rely on this size 

dependence for particle separation. In addition, we find that particles around fluid 

obstacle have smaller transitioning impact point than that of solid obstacle even if the 

obstacles have nearly same size and shape. 
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Chapter 1. Introduction  

1.1 Importance of hydrodynamic-based separation methods in microfluidic 

devices 

 Hydrodynamic separation is a type of technology that utilize the hydrodynamic 

interactions between geometries in microfluidic devices and the species being sorted, 

which is widely involved in medical tests, biochemical essays, chemical processing and 

environmental assessment. One advantage of microfluidic separation technique is the 

small sample volume required, which results in less cost of reagents and device 

fabrication, continuous operation, shorter analysis period and minimal invasive during 

sample extraction from patients or experimental animals.  

As a representative of hydrodynamic separation, deterministic lateral displacement 

(DLD) relies on how the trajectory of particle is affected by the presence of a nearby 

obstacle2 (as shown in Fig. 1). The mechanisms for hydrodynamic separation has been 

the subject of various studies, due to its importance in biochemical assays3, cell 

manipulation4, environmental test5. Its profound impact and numerous applications 

have aroused scientists’ interests in the past decade. For example, the tendency of the 

self-propelled particles (SPPs) to attach to solid surfaces has been reported6. Tissue-

like multilayer cellular structures (MLCs) have been utilized to investigate gold 

nanoparticles(GNPs) interaction at interfaces in nano/ micron scale7. In pinched flow 

fractionation8, particles entering a constriction and exiting into a sudden expansion 

experience a lateral displacement and separated by the spreading streamlines according 
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to their sizes. Deterministic lateral displacement (DLD)9makes use of asymmetric 

bifurcation of laminar flow around a periodic array of solid obstacles, thus particles 

deterministically select their path base on their size and deformability.  

 

Figure 1. An example of particle pass the constriction created by a plane wall and spherical 

obstacle2. Adapted from Risbud, S et al. (2014) 

1.2 Overview of microfluidic Products 

With the growing interest in device miniaturization, microfluidics, which is also 

known as Lab-on-Chip (LOC), products are widely used in various fields of research. 

The fast reaction times, small sample volume required, and avoidance of cross-

contamination make LOC products ideal platforms for analytical chemistry, biological 

analysis, and medical tests.  

The silicon-based (e.g. glass and quartz) microfluidic device first came out due to the 

development of silicon fabrication technology in 1980s10. Nevertheless, the silicon-

based microdevices also have weaknesses namely, expensive, fragile and complicated 

to fabricate or duplicate. Driven by these shortcomings, scientists tend to find superior 

substitutes in terms of simplified fabrication process, reduced costs, and increasing 

robustness. Consequently, various polymer-based plastic materials, such as 
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poly(dimethylsiloxane) (PDMS)11, 12, poly(methylmethacrylate) (PMMA)12, 13, 

polycarbonate (PC)14, 15, polyimide (PI)16, 17, and poly(ethylene terephthalate) (PET) 18 

have dominated in microfluidic products through the past few decades. One of the most 

commonly used polymer is a transparent silicone elastomer, polydimethylsiloxane 

(PDMS). It has been most widely applied in micro-fabrication due to a simple and 

versatile molding process, biocompatibility, low-cost, high thermal resistance, optical 

transparency in visible wavelengths19. Bonding is one of the key steps in micro-

fabrication. Strong device assembly can be achieved by introducing surface hydroxyl 

groups via plasma treatment13 followed by thermal curing20. In general, PDMS, 

together with silicon wafer and glass, make up a fundamental microfluidic platform.  

Since the dimensions of microfluidic products have reached micron scale, some 

traditional limits on biological process or chemical reactions are eliminated to some 

extent, for heat transfer, diffusion rate and reaction rate could rise dramatically.21 This 

nature enables microfluidic technology with small sample consumption, high 

sensitivity, and fast response time.22 For these benefits, practical microfluidic 

technologies have been widely applied in various fields such as biochemical assays3, 

cell manipulation4, environmental test5, etc.  
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Advantages Disadvantages 

Increased spatial resolution Low signal-to-noise ratio  

Automated measurement  Insufficient precision and accuracy 

Robustness  Unknown physical and chemical effects 

User-friendly interfaces Not yet integrated with novel technology 

Portability and disposability   

New opportunities for integrated chips  

Table 1. Advantages and disadvantages of LOC products23. 

1.3 Applications of hydrodynamic interactions between particles and obstacles  

The nature of hydrodynamic separation in microfluidic devices is particle behaviors 

near obstacle with restriction2. This also provides simple model to mimic numerous 

phenomenon in micro- or macroscale, including emulsions, flotation, and transport in 

porous media, which will be discussed in the following paragraphs. 

