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Abstract

This dissertation sits at the intersection of mechanics and biology. Specifically,

we devise mesoscopic mechanochemical models to study biofilaments, very ubiquitous

cellular protein structures. Since they undergo functional bending, twisting, buck-

ling and stretching motions, understanding the mechanical response of biofilaments

is crucial for a correct description of the conformational states of these proteins. Our

models contribute to the better understanding of the nonlinearities in the mechani-

cal response of biofilaments to the environmental perturbations, without resorting to

computationally costly full atomistic simulations. Two important filamentous struc-

tures coiled-coil and actin make up the main concentration of our work. Coiled coils

are a rope-like protein motif formed by two or more alpha helices. The energetic of a

coiled coil involves a competition between elastic deformation and hydrophobic inter-

action of residues of each helix. The model treats alpha helices as elastic rods where

each rod interacts with another exclusively through beads representing the hydropho-

bic residues. We validate our model using steered molecular dynamics simulations

and compare it with continuum thin rod model. We analyze the bending, buckling
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and twisting behavior of coiled coil molecules of various lengths and conclude that a

coiled coil molecule cannot be fully characterized by a simple single-parameter me-

chanical model. The second filamentous biological structure we study is filamentous

actin, F-actin, which is an important player in eukaryotic cellular processes including

motility, morphogenesis, and mechanosensation. Actin monomer, G-actin, polymer-

izes to form F-actin. G-actin is an ATP hydrolase and at any time it is bound to

either an ATP or ADP molecule. Mechanical and chemical properties of actin fil-

aments are strongly coupled to each other through the bound nucleotide type. In

our model of F-actin, each monomer is treated as a spherical particle with a bound

molecule identity. The particles are connected by a set of springs with changing me-

chanical properties that depend on the bound molecule. Using this model, we study

and explain the behavior of actin filaments under various external mechanical stimuli

introduced by actin binding proteins. Finally, we discuss the coupling of monomer

chemical state changes to the global mechanical response of actin.
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Chapter 1

Introduction

In this chapter, we give a brief overview of mechanobiology and make an intro-

duction to the topics that are discussed in the following chapters while providing

definitions of important concepts.

1.1 Mechanics in Biology

Although maybe not very obvious at the first peek, mechanics and biology are

two intertwined disciplines in all length scales. Flight of a bird, walking of a cock-

roach, swimming of a whale, forces generated by a muscle fiber, crawling of a cell

and mechanical responses of biomolecules are all systems that can be analyzed using

mechanics. For humans at the organ level, mechanical homeostasis is necessary to an

individual’s survival. Bones, muscles, lungs, vasculature and heart are mechanosen-
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sitive organs. For example, an astronaut loses about 1% of his/her bone mass per

month in a space mission due to disuse osteoporosis [1]. A simple calculation yields

a 50% bone mass loss in a 5-year-long space mission! How the mechanical homeosta-

sis is maintained in organs and tissues through cellular machinery is an active field

of research. One such exemplary machinery that is found to sense and respond to

environmental mechanical signals is focal adhesion complex [2]. On a focal adhesion

complex, forces from the extracellular matrix are sensed and converted into chemical

signals through G-proteins and this alters the behavior of the force generating mod-

ules of the cell and a mechanical response is produced [3]. Mechanics play a role in

the cellular differentiation as well. Recent studies have shown that the differentiation

fate of a stem cell is determined by the mechanical properties of the environment that

it is planted in [4, 5]. Also, it is generally accepted that tumor cells are stiffer than

their environment and this is used to detect cancerous cells in a tissue [6, 7].

The examples laid out above is an excellent source of motivation to better under-

stand the effects of mechanics in biological systems, as this would potentially have a

big impact on medicine and techonology. This dissertation aims at pushing the bound-

aries of knowledge on nonlinear mechanical behavior of filamentous biomolecules.
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1.2 Biofilaments

Filamentous biomolecules are very common in nature and they undertake a great

variety of important roles. In muscle contraction and regulation, the basic elements

of a sarcomere, titin, myosin, actin, tropomyosin are filamentous molecules. Also,

bacterial flagella and chemoreceptor, which are crucial to the survival of bacteria, are

simply biofilaments. Biofilaments are important in reproduction as well. Tail of sperm

cells are made of microtubules. In addition, the auditory and olfactory systems make

use of biofilaments. Ear stereocilia contain actin filaments. Biofilaments also take

roles in structural integrity of organs. Collagen, keratin and elastin are filamentous

molecules. Finally, DNA is a biofilament. All these biofilaments are under constant

interaction with their environment and understanding their response to mechanical

signals is important.

