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Abstract

We can track the physical evolution of massive galaxies over time by characterizing

the morphological signatures inherent to different mechanisms of galactic assembly.

Structural studies rely on a small set of measurements to bin galaxies into disk,

spheroid and irregular classifications. These classes are correlated with colors, SF

history and stellar masses. Rare and subtle features that are lost in such a generic

classification scheme are important for characterizing the evolution of galaxy mor-

phology. We can connect the Hubble sequence observed for local galaxies to their

high redshift progenitors to determine the full distribution of galaxy morphologies

as a function of time over the entire lifetime of the Universe. To fully capture the

complex morphological transformation of galaxies we need more useful classifications.

To accomplish such a feat in a computationally tractable way we will need to convert

galaxy images to low-dimensional representations of only a few parameters.

To overcome the limitations of the Hubble sequence, we use a principal component

analysis of non-parametric morphological indicators (concentration, asymmetry, Gini

coefficient, M20, multi-mode, intensity and deviation) measured at rest-frame B-band
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ABSTRACT

(corresponding to HST/WFC3 F125W at 1.4 < z < 2) to trace the natural distri-

bution of massive (> 1010M�) galaxy morphologies. Principal component analysis

(PCA) quantifies the correlations between these morphological indicators and deter-

mines the relative importance of each. The first three principal components (PCs)

capture ∼75% of the variance inherent to our sample. We interpret the first principal

component (PC) as bulge strength, the second PC as dominated by concentration and

the third PC as dominated by asymmetry. PC1 is a better predictor of quenching

than stellar mass, as good as other structural indicators (Sérsic-n or compactness).

We divide the PCA results into groups using an agglomerative hierarchical clustering

method. Distinguishing between these galaxy structural types in a quantitative man-

ner is an important step towards understanding the connections between morphology,

galaxy assembly and star-formation.

Using a random forest classification technique, we are able to distinguish mergers

from non-merger galaxies in Pan-STARRS imaging using a variety of input features

(PCs, non-parametric morphologies, sSFR, M∗, rest-frame color). Determining if a

galaxy is a merger is important to understand how influential mergers are in building

bulges and assembling galaxies. The galaxies were initially visually classified by users

of Galaxy Zoo. Asymmetry is by far the most important indicator of whether a galaxy

is experiencing a merger. The next most important features include: PC7, PC5, PC3,

deviation and d(G,M20). The importance of PC7 represents a very interesting result

because PC7 is the least important PC but plays a huge role in determining whether
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a galaxy is a merger.

Galaxy simulations can provide valuable insight into the mechanisms behind

galaxy evolution. The VELA simulations and subsequent non-parametric morpholog-

ical measurements provide a resource to study the connection between morphology

(through the use of PC results) and physical properties (such as sSFR, gas fraction,

etc.). We stack the results of a discrete cross correlation between PCs and physical

parameters from 9 VELA galaxies. Each of the first three PCs correlates differently

with these physical parameters: PC1 is correlated strongly with ex-situ stellar mass,

the gas fraction and sSFR; PC2 is weakly anti-correlated with all physical properties;

PC3 is strongly correlated with sSFR at all length scales and with gas fraction in

the central kpc. The process of star-formation, gas accretion and bulge assembly is

a messy picture that will require more simulate galaxies to further understand the

process of galaxy evolution.

Primary Reader: Dr. Jennifer Lotz (Space Telescope Science Institute)

Secondary Reader:
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Chapter 1

Introduction

1.1 A Very Brief Overview of Galaxies

Initially after the Big Bang, the Universe was in a state of near but not perfect

homogeneity with small quantum fluctuations present throughout. Following a period

of rapid expansion in the Universe, known as inflation, these quantum fluctuations

became amplified into regions of higher and lower density. At this point the Universe

was radiation dominated and all primordial elements (such as hydrogen) were fully

ionized. However, the ionized photons could not travel very far without Thomson

scattering off a free electron. The continuing expansion cooled the Universe enough

that it became energetically possible for protons and electrons to combine and form

neutral hydrogen. This era, known as recombination (or decoupling), brought about

the opportunity for baryonic matter assembly. Photons became decoupled from the

1



CHAPTER 1. INTRODUCTION

formerly charged particles and became free to propagate throughout the universe.

These photons are visible as the Cosmic Microwave Background (CMB). The CMB

is nearly uniform except for slight temperature fluctuations on the order of 10−5 K

(Bennett et al., 2013; Mather et al., 1990; Planck Collaboration et al., 2014). These

temperature fluctuations are the evidence of the density fluctuations of the post-

inflation Universe.

The standard model of cosmology, known as Lambda-Cold Dark Matter (ΛCDM),

posits the existence of “dark energy” which is responsible for counteracting the at-

tractive effects of gravity and “cold dark matter” that only interacts with itself and

other particles through gravity and does not radiate photons. Dark matter clumps

grew from the perturbations in the density distribution of the Universe.

Dark matter is able to collapse in a dissipational manner (does not radiate away

energy through photons) due to to gravity and forms halos. The smallest dark matter

halos are able to form first, later merging with one another to create progressively

larger halos (White & Rees, 1978). This growth of dark matter halos is known as

hierarchical assembly and is central to ΛCDM cosmology. Baryonic matter (in the

form of gas) is accreted by these halos at which time the gas cools and fragments

to form galaxy structures. Eventually, dark matter halos accrete enough gas to form

what we know of as galaxies.

Galaxies can continually accrete material either smoothly or stochastically from

the surrounding intergalactic medium. Smooth accretion in the form of cold gas dis-

2
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tributed along dark matter filamentary structure is directly dumped onto the galaxy

(Birnboim & Dekel, 2003; Dekel et al., 2009b). These so-called cold streams are among

the main sources of gas for higher redshift galaxies (Dekel et al., 2009b). Stochastic

accretion can occur in the form of merging galaxies (see §1.2).

Modern cosmological simulations (such as Illustris Vogelsberger et al., 2014 and

EAGLE McAlpine et al., 2015) have successfully reproduced how observed galaxies

form and grow in dark matter halos through the constant collapse of molecular clouds

into stars and the gravitational attraction to form increasingly complex structures

(Springel et al., 2005).

The most widely used visual classification scheme, the Hubble sequence, divides

galaxies into ellipticals (also known as early-type galaxies), transitionary phase (known

as lenticular galaxies) and spiral galaxies (also known as late type galaxies) (Hubble,

1926). The elliptical galaxies vary in elongation from round to triaxial shapes and

have smooth light profiles, star follow random orbits and appear spheroidal. The

spiral galaxies consist of stars orbiting rotationally in spiral structures are subdivided

by how tightly wound the spiral arms are and is a central bar exists. Typically the

spectral color of a galaxy is related to the morphology: elliptical galaxies are com-

posed of red and old stars, while spiral galaxies are composed of blue and young stars.

Galaxies not fitting into this scheme are labeled as irregular. Irregular galaxies can

be low mass galaxies or the result of the merger of two galaxies.

All of these galaxy characteristics beg the questions: why do galaxies look the
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way they do? What physical mechanisms build galaxies into these specific structures

and either create a large number of stars or prevent stars from forming?

1.2 Physical Mechanisms Causing Galaxy

Evolution

There exists a strong correlation between the rate of star-formation and the

amount of stellar mass, known as the “main sequence of star formation” as far back

as z ∼2.5 (Noeske et al., 2007; Wuyts et al., 2011). In this correlation, there exists a

bi-modality in star-formation and stellar mass that is highly correlated with color and

morphological type. Blue, star forming, primarily disk galaxies have star-formations

and masses that follow a very tight relationship (e.g. Baldry & Glazebrook, 2003;

Hogg et al., 2004; Bell et al., 2004). Meanwhile, red, low star-formation, primarily

spheroidal galaxies fall below this relationship and have less star-formation than a

bluer galaxy has for a specific mass and redshift. Galaxies with star-formation below

the main sequence are known as “quenched”.

During the epoch known as “cosmic high noon” (z=1.5 – 3), the cosmic star

formation rate is at a maximum and at which time nearly half of all stellar mass

assembles (Madau & Dickinson, 2014). Galaxies were forming more stars per unit

mass at higher redshift (Noeske et al., 2007). Even at this epoch, massive galaxies

(M∗ > 1010 M�) begin to experience declining star formation, which is coupled with
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an emergence of red central bulges (Kriek et al., 2006; van Dokkum et al., 2008;

Kriek et al., 2009; Whitaker et al., 2012). Since “cosmic high noon” there has been a

dramatic increase in the number of high mass quenched galaxies observed (e.g. Faber

et al., 2007; Bell et al., 2012).

Any discussion of the overall galaxy morphology and star-formation characteristics

would be incomplete without a discussion of bulges. Not all bulges are created equal,

there are a few different structures which may collectively be called “bulges” but which

are different from one another. There are “classical” bulges which resemble giant

elliptical galaxies, but exist at the center of disk galaxies. The stars in these bulges

are on random orbits and are redder than the stars in the disk. The light distribution is

well described by the de Vaucouleurs law (surface brightness ∝ r1/4). A classical bulge

is likely the final stage of the merger of two disk galaxies (Toomre, 1977; Kormendy

& Kennicutt, 2004). Additionally, there are “pseudo-bulges” which are spheroidal

and exist at the center of disk galaxies, however the stars orbit the center rotationally

(similar to the outer disk). Pseudo-bulge light profiles are not well described by the

de Vaucouleurs profile and are instead better fit by a Sersic profile (∝ r). Pseudo-

bulges are likely the result of internal galaxy interactions such as bars and spiral

structure (Kormendy & Kennicutt, 2004). Understanding the difference between

these two types of bulges can have an impact on the likely formation mechanisms for

a particular galaxy.

Bulges are also not the same at different redshifts. At higher redshift very small
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(r . 1–3 kpc) galaxies can resemble local elliptical galaxies but are actually a separate

class, known as “compact” galaxies. Compact galaxies likely formed via gas inflows

towards the central region of the galaxy. Quenched compact galaxies can have radii of

1 kpc or smaller (van der Wel et al., 2014a). Many z∼3 galaxies are compact elliptical

galaxies with low amounts of star formation (van Dokkum et al., 2008, 2010; Whitaker

et al., 2012). Compact, star forming galaxies have similar masses, kinematics, and

abundances as quenched, red compact galaxies and are the likely progenitors (Barro

et al., 2013, 2014b; Williams et al., 2014). Both types of compact galaxies are seen

in hydrodynamical (Ceverino et al., 2014; Wellons et al., 2015) and semi-analytic

(Brennan et al., 2015) simulations.

Why galaxies experience this reduction in star formation and bulge formation

is hotly debated. Observations reveal a cosmic transition from blue and star form-

ing disk galaxies to red and quenched spheroidal galaxies leading to an interesting

“chicken or egg” problem: Do galaxies experience a morphological transformation

that quenches star formation, or does star formation quenching lead to a fading disk?

The mechanisms quenching star formation and affecting the morphology of galaxies

are not fully understood but can be explained in a few different ways: major/minor

mergers (e.g. Naab et al., 2006a; Hopkins et al., 2010); feedback from active galactic

nuclei (AGN; e.g. Croton et al., 2006; Somerville et al., 2008a); secular processes (such

as the spiral bar instabilities, star formation, gas recycling Kormendy & Kennicutt,

2004; Bournaud et al., 2007; Elmegreen et al., 2008; Genzel et al., 2008).
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Mergers are are defined by their mass ratios (major or minor) and their gas content

(gas-rich or “wet” and gas-poor or “dry”). Each type of merger can influence star-

formation and morphology in a different manner.

Major mergers (collisions between galaxies of roughly equivalent mass, mass ratio

of .1:3) can destroy disks by the gravitational interactions of the constituent galaxies

and eventually reassemble into a relaxed spheroid. Galaxies with significant gas

fractions interact which leads to peculiar features such as tidal tails, asymmetries,

double nuclei, rings, shells (Toomre & Toomre, 1972). Major gas-rich galaxy mergers

rapidly funnel gas into the cores of massive galaxies and feeds bulges (e.g. Sanders

& Mirabel, 1996; Heckman et al., 2004). Gas-rich mergers provide a supply of star-

forming fuel which can lead to starburst activity. Meanwhile, Gas-poor mergers are

primarily responsible for the mass and size evolution of spheroids at z < 2 (Naab

et al., 2006a, 2009).

Minor mergers (which are generally between galaxies with a mass ratio of >1:10)

may also disrupt morphologies, and gas-poor minor mergers must be more frequent

than major mergers (Lotz et al., 2011; Papovich et al., 2012). Peculiar properties,

such as low surface brightness tidal features, are often difficult to detect and require

deep observations. The primary galaxy accretes stellar material from the satellite

onto the outskirts (e.g. Naab et al., 2006b; Bell et al., 2006). Even the small amount

of gas accreted in a minor merger is sufficient to trigger an AGN or starburst, and

eventually quench star-formation (Kormendy & Richstone, 1995; Croton et al., 2006;
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Somerville et al., 2008b).

Internal mechanisms, collectively referred to as secular processes, include the in-

teractions of bars in a spiral galaxy rearranging disk gas (Kormendy & Kennicutt,

2004), and violent disk instabilities (VDIs, Kereš et al., 2005) leading to enhanced

star-formation, irregular morphologies, angular momentum loss, rapid star-formation

and supermassive black hole (SMBH) growth (Magorrian et al., 1998; Ferrarese &

Merritt, 2000; Shankar et al., 2012; Elbaz & Cesarsky, 2003). In this scenario, the

morphology of the galaxy is unaffected and the galaxy appears undisturbed and disk-

like (Simard & Pritchet, 1998; Schawinski et al., 2011). Once the reservoir of gas is

exhausted and star-formation is quenched, a disk structure can still exist.

Slow, long-term quenching mechanisms are required to keep galaxies quenched

(Barro et al., 2013). This quenched state can be maintained by mechanisms such as

mass quenching (Dekel & Birnboim, 2006; Bell et al., 2012) which is caused by the halo

growing above a threshold mass of 1011M�. At this mass, shocks are created which

do not allow gas to cool sufficiently to form stars. Quenching can also maintained

by a sufficiently massive central bulge stabilizing the disk from further fragmentation

and thus shutting down star formation (morphological quenching; Tacchella et al.,

2015; Martig et al., 2009; Genzel et al., 2014). Additionally, AGN can provide strong

jets that can heat the surrounding halo and thus prevent gas to cool and form stars

(Cattaneo et al., 2009). On the other hand bulges, by themselves, have proven to be

a “necessary but not sufficient” mechanism to shut down star-formation (Bell et al.,
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2012; Fang et al., 2013).

Each mechanism leaves behind different clues (in the shape and structure of galax-

ies). Can we determine which mechanisms are important for a specific type of galaxy

during a specific cosmic epoch? A possible answer is in the morphology of a galaxy.

The shape and structure can tell us what processes have been important during a

galaxy’s history.

1.3 Galaxy Morphology as a Tool to Study

Evolution

Morphology can offer clues that indicate how responsible mergers (and other mech-

anisms) are (or are not) in quenching galaxies and building bulges. Morphological

classes (such as spheroids and disks) are correlated with colors, star-formation his-

tory and stellar masses. Significant correlations have been observed between star-

formation rate, stellar mass and quantitative morphological measurements (Wuyts

et al., 2011).

To study the processes driving evolution, we need a method to effectively and

efficiently characterize the structures and shapes of galaxies. Visual classifications

(such as the Hubble sequence) have been used since the discovery of galaxies, and

have subsequently been adapted to fit modern surveys (e.g. Galaxy Zoo, Lintott et al.,

2008a; Kartaltepe et al., 2015). These visual studies rely on the Hubble sequence to
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classify galaxies and will have classifiers place galaxies into disk, spheroids, irregular

and unknown categories. Visual classifications can find subtle structural elements

possibly missed by an automated routine. However, human classifications of galaxies

can be very time consuming and subjective.

However, galaxy structure at high redshift does not always correspond to the local

Hubble sequence (Bruce et al., 2012; Bell et al., 2012; Kriek et al., 2009; Lee et al.,

2013). Disk-dominated galaxies can appear clumpy (Förster Schreiber et al., 2009)

and spheroid-dominated galaxies can be compact, very red and massive, but possess

no extended envelope (e.g. van Dokkum et al., 2008). Therefore the standard Hubble

sequence will miss rare and subtle features inherent to the morphology of high redshift

galaxies and may need updating for high redshift.

Galaxies can appear vastly different between UV and optical wavelengths (e.g.,

Meurer et al., 1995). UV light traces bright stars and thus active star formation (since

these stars are short-lived). Meanwhile, optical wavelengths longer than the Balmer

(400 nm) break observe stars at a variety of ages. Progressively older stars dominate

the galaxy spectral energy distribution (SED) at longer wavelengths. Additionally,

dusty galaxies can have much of their optical light absorbed (Calzetti et al., 2000) and

reradiated in the IR. To combat these wavelength-dependent morphological conditions

it is important to observe galaxy morphology at a single rest-frame wavelength across

redshift.

To combat the subjectivity of visual classifications, quantitative measurements
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defining morphology have been created. The relationship between surface brightness

and radius for elliptical galaxies (I ∝ r1/4) was first determined by de Vaucouleurs

(1948). The de Vaucouleurs law was eventually generalized by Sersic (1968) to a Sérsic

profile (I ∝ r1/n) with disk galaxies of n=1. Later studies decomposes the galaxy

into bulge and disk profiles (Kormendy, 1977b) for even further discriminatory power

between disks and bulge dominated galaxies. Many studies (e.g. Bell et al., 2012; van

der Wel et al., 2012) fit a Sérsic profile to a galaxy for the purposes of classification.

GALFIT (Peng et al., 2002, 2010) is an automated technique often used to classify

galaxies by fitting the galaxy light distribution to a Sérsic profile (r−1/n) and is sen-

sitive to small galaxies, can distinguish overlapping light profiles of nearby galaxies,

incorporates the point spread function of a specific field/detector, and most impor-

tantly is easy to interpret. However, GALFIT assumes a symmetric and smooth light

profile, which at times can be problematic. This assumption does not hold for irreg-

ular galaxies, merger remnants, and disk galaxies with bars or clumps.

Quantitative non-parametric morphological statistics characterize galaxy struc-

ture and do not assume an analytic light profile. This fact allows us to apply au-

tomated characterization to irregular galaxies as well. Examples of non-parametric

morphological indicators include: concentration index (C, Bershady et al., 2000; Con-

selice et al., 2003), asymmetry (A, Conselice et al., 2000), Gini coefficient (G, Abra-

ham et al., 2003; Lotz et al., 2004), M20 (Lotz et al., 2004), and three new statistics

from Freeman et al. (2013): Multimode (M), Intensity (I), and Deviation (D). The
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MID statistics have been found to be the most sensitive to mergers and clumpy star-

formation, even at high redshift (Freeman et al., 2013). CAS is capable of identifying

major mergers, while Gini–M20 can identify both major and minor mergers (just not

to the same extent as the MID statistics, Conselice, 2014).

However, for many galaxies these statistics can be strongly correlated. Moreover,

cosmological models of galaxy formation yield a picture in which these structures can

evolve quickly along diverse paths, thereby motivating the need for a broad classifi-

cation system (Snyder et al., 2015a). Therefore we require further analysis to under-

stand the inherent relationships among these statistics and between galaxy assembly

processes.

1.4 Using Machine Learning to Analyze

Galaxy Morphology

In the upcoming years and decades, many new telescopes and surveys will become

operational; such as the Large Synoptic Sky Telescope (LSST; Ivezić et al., 2008), the

European Extremely Large Telescope (E-ELT), the Thirty Meter Telescope (TMT),

and the Dark Energy Survey (DES), among others. Each of these telescopes will

produce terabytes to petabytes of observational data nightly. Novel data analysis

strategies will need to be created to account for the sheer deluge of information. These

massive data sets will provide significant insights into every aspect of astrophysics to
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a degree that only a decade ago may have seemed outlandish.

The sheer amount of images from future telescope surveys will make human visual

classifications of galaxies an intractable problem. However, machine learning tech-

niques are often successful at reproducing many of the results. In their review of data

mining in astronomy, Ball & Brunner (2010), state the advantages as follows: sim-

plicity, influence from prior information, pattern recognition, complimentary analysis

and the simple ability to “get anything at all”. Complimentary analysis refers to the

idea that different approaches to a problem will reduce the systematic errors inherent

to any single approach.

To make sense of all this data, astronomers have begun to implement machine

learning and data mining into their analysis. Data mining is simply a collection of

techniques useful for analyzing and describing structured data (Ivezić et al., 2013).

These techniques include: principal component analysis (PCA), clustering, unsu-

pervised classification, amongst many others. Machine learning refers to a set of

techniques that compare datasets to previously understood sets. These techniques

include: random forest (RF), support vector machines (SVM), artificial neural net-

works (ANN) and maximum likelihood estimator.

There are two broad categories of machine learning techniques: supervised and

unsupervised. Unsupervised techniques (such as principal component analysis, see

Chapter 2) are helpful to reduce the dimensionality of a problem and to find rela-

tionships amongst the data. Supervised learning techniques, such as random forest
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(Breiman, 2001), support vector machines (Vapnik & Vapnik, 1998), and artificial

neural networks (ANN; Ripley, 1981, 1988), use a training set of labeled data to build

a framework for which to classify unlabeled data.

Principal component analysis (PCA) is a simple way to reduce the dimensionality,

break internal degeneracies and find the natural distributions of data in parameter

space. To eliminate degeneracies inherent in these morphological statistics we per-

formed a PCA using 7 non-parametric morphology measurements on 1244 galaxies

from 1.36 < z < 1.97. PCA has been shown to efficiently classify galaxies (e.g.

Taghizadeh-Popp et al., 2012; the Zurich Estimator of Structural Types (ZEST),

Scarlata et al., 2007a). A few studies immediately capitalized on the ZEST classifica-

tions to study the number density evolution of disk galaxies (Sargent et al., 2007), the

luminosity function evolution for elliptical galaxy progenitors (Scarlata et al., 2007b),

and the evolution of the galaxy merger rate to z ∼ 1 (Kampczyk et al., 2007).

The Zurich Estimator of Structural Types (ZEST; Scarlata et al., 2007a) uses a

PCA of 5 non-parametric morphological diagnostics: Gini coefficient, M20, concen-

tration, asymmetry, and ellipticity. They classify ∼56,000 bright (IAB < 24) COS-

MOS into spheroidal, disk and irregular galaxy types while additionally calculating

a bulginess, elongation, irregularity and clumpiness parameter for each galaxy. The

classifications are used to demonstrate redshift evolution (since z∼1) of the galactic

luminosity function (LF) for galaxies of different classes. Their analysis concluded

that the average volume density of disk galaxies remains constant. However, the stel-
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lar populations of these systems are brightened at earlier epochs. Only the bright,

(MB < -21.5) end of the irregular and the early-type galaxies remains roughly con-

sistent with the LF of local galaxies. At fainter magnitudes, irregular and early-type

galaxies show evolution from z = 0 to 0.7.

Similarly, Taghizadeh-Popp et al. (2012) uses PCA to describe the entire zoo of

galaxy morphologies with a single parameter. Which they derived from a set of ob-

servational derived quantities: mass-to-light ratio, surface brightness, concentration,

star-formation rate, specific star-formation rate, g-r and u-r. Their analysis labels,

ranks and classifies galaxies by a single arc-length value.

Supervised methods such as random forest have been used to classify galaxies

(e.g. Lahav et al., 1995; Freeman et al., 2013). The random forest technique was

developed by Breiman (2001) as a supervised method for classification. The random

forest classifier is learned from a labeled training set representing a random sample of

the total sample. The split best differentiating mergers from non-mergers among the

random subset of the features in each node defines the optimal classifiers. Random

forest inherently provides probabilities which we can use to investigate the effect

thresholds have on the completeness and quality of classifications.

Supervised techniques require a basis set of data in which all subsequent classifi-

cations are founded upon. Freeman et al. (2013) uses the CANDELS visual classifica-

tions (Kartaltepe et al., 2015) to build a classification schema out of non-parametric

morphologies for separating mergers from non-mergers. The M , I, and D statistics
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are more useful than Gini and M20 at identifying disturbed morphologies. Lahav

et al. (1995) compared visual classifications of galaxies by world experts (such as de

Vaucouleurs) to classifications by an Artificial Neural Network. The Sloan Digital Sky

Survey was used as a training set (over 143 million objects) to separate galaxies from

stars (Ball et al., 2004). Huertas-Company et al. (2015) uses convolutional neural

networks to classify galaxies based on non-parametric morphological measurements

from CANDELS.

Supervised techniques are not just used to classify galaxies but can be used

to infer values such as photometric redshifts and galaxy stellar masses. Kamdar

et al. (2016a,b) use random forest regression of semi-analytic models of galaxies to

make predictions of observable galaxy properties from pure dark matter simulations.

Carliles et al. (2010) uses random forest trained upon SDSS galaxies to calculate

photometric redshifts.

1.5 Data Sets Used in This Analysis

The Cosmic Assembly Near Dawn Extragalactic Legacy Survey (CANDELS, PIs:

S. Faber and H. Ferguson; Grogin et al. 2011 and Koekemoer et al. 2011) provides

a wealth of data from 5 heavily studied fields (UDS, EGS, COSMOS and GOODS-

North+South) with observations by the Hubble Space Telescope (HST). Space based

observations from HST provide the highest resolution ever for a sample of high red-
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shift galaxies . High resolution is critical for observations of low surface brightness

structural features. Without which, morphological evolution would be incredibly dif-

ficult. Observations by the Wide Field Camera 3 (WFC3) in Near-Infrared bands,

F125W (J) and F160W (H), combined with observations from the Advanced Camera

for Surveys (ACS) in UV-Visible bands, F814W (i) and F606W (V ) constitute the

new measurements in the CANDELS program.

We focus on high mass (M∗ > 1010 M�) galaxies, brighter than H < 24.5. We

restrict ourselves to only redshift ranges that correspond our observed morphologies

to a single rest-frame waveband. Constant rest-frame morphologies are crucial for

understanding possible evolution in the stellar structures of galaxies while preventing

strong wavelength, and therefore redshift biases.

High redshift observations can be extended to low redshifts through the use of large

all sky surveys. In the next few years, the Panoramic Survey Telescope and Rapid

Response System (Pan-STARRS) will provide a dataset of up to 50,000 galaxies (with

an addition 3,000 from a Medium Deep Survey) that will need to be analyzed. Pan-

STARRS will take frequent and repetitive wide-field images over nearly the entire

visible sky. Additionally, the Sloan Digital Sky Survey (SDSS; York et al., 2000a), is

a very well established program that has observed over a million low redshift galaxies.

The observations of low redshift galaxies from SDSS and PAN-STARRS will offer a

critical baseline for comparison to the high redshift galaxies from CANDELS.

The VELA simulations are a suite of zoom-in hydro-cosmological simulations of
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moderately massive galaxies calculated using Eulerian gas dynamics and an N-body

Adaptive Refinement tree (ART, Kravtsov et al., 1997; Kravtsov, 2003). The VELA

simulations are described in depth by Ceverino et al. (2010a); Ceverino & Klypin

(2009); Ceverino et al. (2012); Dekel et al. (2013); Ceverino et al. (2014). The simula-

tion outputs have been processed (using SUNRISE Jonsson, 2006; Jonsson et al., 2010

and CANDELization Mozena, 2013) to resemble observed galaxies at high redshift

by CANDELS (Snyder et al., 2015b). The VELA simulations offer a new avenue to

study individual galaxy evolution from 1 . z . 3 and how physical processes are

directly related to morphology.
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Beyond Spheroids and Discs:

Classifications of CANDELS

Galaxy Structure at 1.4 < z < 2 via

Principal Component Analysis

2.1 Introduction

Massive galaxies today form stars at a lower rate than in the past due to many

factors. However, we do not have a complete accounting of the processes quenching

the star-formation in galaxies. An increase in the mass/number densities (Tomczak

et al., 2014; van der Wel et al., 2014b) of massive, red galaxies implies stars are not
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forming to the same extent they once were. Each of these observations attempt to

connect of observed color (or star-formation rate) and stellar masses to morphology.

The star-formation rate - stellar mass (SFR−M∗) relationship shows star-forming

galaxies at z ∼ 0 follow a “main sequence” (Brinchmann et al., 2004; Wuyts et al.,

2011). Galaxies on the main sequence are bluer and have lower Sérsic-indices than

galaxies below the relation. Massive galaxies with low SFRs are red and have high

Sérsic indices and bulge strengths. The SFR−M∗ morphology relation has been

shown to hold out to z ∼ 2.5 (Wuyts et al., 2011). However, bulge strength has been

described as a “necessary but not sufficient” condition for quenching star-formation

in z . 2.2 galaxies (Bell et al., 2012).

If the presence of a bulge is not sufficient to fully quench a galaxy, other factors

such as size may be important for shutting down star-formation. At redshifts z ∼

1.5, galaxies of sufficiently high mass and small size are quenched (Barro et al., 2013).

This suggests a relationship between so-called “compactness” (Σ1.5 = M/r1.5
e ) and the

specific star-formation rate (sSFR) . However, the number density of these compact

galaxies has been decreasing with the age of the Universe.

The mechanisms for quenching star-formation and transforming the morphology

of galaxies are not fully understood. Proposed mechanisms include: major mergers

(e.g. Naab et al., 2006a; Hopkins et al., 2010); minor mergers (e.g. Taniguchi, 1999;

Hopkins & Hernquist, 2009; Villforth et al., 2013); secular processes (for review see

Kormendy & Kennicutt, 2004; Cisternas et al., 2011); AGN feedback (e.g. Silk &
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Rees, 1998; Schawinski et al., 2006); and mass quenching (Dekel & Birnboim, 2006;

Bell et al., 2012). Comprehensive models of galaxy formation can yield a reasonable

link between galaxy morphology and star formation (e.g. Snyder et al., 2015b) but

we do not yet have a perfect accounting of how all these processes might contribute.

As a result, two evolutionary tracks have been developed to explain the disappear-

ance of compact, quenched galaxies: (1) major mergers at z ∼ 2-3 quickly cause a

galaxy to quench, which later grow through minor mergers and gas accretion; (2) vio-

lent disk instabilities/secular processes/minor mergers at z∼1.5 cause a slower decline

in star-formation and simultaneous size growth before the quiescent phase.

To study the processes driving evolution, we need a method to effectively and

efficiently characterize the structures and shapes of galaxies.