1.3.1 Transport of particles in porous media 

Micro-models have been utilized as valuable tools to investigate and visualize the 

transport of particulates in unsaturated porous media. They have been employed in 

various areas, such as displacement mechanisms for water/ air or oil in porous media24, 

25(as shown in Fig. 2), multiphase fluid distribution and flow at permeability 

boundaries26, role of surface chemistry in colloidal interfacial retention at the pore 
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scale27, energy issues in multiphase transport within porous media28, reservoir on- a- 

chip29.  

To visualize particles’ behavior using the micromodel, an open-end micro-channel 

and microscopy are indispensable. Initially, visualization of colloids dynamics within 

unsaturated media were performed in glass micro-models under optical fluorescent 

microscopy, where the air phase was static with steady aqueous phase flow30, 31. Later, 

air bubbles were injected into etched glass micro-channels so as to study colloids 

interaction with a single air bubble at pore scale32, 33. Since 1980s, silicon-based micro-

chips have been used to study colloids behaviors in porous medium34. Compared to 

glass and silicon, a soft material like PDMS11, 12 or PMMA12, 13 is preferred since these 

elastomers are less expensive or fragile and easier to fabricate or duplicate. 

The colloidal attachment and mobilization in presence of fluid/fluids or fluids/solid 

interfaces within unsaturated porous media has been widely investigated. Optical 

microscopy generates an overall image of the whole channel depth, while confocal 

microscope, could focus and obtain images of colloids-fluid interaction at various 

depths within the channel. Fluorescent dyed fluids or fluorescent particles is necessary 

in confocal microscopy. In this way, the sample can be imaged spatially in 3D by 

superposing two dimensional images taken at sequential z stacks35. 
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Figure 2. Flow and transport of colloidal particles attached with possible radioactive 

contaminants36. Adapted from Sharma, P et al. (2012). 

1.3.2 Flotation 

Flotation is a physicochemical process that makes use of the difference in the surface 

properties of the wanted and unwanted particles. It is a common separation method in 

various industries, e.g. mining37, waste water treatment38 and paper recycling39. It 

involves interaction between solid, liquid and air phases, which is manipulated by the 

bubble–particle attachment mechanism. Scientists have studied bubble–particle 

attachment mechanism in numerous aspects, such as bubble–particle attachment time40, 

particle dropping technique41, AFM bubble–particle measurements42, 43, bubble and 

particle zeta potential measurements44, and flotation recovery experiments45, 46. 

During flotation, particles and bubbles collide, and hydrophobic particles might get 

attached by bubbles47-49, as shown in Fig. 3. These particle-bubble attachment were 

collected by selective reagents, transported to the froth zone whereas the hydrophilic 

particles remain in the liquid phase. Surface chemistry of both particles and air bubbles 
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affect the bubble–particle attachment47-49. For example, surface chemistry of particles 

could be controlled by reagents adsorption onto particle surfaces, which makes particles 

more hydrophobic. 

Induction time, tind, is a key parameter characterizing the probability of particle–

bubble attachment, which was first identified by Sven-Nilsson in 1934. In flotation the 

induction time can be interpreted as a threshold sliding duration48. On particle is 

approaching bubble, it will first deviate from its initial trajectory, due to the fluid forces, 

and then it will slide over the bubble's surface for a while, tslide. If tslide<tind, then 

attachment is unlikely to happen; conversely if tslide>tind, then attachment is expected to 

happen.  

 

Figure 3. Scheme of particle attachment and flotation during the flotation deinking process50. 

Adapted from Beneventi, D. et al. (2010). 

1.3.3 Pickering Emulsion  

Named after S.U. Pickering51, Pickering emulsions are stabilized by solid particles, 

which adsorb onto the interface between the two phases(usually oil/water), as shown in 

Fig. 4. They are widely used in food industry52, life sciences53 and materials science54. 
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While lots of emulsions are stabilized by surfactants, the mechanism of solid particle 

adsorption is different from surfactants, because the particles do not have to be 

amphiphilic. The substitution of solid particles makes the Pickering emulsion highly 

stable against coalescence. In addition, the Pickering emulsions are preferred in areas 

where surfactants often bring about side effects, especially in cosmetic and 

pharmaceutical products. Solid stabilizing particles are usually smaller than emulsion 

droplets. Unlike classical emulsions, the utilization of solid particles in micrometer, 

results in stabilization of droplets and generation of emulsions in millimeter. 

Many organic or inorganic particles sized from nano to micronmeter are chosen as 

stabilizer, such as block copolymer micelles, latex and silica. Stabilizing particle should 

fulfil the partial wetting condition for water and oil. This is often achieved by surface 

modification of the solid particles making them more hydrophobic. The commonly used 

methods of surface modification include: chemical grafting(e.g. organosilanes on silica 

particles) 55, adsorption of surfactants prior to emulsification56, adsorption of organic 

molecules and polymers 57, and adsorption of multivalent ions of opposite charge 58.  

