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ABSTRACT 

Insecticide resistance is a major impediment to the control of vectors and pests of public health 

importance and is a strongly selected trait capable of rapid spread, sometimes even between 

closely-related species. Elucidating the mechanisms generating insecticide resistance in mosquito 

vectors of disease, and understanding the spread of resistance within and between populations and 

species are vital for the development of robust resistance management strategies. Here we studied 

the mechanisms of resistance in two sympatric members of the Anopheles gambiae species complex 

– the major vector of malaria in sub-Saharan Africa – in order to understand how resistance has 

developed and spread in eastern Uganda, a region with some of the highest levels of malaria. 

In eastern Uganda, where the mosquitoes Anopheles arabiensis and An. gambiae can be found 

sympatrically, low levels of hybrids (0.4%) occur, offering a route for introgression of adaptively 

important variants between species. In independent microarray studies of insecticide resistance, 

Gste4, an insect-specific glutathione S-transferase, was among the most significantly up-regulated 

genes in both species. To test the hypothesis of interspecific introgression, we sequenced 2.3kbp 

encompassing Gste4. Whilst this detailed sequencing ruled out introgression, we detected strong 

positive selection acting on Gste4. However, these sequences, followed by haplotype-specific qPCR, 

showed that the apparent up-regulation in An. arabiensis is a result of allelic variation across the 

microarray probe binding sites which artefactually elevates the gene expression signal. Thus, face-

value acceptance of microarray data can be misleading and it is advisable to conduct a more detailed 

investigation of the causes and nature of such signal. 

The identification of positive selection acting on this locus led us to functionally express and 

characterise allelic variants of GSTE4. Although the in vitro data do not support a direct role for 

GSTE4 in metabolism, they do support a role for this enzyme in insecticide sequestration. Thus, the 
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demonstration of a role for an up-regulated gene in metabolic resistance to insecticides should not 

be limited to simply whether it can metabolise insecticide; such a strict criterion would argue against 

the involvement of GSTE4 despite the weight of evidence to the contrary. 

Keywords: 

Insecticide resistance; Anopheles gambiae; introgression; microarray; gene expression; qPCR; 
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INTRODUCTION  

Resistance to the insecticides employed in public health is a major challenge to the control of insect-

borne disease including malaria. Insects have evolved a diverse and impressive array of mechanisms 

to counteract insecticide-based control measures (Hemingway and Ranson 2000). For mosquito 

vectors of malaria, current controls rely mainly on pyrethroid-treated bednets or spraying of 

insecticide onto surfaces where mosquitoes rest postprandially. Resistance-associated mutations in 

the voltage-gated sodium channel, the target of pyrethroids, are well known and have evolved 

repeatedly in Anopheles gambiae sensu stricto (Pinto et al. 2007; Donnelly et al. 2009). However, 

resistance can also arise due to elevated expression of, or allelic variants in, metabolic genes, which 

can act with target-site mutations to increase resistance (Mitchell et al. 2014). The identification of 

the mechanisms underpinning resistance is a vital first step for the development of assays which can 

be used to understand and predict how resistance spreads within and between populations, and 

sometimes species. 

Detoxification of xenobiotics such as insecticides requires either metabolism (sometimes through 

intermediary compounds, which require processing and may be more toxic than the original 

xenobiotic) or transformation through conjugation for subsequent sequestration and elimination. In 

addition to the metabolic processes required to remove insecticide from within the insect, exposure 

to toxic compounds can also trigger discrete, non-specific physiological reactions e.g. pyrethroid 

exposure induces oxidative stress and lipid peroxidation (Vontas et al. 2001). Thus, the ability of a 

mosquito to survive insecticide exposure may require multiple metabolic pathways, potentially 

mediated by a wide range of enzymes. Identifying those genes underpinning such resistance can aid 

not only in understanding potential cross-resistance to alternative insecticides but potentially lead to 

diagnostic assays to aid resistance-monitoring. Whole genome microarrays have been used 

extensively to study insecticide resistance phenotypes in An. gambiae s.s. and An. coluzzii and in 

such studies it is typical to detect up-regulation of transcripts representing a wide-range of pathways 
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(e.g. Mitchell et al. 2012; Fossog Tene et al. 2013; Kwiatkowska et al. 2013). This suggests that 

metabolism is a complex, multigenic process, and is consistent with the sigmoidal distribution of 

dose-responses often seen in field populations (e.g. Müller et al. 2008; Mawejje et al. 2013) which 

imply a broad distribution of resistant phenotypes. Though large numbers of genes often appear 

differentially regulated, microarray datasets can be littered with false positive hits (e.g. see Aubert et 

al. 2004; Pawitan et al. 2005). However, confidence in identification of differentially-regulated genes 

increases if a gene is identified in independent studies of the same phenotype. Repeated 

identification of particular cytochrome P450s, including Cyp6p3 and Cyp6m2 in microarray studies of 

resistant An. gambiae (Müller et al. 2007; Djouaka et al. 2008; Müller et al. 2008; Mitchell et al. 

2012), and of Cyp6p4 and Cyp6p9 in An. funestus (Wondji et al. 2009; Riveron et al. 2013) has been 

important in identifying these genes as worthy of the expense and time-consuming 

enzymatic/biochemical characterization which has subsequently confirmed the role of these 

enzymes in resistance (Müller et al. 2008; Stevenson et al. 2011; Mitchell et al. 2012; Riveron et al. 

2013)  

In Uganda, a country with high levels of malaria transmission (Yeka et al. 2012), resistance to 

pyrethroid insecticides is present in the three main malaria vectors; An. gambiae and An. arabiensis 

(Ramphul et al. 2009; Verhaeghen et al. 2010; Mawejje et al. 2013) and An. funestus (Morgan et al. 

2010). The relative frequency of An. arabiensis has risen in neighbouring Kenya (Lindblade et al. 

2006; Bayoh et al. 2010; Mwangangi et al. 2013) and Tanzania (Derua et al. 2012) following 

insecticidal control measures and there is now some evidence of elevated frequencies in eastern 

Uganda (Mawejje et al. 2013) suggesting an increasing role in malaria transmission. Resistance to 

pyrethroids is present, and apparently increasing, in An. arabiensis from Jinja, eastern Uganda 

(Mawejje et al. 2013) but is not ŵediated by knoǁn ͚knockdoǁn resistance’ target-site mechanisms 

(L1014F and L1014S) in the voltage-gated sodium channel, which are extremely rare (1014S 

frequency <0.1% (Mawejje et al. 2013)). In the absence of a known target-site mechanism, metabolic 

mechanisms are strongly implicated in the resistance phenotype.  
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Although An. arabiensis has an increasing role in malaria transmission, An. gambiae s.s. remains the 

major vector in some locations in Uganda such as Tororo (Weetman et al. unpublished), a region 

with extremely high rates of malaria infection (Kilama et al. 2014), wherein malaria infections have 

increased recently despite widespread bednet usage (Jagannathan et al. 2012), and the Northern 

Ugandan district of Apac, where insecticidal interventions have impacted upon clinical malaria 

indicators (Kigozi et al. 2012). Here we characterise the resistance mechanisms circulating in An. 

arabiensis from Jinja, and An. gambiae s.s. from Tororo and use recombinant protein expression 

followed by functional validation to examine the role of an up-regulated gene (Gste4) in the 

resistance phenotype. We show that Gste4 shows a strong signature of selective importance, and 

that the signature, and gene expression of Gste4, is haplotype-specific.  
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METHODS 

Sampling of pyrethroid resistant An. gambiae 

For gene expression profiling we used a novel family-line approach to classify isofemale families of 

An. gambiae (N = ϴϬ faŵilies) as ͚resistant’ and ͚susceptible’ to the class II pyrethroid insecticide 

lambda-cyhalothrin based on their relative position on an intra-population continuum of resistance 

(percentage survival in WHO bioassays – see below). Whilst the methodology is laborious, this 

approach has three main advantages (1) expression profiles are measured in sympatric individuals, 

thus no susceptible colonies (subject to geographical confounding) are used; (2) resistant samples 

are not compared to unexposed control samples, which inevitably contain a proportion of resistant 

individuals (Müller et al. 2008)); (3) none of the samples for which profiles are obtained have been 

exposed to insecticide, so any differential expression can be considered constitutive, rather than 

induced.  

Isofemale lines of An. gambiae were established from resting Anopheles collected in 2009 in 

Ngelechom, Abwanget, Angorom, Aburi and Amoni, all villages in Tororo District, Uganda close to 

the National Livestock Resources Research Institute (NaLiRRi 0061’64.6͟N, 3414’53.2͟ E). 