Quantitative non-parametric morphological statistics characterize galaxy struc-

ture and do not assume an analytic light profile. This fact allows us to apply au-

tomated characterization to irregular galaxies as well. Examples of non-parametric

morphological indicators include: concentration index (C, Bershady et al., 2000; Con-

selice et al., 2003), asymmetry (A, Conselice et al., 2000), Gini coefficient (G, Abra-

ham et al., 2003; Lotz et al., 2004), M20 (Lotz et al., 2004), and three new statistics

from Freeman et al. (2013): Multimode (M), Intensity (I), and Deviation (D). The

MID statistics have been found to be sensitive to mergers and clumpy star-formation,

even at high redshift (Freeman et al., 2013).

In this chapter, we use PCA and hierarchical clustering to classify galaxies based
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on their structure. These classifications allow us to characterize galaxies by more

subtle means than the traditional Hubble sequence scheme. We can test the mecha-

nisms which cause galaxies to reassemble and/or influence star-formation by tracking

how morphologies change across time. This places vital constraints on the physical

mechanisms assembling galaxies and quenching star-formation.

All magnitudes are quoted in the AB system. A standard ΛCDM cosmology of

H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.3 is used throughout this work.

2.2 Data

The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS,

PIs: S. Faber and H. Ferguson; Grogin et al. 2011 and Koekemoer et al. 2011) ob-

served 5 heavily studied fields (of which we use UDS, GOODS-S and COSMOS) with

the Hubble Space Telescope (HST). High resolution imaging by Wide Field Camera

3 (WFC3) in near-infrared bands F125W (J) and F160W (H), combined with ob-

servations from the Advanced Camera for Surveys (ACS) in visible bands F606W

(V ) and F814W (Iw) constitute the new measurements in the CANDELS program.

For the purposes of our study, we initially focus only on the F125W WFC3 images.

Future work will study the evolution of galaxy morphology at a consistent rest-frame

wavelengths.

We use the CANDELSH-band (F160W) selected multi-wavelength catalogs (UDS,
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Galametz et al., 2013; GOODS-S, Guo et al., 2013; COSMOS, Nayyeri et al., in prep),

photometric redshifts (Dahlen et al., 2013), non-parametric morphologies (this work),

Sérsic parameters (van der Wel et al., 2012), visual classifications (Kartaltepe et al.,

2015), rest-frame photometry, and stellar masses (this work). The limiting magnitude

for HST/WFC3 F125W and F160W are 27.35 and 27.45 respectively with FWHM

of ∼0.135” and ∼0.15” respectively. Galametz et al. (2013) outlined the techniques

used to create the photometric catalogs.

The photometric redshift catalogs of Dahlen et al. (2013) are the combination of

multiple different photometric redshift calculating codes and techniques which reduce

the scatter of photometric redshifts (to σ ∼ 0.03, with an outlier fraction of 3 percent).

Throughout the rest of this paper, we use z to denote the average photometric redshift

in these CANDELS catalogs (Mobasher et al., 2015).

Rest-frame U−V −J colors were calculated by the sed-fitting code EAZY (Bram-

mer et al., 2008), using the empirical local galaxy templates of Brown et al. (2014).

Stellar masses were computed with FAST (Kriek et al., 2009), assuming Bruzual &

Charlot (2003) delayed exponential star-formation histories, a Chabrier (2003) initial

mass function, Calzetti et al. (2000) dust attenuation, and solar metallicities.

2.2.1 Sample Selection Criteria

We select bright (H < 24.5), massive (M∗ > 1010M�) galaxies with 1.36 < z <

1.97 galaxies measured in F125W (J). This band approximately corresponds to rest-
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frame optical B-band at these redshifts. This redshift range provides a large sample

of galaxies measured in a constant rest-frame waveband, and offers a high enough

redshift to have a different morphological distribution from a local sample. At this

redshift and magnitude, the CANDELS surveys are mass-complete down to 1010M�

(Wuyts et al., 2011). In our sample of UDS, COSMOS and GOODS-S there are a

total of 6269 galaxies with H < 24.5 and M∗ > 1010M�. Of those galaxies 1539 are

within our redshift range (1.36 < z < 1.97).

The following affect our sample completeness: high signal-to-noise (per pixel) mea-

surements (S/N > 4), an internal morphology quality flag = 0, and a well measured

concentration (i.e. C 6= -99) requirement. The quality flag requirement removes

objects from the sample with discontiguous segmentation maps resulting from low

surface brightness, and/or poor masking of bright neighbors. In §2.2.2 we include a

brief discussion of galaxies with a quality flag = 1. The concentration requirement

removes the contamination from poorly measured galaxies on the overall PCA. For

some galaxies, r20 (and thus C) can not be accurately measured because either the

object is too small, or there is a bright point source disrupting the light profile (see

§2.3.1.2). The concentration requirement reduces the total of galaxies in the sample

to 1482. The FLAG requirement reduces the sample to 1250. The signal-to-noise,

FLAG and well measured concentration requirements together reduce our final sample

to 1244 galaxies.
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2.2.2 Galaxies with FLAG=1

Galaxies with non-contiguous segmentation maps receive a FLAG=1 designation.

The disconnected segmentation maps could be the result of a few factors: the light of

a nearby bright galaxy encroaching on a galaxy, low surface brightness or low signal-

to-noise. For this reason their non-parametric morphology measurements are likely

to be unreliable. Fig. 2.1 is the normalized histogram of magnitudes for galaxies with

either FLAG=0 or FLAG=1. We also show the fraction of galaxies per magnitude

bin. The number of galaxies with FLAG=1 galaxies as a fraction of all galaxies

increases up to magnitude 24.5, which is the brightness limit of the survey. For these

reasons we leave these galaxies out of our sample in this work, but we will investigate

these galaxies in a future work.

2.3 Morphological Measurements

2.3.1 Non-parametric Morphology

We focus on non-parametric morphology statistics: concentration, asymmetry,

Gini coefficient, M20, along with three new statistics from Freeman et al. 2013: multi-

mode, intensity and deviation. The code for calculating the morphological statistics

(originally developed by Lotz et al. 2008) has been modified to include the new

statistics and accommodate much larger input images. The code is applied to the
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Figure 2.1 Histogram of F125W J-band Magnitude for galaxies with FLAG=1 and

FLAG=0 and a plot of the fraction of all galaxies with FLAG = 1 designation per

magnitude bin (black dashed line).
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CANDELS F125W mosaics using the F160W detected catalogs and segmentation

maps as the input.

2.3.1.1 Petrosian Radius

The Petrosian radius rp is the radius we set to where the surface brightness µ is

20% of the mean interior surface brightness (Eq. 2.1; Petrosian, 1976). The Petrosian

radius is more robust to surface brightness dimming than isophotal sizes are. We can

measure the same physical portions for galaxies at a variety of redshifts (e.g. Lotz

et al., 2004).

0.2 =
µ(rp)

µ̄(r < rp)
(2.1)

2.3.1.2 Concentration

The concentration index (C; Bershady et al., 2000; Conselice et al., 2003) is the

ratio of the circular radius containing 80% (r80) of a galaxy’s light (as measured

within 1.5 Petrosian radii) to the radius containing 20% (r20) of the light (Eq. 2.2).

A large concentration value indicates a majority of light is concentrated at the center

of the galaxy. Elliptical galaxies and bulge-dominated spirals have high concentration

values. However, a spiral or irregular galaxy with diffuse light profile and weak/no

bulge will have low concentration values.
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C = 5 log

(
r80

r20

)
(2.2)

For some galaxies r20 (and thus C) can not be accurately measured because either

the object is too small, or there is a bright point source disrupting the light profile.

These galaxies instead have unphysical concentration values (C < 0) and are not

included in the definition of our principal components (see §2.2.1).

2.3.1.3 Asymmetry

Asymmetry (A; Conselice et al., 2000) measures the difference between the image

of a galaxy (Ix,y) and the galaxy rotated by 180 degrees (I180(x,y); Eq. 2.3). This

determines a ratio of the amount of light distributed symmetrically to all light from

the galaxy. A is calculated from a sum of all pixels within 1.5 Petrosian radii from

the center of the galaxy. We then correct by B180, which is the average asymmetry of

the background. An initial guess for the center of rotation is defined by the physical

center, but is updated through an iterative process. This process continues until a

global minimum value for A is found (Conselice et al., 2000).

A =

∑
x,y |I(x,y) − I180(x,y)|

2
∑
|I(x,y)|

−B180 (2.3)

Due to their uniform morphologies and lack of structure elliptical galaxies typ-

ically have small asymmetry values (A ∼ 0.02). Meanwhile spiral galaxies usually

have values between A ∼ 0.07 to 0.2 (Conselice, 2014). This statistic is most useful
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for identifying irregular galaxies because they appear lopsided or ragged. Visually

inspected merger remnants can have A & 0.3 (Conselice et al., 2003). The asymme-

try statistic is more sensitive to gas-rich mergers than to gas-poor or minor mergers

(Lotz et al., 2010a,b).

If the local background is high and the galaxy is is sufficiently low surface bright-

ness then negative A values are measured. This is consistent with measurement errors

(see §2.4.2).

2.3.1.4 Gini Coefficient

The Gini coefficient (G; Lorenz, 1905; Abraham et al., 2003; Lotz et al., 2004) is

a statistic adapted from economics that measures the equality of light distribution

in a galaxy. The Gini coefficient is defined by the Lorenz curve of the galaxy’s

light distribution, and is not affected by spatial position. This implies that only the

amount of light distribution matters, which differentiates the Gini coefficient from

the concentration statistic (Conselice, 2014).

The pixels are ranked by increasing flux value, then G is determined by Eq. 2.4,

where n is the number of pixels in the galaxy’s segmentation map, Xi is the pixel flux

at the rank i pixel and X̄ is the mean pixel value.

G =
1

X̄n(n− 1)

n∑
i

(2i− n− 1)Xi (2.4)

A galaxy with equally distributed light will have a Gini coefficient approaching 0.
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Conversely, a galaxy with a large fraction of light concentrated on a few pixels will

have a Gini coefficient closer to 1. Elliptical galaxies and galaxies with bright nuclei

have high Gini coefficients, while disks and galaxies with a uniform surface brightness

will have low Gini coefficients.

F125W(AB) =  22.20

M=   0.60
I=   0.94
D=   0.55

Galaxy 17102, Threshold = 0.92

Figure 2.2 F125W (AB) = 22.2 CANDELS galaxy image is shown to demonstrate

the M , I and D statistics. The left panel shows the image of the galaxy outlined

by the segmentation map created using our morphology code. The middle panel

shows red outlines describing the clumps found when calculating the M statistic.

The white X displays the location of the brightness distribution peak, and the cyan

circle represents the location of the intensity centroid used to calculate the D statistic

(§2.3.1.8). The right panel color codes the clumps for easy identification. This galaxy

is highly disturbed and is broken into 3 bright regions, with the brightness peak well

separated from the intensity centroid. The threshold value (ql) in this case is 0.92,

which represents the threshold where the M statistic was maximized.
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2.3.1.5 M20

The second order moment of the brightest regions of a galaxy (M20; Lotz et al.,

2004) traces the spatial distribution of any bright clumps. When used in tandem

with the Gini coefficient, M20 can be an effective tool for differentiating galaxies with

bright off-center clumps (such as irregular galaxies) from those with one bright central

region (such as the bulge of a spiral galaxy). We define the regions representing the

brightest 20% of the galaxy (Eq. 2.5), and then calculate the spatial distribution of

those pixels as an offset from the central pixel. The center is defined as the position

minimizing Mtot. ∑
i

fi < 0.2ftot (2.5)

Mtot =
n∑
i

Mi =
n∑
i

fi
[
(xi − xc)2 + (yi − yc)2

]
(2.6)

Finally we calculate the second order moment (Eq. 2.7).

M20 = log

(∑
iMi

Mtot

)
(2.7)

Values for the M20 statistic are generally between -0.5 and -2.5. Elliptical galaxies

have M20 closer to -2.5 signifying a lack of bright-off center clumps. Meanwhile disk

galaxies can have M20 > -1.6 when, for example, bright star-forming knots are present.

Similar to concentration, M20 is biased low for galaxies where the brightest 20% light

is unresolved.
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2.3.1.6 Multi-mode

The multi-mode (M) statistic is the ratio, in pixels, of the two brightest regions

of a galaxy (adapted from Freeman et al., 2013). Bright regions are determined via

a threshold method where ql represents the normalized flux value, and l% of pixel

fluxes are less than ql. This creates a new binary image gi,j where 1 represents fluxes

larger than ql and 0 represents fluxes less than ql (Eq. 2.8).

gi,j =


1 fi,j ≥ ql

0 otherwise

(2.8)

The number of pixels in contiguous groups of pixels with value 1 are then sorted

in descending order by area. The 2 largest groups (Al,(2) and Al,(1)) define an area

ratio Rl:

Rl =
Al,(2)

Al,(1)

(2.9)

The previous two steps are recomputed for various normalized flux levels l, and

the M statistic is the maximum Rl value (Eq. 2.10). Values approaching 1 represent

multiple nuclei, while values near 0 are single nuclei systems.

M = maxRl (2.10)

This formulation is slightly revised from Freeman et al. (2013) to limit the M

statistic to values between 0 and 1. Freeman et al. (2013) multiplies Eq. 2.9 by
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an additional factor of Al,(2) to limit the effect of hot pixels. However, this adds

a size dependent factor to the calculation. Because we wish to measure M values

for galaxies at a variety of angular distance scales, it is important to have a size

independent measure. For illustrative purposes, Fig. 2.2 shows an example of how

the MID statistics are calculated. In small galaxies that are poorly resolved Al,(1)

is very small (approaching zero) and we set M=-99. We have tested the result of

setting M=-99 values to M=0 but find the PC weights and group assignments are

very similar to the original values.

2.3.1.7 Intensity

Intensity (I) is the ratio, in flux, of the two brightest regions (Freeman et al.,

2013). The galaxy image is first smoothed by a symmetric bivariate Gaussian kernel.

Regions are defined using maximum gradient paths, where the surrounding eight

pixels of every pixel are inspected and the path of maximal intensity increase is

followed until a local maximum is reached. Regions consist of pixels linked to a

unifying local maximum. The fluxes within these groups are summed and sorted into

descending order (by total flux) leading to our intensity ratio:

I =
I(2)

I(1)

(2.11)

Similar to the M statistic, elliptical galaxies with a bright bulge have I ∼ 0, while

disk galaxies with bright clusters of star-formation are more likely to have I values
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approaching 1.

2.3.1.8 Deviation

Deviation (D) measures the distance between the intensity centroid of a galaxy

and the center of the brightest region (Freeman et al., 2013, Eq. 2.12 and Eq.2.13).

Disk and spheroidal galaxies have deviation values near 0 because their central bulges

typical possess the brightest pixels. On the other hand, a high deviation value indi-

cates a galaxy has bright star forming knots significantly separated from the intensity

centroid (e.g. Fig. 2.2).

(xcen, ycen) =

(
1

nseg

∑
i

∑
j

ifi,j,
1

nseg

∑
i

∑
j

jfi,j

)
(2.12)

The deviation statistic D is the Euclidean distance (in pixels) between the inten-

sity centroid and brightest pixel scaled by a crude estimate of a galaxy’s radius based

upon the number of pixels comprising the galaxy.

D =

√
π

nseg

√
(xcen − xl(1)

)2 + (ycen − yl(1)
)2 (2.13)

2.3.2 Morphological Principal Components

Principal component analysis (PCA) is a linear transformation of multivariate

data. This defines a set of uncorrelated axes, called principal components (PCs),

which are ranked by the variance they capture (Pearson, 1901; Ivezić et al., 2013). A
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linear combination of the original data and eigenvector solutions (also called weights)

project the original data on to the PCs. Principal component analysis is a simple way

to reduce the dimensionality and find the natural distributions of data in parameter

space. PCA is able to determine the correlations between the input data and can find

relationships missed by other means.

We begin by “whitening” the data, i.e. we subtract the mean of each morphological

measurement and divide by the standard deviation of each feature. By dividing our

data by feature variance we remove the effects of mixed units. We calculate the

singular value decomposition (xij = V ΣV T , SVD) of the “whitened” data matrix

(xij). An SVD decomposes the original data into a diagonal matrix (Σ) containing

eigenvalues (e) and a non-diagonal matrix V containing the expansion coefficients

(aka weights). The eigenvalues determine how important each principal component

is to explaining the original data set. The eigenvectors are rank ordered by their

associated eigenvalue. We then project our “whitened” data onto our new eigenbasis

to calculate the principal component scores, which inform us how similar are data

points to each other (PCi, Eq. 2.14).

PCi =
N∑
j=1

Vjixj(i = 1, ..., N) (2.14)

Table 2.1 shows the correlations and importance of different statistics across the

eigenvector solutions of the principal component analysis. The scree value (e2/
∑
e2)

represents the amount of variance captured by a single principal component. The
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scree values demonstrate that the first 3 PCs account for >75% of the variance in the

data. The fact that PC1 only accounts for 40% of the variance shows that more than

a single parameter is needed to define a galaxy. The error estimates are the result of

the scattering method described in §2.4.2.

PC1 is highly dependent upon M , I, D, M20 and the Gini coefficient. We interpret

PC1 as a “bulge strength” indicator given the correlation with G − M20 and the

importance of the MID statistics. Fig. 2.5 shows the relationship between PC1,

Sérsic index and the Gini-M20 “bulge strength” (Eq. 2.15 and 2.16) the vector of

correlations between Gini and M20; Snyder et al., 2015b). Galaxies with low PC1

values have high Sersic indices and high F indicative of strong bulges, while galaxies

with higher PC1 values have progressively smaller bulges and more prevalent disc

properties (see §2.5 for more on the physical and visual properties of specific groups).

We observe two correlations between F and PC1 which corresponds to different groups

of galaxies. Additionally, the two parallel stripes of data seen in Fig. 2.5 are the result

of M=-99 outlier values shifting PC1. We have tested the result of setting M=-99

values to M=0 and find that the PC eigenweights and the group classifications are

very similar to our original values.

F = −0.693M20 + 4.95G− 3.85 (2.15)
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F (G,M20) =


|F | G ≥ 0.14M20 + 0.778

−|F | G < 0.14M20 + 0.778

(2.16)

PC2 is highly dependent upon concentration, and is larger for galaxies with bright

centers and extended envelopes. PC3 is dominated by asymmetry and is larger for

disturbed galaxies. The other principal components are harder to interpret, but are

also less important as evidenced by their lower scree values. It is interesting to

note PC1 defines a bulge strength but is not dependent on concentration (Eq. 2.2).

Concentration for very small (re < 2 kpc), high Sersic (n > 2.5) galaxies is strongly

biased down (see § 2.3.3). This bias is potentially important for ∼14% of our sample.

We performed tests on how PCA results are affected by whitening the data set

using the interquartile range (IQR) statistic instead of a standard deviation. The

eigenvectors calculated using either whitening method are mainly consistent. How-

ever, we chose to use the standard deviation to whiten our data because the PC

weights are more volatile when calculated with an IQR whitened data set. In par-

ticular, the weight in PC3 describing concentration has a variance nearly nine times

larger when calculated for an IQR-scaled data set compared to a standard deviation-

scaled data set.

2.3.3 Concentration - Sérsic Index Relationship

Andrae et al. (2011) demonstrated the correlation between concentration and
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Sérsic-n. However, this relationship does not appear to hold for our high redshift

sample. Fig. 2.3 shows a less established relationship for concentration and Sérsic-n

in our galaxy sample. We show that concentration is biased low for very small (re <

2 kpc), high Sérsic n galaxies (n > 2.5) which represents ∼14% of our sample. We

also find many z∼1.5 galaxies with high concentration and low Sérsic-n that deviate

from the Andrae et al. (2011) relation and are not easily explained by measurement

bias.

The PSF for F125W has a full width half-maximum (FWHM) of ∼0.135”. For

many galaxies, r20 is smaller than the PSF (and in some cases even re is smaller than

the PSF). Fig. 2.3 shows that high Sérsic galaxies make up some of the smallest

objects in our sample. These small galaxies can have r80 ∼ 0.48”, which is only a few

times larger than the PSF.

We wish to test the effect of the size of the PSF can have on measuring the

concentration index, particularly for small galaxies. To accomplish this we take a pure

Sérsic surface brightness light profile I ∼ exp[(r/re)
1/n] with re = 10 kpc and calculate

the Petrosian Radius (Eq. 2.1), r80, r20 and thus concentration. We convolve the pure

Sérsic profile with a gaussian with the same FWHM as the PSF. This convolution has

little effect on the concentration for large galaxies. However, we noticed in Fig. 2.3

that many galaxies have very small re values which could lead to why concentration

values are lower than anticipated. To test this hypothesis we convolve the Sérsic

surface brightness profile of a small galaxy (re = 1 kpc and 2 kpc) with a gaussian
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with the FWHM of the PSF. This will allow us to observe the effect of convolving

the surface brightness profile of a small galaxy with a PSF of comparable size.

Fig. 2.4 shows the concentration - Sérsic relation present in our galaxy sample

and is color coded by the ratio of the size of the PSF to the effective radius of a

galaxy. The solid red line in Fig. 2.4 shows the relation between concentration and

Sérsic calculated for a pure Sérsic surface brightness profile with re = 10 kpc (first

demonstrated in Andrae et al. 2011). The thin-thick and thick dashed lines in Fig.

2.4 show the concentration - Sérsic relation for a surface brightness profile (of a re

= 1 kpc or 2 kpc galaxy) convolved with a gaussian with the FWHM of the PSF.

Galaxies with high FWHM/Re ratios (i.e. the galaxy has a comparable physical size

to the PSF) fall noticeably below the concentration-Sérsic relation for a pure Sérsic

surface brightness profile. The flatter concentration-Sérsic relation of the small galaxy

surface brightness profiles convolved with the PSF closely follows the concentration

and Sérsic values we measure for our sample. As the physical size of a galaxy decreases

the concentration values are increasingly depressed. We take this as evidence that

small galaxies (those with physical sizes similar to the PSF, re ∼ 1-2 kpc) are most

affected by the PSF. Thus the reason the concentration values for our galaxies are

smaller than the relation of Andrae et al. (2011) is likely due to the small physical

sizes of many galaxies in our sample.

Up to 14% of our total sample maybe be quite small (roughly the size of the PSF,

re < 2 kpc) and have a high Sérsic index (n > 2.5) leading to an artificially depressed
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concentration value. Many of these galaxies (∼80%) are in group 6. After correcting

the concentration values these galaxies would instead be classified into group 0. This

suggests that a portion of the group 6 galaxies would instead be group 0 if we had

higher resolution images. However, this implies only ∼26% of all group 6 galaxies

would be reclassified as group 0 so there is still a notable distinction between these

two groups.
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Figure 2.3 WFC3 125W measured concentration versus F125W Sérsic index (van der

Wel et al., 2012) color coded by (left panel) R80 and (right panel) R20 for the entire

sample. Our z ∼1.5 galaxies generally follow a shallower relation than previously

shown in Andrae et al. 2011 (black dashed line).
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Figure 2.4 Concentration versus Sérsic index relation color-coded by the ratio of the

PSF FWHM (∼0.135”) to the effective radius of a galaxy. We plot the numerically

defined relationship for a pure Sersic profile (Andrae et al., 2011., red line) and the

corrections to the pure Sersic profile when the PSF FWHM is 50% the size of a 2

kpc galaxy (thick-thin dashed line) and when the PSF is as large as a 1 kpc galaxy

(thick dashed line). The relative size of the PSF to a galaxy has a large impact on

the concentration values for galaxies with higher Sérsic indices.
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Figure 2.5 PC1 v. Sersic Index and PC1 v. the Gini-M20 bulge strength metric (F ,

Snyder et al., 2015b). PC1 is anti-correlated with Sérsic index and the Gini-M20 Bulge

factor, F , and thus low PC1 values are indicative of a strong central bulge. Small

galaxies can have M = -99 which shifts PC1 and leads to the two parallel stripes. See

§2.5 for more on how group 6 galaxies are different from the remainder of the sample.
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Figure 2.6 PC1 v. PC2 v. PC3 for our sample of M∗ > 1010 M�, 1.36 < z < 1.97

galaxies, color-coded by their hierarchical cluster definitions. PC1 anti-correlates

with bulge strength, PC2 is dominated by concentration, and PC3 is dominated

by asymmetry (see Table 2.1). Group -1 galaxies (black stars) are outliers from

remaining groups, initially they comprised groups 3 and 7.
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Figure 2.7 The amount of between-cluster variance as a function of the number of

clusters grouped by the Ward hierarchical agglomerative clustering routine. The

between-cluster variance is the sum of the distances from the centroid of each cluster

to the centroid of all the data. Eventually this value grows to the total variance in

the data when the number of clusters equals the number of data points.
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Figure 2.8 Magnitude and Surface Brightness vs. ∆[GOODS - UDF] morphologi-

cal statistics as measured in wide-field imaging of GOODS-S compared to the deep

imaging of UDF. Red error bars represent the median ∆ morphology value binned

in magnitude (or surface brightness) bins of 0.5. Error bars represent the median

absolute deviation of each bin corresponding to a 1σ deviation.
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Figure 2.9 Magnitude and Surface Brightness vs. ∆[GOODS - UDF] morphologi-

cal statistics as measured in wide-field imaging of GOODS-S compared to the deep

imaging of UDF. Red error bars represent the median ∆ morphology value binned

in magnitude (or surface brightness) bins of 0.5. Error bars represent the median

absolute deviation of each bin corresponding to a 1σ deviation.
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2.4 PCA-Morphology Group Properties

2.4.1 Defining PCA morphology groups

Studies using PCA usually only select the top eigenvectors to represent the data.

However, this is not a requirement of the analysis. In our case, the number of variables

is not very large and thus retaining the entire parameter space is not a computation-

ally expensive procedure. We aim to reconstruct the full set of galaxy morphological

correlations at other redshift ranges by using all 7 PC dimensions to represent the

data set. The correlations from the higher PC eigenvectors may be important at dif-

ferent redshifts. When the goal of PCA is to cluster data then reducing the number

of features based on the amount of variance captured is not the only option (Jolliffe,

1986; Ben-Hur & Guyon, 2003). In these cases more principal components can better

recreate the original data set.

The morphologies of galaxies are not inherently discrete, but rather lie on a con-

tinuum. However, it is often useful to bin galaxies into discrete morphological groups.

Fig. 2.6 shows the distribution of galaxies when projected onto the first three princi-

pal axes. Except for a large distinct cluster of data points, most of our sample are not

well separated, requiring the need for an objective data dependent grouping method.

To classify galaxies in distinct groups, we employ the Ward hierarchical agglomer-

ative clustering routine of scikit-learn (Pedregosa et al., 2011). Hierarchical clus-

tering (specifically agglomerative clustering) treats each galaxy as its own cluster,
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which are then merged with nearby clusters while minimally increasing the in-cluster

variance. Mergers of adjacent clusters continue until the desired number of groupings

are attained. We define 10 groups, 2 of which are very sparsely populated, with only

a combined 12 galaxies. The sparsely populated clusters consist of extreme outliers

from the other 8 clusters. For this reason, we group all outliers into a single cluster.

Fig. 2.7 shows the amount of between-cluster variance calculated for various num-

bers of clusters. Typically, the optimal number of clusters chosen corresponds to the

turnover in this distribution (the point where the increase in between-cluster variance

begins to slow; Everitt & Hothorn, 2006) which occurs at ∼10 clusters. Increasing

the number of clusters any further does not provide any more discriminatory power

and only complicates interpretations of the final results. We must note that there is

no definitive criterion to help define how many clusters are to be defined in the data

set.

The hierarchical clustering algorithm defines the groups based on the distribution

of the data. In order to reproduce the same group definitions for new objects with po-

tentially different distributions (e.g. different redshifts), we use a convex hull method

to define the original group boundaries in principal component space. A convex hull

defines the smallest area containing a set of points. We define convex hulls using the

10 clusters determined by Ward’s method for our z ∼ 1.5 galaxy sample. In practice

we disregard the 2 sparsely populated clusters and instead group all of those galaxies

into the outlier class.
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We use all 7 PCs to define the convex hull. Calculating convex hulls in 7-

dimensional space is computationally intensive and currently impossible for large

data sets, thus we outline a simple workaround. We define a convex hull based on

2 PC dimensions at a time and test whether a galaxy falls within the boundaries of

a group using all combinations of 2 PC dimensions. The group a galaxy falls in the

most times is determined to be its group. If more than one group is equally likely,

the smallest distance from the galaxy’s position in PC space to the center of the pos-

sible groups is used to determine group membership. Galaxies that are misclassified

following the convex hull method generally exist on the boundaries of a convex hull.

We present the python code determining the group membership based on convex

hull groupings1.

2.4.2 Morphological Error Estimation

The Hubble Ultra Deep Field (UDF) consists of deep imaging on a portion of the

shallower GOODS-S field (Koekemoer et al., 2011). We measure the same galaxies us-

ing different depth images to the determine reliability of morphological measurements

as a function of signal-to-noise and magnitude. The non-parametric morphologies of

galaxies are measured both in the deep UDF region and the GOODS-S observations.

We calculate the differences of GOODS-S morphologies from UDF morphologies. We

then bin galaxies in magnitude (or surface brightness) to find the average difference

1https://github.com/mikepeth/PyML
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Figure 2.10 Group classification uncertainty, based on bootstrapped morphology mea-

surement errors. Each galaxy’s non-parametric morphologies are randomly scattered

based on gaussians with widths based on errors found in Figs. 2.8 and 2.9 . The prin-

cipal components and group membership are redetermined 250 times. The resulting

MC group distributions for each originally defined group are shown. Groups 1, 6, and

-1 are the most robust to measurement errors, whereas half of Groups 2, 4, 5 and 8

galaxies are scattered into other groups. The panels are roughly arranged by PC1

(increasing left to right) and PC2 (increasing bottom to top, except for group -1).
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Figure 2.11 Rest-frame UV J diagram for M∗ > 1010 M�, 1.36 < z < 1.97 galaxies for

each group. A UV J diagram is used to separate quenched galaxies from star-forming

galaxies (Williams et al., 2009). Quenched galaxies reside in the upper left trapezoid.

Star-forming galaxies follow a sequence of increasing dust from the bottom left to

the upper right. The panels are roughly arranged by PC1 (increasing left to right)

and PC2 (increasing bottom to top, except for group -1). The majority of quenched

galaxies are in group 6, with some quenched galaxies found in groups 0 and 8. As

PC1 increases we observe a decrease in the fraction of quenched galaxies.
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and median absolute deviation, which we define as the error for that morphological

measurement.