The emulsion type (oil-in-water (o/w), water-in-oil(w/o) or multiple) is controlled by 

the wettability of the solid particles59, which is often characterized by the contact angle 

in water, θw. More hydrophilic particles favor o/w Pickering emulsions (θw< 90°) 

while more hydrophobic particles favor w/o emulsions (θw > 90°). 



9 

 

 

Figure 4. For oil–water mixtures , emulsion drops of oil in water or water in oil are stabilized with 

hydrophilic or hydrophobic particles respectively60. Adapted from Binks B. et al. (2006). 

1.4 Fluid control in LOC device 

Application of microfluidic products still face some challenges due to certain 

technical limitations, among which fluid manipulation often becomes a central source 

of complexity and mechanical failure. Fluids in microsystems are controlled via a 

number of external fields, namely pressure, electric, magnetic, acoustic, etc. The 

transport of liquid/gas or liquid/liquid interfaces in channels with partially wetting 

surfaces could be realized using capillary pressure gradients. The changes in surface 

tension gradient (Marangoni stresses61) could be adapted by thermal, chemical, 

electrical, or light gradients. According to Young-Laplace equation, △P=2γH, where 

△P is the pressure difference across the fluid interface, γ is the surface tension (or wall 

tension), H is the mean curvature, and R1 and R2 are the principal radii of curvature. 

The capillary pressure can be generated by adapting the wetting properties (surface 

tension γ) by one or more of the factors mentioned above, or geometry (mean curvature 

H). Thermal62, magnetic63 and electric64 gradients have be utilized to drive droplets, 
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and modification of channel dimension successfully drive droplets in absence of a 

power supply65. In case of pressure-driven flow, the chemical gradient could also 

introduce changes in wettability and thus capable to move the air-water interface in a 

microchannel66. When it comes to manipulation of fluids in microsystems more 

versatile way, the driving forces and the surface characteristics are usually coupled.  

1.5 Particle separation in microfluidic devices 

Apart from microparticles, the sorting and separation of other micron-sized objects 

in a continuous flow arise in numerous applications, including food sterilization67, 

mining68 and biochemical analyses69. For example, unwanted microorganism can be 

removed with the help of separation techniques in food samples67. In theradiagnostic 

processes, the separation techniques can be utilized in sorting living cells VS dead cells, 

cancer cells VS normal cells and malaria-infected cells VS healthy cells70. Sorting and 

separation of droplets71 are also necessary since droplets could function as 

microreactors or for encapsulation in drug delivery and manufacturing industry, which 

requires uniformity and consistent product quality. 

Based on operating principles, the sorting methods could be categorized into passive, 

active or combined ones. Passive techniques utilize the interaction between particles, 

channel structure and fluids field, and external fields are not involved. On the other 

hand, active techniques require external fields (e.g. electric72, acoustic73, gravity2, 74, 75, 

etc.) but increase the particle sorting efficiency compared to passive techniques. Thus, 

passive separation techniques are chosen in applications where external energy is not 
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eligible to introduce, while active separation techniques can be used where higher 

particle sorting efficiency is the primary concern. In real-world applications, the passive 

techniques are sometimes coupled with external fields in order to enhance the 

separation and sorting performance. Among current separation strategies for particulate 

systems in microfluidic devices, deterministic lateral displacement (DLD) and pinched 

flow fractionation (PFF) are promising, as they can operate continuously and at high 

flow rates.  

1.5.1 Deterministic lateral displacement (DLD) 

Deterministic lateral displacement (DLD) utilizes arrays of cylindrical obstacles 

placed in the microchannel. Based on their size, the species are locked into periodic 

trajectories that exhibit lateral displacement as they pass through the gap between 

obstacles1, 9, 71, 74, 76-81. D is the diameter of the obstacle. The center-to-center distance 

between the adjacent obstacles is λ, and each row is shifted vertically by ɛλ relative to 

the previous row(shown in Fig. 5). The irreversible collisions between the particle and 

the obstacle introduces a lateral displacement and breaks the symmetry of the particle 

trajectory. When particles passing through the gap between obstacles, the asymmetric 

bifurcation of laminar flow around obstacles make the particles select their path 

deterministically base on their size. While smaller particle exhibits a “zigzag” shape 

trajectory, larger particle go straight through the gap between adjacent rows. In this way, 

different sizes of particles could be separated continuously82, as shown Fig. 5. Apart 

from being employed as a flow-driven, passive separation method, DLD could also be 
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combined with external forces (f-DLD), to drive and separate particles. Gravity and 

electric fields have successfully drive the separation of suspended particles in force-

driven DLD systems. 