Individual family-line phenotypes were established by exposing 10-20 (mean = 15) 3-5 day old F1 

females to lambda-cyhalothrin following the WHO protocol (WHO 2013) modified to have a 90 

minute exposure in order to approximate the population specific LT50 (time to kill 50% of the 

population). Ten unexposed, age matched females from each family were also stored in RNAlater 

(Sigma Aldrich). Mothers were identified to species using the PCR of Scott (1993) and typed for the 

L1014S kdr mutation using the TaqMan protocol of Bass (2007). RNAlater-preserved samples from 

the 20 most resistant and 20 most susceptible family lines (see Suppl. Fig. 1) were used for gene 

expression analysis. 

Sampling of pyrethroid resistant An. arabiensis 
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We have previously described the pattern of insecticide resistance in An. arabiensis from Jinja 

(0025’51͟ N 03313’44͟ E) (Mawejje et al. 2013). Samples were collected as larvae (for details of 

collection locales see Mawejje et al. 2013) and raised to adulthood prior to bioassaying. Resistance 

to pyrethoids (permethrin and deltamethrin) in this population is more moderate than Tororo with 

an LT50 to both insecticides of ≈ ϱϬ ŵinutes. For this second ŵicroarray eǆperiŵent, resistant feŵale 

samples surviving 60 min exposure to permethrin as per the WHO protocol (WHO 2013) and control 

samples, treated in an identical fashion except exposures were to untreated control papers, were 

stored in RNAlater. Colony samples were drawn from the Dongola (origin Dongola, Sudan, Ng’habi et 

al. 2007) and Moz (origin Chokwe, southern Mozambique, Witzig et al. 2013) colonies, both of which 

are susceptible to pyrethroids.  

RNA extraction and microarray analysis 

All individuals used were 3-5 day old females. RNA was extracted from pools of 10 mosquitoes using 

the PicoPure (Arcturus) kit for An. gambiae samples or RNAqueous4PCR kit (Ambion) for An. 

arabiensis samples following the manufacturer’s recoŵŵendations and including a DNase step. 

Total RNA quantity was checked using a NanoDrop spectrophotometer (NanoDrop Technologies, 

Wilmington, USA) and integrity measured using an Agilent RNA 6000 Nano assay on an Agilent 2100 

Bioanalyser. Labelling (both Cy3 and Cy5) was undertaken on 100ng total RNA using the Agilent Low 

Input Quick Amp Labelling kit (Agilent Technologies) with labelled RNA purified using the Qiagen 

RNeasy ŵini kit and eluted in ϯϬμl ǁater. Quantity and Ƌuality of labelled RNA ǁas performed as 

above. Cy3- and Cy5-labelled RNA (300ng each) were combined and hybridised to a custom 

Anopheles gambiae whole genome microarray (AGAM_15K; full details provided at 

http://www.ebi.ac.uk/arrayexpress: A-MEXP-2196, see Mitchell et al. 2012). Experimental designs 

are shown in Suppl. Fig. 2. Hybridisations were undertaken for 17 hours at 65°C at 10 rpm rotation 

following the manufacturer's protocol (Agilent Technologies). Scanning of each microarray slide was 

performed with the Agilent G2565 Microarray Scanner System using the Agilent Feature Extraction 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

 

Software (Agilent Technologies). Analysis was undertaken using custom R-scripts and the MAANOVA 

package for R (Wu et al. 2009). 

Sequencing of the region around Gste4 

Primers were designed to amplify Gste4 and adjacent ϱ’ and ϯ’ regions ;see “uppleŵentary Table ϭ 

for these and all subsequent primer sequences). Primers GSTe5_seq and GSTe2_seq amplified a 

2245bp section of genomic DNA (chromosome 3R: 28,595,701-28,597,945) inclusive of sections of 

Gste2 and Gste5, the entirety of Gste4 and intergenic regions between Gste2-Gste4 and Gste4-Gste5 

(Figure 1). PCRs were undertaken on DNA taken from resistance phenotyped sympatric An. 

arabiensis and An. gambiae from Jinja, and a single sample from each of the Dongola, Moz and 

Sennar (origin Sennar, Sudan, Du et al. 2005) colonies of An. arabiensis. Amplified products were 

cloned into pJET (Fermentas) and individual colonies picked for sequencing. Only single products 

from each specimen were sequenced unless intra-individual length variation was noted on agarose 

gels in which case both alleles were sequenced. Amplification primers and an internal sequencing 

primer Gste4_seq were used in sequencing reactions (Figure 1). Sequences were manually edited 

and aligned in CodonCode Aligner (CodonCode Corporation), and Maximum Likelihood phylogenetic 

trees constructed in MEGA v5.2 (Tamura et al. 2011) using the appropriate model as determined by 

Model Test (Posada and Crandall 1998) with bootstrapping (500 replicates). The nucleotide 

sequences of Gste4 from An. quadriannulatus and the outgroup An. chrysti (within and without the 

An. gambiae complex, respectively) were obtained from VectorBase (Megy et al. 2012) (supercontig 

KB667655: 1004768-1005118 (exon 1), 1005183-1005509 (exon 2) and contig APCM01015419: 

2842-3190 (exon 1), 3256-3582 (exon 2) respectively) and translated. Haplotype diversity and 

McDonald-Kreitman tests of selection were conducted in DnaSP (Librado and Rozas 2009) with the 

neutrality index (NI) calculated from this output where NI = [(PN/DN)/(PS/DS)] (Li et al. 2008) and –

log10(NI) > 0 is indicative of positive selection. Due to zero values in the McDonald-Kreitman test we 
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followed the recommendation of Li et al. (2008) by adding a pseudocount of 1 to each cell before 

calculation of the NI. 

qPCR and haplotype-specific qPCR 

cDNA ǁas produced froŵ ≈Ϯ.ϱµg RNA saŵples ;see above) using oligo dT20 and superscript III 

;Invitrogen) as per the ŵanufacturer’s instructions. ƋPCR ǁas undertaken on ϭ/ϱϬ dilutions of cDNA 

using exon-crossing Gste4 qPCR primers (GSTe4qPCR_F1 and GSTe4qPCR_R1) and haplotype specific 

qPCR primers designed to amplify group specific haplotypes of Gste4 (GSTe4_Hap8 and 

G“Teϰ_HapϭϮ for group α; G“Teϰ_Hapϴ and G“Teϰ_Hapϵ for clade β) which differed in the presence 

of large indels in the ϯ’ UTR ;see results). Three norŵalising genes, ribosoŵal protein “ϳ 

(AGAP010592), ubiquitin (AGAP007927) and elongation factor (AGAP005128) were run on the same 

sample aliquots. qPCR was undertaken in triplicate in ϮϬμl voluŵes containing ϭǆ Agilent Brilliant III 

“YBR ƋPCR ŵasterŵiǆ, ϯϬϬnM each priŵer and ϭμl cDNA ;ϭ/ϱϬ dilution) on an Agilent MXϯϬϬϱ ǁith 

cycling conditions of 3min at 95C followed by 40 cycles of 10s at 95C and 10s at 60C. Analysis 

used the Ct method (Livak and Schmittgen 2001). 

Cloning and expression of GSTe4 

Primers (GSTe4cDNA_RE_F and GSTe4cDNA_RE_R) were designed to amplify the full length 

sequence of Gste4 incorporating a ϱ’ NdeI site (CATATG where ATG is the translation initiation 

codon) and a ϯ’ BamHI site, based on the Gste4 sequence in VectorBase (www.vectorbase.org gene 

identifier AGAP009193; Refseq accession XM_319967).  

cDNA was prepared from RNA extracted from pyrethroid resistant An. arabiensis using Superscript III 

(Invitrogen) folloǁing the ŵanufacturer’s recoŵŵendations and full-length Gste4 amplified using 

high-fidelity Phusion polymerase (Fermentas). Products of the correct size were cloned into pJET 

(Fermentas) and sequenced. Inserts from plasmids containing confirmed Gste4 were excised with 

NdeI and BamHI and ligated into pET15b (Novagen). pET15b contains an IPTG inducible T7 promoter, 
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a 6 x HIS tag and a thrombin cleavage site. GSTE4 expression vector was then transformed into 

BL21(DE3) (NEB), grown at 37C in LB until an OD of 0.8 was reached, then expression was induced 

with 1mM IPTG and cultures incubated at 25C overnight. Cells were harvested at 10,000 rpm for 

10min at 4°C and the supernatant discarded. The pellet was re-suspended in 20ml of low imidazole 

buffer (25mM imidazole, 20mM Na2HPO4, 0.5M NaCl, pH 7.4) and frozen at -80°C. After thawing, 

lysozyme (0.5mg/ml) and DNAse (0.05mg/ml) were added to the cell suspension and the solution 

incubated on ice for 10min. Cells were disrupted by French press homogeniser (Stansted Fluid Power 

Ltd) at 20,000psi and centrifuged at 18,000rpm for 20min to remove cell debris. Supernatant was 

filtered through a 0.45µm filter and loaded manually on a 5mL His-trap column (GE Healthcare), pre-

equilibrated with low imidazole buffer. The column was washed with 25ml of low imidazole buffer, 

followed by 25ml of medium imidazole buffer (50mM imidazole, 20mM Na2HPO4, 0.5M NaCl, pH 

7.4). The protein was then eluted manually with high imidazole buffer (0.5M imidazole, 20mM 

Na2HPO4, 0.5M NaCl, pH7.4) and concentrated with a Vivaspin 20 concentrator (Sartorius) then 

exchanged into 20mM Tris, 150mM NaCl pH 7.4 buffer using a PD-10 column (GE Healthcare). 