Biofilaments are of mainly two origins, nucleic acid and amino acid. The remainder

of this chapter will be devoted to biofilaments of amino acid origin in line with the

focus of our current work.

1.2.1 Protein-based filaments

Amino acids are organic compunds which carry both an amine (NH2) and a car-

boxylic acid (COOH) group. The characteristics of an amino acid is decided by its R

side-chain group. Based on their R group, amino acids can be classified into being hy-
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drophobic, hydrophillic, negatively or positively charged. Alanine, leucine, ileucine,

valine, tyrosine, phenylalanine and tryptophane are hydrophobic amino acids. A pro-

tein is a polymer chain whose monomers are amino acids. Covalent bonds formed

between each amino acid is called a peptide bond (Fig. 1.1A). A residue is defined

as an amino acid in a polypeptide chain. Non-neighboring residues interact through

intermolecular forces. These are weaker forces in comparison to the covalent bonds.

Intermolecular forces in a protein come from ionic (∼0.2-10kT), hydrogen bond (∼1-

5kT), hydrophobic (∼1-5kT) and van der Waals interactions (∼1-2kT) [8]. To com-

pare, the energy of a single ATP hydrolysis releases 20kT [8]. All these mentioned

chemical interactions give a protein its native conformation. Predicting the final con-

formation of a protein by looking at its amino acid sequence is extremely difficult.

This is called the protein folding problem. Alpha helix is one of the most common

substructures of a protein. Formation of alpha helices is done solely through hydrogen

bonding between the ith and i + 4th residues. This repetitive fashion of interactions

results in a well defined right-handed helical geometry (see Fig.1.1B) with a typical

radius of 0.23 nm. Each amino acid on an alpha helix contributes to an axial rise of

about 0.15 nm. This rise corresponds to about 100◦ rotation along the helical axis.

Hence, it takes almost 3.6 residues to complete a full circle (360◦). As a result, when

a full circle is complete, the total rise along the helical axis is about 0.54 nm. This is

description of the pitch of an alpha helix. Mechanical properties of alpha helices are

known.
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A B

C D

P = 0.54 nm

~1
4 

nm

Figure 1.1: Alpha helix, coiled coil and F-actin. (A) Peptide bond formation between
two amino acids yields one molecule of water. (B) Representative alpha helix (PDBID:
4J4A). Pitch of alpha helix is about 0.54 nm. (C) Cortexillin is a typical coiled coil
dimer (PDBID:1D7M). Shown alongside is a representation of the heptad repeat. (D)
Adapted from [9]. F-actin is a polar filament of helical pitch 72 nm. Polymerization
happens preferably at the barbed (+) end and depolymerization preferably at the
pointed (-) end.
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1.2.2 Coiled Coil

The hydrophobic interactions of two or more alpha helices give rise to a helical

coiled coil structure. These hydrophobic interactions are in general follow a seven-

unit repeat pattern called a heptad repeat (Fig. 1.1C). In this repeat unit residues

on a single helix are labeled “abcdefg”. In a heptad repeat unit, positions a and d

are hydrophobic residues. The ionic interactions between e and g residues of opposite

helices provide sequence specificity to a coiled coil [10]. A coiled coil dimer has a

diameter of about 2 nm [11] and pitch of 14 nm [12].

Alpha helical coiled coil motif is present in many functionally important proteins.

In exocytosis, SNARE proteins provide necessary forces to perturb lipid bilayer mem-

brane for cargo transport. Using a similar strategy, gp41 coiled coil protein leads HIV

viral entry into a healthy cell. Myosin II and V have coiled coil arms. Leucine zipper,

a coiled coil dimer, regulates gene expression by binding specific regions of DNA.