 

Figure 5. Schematic illustration of the fluid streamlines (Re<<1) through an array of cylindrical 

obstacles. Each row is shifted vertically by ɛλ relative to the previous row, where λ is the inter-

obstacle distance, ɛ is the row shift fraction and g the gap between the obstacles82. Adapted from 

Holmes, D et al. (2006). 

1.5.2 Pinched flow fractionation (PFF) 

In pinched flow fractionation PFF, separation is performed as the species in the 

mixture are displaced laterally when they go through a constriction (pinched segment) 

first and then enter an expansion2, 8, 83-87. The PFF technique assumes that the fluid is 

incompressible, and no-slip condition, low Reynolds number and steady-state 

conditions are satisfied. In addition, it is based on the assumption that the particles do 

not perturb the fluid flow or interact with the channel walls. In laminar flow, particles 

have the tendency to follow the streamline passing through their centers. The mixture 
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of fluid and particles coming out of the pinched segment is separated by the spreading 

streamlines passing through them based on their sizes.  

As shown in Fig. 6, buffer stream and particle solution are injected into the 

microchannel from separate inlets. By controlling the flow rates of both fluids, particles 

are forced on one of the sidewalls when they pass the pinched segment. Next, a force 

toward the center of the microchannel is exerted mainly on the larger particles, whereas 

a force toward the sidewall is exerted mainly on the smaller particles (Fig. 6b). 

Consequently, the slight difference of the particle displacements in the pinched segment 

is largely amplified in the expansion segment. Thus the particles could be separated 

according to their sizes in vertical direction as to channel wall. 

 

 

Figure 6. Principle of pinched flow fractionation8. (a) In the pinched segment, particles are aligned 

to one sidewall; (b) particles are separated according to their sizes when they pass a constriction 

(pinched segment) first and then entering an expansion. Adapted from Yamada, M D et al. (2004). 
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1.6 Highlight in our work 

We developed a simple but versatile microfluidic platform employing semi-circular 

cylinder solid (PDMS) and fluid (bubble) obstacle in PDMS microchannel, to mimic 

the colloidal transport on solid-water (SWI) and air-water (AWI) in subsurface. Initially, 

we employ pressure-driven flow to pulse the particles in channel. While particles move 

downstream to the bubble or PDMS solid obstacle, they never stick on either AWI or 

SWI, but rather move around the obstacle and follow the streamline, exhibiting 

symmetric trajectories as to obstacle center. Later on, instead of pressure driven flow, 

gravity is employed to drive the particles through the channel and pass the obstacle. 

Here we observe both symmetric and asymmetric particle trajectories as to obstacle 

center.  

The flows involved in microfluidics are typically Stokes flows, in that, the 

corresponding Reynolds numbers are negligible (Re <<1). Here we use collision 

model1 to describe the trajectories of particles passing an obstacle. The particle 

trajectory is characterized by an offset, which is defined as its distance from the line 

passing through the obstacle center along the direction of motion far away from the 

obstacle. The interaction between a particle and an obstacle determines its subsequent 

trajectory, since the interaction is subject to size, shape, density or some other properties 

of particles. In this model there are two types of particle–obstacle collisions. The 

hydrodynamic collisions are reversible in the absence of inertia and thus there is no net 

lateral displacement (symmetric trajectories). The touching collisions are irreversible, 
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since hard-core repulsion prevents the particle from getting closer than minimum 

separation to the obstacle, which gives rise to a net lateral displacement (asymmetric 

trajectories). 

We analyze the motion and interactions of a suspended spherical particle passing 

through a constriction between a fixed half-circular cylindrical obstacle and a plane 

wall, to better understand the mechanisms of microfluidic separation techniques. We 

use the critical parameter to understand the behavior of particle trajectories passing 

through a constriction. We observe that the critical parameter increases with increasing 

particle radius, which is the underlying mechanism for the microfluidic separation 

technique called pinched flow fractionation86. For a given size of constriction, the larger 

the particle size the more it ‘feels’ the effect of the constriction, resulting in a larger 

critical parameter in the presence of the non-hydrodynamic interactions. The key 

finding of this work that the critical parameter observed (in microfluidic experiment 

and COMSOL simulation) to increase with particle size. Therefore, size-based particle 

separation is possible. 



16 

 

Chapter 2.  Material and Method 

2.1 Materials 

Elastomer (Dow Corning Sylgard 184) is purchased from Robert McKeown Inc. 

(Branchburg, NJ). Sillicon wafer is purchased from University Wafer (Boston, MA). 