Protein concentration was determined using a NanoDrop (NanoDrop Technologies) and by the 

Bradford assay (Bradford 1976). Activity of purified protein was checked by a colorimetric activity 

assay measuring conjugation of reduced glutathione (GSH) to the model substrate 1-chloro-2, 4-

dinitrobenzene (CDNB) at 340nm (ɛ=9.6mM
-1

.cm
-1

) (Habig et al. 1974) at a constant 22.5C in a Cary 

300 Bio UV-Vis spectrophotometer over 1min. Reactions contained 0.1M sodium phosphate, 500ng 

enzyme, 1mM CDNB, 5mM GSH and 3.3% methanol in 1ml total volume. 

Determination of optimal pH of GSTe4 variants 

The optimal pH for each variant was determined using the CDNB activity assay over the pH range 

5.8-8.6 (5.8, 6.2, 6.6, 7.0, 7.4, 7.8, 8.1, 8.3, 8.6). Reactions were undertaken as above, in triplicate. 

Kinetic constants (Vmax and Km) for both CDNB and GSH were also determined for both variants at 

pH6.5 and the optimal pHs as determined above. 
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Determination of temperature optima 

Aliquots of both variants of GSTE4 were incubated for 30min over a range of temperatures (30°C-

65°C in 5°C increments). Following incubation, CDNB activity was measured as above. 

Interaction of recombinant GSTE4 with permethrin and deltamethrin 

Inhibition by permethrin and deltamethrin was determined by change in CDNB activity following 

addition of ϬμM, ϮϱμM, ϱϬμM, ϳϱμM, ϭϬϬμM deltaŵethrin or perŵethrin ǁith a saturating 

concentration of GSH (5mM) and CDNB (1mM) in triplicate reactions in 0.1M sodium phosphate 

buffer with 500ng enzyme. Inhibition was measured at pH6.5, pH7 and pH7.8 (the optimal pHs 

determined above plus neutrality). 

In vitro permethrin and deltamethrin metabolism assays 

Metabolism was undertaken in 0.1M sodium phosphate (pH6.5, pH7, pH7.8) in 0.5ml volumes 

containing ϱŵM G“H, ϭϬμM insecticide ;DDT, perŵethrin or deltaŵethrin) and ϱϬμg recoŵbinant 

enzyme (with 80C 30min heat inactivated GSTE4 enzyme in negative control reactions). Reactions 

were incubated at 25C for 2h with shaking. Following incubation, bifenthrin (as spike-in extraction 

control) ǁas added to ϭϬμM then reactions eǆtracted tǁice ǁith ϭ voluŵe tert-butyl methyl ether. 

Extractions were pooled and dried under a constant stream of N2 then resuspended in ϭϱϬμl 

methanol prior to analysis by reverse-phase HPLC (Chromeleon, Dionex) with a monitoring 

absorbance of ϮϯϮnŵ. Reactions ;ϭϬϬμl) ǁere loaded into an isocratic ŵobile phase ;ϵϬ% ŵethanol: 

10% water) with a 1ml/min flow rate through a 250mm C18 column (Acclaim 120, Dionex) at 23C.  

Analysis of peroxidase function 

Determination of Se-independent peroxidase function followed Vontas et al. (2001). In brief 

reactions contained ϭŵM EDTA, ϮϬϬμM NADPH, ϭŵM G“H, Ϭ.ϯU glutathione reductase, Ϯμg enzyŵe 

(removed from control reactions) and either 1.5mM cumene hydroperoxide or 1.5mM t-butyl 
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hydroperoxide in 31.5mM potassium phosphate pH7. Reactions were incubated at 25C for 5min 

prior to addition of peroxide reagent then absorbance was measured for 4min at 25C and 340nm in 

a Versamax plate reader (Molecular Devices, Sunnyvale, CA, USA). 
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RESULTS 

Resistance to lambda-cyhalothrin in An. gambiae from Tororo 

In the An. gambiae s.s. population from Tororo we found wide variation in resistance across families 

(0-100% mortality following 90 min exposure to the pyrethroid lambda cyhalothrin in individual 

families – see Suppl. Fig. 1) yet the 1014S kdr mutation approaches fixation (99.5% in Nagongera, 

Tororo in October 2012 (unpublished data) and in Jinja, 120km distant from Tororo, 1014S is at 95% 

frequency in An. gambiae (Mawejje et al. 2013)). Thus, whilst this target-site mechanism may 

contribute to population-level resistance, it cannot explain the variation in survival following a 90 

min exposure to lambda-cyhalothrin. 

Microarray analysis - An. gambiae 

In comparisons of the 20 most highly resistant and 19 most susceptible families (see Supplementary 

Figure 1 for details of family resistance levels – note that a single susceptible family, incorrectly 

identified as An. gambiae was excluded from analyses) 57 probes representing 50 genes were 

significantly differentially regulated with q <0.05 (Supplementary table S2). The most statistically-

significant probes (Fig. 2) targeted two genes within a cluster of very closely-related, unannotated 

genes on chromosome 2L (AGAP007187, AGAP007188). Of the significant probes, the most strongly 

up-regulated in the resistant families were Gste4 (mean Fold Change (FC) = 2.8; mean q value = 

0.006 Benjamini-Hochberg FDR adjusted) and a single probe for chymotrypsin 1 (FC = 4.7; mean q 

value = 4 x 10
-5

). Only one other known detoxification gene (Cyp9j4) was represented among the 

significantly differentially-expressed probes. All microarray data have been submitted to 

ArrayExpress (http://www.ebi.ac.uk/miamexpress/) with accession number E-MTAB-1874. 

Microarray analysis - An. arabiensis 

In comparisons of Jinja permethrin-resistant An. arabiensis versus sympatric controls and two 

colonies (Dongola and Moz), 4,094/15,164 probes were significant when an ANOVA F-test approach 
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was applied and a conservative significance threshold applied (FDR-corrected significance level set at 

log10 (q value) > 4 (q < 0.0001)) (see Supplementary table S3 for results). When these 4,094 

significantly up-regulated probes were ranked by fold-change (FC), three separate probes targeting 

Gste4 were within the top 25 significant probes and were the highest FCs of known detoxification 

family members (average FC for Gste4 = 16.6). In pairwise comparisons between Jinja resistant and 

sympatric controls we applied a standard, multiple test-corrected threshold (q < 0.05) more 

appropriate for within-population comparisons where expected differential expression between 

groups is likely to be lower. Here 1851 probes were significant (only 22 probes were significant, with 

the strict FDR-corrected significance level set at log10 (q value) > 4 and these were mainly serine 

proteases). For comparisons of Jinja resistant to either Dongola or Moz susceptible colony samples 

1641 and 673 probes respectively were significantly differentially regulated at the strict log10 (q 

value) > 4 level. All microarray data have been submitted to ArrayExpress with accession number E-

MTAB-1873. 

Haplotype analysis and SNP genotyping 

Sequencing of 2319bp around Gste4 from both An. arabiensis (N = 10 from Jinja plus one sequence 

from each of the Dongola, Moz and Sennar colonies) and An. gambiae (N = 10) revealed marked 

variability, with higher variability in An. arabiensis from Jinja (haplotype diversity = 0.982, number of 

segregating sites = ϵϴ ;of Ϯϯϭϵ), π = Ϭ.Ϭϭϳϭϵ) than An. gambiae (haplotype diversity = 0.682, number 

of segregating sites = ϴϯ, π = Ϭ.ϬϬϵϳϰ). “eƋuences have been subŵitted to Genbank ǁith accession 

numbers KF733184-KF733209. Maximum likelihood phylogenetic reconstruction of these sequences 

shows two monophyletic clades composed of either An. gambiae or An. arabiensis haplotypes (Fig 

3A). When Gste4 coding sequence alone is used as input the species-specific clades are still apparent 

(though with low bootstrap support; Supp. Fig 3). However, when amino acid-based trees are 

constructed, two groupings (labelled Group α and Clade β) are evident: these are not species-

specific and the ŵajority of seƋuences fall into group α ǁhich is coŵposed of both An. arabiensis 
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and An. gambiae sequences (Fig 3B). Thus, these sequences differ in nucleotide sequence in a 

species-specific manner, indicative that Gste4 has not introgressed between these species, but are 

near-identical in amino acid sequence. The amino acid sequence of GSTE4 from An. quadriannulatus 

falls in clade β, suggesting that group α ŵay be ŵore derived, although there is insufficient sampling 

to be conclusive. We also note that from our sequencing of this region there is no evidence of 

haplotypes containing the 42 amino acid deletion exhibited by cDNA clones 1 and 7 (see 

recombinant protein expression section) indicating that these may be the result of PCR errors or PCR 

recombination and not genuine variants segregating in the population. However, haplotype 

sequences exhibiting a 20 amino acid deletion were present (samples labelled Jinja An arabiensis 1 & 

2) and by using primers GSTe4qPCRF1 and GSTe4qPCRR2 on genomic DNA we confirmed this 

deletion (see Supplementary Figure 4) suggesting this is a genuine variant segregating in the 

population. The correct splice donor and acceptor sites are present in these sequences adding 

weight to the interpretation that this is a genuine coding variant present in this population. 