In addition, recently, coiled coil structures have attracted a great interest in appli-

cations in material science due to their simple and easily controllable self-assembly

properties [13, 14].

1.2.3 Actin

G-actin is a globular protein of an approximate radius of 6 nm and is composed of

374 residues. F-actin can be viewed as a helical polymer of G-actin monomers. Pitch
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of F-actin is 72 nm and the filament diameter is about 8 nm. A cartoon representation

is provided in Fig. 1.1D.

G-actin is an ATP hydrolase. Both in the monomeric and in polymerized F-actin

form it carries a nucleotide (ATP or ADP). Polymerization kinetics of G-actin-ATP

and G-actin-ADP is different. Polymerization of G-actin-ATP is favored over G-

actin-ADP. Polymerization depends on not only the chemical state of the monomer,

but also at which end the binding happens [15]. The two ends of F-actin are named

as pointed end (-) and the barbed end (+). The fact that the polymerization on the

pointed end is much slower than the barbed end renders F-actin a polar filament.

With more than 100 binding partners, actin is a very central protein in a eukaryotic

cell. We see actin as the thin filament in muscle sarcomere. Actin is also a key

constituent of the contractile ring during cell cytokinesis. Myosin walks along actin

tracks to transport cargo within a cell. Finally, as a cytoskeletal protein actin provides

support to a cell and is involved in cell motility through lamellipodia and filipodia.

1.2.4 Modeling in Mechanobiology

As the main focus of this thesis is biofilaments, let us now turn to modelling

of biofilaments. An obvious observation about filamentous structures is their high

aspect ratios. Therefore, the simplest mathematical representation that could be

used to describe the geometry of a filament is a plane curve. While this description is

reasonable from a macroscopic perspective, a helix equation may be a more natural
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representation as most of the biofilaments are in helical conformation. A right-handed

helix h(q) of height pQ
2π

and radius r can be written as a parametric equation of q as

follows:

h(q)→ (r cos (q) , r sin (q) ,
p

2π
q), qε[0,Q] (1.1)

In Equation 1.1, p is the pitch of the helix. The pitch can be defined as the distance

of translation performed by the helix along the helical axis, when it is rotated by 2π

along the axis (see Fig.1.1B).

Biofilaments are under constant external perturbations such as bending, twisting

and stretching. Mathematical description of such deformations is needed. For this

we get help from the differential geometry of curves. Let us start by finding the arc

length of the example helix of Equation 1.1. The arc length L of helix h(q) is found

by the following integration

L =

Q∫
0

dq

√(
∂x

∂q

)2

+

(
∂y

∂q

)2

+

(
∂z

∂q

)2

We can write the above equation in terms of the tangent vector to the curve

L =

Q∫
0

dq

∥∥∥∥dh

dq

∥∥∥∥
The arc length L of the example helix is then

L =

Q∫
0

dq
∥∥∥(−r sin (q) , r cos (q) ,

p

2π
)
∥∥∥ = Q

√
r2 +

( p

2π

)2
The parameterization of our curve is arbitrary. We can re-parameterize our helix using

the arc length argument s using the following relation and replacing q in Equation

8



1.1 with s:

s =

q∫
0

dq

∥∥∥∥dh

dq

∥∥∥∥ = q

√
r2 +

( p

2π

)2

h(s) = (r cos

 s√
r2 +

(
p
2π

)2
 , r sin

 s√
r2 +

(
p
2π

)2
 ,

ps

2π
√

r2 +
(

p
2π

)2 )

Bending of a curve is expressed by curvature. In other words, curvature measures the

amount of change in the direction of the vector tangent to the curve. In our helix

example the tangent vector t can be written as a function of s.

t(s) =
dh

ds

We note here that t(s) is a unit vector. The amount of changes in the tangent vector

is found by differentiation with respect to arc length parameter s. This gives us the

curvature vector κ(s):