SU-8 2025 and SU-8 2075 photoresist and developer are purchased from Microchem 

Corp. (Newton, MA). Coverslips (12-545-J 22×60–1) purchased from Thermo Fisher 

Scientific Inc. (Pittsburg, PA). Sodium Dodecyl Sulfate (SDS) is purchased from 

Sigma-Aldrich (St. Louis, MO) and diluted with deionized water to a final 

concentration of 5mM. Silica particles (diameter = 10, 15, 20μm) are purchased from 

Bang’s Laboratories (Fishers, IN) and sulfate polystyrene latex particles (diameter = 3, 

5, 9, 20μm) are purchased from Thermo Fisher Scientific Inc. (Pittsburg, PA). Unless 

mentioned otherwise, all chemicals are used as received. 

2.2 Fabrication 

Molds for the PDMS channels are fabricated using conventional photolithography11 

method. Micropatterns, which serve as template for the microfluidic channels, are 

fabricated on a silicon wafer to reach a final thickness of either 33μm (SU-8 2025) or 

100μm (SU-8 2075). The elastomer base and curing agent are mixed in a 10:1 ratio and 

then spin-coated onto the mold, followed by degassing under vacuum for 20 min. 

Following degassing, the elastomer is cured overnight at 70 °C, then is peeled off from 

the mold. The Fluid ports are punched into the PDMS using a 0.75 mm Uni-core biopsy 
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punch (Harris, Ted Pella, Inc. USA). The microchannel and coverslip are then exposed 

to oxygen plasma (Technics PEII A/B) and immediately aligned and sealed. 

Two different microfluidic devices are fabricated. First a standard T-channel88 is 

employed to study the particle trajectories around a captive bubble (see Fig. 7A). 

Second a channel with a cylindrical obstacle is fabricated to study the particle 

trajectories around a solid obstacle (see Fig. 7B). All the channels have a rectangular 

cross-sections. Dimensions of channels are shown in Table 2. 

2.3 Characterization  

The final dimensions of the microchannels were measured by the Optical 

Profilometer function of a 3D laser scanning microscope (Keyence VK–X100) and 

processed by VK Viewer software.  
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Figure 7. 3D optical Microscopic image of (A) T–channel and (B) a channel with a solid 

obstacle. Schematic illustration of (C) T–channel and (D) a channel with a solid obstacle. 

Dimensions of channels are shown in Table 1 
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Table 2. Characteristic dimensions of the T-shape and solid obstacle channel studied in this work. 

As shown in Fig.1 (A) and (B), the width W1 of the channel that carries liquid phase, the width W2 

of the channel that carries liquid phase (only T-shaped channel), the radius R of the solid obstacle 

(only solid obstacle channel), the gap G between the obstacle & the bottom of channel (only solid 

obstacle channel) and the height H of the channel.  

Sulfate polystyrene(PS) latex particles are dispersed in a 5mM aqueous sodium 

dodecyl sulfate (SDS) solutions to a final concentration of approximately 0.4% (w/v) 

while silica particles are dispersed in deionized water to a final concentration of 

approximately 0.2% (w/v), followed by sonication for two minutes before each 

experiment. We flow PS particle solution in the horizontal channel and pump air 

downwards in the vertical channel so as to create a bubble right at the T junction. By 

adjusting the pressure difference from all three inlets, we are able to change the bubble 

size and flow rate. Images are captured by Nikon Confocal microscope and are 

processed by NIS Elements Viewer software. The air bubble and the flow of the 

polystyrene particle solution are controlled by a pressure system. Through plastic 

tubing and steel needles at the end, fluids could be infused via ports at the end of 

No. 
Width W1 

(m) 

Width W2 

(m) 
Height H (m) 

Obstacle 

Radius  

R (m) 

Gap G(m) 

1 100 100 33 - - 

2 50 50 33 - - 

3 100 100 100 - - 

4 100 - 100 60 20 

5 100 - 100 60 30 

6 100 - 100 60 40 
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channels. Pressure difference between the inlet and outlet of the T-channel is 0.1-0.3psi, 

giving a flow rate of approximately 200μm/s. Silica particle solution is injected into 

channel using a Hamilton Syringe to pump in air column. The device is leveled on the 

microscope. The silica particles were driven by gravity when tilting the entire 

microscope at about 15° to 20°. The Images were captured using MC352+ microscope 

and were processed by Motic image software. 
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Chapter 3.  Result and Discussion  

3.1 Determination of critical impact parameter 

We employ a simple model1 to describe the trajectories of particles past an obstacle. 

In this model there are two types of particle–obstacle collisions that are characterized 

by the incoming offset,𝑏𝑖𝑛, defined as the vertical distance between the asymptotic line 

of particle trajectory and the obstacle center before the collision (illustrated in Fig. 8). 