However, we have not expressed these variants in our E. coli system.  

Froŵ the haplotype seƋuences it ǁas apparent that the ϯ’UTR region displays large differences in 

presence/absence of large indels. The multiple probes designed by the Agilent eArray microarray 

design software targeted this region and although multiple probes interrogate this region, they 

overlap by just 1bp and hence target the saŵe portion of the ϯ’ UTR ;Fig. ϰ). Given the size of the 

indels it is likely these probes will hybridise with only one of the UTR variants (Sub-clade β’ of Fig. 4 

and Fig. 3B). 

McDonald-Kreitman Tests 

Utilising only sequences from sympatric An. gambiae s.l. from Jinja, based on the total sequenced 

coding region (inclusive of partial coding sequences of Gste2 and Gste5) and coŵparing group α 

seƋuences to clade β seƋuences, DS = 0, PS = 20, DN = 4, PN = 7 yielding –log10(NI) = 1.12 (following 

addition of pseudocount) and Fisher’s eǆact test p = Ϭ.ϬϭϬϱ. For G“TEϰ alone DS = 0, PS =10, DN = 4, PN 
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= 7 yielding –log10(NI) = 0.837 and p=0.055. The positive values of the NI are strongly indicative of 

the action of positive selection (Li et al. 2008). 

qPCR validation of gene expression results 

Owing to the cross-species microarray hit for Gste4, qPCR focussed on this gene for An. gambiae 

from Tororo and also the two most significant genes (AGAP007187 and AGAP007188). 

Unfortunately, owing to extremely high sequence similarity between these latter genes and 

paralogues (98-99%) within the cluster AGAP007187-AGAP007190), it proved impossible to obtain 

efficient, specific qPCR primers. However, Gste4 showed significant differences in gene expression 

between resistant and susceptible An. gambiae families, albeit at a lower fold change than observed 

in the microarray experiment (t-test: FC = 1.54; t34=2.18, P=0.034).  

For An. arabiensis, qPCR did not fully validate the microarray results (Table 1). Permethrin resistant 

An. arabiensis showed significantly higher expression of Gste4 (1.33-1.49 p = 0.003 where Bonferroni 

corrected α = Ϭ.Ϭϭϳ) than saŵples froŵ the tǁo colonies. The difference betǁeen resistant and 

control samples was not significant after multiple testing correction (p = 0.047 where Bonferroni 

corrected p = 0.017). Due to the likely differential hybridisation of the microarray probes with 

different Gste4 haplotypes we further examined Gste4 expression using haplotype specific qPCR (see 

below). 

Haplotype-specific qPCR 

The tǁo groups of G“TEϰ haplotypes ;α and β) are differentiable by large indels in the ϯ’ UTR. We 

designed qPCR primers to measure haplotype specific expression of group members through 

placement of clade specific primers across an indel region that differed betǁeen group α and clade 

β. When gene eǆpression ǁas ŵeasured separately for each group there ǁere large differences in 

fold-change, particularly in comparisons of permethrin resistant versus either Dongola or Moz 

colony samples with the clade β ƋPCR identifying FC>ϲϬϬϬ ;an artefactual conseƋuence of no 
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ŵeasurable gene eǆpression in Dongola/Moz) in both coŵparisons but group α ƋPCR shoǁing a 

significant 1.45 fold over expression for permethrin resistant versus Dongola and no significant 

difference for permethrin resistant versus Moz (Table 1). 

Recombinant protein expression 

In order to capture representative Gste4 sequences for heterologous expression we sequenced nine 

separate Gste4 full-length clones. From sequences of these nine clones of Gste4 amplified from 

cDNA of permethrin resistant An. arabiensis five different protein-coding variants were identified 

(Figure 4) differing at 3-6 amino acids from the reference genome sequence of An. gambiae. In 

addition, two clones (1 and 7) exhibited a 42 amino acid deletion compared to the reference 

sequence. Whilst this coding-sequence does appear unlikely to be functional, it was isolated from 

two separate cDNA pools in two separate PCRs suggesting that it has not arisen through PCR error. 

cDNA sequences have been submitted to Genbank with accession numbers KF733210-KF733214. 

Three GSTE4 variants (variants 1, 4 and 9 of Figure 5) were taken forward to expression. Variant 1, 

which had the 42 amino acid deletion, exhibited no activity with the model substrate CDNB and no 

further work was undertaken on this variant. We note that this variant had a full-length open-

reading frame and therefore was not obviously pseudogenic (c.f. the pseudogene of An. stephensi 

Gste2 in Ayres et al. 2011). In eǆpression of variants ϰ ;froŵ clade β and henceforth labelled 

G“TEϰBeta) and ϵ ;froŵ group α and henceforth labelled G“TEϰAlpha), chosen as being the ŵost 

divergent and representative of the two groups of Gste4 ;α and β – see Fig 3b) we isolated 3-6 ml of 

10-12mg/ml of both variants. Both variants showed activity with the model substrate CDNB 

indicating that the recombinant enzyme was functional. 

We note that recombinant protein GSTE4Alpha is nearly identical in sequence to the majority of the 

haplotypes in group α, but differed by tǁo aŵino acids TϮϮϮ“ and NϮϮϯK that are not evident in any 

group  seƋuence ;all seƋuences are ϮϮϮT and ϮϮϯN). These are ǁithin the ϯ’ priŵer site; since 

primers were designed based upon the VectorBase sequence these non-synonymous changes are 
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likely to result from incorporation of primers into the amplicon (hence are primer-induced amino 

acid changes rather than real variants present in these haplotypes). 

Characterization of activity 

We characterised activity across a range of pHs – GSTE4Alpha and GSTE4Beta exhibited very 

different pH activity profiles and optima with GSTE4Beta showing optimal activity at pH7.8 and 

GSTE4Alpha at pH7 (Fig 6). We studied enzyme kinetics at three different pHs – 6.5 (the pH used for 

study of GSTe2 (Dowd et al. 2010), 7 and 7.8. Enzyme kinetics showed the differing activity profiles 

of these two variants with pH (Table 2). GSTE4Alpha displayed a consistently lower Km for CDNB 

than GSTE4Beta at all three pHs, suggesting it has a higher affinity for this substrate. Affinities for 

GSH were similar for both variants except at pH7.8 where the affinity of GSTE4Beta was low (high 

Km) and that of GSTE4Alpha was not measurable since the reaction did not plateau over the range 

measured. 

Whilst both GSTE4 variants showed similar patterns of temperature dependent activity: 100% 

activity at 35°C and 0% activity at 45°C, at 40°C there was a significant difference in activity with 

GSTE4Alpha variant more stable than GSTE4Beta (92% activity versus 66% activity – see Fig 7). 

Inhibition by and metabolism of insecticides in vitro 

Activity against CDNB of both variants GSTE4Alpha and GSTE4Beta was strongly inhibited by 

permethrin and deltamethrin with the lowest inhibition at pH7 (Figure 8). GSTE4Alpha showed 

significantly higher inhibition than GSTE4Beta for both insecticides and for all pHs indicating that it 

has a higher affinity for pyrethroids. Although both insecticides inhibit the enzymes there was no 

evidence of actual metabolism of pyrethroids (results not shown).  
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DISCUSSION 

Resistance to pyrethroid insecticides in An. gambiae s.l. in eastern Uganda is extensive and appears 

to be increasing (Ramphul et al. 2009; Verhaeghen et al. 2010; Mawejje et al. 2013). There is some 

evidence that the role of An. arabiensis in malaria transmission in the region may also be on the 

increase (Mawejje et al. 2013) as has been seen in neighbouring countries (Lindblade et al. 2006; 

Bayoh et al. 2010; Derua et al. 2012; Mwangangi et al. 2013). Here, we have undertaken microarray 

analysis of the pyrethroid resistant phenotype in both Anopheles gambiae and An. arabiensis from 

the same geographical region using two very different experimental microarray designs and have 

detected the same gene – Gste4 up-regulated in both studies. Repeatability across studies adds 

weight to the interpretation of likely involvement of this enzyme in the resistance phenotype. We 

see an obvious disparity in the number of significantly up-regulated probes in the two microarray 

designs – ϱϳ for the coŵparison of ͚resistant’ versus ͚susceptible’ An. gambiae families compared to 

>4,000 for the comparison of insecticide resistant An. arabiensis with colonised resistant strains. This 

illustrates the effect of very different designs. The much greater number of probes detected in the 

latter design may reflect geographic confounding or the effects of inbreeding and colonisation (see 

(Kristensen et al. 2005)). 