Figs. 2.8 and 2.9 show that larger and brighter galaxies are (unsurprisingly) well

measured morphologically. The median absolute deviations (red error bars) show a

majority of galaxies have statistics that do not vary widely between shallow and deep

images. In general, the morphological offsets seen in Figs. 2.8 and 2.9 are very small.

(For similar study see Fig. 6 in Grogin et al., 2011.)

Now that we have calculated the principal morphological components and result-

ing morphology groups, we can test their robustness to measurement errors. We

use Monte Carlo resampling test to randomly scatter our initial morphological mea-

surements by Gaussians with sigma equal to the median absolute deviation for each

morphological measurement (Figs. 2.8 and 2.9). We then perform a principal com-

ponent analysis for this new data set and repeat this process 250 times. We project

the scattered data on the original PC weights and then classify the galaxies based on

the originally defined convex hulls (§2.4.1) each time. The group with a plurality of

the reclassifications is defined to be the “Monte Carlo” (MC) group. Fig. 2.10 can

thus be seen as the probability distribution function for a galaxy of a certain group to

be classified into a group via the convex hull method. Group 6 is the most robustly

classified group. Only group 4 galaxies are reclassified as such following the Monte

Carlo scattering to less than a majority of times (however still a large plurality of

times). The plots are separated by group and ordered roughly by PC1 horizontally
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and PC2 vertically. The largest PC1 values and smallest PC2 values are in group 6

galaxies.

Table 2.1 shows that the most important principal components (PC1-3) have typ-

ical resampled deviations ≤ 10 - 15% of their weights. Higher principal component

dimension display greater variability, but are also less important to our group classi-

fications.

Every galaxy has an MC reclassification with a probability associated with it and

the group with a plurality of the reclassifications is defined as the MC resampled

group. Regardless of the probability, the reclassification is either the same or differ-

ent from the original group designation. This similarity or difference in classification

determines the completeness and purity of the classification scheme. The MC re-

sampled classifications are 90.8% complete and 90.4% pure relative to original group

classifications. The completeness and purity are highest when all 7 PCs are used

to define the groups instead of only 3 PCs. Representing the data set with 3 PCs

slightly drops the completeness and purity scores to 88.3 and 89.4%. In contrast,

the completeness and purity values significantly drop to 25.9 and 20.3 percent when

PCs are calculated from IQR-scaled data. The volatility of the eigenvectors calcu-

lated from an IQR-scaled data set is the cause of these poor reclassification results.

This evidence leads to our conclusion that using all 7 standard-deviation scaled PC

eigenvectors will result in more definitive groups.

Note that this does not include the systematic biases e.g. those due to the PSF.
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This bias likely important for groups 6 and 0.

2.5 PCA Morphology Groups at z ∼ 1.5

The connection between morphology and star-formation has been well studied

(Wuyts et al., 2011; Kriek et al., 2009; Brinchmann et al., 2004). Late-type galaxies

are typically still actively forming stars, whereas early-type galaxies have had their

star-formation quenched. However, there are examples of red, quenched disks and

blue, star-forming ellipticals which are important rare “transitional” classes.

We use a UV J color-color diagram (Fig. 2.11) to classify galaxies as “star-

forming” and “quenched” using the bimodality of these two types of galaxies seen in

U − V and V − J rest-frame colors (Labbé et al., 2005; Wuyts et al., 2007; Williams

et al., 2009). Star-forming galaxies follow a sequence determined by dust extinction.

The panels are arranged in Fig. 2.11 so that PC1 increases along the x-axis and

PC2 increases along the y-axis. Most groups are primarily comprised of star-forming

galaxies. Groups with lower PC1 values are more compact and quenched. Similarly, a

UV−Mass diagram separate star-forming from quenched galaxies (Fig. 2.12). Again

galaxies with lower PC1 values are more massive and more quenched.

Previous studies (e.g. Lotz et al., 2004; Conselice et al., 2000; Lee et al., 2013)

utilize G − M20 (Fig. 2.13) or Concentration-Asymmetry (Fig. 2.14) diagrams to

classify galaxies into early and late-type categories. In our study we use these tools to
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Figure 2.12 Rest-frame U − V vs. Stellar Mass diagram for M∗ > 1010 M�, 1.36

< z < 1.97 galaxies for each cluster group. Galaxies classified by UV J as star-

forming (stars) and quenched (circles) are shown for each group. The dashed line in

U − V represents the approximate dividing line between quenched and star-forming

galaxies. Groups 6, 0, and 9 have the greatest fractions of galaxies with large masses

(dashed line, M∗ > 5×1010M�). The panels are roughly arranged by PC1 (increasing

left to right) and PC2 (increasing bottom to top, except for group -1).
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Figure 2.13 G − M20 for each group. Overplotted are the dividing lines between:

mergers (top left corner), bulge-dominated (right-most region), and disk-dominated

(bottom left region) modified from Lotz et al. (2004). Group 0 fully occupies the

bulge-dominated region of the plot. Symbols same as Fig. 2.12. The panels are

roughly arranged by PC1 (increasing left to right) and PC2 (increasing bottom to

top, except for group -1).
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Figure 2.14 Concentration - Asymmetry for each group. Plotting symbols same as

Fig. 2.12. Groups 9 and 1 have the highest asymmetry, while group 0 has the highest

concentration. The panels are roughly arranged by PC1 (increasing left to right) and

PC2 (increasing bottom to top, except for group -1).
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Figure 2.15 Effective radii (kpc, as measured in WFC3 F160W by van der Wel et al.,

2012) vs. stellar mass for each group. Dotted lines represent the “compact” criteria

(M/r1.5
e < 10.3M� kpc−1.5) of Barro et al. (2013). Almost all group 6 galaxies are very

compact, with most galaxies smaller than 2 kpc. Groups 0 and 8 have a number of

borderline compact galaxies. The remaining groups have only a few compact galaxies

at most. The panels are roughly arranged by PC1 (increasing left to right) and PC2

(increasing bottom to top, except for group -1).
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reinforce how effective our PCA groups are at separating different classes of galaxies.

In Fig. 2.13 the dotted lines signify classification regions adapted from Lotz et al.

(2004) for z∼1-2 galaxies observed by HST . Mergers are in the upper left region,

late-type galaxies are in the lower region and early-type galaxies are in the wedge-

shaped region on the rightmost portion of the G −M20 diagram. C − A diagrams

(for review see Conselice, 2014) have been used to differentiate giant ellipticals (which

live in regions of large C and small A) from spirals (with progressively smaller C and

larger A) and from mergers (which are the most asymmetric but the least centrally

concentrated).

For our group descriptions in the following sections we will refer heavily to Fig.

2.11 - 2.15, the example galaxies of Fig. 2.17 - 2.25 and Tables 2.2 - 2.5. For these

figures the locations of each subplot represents the approximate position of that group

in PCA space. From left to right, PC1 increases which is indicative of an increase in

bulge strength. From bottom to top, PC2 increases thus concentration increases.

Tables 2.2-2.5 describe the group demographics in terms of stellar mass, visual

classification (Kartaltepe et al., 2015), Sérsic indices (van der Wel et al., 2012) and

quenched fraction. These demographics are both listed in terms of the original group

(as determined by the hierarchical clustering method, left columns) and in terms of the

MC group (determined using the scattering method, right columns). The agreement

between the galaxy demographics in the original groups and scattered MC groups

shows the group characteristics are quite robust to noise. Table 2.2 shows that high
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PC1 (disk-dominated) groups have very few high mass galaxies. Meanwhile, low PC1

(compact/bulge-dominated) groups have a larger fraction of high mass galaxies.

We use the CANDELS visual classifications (Kartaltepe et al., 2015) to determine

the demography of the PCA groups in disk, spheroidal and irregular galaxy classes.

For a galaxy to be counted as a “disk”, “spheroid” or “irregular” it must have been

classified by at least two-thirds of the classifiers as such, and less than one-third as

the other classes. A “disk+spheroid” is classified as both a disk and a spheroid by at

least two-thirds of the classifiers. The “other” class represents everything that does

not belong to the other 4 categories. The fractions of galaxies in each morphological

type are shown in Table 2.3.

Sérsic fits have been used extensively to classify galaxies into early- and late-type

categories (van der Wel et al., 2012; van Dokkum et al., 2010; Patel et al., 2011;

Peng et al., 2002). Typically, n=2.5 is used to divide late-type (n < 2.5) and early-

type (n > 2.5) galaxies. Table 2.4 shows the percentage of galaxies representing a

certain classification for each group as a percentage of the group population (van

der Wel et al., 2012). Similar to visual classification, the percentage of galaxies with

disk-dominated morphologies decreases with decreasing PC1 values.

Table 2.5 and Fig. 2.11 show that in this redshift range (1.36 < z < 1.97) and

mass range (& 1010M�) only 23% of galaxies are quenched. Table 2.5 shows that the

quenched fraction for a group is anti-correlated to PC1 and PC2.

Fig. 2.15 shows the effective radii (kpc) - stellar mass relation for each group. In
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this figure, PC1 and PC2 are strongly correlated a galaxy’s compactness. Group 6

galaxies are by far the most compact, with the largest fraction of quenched galaxies.

As PC1 and PC2 increase the number of quenched galaxies in each group decreases.

Group 6

Constituting 37% of the entire sample, group 6 is by far the most populated group

at z ∼ 1.5 (example postage stamps in Fig. 2.17) . Group 6 galaxies are characterized

by their compact sizes (re ∼ 1.57 ± 0.81 kpc) and smooth features. Many of these

galaxies are barely resolved by HST WFC3 which leads to their structureless appear-

ance. Therefore, the structural properties of this group should be interpreted with

caution, since it is possible that unresolved features in these galaxies would cause

them to be classified as a different group if we had access to higher resolution obser-

vations. 43% of the group is quenched, which represents 72% of all quenched galaxies

at this redshift. Groups 0 and 4 are the only other group with a >10% fraction of

quenched galaxies.

Group 6 galaxies also dominate the high mass galaxies at this epoch, constituting

48% of galaxies with 5 × 1010M� < M∗ < 1011M� and 49% of galaxies with M∗ >

1011M�.

Group 6 galaxies have low concentrations (C ∼ 3.03 ± 0.40), moderate Gini

coefficients (G ∼ 0.53 ± 0.05), low M20 (∼ -1.67 ± 0.17), extremely low MID values

(I ∼ 0.00± 0.02, D ∼ 0.06± 0.04), and low asymmetry values (A ∼ 0.05± 0.06). The
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Table 2.5 UV J Quenched Fractions of Groups

Group Quenched Star-Forming

Low PC1

6 43.5+3.1
−2.9 39.3+3.3

−3.0 56.5+3.5
−3.3 60.5+4.0

−3.8

0 25.9+4.4
−3.8 27.0+6.5

−5.3 74.1+7.0
−6.4 73.0+9.8

−8.7

9 7.6+4.4
−3.0 15.1+3.5

−2.9 92.4+11.6
−10.3 84.9+7.4

−6.8

35.4+0.3
−0.1 31.3+1.0

−0.8 64.6+0.3
−0.1 68.5+1.4

−1.2

Mid PC1
4 15.3+4.5

−3.6 17.2+4.9
−3.9 84.7+9.2

−8.3 82.8+9.5
−8.5

8 8.1+3.1
−2.4 13.9+4.2

−3.4 91.9+8.6
−7.9 86.1+9.1

−8.3

11.4+0.8
−0.2 15.5+2.2

−1.7 88.6+0.9
−0.4 84.5+4.5

−4.0

High PC1

1 0.0+1.9
−0.5 8.3+3.1

−2.3 100.0+10.8
−9.8 91.7+8.4

−7.7

2 0.0+2.6
−0.7 15.0+4.3

−3.5 100.0+12.8
−11.4 84.9+9.0

−8.2

5 0.9+2.1
−1.0 13.9+4.2

−3.4 99.1+10.1
−9.2 86.1+9.1

−8.3

0.4+0.7
−0.2 12.1+1.2

−0.9 99.6+0.8
−0.4 87.8+2.7

−2.4

-1 10.5+13.4
−7.6 14.2+15.7

−9.3 89.5+26.2
−20.9 85.8+27.7

−21.7

Total Fraction 23% (281) 77% (962)

Note: Quenched/star-forming classifications based on Fig. 2.11. The

left hand columns for quenched/star-forming classifications represent

the demographics based upon the original group based on hierarchical

clustering. The right hand columns are based on the total group

probabilities based on the scattering technique classifications.

66



CHAPTER 2. PCA MORPHOLOGY

G−M20 diagram classifies the majority of these galaxies as borderline disk/spheroidal

(with occasional irregular classification). However, M20 values are potentially biased

because the 20% light is not resolved. These galaxies have large average Sérsic indices

(n̄ ∼ 3.11).

Group 6 is comprised of the highest percentage of visually identified spheroids (52

percent) and disk+spheroids (26 percent), and also has the lowest percentage of disks

(13 percent) of any group.

Upwards of 26% of group 6 galaxies are small (re < 2 kpc) with high Sersic (n >

2.5) which could result in an underestimation of concentration and PC2 values. These

galaxies would instead be classified into group 0.

Group 0

Group 0 galaxies are characterized by a strong bulge component which is sur-

rounded by a faint smooth extended component (example postage stamps in Fig.

2.18). A significant fraction of group 0 galaxies are quenched galaxies (26 percent;

Table 2.5). Although group 0 galaxies make up only 13% of the galaxies in the sample,

they constitute 38% of the galaxies more massive than 1011M� (Table 2.2).

These galaxies have high concentration values (C ∼ 3.80 ± 0.78), low M20 (∼

-1.80 ± 0.17), high Gini coefficients (G ∼ 0.55 ± 0.04), low deviations (D ∼ 0.06 ±

0.04), low multi-modes (M ∼ 0.03 ± 0.04), low intensities (I ∼ 0.03 ± 0.04) and low

asymmetries (A ∼ 0.06 ± 0.07). This group of galaxies is the only class to fall almost
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entirely into the spheroidal region of the G−M20 diagram.

Visually, these galaxies have a large disk+spheroid fraction (33 percent), a large

spheroid fraction (35 percent), a moderate disk fraction (31 percent) and a very

low irregular fraction (1 percent). Parametric fits find that group 0 galaxies have

moderately sized effective radii (re ∼ 3.13 ± 1.97 kpc) and large average Sérsic indices

(n̄ ∼ 3.87). The visual classifications and distribution of Sérsic indices agree with

G −M20 measurements and thus describe the prototypical group 0 galaxy as bulge-

dominated with a faint disk component or extended envelope.

Group 9

Group 9 is characterized by their asymmetric, irregular morphologies and strong

bulge component (example postage stamps in Fig. 2.19). These galaxies make up

a significant portion of the M∗ > 1011M� galaxies (15 percent). However, most of

these galaxies are lower mass (M∗ < 3 × 1010M�). Only 8% of group 9 galaxies are

quenched.

These galaxies have moderate concentrations (C ∼ 3.70 ± 0.70), moderate Gini

coefficient (G ∼ 0.52 ± 0.05), moderate M20 (∼ -1.40 ± 0.27), moderate MID values

(M ∼ 0.14 ± 0.14, I ∼ 0.21 ± 0.18, D ∼ 0.19 ± 0.09) and high asymmetry (A ∼

0.21 ± 0.10). These galaxies lie along the G−M20 merger/disk galaxy dividing line

and also overlap with the spheroidal region.

Group 9 galaxies have large radii (re ∼ 3.67 ± 1.64 kpc) and moderately low
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average Sérsic indices (n̄ ∼ 2.11).

This group is the most visually irregular group (24 percent), and has a relatively

low disk fraction (41 percent), spheroid fraction (13 percent) and disk+spheroid frac-

tion (11 percent). These statistics and visual classifications imply many galaxies have

bright off-center clusters, in addition to bright central bulges.

Group 4

Group 4 galaxies are low-mass, smooth, extended galaxies with moderate central

concentrations (example postage stamps in Fig. 2.20). Although mostly star-forming,

group 4 contains some quenched galaxies (∼11 percent). Some galaxies are extended

and also quenched; meaning they are rare “red disk” population. None of the group

4 galaxies are more massive than M∗ > 1011M�. Primarily these galaxies are lower

mass (M∗ < 3× 1010M�).

Group 4 has moderate concentrations (C ∼ 3.53 ± 0.66), moderate Gini coeffi-

cients (G ∼ 0.49 ± 0.04 ), high M20 (∼ -1.11 ± 0.24), low intensities (I ∼ 0.05 ±

0.05), small multi-mode values (M ∼ 0.07± 0.07) , low deviations (D ∼ 0.10 ± 0.07),

and low asymmetry (A . 0).

Group 4 galaxies have moderate effective radii (re ∼ 3.13 ± 1.63 kpc) and medium

average Sérsic indices (n̄ ∼ 2.68).

Group 4 members are primarily visually classified as disks (51 percent) or disk+spheroids

(24 percent) and are less classified as spheroids (17 percent) or irregulars (0 percent).
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Group 8

Group 8 galaxies are an interesting class of bulge+disk systems with dominant

and smooth disks (example postage stamps in Fig. 2.21). This class is dominated by

low-mass star-forming galaxies, but also includes low-mass (< 3× 1010M�) quenched

galaxies (∼ 8 percent). Very few galaxies have stellar masses > 5× 1010M�.

Group 8 galaxies have small concentrations (C ∼ 3.05 ± 0.43), moderate Gini

coefficients (G ∼ 0.46 ± 0.03), moderate M20 (∼ -1.56 ± 0.17), low but non-zero MID

values (M ∼ 0.06 ± 0.06, I ∼ 0.10 ± 0.11, D ∼ 0.09 ± 0.05), and low asymmetry

values (A ∼ 0.08 ± 0.07). On the G −M20 diagram these galaxies fall within the

disk-dominated region but are close to the spheroidal/disk dividing line.

Sérsic fits to this class find moderate sizes (re ∼ 3.48 ± 1.89 kpc) and low average

Sérsic indices (n̄ ∼ 1.46).

Group 8 is dominated by visually-classified disks (74 percent) with only a modest

fraction of spheroids (10 percent). A small number of galaxies are quenched and

compact which overlaps with groups 0 and 6.

Group 1

Group 1 galaxies are primarily large disks and irregulars with bright off-center

star-forming knots (example postage stamps in Fig. 2.22). None of these galaxies are

quenched based on their UV J colors. The distribution of masses is heavily weighted
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towards lower mass galaxies with very few objects more massive than 3×1010 M�.

Group 1 galaxies have low concentration values (C ∼ 2.76 ± 0.40), low Gini co-

efficients (G ∼ 0.43 ± 0.04), high M20 (∼ -1.07 ± 0.17), moderately high asymmetry

values (A ∼ 0.13 ± 0.11), large multi-mode values (M ∼ 0.40 ± 0.27), high devia-

tions (D ∼ 0.37 ± 0.13) and large intensities (I ∼ 0.61 ± 0.24). The high A and

MID statistics indicate many of these galaxies have bright off-center clusters and are

potentially irregular.

The visual classifications and Sérsic indices primarily classify this group as disk

galaxies and/or irregulars. Group 1 is dominated by visually-classified disks (72

percent) and has a relatively large fraction of irregulars (16 percent). This group has

very few spheroids or bulge-dominated disk galaxies. Their effective radii are large

for this redshift and mass (re ∼ 5.35 ± 1.43 kpc). This group has low average Sérsic

indices (n̄ ∼ 0.63) imply a large disk and irregular population.

Group 2

Group 2 galaxies are primarily low-mass , star-forming, smooth disk galaxies with

high central concentrations and few visually detected star-forming knots (example

postage stamps in Fig. 2.23). None of these galaxies are quenched. The mass

distribution for this group is a steeply declining function where there are only a few

galaxies with masses > 3× 1010M�.

Group 2 galaxies have large concentrations (C ∼ 4.81 ± 0.62), low Gini coefficients
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(G ∼ 0.45 ± 0.04 ), moderate M20 (∼ -1.20 ± 0.24), low asymmetry (A ∼ 0.06 ±

0.08), low deviations (D ∼ 0.16 ± 0.09), moderate multi-modes (M ∼ 0.16 ± 0.21),

and a wide spread of intensity values (I ∼ 0.29 ± 0.29). On the G −M20 diagram

these galaxies fall within the disk-dominated and irregular portion of the diagram.

However, their high C values suggest a bright nuclear component.

The visual classifications show this group is dominated by disks (76 percent) and

only small fractions of irregular galaxies (∼5 percent) and disk+spheroid galaxies (∼ 8

percent). They have mid-sized effective radii (re ∼ 3.52 ± 0.83 kpc) and mid-to-low

average Sérsic indices (n̄ ∼ 1.10).

Group 5

Group 5 galaxies are primarily low-mass (M∗ < 3 × 1010M�), star forming, ex-

tended disk galaxies with a weak bulge component (example postage stamps in Fig.

2.24). This group has a negligible fraction of quenched galaxies (∼ 1 percent).

Group 5 is mostly comprised of low concentration values (C ∼ 2.87 ± 0.42), low

Gini coefficients (G ∼ 0.40 ± 0.03), low/moderate M20 (∼ -1.20 ± 0.19), a wide

spread in multi-mode (M ∼ 0.26 ± 0.24), large intensity values (I ∼ 0.52 ± 0.28),

low deviation values (D ∼ 0.12 ± 0.06), and low asymmetry values (A ∼ 0.03 ±

0.12). On the G−M20 diagram these galaxies fall solidly within the disk-dominated

region.

The defining feature of this group is its large typical size (re ∼ 5.47 ± 1.81 kpc).
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Group 5 galaxies have very low average Sérsic indices (n̄ ∼ 0.65); implying a disk-

dominated/irregular population.

Visual classification indicate group 5 is comprised almost entirely of disks (95

percent), and a few irregulars (3 percent). This group has no visually identified

bulge-dominated or spheroidal galaxies and are not clumpy.

Group -1

The original groups 3 and 7 were comprised of only a few galaxies each (19 in total,

example postage stamps in Fig. 2.25). They were outliers from the remaining groups

and are combined into a single outlier group. These galaxies are most likely outliers

because they have at least one poorly measured (or missing) morphological parameter

(especially the multi-mode statistic). These galaxies have a low surface brightness,

very large radii (re ∼ 6.73 ± 2.30 kpc), low concentration (C ∼ 2.21 ± 0.74), high

intensity (I ∼ 0.44 ± 0.39 ), high M20 (∼ -0.99 ± 0.26), low Gini coefficient (G ∼

0.41 ± 0.10), extremely high deviations (D ∼ 0.69 ± 0.49) and high multi-modes

(M ∼ 0.53 ± 0.39). The deviation values can separate group -1 galaxies from all the

other groups.
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2.6 Discussion

The spatial distribution of light for galaxies is a snapshot of the orbital paths of the

constituent stars, gas, and dust. The morphology of a galaxy informs us of the merger

and gas-accretion history in ways integrated colors, spectral-energy distributions and

stellar mass cannot directly probe.

Using a Sérsic index, bulge-dominated galaxies are traditionally defined to have

n > 2.5 (e.g. Bruce et al., 2014a). For the purposes of our PC classifications we define

galaxies with low PC1 values as bulge-dominated (the constituents of groups 0, 6 and

9). These two definitions lead to differences in the characteristics of what are defined

as ‘bulge-dominated’ and we will explore these differences in the following sections.

The connection between morphology and star-formation has been well studied

(Wuyts et al., 2011; Kriek et al., 2009; Brinchmann et al., 2004). Late-type galaxies

are typically still actively forming stars, whereas early-type galaxies have had their

star-formation quenched. However, there are examples of red, quenched disks and

blue, star-forming ellipticals which are important rare “transitional” classes. In our

study we delve deeper into the correlations between morphological type and star-

formation and how the connection between them is not always clear-cut.
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Figure 2.16 Cumulative quenched fraction rank ordered by various metrics: PC1,

PC2, PC3, stellar mass, Sérsic-n and “compactness”. The green solid line represents

no correlation between quenched fraction and rank. Sérsic-n and PC1 have a similar

CQF shape, where n is less contaminated by quenched galaxies at low values but PC1

is less contaminated at high values.
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2.6.1 Stellar Mass - Quenching Connection for groups

Fig. 2.16 shows the cumulative distribution of the quenched fraction rank-ordered

by “compactness” (M/r1.5
e < 10.3M� kpc−1.5; Barro et al., 2013), stellar mass, Sérsic-

n, PC1, PC2 and PC3. For every galaxy we assign a 0 to star-forming galaxies and

1/nquenched for quenched galaxies (as determined by the UV J diagram, Fig. 2.11)

and then these values are cumulatively summed. We observe a flat trend in stellar

mass and PC2, and a much steeper trend in PC1 and Sérsic-n. However, Sérsic-n has

previously been shown to correlate well with quenching (e.g. Wuyts et al., 2011; Bell

et al., 2012). The similarities in steepness between the PC1 and Sérsic-n curves show

PC1 is an equivalently useful predictor of quenching.

We also investigate the relationship between quenching and PC1 through the

color-mass relation. In Fig. 2.12 we observe a correlation between the increase in

the fraction of massive galaxies (> 5 × 1010M�) for a specific group and the mag-

nitude of PC1 (bulge strength). The amount of quenched galaxies correlates more

strongly with PC1 (bulge strength) than PC2 (concentration). Similar results have

been found for z ∼ 1-2 galaxies (Bell et al., 2012; Barro et al., 2013; Lang et al., 2014).

Unsurprisingly, the most massive galaxies are also the most likely to be quenched.

For instance, group 6 has the largest amount of red galaxies and many massive galax-

ies (> 5 × 1010M�). The only other groups with a substantial number of quiescent

galaxies are groups 0 (26 percent) and 4 (15 percent). Group 0 galaxies are primar-

ily bulge-dominated with a faint disk. However, group 6 galaxies are more massive
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(> 5×1010M�) than group 0 galaxies. Furthermore, a much larger percentage of these

massive galaxies in group 6 are quenched. Group 9 galaxies are slightly less massive

(logM∗ ∼ 10.4), but still generally have a strong bulge component (as determined by

PC1).

Group 4 and 8 galaxies fall between the extremes of the bulge-dominated groups

(0, 6 and 9) and the disk-dominated groups (1, 2 and 5) in stellar mass, bulge strength

and quenched fraction (see Tables 2.2 - 2.5). The galaxies of groups 4 and 8 are more

bulge-dominated than the disk-dominated galaxies which would explain the larger

quenched fraction. Groups 4 and 8 galaxies are not as massive as those in the bulge-

dominated groups 0, 6 and 9 (Table 2.2) and are not quenched to the same extent

either (Table 2.5).

2.6.2 The relationship between PCA Classes and

Visual/Sérsic Classifications

PCA, in conjunction with our group finding algorithm, provides a distinct pic-

ture of galaxy structure from Sérsic index and visually based classifications. This

classification scheme also separates quenched compact galaxies (group 6) from larger,

smooth proto-elliptical systems (group 0), and star-forming disk-dominated clumpy

galaxies (group 1) from star-forming bulge-dominated asymmetric galaxies (group 9).

Separating clumpy star-formers and bulge dominated star forming galaxies has great
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importance for understanding the mechanisms that formed these galaxies and the

potential avenues for evolution available to them.

Based upon the visual and Sérsic classifications, our groups belong to 3 distinct

types: the “disk-dominated” galaxies of groups 1, 2, and 5; the “compact/bulge-

dominated” galaxies of groups 0, 6, and 9; and the “intermediate” galaxies of groups

4 and 8. For the purposes of our discussion we refer the reader to Figs. 2.11 - 2.15,

the example galaxies of Figs. 2.17 - 2.25 and Tables 2.2 - 2.5.

2.6.2.1 The Compact and Bulge-Dominated Galaxies: Groups

0, 6 and 9

Galaxies in groups 0, 6, and 9 display a variety of visual classifications, but have a

single unifying characteristic: many of these galaxies are bulge-dominated. Group 6

galaxies are very small and compact (re ∼ 1.57 ± 0.81 kpc) with no discernible stellar

envelope. Group 0 galaxies are slightly larger (re ∼ 3.13 ± 1.97 kpc) than group 6,

and display evidence for an extended stellar envelope. Groups 0 and 6 display some

distinguishing characteristics as well. Group 6 galaxies lower measured concentrations

(C ∼ 3.04 ± 0.40) than those in group 0 (C ∼ 3.80 ± 0.78). The small sizes and

lower concentrations for group 6 galaxies are due to the fact that r20 measurements

are near or below the resolution limit of the survey. Additionally, r80 measurements

are very small for group 6 compared to galaxies in all other groups (see §2.3.3).

The size-mass (Fig. 2.15) relation for these two groups is different as well. Group
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6 galaxies are smaller but overlap in masses with group 0 galaxies. Thus many more

group 6 galaxies are compact using the Barro et al. (2013) definition. Compact

galaxies in group 6 are quenched, whereas the quenched galaxies of group 0 are more

extended.

Group 6 galaxies are visually classified as bulge-dominated (either pure spheroid

or disk+spheroid morphology) >78 % of the time. However, a Sérsic cut of n > 2.5

yields only 35%. Similarly for group 0 galaxies, 66% of galaxies are visually classified

as bulge-dominated, but a Sérsic classification only indicates 43% are bulge-dominated

galaxies. Meanwhile, group 9 galaxies are the most visually disturbed group (26%

irregular) and have bright central bulges determined by PC1.

Classifications based on PCs provide a slightly different picture from those based

on Sérsic-n or visual inspection. A PC classification determines ∼57% of galaxies are

compact/bulge-dominated (groups 0, 6 and 9) while visual classifications determine

∼47% of galaxies are bulge-dominated (either pure spheroids or disk+spheroids) and

Sérsic indices classify ∼25% of galaxies as bulge-dominated (n > 2.5). The differences

between the classification schemes are subtle but important because they mean each

is probing a slightly different subset of galaxies.

The compact/bulge-dominated nature and high masses of these 3 groups could

imply an evolutionary connection. In this scenario, galaxies begin as group 6 galaxies,

a naked core with no extended envelope or structure. Following a gas-rich merger

disturbed tidal features become visible and the galaxy becomes classified as group 9.
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After a sufficient time for the gas to settle in a disk or spheroidal envelope (& 1.5 Gyr)

the galaxy would appear as a group 0 galaxy. In this scenario, the quenched galaxies

of group 6 have star-formation reignited following the merger, only to once again fade

during the disk settlement period. Mergers would thus be a major mechanism for

triggering disk growth.