Correspondingly, we define the outgoing offset, 𝑏𝑜𝑢𝑡, as the vertical distance between 

the asymptotic line of particle trajectory and the obstacle center after the collision. If 

the incoming offset is larger than a critical value defined as 𝑏𝑐, the particle trajectory is 

symmetrical passing across the obstacle, as predicted from Stokes flow (see the top 

trajectory in Fig. 8), i.e. 𝑏𝑖𝑛 = 𝑏𝑜𝑢𝑡. In this paper we refer to this type of collision as 

reversible. The second type of collision, referred to as irreversible collision, occurs 

when the incoming offset, 𝑏𝑖𝑛 is below or equal to some critical value, 𝑏𝑐 (bottom 

two trajectories in Fig. 8), leads to outgoing offsets that no longer depend on the impact 

parameter and that are always equal to 𝑏𝑐. 
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Figure 8. Schematic illustration of reversible and irreversible particle trajectories around a fixed 

sphere obstacle in particle–obstacle collision model. The symmetric trajectory on top shows 

reversible, purely hydrodynamic collisions where 𝒃𝒊𝒏 > 𝒃𝒄  and 𝒃𝒊𝒏 = 𝒃𝒐𝒖𝒕 . The asymmetric 

trajectory on bottom shows irreversible, touching collisions where 𝒃𝒊𝒏 < 𝒃𝒄 and 𝒃𝒐𝒖𝒕 = 𝒃𝒄.  

3.2 Particle trajectories under pressure-driven flow 

Solutions with dispersed polystyrene particles were injected in the horizontal channel 

of a T-shaped microfluidic device. The trajectories of the particles were monitored as 

they flew past the solid or bubble obstacle under pressure-driven flow. We monitor both 

the incoming and outgoing offsets. We find that under pressure-driven flow the particle 

trajectories are always symmetrical for both solid and fluid obstacles. As shown in Fig.9, 

all data points fall on the asymptotic line “𝑏𝑖𝑛 = 𝑏𝑜𝑢𝑡” (slope=1). The only exception 

we observe is in the case of the fluid obstacle when the diameter of the particle is 

comparable to the minimum gap at the constriction. Under this configuration we 

observe, in some instances, that 𝑏𝑜𝑢𝑡 is less than 𝑏𝑖𝑛 because the particles go above or 

below the center point (where the radius of the bubble is largest) to go around the 

obstacle. The meniscus is unlikely to be perfectly cylindrical, due in part to pinning of 

the contact line on the upper and lower surfaces of the microfluidic device. This 
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distortion in the shape of the meniscus allows for the particle to move on the z-direction 

as they navigate a highly pinched constriction. In all other instances the trajectories are 

symmetrical and the particles travel in 2D. 

 

Figure 9. Outgoing offset (𝒃𝒐𝒖𝒕) as a function of the incoming offset (𝒃𝒊𝒏), both normalized with 

the obstacle radius (R) for polystyrene particles in pressure-driven flow. Here all solid symbols 

indicate trajectories for solid obstacle while hollow symbols indicate trajectories for fluid obstacle. 

The inset illustrates the incoming and outgoing offsets of particles which interact the non-cylindrical 

part of obstacles. The dash line illustrate the trend line “bin=bout”. The gaps (G in µm), channel 

height(H) and particle radius (a in µm) in the figure are (△), H=100, G=4.4, a=1.5; (▽), H=100, 

G=31.2, a=1.5; (◁) , H=100 , G=13, a=2.5; (▷), H=100, G=13, a=2.5; (◇), H=100, G=30,a=4.5; 

(□) ,H=100, G=10,a=4.5; (☆), H=100, G=6,a=10; (●), H=100, G=40,a=4.5; (■), H=100, 

G=30,a=4.5; (▶), H=100, G=20,a=4.5; (＋), H=33 G=47, a=1.5; (×), H=33, G=113, a=2.5 

In contrast, the presence of critical offset 𝑏𝑐 has been commonly observed in 

previous pressure driven DLD systems78, 80, 86. It has also been theoretically predicted 
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that in a flow driven environment the irreversible collision exists in a particle-obstacle 

(solid) interaction. Specifically, in a pressure driven environment when the particle 

comes to a particle-obstacle collision with an incoming offset that is smaller than its 

critical offset 𝑏𝑐, it will move in a asymmetric trajectory. 

One possible explanation for the difference between our experimental results and 

what has been observed in previous related work might be that due to the restriction of 

the top wall, the incoming offset for every particle inside the channel is always larger 

than its critical offset and particles cannot get closer to obstacle. In particular, in most 

of our experiments, we observed that the center of the obstacle tends to align with the 

top wall nicely, which limits the incoming offset for certain size of particles to be 

always higher than the particle radius. In this case, if the critical offset for a certain size 

of particles is smaller than the radius of the particle, then 𝑏𝑖𝑛 > 𝑏𝑐 holds true, and the 

particles will only move in symmetric trajectories as a result. 