The identification of the same up-regulated gene (Gste4) in two closely-related species from the 

same region might have been a result of introgressive hybridization. However, we find clear, well-

supported species-specific clustering of An. gambiae and An. arabiensis Gste4 haplotypes based 

upon >2kbp of DNA sequence spanning Gste4 indicating that introgresson definitely does not 

underlie this observation. In fact, the genomic region containing the Gste4 locus is in a region of the 

genome where An. arabiensis and An. gambiae show high levels of divergence (Weetman et al. 

2014). In contrast to the results based on genomic DNA sequence, when GSTE4 amino acid 

sequences are studied the most common protein sequence is shared by both species. This, despite 

the clear separation of the whole haplotype sequence suggests that these species have converged 
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on the identical protein sequence or that the functional constraints have prevented divergence from 

ancestral sequence. The McDonald-Kreitman test result strongly supports the action of positive 

selection on these sequences indicative of either convergence or constraints on evolutionary 

change. Evolutionary convergence is a strong indication of adaptive evolution (Zhang and Kumar 

1997) and is highly suggestive of an important functional role for this enzyme.  

Members of the glutathione-S transferase class of enzymes have been demonstrated to have roles in 

metabolism, detoxification and excretion of xenobiotics, coping with oxidative stress, and in 

processing odorant signals (Ranson and Hemingway 2005a; Ranson and Hemingway 2005b). Within 

Anopheles gambiae s.l. 28 GSTs are recognised (Ranson and Hemingway 2005a) with one class – the 

epsilon GSTs – being insect-specific (Ayres et al. 2011). At least one epsilon-class member, GSTE2, 

has DDTase activity and a demonstrated role in insecticide resistance ((Ranson et al. 1997; Wang et 

al. 2008; Mitchell et al. 2014). Whilst there is no direct evidence of a role for GSTs in pyrethroid 

resistance, GSTs have been implicated in the pyrethroid resistance phenotype through detoxification 

of pyrethroid-induced lipid peroxification products (Vontas et al. 2001) and through potential 

sequestration of insecticide through binding of pyrethroid molecules to GSTs (Jirajaroenrat et al. 

2001; Kostaropoulos et al. 2001).  

Characterisation of the role of GSTE4 in pyrethroid resistance requires heterologous expression and 

in vitro assays. Whilst a recombinant GSTE4 variant has been expressed previously (Ortelli et al. 

2003) this came from a susceptible colony of An. gambiae (with identical amino acid sequence to the 

reference PEST genome GSTE4 sequence). We have not identified this particular cDNA sequence in 

our (limited) sequencing of Gste4 in pyrethroid resistant An. arabiensis from Jinja. There is high 

variability in Gste4 coding sequences in An. arabiensis from this region – from just nine clones 

sequenced we identified five different amino acid variants (although two of these contained a 42 

amino acid deletion causing a loss of function). We have now biochemically characterised two of 

these variants from An. arabiensis which differ by five amino acids. One of these two variants falls 
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ǁithin clade β and the other is froŵ group α for ǁhich the aŵino acid seƋuence is conserved across 

An. gambiae and An. arabiensis. Note that we are aware that the design of primers for cloning of 

full-length Gste4 likely resulted in primer-induced changes in two amino acids in the C-terminus of 

this protein. Whilst we do not know the functional significance of these alterations, and residues in 

this C-terminal domain may contribute to substrate specificity (Sheehan et al. 2001), since these are 

primer-induced changes affecting both variants equally, these are likely to have suppressed any 

variant associated differences, not to have caused them.  

Our enzyme kinetic data show differences in reaction kinetics, in pH optima and in inhibition by 

insecticides between these two variants. Typically, enzyme characterisation studies on An. gambiae 

s.l. study just one variant (usually from the susceptible Kisumu strain e.g. Ortelli et al. 2003). The 

variants studied here are segregating in field-collected samples and the differences in kinetics may 

be of functional importance. Indeed there is evidence from the paralogous GSTE2 that different 

allelic variants can have very different kinetic and metabolic activities (Mitchell et al. 2014). Whilst 

metabolism studies did not show clear evidence for metabolic activity of either variant with 

pyrethroids, inhibition of GST variants has been taken as suggestive of binding and potentially 

sequestration (Jirajaroenrat et al. 2001; Kostaropoulos et al. 2001). Our inhibition assays conducted 

with co-incubated insecticide suggest pyrethroids may be capable of occupying either the active site 

or the GSH binding site of Gste4 and the differential inhibition we have seen indicates that GSTE4 

encoded by different haplotypes have differing sequestration abilities. It is interesting that in An. 

arabiensis two variants with different pH optima, reaction kinetics and inhibition by insecticides are 

found in the population at similar frequencies; suggesting a role for balancing selection maintaining 

alleles with differing functions or organ specificity. 

Whilst both the biochemical data suggest at present that a link to insecticide resistance is unclear, 

our assays are not comprehensive and GSTE4 may have a role in some other pathway of importance 

for the insecticide resistance phenotype. GSTs have known roles as catalysers of secondary 
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metabolism products of reactions involving cytochrome P450s (Ranson and Hemingway 2005a) and 

hence we may not have utilised the appropriate substrate. Further work on this awaits identification 

and isolation of insecticide metabolites. We did not detect activity with either cumene 

hydroperoxide or t-butyl hydroperoxide indicating that GSTE4 does not have a Se-independent 

peroxidase function (Vontas et al. 2001) which is in line with Ortelli et al. (2003) who found no 

activity with cumene hydroperoxide for the Kisumu variant.  

The up-regulation of Gste4 detected by microarray in An. gambiae was validated through qPCR. 

Although Gste4 was up-regulated in microarray comparisons of An. arabiensis, qPCR validation 

indicated some discrepancies – fold changes in comparisons of resistant samples to the two colonies 

were much lower with qPCR than microarray, and no significant difference in Gste4 expression was 

seen in comparison of resistant samples to sympatric controls through qPCR. The sequencing of this 

region in field samples demonstrated that the microarray probes are unlikely to adequately 

hybridise to some Gste4 haplotypes and this may have potentially lead to erroneous conclusions. 

Our sequencing of Gste4 encompassed the full-length of the gene, untranslated regions (UTRs) and 

flanking intergenic regions. “eƋuences of the ϯ’ UTR shoǁed that large indels segregating in the An. 

arabiensis population co-localise with the binding sites for the whole genome array probes targeting 

this gene. In fact, the microarray probes are likely to only work on members of sub-clade β’ and not 

to hybridize at all to other ŵeŵbers of clade β or any ŵeŵber of the α group. To address this, ǁe 

designed haplotype-specific ϯ’UTR ƋPCR priŵers ǁhich differentiate ŵeŵbers of group α ;the group 

eǆhibiting signs of seƋuence convergence) froŵ clade β. Clade β eǆpression is absent (or at 

extremely low levels) in the Dongola and Moz colonies, though present in the Jinja samples and this 

inflates the Log Q-value disproportionately in comparisons of resistant An. arabiensis to colony 

saŵples. Eǆpression of ŵeŵbers of group α, ǁhilst at higher levels in permethrin resistant samples 

to the Dongola colony, is not significantly up-regulated versus the Moz colony or sympatric controls. 

Thus, there is a haplotype-specific component to the Gste4 up-regulation we inadvertently detected 

through microarray in An. arabiensis but little evidence of true gene expression differences when 
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this is accounted for. In fact, when Gste4 exon-crossing qPCR primers are used (which are not 

haplotype-specific) there seems to be slightly lower expression of Gste4 in resistant samples 

compared to control An. arabiensis. Although the up-regulation of Gste4 was not validated, it did 

lead us to further study of this gene and the evidence of sequence convergence is not reliant on 

gene expression data and stands as evidence of an important functional role. This haplotype specific 

component to the expression argues strongly for robust, replicated microarray experimental design 

to ensure type 1 errors are minimised. The An. gambiae genome is particularly variable (Wilding et 

al. 2009) and even though the ϯ’ UTR is less variable than other regions of the gene (Li et al. 2010) 

the impact of length variation in this region on measures of gene expression could be great. If 

microarray probes are designed to this region rather than placed in exons where length variation is 

less likely, then the effects of large differences in length/sequence should be considered, especially if 

comparisons are not with sympatric samples where this is less likely to be an issue. It should be 

noted that such variation is also likely to impact upon RNASeq experiments since divergent reads will 

not adeƋuately ŵap to the reference genoŵe. Whilst the ϯ’ UTR variation does cause technical 

problems for microarray work, and potentially for RNASeq, it may be of biological interest: ϯ’ UTRs 

sequence have important roles in directing tissue- and cellular compartment-specific expression 

(Andreassi and Riccio 2009; Barrett et al. 2012) and the very different UTR sequences of Gste4 

indicate that research into tissue specific expression may be fruitful.  