2.6.2.2 The Disk-dominated Galaxies: Groups 1, 2 and 5

Groups 1, 2 and 5 all have an overwhelmingly large percentage of visually clas-

sified disk galaxies (72%, 76%, and 96% respectively). Sérsic classifications largely

agree with the visual classifications for these groups. The only difference is that Sérsic

classifications yield more disk-dominated galaxies (1 < n < 2.5) than visual classifi-

cations would indicate. Non-parametric morphologies determine these disk galaxies

have varying degrees of clumpiness and disturbances.

Group 1 galaxies are the most disturbed of the “disk-dominated” groups. They

have the largest asymmetries (A ∼ 0.13 ± 0.11), multi-modes (M ∼ 0.40 ± 0.27),

intensities (I ∼ 0.61 ± 0.24) and deviations (D ∼ 0.37 ± 0.13). They are more

often visually classified as irregular (16 percent), but have a weaker bulge component

(indicated by their larger M20 values, ∼ -1.07 ± 0.17) than groups 2 and 5.

Of the remaining disk-dominated groups, group 5 galaxies have much higher M

and I statistics (M ∼ 0.26 ± 0.24 and I ∼ 0.52 ± 0.28) than those in group 2 (M ∼

0.16 ± 0.21 and I ∼ 0.29 ± 0.29). However, these two groups have similar asymmetry
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values (A ∼ 0.05), M20 values (∼ -1.2), and deviations (D ∼ 0.1).

The disk-dominated galaxies of groups 1, 2 and 5 are on average less massive,

bluer in U − V − J and larger than the compact/bulge-dominated galaxies of groups

0, 6 and 9.

2.6.2.3 The Intermediate Galaxies: Groups 4 and 8

Groups 4 and 8 represent an intermediate PC class between the compact/bulge-

dominated morphologies of groups 0, 6 & 9 and the disk-dominated groups 1,2 & 5.

Group 4 and 8 both have a population of quenched galaxies. However, the quenched

galaxies of group 8 are smaller than those of group 4.

Both groups 4 and 8 have a large fraction of galaxies with n < 2.5 (72% and

80%, respectively). However, group 8 galaxies are more likely to be visually classified

as disks than group 4 galaxies (74% compared to 51 percent). Meanwhile, group 4

galaxies are more likely be visually classified as bulge-dominated (41% compared to 15

percent). However, the differences between groups should taken with caution as the

small numbers of galaxies in these groups reduces the significance of the percentages.

For groups 4 and 8 the classifications based upon non-parametric morphologies

do not always agree with classifications based on Sérsic indices or visual inspection.

Group 8 has a much smaller average M20 value (M20 ∼ -1.56 ± 0.17) than group 4

(M20 ∼ -1.11 ± 0.24). This indicates the bulges of group 8 galaxies are large and

possibly dominate the morphology. However, Sérsic indices and visual classifications
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would suggest there is no sizable bulge component for most of these galaxies. Group

4 galaxies have high concentrations, low Sérsic indices and are the least well defined

group by bootstrap measures (see Fig. 2.10). Meanwhile, the G − M20 diagram

suggests a population of irregular galaxies while visual classifications find no irregular

galaxies. The bright nuclear components may be the result of an AGN or starburst

activity.

2.6.2.4 Comparing the Irregular Galaxies of Groups 1 and 9

The galaxies of groups 1 and 9 are the most likely to be classified visually as

irregular. While group 1 is defined by star-forming disk-dominated clumpy galaxies,

group 9 is defined by star-forming bulge-dominated asymmetric galaxies with tidal

features. These subtle morphological differences are missed by Sérsic index, C − A

and Gini −M20 based classifications and potentially offer clues as to the formation

and evolutionary tracks of these galaxies.

Group 9 galaxies display tidal features and irregular disks but their strong central

bulge is missed by Sérsic fits. Group 9, itself, shows the power of our PCA classifica-

tions to find interesting subtypes of galaxy morphology. Group 9 galaxies are visually

classified as disks (41 percent), irregulars (23 percent) and bulge-dominated disks (12

percent). However, small PC1 values would indicate group 9 galaxies posses a strong

central bulge. Meanwhile, group 1 galaxies much more likely to be visually classified

as a pure disk galaxy (72 percent), slightly less likely to be irregular (16 percent) and
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are not bulge-dominated (0 percent). Group 1 galaxies also have higher PC1 values,

indicating a weaker bulge component. Using Sérsic index classifications, both groups

1 and 9 have a very large fraction of these galaxies are disk-dominated (85 percent) as

opposed to bulge-dominated (15 percent). Groups 1 and 9 would be considered very

similar in a Sérsic classification and the differences between these groups are more

subtle.

We observe subtle differences between these two groups in many statistics; group

9 galaxies are more asymmetric (0.22 ± 0.10 vs. 0.13 ± 0.11) and have lower M20

values (-1.40 ± 0.27 vs. -1.07 ± 0.17) than galaxies found in group 1. Group 9

galaxies are also more concentrated (3.70 ± 0.70 vs. 2.76 ± 0.40). Meanwhile M ,

I and D statistics all display an increased enhancement in group 1 galaxies because

these statistics probe the existence of off-center clumps.

Based on these differences it is possible these two types of galaxies have experi-

enced different formation scenarios or exist at different stages along their evolution.

Group 9 galaxies have a large central bulge which could be the result of either a

merger or the accretion of many star-forming clumps in the disk. Meanwhile, group 1

galaxies are still clumpy and have small central bulges. Different levels of the amount

of violent disk instabilities (VDI; Dekel et al., 2009a; Guo et al., 2015) is a possible

explanation for the segregation of groups 1 and 9. Group 9 galaxies have a larger

bulge, possibly grown by the migration of clumps to the central galaxy regions fol-

lowing repeated VDIs. Meanwhile, group 1 galaxies, which still have bright clumps in
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the disk (as evidenced by enhanced MID statistics) have yet to experience as many

VDIs and thus the central bulge remains smaller.

2.7 Summary

We use a principal component analysis of non-parametric morphology measure-

ments (G, M20, C, A, M , I and D) and agglomerative hierarchical clustering to

group galaxies into a more descriptive schema than the traditional spiral, ellipti-

cal, and irregular categories. The PCA weights we calculate (Table 2.1) show that

non-parametric morphological correlations vary in importance: PC1 is based upon

M ,I,D,M20 and Gini thus it is interpreted as a bulge strength indicator; PC2 is dom-

inated by concentration; and PC3 is dominated by asymmetry; the remaining PCs

are less important and difficult to interpret.

The size-mass relation is dependent on PC1 and PC2. Galaxies with high PC1

values (stronger bulges) are generally more compact and quiescent than galaxies with

high PC2 values. We determine PC1 is a valid predictor of whether a galaxy is

quenched.

We observe segregations of galaxy morphology by group and describe those results

as follows:

• Compact or Bulge-dominated/low PC1, ∼ 57%

– Group 6: Most populated group (∼ 37% of sample, examples seen in
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Fig. 2.17). Very compact and most massive galaxies; and contains the

largest spheroidal (based on Sérsic and visual classifications) and quenched

fraction.

– Group 0: Large bulge+disk population, has prominent bulge with faint

disk component. (∼ 13%, Fig. 2.18). Contains a sizable fraction of massive

and quenched galaxies, not to the same extent as group 6 however.

– Group 9: Large and massive galaxies with a substantial irregular popu-

lation. Visually, these galaxies posses tidal tails, bright star-forming knots

and a large bulge. (∼ 6%, Fig. 2.19)

• Bulge+Disk/intermediate PC1, ∼20%

– Group 4: Smaller and less massive bulge-dominated disk galaxies with

high Gini, Sérsic index and concentration values. (∼ 9%, Fig. 2.20)

– Group 8: Slightly larger bulge+disk systems. (∼ 11%, Fig. 2.21)

• Disk-dominated/high PC1, ∼ 22%

– Group 1: Large galaxies with prominent (albeit) irregular disks. (∼ 8%,

Fig. 2.22)

– Group 2: Compact and small disks galaxies. (∼ 6%, Fig. 2.23)

– Group 5: Large and low mass disk galaxies with evidence of disturbances

and interactions. (∼ 9%, Fig. 2.24)
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• Group -1: Low surface brightness galaxies (∼ 1%, Fig. 2.25) with outlier PC

values.

The PC classification scheme separates quenched compact galaxies from larger,

smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies

from star-forming bulge-dominated asymmetric galaxies. Additionally, classifications

based on PCs provide a different picture from those based on Sérsic-n or visual in-

spection. A PC classification determines ∼51% of galaxies are compact or bulge-

dominated (groups 0, 6 and 9) while visual classifications determine ∼39% of galax-

ies are bulge-dominated (either pure spheroids or disk+spheroids) and Sérsic indices

classify ∼20 of galaxies as bulge-dominated (n > 2.5).

In the future we will extend our PCA classifications to different redshifts. We

will use the classifications defined here to study the evolution of star-formation for a

variety of morphological types. Star-formation can be quenched in many ways and

with a reliable morphology classification for different epochs we can begin to answer

the question: whether star-formation quenching is occurring at the same time as the

bulge is forming? A temporal connection between these two could have important

consequences on how galaxies have been quenching star-formation.
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Figure 2.17 Group 6 F125W 1.36 < z < 1.97 galaxies, shown in

F160W/F125W/F814W RGB 6”x6” postage stamps. p(Group) represents the

percentage of times a galaxy is classified into group 6 after the scattering test. Very

compact and small spheroidal galaxies. This group contains the largest spheroidal

and quenched fraction. Many of these galaxies are barely resolved which leads to

their structureless appearance.
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Figure 2.18 Group 0: These galaxies are characterized by a strong bulge component

surrounded by a fainter smooth disk.
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Figure 2.19 Group 9: These galaxies are characterized by their asymmetric, irregular

morphologies and strong bulge component.
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Figure 2.20 Group 4: These galaxies consist of low-mass smooth galaxies with mod-

erate central concentrations.
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Figure 2.21 Group 8: These galaxies represent class of bulge+disk systems with

dominant smooth disks.
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Figure 2.22 Group 1: These galaxies are primarily large disks and irregulars with

bright off-center star-forming knots.
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Figure 2.23 Group 2: These galaxies appear to be primarily low-mass star-forming

disk galaxies with higher central concentrations and few detected star-forming knots.
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Figure 2.24 Group 5: Many of these galaxies are low-mass extended star forming disk

galaxies with weak (if any) bulge components.
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Figure 2.25 Group -1: Low surface brightness galaxies originally in groups 3 and 7,

and only have a combined 19 galaxies which are outliers from all other groups.
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Chapter 3

Merger Classifications of

Pan-STARRS Galaxies Using

Random Forest

3.1 Introduction

Morphology is transient and it is difficult to formulate a deterministic model

of the physical mechanisms shaping a galaxy. These physical mechanisms include:

major/minor mergers (e.g. Hopkins et al., 2009), violent disk instabilities (VDIs;

Kereš et al., 2005), cold gas accretion (e.g. Brooks et al., 2009) and AGN/stellar

feedback (e.g. Kauffmann & Haehnelt, 2000; Croton et al., 2006; Fabian, 2012).

Each of these mechanisms leave behind morphological signatures: mergers can leave
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behind tidal tails, violent disk instabilities lead to clumpy galaxies, star-forming disks

and feedback quenching.

Hierarchical theories of galaxy formation (White & Rees, 1978) are based on a

“bottom-up” growth of galaxies, where small proto-galaxies form first and merge with

other proto-galaxies until they progressively become large enough to form the visible

galaxies in the Universe. Mergers are very important to the formation and structure of

the Universe in this hierarchical framework. In particular, mergers are related to the

formation and evolution of galaxies (White & Rees, 1978), star formation (Kennicutt

et al., 1987; Springel & Hernquist, 2003), nuclear activity (e.g. Engel et al., 2010;

Hung et al., 2016)

Mergers come in all shapes and sizes and are defined by their mass ratios (major

or minor) and their gas content (gas-rich or “wet” and gas-poor or “dry”). Major

mergers (collisions between galaxies of roughly equivalent mass, mass ratio of .1:3)

can destroy disks by the gravitational interactions of the constituent galaxies and

eventually reassemble into a relaxed spheroid (Toomre & Toomre, 1972; Barnes &

Hernquist, 1996). Meanwhile, minor mergers (which are generally between galaxies

with a mass ratio of >1:10) may also disrupt morphologies, just not to the same

dramatic extent as major mergers (Mihos & Hernquist, 1994; Lotz et al., 2011; Pa-

povich et al., 2012). Galaxies with significant gas fractions interact leading to peculiar

features (such as tidal tails, asymmetries, double nuclei, rings, shells) are typically

visible (Toomre & Toomre, 1972). Major gas-rich galaxy mergers rapidly funnel gas
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into the cores of massive galaxies; forming bulges, which then feeds the supermassive

black hole (e.g. Sanders & Mirabel, 1996; Heckman et al., 2004; Naab et al., 2009).

Gas-rich mergers provide a supply of star-forming fuel which can lead to starburst

activity.

There are many different stages of mergers. A merger begins as two (or more)

galaxies start to interact gravitationally. Initially, the the two galaxies are distinct

objects but as galaxies approach each other dynamical friction between dark matter

halos slows the relative orbital velocities. This orbital velocity decays and as it does

tidal forces disrupt the morphology of both galaxies leading to structures known as

“tidal arms”. The orbit of the satellite galaxies shrinks until it is totally disrupted or

becomes assimilated into the central galaxy as the nuclei merge.

Visual classification studies starting with Hubble (1926) and continuing through

more modern work (Lintott et al., 2008b, 2011; Kartaltepe et al., 2015) sought to

discriminate disk-dominated, bulge-dominated and irregular galaxies. Citizen science

projects such as (Darg et al., 2010a) use the general public to determine which galax-

ies are mergers. Visual classifications by human annotators are among best source of

classifications possible since the human eye can identify very subtle features. How-

ever, these visual classifications can take months to complete for a small team of

astronomers and days for Galaxy Zoo.

As a result, other studies have sought to use quantitative morphological measure-

ments to identify merging galaxies (e.g. Lotz et al., 2008; Conselice et al., 2003) to
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speed up the process of classification. However, since there are so many different

types of mergers it is necessary to employ multiple different diagnostics to identify

them (Conselice et al., 2000; Abraham et al., 1996). The concentration and asym-

metry statistics can identify major mergers, while Gini and M20 can identify minor

and major mergers (Lotz et al., 2004; Abraham et al., 2003). Freeman et al. (2013)

has shown that multimode, intensity, and deviation (MID) are even more successful

than previous non-parametric statistics recovering visually identified merger remnants

(particularly at z ∼ 2).

The stage of merger also have an effect on how long that particular structural

feature (such as a tidal tail) which different diagnostic tools may be sensitive to. For

instance, merging galaxies are only sufficiently asymmetric for about a third of the

merger life-time (Lotz et al., 2008, 2010a,b)

We can not assume that all mergers result in spheroids , or vice versa (Robertson

et al., 2005), so the only way to study if mergers can be an important mechanism

in galaxy evolution is to find unambiguous examples of mergers in action. However,

mergers in-action are quite rare, as clear signature have cosmically short lifetime

(Lotz et al., 2008). Thus they require a large sample of galaxies to draw from.

Non-parametric morphological statistics can be a useful way to automatically detect

rare mergers. But to understand which statistics are more useful and important for

identifying mergers we can not simply rely on a simple data exploration technique.

We need to use machine learning techniques to really explore the data because merger
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signatures are varied and subtle.

Previously, the Sloan Digitial Sky Survey has been used to classify galaxies based

on morphologies using automated machine learning tools (Ball et al., 2004, 2006, 2007,

2008a,b). Initially, these works made use of spectroscopic data for nearly 500,000

objects to train the entire SDSS DR3, over 143 million objects, to separate galaxies

from stars. Later works used machine learning to calculate photometric redshift

(and their probabilities) for the entire data set. Machine learning has been shown to

perform tasks that humans never could complete on a reasonable timescale.

Machine learning techniques have also been used for higher redshift galaxies(Freeman

et al., 2013; Huertas-Company et al., 2015; Kamdar et al., 2016a,b) to differentiate

mergers from non-mergers and disks from ellipticals.

In this work, we use a machine learning tool, random forest, to classify local

galaxies into mergers and non-mergers. Random forest classification determines the

probability for classification and offers insight into the importance of each statis-

tic used in the classification. This can lead to insights into the important physical

mechanisms for galaxy evolution.
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3.2 Data

3.2.1 Ground Based Surveys: Pan-STARRS and

SDSS

The Panoramic Survey Telescope and Rapid Response Systems (Pan-STARRS;

Kaiser et al., 2010) is a public survey covering 3π steradians of the Northern hemi-

sphere in 5 optical filters (grizy) to a depth of g = 23.8, 0.6” point spread function

full width half-maximum (PSF FWHM) (Kaiser et al., 2010; Tonry et al., 2012). Ad-

ditionally, there are 10 Medium Deep Survey fields imaged ∼3 magnitudes deeper

than the main survey (Lin et al., 2014). The scientific results from Pan-STARRS are

just beginning to be realized and in the next few years the survey will provide the

community with exciting science.

The footprint of Pan-STARRS overlaps with the shallower Sloan Digital Sky Sur-

vey (SDSS, York et al., 2000b). SDSS covers 11,000 deg2 of sky to a depth of r ∼ 22.5

(Abazajian et al., 2009). The SDSS uses a 2.5-m wide-field telescope (Gunn et al.,

2006) located at Apache Point Observatory in New Mexico (Abazajian et al., 2009).

Pan-STARRS observations are deeper than SDSS, thus will provide the best re-

source to measure galaxy morphology. Galaxies from the Pan-STARRS Observed

Galaxies Survey (POGS) were selected in two parts: the first set of galaxies repre-

sent the sample of POGS galaxies visually identified as mergers sample by Galaxy
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Zoo (see §3.2.2 for more). The second set of galaxies represent a random selection

of Pan-STARRS observed galaxies with all measured morphologies and Galaxy Zoo

visual classifications (from SDSS images). The second sample was specifically chosen

to not include any merging galaxies or not be contaminated by any foreground stars.

Both of these criteria create a pure sample of non-merging galaxies to combine with

the merger galaxy sample.

Additionally, we apply random forest criteria to independent sample of Pan-

STARRs observations of Mapping Nearby Galaxies at APO (MaNGA) survey galaxies

which is one of the core SDSS-IV projects (Bundy et al., 2015). MaNGA is a spectro-

scopic survey which will measure kinematics of gas and stars for nearly 10,000 nearby

galaxies. Spatially resolved spectra will allow for more precise measurements of star-

formation in galaxies and the study the growth and assembly of disks and bulges

through gas accretion, mergers and secular processes. The combination of deep pho-

tometric imaging from Pan-STARRS and the spatially resolved spectral imaging from

MaNGA will provide greater ability to relate galaxy morphology with star-formation

and the mechanisms influencing both.

3.2.2 Galaxy Zoo

Galaxy Zoo is a citizen-science project that employs online crowdsourcing to clas-

sify SDSS galaxies (Lintott et al., 2008b, 2011). Users are asked a series of questions

leading them down pre-defined decision pathways concluding in very large sets of
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visually classified galaxies. Lintott et al. (2008b) defines a weighting factor to lessen

the impact of unreliable users. Many other disciplines and media are able to em-

ploy crowdsourcing to effectively classify objects. Zooniverse has projects ranging

from Shakespeare’s handwritten documents to analyzing videos of chimp behavior in

addition to many astronomical projects.

Figure 3.1 from the Galaxy Zoo Data Visualization tool1 (Willett et al., 2013)

shows the decision tree a user is presented with to classify galaxies. The user is

shown an image of a galaxy and asked a series of questions following the tree until

the end of the tree. Information about all the user choices from the decision tree

is retained and analyzed, which eventually lead to the likelihood score a galaxy is a

particular morphological type.

There have been multiple projects classifying galaxy morphology (Willett et al.,

2013), mergers (Darg et al., 2010a,b), AGN host galaxies (Schawinski et al., 2010)

galaxy pairs (Keel et al., 2013), “green pea” compact galaxies (Cardamone et al.,

2009) and galactic bars (Hoyle et al., 2011). Depending on the goals of a particular

project the classification questions asked of the user are different. In general, the

questions begin by asking if galaxies are spirals or spheroids, and subsequently be-

come more specific. These projects use the online users to classify the morphologies

of 893,212 SDSS DR6 (spectroscopically and/or photometrically confirmed) galaxies

with a Petrosian magnitude r < 17.7 (Lintott et al., 2008b).

1http://data.galaxyzoo.org/gz_trees/gz_trees.html
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For our study we use the merger catalog of Darg et al. (2010a). In this Galaxy Zoo

project the user is asked to classify every galaxy as elliptical, spiral, star/bad image or

merger. Every galaxy is classified between 40–80 times and have a weight-corrected

classification percentage for each morphological type. In this work, a single value fm

was defined to represent the probability that the galaxy is experiencing a merger. The

parameter fm is from 0 to 1, with 0 representing a galaxy with absolutely no merger-

remnant morphology and 1 representing an unmistakable merger remnant. After

visually classifying a subset of the sample themselves, Darg et al. (2010a) determines

the public was quite conservative with their merger classifications and define fm >

0.4 to represent ‘strongly perturbed’ systems. Their sample is drawn from a volume

limited sample of 304,812 SDSS DR6 galaxies with spectroscopic redshift in the range

0.005 < z < 0.1 and brighter than Mr < −20.55 at z ∼ 0.1 leading to a sample of

4,198 mergers.

They determine ∼6–9% of all galaxies in their sample are experiencing a merger,

and that ∼2–4% of all galaxies in their sample are experiencing a major merger.

Mergers are three times more likely to found in spiral galaxies as ellipticals, potentially

mergers are detectable longer in spirals than ellipticals. Correspondingly, galaxies

with a high gas fraction are more likely to be disturbed and possess disturbances for

longer times since disk galaxies typically have more gas than ellipticals.

The follow-up study (Darg et al., 2010b) found no dependence of merger fraction

on environment. However, ellipticals in mergers are generally redder and more massive
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than spirals in mergers. Merging galaxies in general are more massive than non-

mergers. Mergers appear to enhance star-formation only in spirals but do not enhance

nuclear activity for any morphology. For a contradictory result see (Ellison et al.,

2011).

3.3 Non-parametric Morphology of Pan-

STARRS Galaxies

We begin with the “white light” image of a PANSTARRS galaxy (Thilker et al.,

2014) which is then fed into SExtractor (Bertin & Arnouts, 1996) which segments the

image into constituent parts. The white light image is a composite of g, r, i, z, and

y (400 nm ≤ λ ≤ 1000 nm) band images (Kaiser et al., 2010). We choose to perform

segmentation of the white light image because these are the deepest images.

We use a carefully tested set of SExtractor inputs to ensure large galaxies are not

segmented into many object and obvious stars are not included in the segmentation

map of a galaxy. Additionally, background objects are masked out Once we have an

initial segmentation map and SExtractor catalog containing image positions we can

use our morphology code to measure the non-parametric statistics. The morphology

code uses the SExtractor segmentation map and catalog as a first step in an iterative

process to determine the position of the galaxy center and the pixels within the

Petrosian radius used to calculate non-parametric structure statistics. While the
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A0: Smooth A1: Features
or disk

A2: Star or
artifact

A0: Yes A1: No

A0: Bar A1: No bar

A0: Spiral A1: No spiral

A0: No
bulge

A1: Just
noticeable

A2: Obvious A3:
Dominant

A0: Yes A1: No

A0: Ring A1: Lens or
arc

A2:
Disturbed

A3: Irregular A4: Other A5: Merger A6: Dust
lane

A0:
Completely

round

A1: In
between

A2: Cigar
shaped

A0:
Rounded

A1: Boxy A2: No
bulge

A0: Tight A1: Medium A2: Loose

A0: 1 A1: 2 A2: 3 A3: 4 A4: More
than 4

A5: Can't tell

T00: Is the galaxy simply smooth and rounded, with no sign of a disk?

T01: Could this be a disk viewed edge-on?

T02: Is there a sign of a bar feature through the
centre of the galaxy?

T03: Is there any sign of a spiral arm pattern?

T04: How prominent is the central bulge, compared with the rest of the
galaxy?

T05: Is there anything odd?

T06: Is the odd feature a ring, or is the galaxy disturbed or irregular?

T07: How rounded is it?

T08: Does the galaxy have a bulge
at its centre? If so, what shape?

T09: How tightly wound do the
spiral arms appear?

T10: How many spiral arms are there?

End

1st Tier Question

2nd Tier Question

3rd Tier Question

4th Tier Question

Figure 3.1 Galaxy Zoo Decision Tree for classifications, from Willett et al. (2013).
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segmentation map used is based on the white light image, we measure morphology

upon the g-band image. This ties the local population of galaxies with our higher

redshift sample from Chapters 2 and 4, since those redshift ranges were chosen to

correspond to rest-frame g-band. Only UV/rest-frame blue light is visible with HST

at high redshift.

We use the quantitative morphology code (Lotz et al., 2004, 2008; Peth et al.,

2016 and Lotz et. al, in prep) to measure the non-parametric morphological statistics.

The SExtractor output catalog and segmentation map provide the initial guess for the

extent of a galaxy. The Petrosian radius is measured for increasing elliptical apertures

and is determined by the curve of growth within these apertures (Lotz et al., 2004).

The flux center and radii determined by the Petrosian radius calculation are then

used to calculate the asymmetry value. The Petrosian radius is then recalculated

using the center of asymmetry to better capture the true nature of the galaxy. At

which point, the asymmetry is recalculated a final time using the updated Petrosian

radius. Concentration, Gini and M20 are all calculated using the Petrosian radius

and asymmetry center. To calculate the multimode, intensity and deviation statistics

anew segmentation map is calculated using the algorithm of Freeman et al. (2013).

In Figures 3.2 – 3.4, the non-merger sample is shown in the gray contours and

the merger sample is split into merged and pairs. A merged galaxy in this definition

is when SExtractor creates only one single unbroken segmentation map for the merger.

Meanwhile, a pair is when there are at least two SExtractor segmented galaxies in the
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merger catalog.

Figures 3.2 - 3.4 shows the distribution of non-merger galaxies (grey contours) and the

merger galaxies color coded by the galaxy zoo vote (the percentage of merger votes) for

Gini–M20, concentration–asymmetry, and multimode–deviation. The Gini–M20 diagnostic

has a specificity of 95%, but a completeness of only 24%. Galaxies correctly identified as

mergers by Gini–M20 have a slightly higher average merger vote (0.63 vs 0.59) than mergers

not positively classified by Gini–M20. Meanwhile, the concentration–asymmetry diagnostic

has a specificity of 98%, but a completeness of only 15%. Galaxies correctly identified

as mergers by concentration-asymmetry have an equal average merger vote (0.63 vs 0.63)

compared to mergers not positively classified by concentration–asymmetry. Additionally,

the Multimode–deviation diagnostic has a specificity of 71% and completeness of 38%,

and correctly classified galaxies are not any more likely to have high merger votes than

incorrectly classified mergers (0.60 vs 0.60). All of these indicators are quite successful at

creating a pure but incomplete sample of mergers.

3.3.1 Principal Component Analysis of PanSTARRS

Galaxies

We apply the Pan-STARRS merger/non-mergers morphologies to our PCA (defined at

z ∼ 1.5) to understand how the PC groups correspond to morphology for different epochs.

Figure 3.5 shows a large concentration of galaxies in a portion of PC space not explored at

high redshift. These galaxies are grouped into group -1, which was previously the purview of
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Figure 3.2 Gini - M20 diagram for mergers color coded by the Galaxy Zoo merger

vote score with filled circles representing galaxies in pairs and x’s represent merged

systems. The grey contours represent galaxies classified as non-mergers by Galaxy

Zoo.
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Figure 3.3 Concentration - Asymmetry diagram for mergers color coded by the Galaxy

Zoo vote score with filled circles representing galaxies in pairs and x’s represent merged

systems. The grey contours represent galaxies classified as non-mergers by Galaxy

Zoo.
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Figure 3.4 Multimode - Deviation diagram for mergers color coded by the Galaxy Zoo

vote score with filled circles representing galaxies in pairs and x’s represent merged

systems. The grey contours represent galaxies classified as non-mergers by Galaxy

Zoo.
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very irregular galaxies with faint tidal features. Figure 3.6 shows that low redshift galaxies

are not classified as group 6 very often, but rather are more likely to be classified into

group 0 or -1. Non-merger galaxies, in particular, are more likely to classified as group 0

or -1. The transition from group 6 to group 0 as the most populated group is largely a

function of increased resolution. In the PanSTARRS galaxies, the faint disk enveloping a

central bulge is more easily visible than at high redshift. Since merger pairs are galaxies

with burgeoning tidal features or disturbances their similarities to non-mergers should not

be totally surprising. Many of the merged galaxies were classified into group 9 at z ∼1.5

appeared to be a transitional stage between bulge and disk-dominated regimes with high

disturbances.

There is a large sample of group -1 galaxies which are large disk galaxies. This group

represents outliers in PC space based on the definitions of z ∼ 1.5 galaxies. However, the

tightness and proximity of all these data points suggests this outlier class represents a single

morphological class. Since these types of galaxies are not present at high redshift we may

be witnessing the advent of a new morphological type or surface brightness dimming at

high redshift could

PCA can not truly quantify how likely a specific galaxy is a merger. To be able to

quantify a merger likelihood a supervised machine learning technique that has been trained

to separate mergers from non-mergers is required. In the next section, we define our im-

plementation of the supervised machine learning algorithm, random forest classification, to

distinguish mergers from non-mergers.
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Figure 3.5 PC1-PC2-PC3 plot for PANSTARRS galaxies color coded by PC group.

There are many more examples of group=-1 galaxies, which visually are large disk

galaxies. The proximity of group -1 galaxies suggests they are in fact a new group

and not merely just the outliers of all other groups.
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Figure 3.6 Histogram of PC groups for CANDELS and PanSTARSS (merged, merger

pairs and non-merger) galaxies. The groups are defined as disk-dominated (1,2 and

5), intermediate (4 and 8) and bulge-dominated (0, 6 and 9). Group 9 is the prefered

group for merged system, whereas merger pairs and non-mergers are primarily groups

0 or -1. The vast fraction of galaxies in group -1 suggest an evolution in morphology

in galaxies from high to low redshift.
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3.4 Random Forest Classifier

The random forest technique was developed by Breiman (2001) as a supervised method

for classification. The initial sample of galaxies is divided into a training and a test set,

containing 67% and 33% of the original galaxies respectively. A visual representation of

the tree nature of the random forest is shown in Figure 3.7. A total number of n trees

are created, each containing a random sampling (80%) of the training set that are used to

define the splitting characteristics differentiating mergers from non-merger galaxies.