To test our explanation, we normalize the outgoing offset (𝑏𝑜𝑢𝑡) and particle radius 

(a) both with the obstacle radius (R) for each particle and the normalized outgoing offset 

is plotted as a function of the normalized particle radius in Figure 10. We should 

recognize the case when a bubble is big enough (central angle is more than 180°) that 

it has a ridge of major arc, where negative bin and bout could be observed. As 

mentioned above, the meniscus of bubble is unlikely to be perfectly cylindrical, 

especially the part on top and bottom. Consequently the particles interact with those 

part could not be characterized by the “particle-obstacle” model (inset in Fig. 9). As a 
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result, those data are cleared up and not shown in Fig. 10. We observed that all symbols 

(only particles interacting with cylindrical part of obstacle) fall above the asymptotic 

line representing 𝑏𝑜𝑢𝑡 = 𝑎, i.e. 𝑏𝑜𝑢𝑡 is always larger than the particle radius, which 

supports our explanation. 

 

Figure 10. Outgoing offset (bout) as a function of the particle radius (a), both normalized with the 

obstacle radius (R) for polystyrene particles in pressure-driven flow. The obstacle type and particle 

radius (a in µm) in the figure are: (△), H=100, G=4.4, a=1.5; (▽), H=100, G=31.2, a=1.5; (◁) , 

H=100 , G=13, a=2.5; ( ▷ ), H=100, G=13, a=2.5; ( ◇ ), H=100, G=30,a=4.5; 

(□) ,H=100,G=10,a=4.5; (○), H=100, G=6,a=10; (●) H=100, G=40,a=4.5; (■), H=100, 

G=30,a=4.5; (▶) H=100, G=20,a=4.5; (＋), H=33, G=47, a=1.5; (×), H=33, G=113, a=2.5. 
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3.3 Force driven particle trajectories 

The trajectories of silica particles driven by gravity is characterized as the particles 

move past either a solid or fluid obstacle. For a given particle size and obstacle radius, 

we measure incoming offset (𝑏𝑖𝑛) and outgoing offset (𝑏𝑜𝑢𝑡) of each trajectory. In 

contrast to pressure-driven flow, the result is similar to the macroscopic gravity driven 

pinched-flow–fraction (PFF) study86 where asymmetric trajectories and size-based 

separation are observed due to hard-core particle- obstacle repulsion. 

We observe both hydrodynamic (blue symmetric trajectories in Fig. 8) and touching 

collisions (yellow asymmetric trajectories in Fig. 8) for both solid and fluid obstacles. 

The critical offset (𝑏𝑐) is derived by averaging all 𝑏𝑜𝑢𝑡 smaller than the transitioning 

point where “𝑏𝑖𝑛 = 𝑏𝑜𝑢𝑡” (horizontal dash line in Fig. 11). The data points in plateau 

area describe irreversible collisions, which occur when 𝑏𝑖𝑛 < 𝑏𝑐. All trajectories with 

𝑏𝑖𝑛 < 𝑏𝑐 are asymmetric. The data points on the asymptotic line “𝑏𝑖𝑛 = 𝑏𝑜𝑢𝑡” (slope=1) 

describe reversible collisions, which occur when 𝑏𝑖𝑛 ≥ 𝑏𝑐 . We also observe that the 

critical offset (𝑏𝑐) for a given particle size around a solid obstacle is always larger than 

the one observed for the trajectories around of bubble (hollow symbols are all below 

the solid symbols in Fig. 11), for a given obstacle radius(R), particle radius (a) and gap 

(G). It is more straightforward in Fig. 12, particles will continue their paths on the 

bubble a little bit after they pass the bottom point (A); while particles will leave the 

solid obstacle almost right after they pass the bottom point (B).   
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Figure 11. Scaling of outgoing offset (bout) and incoming offset ( bin ) with the obstacle radius(R) 

for silica particles with various radius (a) driven by gravity force. Solid symbols indicate solid 

obstacle while hollow symbols indicate fluid obstacle. The inset shows an example on how bc is 

clarified. The gaps (G in µm) and particle radius (a in µm) in the figure are: (□), R=65, a=5, G=34, 

bc=34; (○), R=54, a=5, G=40, bc=41; (△), R=68, a=7.5, G=36, bc=46; (▽),R=68, a=7.5, G=32, 

bc=50; (◇), R=56, a=7.5, G=36, bc=45; (◁), R=68, a=10, G=36, bc=53; (▷), R=65, a=10, G=38, 

bc=48; (☆), R=54, a=10, G=47, bc=47; (×), R=33, a=10, G=24, bc=32; (＋), R=33, a=5, G=24, 

bc=29; (▼), R=63, a=5, G=27, bc=61; (●), R=64, a=7.5, G=38,bc=63; (▲), R=62, a=10, G=38, 

bc=68; (▶), R=62, a=5, G=38, bc=61; (◆), R=62, a=7.5, G=25, bc=65; (◀), R=63, a=10, G=27, 

bc=69. 