We note that although Gste4 was identified as up-regulated in both microarray studies, other loci 

are potentially involved in the resistance phenotype. However, there were no other loci identified as 

up-regulated across both studies. Whilst the most strongly up-regulated probes in the Tororo An. 

gambiae microarray were multiple probes targeting Gste4 the most significantly over-expressed 

probes targeted a cluster of closely related genes of unknown function on chromosome 2L. Due to 

the very high sequence similarity of these genes it was not possible to design locus specific qPCR 

primers and we were unable to validate these results. We are also not able to ascribe a function to 

these genes although they bear some resemblance to human TFIIEα transcription initiation factors. 
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Since we could not validate these results nor develop a functional assay in the absence of known 

function we did not pursue these hits further. For An. arabiensis two P450s showed evidence of up-

regulation. Cyp6m2, up-regulated in many microarray comparisons of An. gambiae (Djouaka et al. 

2008; Stevenson et al. 2011; Mitchell et al. 2012) was not identified as up-regulated in the Jinja 

microarray using our strict criteria, however in qPCR there is significant up-regulation when 

permethrin resistant samples are compared to either of the two colony samples. This discrepancy 

between microarray and qPCR requires further investigation but may also indicate allelic differences 

in primer/probe binding sequences. The differential regulation of Cyp6m3 seen in microarray 

comparisons seems to be completely driven by extremely low level expression in the two colony 

samples and shows no evidence of differential regulation in sympatric comparisons. We note that 

for this population of An. arabiensis, prior exposure to piperonyl butoxide (PBO) in diagnostic 

bioassays partially restored the susceptible phenotype (Mawejje et al. 2013). This partial restoration 

does indeed indicate that cytochrome P450s likely have some additional role in the resistance 

phenotype and serves to remind of the complexity of mechanisms underpinning insecticide 

resistance.  

Whilst Gste4 was up-regulated and demonstrated to be the subject of strong selection in two 

sympatric species capable of hybridising (Weetman et al. 2014) introgression does not explain this 

shared mechanism. Whilst our data do not support introgression of Gste4 between these species, 

the identification of the same gene in two independent microarray studies, and the demonstration 

of strong selection on this gene is highly suggestive of an important function. The in vitro data 

indicates that GSTE4 is involved in sequestration of pyrethroids and is worthy of further study to 

elucidate the sequestration mechanism.  

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 

 

ACKNOWLEDGEMENTS 

The project described was supported by Award Numbers U19AI089674 and R01AI082734 from the 

National Institute of Allergy and Infectious Diseases (NIAID). HDM was supported by the Uganda 

Malaria Clinical Operational and Health Services (COHRE) Training Program at Makerere University, 

Grant #D43-TW00807701A1, from the Fogarty International Center (FIC) at the National Institutes of 

Health (NIH). The content is solely the responsibility of the authors and does not necessarily 

represent the official views of the NIAID, FIC or NIH. We wish to thank John Morgan and Loyce Okedi 

(NaLiRi, Tororo) for assistance with mosquito collections in Tororo. CSW is grateful for advice on 

heterologous expression and enzyme characterisation from Andrew Dowd and Mark Paine. Samples 

for the Dongola colony were obtained through the MR4 as part of the BEI Resources Repository, 

NIAID, NIH: Anopheles arabiensis DONGOLA, MRA-856, deposited by M.Q. Benedict. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



27 

 

REFERENCES 

Andreassi C and Riccio A (2009) To localize or not to localize: ŵRNA fate is in ϯ′UTR ends. Trends Cell 

Biol 19(9): 465-474. 

Aubert J, Bar-Hen A, Daudin J-J and Robin S (2004) Determination of the differentially expressed 

genes in microarray experiments using local FDR. BMC Bioinformatics 5(1): 125. 

Ayres CF, Muller P, Dyer N, Wilding CS, Rigden DJ and Donnelly MJ (2011) Comparative genomics of 

the anopheline glutathione S-transferase epsilon cluster. PLoS ONE 6(12). 

Barrett LW, Fletcher S and Wilton SD (2012) Regulation of eukaryotic gene expression by the 

untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69(21): 3613-

3634. 

Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, Vontas J and Field LM (2007) 

Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of 

two new high-throughput assays with existing methods. Malar J 6: e111. 

Bayoh MN, Mathias D, Odiere M, Mutuku F, Kamau L, Gimnig J, Vulule J, Hawley W, Hamel M and 

Walker E (2010) Anopheles gambiae: historical population decline associated with regional 

distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 9(1): 

62. 

Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quanitities of 

protein utilizing principle of protein-dye binding. Anal Biochem 72(1-2): 248-254. 

Derua Y, Alifrangis M, Hosea K, Meyrowitsch D, Magesa S, Pedersen E and Simonsen P (2012) Change 

in composition of the Anopheles gambiae complex and its possible implications for the 

transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar J 11(1): 188. 

Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J and Strode C (2008) 

Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in 

multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin 

and Nigeria. BMC Genomics 9: e538. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28 

 

Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS and Black WC (2009) Does kdr 

genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 25(5): 

213-219. 

Dowd AJ, Morou E, Steven A, Ismail HM, Labrou N, Hemingway J, Paine MJI and Vontas J (2010) 

Development of a colourimetric pH assay for the quantification of pyrethroids based on 

glutathione-S-transferase. Int J Environ Anal Chem 90(12): 922-933. 

Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M and Zheng L (2005) 

Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and 

An. arabiensis. Insect Mol Biol 14(2): 179-183. 

Fossog Tene B, Poupardin R, Costantini C, Awono-Ambene P, Wondji CS, Ranson H and Antonio-

Nkondjio C (2013) Resistance to DDT in an urban setting: common mechanisms implicated in 

both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PLoS ONE 8(4): 

e61408. 

Habig WH, Pabst MJ and Jakoby WB (1974) Glutathione-s-transferases - first enzymatic step in 

mercapturic acid formation. J Biol Chem 249(22): 7130-7139. 

Hemingway J and Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu 

Rev Entomol 45: 371-391. 

Jagannathan P, Muhindo M, Kakuru A, Arinaitwe E, Greenhouse B, Tappero J, Rosenthal P, Kaharuza 

F, Kamya M and Dorsey G (2012) Increasing incidence of malaria in children despite 

insecticide-treated bed nets and prompt anti-malarial therapy in Tororo, Uganda. Malar J 

11(1): 435. 

Jirajaroenrat K, Pongjaroenkit S, Krittanai C, Prapanthadara L-a and Ketterman AJ (2001) 

Heterologous expression and characterization of alternatively spliced glutathione S-

transferases from a single Anopheles gene. Insect Biochem Mol Biol 31(9): 867-875. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



29 

 

Kigozi R, Baxi SM, Gasasira A, Sserwanga A, Kakeeto S, Nasr S, Rubahika D, Dissanayake G, Kamya 

MR, Filler S and Dorsey G (2012) Indoor residual spraying of insecticide and malaria 

morbidity in a high transmission intensity area of Uganda. PLoS ONE 7(8): e42857. 

Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, Kamya MR, Staedke SG, Donnelly MJ, 

Drakeley C, Greenhouse B, Dorsey G and Lindsay SW (2014) Estimating the annual 

entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles 

gambiae s.l. using three sampling methods in three sites in Uganda. Malaria J 13(1): 111. 

Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E and Papadopoulou-Mourkidou E 

(2001) Glutathione S-transferase in the defence against pyrethroids in insects. Insect 

Biochem Mol Biol 31(4-5): 313-319. 

Kristensen TN, Sørensen P, Kruhøffer M, Pedersen KS and Loeschcke V (2005) Genome-wide analysis 

on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171(1): 157-

167. 

Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, Jones CM, Diabaté A, Ranson 

H and Wondji CS (2013) Dissecting the mechanisms responsible for the multiple insecticide 

resistance phenotype in Anopheles gambiae s.s., M form, from Vallée du Kou, Burkina Faso. 

Gene 519(1): 98-106. 

Li J, Ribeiro JMC and Yan G (2010) Allelic gene structure variations in Anopheles gambiae 

mosquitoes. PLoS ONE 5(5): e10699. 

Li YF, Costello JC, Holloway AK and Hahn MW ;ϮϬϬϴ) ͞Reverse ecology͟ and the poǁer of population 

genomics. Evolution 62(12): 2984-2994. 

Librado P and Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism 

data. Bioinformatics 25(11): 1451-1452. 