The split best differentiating mergers from non-mergers among the random subset of

the features in each node defines the optimal classifiers, an example of which is visualized in

Figure 3.8. The decision trees use bootstrap samples of the remaining data and a random

selection of features are chosen (in our case 3 features) to create the decision trees at each

branch. In the example shown in Figure 3.8 three parameters (G, M, and A) are selected

randomly and the change in Gini2 impurity value is used to define the splitting criteria for

the A statistic. In this context the Gini impurity measures the probability that a merger

would be incorrectly classified if the data point and label were both randomly created. This

Gini impurity is calculated by Equation 3.1 with pi representing the probability of finding

k data points in a specific class.

This process of determining the best statistic to divide the sample repeats along the

branches of the tree until either all galaxies have been classified into a pure sample or the

maximum terminal (leaf) node is reached. This process is repeated to create a “forest” of

decision trees. The final classification is the average output from each decision tree (Ivezić

2This not to be confused with the Gini coefficient from the morphological measurement.
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et al., 2013; Kamdar et al., 2016a). We use the scikit-learn random forest routine for

our classifications.

Random forest returns the importance of each input parameter into the classifications as

sum of impurity (
∑

∆Im for each feature) over all nodes and trees. This provides a degree

of importance for each parameter that can be compared to the results from PCA. Previous

studies have shown that the M , I, and D statistics are the best statistics at differentiating

regular and non-regular galaxies as well as mergers from non-mergers (Freeman et al., 2013).

G =

k∑
i

pi(1− pi) (3.1)

In addition to classifications, previous works have used random forest to predict galactic

parameters from pure dark matter halo properties (Kamdar et al., 2016a,b). These works

were able to calculate galactic properties such as stellar mass, metallicity, star-formation

rates, etc. simply from properties of the dark matter halo such as dark matter mass, number

of dark matter particles, circular velocity, etc. Stellar masses and metallicities were best

predicted following the random forest technique.

The random forest classifications are evaluated based on the completeness (Equation

3.2), specificity (Equation 3.3), risk (Equation 3.6), total error (Equation 3.7), positive

predictive value (PPV or purity; Equation 3.4), and negative predictive value (NPV) of

the classification results when compared to the original labels (e.g. Freeman et al., 2013;

Ball & Brunner, 2010) . The goal of any classification scheme is to maximize/minimize

these measures, however this is not always feasible. When comparing the random forest

classifications to the real classifications there are true positives TP (classification agrees
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with initial label and in correct class), false positives FP (objects not in a class but have

incorrectly classified as such), true negatives TN (classification agrees with initial label and

in null class) and false negatives FN (the number of objects in a class incorrectly classified

as not belonging to that class).

The importance of completeness and PPV is set based upon the problem being solved

(Ball & Brunner, 2010). In our case the purity of our resultant classifications is more

important than the completeness (however this is not to say completeness is not extremely

necessary).

Completeness = TP/(TP + FN) (3.2)

Specificity = TN/(TN + FP ) (3.3)

PPV = TP/(TP + FP ) (3.4)

NPV = TN/(TN + FN) (3.5)

Risk = 1− completeness + 1− specificity (3.6)

Total Error = (FN + FP )/N (3.7)

During classification the out-of-bag error for each data point is recorded and averaged

over the forest (Breiman, 2001). The more often a feature is used at each node to split
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points of a tree the more important that feature is. The importance of a feature after

training is measured when the values of the feature are randomized among the training

data and the out-of-bag error is again computed on these new data sets. The importance

score for a feature is computed by averaging the difference in OOB errors before and after

the randomization over all trees. Features with large importance values are more important

than features with small values.

Tree 1
random x1 galaxies 

Galaxy 
Training Set

after growing forest,  push unclassified galaxies 
through each decision tree

Classification = result averaged over decision tree

Growing a Random Forest

Tree 2
random x2 galaxies 

Repeat for 
random subsets ...

Tree n 
random xn galaxies 

Figure 3.7 Visualization of how the training set is utlized to create a “forest” of

decision trees that are used for classification (Lotz et al., in prep).
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Example Tree 
x random galaxies with y mergers
impurity I0 = 1 - (y/x)2 - ((x-y)/x)2

pick 
3 random 

parameters mi 
(G, M, A); determine 

best classifier (A) 
and divide 

sample

A≤ 0.3A > 0.3

n1 galaxies with 
y1 mergers; 

I1 = 1 - (y1/n1)2 - 
((n1-y1)/n1)2

repeat 
(M, I, D)
⇒ D

D > 0.2 D ≤ 0.2

change in impurity
Δ(I)A =I0- n1/x*I1 - n2/x*I2

n2 galaxies with 
y2 mergers; 

I2 = 1 - (y2/n2)2 - 
((n2-y2)/n2)2

repeat 
(G, I, M20)
⇒G

G > 0.5 G ≤ 0.5

n3,  y3, I3 n4,  y4, I4 n6,  y6, I6n5,  y5, I5

Δ(I)G Δ(I)D

 importance of parameter mi =ΣΔ(I)m

summed over all nodes for all trees

Figure 3.8 Visualization of how each tree in the random forest decides how to divide

the sample of galaxies for training purposes (Lotz et al., in prep).
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3.4.1 Random Forest Inputs

using a Conroy et al. 2009 dust model)

We use all 7 PCs, concentration, asymmetry, the Gini coefficient, M20, d(G,M20),

F(G,M20), multimode, intensity, deviation along with g–r rest-frame color, the specific

star-formation rates and stellar masses from the SDSS MPA-JHU DR7 spectroscopic value

added catalog3, the merger/non-merger classification from Galaxy Zoo SDSS/Pan-STARRS

galaxies as our input to train the random forest and predict a merger/non-merger classi-

fication. Our random forest is grown to include a maximum of 100 leaf nodes, 500 trees,

and use 3 features per branch for decision purposes. We tested the effect the number of

estimators and maximum leaf nodes have on the summary statistics and OOB (out-of-bag)

score. See §3.5.1.1 for more on these tests.

The d(G,M20) statistic measures the distance in G-M20 space of a galaxy to the merger/non-

merger dividing line, and is defined in Equation 3.8 (Snyder et al., 2015b). This statistic

has been shown to be a good indicator of merger activity.

d(G,M20) =
| − 0.14M20 −G+ 0.33|

0.14
(3.8)

We also grow a forest using only using the most basic non-parametric morphological mea-

surements, concentration, asymmetry, the Gini coefficient, M20, d(G,M20) and F(G,M20)

(see Equation 2.15), to test the amount of information and classification strength would be

lost from an implementation of random forest without MID or PCs.

3http://www.sdss3.org/dr9/algorithms/galaxy_mpa_jhu.php
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3.5 Results

3.5.1 Random Forest Classifications

Table 3.1 shows the feature importances for the full sample. The most important feature

to determine merger classification is, unsurprisingly, asymmetry. For the full sample the

next most important features are PC7, deviation, d(G,M20), PC5, PC3 and PC2. Deviation

as a statistic is analogous to asymmetry and PC3 is heavily dependent on asymmetry, so

the fact that all of these statistics are important to differentiate mergers from non-merger

galaxies is not entirely surprising (see Chapter 2, Table 2.1). However, the heavy importance

of PC7 on the classifications is. PC7 is the least important principal component at z ∼ 2

(and only captures 5% of the total variance of the data), but has such a strong effect upon

the merger classification. PC7 is dominated by the correlation between Gini, M20 and

multimode which are anti-correlated with concentration, intensity and deviation.

We tested the results of using a smaller set of morphological statistics, in case a user only

had access to concentration, asymmetry, Gini, M20, d(G,M20) and F(G,M20). We wanted

to understand how much specificity and completeness of the classifications would be lost by

not measuring the MID statistics or PC values. Table 3.2 shows that even when we use a

condensed number of features, the importance of said features are nearly identical to a full

run. Asymmetry is still by far the most important statistic, and the d(G,M20) is a distant

second. The other non-parametric morphology statistics are still not very important.

Meanwhile, Figures 3.16 – 3.18 show the comparison of feature importances dependent

on the sample used. Error bars are determined by the standard deviation of importances
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after 1000 random forest runs. We previously noticed that asymmetry is by far the most

important feature for classifying mergers. Figure 3.16 shows that the samples of red and blue

galaxies (divided by g−r > 1.5) show that features have different importances depending on

the nature of a sample. Blue galaxy merger classifications are more dependent on PC7 and

PC2 than red galaxies. Meanwhile red galaxy merger classifications are more dependent

upon PC3, deviation, PC5 and M20.

Figure 3.17 shows the comparison of feature importances between the merged and pair

galaxy samples. Merged galaxies are far more dependent upon the multimode statistic than

pairs. The multimode statistic measures the size (in pixels) of the two brightest regions.

A merged galaxy will be visible because of the numerous bright regions within a single

segmentation map. The remainder of the features (except for asymmetry and intensity) are

slightly more important for merging pairs than merged galaxies.

Figure 3.18 shows that the importance in classifying blue galaxies or merging pairs is

very similar to the full sample. Most galaxies in the full sample are blue and/or merging

pairs, so the agreement between these should not be surprising.

Figure 3.9 shows the Gini–M20 but now color coded by the fraction of times a galaxy

is classified as a merger following a random forest. The correlation between classifica-

tion fraction and Gini–M20 is a function of random forest itself. Random forest finds the

subspaces and divides those spaces to create classifications. Similarly in Figure 3.11 the

concentration-asymmetry subspace is correlated with the classification fraction for the same

reason. The random forest classifications in both Gini–M20 and concentration-asymmetry

subspaces show that the previously defined merger/non-merger dividing lines need to be
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adapted.

Figure 3.10 shows random forest merger/non-merger classification confusion matrix in

Gini–M20 subspace. Galaxy zoo classified mergers are classified correctly above the Gini–

M20 relation line, and incorrectly below, and vice versa for non-mergers. Similarly, Figure

3.12 shows random forest merger/non-merger classification confusion matrix in C–A sub-

space. The Gini–M20 merger dividing line has a 3% false positive rate but a 30% false

negative rate. The C–A merger dividing line has a 1% false positive rate but a 36% false

negative rate. The Gini–M20 and C–A merger diagnostics are known to minimize the num-

ber of false positives but not for minimizing false negatives (Lotz et al., 2008). The training

set is not a statistical representative of the Universe, since we include a disproportionate

amount of merging galaxies.

3.5.1.1 Random Forest Input Parameter Tests

At every node in a tree 80% of the training set is divided into merger and non-merger

categories depending on 3 randomly selected statistics. The remaining portion of the train-

ing set is then classified. The amount of error in classification is captured in an out-of-bag

estimator (OOB, James et al., 2014). This process is repeated as you traverse the tree

downwards until either the final nodes are pure or the maximum number of nodes has been

reached. We test the effects of different number trees in the forest (also known as estima-

tors) and maximum leaf nodes and show the results on the OOB score in Figure 3.13 and

the results on the summary statistics (completeness, specificity, etc.) in Figure 3.14. The

OOB score decreases with increasing maximum leaf nodes but past 100 leaf nodes does

123



CHAPTER 3. MERGER CLASSIFICATIONS OF PAN-STARRS GALAXIES
USING RANDOM FOREST

2.52.01.51.00.5

M20

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

G
in

i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
F 

M
e
rg

e
r 

P
ro

b
a
b
ili

ty

Figure 3.9 Gini-M20 color-coded by average RF Classification Probabilities follow-

ing 1000 iterations of random forest. The dividing line of (Lotz et al., 2004) of

mergers/non-mergers appears to need to be changed to accommodate this sample.
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Figure 3.10 Gini-M20 color-coded by galaxy zoo merger classification and symbol

coded by the confusion matrix. Unsurprisingly galaxies with G-M20 values on the

outskirts of their classes distributions were classified incorrectly.
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Figure 3.11 Concentration-Asymmetry color-coded by average RF Classification

Probabilities following 1000 iterations of random forest. The dividing line of (Lotz

et al., 2004) of mergers/non-mergers appears to need to be changed to accommodate

this sample.
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Figure 3.12 Concentration-Asymmetry color-coded by galaxy zoo merger classification

and symbol coded by the confusion matrix.
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Full Sample Blue Red Merged Pairs

PC1 0.33 ± 0.02 0.32 ± 0.02 0.40 ± 0.03 0.26 ± 0.03 0.37 ± 0.02

PC2 0.50 ± 0.03 0.52 ± 0.04 0.38 ± 0.03 0.36 ± 0.05 0.51 ± 0.03

PC3 0.56 ± 0.04 0.51 ± 0.04 0.69 ± 0.07 0.52 ± 0.05 0.53 ± 0.03

PC4 0.34 ± 0.02 0.35 ± 0.02 0.30 ± 0.02 0.31 ± 0.03 0.34 ± 0.02

PC5 0.53 ± 0.04 0.43 ± 0.03 0.69 ± 0.07 0.37 ± 0.04 0.52 ± 0.03

PC6 0.34 ± 0.02 0.34 ± 0.03 0.34 ± 0.03 0.34 ± 0.04 0.37 ± 0.02

PC7 0.82 ± 0.05 0.83 ± 0.07 0.59 ± 0.06 0.67 ± 0.07 0.82 ± 0.06

Gini 0.30 ± 0.02 0.36 ± 0.03 0.20 ± 0.02 0.25 ± 0.03 0.30 ± 0.02

M20 0.30 ± 0.02 0.31 ± 0.02 0.45 ± 0.05 0.22 ± 0.02 0.31 ± 0.02

Multimode 0.27 ± 0.02 0.28 ± 0.02 0.29 ± 0.03 0.91 ± 0.10 0.26 ± 0.01

Intensity 0.25 ± 0.01 0.27 ± 0.02 0.24 ± 0.02 0.40 ± 0.05 0.28 ± 0.02

Deviation 0.56 ± 0.04 0.47 ± 0.04 0.72 ± 0.08 0.44 ± 0.04 0.54 ± 0.04

Asymmetry 1.00 ± 0.06 0.94 ± 0.08 1.02 ± 0.09 1.16 ± 0.12 0.92 ± 0.06

Concentration 0.26 ± 0.01 0.27 ± 0.02 0.28 ± 0.02 0.20 ± 0.02 0.28 ± 0.01

g − r Color 0.37 ± 0.03 0.32 ± 0.03 0.39 ± 0.05 0.33 ± 0.05 0.39 ± 0.03

log M∗ 0.26 ± 0.01 0.28 ± 0.02 0.26 ± 0.02 0.26 ± 0.03 0.27 ± 0.02

sSFR 0.30 ± 0.02 0.33 ± 0.03 0.22 ± 0.02 0.24 ± 0.03 0.32 ± 0.02

F(G,M20) 0.28 ± 0.01 0.29 ± 0.02 0.33 ± 0.03 0.23 ± 0.02 0.29 ± 0.01

d(G,M20) 0.54 ± 0.04 0.70 ± 0.06 0.35 ± 0.03 0.64 ± 0.07 0.48 ± 0.04

Table 3.1 Feature Importances of Random Forest classifications. The importances are

scaled by the largest importance (Asymmetry). Blue/Red division based on g − r >

1.5 and Merged/Pairs based on number of neighbors.
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Full Sample Blue Red Merged Pairs

Asymmetry 1.00 ± 0.04 0.88 ± 0.05 1.03 ± 0.05 1.16 ± 0.08 0.93 ± 0.04

Concentration 0.34 ± 0.01 0.35 ± 0.02 0.35 ± 0.02 0.27 ± 0.03 0.37 ± 0.02

Gini 0.27 ± 0.02 0.29 ± 0.02 0.20 ± 0.02 0.23 ± 0.02 0.28 ± 0.02

M20 0.36 ± 0.01 0.34 ± 0.02 0.51 ± 0.03 0.30 ± 0.03 0.36 ± 0.02

f(G,M20) 0.33 ± 0.01 0.35 ± 0.02 0.37 ± 0.02 0.29 ± 0.03 0.36 ± 0.01

d(G,M20) 0.55 ± 0.03 0.64 ± 0.04 0.39 ± 0.03 0.60 ± 0.04 0.54 ± 0.03

Table 3.2 Feature Importances of Random Forest classifications. The importances

are scaled by the feature importance of Asymmetry. Even when fewer morphological

statistics used the relative feature importances are very similar to the random forest

with the full set of features. Blue/Red division based on g−r > 1.5 and Merged/Pairs

based on number of neighbors.

not substantially decrease the OOB error any further. The number of estimators has no

appreciable effect on the OOB score. Figure 3.14 shows that the number of estimators and

the number of maximum leaf nodes (above 10) have no effect on the summary statistics.

The PPV, completeness, and risk statistics are substantially worse below 10 maximum leaf

nodes. These two figures show that our decision to use 500 estimators and a maximum of

100 leaf nodes represent good input parameters to use in the random forest classifications.

Figure 3.15 is a receiver operating characteristic (ROC) curve that demonstrates the

performance of a classification when the threshold for classification is changed. In our case,

we define galaxies with > 40% chance of being classified by random forest as a merger, which

corresponds to the equilibrium on the ROC curve between maximizing the true positive rate

while minimizing the false positive rate. The ROC curve for our classification scheme is

particularly good. A perfect ROC curve would have a 100% true positive rate for all false

positive values. We can see that a random forest determined merger probability of 0.4 is
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the best maximizing the true positive rate while minimizing the false positive rate.

3.5.1.2 Comparisons of RF on Different Subsamples

Table 3.3 shows the summary statistics (and 1σ errors) for random forest classifications

using a number of subsamples. The entire sample is divided in blue and red colors based

on g − r > 1.5 rest-frame colors. Meanwhile, for the merged/pairs division the merged

galaxies are combined with the full non-merger sample and likewise for the sample of pair

galaxies. The random forest classifications are repeated 1000 times to determine the mean

and 1σ error for the summary statistics. The sample used has a very significant effect

on the summary statistics. For instance, the sample containing only merged galaxies and

non-mergers has classifications which are the most specific and has the lowest total error

of any sample. However, the strength of these summary statistics is balanced with the low

completeness score. When comparing the completeness and specificity of every subsample

with the full sample the better a subsample does in specificity it lacks in completeness and

vice versa. It appears that there is no single random forest framework which can improve

upon using the full sample in terms of both of these statistics.

Figures 3.16 and 3.18 show that certain morphological statistics are more or less impor-

tant for classifying mergers depending on the subsamples investigated. For every subsample

asymmetry was the most important statistic. A comparison between red galaxies and blue

galaxies shows PC3, PC5 and deviation are more important for red galaxies and PC7,

D(G,M20, and PC2 are more important for blue galaxies. The statistics important to red

galaxies are more dependent on the irregularity of the galaxy, which for a red galaxy would

130



CHAPTER 3. MERGER CLASSIFICATIONS OF PAN-STARRS GALAXIES
USING RANDOM FOREST

0 20 40 60 80 100
Max Leaf Nodes

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

O
O

B
 e

rr
o
r 

ra
te

100 estimators
158 estimators
251 estimators
398 estimators
630 estimators
1000 estimators
1584 estimators

Figure 3.13 OOB (out-of-bag) errors for Random Forest classifications using different

numbers of maximum feaf nodes and different numbers of estimators (AKA trees in

the random forest). The OOB error estimates the fraction of misclassified data by

using the a portion of the training set as the test set. We observe the OOB error

continually decreases with an increasing number of maximum leaf nodes. However,

the number of estimators (trees) has no effect on the OOB error. For consistency

with Freeman et al. (2013) we use 500 estimators.
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Figure 3.14 Summary statistics (specificity = magenta, completeness = blue, risk

= neon green, total error = red, NPV = forest green, PPV = cyan) for Random

Forest Classifications Using Different maximum feaf nodes and different numbers of

estimators. None of the summary statistics are improved by an increase in either the

number of estimators (trees in random forest) or the maximum number of leaf nodes

(past 10 leaf nodes) which shows that we are free to choose any value we want for

number of estimators of leaf nodes.
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Figure 3.15 Receiver Operating Characteristic (ROC) curve shows the performance

of the random forest classifications as the threshold for classification is changed. A

perfect classification would have an ROC curve that is a right angle. This particular

ROC curve shows that our our classification is very good. The true/false positive

rates are the number of true/false positives at a specific threshold divided by the

total number of true positives and true negatives. The threshold used is the fraction

of times a galaxy is classified as a merger following random forest.
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be a rarity. Likewise, the statistics important for blue galaxies are dependent on bulge

strength which would differentiate blue galaxies more than red galaxies. Meanwhile, mul-

timode is designed to find double nuclei and thus would be more suited to finding merged

galaxies than pairs or the full sample.

If a user decides that they wish to find a very pure sample of mergers, but do not care

about the completeness of their classifications they would be wise to use a random forest

trained on the merged sample as opposed to the full merged and pairs sample. The problem

of what factors are important or unimportant in a classification scheme is always up to the

user to define.

3.6 Discussion

3.6.1 Random Forest Classifications of MaNGA

Galaxies

MaNGA Galaxies

The Mapping Nearby Galaxies at APO (MaNGA) survey represents observations from

SDSS-IV (Bundy et al., 2015). MaNGA used tightly packed optical fibers, which allowed

spectral measurements of ∼10,000 galaxies. The MaNGA Sample was drawn from a flat

stellar mass distribution with logM∗ > 9 Modot and a wide range of environments.

We investigate a subset of MaNGA galaxies (∼900), measuring non-parametric morpho-

logical statistics and classify the results using a random forest. These galaxies also possess
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Figure 3.16 Feature importance comparisons between blue and red Galaxies, which

are separated by g−r > 1.5. Asymmetry, PC3, PC5, PC7 and deviation are the most

important features. Features in the upper half are more important for red galaxies

(such as PC3, PC5 and deviation) are more dependent on the galaxy irregularity.

Meanwhile features in the lower half are more important for blue galaxies (such as

PC7, D(G,M20, and PC2) are more dependent on the bulge strength.
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Figure 3.17 Feature importance comparisons between merged galaxies and merging

pairs. Multi-mode is much more important to identifying merged galaxies rather than

pairs.
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Figure 3.18 Feature importance comparisons between the full sample and blue, red,

merged and merging pair galaxies.
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visual classifications from Galaxy Zoo for comparison. We select only galaxies with z <0.05

as higher redshift galaxies will not be sufficiently resolved in the MaNGA/Pan-STARRS

sample, leaving us with (∼650) galaxies.

Results

Random forest merger classification results show that the local (z < 0.05) MaNGA

merger sample is 100% complete and 78% specific. However, the amount of false positives

is much greater than the number of true positives (142 vs 5). This test can select what

might be a merger but additional criteria will be needed to confirm.

Figures 3.19 and 3.20 show the white light images and segmentation maps (from SEx-

tractor) for MaNGA galaxies falsely classified as mergers by random forest. These figures

only represent the 37 false positives with random forest merger probabilities >0.6. These

galaxies represent the morphologies that are most misclassified by random forest and their

misclassifications can inform future studies as to the potential pitfalls of merger classifi-

cations. Quite a few of these galaxies appear disturbed and could potentially be merger

remnants. A few of the galaxies are large disk galaxies with bright star formation knots or

have a foreground star in the segmentation map. Only a few galaxies have segmentation

maps that do not seem to match the white light image.

The SDSS Sky Server 12 Database is used to view these merger false positive galaxies

and to determine if SDSS finds other photometric and/or spectroscopic objects within the

SExtractor galaxy segmentation map. Table 3.5 shows examples and counts for each of the

types of false positives: bright foreground star, crowded field, nearby neighbor, asymmetric
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or disturbed, tidal arms and unknown. Only three galaxies have a spectroscopically defined

star within the galaxy image. In total, there are 14 galaxies with a bright star that is

either inside or outside the segmentation map of a galaxy, either would significantly disrupt

morphological measurements. One galaxy is in a very crowded field and a poorly defined

segmentation map is disrupting morphological measurements. There are a number of po-

tential merger or interaction remnant. These include, 13 asymmetric or disturbed spiral

morphology, 3 galaxies with tidal arms and 3 with a nearby satellite galaxy. There are an

additional 3 galaxies without any apparent morphological disturbance or bright foreground

star. The SDSS images may not be deep enough to view very subtle and faint merger traits.

Even though the random forest classifications found many more false positives than

true positives (as defined by Galaxy Zoo), these results are encouraging. The majority of

merger false positives have foreground stars contaminating the segmentation maps. The

morphological statistics are finding the bright region of off-center light and calling the

galaxy a merger as it should. However, in these few cases the off-center light is in actuality

a star. Edge-on galaxies are identified due to their dust lanes, while face-on galaxies can

have clumpy star-formation that resembles merger remnants.

3.7 Summary and Conclusions

With 93% completeness and 93% specificity random forest is able to distinguish mergers

from non-merger galaxies in PanSTARRS imaging using a variety of input features (PCs,

non-parametric morphologies, sSFR, M∗, rest-frame color). The galaxies were initially vi-

sually classified by users of Galaxy Zoo and further analysis by Darg et al. (2010a) created
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Figure 3.19 White light images of local (z < 0.05) MaNGA galaxies falsely identified

as mergers by random forest. Some galaxies appear to be merger remnants overlooked

by Galaxy Zoo users, while other galaxies have foreground stars contaminating the

morphological statistics.
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Figure 3.20 Segmentation maps (from SExtractor) of local (z < 0.05) MaNGA galaxies

falsely identified as mergers by random forest. There are only a few instances of

segmentation maps that do not appear to follow the white light image and in these

cases a foreground star overlaid on a galaxy contaminates the segmentation process.
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Type of False Positive # of examples Ex. Image Ex. Segmap

Bright foreground star 14

Crowded Image 1

Nearby Neighbor 3

Asymmetric/ Disturbed 13

Tidal features 3

Unknown issue 3

Table 3.5 Examples and counts for different types of merger false positives.
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a sample of expert vetted merging galaxies. These merging galaxies include galaxies that

have already merged, and those in interacting pairs with visible tidal disruptions that will

one day merge. We have determined that asymmetry is by far the most important indicator

of whether a galaxy is experiencing a merger. The next most important features include:

PC7, PC5, PC3, deviation and d(G,M20). The importance of PC7 represents a very inter-

esting result because PC7 is the least important PC but plays a huge role in determining

whether a galaxy is a merger. If PC7 were a merger indicator it would be reasonable that it

is not very important for a large diverse sample of high redshift galaxies, since mergers are

not very common. Our sample of PanSTARRS represents a small subset of the non-merger

galaxies at low redshift.

A random forest classification scheme using only concentration, asymmetry, Gini, M20,

F(G,M20) and d(G,M20) is nearly as successful at classifying mergers (with 89% complete-

ness and 90% specificity) as a random forest using a much larger set of data. The impor-

tances of these features is very similar to the importances of these sample features in the

full random forest classification set. Asymmetry is still by far the most important statistic,

with d(G,M20) the next most important.

A random forest using only the bare essential non-parametric morphological statistics

could provide a very decent classification of mergers. However, if the highest levels of

accuracy and completeness are most important to a study then more features can help to

improve the classification results.

For a local (z < 0.05) sample of MaNGA galaxies random forest classifications trained

upon the Galaxy Zoo and Pan-STARRS sample is 100% complete and 78% specific, albeit
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with a greater number of false positives than true positives (142 vs 5). Even though random

forest finds a large number of false positives, further analysis shows that up to 50% of these

galaxies are potentially mergers missed by Galaxy Zoo classifiers. Other false positives

have foreground stars contaminating galaxy flux but otherwise resemble off center clumps

of merger remnants. The number of false positives is still much smaller than the number of

true negatives, and represent a very manageable sample to be visually classified by a single

user.

The reliability of random forest classifications of mergers will only increase as Pan-

STARRS obtains more images which will lead to more robust merger studies. The usage

of random forest and other supervised learning based classifications will only become more

important as LSST and other large surveys come online that will observe far too many

galaxies to be quickly classified by humans. Better image segmentation and star separation

methods will also improve random forest classification purity.

Simulations could provide another possible training set. In simulations the exact mo-

ments of mergers would be known through merger tree analysis. However, it is important to

understand that a morphology study of simulated galaxies to work there need a prescription

for mapping the results of an N-body or hydrodynamical to a realistic looking galaxy. We

would also ideally have access to multiple viewing angles of the mergers, which would elimi-

nate some of the ambiguity of how to define a merger visually. The next chapter deals with

the VELA simulations which could eventually function as the random forest training set,

however more galaxies are required to match the same levels of completeness and specificity

as seen with using the Galaxy Zoo and Pan-STARRS training set.
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VELA Simulation Galaxy

Morphologies

The VELA hydrodynamical simulation of 10 CANDELized1 galaxies provide an

avenue to study how morphology evolves over time. A time series cross-correlation

between morphology (PC1, PC2 and PC3) and physical parameters (sSFR, fgas,

ḟgas, ex-situ-M∗/M∗, ex-situ-Ṁ∗/M∗, Mdm/M∗, Ṁdm/M∗) for both the inner kpc and

entire galaxy determines the strength of correlation and ∆t between a morphology

and physical parameter time series. PC1 (inverse bulge strength) is most correlated

with sSFR, fgas, and ex-situ-M∗/M∗ . This correlation implies that as the bulge grows

stronger gas fraction and ex-situ stellar mass decrease, and star-formation quenches.

PC2 (concentration) is not very well correlated with any physical parameter. The

1Images have been processed to resemble real galaxies observed by CANDELS
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anti-correlation implies as galaxies become more compact, star-formation quenches

while gas and ex-situ mass decrease. PC3 (asymmetry) is correlated with sSFR and

fgas, reaffirming that star-forming galaxies have more gas and are more asymmetric

than quenched galaxies.

Additionally, the VELA simulations are classified into the PC groups defined in

chapter 2. Each galaxy is followed through time to discover that the vast majority

of simulated galaxies become bulge-dominated by z=1. Only one galaxy, VELA27,

becomes disk-dominated by the end of the simulation. Major mergers are found to

cause bulge-dominated systems to become more irregular, and grow disk and also

cause disk-dominated systems to become temporarily irregular before settling into

a bulge-dominated galaxy. Minor mergers have a comparably minor and transient

effect on a galaxy’s morphology. The VELA simulations represent a very small sample

of galaxies and future iterations of the morphological dataset will allow for greater

diversity of morphology. With increased diversity of galaxy formation conditions we

will be able to better compare simulated galaxies to the real observed galaxies of

surveys such as CANDELS.