Since a critical offset (𝑏𝑐) is observed for all particles around obstacles in channel, 

we also observe the size-based separation of microfluidic system. When we flow the 

mixture of different sizes of particle in the channel, the particles flow around the same 

obstacle (same radius(R) and gap (G)). In this case, larger particles show larger 

outgoing offset ( 𝑏𝑜𝑢𝑡 ) and consequently larger critical offsets ( 𝑏𝑐 ) (see different 

particles’ 𝑏𝑐 in caption of Fig. 11 and trajectories of 10μm and 20 μm silica particles 
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in Fig.12). When particles have touching collisions with obstacle, the center of a larger 

particle is more distant from the obstacle center than smaller ones, thus the outgoing 

offset (𝑏𝑜𝑢𝑡) is larger. 

 

 

Figure 12. Separation of 10 and 20 μm silica particles around fluid (A) and solid (B) 

obstacle. 

 To further investigate the size-based separation behavior of particles in the 

microfluidic system, we show the non-dimensional critical offset as a function of non-

dimensional particle radius in Fig. 13. When different sizes of particle pass the same 

obstacle, 𝑏𝑐  nearly linearly increases with a, which coincides with previous 

macroscopic studies78, 80. Similar to Fig. 11, the critical offset (𝑏𝑐) of certain size of 

particles around solid obstacle is larger than the one observed for the trajectories around 

of bubble (hollow symbols are all below the solid symbols) in small a/R regime.  

Due to the error occurred in microfabrication, the PDMS solid obstacle is less smooth 

than the fluid bubble. Experiment and modeling show that surface roughness could 
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reduce the pull-off force between particle and obstacle89, 90, which could balance the 

hydrodynamic restraining torque acting on the particles to obstacle surface. As a result, 

more net pull-off force is required when same silica particle leaves the smooth bubble 

surface than the rougher PDMS surface. This larger restrain causes the extension of 

particle trajectory on surface, which leads to smaller outgoing offset (𝑏𝑜𝑢𝑡) and critical 

offset (𝑏𝑐). However, the hollow symbols have more scatter than solid symbols, which 

could result from the deformation of bubble due to any vibration in experiment (e.g. 

when tilt the microscope), air tightness of microfluidic system and particle interaction 

with bubble. Improvement could be made on decrease the surface roughness of 

microchannel in design and fabrication step, as well as the robustness of setup in 

experimental step.  
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Figure 13. Scaling of critical offset (𝒃𝒄) and particle radius (a) with the obstacle radius(R) for 

silica particles. The gaps (G in µm) and particle radius (a in µm) in the figure are: (□), g=35, 

R=68;(○), g=25, R=68; (△), g=27, R=61; (◇) g=50, R=68; (◁),g=40, R=55; (☆) g=25, R=33; 

(●), g=38, R=62; (■) g=27, R=62.   
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Chapter 4.  Conclusion 

We developed a microfluidic-based platform with semi-circular cylinder solid (PDMS) 

or fluid (bubble) obstacle in PDMS microchannel, to real-time monitor the colloidal 

transport on solid-water (SWI) and air-water (AWI) within small Reynolds numbers 

regime (Re <<1). The particle-obstacle interaction is simplified as a suspended 

spherical particle passing through a constriction between a fixed half-circular 

cylindrical obstacle and a plane wall.  

The particle trajectory is described by an offset, which is defined as its distance from 

the line passing through the obstacle center along the direction of motion far away from 

the obstacle. We use the critical offset (𝑏𝑐 ) to understand the behavior of particle 

trajectories passing through a constriction. While incoming offset 𝑏𝑖𝑛 < 𝑏𝑐, touching 

collisions occur with asymmetric trajectories. When 𝑏𝑖𝑛 ≥ 𝑏𝑐 , hydrodynamic 

collisions occur with symmetric trajectories.  

We manage to impulse particles downstream towards the obstacles via two method: 

pressure driven flow or gravity force. While under pressure-driven flow, particles never 

get adsorbed on either AWI or SWI, but rather move around the obstacle and follow 

the streamline, exhibiting symmetric trajectories as to obstacle center and no critical 

offset (𝑏𝑐) is clarified. In contrast, under gravity force, we observe both symmetric and 

asymmetric particle trajectories as to obstacle center. We observe that the critical offset 

increases with increasing particle radius in the presence of the non-hydrodynamic 

interactions, which coincides with the previous macroscopic studies78, 80.Given similar 
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obstacle radius(R), particle radius (a) and gap (G), the critical offset (𝑏𝑐) of particles 

around solid obstacle is bigger than that of bubble. The key finding of this work is the 

critical parameter observed in microfluidic experiment increase with particle size and 

confirmed by COMSOL simulation. Therefore, size-based particle separation around 

single obstacle is possible. 
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