Lindblade KA, Gimnig JE, Kamau L, Hawley WA, Odhiambo F, Olang G, Ter Kuile FO, Vulule JM and 

Slutsker L (2006) Impact of sustained use of insecticide-treated bednets on malaria vector 

species distribution and culicine mosquitoes. J Med Entomol 43(2): 428-432. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



30 

 

Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time 

Ƌuantitative PCR and the Ϯ−ΔΔCT ŵethod. Methods Ϯϱ;ϰ): ϰϬϮ-408. 

Mawejje HD, Wilding CS, Rippon EJ, Hughes A, Weetman D and Donnelly MJ (2013) Insecticide 

resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, 

eastern Uganda, identifies high levels of pyrethroid resistance. Med Vet Entomol 27(3): 276-

283. 

Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, Hughes DST, Koscielny G, Louis C, MacCallum 

RM, Redmond SN, Sheehan A, Topalis P, Wilson D and the VectorBase C (2012) VectorBase: 

improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids 

Res 40(D1): D729-D734. 

Mitchell S, Stevenson B, Müller P, Wilding C, Yawson A, Field S, Hemingway J, Paine M, Ranson H and 

Donnelly M (2012) Identification and validation of a gene causing cross-resistance between 

insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A 109: 6147-

6152  

Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, Dadzie S, Jenkins AM, Regna K, Boko 

P, Djogbenou L, Muskavitch MAT, Ranson H, Paine MJI, Mayans O and Donnelly MJ (2014) 

Metabolic and target-site mechanisms combine to confer strong DDT resistance in 

Anopheles gambiae. PLoS ONE 9(3): e92662. 

Morgan JC, Irving H, Okedi LM, Steven A and Wondji CS (2010) Pyrethroid resistance in an Anopheles 

funestus population from Uganda. PLoS ONE 5(7): e11872. 

Müller P, Donnelly MJ and Ranson H (2007) Transcription profiling of a recently colonised pyrethroid 

resistant Anopheles gambiae strain from Ghana. BMC Genomics 8: e36. 

Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson 

H, Hemingway J, Paine MJI and Donnelly MJ (2008) Field-caught permethrin-resistant 

Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 

4(11): e1000286. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



31 

 

Mwangangi J, Mbogo C, Orindi B, Muturi E, Midega J, Nzovu J, Gatakaa H, Githure J, Borgemeister C, 

Keating J and Beier J (2013) Shifts in malaria vector species composition and transmission 

dynamics along the Kenyan coast over the past 20 years. Malar J 12(1): 13. 

Ng’habi KR, Horton A, Knols BGJ and Lanzaro GC ;ϮϬϬϳ) A neǁ robust diagnostic polymerase chain 

reaction for determining the mating status of female Anopheles gambiae mosquitoes. The 

American Journal of Tropical Medicine and Hygiene 77(3): 485-487. 

Ortelli F, Rossiter LC, Vontas J, Ranson H and Hemingway J (2003) Heterologous expression of four 

glutathione transferase genes genetically linked to a major insecticide-resistance locus from 

the malaria vector Anopheles gambiae. Biochem J 373: 957-963. 

Pawitan Y, Michiels S, Koscielny S, Gusnanto A and Ploner A (2005) False discovery rate, sensitivity 

and sample size for microarray studies. Bioinformatics 21(13): 3017-3024. 

Pinto J, Lynd A, Vicente JL, F. S, Randle NP, Caccone A, Gentile G, Moreno M, Simard F, Charlwood 

JD, do Rosário VE, della Torre A and Donnelly MJ (2007) Origins and distribution of 

knockdown resistance mutations in the afrotropical mosquito vector Anopheles gambiae. 

PLoS ONE 11: e1243. 

Posada D and Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 

14(9): 817-818. 

Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ and Muller P (2009) Insecticide resistance and 

its association with target-site mutations in natural populations of Anopheles gambiae from 

eastern Uganda. Trans R Soc Trop Med Hyg 103(11): 1121-1126. 

Ranson H and Hemingway J (2005a) 5.11 - Glutathione Transferases. In: Editors-in-Chief:   Lawrence 

IG, Kostas I and Sarjeet SG (eds) Comprehensive Molecular Insect Science. Elsevier, 

Amsterdam, pp. 383-402. 

Ranson H and Hemingway J (2005b) Mosquito glutathione transferases. In: Helmut S and Lester P 

(eds) Methods Enzymol. Academic Press, pp. 226-241. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32 

 

Ranson H, Prapanthadara LA and Hemingway J (1997) Cloning and characterization of two 

glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J 324: 

97-102. 

Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJ and Wondji CS (2013) Directionally 

selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the 

major malaria vector Anopheles funestus. Proc Natl Acad Sci U S A 110(1): 252-257. 

Scott JA, Brogdon WG and Collins FH (1993) Identification of single specimens of the Anopheles 

gambiae complex by the Polymerase Chain Reaction. Am J Trop Med Hyg 49(4): 520-529. 

Sheehan D, Meade G, Foley VM and Dowd CA (2001) Structure, function and evolution of 

glutathione transferases: implications for classification of non-mammalian members of an 

ancient enzyme superfamily. Biochem J 360(1): 1-16. 

Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O'Neill PM, Lian LY, Muller P, Nikou D, 

Steven A, Hemingway J, Sutcliffe MJ and Paine MJ (2011) Cytochrome P450 6M2 from the 

malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of 

deltamethrin revealed. Insect Biochem Mol Biol 41(7): 492-502. 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S (2011) MEGA5: Molecular 

evolutionary genetics analysis using maximum likelihood, evolutionary distance, and 

maximum parsimony methods. Mol Biol Evol 28(10): 2731-2739. 

Verhaeghen K, Van Bortel W, Roelants P, Okello PE, Talisuna A and Coosemans M (2010) Spatio-

temporal patterns in kdr frequency in permethrin and DDT resistant Anopheles gambiae s.s. 

from Uganda. Am J Trop Med Hyg 82(4): 566-573. 

Vontas JG, Small GJ and Hemingway J (2001) Glutathione S-transferases as antioxidant defence 

agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357: 65-72. 

Wang Y, Qiu L, Ranson H, Lumjuan N, Hemingway J, Setzer W, Meehan E and Chen L (2008) Structure 

of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33 

 

gambiae provides an explanation for the high DDT-detoxifying activity. J Struct Biol 164(2): 

228-235. 

Weetman D, Steen K, Rippon EJ, Mawejje HD, Donnelly MJ and Wilding CS (2014) Contemporary 

gene flow between wild An. gambiae s.s. and An. arabiensis. Parasites and Vectors 7: 345. 

Weetman D, Wilding CS, Müller P, Steen K, Rippon EJ, Morgan JC, Mawejje HD, Rigden D, Okedi LM 

and Donnelly MJ (unpublished) Metabolic gene polymorphisms contribute to class I and II 

pyrethroid  resistance in East African Anopheles gambiae. 

WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes 

World Health Organisation, Geneva. 

Wilding CS, Weetman D, Steen K and Donnelly MJ (2009) High, clustered, nucleotide diversity in the 

genome of Anopheles gambiae revealed by SNP discovery through pooled-template 

sequencing: implications for high-throughput genotyping protocols. BMC Genomics 10: 

e320. 

Witzig C, Parry M, Morgan JC, Irving H, Steven A, Cuamba N, Kerah-Hinzoumbe C, Ranson H and 

Wondji CS (2013) Genetic mapping identifies a major locus spanning P450 clusters 

associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity 

110(4): 389-397. 

Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hemingway J and Ranson H 

(2009) Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles 

funestus, a major malaria vector. Genome Res 19: 452-459. 

Wu H, Yang H and Churchill GA (2009). http://churchill.jax.org/software/rmaanova/maanova.pdf 

Yeka A, Gasasira A, Mpimbaza A, Achan J, Nankabirwa J, Nsobya S, Staedke SG, Donnelly MJ, 

Wabwire-Mangen F, Talisuna A, Dorsey G, Kamya MR and Rosenthal PJ (2012) Malaria in 

Uganda: challenges to control on the long road to elimination: I. Epidemiology and current 

control efforts. Acta Trop 121(3): 184-195. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



34 

 

Zhang J and Kumar S (1997) Detection of convergent and parallel evolution at the amino acid 

sequence level. Mol Biol Evol 14(5): 527-536. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



35 

 

Table 1. Fold-changes and P-values from qPCR validation of microarray hits. 