4.1 Introduction

Well known relationships exists between morphological evolution and galaxy stel-

lar mass or SFR (Kauffmann et al., 2003; Wuyts et al., 2011), the bulge-SMBH
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co-evolution (e.g. Elbaz & Cesarsky, 2003) and of course the fundamental plane for

elliptical galaxies (Terlevich et al., 1981). However, such studies rely on our ability

to imply relationships between possible progenitor and descendant galaxies, since we

can not directly examine galaxies evolving in observations. In this context, the exact

mechanisms causing galactic evolution are not known.

These studies can not follow the evolution of a single galaxy through time. Ob-

servational studies can identify galaxies at different epochs and make assumptions

about which high redshift galaxies represent the progenitors of lower redshift galax-

ies. Analytic tools such as number counts and luminosity functions (e.g. Faber et al.,

2007) can be used to study the evolution of galaxies and are binned by redshift and

parameters such as mass, luminosity, number density and morphology. The shape

and magnitude of luminosity functions vary depending on galaxy properties such as

morphology, mass, colors and spectral types (Sandage et al., 1985; Faber et al., 2007

and references therein).

We can identify the effects of galaxy evolution by observing how the number (or

luminosity) density for various parameters changes over time. For instance, by binning

galaxies by mass and star-formation, luminosity function analysis led to conclusions

such as: more massive galaxies experience star-formation earlier than lower mass

galaxies (Cowie et al., 1996) and that late type galaxies were more common in the

past than today, while early types have remained constant in frequency (Lin et al.,

1999).
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The binning is a necessary step to create a sufficient sample size but can have

consequences. Luminosity functions suffer from an inability to disentangle whether

changes are inherent to the characteristics of such a class or whether galaxies are

just scattering amongst bins. For instance, if the number density of a particular bin

remains constant is this an example of no evolution occurring? Or is there an equal

number of galaxies scattering in and out of the particular bin over time? Without

knowing how many galaxies “should” be in the bin, it is hard to distinguish between

these two scenarios. Additionally, size and surface brightness limits of surveys leads

to uncertainty in how complete and representative a sample may be.

On the other hand, hydrodynamical simulations allow us to “watch” galaxies

“grow up” into their final evolved forms (Lotz et al., 2008; Snyder et al., 2013). With

hydrodynamical simulations we have direct access to the star-formation rates, stellar

mass, gas mass, dark matter mass and ex-situ stellar mass values all as a function

of time which can all be used to directly prove the relationships observations only

were able to very suggestively imply. We can use the hydrosimulations to directly

witness “downsizing”, do the simulations show that less massive galaxies form stars

after more massive galaxies?

Hydrodynamical simulations have already found that galaxy interactions can trig-

ger either bulge or disk formation (Snyder et al., 2015b), massive galaxies quench

earlier and faster (Zolotov et al., 2015), and supernova feedback are effectively main-

taining prolate galaxy shapes (Tomassetti et al., 2016). Each of these results are are
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possible because we can track galaxies and their properties through time.

Previously, simulations were only able to study isolated individual galaxies (Noguchi,

1999; Immeli et al., 2004a,b; Bournaud et al., 2007; Elmegreen et al., 2008; Bour-

naud & Elmegreen, 2009; Bournaud et al., 2009). The next step placed galaxies into

hydrodynamical cosmological simulations but these initially suffered from low mass

and spatial resolutions along with poorly constrained gas-physics models (Springel

& Hernquist, 2003; Kereš et al., 2005; Governato et al., 2007; Dekel et al., 2009b).

Improvements to sub-grid models include the addition of SNe feedback, SF regulation

(Agertz et al., 2011) and SN outflows (Governato et al., 2012). Newer examples of

modeling galaxy formation in a cosmological context have enhanced resolution and

better gas-physics models (e.g. Ceverino et al., 2014).

High resolution zoom-in cosmological simulations can bridge this gap of knowl-

edge. Simulations, such as VELA (Ceverino et al., 2010a; Ceverino & Klypin, 2009;

Ceverino et al., 2012; Dekel et al., 2013; Ceverino et al., 2014), can track the mass,

size, star-formation rate, gas accretion rate, morphology, etc. of a galaxy throughout

time. VELA is an adaptive mesh-refinement simulation with a maximum resolution

of 25 pc. (Zolotov et al., 2015). Simulations can provide unprecedented insight into

the types of physical mechanisms affecting the star-formation rate and morphology.

For instance, halos provide torques capable of inducing galaxy elongation, eventually

leading to puffed up inner stellar orbits aligned with the gas disk (Tomassetti et al.,

2016). A majority of simulated high redshift galaxies are elongated and not disks
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or spheroids (Ceverino et al., 2015). Additionally, simulations point toward evidence

suggesting inside-out quenching arises through the manifestation of a star-forming

ring surrounding the inner central region (Tacchella et al., 2016) and gas metallicities

of clumps is evidence for fast gas accretion from the cosmological inflow of metal-poor

gas (Ceverino et al., 2016). The quality of simulations is determined by the resolu-

tion and reliability of sub-grid models, which is continually evolving and improving

(Torrey et al., 2014).

Zolotov et al. (2015) describes galaxy evolution with gas mass and the inflow/outflow

rate of gas. In their evolutionary framework, the gas mass growth rate begins to in-

crease steeply triggering the beginning of a compaction phase. This compaction is

the increase of stellar mass in the inner kpc. The galaxy need not necessarily shrink

in terms of total size (both physical and in mass). The stellar mass growth is slower

than the gas mass growth. The total SFR follows the gas mass for both the inner

kpc and the total galaxy. The gas inflow rate is greater than the SFR implying a wet

compaction2 is occurring due to the preponderance of gas. Wet compaction is also

evidenced by the large fraction of stars formed in the inner bulge. For stars to have

formed in the bulge there must be a large reservoir of gas to draw from. Starbursts

in the bulge would be evidence of a “blue-nugget” phase of galaxy evolution (Dekel

& Burkert, 2014) similar to observational evidence of compact, SF galaxies (Barro

et al., 2013, 2014a; Bruce et al., 2014a,b; Williams et al., 2014).

2“Wet” referring to an overabundance of gas, as opposed to a “dry merger” where there is little
to no gas present.

152



CHAPTER 4. VELA SIMULATIONS

We investigate the similarities and differences between galaxies observed in the

real universe by CANDELS and the simulated galaxies of VELA. By comparing the

simulated galaxies to the observed galaxies we can relate what we know about the

physical mechanisms shaping the simulated galaxies (such as gas accretion, merger

activity, etc.) to similar real galaxies. In this way, we can provide an explanation of

the hows and whys of the evolution of galaxy morphology in terms of star formation

and physics.

However, simulated galaxies and observed galaxies are not always visually similar.

The raw images of high-resolution simulated galaxies are too highly resolved to resem-

ble Hubble images of a real galaxy. For this reason, we need a method to blur high-res

simulated images to match the seeing of HST (a process known as CANDELization

Mozena, 2013; Moody et al., 2014; Snyder et al., 2015b). With this procedure we

transform simulated galaxies into analogs of real observed galaxies while including

observed wavelength and line-of-sight dependences. We can analyze images of sim-

ulated galaxies as if they were observed by HST. Previous studies of VELA galaxy

morphology (Snyder et al., 2015b) have found that the VELA simulated galaxies are

becoming more bulge-dominated over time, but that galaxies that become bulge dom-

inated may not always remain that way. Galaxy interactions may either trigger bulge

or disk growth. Other examples of morphological studies using simulations (Scan-

napieco et al., 2010) compare Sérsic indices, disk-to-total ratio, colors of simulated

galaxies to the real observed galaxies of Gadotti (2009) and find simulated bulges
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resemble pseudo-bulges rather than observed bulges.

What the VELA simulated galaxy sample lacks in overall number of galaxies is

compensated by the number of time steps and camera angles each galaxy is observed

from. There are only 10 individual VELA simulations but a sample of over 2500

galaxies because each galaxy is observed at 6 different viewing angles and between

20-40 time steps. We can use these numerous time steps to follow individual galaxies

through time to understand how mergers or gas accretion influence galaxy morphol-

ogy. The multiple viewing angles will allow us to determine what affect (if any)

viewing angle has on correlations between morphology and physical mechanisms.

In the previous chapter we used random forest to classify galaxies into mergers and

non-mergers but in this chapter we use a much different technique (time series cross-

correlations) to understand how morphology is related to physical assembly. Both

techniques quantify the relationship between non-parametric morphological statistics.

The random forest classifications define the statistical subspaces explaining merg-

ers but initially only for galaxies that have been visually identified as either mergers

or non-mergers. This analysis allows us to determine which statistics are the most

important for making a merger/non-merger distinction and allows us to speculate on

how physical mechanisms affect the visual morphology. The random forest training

assumes the visual identification of mergers are completely objective. However, this

might be the case. Human classifiers all bring their own biases into the classification.

Instead, the VELA simulations represent a sample where everything about the sys-
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tem (from stellar mass to the times mergers occur) is known. We can directly measure

the effects that physical assembly mechanisms have upon the galaxy morphology. We

can measure the time a galaxy needs to change its morphology following a physical

mechanism or vice versa. The primary drawbacks, however, include the small number

of simulated galaxies and the possibility the models of galaxy evolution/formation are

not completely accurate.

4.2 Data

4.2.1 VELA Simulation

The VELA simulations are a suite of zoom-in hydro-cosmological simulations of

moderately massive galaxies calculated using Eulerian gas dynamics and an N-body

Adaptive Refinement tree (ART, Kravtsov et al., 1997; Kravtsov, 2003). The simula-

tions adopt the standard WMAP5 ΛCDM cosmology with Ωm = 0.27, ΩΛ = 0.73, Ωb

= 0.045 and h = 0.7 (Komatsu et al., 2009). The VELA simulations are described in

depth by Ceverino et al. (2010a); Ceverino & Klypin (2009); Ceverino et al. (2012);

Dekel et al. (2013); Ceverino et al. (2014).

Numerous sub-grid models are incorporated to model physicals processes on scales

below the simulation resolution (Ceverino & Klypin, 2009). These models account

for UV-background photoionization, gas and metal cooling, stochastic star formation,

gas recycling, metal enrichment, supernovae feedback and the feedback due to the
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radiation pressure and radiative heating of young stars (Ceverino et al., 2010b, 2012,

2014). AGN/super massive black hole feedback is not accounted for. However, for

the halo masses investigated (1011 − 1012M�) AGN feedback is not believed to be a

dominant effect (Moody et al., 2014).

The assumed uniform UV background is based on the redshift dependent of Haardt

& Madau (1996) model. However in regions of dense gas (> 0.1 cm−3) a suppressed

UV background is used to recreate the self-shielding of dense gas and allows gas to

cool to T ∼300 K, which is necessary to form stars (Zolotov et al., 2015). Gas and

metal cooling rates are calculated for a given gas density, temperature, metallicity,

and UV background based on the CLOUDY code (version 96b4; Ferland et al., 1998).

The stochastic star formation model follows the observed Kennicutt-Schmidt law

(Kennicutt, 1998; Mozena, 2013) and forms stars in regions of dense (> 1 cm−3),

cool gas (T∼ 300 - 1000 K). The scale of the mesh refinement is between 17 - 35 pc

which leads to star particles of M ∼ 105M�, sufficiently small to resolve minor stellar

clusters (Moody et al., 2014; Snyder et al., 2015b). Winds from stars and supernovae

are emitted at a constant rate of 40 Myrs following star-formation (Moody et al.,

2014; Zolotov et al., 2015). The sub-grid radiation pressure model adds a non-thermal

pressure from the ionizing photons of massive stars to the total gas pressure (Ceverino

et al., 2014) and the feedback from radiation pressure helps to quench star formation

which produces realistic star formation histories for lower mass galaxies (Trujillo-

Gomez et al., 2015; Moody et al., 2014). Future simulations will likely incorporate
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AGN feedback but for now it is important to remember that a potentially important

source of feedback is not incorporated.

Haloes with virial masses 1011 < M/M� < 1012 and not undergoing a major

merger at z = 1 were selected randomly from the N-body simulation. These haloes

were re-sampled and re-simulated with full hydrodynamics at high resolution and full

physics to z ∼ 1. The ROCKSTAR halo finder (Behroozi et al., 2013) was used to

calculate masses and physical sizes (Moody et al., 2014). The simulated galaxies have

9.3 < logM∗/M� < 10.7 and are available in increments of roughly 120 Myrs (Moody

et al., 2014).

4.2.2 Image Processing and CANDELization

The post-processing method converts a simulated galaxy into raw mock images

using the dust radiative transfer (RT) code SUNRISE (Jonsson, 2006; Jonsson et al.,

2010). Every star particle is assigned a spectral energy distribution (SED) based on

mass, age and metallicity using STARBURST99 stellar population models and a Kroupa

(2001) initial mass function (IMF) (Snyder et al., 2015b). The emitted light is followed

through surrounding regions of gas and dust which leads to scattering, absorption,

and dust re-emission (Mozena, 2013). The dust density is assumed to follow the

metal density calculated in the VELA simulations (Snyder et al., 2015b). A Milky

Way dust-to-metals mass ratio model is assumed (Cardelli et al., 1989; Gordon et al.,

2003; Snyder et al., 2015b; Mozena, 2013).
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Each output galaxy is observed from 6 different viewing angles. Of these six

different viewing angles, one is edge-on and one is face-on. These views are determined

from the angular momentum vector. The other 4 angles are randomly selected (Snyder

et al., 2015b). However, the “randomness” of these angles is currently under debate.

Our analysis focuses on 9 galaxies with images that have been prepared to match

realistic seeing (Moody et al., 2014; Snyder et al., 2015b). This process, known

as “CANDELization”, simulates the noise and seeing of Hubble Space Telescope

WFC3/IR images.

The SUNRISE output images are convolved with a PSF for each of these filters,

binned to a pixel scale of 0.06 arcsec and have noise added to match the noise of

typical CANDELS observations (Mozena, 2013; Grogin et al., 2011; Snyder et al.,

2015b). Now, we essentially have a library of galaxy images across cosmic time and

waveband that we can directly compare to observed galaxies in the CANDELS survey.

Additionally, the Gini/M20/A/M/I/D structural statistics have been measured in

Snyder et al. (2015b). We use our PCA-based technique described in Chapter 2 to

group and classify the simulated galaxies.

Physical parameters such as gas mass, ex-situ stellar mass and dark matter mass

are derived from the dark matter halo simulations and are not the result of fitting to

an SED model.
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4.3 PCA-Morphology Groups

Snyder et al. (2015b) showed that the evolution of morphology is not uniform.

Galaxies at z ∼ 2 are typically compact, with potentially unresolved star-forming

disks. The bulge and disk components of these galaxies grow in both size and mass

between z ∼ 1.5 and z ∼ 1. The amount of large disk galaxies (as characterized

by Gini and M20 values) forming stars is correlated with stellar mass. This could

be the result of increasing star-formation efficiency since z ∼2 (at least until z ∼

1). Additionally, the most massive galaxies possess more ordered motion (implying

rotating disks) than less massive galaxies (Kassin et al., 2012).

Simulated galaxies bifurcate into low Gini coefficients and higher Gini coefficients

at higher redshift. Both sets of galaxies appear to grow a bulge (increasing Gini

and decreasing M20 values) by z ∼1. The Petrosian radii follow a (1 + z)1.5 relation.

However, there is a wide scatter in this evolution where some galaxies remain constant

in physical size while others grow greatly (Snyder et al., 2015b). The estimated half-

light radius is measured at a rest-frame B-band but does not incorporate changes

to the PSFs which might account for the 2–4x difference when compared to the 3D

half-mass radius (Zolotov et al., 2015).

We study 7 structural measurements (Gini, M20, C, A, M , I, D) for every galaxy

at every time step and viewing angle. We then project the morphological data from

the VELA simulations into the PC basis defined in Chapter 2 and Peth et al. (2016).

We can use the convex hull method (of chapter 2 and Peth et al. 2016) to group
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the simulated galaxies into the same groups as the observed CANDELS galaxies.

We observe the simulated galaxies over a significant amount of time and observe

evolutionary stages of the PC groups.

We also investigate the relationship between morphology, as represented by the

PC group classification, and major/minor mergers, with an additional emphasis on

the gas fraction of the galaxy. We find that major mergers are (unsurprisingly)

capable of completely transforming the morphology of a galaxy. Major mergers can

not only turn disk-dominated galaxies into spheroids but can also help trigger disk

growth in bulge-dominated systems. Minor mergers have more limited impact on the

overall galaxy morphology. Any change caused by a minor merger is short lived and

transient. When mergers are infrequent secular processes can explain the regrowth

of disks in previously bulge-dominated galaxies (when no merger has occurred for at

least a Gyr or more).

4.3.1 PC Group Demographics

Figure 4.1 shows the histogram of PC group classifications at all time steps and

viewing angles for the 10 VELA galaxies with morphological measurements. The

PC group classifications of CANDELS galaxies are included for comparison. The

simulated galaxies are most commonly classified into group 6, similar to observed

galaxies. Group 6 is defined by a compact, small size and the apparent lack of disk

structure. In contrast with the CANDELS sample, many fewer galaxies are classified
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into the disk-dominated groups 1, 2 and 5 and the bulge-dominated asymmetric group

9. This indicates the limit of the ability of the simulation to create disk galaxies to the

same extent as the real Universe. The small sample of VELA simulations may not be

representative of the Universe which could explain the lack of disk galaxies. However,

this work is intended to investigate the morphologies of the simulated galaxies and

not to investigate the veracity of the simulations themselves. The dearth of group 9

galaxies indicates VELA galaxies do not experience many mergers and visible evidence

of merger activity is short lived. VELA galaxies experienced frequent mergers prior

to z ∼3 and the beginning of morphological measurements. Additionally, if disturbed

morphologies were shorter lived than the 100 Myr time steps it would be possible for

a galaxy to experience a merger and settle without displaying any evidence (Snyder

et al., 2015b).

Table 4.2 and Figure 4.1 show the distribution of groups by viewing angle. The

demographics of the PC groups are remarkably similar across viewing angles except

for a few dissimilarities present in Camera 1 (edge-on view). The Camera 1 viewing

angle identifies an excess of group 4 galaxies and a slight difficiency of group 6 galaxies

compared to the other viewing angles. Group 4 is likely the most susceptible to

viewing angle changes and are thus more likely to be edge-on systems. Cameras 5-8

are random orientations and thus it is not surprising the PC group demographics are

quite consistent.

Table 4.1 shows the group classification distribution for each VELA galaxy. VELA02
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and 03 spend a considerable amount of time classified as group 6. Meanwhile,

VELA12, 15, and 27 are rarely classified into group 6 but rather are mostly classified

in groups 4 and 8 (the intermediate morphological stage between bulge-dominated

and disk-dominated). VELA 04, 05, 14, 26 and 28 display evidence of an outer enve-

lope and are often classified as group 0. VELA14 spends an excess fraction of time as

group 9 (compared to other simulations), which is a possible indicator of tidal tails

or other merger remnants.

Figure 4.2 is the Gini–M20 diagram for all the VELA galaxies differentiated by PC

group and binned by redshift with z ≥ 2 (red) and z < 2 (blue). The white contours

represent the location of CANDELS galaxies defining each PC group.

Figure 4.3 is the Concentration-Asymmetry diagram for VELA galaxies, differen-

tiated by PC group and binned by redshift with z ≥ 2 (red) and z < 2 (blue). The

white contours represent the location of CANDELS galaxies defining each PC group.

The black dashed line separates galaxies with A > 0 and A < 0. As explained in

Chapter 2 A < 0 values can be thought of as A = 0. However, the sheer number of

galaxies with A <0 leads us to believe there is an offset in asymmetry values of Snyder

et al. (2015b). Overall the galaxies are not very asymmetrical. The lone exception is

group 9, but this is one of the defining characteristics of the group and would explain

the overall lack of group 9 galaxies.

Correcting the distribution of asymmetry values to match the distribution of the

observed CANDELS galaxies has only a minimal effect on PC group classifications.
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We use the average asymmetry of CANDELS group 6 galaxies to define the likely zero-

point for asymmetry, as these galaxies are not visibly asymmetric. The PC values

are recalculated and group classifications of the VELA galaxies are repeated. Figure

4.4 shows the differences in group classification following the asymmetric correction.

Group 4 galaxies become reclassified as groups 8 or 9. Since the change in asymmetry

only affects the PC group classification for a small amount of galaxies we will not

correct asymmetry values.

PC Group Classifications of Minor and Major Mergers

Determining the existence of a merger is an important aspect of research, as it

allows us to understand the relationship between physical interactions and morphol-

ogy. Chapter 3 dealt with identifying mergers through the use of visually classified

morphology alone. In the VELA simulations we have information on the amount of

stellar mass formed outside of a galaxy (ex-situ stellar mass) which is an indicator of

the strength of a merger.

An increase of ex-situ stellar mass between 10-30% represents a minor merger and

an increase of > 30% represents a major merger (Zolotov et al., 2015). These values

correspond to the standard definition of 1:10 and 1:3 mass ratios between galaxies

experiencing minor and major mergers. Figure 4.5 shows the PC groups that minor

and major mergers are classified into. Many minor mergers are classified as groups 0,

6 and 8. In the CANDELS sample groups 1 and 9 possess the most visually classified
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irregular galaxies and are most likely merger remnants. Major mergers are most

commonly classified into groups 4 and 6. Major mergers are more likely than minor

mergers to be classified into the disk-dominated groups 1, 2 and 5.

Since most minor mergers are classified into bulge-dominated groups, minor merg-

ers will lead to bulge growth and the “compactification” detailed in Dekel et al.

(2009a); Zolotov et al. (2015). The demographics of minor mergers closely resembles

the total VELA sample implying minor mergers do not affect the morphology of a

galaxy very much. Meanwhile, major mergers are related to disturbed morphologies

because of the overabundance of major merger remnants classified into irregular/disk-

dominated PC groups (groups 1, 2, 4 and 5).

As we will investigate in the next section, the morphological change of a galaxy

may be delayed from infall of ex-situ stellar mass, gas or dark matter.

4.3.2 PC Group Flow

How exactly does morphology evolve with time? The VELA simulation suite

provides a test bed to directly witness morphological changes, and corresponding

merger events.

Figure 4.6 shows the PC group classification for the all VELA galaxies over cosmic

time, color coded by the gas fraction (redder is low gas fraction and bluer are higher

gas fraction). The size of the marker represents the fraction of viewing angles clas-

sified into a specific group at a specific time. Red dashed lines show the occurrence
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Group -1 0 1 2 4 5 6 8 9

VELA02MRP 0.8 16.9 1.1 0.0 7.9 1.6 62.9 3.0 5.7

VELA03MRP 0.0 1.9 1.5 2.7 10.2 1.0 78.8 2.9 1.0

VELA04MRP 1.0 34.9 0.0 0.0 12.3 0.3 45.9 4.8 0.7

VELA05MRP 0.4 42.8 4.2 0.8 12.7 3.4 28.0 7.2 0.4

VELA12MRP 0.6 8.4 0.0 0.6 47.2 2.8 10.1 30.3 0.0

VELA14MRP 0.0 30.4 3.8 0.0 10.1 1.3 30.4 19.0 5.1

VELA15MRP 0.0 12.7 4.2 0.8 47.5 5.0 9.3 19.7 0.8

VELA26MRP 0.5 37.7 0.0 0.0 12.1 0.2 24.9 23.6 1.0

VELA27MRP 0.4 14.8 3.1 0.0 10.9 11.7 9.4 48.4 1.2

VELA28MRP 0.0 64.5 0.7 0.0 8.7 0.0 22.7 1.3 2.0

CANDELS 1.5 13.3 7.6 5.6 8.9 8.6 37.1 10.9 6.4

Table 4.1 VELA PCA Group Demographics at all viewing angles. The CANDELS

sample is shown for comparison.
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Group -1 0 1 2 4 5 6 8 9

CAMERA0 0.6 24.2 1.9 1.1 12.6 3.6 41.0 13.2 1.9

CAMERA1 0.7 24.3 3.3 0.2 24.1 2.6 31.6 11.4 1.8

CAMERA5 0.2 29.8 1.1 0.9 14.0 3.4 35.3 14.3 1.1

CAMERA6 0.2 24.5 1.7 0.2 18.6 2.2 36.4 14.7 1.5

CAMERA7 0.6 26.1 0.4 1.1 12.7 1.9 37.5 17.2 2.4

CAMERA8 0.0 28.4 1.1 0.0 16.3 1.1 36.7 14.9 1.5

CANDELS 1.5 13.3 7.6 5.6 8.9 8.6 37.1 10.9 6.4

Table 4.2 VELA PCA Group Demographics by Camera Angle. CAMERA0 represents

the face-on view and CAMERA1 represents the edge-on view. The remaining cameras

are from random angles. The CANDELS sample is shown for comparison.
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Figure 4.1 Histogram of VELA galaxies (for all time steps and camera angles) and

the CANDELS sample binned by PC group. Similar to observed galaxies there is a

overabundance of group 6 galaxies. These are the galaxies noticeable for their small,

compact size and their lack of disk features. Overall VELA galaxies are far less disk

dominated than the CANDELS sample. Many fewer VELA galaxies are classified as

group 1, 2 or 5 than CANDELS galaxies.
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Figure 4.2 Gini–M20 plot for all VELA galaxies binned by redshift z ≥ 2 (red) and

z < 2 (blue). White contours represent the location of CANDELS galaxies defining

the specific PC groups.
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Figure 4.3 Concentration–Asymmetry plot for all VELA galaxies binned by redshift

z ≥ 2 (red) and z < 2 (blue). White contours represent the location of CANDELS

galaxies defining the specific PC groups.
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Figure 4.4 Histogram of VELA galaxies (for all time steps and camera angles) binned

by PC group following an Asymmetry correction. Corrections to the asymmetry

statistic change the classifications of group 4 galaxies to either group 8 or 9.
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Figure 4.5 Histogram of PC group classifications at the exact time step of minor

mergers
(

ex-situ M∗(t+1)

ex-situ M∗(t)
> 1.1

)
and major mergers

(
ex-situ M∗(t+1)

ex-situ M∗(t)
> 1.3

)
by PC group

classification. The majority of minor mergers are classified into groups 0 and 6, while

major mergers are mainly groups 4 and 6. Major mergers are also disproportionately

classified into groups 1 and 5. Since much of the analysis of this chapter deals with

time delays between morphology and physical parameters we will also investigate the

group classifications of galaxies in time steps preceding and following the instance of

a merger when determined via ex-situ M∗.
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of a minor merger and blue dashed lines show the occurrence of a major merger. We

notice that VELA02 starts as a disk-dominated group 1 galaxy but quickly trans-

forms into a bulge-dominated group 6 galaxy. For the majority of its life the galaxy

alternates between group 0 and 6 designations. The vertical dashed lines represent

minor mergers (red) and major mergers (blue). Following a major merger the galaxy

becomes more disturbed as shown in the transition from group 6 to group 9 or group

4. Group 9 is characterized by the amount of bulge-dominated irregular galaxies seen

visually. VELA02 experiences group 9 status following both major merger events. We

notice that major mergers presage a morphological and gas mass change. The first

major merger disturbs the galaxy while simultaneously causing a decrease in the gas

fraction. The merger in effect “uses up” the available gas. The second merger leads

to a short lived more gas rich disk+bulge system that quickly settles back into a gas

poor bulge dominated system. The minor mergers do not have a significant impact

on the gas fraction or morphological structure of the galaxy. The galaxy alternates

from group 0 to group 6 and back again meaning a small disk component is forming

and dissipating, which could be the result of the minor mergers, but the evidence is

not overwhelmingly strong either way.

For VELA27, in figure 4.6, amidst 1.5 < z < 2.2 the galaxy alternates between

a bulge-dominated and intermediate morphology. At lower redshift z < 1.5 the disk

of the galaxy begins to dominate the morphology. VELA27 is notable for being

the galaxy that is disk-dominated for a significant amount of time at lower red-
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shift. VELA27 experiences a major merger and subsequently becomes more bulge-

dominated and more compact. Following the major merger the gas fraction decreases

but it is hard to ascertain whether this decrease is due to the merger or simply a

secular process of gas gradually turning into stars or being expelled from the galaxy.

No matter the initial morphology, following a major merger a galaxy experiences

a strong transformation. When bulge-dominated VELA galaxies experience a major

merger the bulge becomes disturbed and we see group 6 galaxies transformed into

more disk-dominated morphological classes. This could be an example of a primary

galaxy accreting the merger-disrupted satellite galaxy. We see evidence for this in

Figure 4.6. Following the accretion of satellite by the primary a short time period

exists where the bulge-dominated galaxy has a visible disk component before the disk

is consumed by the bulge. Whereas when a disk-dominated VELA galaxy experiences

a major merger the bulge becomes stronger, the galaxy becomes more compact and

galaxies become naked bulge-dominated group 6 galaxies. These occurrences are rare

since only a VELA galaxies are observed as disk-dominated.

Minor mergers (shown by red dashed lines in Figure 4.6) have less impact on the

morphology of the total galaxy. Minor mergers may or may not cause the morphology

of the galaxy to change. If the galaxy morphology does change following a minor

merger the change is usually short lived and the galaxy will revert to the pre-minor

merger morphology.

Figure 4.7 inverts the relationship shown in Figure 4.6 to show gas fraction as a
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function of lookback time, color coded by PC group. Bulge dominated groups (such

as group 6,0 and 9 are red, and groups 1, 2, and 5 are blue, intermediate groups 4 and

8 are shades of blue/red-ish white) dominate the overall morphology of our galaxy

sample. Most simulations end up with no gas by z =1 and by which time the galaxy

has become bulge-dominated (except for VELA27). VELA27 is unique because even

as the gas fraction decreases the disk continues to grown and become more dominant.

The loss of gas appears to be related to a major merger occurring right as the gas

fraction reaches a maximum.

In many instances major mergers (and to a lesser extent minor mergers) occur at

a local maximum of gas fraction followed by a steady decline until the gas reservoir

is empty.

4.4 Time Series Cross-Correlations

Gas accretion and other phenomena are believed to be an important driver of

galaxy assembly (Snyder et al., 2015a,b). For this reason it is important to investi-

gate relationship between the rate of numerous physical features (such as the rate of

inflowing gas mass or ex-situ stellar mass) and the galaxy morphology. The VELA

simulations provide quantitative morphological and physical galactic measurements

that can be analyzed to determine if morphology causes physical processes (such as

sSFR or gas fraction) or vice versa.
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Figure 4.6 The PC group as a function of redshift for all VELA galaxies at all viewing

angles. The size of the marker demonstrates the number of viewing angles classi-

fied into the group. The shaded regions represents groups defined by their: bulge-

dominated appearance (red), disk-dominated appearance (blue), intermediate appear-

ance (green). Each time step is colored based on the gas fraction (red is lower gas

fraction, white is intermediate gas fraction and blue is high gas fraction). Red-dashed

lines represent minor mergers (ex-situ M∗ increases between 10-30%). Blue-dashed

lines represent major mergers (ex-situ M∗ increases > 30%).
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Figure 4.7 The gas fraction as a function of lookback time for all VELA galaxies color

coded by the average PC1 of all viewing angles (redder = more prominent bulge).

Red-dashed lines represent minor mergers (ex-situ M∗ increases between 10-30%).

Blue-dashed lines represent major mergers (ex-situ M∗ increases > 30%).
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Since indicators of mergers and gas accretion have been shown to be short lived

phenomena (Lotz et al., 2008; Snyder et al., 2015b) it is important to have a multi-

tude of observed time steps and viewing angles. Morphological measurements such

as PC1 and PC2 can quantify the strength and concentration of the central bulge.

PC3 indicates the level of asymmetry in the galaxy. The VELA simulation suite

follows individual galaxies as they evolve with measurements of the gas fraction, star-

formation rate, ex-situ mass and dark matter mass. Ex-situ stellar mass can be used

as an indicator of merger activity (Zolotov et al., 2015). The gas fraction represents

the amount of fuel remaining to form stars. The star-formation rate can be used

to indicate the evolutionary stage of a galaxy (Barro et al., 2013). The dark mat-

ter mass rate of change represents the mass accretion history of the dark matter halo

which in ΛCDM can be used to understand formation scenarios (White & Rees, 1978;

Zhao et al., 2003). By comparing the morphological statistics to physical features we

can study the causality between these phenomena and the amount of time needed to

influence one another.

The time series analysis of morphology and physical galactic properties can help

further prove the strong relationship between SFR and morphology (e.g. Wuyts

et al., 2011; Lee et al., 2013), the effects of mergers upon morphology (e.g. Lotz

et al., 2011), and the connection between gas fraction and morphology (e.g. Lotz

et al., 2010a; Huertas-Company et al., 2015). We can compare the time dependence

of physical parameters and use that information to delve into the causation of such
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relationships.

4.4.1 Discrete Correlation Function

We use time series analysis between two 1D signals to determine the amount

of correlation and the time delay. We use the discrete correlation function (DCF;

Edelson & Krolik, 1988) because our time series data are irregularly sampled. The

physical gas and stellar parameters are sampled much more sparingly than the non-

parametric morphology. However, the physical parameters are measured since z ∼ 7,

whereas morphology is only measured since z ∼ 3. We use the python code developed

by Robertson et al. (2015) to calculate the discrete correlation function. The DCF

corrects for the spurious correlations between time series (Edelson & Krolik, 1988).

Calculating the DCF first requires an unbinned DCF (UDCF, equation 4.1). ai

and bj are the respective time series with mean values of ā and b̄ and variances of

σ2
a and σ2

b . The next step is to bin all time delays ∆tij = ta,i − tb,j in the range

τ − ∆τ
2
≤ tij ≤ τ + ∆τ

2
and divided by the number of data points (N) in the bin

(equation 4.2).

Positive values of the DCF indicate either both ai and bj are increasing or both

are decreasing. Meanwhile, a negative DCF value indicates one time series increases

while the other decreases. If the correlation (either positive or negative DCF) peaks

at -∆tij (or equivalently3 -tdelay) values we say that ai leads bj, whereas a correlation

3We use ∆tij and tdelay terminology interchangeably
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peaking at +∆tij (+tdelay) values we say that ai lags bj. The width of these peaks is

essential to determine the importance of the correlations. If the peaks in time delay

are too large (>1 Gyr) then the time series are likely not correlated.

UDCFij =
(ai − ā)(bj − b̄)√

σ2
aσ

2
b

(4.1)

DCF (τ) =
1

N

∑
UDCFij (4.2)

Discrete correlation functions have been used in: AGN reverberation mapping

studies to determine the time lag between the visibility of different emission lines

(Haas et al., 2011), the variability of blazars (Agarwal et al., 2015) and spectral

variability of stars (e.g. Gaur et al., 2015).

Significance testing is based on MC sampling of cross correlations between one

parameter (in our case a PC) and a random distribution with the same average and

standard deviation as another parameter (such as stellar mass, gas fraction,etc.).

The n-σ values are determined from a two-sided Student’s t distribution as shown

in Eq. 4.3. The An value depends on the the degrees of freedom in the Student’s

t distribution which we define as the number of data points in each corresponding

bin of the DCF and the level of significance achieved (1σ,2σ and 3σ corresponding to

68.7%, 95%, and 99.5% importance). Correlations stronger than 3σ are significant.

nσ = An

√
variance√

N
(4.3)
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For the sake of this analysis, we consider correlations that are stronger than 3σ

for at least 100 Myrs but not more than 1 Gyr to be important indicators of the

causation between morphology and galactic physical parameters.

In many of the cross-correlations there is a primary peak and multiple subse-

quently less important peaks. These secondary peaks are likely the result of the

multiply peaked (e.g. PC1 or gas fraction) time series. The cross-correlation matches

secondary peaks of one time series with the primary peak of the other time series

leading to less important cross-correlation peaks. Analysis in subsequent sections

will mainly pertain to the primary peak. In rare cases multiple peaks are nearly

equally important and are addressed in turn.

We tested the relationship between morphology and physical properties of the sim-

ulation (such as ex-situ stellar mass fraction, dark matter mass fraction, gas fraction

and star-formation rate) by cross-correlating the time series of each property with

the PC results. We then stack the results of the discrete cross-correlation functions

from all the VELA galaxies available. The peaks in the cross-correlation function

correspond to time lags or time leads between the time series of PCs and the time

series for a physical parameter. The time leads and/or lags help us determine the

cause and effect demonstrated between morphology and physical properties. All the

∆t values are in relation to the physical parameter time series leading or lagging the

PC time series.

PC1 correlates most strongly with the, ex-situ stellar mass fraction, sSFR and
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gas fraction. PC2 anti-correlates very weakly with gas fraction, ex-situ stellar mass

and dark matter mass fraction rate of change. PC3 correlates most strongly with

sSFR and gas fraction. These relationships are also dependent upon the region of the

galaxy investigated. Some relationships are stronger in the central kpc (indicating an

influence on compaction), while other relationships are more important for the entire

galaxy.

The morphological measurements of the VELA simulations were initially per-

formed only or galaxies brighter than 24.5 magnitude. Correspondingly, only mor-

phological measurements from the lower end of the redshift range exist, when the

galaxies were sufficiently massive and bright. When the galaxy is too small or insuffi-

ciently massive the non-parametric morphology measurements are not reliable (Lotz

et al., 2004; Grogin et al., 2011; Peth et al., 2016).

Figure 4.8 shows the PC1 (disk growth/bulge weakening) values for the VELA

galaxies as a function of cosmic time. Larger values of PC1 indicate disk growth while

smaller values of PC1 indicate stronger bulges. The error bars are determined from

the standard deviation of PC values from all viewing angles. Figures 4.9 - 4.16 show

PC2, PC3 and physical parameters as functions of time. In general, PC values are

consistent across viewing angle, only a few outliers are noticeable (particularly PC2

and PC3 for VELA04). The star-formation rates and ex-situ stellar mass fractions

for each VELA galaxy are quire distinct amongst one another.

The next sections show an example of a cross-correlation between the morphology
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and physical properties of a VELA galaxy. In particular, the focus is on the cross-

correlation amongst PC1 and physical properties for VELA02. VELA02 experiences

a few mergers and gas accretion which provide an opportunity to observe how these

mechanisms are related to morphology.

The Evolution of VELA02

VELA02 represents an interesting galaxy simulation to focus on because between

1 . z . 1.8 there were two minor mergers, 1 major merger and a continual stochastic

accretion of gas onto the galaxy. At z ∼ 1.8 the galaxy is fairly disk-dominated since

the bulge is weak. Gas is accreted fairly strongly until the first minor merger occurs

which trigger bursts of star-formation contributing to initial visible disturbances.

Meanwhile, the stars that are formed during the burst lose angular momentum and

accreted gas help to build the bulge. The gas reservoir eventually becomes tapped

and star-formation begins to quench. Soon thereafter, a major merger completely

disrupts the visual morphology (Snyder et al., 2015b) which leads to final state for

the galaxy as bulge-dominated spheroid.

PC1 - sSFR

Zolotov et al. (2015) proposes peak SFR occurs at peak compaction. Immediately

prior to peak sSFR, the sSFR increases more steeply in the inner kpc than for the

total galaxy. After peak compaction and SF are reached the SFR declines slower
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in the 10 kpc radius as compared to the inner kpc. We investigate the relationship

between sSFR and galaxy morphology. The structure of a galaxy is often tied to the

star-formation characteristics of the system. The first step towards investigated the

hypothesis of a sSFR-compaction connection in the context of morphology is to see

how the SFR and structure of the galaxy are related in time.

In figure 4.17 the top panel shows the specific star-formation rate of VELA02

(as seen face-on) as a function of time, the middle panel shows PC1 of VELA02 (as

seen face-on) as a function of time and the bottom panel shows the cross-correlation

between sSFR and PC1. The bottom panel (also known as a correlogram) shows the

correlation as a function of delay time between the two time series.

The correlation is multiply peaked. There are peaks of -1 Gyrs, -400 Myrs, 100

Myrs, 800 Myrs and 1.28 Myrs. The multiple peaks are probably the result of the

multiple peaks in PC1. The strongest positive correlation occurs with sSFR lagging

PC1 ∼800 Myrs. This correlation barely rises above the 3σ threshold, and thus the

importance of this correlation is not very strong. The multiple peaks sSFR indicate

VELA02 is compacting then growing then re-compacting numerous times. At least

for VELA02 the relationship between bulge strength/disk growth and star-formation

rate is quite complicated.

PC1 - fgas and ḟgas

Zolotov et al. (2015); Dekel et al. (2013) refer to the rapid influx of gas into the

183



CHAPTER 4. VELA SIMULATIONS

central kpc as the “compactification” of the galaxy. At this time the galaxy begins

experiences a peak in star-formation followed by a gradual quenching.

In figure 4.18 the top panel shows the gas fraction (Mgas/(M∗ + Mgas)) in the

central 1 kpc of VELA02 (as seen face-on) as a function of time. The middle panel

shows the PC1 of VELA02 (as seen face-on) as a function of time, and the bottom

panel shows the cross-correlation between fgas and PC1. For VELA02 fgas lags PC1

by ∼800 Myrs with a positive correlation and an anti-correlation with gas fraction

leading PC1 by ∼1 Gyr. However, both of these correlations are just below the 3σ

threshold for significance. There are three additional local maxima at -1.3, -0.5 and

+1.3 Gyrs that are stronger than 2σ significance. Much like the correlation between

PC1 and sSFR, the correlation between PC1 and gas fraction is multiply peaked.

The multiple peaks indicate the multiple episodes of bulge growth and decay coexist

with increasing and decreasing gas fractions.

Instead of finding a smoothly increasing function of fgas with time as imagined

in Zolotov et al. (2015) we find that these galaxies are much more complicated. We

calculate the time derivative of the gas fraction (ḟgas) with the simple python numpy

gradient function. We compare our results to the gas “inflow” as defined in Zolotov

et al. (2015). In their model, gas inflows more rapidly at the central kpc than into

the entire galaxy but once compaction and peak SFR are achieved the gas inflow into

the central kpc drops off more steeply than for the entire galaxy. The inflow rate of

gas becomes overwhelmed by the combined star formation rates and gas outflow rates
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that are increasingly depleting the gas reservoir.

In figure 4.19 the top panel shows the rate of change of gas fraction into the central

1 kpc of VELA02 (as seen face-on) as a function of time. The middle panel shows the

PC1 of VELA02 (as seen face-on) as a function of time, and the bottom panel shows

the cross-correlation between ḟgas and PC1. We find a strong positive correlation

with ḟgas lagging PC1 by ∼940 Myrs. This correlation only barely surpasses the 3σ

importance threshold, but is the only correlation to be stronger than 2σ at any time

delay. The relative strength of the correlation could be proven further by stacking

results from other VELA simulation galaxies. In this case, the maximum ḟgas occurs

900 after the galaxy has grown a disk.

PC1 - ex-situ-M∗/M∗ and ex-situ-Ṁ∗/M∗

Ex-situ stellar mass refers to the stellar mass accreted by the central galaxy dur-

ing a merger or tidal disruption event. The amount of ex-situ stellar mass tells us

the strength of the merger, which we define as a major merger if the increase of

ex-situ stellar mass is > 30% and a minor merger if the increase is between 10-30%.

Understanding the time delay between when a merger occurs and when the morphol-

ogy indicates one happened is a very important piece of information telling us how

long a merger may be visible morphologically and thus allow us to understand how

important mergers are to galaxy evolution.

In figure 4.20 the top panel shows the ex-situ stellar mass/M∗ in the central kpc
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of VELA02 (as seen face-on) as a function of time. The middle panel shows the

PC1 of VELA02 (as seen face-on) as a function of time, and the bottom panel shows

the cross-correlation between ex-situ-M∗/M∗ and PC1. We find a strong positive

correlation with ex-situ stellar mass lagging PC1 by ∼800 Myrs. Counter intuitively

in this case, the bulge weakens before the maximum amount of ex-situ stellar mass is

accreted by the galaxy. In this case the total amount of ex-situ stellar mass might not

be as important as how quickly the central galaxy is accreting the satellite. There

is a moderately strong and wide correlation peaked at no time lag between PC1

and ex-situ stellar mass which indicates the possibility bulge strength is influenced

(relatively) instantly by a merger.

In figure 4.21 the top panel shows the inflow rate of ex-situ stellar mass into

the central 1 kpc of VELA02 as a function of time, the middle panel shows PC1 of

VELA02 (as seen face-on) as a function of time, and the bottom panel shows the cross-

correlation between ex-situ-Ṁ∗/M∗ and PC1. We find the potential for two peaks in

the correlation function, with either ex-situ-Ṁ∗/M∗ leading PC1 by ∼400 Myrs or

ex-situ-Ṁ∗/M∗ lagging PC1 by ∼940 Myrs . However, neither of these correlations

are much stronger than 3σ. The first of these peaks could be evidence that the bulge

of a galaxy takes 400 Myrs to react to a merger event. The second of these peaks

shows the disk of the galaxy is most dominant before the merger, which could suggest

VELA02 is slowly converted from a disk-dominated to bulge-dominated galaxy while

the merger occurs.
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PC1 - Ṁdm/M∗

An increase in the dark matter is another important indicator of merger activity.

We do not study the amount of dark matter and correlate this with morphology

because dark matter is always increasing for the galaxies in the simulations and thus a

cross-correlation would not be a very meaningful statistic. However, the rate at which

dark matter is accreted by the galaxy can be stochastic and thus a cross-correlation

is a valid measurement.

In figure 4.22 the top panel shows the rate of dark matter mass in the central 1

kpc of VELA02 (as seen face-on) as a function of time. The middle panel shows the

PC1 of VELA02 (as seen face-on) as a function of time, and the bottom panel shows

the cross-correlation between Ṁdm and PC1. We find Ṁdm leads PC1 either by ∼40

Myrs or ∼650 Myrs or Ṁdm lags PC1 ∼650 Myrs. None of these correlations are

much stronger than a 3σ importance so no strong statements of causality between

PC1 and dark matter mass rate can be determined.

4.4.2 Stacks of PCs and Physical Parameters Cor-

relations

Are the correlations observed in VELA02 present for other VELA galaxies as

well? If they are, how important are the cross-correlations and do these correlations

occur at the same time delay which can be used to define causation? To answer these
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Figure 4.8 PC1 for all VELA galaxies a function of time. The error bars are de-

termined from the standard deviation of PC1 values at each redshift for all viewing

angles. There exist only a few extreme differences which could be the result of a

poorly measured statistic (such as M) or a merger.

188



CHAPTER 4. VELA SIMULATIONS

8910

2

0

2

4

P
C

2

VELA02MRP

91011

VELA03MRP

8910

VELA04MRP

8910

2

0

2

4

P
C

2

VELA05MRP

9101112

VELA12MRP

81012

VELA15MRP

89101112
Lookback Time (Gyr)

2

0

2

4

P
C

2

VELA26MRP

891011
Lookback Time (Gyr)

VELA27MRP

891011
Lookback Time (Gyr)

VELA28MRP

Figure 4.9 PC2 for all VELA galaxies a function of time. The error bars are de-

termined from the standard deviation of PC2 values at each redshift for all viewing

angles. There exist only a few extreme differences which could be the result of a

poorly measured statistic (such as M) or a merger.
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Figure 4.10 PC3 for all VELA galaxies a function of time. The error bars are de-

termined from the standard deviation of PC3 values at each redshift for all viewing

angles. There exist only a few extreme differences which could be the result of a

poorly measured statistic (such as M) or a merger.

190



CHAPTER 4. VELA SIMULATIONS

8910

10.0

9.5

9.0

8.5

sS
FR

VELA02MRP

91011

VELA03MRP

8910

VELA04MRP

8910

25

20

15

10

sS
FR

VELA05MRP

9101112

VELA12MRP

81012

VELA15MRP

89101112
Lookback Time (Gyr)

11

10

9

sS
FR

VELA26MRP

891011
Lookback Time (Gyr)

VELA27MRP

891011
Lookback Time (Gyr)

VELA28MRP

Figure 4.11 sSFR for all VELA galaxies a function of time.
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Figure 4.12 fgas for all VELA galaxies a function of time.
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Figure 4.13 ḟgas for all VELA galaxies a function of time.

193



CHAPTER 4. VELA SIMULATIONS

8910

2.5

2.0

e
x
si

tu
-M

∗/
M

∗

VELA02MRP

91011

VELA03MRP

8910

VELA04MRP

8910

2.0

1.5

e
x
si

tu
-M

∗/
M

∗

VELA05MRP

9101112

VELA12MRP

81012

VELA15MRP

89101112
Lookback Time (Gyr)

2.0

1.8

1.6

1.4

e
x
si

tu
-M

∗/
M

∗

VELA26MRP

891011
Lookback Time (Gyr)

VELA27MRP

891011
Lookback Time (Gyr)

VELA28MRP

Figure 4.14 ex-situ M∗/ M∗ for all VELA galaxies a function of time.
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Figure 4.15 ex-situ Ṁ∗/M∗ for all VELA galaxies a function of time.
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Figure 4.16 Ṁdm/M∗ for all VELA galaxies a function of time.
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Figure 4.17 (top panel): Specific star-formation rate of VELA02 (as seen face-on) as

a function of time. (middle panel): PC1 of VELA02 (as seen face-on) as a function of

time. (bottom panel): The cross-correlation between SFR and PC1 (bulge strength).

The gray regions represent the 3σ level of significance, correlations above and below

this region are important. The vertical red dashed line represents the location of

∆t. We find the cross correlation is multiply peaked with the strongest correlation

occurring when sSFR lags PC1 by ∼800 Myrs but anti-correlation is observed with

sSFR leading by ∼1 Gyrs or ∼400 Myrs. A decrease in PC1 implies the bulge is

strengthening, and a positive correlation implies sSFR declines as the central bulge

becomes stronger. Conversely, an increase in PC1 implies sSFR increases as the disk

is growing. A stronger bulge can lead to quenching, while a growing disk is associated

with star-formation.
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Figure 4.18 (top panel): Gas fraction in the central 1 kpc of VELA02 (as seen face-on)

as a function of time. (middle panel): PC1 of VELA02 (as seen face-on) as a function

of time. (bottom panel): The cross-correlation between fgas and PC1 (bulge strength).

The gray regions represent the 3σ level of significance, correlations above and below

this region are important. The vertical red dashed line represents the location of

∆t. We find a moderate positive correlation with fgas lagging PC1 by ∼800 Myrs.

However, this correlation is not much stronger than 3σ.
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Figure 4.19 (top panel): Rate of gas fraction into the central 1 kpc of VELA02 (as

seen face-on) as a function of time. (middle panel): PC1 of VELA02 (as seen face-on)

as a function of time. (bottom panel): The cross-correlation between ḟgas and PC1

(bulge strength). The gray regions represent the 3σ level of significance, correlations

above and below this region are important. The vertical red dashed line represents the

location of ∆t. The strongest correlation exists for ḟgas lagging PC1 by ∼900 Myrs.

This correlation is not stronger than 3σ but is the only correlation stronger than 2σ.

A decrease in PC1 implies the bulge is strengthening, and a positively correlated ḟgas

implies gas inflow slows down as the central bulge becomes stronger. Conversely, an

increase in PC1 implies gas rate increases as the disk grows.
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Figure 4.20 (top panel): ex-situ-stellar mass into the central 1 kpc of VELA02 (as seen

face-on) as a function of time. (middle panel): PC1 of VELA02 (as seen face-on) as a

function of time. (bottom panel): The cross-correlation between ex-situ-Ṁ∗ and PC1

(bulge strength). The gray regions represent the 3σ level of significance, correlations

above and below this region are important. The vertical red dashed line represents

the location of ∆t. The strongest correlation occurs with ex-situ-M∗ lagging PC1 by

∼800 Myrs. This correlation suggests the bulge becomes more compact as less ex-situ

stellar mass is being accreted by the galaxy.
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Figure 4.21 (top panel): Rate of ex-situ-stellar mass into the central 1 kpc of VELA02

(as seen face-on) as a function of time. (middle panel): PC1 of VELA02 (as seen face-

on) as a function of time. (bottom panel): The cross-correlation between ex-situ-Ṁ∗

and PC1. The gray regions represent the 3σ level of significance, correlations above

and below this region are important. The vertical red dashed line represents the

location of ∆t. There is a moderately strong correlation with ex-situ-Ṁ∗ lagging PC1

by ∼940 Myrs. The correlation is slightly stronger than 3σ but only for a single time

step, which casts doubts upon the relative importance.
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Figure 4.22 (top panel): Rate of dark matter mass into the central 1 kpc of VELA02

(as seen face-on) as a function of time. (middle panel): PC1 of VELA02 (as seen

face-on) as a function of time. (bottom panel): The cross-correlation between Ṁdm

and PC1 (bulge strength). The gray regions represent the 3σ level of significance,

correlations above and below this region are important. The vertical red dashed line

represents the location of ∆t. The correlation between dark matter mass rate and

PC1 does not appear to be very significant for VELA02.
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questions we first calculate the cross-correlations present in each VELA galaxy. By

themselves these cross-correlations for each VELA galaxy can be difficult to interpret.

To understand the average cross-correlation for VELA galaxies we stack the cross-

correlations between PC1 and ex-situ-M∗, ex-situ-Ṁ∗, SFR, fgas, Ṁdm, and ḟgas for

9/10 VELA galaxies. We did not include the results of VELA14 because this galaxy

was not measured at as many time steps as the other galaxies. We were not able

to sample the full range of time lags/leads as the remaining galaxies. We stack the

cross-correlation results for these galaxies to get an idea of the general correlations

between morphology and physical parameters in the simulation. This analysis can

easily be scaled up when more VELA galaxies have been CANDELized and a more

representative sample of galaxies has been created.

Figure 4.23 show the cross-correlations between PC1 and physical parameters at

the inner kpc. There is strong correlation between many physical parameters and

PC1. At 1 kpc there is a strong correlation for PC1 with sSFR, fgas and ex-situ-M∗.

Each of these correlations are stronger than 3σ for between 100 Myrs and 1Gyr. PC1

has strong but wide correlations with Ṁdm and ex-situ-Ṁ∗. Figure 4.24 shows that

at the 10 kpc scale, PC1 is most strongly correlated with ḟgas and ex-situ-M∗. The

remaining physical parameters have very wide distributions of time delay and thus

are not important by our definition.

Figures 4.25 and 4.26 show that PC2 is anti correlated with all measured physical

parameters. However, each correlation is stronger than 3σ for > 1 Gyr, which we
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have defined as not important. PC2 is not very well correlated with any physical

parameter.

In Figure 4.27 we see that only the moderate correlations between PC3 and fgas,

ex-situ mass or sSFR for the inner kpc. The time lag between PC3 and sSFR or fgas is

only ∼40 Myrs, which we can say all occur simultaneously. The galaxy experiences a

morphological change slightly before fgas migrates to the central kpc. The migration

of Mgas must be a slow process. While the gas slowly cycles inward the shape and

structure of the galaxy has changed before the gas settles in the central kpc. Ex-situ

mass leads PC3 by ∼500 Myrs, follwed by a moderate anti-correlation with ex-situ

mass lagging PC3 by ∼100 Myrs. This could be an example of a merger event leading

to a change in PC3 by disturbing the galaxy, followed by either a decrease of ex-situ

stellar mass (through the first pass of a merger) or the creation of more stellar mass

in the galaxy pushing the ex-situ stellar mass/M∗ ratio lower.

Figure 4.28 shows that at the 10 kpc scale, only PC3 and sSFR have a strong

correlation. There is roughly no time delay between the two time series indicating

that asymmetric morphologies and sSFR are deeply intertwined. The stacked corre-

lations for Ṁdm, ex-situ-M∗, ex-situ-Ṁ∗, ḟgas ex-situ-M∗, Ṁdm are not as statistically

significant since none of their cross-correlation coefficients are larger than the 3σ

threshold.
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Figure 4.23 The stacked cross-correlation between PC1 and ex-situ M∗/M∗, fgas,

Ṁdm/M∗, ex-situ-Ṁ∗/M∗, sSFR, and ḟgas and for 9/10 VELA galaxies as observed

at 1 kpc. PC1 is most strongly correlated with sSFR, fgas and ex-situ M∗/M∗. Each

physical property leads PC1 by 500-700 Myrs implying the the bulge strengthens in a

compaction phase before the galaxy quenches or that disk growth is a lengthy process

before star-formation and gas accretion are maximized.
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Figure 4.24 The stacked cross-correlation between PC1 and ex-situ-M∗/M∗, fgas,

Ṁdm/M∗, ex-situ-Ṁ∗/M∗, sSFR, and ḟgas and for 9/10 VELA galaxies as observed at

10 kpc. PC1 is most strongly correlated with sSFR, ḟgas and ex-situ M∗/M∗. PC1

and ḟgas very nearly instantly influenced by one another and SFR is influenced nearly

500 Myrs later which shows that star-formation responds strongly to a build up of

fuel and a disk.
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Figure 4.25 The stacked cross-correlation between PC2 and ex-situ-M∗/M∗, fgas,

Ṁdm/M∗, ex-situ-Ṁ∗/M∗, sSFR, and ḟgas and for 9/10 VELA galaxies as observed at 1

kpc. PC2 displays only weak and very wide anti-correlations with physical properties.
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Figure 4.26 The stacked cross-correlation between PC2 and ex-situ-M∗/M∗, fgas,

Ṁdm/M∗, ex-situ-Ṁ∗/M∗, sSFR, and ḟgas and for 9/10 VELA galaxies as observed

at 10 kpc. PC2 displays only weak and very wide anti-correlations with physical

properties.
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Figure 4.27 The stacked cross-correlation between PC3 and ex-situ-M∗/M∗, fgas,

Ṁdm/M∗, ex-situ-Ṁ∗/M∗, sSFR, and ḟgas and for 9/10 VELA galaxies as observed

at 1 kpc. sSFR and fgas have a very moderately positive cross-correlation with PC3

and no time lag.
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Figure 4.28 The stacked cross-correlation between PC3 and ex-situ-M∗/M∗, fgas,

Ṁdm/M∗, ex-situ-Ṁ∗/M∗, sSFR, and ḟgas and for 9/10 VELA galaxies as observed

at 10 kpc. sSFR has a strong positive cross-correlation with PC3 and no time lag.

Star-formation and asymmetric morphology influence each other nearly instantly.
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4.5 Discussion

One of the most important attributes of the VELA simulations is the ability

to track individual galaxies across cosmic time. This allows for direct observations

of the mergers, disk instabilities and other physical mechanisms influencing galaxy

morphology. The delay time between mechanisms leading to morphological changes

or vice versa can be measured through a cross-correlation of the morphological (PC

values) and physical properties (such as SFR and gas fraction) time series. The

PC values for VELA galaxies are based on the PC weights defined by the z ∼ 1.5

CANDELS sample. These PC weights are used so that direct comparison between

CANDELS and VELA galaxies is possible.

However, there are some dissimilarities between the observed CANDELS sample

and the simulated VELA sample. Each sample targets a slightly different mass range.

VELA galaxies rarely grow above (1010M�) whereas CANDELS observed galaxies are

explicitly selected to be more massive than 1010M�. There are ∼ 1,200 galaxies in the

CANDELS sample compared to only 9 in the VELA suite. The 9 VELA galaxies are

each measured for at least 40 time steps and 6 viewing angles, leading to a catalog of

2,400 galaxies. The VELA simulations are only probing a small subsample of galactic

masses but they do offer greater resolution and insight into how individual evolve

over time.

We cross-correlated the time series of PC1 (bulge strength), PC2 (concentra-

tion) and PC3 (asymmetry) with the time series of physical parameters (sSFR, fgas,
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Ṁdm/M∗, ex-situ-M∗/M∗ and ex-situ-Ṁ∗/M∗) to understand the cause and effect be-

tween morphology, star formation and mergers as a function of time. This analysis

allows us to study how sudden or delayed the galaxy morphology and physical pro-

cesses react to one another.

4.5.1 Is PC1 an indicator of evolution?

PC1 correlates most strongly with sSFR, fgas, and ex-situ-M∗/M∗ when measured

for the inner kpc. We observe that sSFR lags PC1 by ∼700 Myrs, fgas lags by ∼700

and ex-situ-M∗ lags PC1 by ∼500 Myrs. At 10 kpc, PC1 correlates most strongly

with ex-situ-M∗/M∗, sSFR and ḟgas. We observe that sSFR lags PC1 by ∼500 Myrs,

ex-situ-M∗ lags PC1 by ∼350 Myrs and fgas has no time lag from PC1. The time

lag between sSFR and ex-situ M∗ with PC1 are shorter (by ∼150 Myrs) at the 10

kpc scale than the inner kpc. Whereas, PC1 is correlated the gas fraction rate is

correlated with at 10 kpc instead of the gas fraction.