Gste4

Microarray exon-crossing Gste4  primers Clade β Group α
P FC FC LCI UCI FC LCI UCI FC LCI UCI

Control vs Control 1.00 0.78 1.22 1.00 0.70 1.30 1.00 0.37 1.63

Dongola vs Control 0.49 0.41 0.58 0.00 0.00 0.00 0.58 0.33 0.82

Moz vs Control 0.55 0.41 0.70 0.00 0.00 0.00 0.70 0.53 0.87

Perm Resistant vs Control 0.801 1.04 0.74 0.67 0.81 1.07 0.78 1.36 0.84 0.62 1.05

Dongola vs Dongola 1.00 0.83 1.17 1.00 -0.03 2.03 1.00 0.58 1.42

Perm Resistant vs Dongola 0.000 8.51 1.49 1.35 1.63 6795.69 4966.25 8625.12 1.45 1.07 1.83

Moz vs Moz 1.00 0.74 1.26 1.00 0.16 1.84 1.00 0.75 1.25

Perm Resistant vs Moz 0.000 6.13 1.33 1.21 1.46 7680.12 5612.59 9747.65 1.20 0.89 1.51
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Table 2. Kinetic constants for the two variants of GSTE4 over 3 pH values: 6.5, 7 (experimentally 

determined optimum for GSTE4Alpha) and 7.8 (experimentally determined optimum for GSTE4Beta) 

 

 

 

 

 

 

 

 

 

GSTe4 v4 GSTe4 v9

pH6.5 pH7 pH7.8 pH6.5 pH7 pH7.8

[CDNB] CDNB Km (mM) 0.021 0.072 0.055 0.010 0.012 0.002

CDNB Vmax (μŵol/ŵin/ŵg) 8.442 11.575 11.816 20.277 20.955 11.815

[GSH] GSH Km (mM) 1.227 1.395 7.435 1.975 3.820 7.66E+07

G“H Vŵaǆ ;μŵol/ŵin/ŵg) 12.071 15.597 34.607 29.148 35.207 1.92E+08
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Figure 1. Genomic context of the Gste4 gene on chromosome 3R of Anopheles gambiae. The locations of primers designed for sequencing and qPCR 

are indicated on the figure. 
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Fig 2. Volcano plot summarising log2 fold changes (log2FC) plotted against multiple 

testing corrected probability (-log Q-value) for 20 resistant vs. 20 susceptible An. 

gambiae s.s. families from Tororo 
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Figure 3. a) ML phylogeny of 2319bp of sequence spanning Gste4 using best fit model (Tamura and Nei with invariant sites (TN93+I)). Values at nodes are 

bootstrap support values (% of 500 bootstraps). B) ML phylogeny of amino acid sequences of GSTE4 using best fit model Whelan and Goldman with uniform 

sites. Sequences of cloned cDNAs 4, 9 and 14, the amino acid sequence from the reference PEST genome An. christyi GSTE4 and An. quadriannulatus GSTE4 

are also included. Note that cDNA 9 contained two primer induced amino acid sequence changes. For clarity, the native sequence is included in Fig 3b. 

Figure 3
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Figure 4. Alignment of the three Agilent whole genome microarray probes (60bp sequence; DETOX_622_PI422610884, DETOX_623_PI422610884, 

DETOX_624_PI422610884) designed to interrogate Gste4 to the ϯ’UTR of Gste4 in Ugandan Anopheles sequences. PEST = PEST reference sequence from 

VectorBase [55]. Representative haplotypes of this region are shoǁn for ŵeŵbers of the α, β and β’ groups of Fig. ϮB). 

 

DETOX_622_PI422610884     GCATA---------------------------GGCACCGAAA-------TAC---AACAAAATGATGCAAATTGAGAGAGTATATTTGGTAGCTGTT 
DETOX_623_PI422610884      CATA---------------------------GGCACCGAAA-------TAC---AACAAAATGATGCAAATTGAGAGAGTATATTTGGTAGCTGTTT 

DETOX_624_PI422610884       ATA---------------------------GGCACCGAAA-------TAC---AACAAAATGATGCAAATTGAGAGAGTATATTTGGTAGCTGTTTG 
PEST                      GCATA---------------------------GGCACCGAAA-------TCC---AACAAAATGATGCAAATTGAGAGAGTATATTTGGTAGCTGTTTG 

Jinja An. gambiae 1(β’)   GCATA---------------------------GGCACCGAAA-------TCC---AACAAAATGATGCAAATTGAGAGAGTATATTTGGTAGCTGTTTT 
Jinja An.arabiensis 1(β)  GCATACATTGAGCATTACAAAATTGTGACGTCGGTACTAAAAGTACTATTTCGCAAAGAAAATGATGCAAATTGAGAGAGTATATTTGGTAGCTGTTTG 
Jinja An.arabiensis 10(α) GCATACATTGAGCATTACAAAATTGTGACGTCGGCACTAAAAGTACTATTACGCAAAGAAAGTGATGCAAATTGAGAGAGCATATTTGGTAGCTGTTTT 

Figure 4



Figure 5. Amino acid alignment of full length GSTe4 sequences for expression. GSTe4_VB is the 

sequence from the Anopheles gambiae PEST genome sequence (Gene identifier AGAP0091913 on 

www.vectorbase.com). Residues differing from the VectorBase sequence are highlighted. Variant 9 

has been subsequently characterized as GSTE4ALPHA and variant 4 as GSTE4BETA. 

 

GSTe4_VB        MPNIKLYTAKLSPPGRSVELTAKALGLELDIVPINLLAQEHLTEAFRKLNPQHTIPLIDD 

14              MPNIKLYTAKLSPPGRSVELTAKALGLELDIVPINLLAQEHLTAAFRKLNPQHTIPVIDD 

9               MPNIKLYTAKLSPPGRSVELTAKALGLELDIVPINLLAQEHLTEAFRKLNPQHTIPLIDD 

4               MPNIKLYTAKLSPPGRSVELTAKALGLELDIVPINLLAQEHLTAAFRKLNPQHTIPVIDD 

1               MPNIKLYTAKLSPPGRSVELTAKALGLELDIVPINLLAQEHLTAAFRKLNPQHTIPVIDD 
7               MPNIKLYTAKLSPPGRSVELTAKALGLELDIVPINLLAQKHLTAAFRKLNPQHTIPVIDD 

                ***************************************:*** ************:*** 

 

GSTe4_VB        NGTIVWDSHAINVYLVSKYGKPEGDSLYPSDVVQRAKVNAALHFDSGVLFARFRFYLEPI 
14              NGTIVWDSHAINVYLVSKYGKPEGDSLYPSDVVQRAKVNAALHFDSGVLFARFRFYLEPI 

9               NGTIVWDSHAINVYLVSKYGKPEGDSLYPSDVVQRSKVNAALHFDSGVLFARFRFYLEPI 

4               NGTIVWDSHAINVYLVSKYGKPEGDSLYPSDVVQRSKVNAALHFDSGVLFARFRFYLEPI 

1               NGTIVWDSHAINVY------------------------------------------LEPI 
7               NGTIVWDSHAINVY------------------------------------------LEPI 

                **************                                          **** 

 

GSTe4_VB        LYYGATETPQEKIDNLYRAYELLNDTLVDEYIVGNEMTLADLSCIASIASMHAIFPIDAG 
14              LYYGATETPQEKIDNLYRAYELLNDTLVDEYIVGNEMTLADLSCIASIASMHAIFPIDAG 

9               LYYGATETPQEKIDNLYRAYELLNDTLVDEYIVGNEMTLADLSCIASIASMHAIFPIDAG 

4               LYYGAAETPQEKIDNLYRAYELLNDTLVDEYIVGNEMTLADLSCIASIASMHAIFPIDAG 

1               LYYGAAETPQEKIDNLYRAYELLNDTLVDEYIVGNEMTLADLSCIASIASMHAIFPIDAG 
7               LYYGAAETPQEKIDNLYRAYELLNDTLVDEYIVGNEMTLADLSCIASIASMHAIFPIDAG 

                *****:****************************************************** 

 

GSTe4_VB        KYPRLAGWVKRLAKLPYYEATNRAGAEELAQLYRAKLEQNRTNAK 
14              KYPRLAGWVERLAKLPYYEATNRAGAEELAQLYRAKLEQNRTNAK 

9               KYPRLAGWVERLAKLPYYEATNRAGAEELAQLYRAKLEENRTNAK 

4               KYPRLAGWVERLAKLPYYEATNLAGAEELAQLYRAKLEQNRTNAK 

1               KYPRLAGWVERLAKLPYYEATNLAGAEELAQLYRAKLEQNRTNAK 

7               KYPRLAGWVERLAKLPYYEATNLAGAEELAQLYRAKLEQNRTNAK 
                *********:************ ***************:****** 
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Figure 6. Determination of pH optima for two variants of GSTE4 (GSTE4Alpha and GSTE4Beta). 
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Figure 7. Temperature stability of two variants of GSTE4 (GSTE4Alpha and GSTE4Beta). 
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Figure 8. Inhibition of GSTE4 variants GSTE4Alpha (A - dark blue) and GSTE4Beta (B - light blue) by 

various concentrations of insecticide (0-ϭϬϬμM). Values are % of activity of the ϬμM insecticide point 

(± 95% C.I.). Note that at higher concentrations of insecticide, activity in the blank samples was > 

experimental likely due to precipitation of insecticide. The activity (Y-axis) in the absence of 

insecticide has been set at 100% for clarity. 
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