As PC1 decreases (bulge strength increases) so does the sSFR and gas fraction.

The sSFR and fgas decrease ∼700 Myrs after a galaxy has experienced bulge growth.

Conversely, correlations also suggest that if a galaxy becomes more disk dominated

(PC1 increases) then sSFR and fgas increase.

As fgas begins to decline, the galaxy becomes more bulge-dominated. Quickly

after (or perhaps simultaneously) a galaxy has become bulge-dominated ḟgas declines

steeply.
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A decline in the gas supply, either through decreased accretion of cold streams

or the continual conversion of gas into stars, eventually leads to a rapid decline in

star-formation; creating a compact, quenched red nugget galaxy (Dekel & Burkert,

2014). These compact, quenched galaxies have been observed in numerous studies

of massive, z∼2–3 galaxies (van Dokkum et al., 2008; Whitaker et al., 2012) and

gradually grow to become the massive ellipticals observed in the local universe (Dekel

& Burkert, 2014; Tacchella et al., 2015). Morphological quenching is the result of

a sufficiently massive central bulge stabilizing the disk from further fragmentation

and will shut down star formation (Martig et al., 2009; Genzel et al., 2014; Tacchella

et al., 2015).

In the VELA simulations, star-formation in the central kpc continues to increase

until the galactic bulge reaches an asymptotic mass and quenching begins (Zolotov

et al., 2015). Less massive galaxies compact later and to a lesser degree than higher

mass galaxies (a process known as “down-sizing”). Although, in the PC1 stacked

cross-correlation PC1 leads the sSFR by ∼700 Myrs for both the inner kpc and outer

regions of the galaxy. This suggests the star-formation in the central bulge and outer

regions react concurrently with evolving bulge strength.

The rapid increase of ex-situ stellar mass is indicative of a merger event (Zolotov

et al., 2015). At both the inner kpc and 10 kpc length scales, ex-situ-Ṁ∗/M∗ and PC1

correlate strongly (PC1 leads by ∼300 Myrs, which is ∼200 Myrs before ex-situ mass

and PC1 correlate). PC1 decreases (strengthening bulge) and is followed by ex-situ-
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Ṁ∗/M∗ decreasing most strongly. Once ex-situ-Ṁ∗/M∗ has decreased for ∼200 Myrs

then the ex-situ stellar mass reaches a minimum. Conversely, cross-correlations also

state increases of PC1 (weaker bulge and stronger disk) and a merger event increases

the sSFR and fgas nearly 100 Myrs later.

The relationship between mergers and compaction is not always uniform. For some

galaxies, a merger triggers the compaction phase, but for other galaxies a merger is

not required to begin compaction. This potentially explains why the cross-correlation

between PC1 and ex-situ-M∗ has such a wide distribution. Non-linear perturbations

in the disk (also known as violent disk instabilities or simply secular processes) are

consistently observed in simulations (Zolotov et al., 2015) and may be caused by

inflowing gas or merger events. Both of these causes lead to galaxy compaction and

quenched star-formation.

As the gas fraction for the entire galaxy increases the strength of the disk increases.

An increase in for the entire galaxy ḟgas precedes sSFR for the inner kpc. Once the

galaxy has built up a supply of gas then sSFR can be triggered. On the other hand,

if fgas declines, then the sharpest decline in gas fraction coincides with the growth of

the bulge. Decreases in the amount and rate of ex-situ stellar mass and gas fraction

precede star-formation quenching.
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4.5.2 How PC2 interacts with galaxy evolution

PC2 (strongly influenced by concentration) anti-correlates weakly with all phys-

ical measurements. The correlation distributions are very wide, indicating a large

uncertainty in the time lag/lead measurement. This is true both for the inner kpc

and 10 kpc length scales.

In VELA simulations, the compaction peak is correlated with the peak of star-

formation (Zolotov et al., 2015). An inexact correlation between the minimum effec-

tive radius and maximal core gas density exists. In some cases the minimum effective

radius is reached before the maximum core gas density and other times afterwards.

An anti-correlation between PC2 and Ṁdm/M∗ or ex-situ-M∗ implies that as more

dark matter or ex-situ stellar mass is accreted by a galaxy the weaker the concen-

tration becomes. Galaxies are not becoming more concentrated with the inclusion of

more dark matter and ex-situ stellar mass. Both of these parameters are indicative

of merger phenomena. Implying compaction (which would increase the concentration

of a galaxy) can not be the result of merger activity alone.

Qualitatively, the anti-correlations between PC2 and each physical parameter

agrees with the scenario established from the correlations between PC1 and the

physical parameters. When PC2 increases it means the concentration increases, but

when PC1 increases the bulge strength decreases. Bulge strength and concentration

are understandably related and so we see the same parameters which cause a de-

crease/increase in bulge strength also leading to a decrease/increase in concentration.
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However, since the distribution of delay times are very wide we can not say much more

about the causative relation between PC2 morphology (concentration) and physical

features of a galaxy.

4.5.3 PC3 and Star-Formation

PC3, which is highly dependent upon the asymmetry of a galaxy, correlates with

sSFR and fgas with nearly no time lag (∼40 Myr) between them. PC3 correlates

even more strongly with sSFR when measured for the entire galaxy (10 kpc), again

with nearly no time lag. The correlation between PC3 and fgas shows that disturbed

morphology is directly related to the amount of gas. These correlations are well

understood (e.g. Wuyts et al., 2011), galaxies undergoing strong star formation are

typically more disk dominated and asymmetrical than quiescent galaxies. Likewise,

galaxies can not form stars without a reservoir of gas from which to draw upon. The

nearly simultaneous correlations between sSFR, gas fraction and PC3 are a good

indicator that the simulations are behaving like we think they should.

Previous studies (Zolotov et al., 2015; Tomassetti et al., 2016) show the central kpc

of a VELA galaxy experiences gradual mass growth and star-formation followed by

a phase of gas-rich compaction, leading to an increasing gas mass and star-formation

rate. Once the star-formation rate peaks a strong outflow rate reduces the amount

of available gas and quenches star-formation in the central kpc (Zolotov et al., 2015).

However, these works did not specifically look at the connection between morphology
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and the star-formation evolution. Our results show that morphology (particularly

asymmetry) is strongly related to the gas mass and sSFR.

For stars to have formed in the bulge there must be a large reservoir of available

gas. Starbursts in the bulge would be evidence of a “blue-nugget” phase of galaxy

evolution (Dekel & Burkert, 2014) and agree with observational evidence of compact,

SF galaxies (Barro et al., 2013, 2014a; Bruce et al., 2014a,b; Williams et al., 2014).

High redshift galaxies experience mergers and gas accretion which can ignite vio-

lent disk instabilities (VDIs, Kereš et al., 2005). The high central stellar mass density

of massive galaxies at z∼2.2 suggests mergers and VDIs are important mechanisms

for forming central bulges (Tacchella et al., 2015).

In the inner kpc, the correlations between ḟgas, Ṁdm/M∗, ex-situ-Ṁ∗/M∗ and PC3

are quite weak. These correlations do not surpass the 3σ confidence level. On the

other hand, the correlation between PC3 and ex-situ-M∗/M∗ appears to be double

peaked, a positive correlation occurring with PC3 lagging ex-situ-M∗/M∗ by ∼700

Myrs and an anti-correlation occurring when PC3 leads ex-situ-M∗/M∗ by∼110 Myrs.

The anti-correlation is important beyond the 3σ confidence level, suggesting

We could be witnessing the first pass of a merger accumulating ex-situ stellar mass

which leads to a disruption in the morphology of the central galaxy (PC3 increase

lagging the ex-situ stellar mass increase). Either, 1) the merger creates new stars

(increases galaxy mass) and thus decreases the ex-situ-M∗/M∗ ratio or 2) the ex-situ-

M∗/M∗ decrease is a result of the merging galaxy passing through the central galaxy.
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Both of these scenarios are plausible, and likely occur in tandem. This correlation is

also visible at the 10 kpc scale. Except at this scale, the initial merger event PC3 only

lags the ex-situ-M∗/M∗ by ∼40 Myrs (nearly co-temporal), but the anti-correlation

still exists with PC3 leading the ex-situ stellar mass by ∼250 Myrs. Intriguingly,

the correlation between ex-situ-Ṁ∗/M∗ resembles a time shifted correlation of ex-

situ-M∗/M∗, just not as statistically significant. An increasing or decreasing ex-situ-

Ṁ∗/M∗ can directly correspond to the amount of ex-situ mass in a galaxy (i.e. faster

mergers bring in more stars).

4.6 Summary

We utilized a principal component analysis of the non-parametric morphological

statistics measured in Snyder et al. (2015b) of the VELA hydrodynamical simulation

galaxies. These galaxies have corresponding physical data, such as gas mass, stellar

mass, star-formation rate and dark matter mass measured at (nearly) equal intervals

that we then cross-correlate with the PC results. We stack the results of a discrete

cross correlation between the times series of PCs and physical parameters from 9

VELA galaxies. We discover each of the first three PCs correlates differently with

these physical parameters: PC1 (bulge strength) is correlated strongly with ex-situ

stellar mass, the gas fraction and sSFR; PC2 (concentration) is very weakly anti-

correlated with all physical features; PC3 (asymmetry) is strongly correlated with
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sSFR at all length scales and with gas fraction in the central kpc.

We use the PC results to classify every time step and every viewing angle into

the PC groups defined for the 1.4 < z < 2 CANDELS galaxies sample (Peth et al.,

2016). A vast majority of galaxies are classified into groups 0 and 6 (the bulge-

dominated, spheroidal groups); next most into groups 4 and 8 (the bulge+disk sys-

tems), and only a small handful of galaxies are classified into groups 1, 2 or 5 (the

disk-dominated groups). Visual inspection of the VELA galaxies agrees with the lack

of disk-dominated galaxies.

Morphological evolution in the VELA simulations is complicated. A major merger

can cause a previously disk-dominated galaxy to settle into a bulge-dominated spheroidal

galaxy, by first traversing through a disturbed state. Conversely, a major merger can

cause a bulge-dominated galaxy to become more disturbed, while simultaneously ac-

creting a faint disk. However, these disks are not always long lived and typically these

galaxies will settle into a bulge-dominated spheroid. Minor mergers have a compa-

rably minor effect upon the morphology of the galaxy. Any change appears to be

short lived and moderate. Typically, a minor merger will only cause bulge-dominated

galaxies to fluctuate between no disk and a very weak disk (groups 6 and 0). In cases

where a major merger has not occurred for &1 Gyr secular processes appear able to

grow a disk around a previously bulge-dominated system. These cases are rare and

only observable in VELA27.

Increasing PC1 (disk growth/bulge weakening) is correlated with sSFR, gas inflow
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and ex-situ stellar mass on very long timescales (∆t ∼700 Myrs). Decreasing PC1

is correlated with decreasing gas fractions. Star-formation is possible when the disk

is growing, but when the bulge grows and the gas fraction decreases, so does the

star-formation rate.

PC3 (asymmetry) correlates well with sSFR, ex-situ mass accretion and gas frac-

tion on very short time scales (∆t ∼0 Myrs). As galaxies become more disk-dominated

star-formation is triggered, while a build-up of the bulge will shut down star-formation.

Since mergers are rare in VELA simulations, more galaxies with better time-sampling

will be required to further understand the role of mergers on morphology and star-

formation.
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Summary and Future Directions

Exactly how galaxies evolve from compact and possibly irregular systems at high

redshift to the giant elliptical or spiral galaxies in the local Universe remains a very

active area of research. The relationships between morphology and star-formation

(Wuyts et al., 2011) or mergers (Toomre, 1977) are very well established. We can

leverage this information at a variety of cosmic epochs to determine how galaxy

evolution if affected by a host of physical mechanisms. Major mergers, minor mergers,

gas accretion and secular processes have all been invoked to explain the morphological

transformations, cosmic SFR decline, size evolution and bulge growth observed since

z∼2. Each mechanism affects the morphology, size evolution and bulge growth in

different ways. This thesis used machine learning to quantify morphology to further

understand aspects of galaxy evolution.
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5.1 Galaxy Morphological Classifications

Using PCA

To investigate the role of morphology in communicating galaxy evolution we need

to classify galaxies and identify the possible galaxy quenching mechanisms. However,

important (albeit rare and subtle) processes driving galaxy morphology and star-

formation may be missed by traditional spiral, elliptical, irregular or Sérsic bulge/disk

classifications. To overcome this limitation, we use a principal component analysis of

non-parametric morphological indicators (concentration, asymmetry, Gini coefficient,

M20, multi-mode, intensity and deviation) measured at rest-frame B-band (corre-

sponding to HST/WFC3 F125W at 1.4 < z < 2) to trace the natural distribution of

massive (> 1010M�) galaxy morphologies.

Principal component analysis (PCA) quantified the correlations between these

morphological indicators and determines the relative importance of each. The first

three principal components (PCs) capture ∼75 per cent of the variance inherent to our

sample. We interpret the first principal component (PC) as bulge strength, the second

PC as dominated by concentration and the third PC as dominated by asymmetry.

Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict

galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, and as

good as other structural indicators (Sérsic-n or compactness).

222



CHAPTER 5. SUMMARY

5.2 Random Forest Classifications of Pan-

STARRS Galaxies

Galaxies have long been visually classified and in recent years large scale collabora-

tions such as GalaxyZoo and CANDELS (Lintott et al., 2008a; Kartaltepe et al., 2015)

have undertaken the problem of cataloging and annotating galaxies. Researchers are

tasked with deciding between disk, elliptical, irregular, merger remnant and many

other classes of galaxies.

Merger identification plays a very important in understanding their role in the

formation and evolution of galaxies, in terms of structural assembly, star-formation

and nuclear activity. The frequency and characteristics of merging galaxies lead to

an understanding of the physical processes that influence galaxies. Merging galaxies

display unique morphological characteristics (such as tidal tails or double nuclei)

from disks or ellipticals, but the exact nature of these characteristics is unique to

each merger. There are many different types and stages of merger events which make

classification challenging.

We develop a classification scheme utilizing a supervised machine learning tech-

nique, random forest, to classify galaxies into mergers and non-mergers. This method

is trained upon the quantitative morphological measurements using photometry from

Pan-STARRS coinciding with visually classified Galaxy Zoo galaxies.

With 93% completeness and 93% accuracy random forest is able to distinguish
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mergers from non-merger galaxies using a variety of input features (PCs, non-parametric

morphologies, sSFR,M∗, rest-frame color). The training sample includes galaxies that

have already merged, and those in interacting pairs with visible tidal disruptions that

will one day merge. Asymmetry is by far the most important indicator of whether a

galaxy is experiencing a merger and the next most important features include: PC7,

PC5, PC3, deviation and d(G,M20).

We are able to extend the random forest classifications to a sample of local (z <

0.05) MaNGA galaxies that has been trained using the Galaxy Zoo/Pan-STARRS

sample. These classifications are 100% complete and 78% specificity but a large

number of false positives in relation to true positives (142 vs. 5). An investigation into

the false positive galaxies with the largest random forest probability of being a merger

determines that 14 have bright foreground stars contaminating the morphological

measurements, 13 have either irregular or disturbed morphology and 3 have strong

tidal features. The classes of disturbed galaxies with or without tidal features could

provide an additional source of merging galaxies only visible with the deeper imaging

of Pan-STARRS.
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5.3 Studying Galaxy Morphology Using

VELA Simulation Suite

The morphology of a galaxy indicates a myriad of process, including major/minor

mergers, tidal stripping and violent disk instabilities form and assemble the system.

Understanding exactly how the morphology is influenced by these mechanisms is

difficult in observational studies that are only able to capture a single snapshot of a

galaxy. The causality inherent in the relationships between structural evolution and

properties such as star-formation rate, colors or mass can not be determined directly.

Galaxy simulations provide an avenue to study how individual galaxies evolve over

time and which mechanisms exactly are responsible for morphological changes. The

VELA simulation suite (Ceverino et al., 2010a; Ceverino & Klypin, 2009; Ceverino

et al., 2012; Dekel et al., 2013; Ceverino et al., 2014) contains 9 galaxies with physical

measurements (gas fraction, ex-situ stellar mass, star-formation rate, dark matter

mass) and “CANDELized” morphological measurements (Snyder et al., 2015b). The

relationships and causality between morphology and physical mechanisms can be

shown through an discrete correlation function between the morphology and physical

property time series.

We investigated the temporal relationship between morphology and these physical

parameters to discover that each of the first three PCs correlates differently with

these physical parameters: PC1 is strongly correlated with ex-situ stellar mass, the
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gas fraction, sSFR for the inner kpc and ḟgas at the 10 kpc length scale; PC2 is weakly

anti-correlated with all physical properties; PC3 is strongly correlated with sSFR at

all length scales and with gas fraction in the central kpc. The strong correlations

between PC1 and physical parameters show the strength of the bulge is directly

related to how much star formation and gas is present. Additionally, disk growth is

a long, slow process eventually influencing star-formation. Meanwhile, correlations

between PC3, sSFR and gas show that galaxies become the most disturbed at the

same time that star-formation is peaking.

5.4 Mergers Can Grow Bulges and Regu-

late Star-formation

Massive structures grow hierarchically in a ΛCDM universe (White & Rees, 1978)

and the most massive dark matter halos (and galaxies) experience more mergers

than less massive halos. Mergers can cause large disturbances in galaxy morphology,

restructure galaxies, assemble classical bulges and regulate star-formation. However,

measurements of galaxy mergers have not led to a complete picture of how important

they are at different times (Lin et al., 2004; Lotz et al., 2008; Conselice et al., 2009;

Lotz et al., 2011) because of differences in how mergers are defined (either in the

pre-merger stage of pairs or post-merger stage of a disturbed galaxy).

Elliptical galaxies and central bulges can be the result of disk galaxy mergers
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(Lynden-Bell, 1967; Toomre, 1977), particularly dissipational mergers (Barnes, 1988;

Hernquist, 1992). Even though gas-poor mergers are more common than gas-rich

mergers (Lotz et al., 2011) they alone can not account for the size growth of ellipticals

(Brooks & Christensen, 2016 and references therein). Semi-analytic models (SAMs;

Porter et al., 2014) and cosmological simulations (Oser et al., 2012) have shown that

a combination of all different flavors of mergers (gas-rich, gas-poor, major, minor) is

required to match the scaling relations of observed galaxies (Faber & Jackson, 1976;

Kormendy, 1977a).

This thesis investigated different (but compatible) aspects of galaxy evolution and

assembly across cosmic time through the use of the (primarily) compact high redshift

(1.36 < z < 1.97) galaxies, local (z < 0.1) galaxy mergers, and a suite of simulated

galaxies bridging part of the difference in time. By studying galaxy morphology across

cosmic time we can probe the physical mechanisms (primarily mergers) which lead

to bulge growth and regulate star-formation.

There is no single diagnostic defining mergers across all cosmic time but a con-

sensus on merger identification can be reached through multiple diagnostic statistics.

Quantitative morphological statistics (Gini, M20, concentration, asymmetry, PCs,

etc.) have shown an ability to identify major and minor mergers with varying suc-

cess. As shown in Chapter 2, Gini–M20 and C–A show a distinct ability to create pure

but incomplete samples of merging galaxies. For local galaxies, PC7, and to a lesser

extent PC5, present an interesting consequence of the random forest classification;
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principal components that may not capture much of the variance are found to be

quite important for distinguishing mergers from non-mergers in local galaxies. With

enhanced resolution photometry the analysis of identifying mergers in local galaxies

can be extended to higher redshift.

Clearly galaxies evolved significantly from the compact high-redshift galaxies seen

in CANDELS to the large spiral and elliptical galaxies seen in Pan-STARRS at low

redshift. High resolution galaxy simulations (such as VELA) allow for careful study

of the relationship between mergers, morphology and galactic assembly.

The relationship between mergers and morphology can be quite complicated. For

bulge-dominated galaxies a merger can help regrow a disk, but for disk-dominated

galaxies a merger can destroy the disk leading to violent relaxation and a spheroidal

merger remnant. The build up of central bulges in the VELA simulations ∼500

Myrs before subsequent quenching of star-formation shows that the presence of a

bulge plays a large factor into the ability for a galaxy to form stars. The build up

of a bulge is not a straightforward process, there are many competing factors such

as mergers and gas outflows that seek to both build and not build a bulge. While

disk growth is equally related to increasing star-formation, on equivalently long time

scales. Star-formation does not reach a maximum until ∼500 Myrs after a disk is

fully grown.

Quantitative morphology has shown the capacity to identify mergers in an effort

to characterize the evolution of bulge growth, star-formation regulation, and galaxy
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assembly. Future studies with larger surveys of observed galaxies, greater number of

simulated galaxies and deeper/higher resolution imaging will be able to further the

understanding of how morphology and galaxy assembly are deeply intertwined.

5.5 Future Work

Star-formation can be quenched in many ways and with a reliable morphology

classification for different epochs we can begin to answer some intriguing open ques-

tions: whether star-formation quenching is occurring at the same time as the bulge

is forming? A temporal connection between these two could have important conse-

quences on how galaxies have been quenching star-formation.

The PCA and random forest classifications defined here can be used to study the

evolution of star-formation for a variety of morphological types as a function of time,

star-formation rates and mass. The prevalence of certain morphological types can be

indicators for the importance of mergers and secular processes for assembling galaxy

structure.

We can extend the random forest classifications to higher redshift either through

collecting more high redshift user classified galaxies, or by artificially redshifting our

sample of low redshift mergers/non-mergers. The CANDELS and Galaxy Zoo teams

are continuing the arduous process of collecting user determined morphological clas-

sifications, extending to higher redshifts. However, the primary drawback with this
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method is the true hallmarks of merger activity (tidal tails, faint disturbances in

the disk) are very hard to impossible to observe given the resolution of high redshift

galaxies. Eventually, new space telescopes such as WFIRST and very high resolu-

tion telescopes such as HDST will provide a tool to observe high redshift galaxies

for larger samples or much greater resolution, but these programs are still years to

decades away from completion.

In the upcoming years and decades large telescope surveys such as LSST, Pan-

STARRS and E-ELT will come online providing the astronomical community with

petabytes of raw images. With this much data, problems such as the visual clas-

sifications of galaxies will quickly become intractable without the use automated

machine-learning methods.

We can also use simulations, such as VELA, as a training set for random forest

classifications. The VELA simulations are powerful because not only are they avail-

able at the resolution of high redshift HST but also the images could be adapted to

match the resolution of lower redshift observations or the higher resolution of future

missions.

The number of simulations available in VELA will begin to grow as newer, faster

algorithms and computers will make simulating more galaxies possible. Already there

are nearly 20 galaxies that have been simulated in VELA but have not been “CAN-

DELized” which could nearly triple the total amount of simulated data. The process

of CANDELizing these galaxies is currently underway (Snyder et al., inprep) and
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should be available in the near term. An increase in the number of galaxies will in-

crease the resolution and interpretability of our cross-correlation importance and lag

analysis.

Additional galaxy simulation suites such as Illustris (Vogelsberger et al., 2014) and

EAGLE (McAlpine et al., 2015) may be a productive avenue to study the connection

between between morphology and physical features. These simulations have a very

large number of galaxies which will greatly enhance the statistics of any analysis.
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Labbé, I., Huang, J., Franx, M., et al. 2005, ApJ, 624, L81

Lahav, O., Naim, A., Buta, R. J., et al. 1995, Science, 267, 859

Lang, P., Wuyts, S., Somerville, R. S., et al. 2014, ApJ, 788, 11

Lee, B., Giavalisco, M., Williams, C. C., et al. 2013, ApJ, 774, 47

Lin, H., Yee, H. K. C., Carlberg, R. G., et al. 1999, ApJ, 518, 533

Lin, L., Koo, D. C., Willmer, C. N. A., et al. 2004, ApJ, 617, L9

241



BIBLIOGRAPHY

Lin, L., Jian, H.-Y., Foucaud, S., et al. 2014, ApJ, 782, 33

Lintott, C., Schawinski, K., Bamford, S., et al. 2011, MNRAS, 410, 166

Lintott, C. J., Schawinski, K., Slosar, A., et al. 2008a, MNRAS, 389, 1179

—. 2008b, MNRAS, 389, 1179

Lorenz, M. O. 1905, Publications of the American Statistical Association, Volume 9,

Number 70, p. 209-219, 9, 209

Lotz, J. M., Jonsson, P., Cox, T. J., et al. 2011, ApJ, 742, 103

Lotz, J. M., Jonsson, P., Cox, T. J., & Primack, J. R. 2010a, MNRAS, 404, 590

—. 2010b, MNRAS, 404, 575

Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163

Lotz, J. M., Davis, M., Faber, S. M., et al. 2008, ApJ, 672, 177

Lynden-Bell, D. 1967, MNRAS, 136, 101

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415

Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285

Martig, M., Bournaud, F., Teyssier, R., & Dekel, A. 2009, ApJ, 707, 250

Mather, J. C., Cheng, E. S., Eplee, Jr., R. E., et al. 1990, ApJ, 354, L37

242



BIBLIOGRAPHY

McAlpine, S., Helly, J. C., Schaller, M., et al. 2015, ArXiv e-prints, arXiv:1510.01320

Meurer, G. R., Heckman, T. M., Leitherer, C., et al. 1995, AJ, 110, 2665

Mihos, J. C., & Hernquist, L. 1994, ApJ, 437, L47

Mobasher, B., Dahlen, T., Ferguson, H. C., et al. 2015, ApJ, 808, 101

Moody, C. E., Guo, Y., Mandelker, N., et al. 2014, MNRAS, 444, 1389

Mozena, M. W. 2013, PhD thesis, University of California, Santa Cruz

Naab, T., Jesseit, R., & Burkert, A. 2006a, MNRAS, 372, 839

Naab, T., Johansson, P. H., & Ostriker, J. P. 2009, ApJ, 699, L178

Naab, T., Khochfar, S., & Burkert, A. 2006b, ApJ, 636, L81

Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJ, 660, L43

Noguchi, M. 1999, ApJ, 514, 77

Oser, L., Naab, T., Ostriker, J. P., & Johansson, P. H. 2012, ApJ, 744, 63

Papovich, C., Bassett, R., Lotz, J. M., et al. 2012, ApJ, 750, 93

Patel, S. G., Kelson, D. D., Holden, B. P., Franx, M., & Illingworth, G. D. 2011, ApJ,

735, 53

Pearson, K. 1901, Philosophical Magazine Series 6, 2, 559

243



BIBLIOGRAPHY

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning

Research, 12, 2825

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266

—. 2010, AJ, 139, 2097

Peth, M. A., Lotz, J. M., Freeman, P. E., et al. 2016, MNRAS, 458, 963

Petrosian, V. 1976, ApJ, 209, L1

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A1

Porter, L. A., Somerville, R. S., Primack, J. R., & Johansson, P. H. 2014, MNRAS,

444, 942

Ripley, B. D. 1981, Spatial statistics

—. 1988, Statistical inference for spatial processes

Robertson, B., Bullock, J. S., Font, A. S., Johnston, K. V., & Hernquist, L. 2005,

ApJ, 632, 872

Robertson, D. R. S., Gallo, L. C., Zoghbi, A., & Fabian, A. C. 2015, MNRAS, 453,

3455

Sandage, A., Binggeli, B., & Tammann, G. A. 1985, AJ, 90, 1759

Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749

244



BIBLIOGRAPHY

Sargent, M. T., Carollo, C. M., Lilly, S. J., et al. 2007, ApJS, 172, 434

Scannapieco, C., Gadotti, D. A., Jonsson, P., & White, S. D. M. 2010, MNRAS, 407,

L41

Scarlata, C., Carollo, C. M., Lilly, S., et al. 2007a, ApJS, 172, 406

Scarlata, C., Carollo, C. M., Lilly, S. J., et al. 2007b, ApJS, 172, 494

Schawinski, K., Treister, E., Urry, C. M., et al. 2011, ApJ, 727, L31

Schawinski, K., Khochfar, S., Kaviraj, S., et al. 2006, Nature, 442, 888

Schawinski, K., Urry, C. M., Virani, S., et al. 2010, ApJ, 711, 284

Sersic, J. L. 1968, Atlas de galaxias australes

Shankar, F., Marulli, F., Mathur, S., Bernardi, M., & Bournaud, F. 2012, A&A, 540,

A23

Silk, J., & Rees, M. J. 1998, A&A, 331, L1

Simard, L., & Pritchet, C. J. 1998, ApJ, 505, 96

Snyder, G. F., Hayward, C. C., Sajina, A., et al. 2013, ApJ, 768, 168

Snyder, G. F., Lotz, J., Moody, C., et al. 2015a, MNRAS, 451, 4290

Snyder, G. F., Torrey, P., Lotz, J. M., et al. 2015b, MNRAS, 454, 1886

245



BIBLIOGRAPHY

Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E., & Hernquist, L. 2008a,

MNRAS, 391, 481

—. 2008b, MNRAS, 391, 481

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629

Tacchella, S., Dekel, A., Carollo, C. M., et al. 2016, MNRAS, 458, 242

Tacchella, S., Carollo, C. M., Renzini, A., et al. 2015, Science, 348, 314

Taghizadeh-Popp, M., Heinis, S., & Szalay, A. S. 2012, ApJ, 755, 143

Taniguchi, Y. 1999, ApJ, 524, 65

Terlevich, R., Davies, R. L., Faber, S. M., & Burstein, D. 1981, MNRAS, 196, 381

Thilker, D. A., Vinsen, K., & Galaxy Properties Key Project, P. 2014, in American

Astronomical Society Meeting Abstracts, Vol. 223, American Astronomical Society

Meeting Abstracts #223, 116.11

Tomassetti, M., Dekel, A., Mandelker, N., et al. 2016, MNRAS, 458, 4477

Tomczak, A. R., Quadri, R. F., Tran, K.-V. H., et al. 2014, ApJ, 783, 85

Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99

246



BIBLIOGRAPHY

Toomre, A. 1977, in Evolution of Galaxies and Stellar Populations, ed. B. M. Tinsley

& R. B. G. Larson, D. Campbell, 401

Toomre, A., & Toomre, J. 1972, ApJ, 178, 623

Torrey, P., Vogelsberger, M., Genel, S., et al. 2014, MNRAS, 438, 1985
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