κ(s) =
dt

ds

The curvature is defined as the magnitude of κ(s). The radius of curvature is the

radius of the best-fitting circle around the curve at position s and it is written as the

reciprocal of κ(s). For the helix example, the curvature is equal to:

r

r2 +
(

p
2π

)2
The unit normal vector n to the curve can be derived from the tangent vector as

follows:

n(s) =
1

‖κ‖
dκ

ds
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By using differentiation of the dot product rule, it can be shown that the two

vectors κ(s) and n(s) are orthogonal to each other. In R3, if we have two orthonormal

vectors, we can define a new vector that is orthogonal to both constituent vectors. In

our case, the third orthonormal vector is called the binormal vector (b):

b = t× n

Similar to the tangent vector, the variations in the binormal vector with respect

to the arc length is a measure of twist of the curve. This measure is called torsion

τ(s) and defined as:

τ = −n · db

ds

Sign of the torsion tells us if a helix is right or left-handed. If torsion is positive, then

the helix is right-handed. For the helix example, the torsion is equal to:

τ =
p
2π

r2 +
(

p
2π

)2
Curvature and torsion is necessary and sufficient to describe the geometry of a

curve and the local deformations. The vectors t, n and b form a body attached

orthonormal frame called Frenet frame, F{t, n, b}. Evolution of F{t, n, b} is given by

the solution to the Frenet-Serret equations:
dt
ds

dn
ds

db
ds

 =


0 κ (s) 0

−κ (s) 0 τ (s)

0 −τ (s) 0




t

n

b


10



F (s) = ΩF (0) = exp


0 κ (s) 0

−κ (s) 0 τ (s)

0 −τ (s) 0

F (0)

where F (0) is the Frenet frame at s = 0. We note that the Ω is a skew-symmetric

matrix and its exponentiation yields an orthogonal matrix. Also, when defining our

F (s), one would observe that the choice of vectors n and b is arbitrary so long t is

the tangent vector. However, the particular choice of F{t, n, b} results in the least

number of deformation constants (in this case 2, curvature and torsion). Any other

choice would yield in 3 deformation constants and these are called the generalized

curvatures (ω1, ω2, ω3).

To make a proper mechanical description of biofilaments, we need relevant ma-

terial properties, namely elastic moduli. Using these data, biofilaments are modeled

assuming they obey linear elasticity. Based on the previously described generalized

curvatures and stretching we can write the total elastic energy stored on a single

filament as follows:

Ef =
1

2

l∫
0

ds

[
C
√

g
(
√

g − 1)2 +
3∑

i=1

Ai (ωi − Ωi)
2

]
(1.2)

where Ai are generalized rigidities, C stretch modulus, Ωi are preferred curvatures

and g is a stretch metric defined as

g =

∥∥∥∥∂r(s)

∂s0

∥∥∥∥2
where s0 is the relaxed arc length parameter. For a system of multifilaments and
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applied external work, the total energy can be written:

Et =
n∑

i=1

Ei
f + Eint + Wext (1.3)

where Eint is the total filament interaction energy and Wext stands for the external

work term. In order to arrive at the final conformations (the set of ωi(s)), we first

discretize the geometry. Then, we minimize the total energy Et. One observation

about the total energy is that the majority of the terms in the discrete summation

(except work and interaction terms) is squared. Therefore, presumably the most con-

venient optimization algorithm for this problem is nonlinear least squares fitting. We

note that spatial discretization is not the only method to solve for the final confor-

mations. Equation 1.3 is an energy functional of generalized curvatures and stretch

metric. Using principles from variational calculus this energy can be minimized. The

resulting curvatures and stretch metric functions are solutions of force and moment

balance equations [16,17]. Also, one could generalize elastic filament energy equation

(Eq. 1.2) to situations where coupling of stiffness in all angular and translational

variables considered [18,19].

We need to emphasize that there is a critical force for any biofilament beyond

which rupture occurs. During simulations these forces should be taken into account.

It was experimentally observed that it takes about 15 pN to start unzipping a coiled

coil dimer [20], although there is some pulling rate dependence. The rupture force

for F-actin is about 600 pN [21].

For our stochastic simulations in this work we used the Gillespie algorithm. This
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algorithm gives us trajectories that are good representatives of a studied stochastic

system [22]. The Gillespie algorithm mainly consists of two steps. These steps are

repeated until the desired probability sampling is obtained. Let’s assume N neigh-

boring states. In the first step, the possible neighboring states are discovered and the

rates ki from the current state to the neighboring states are calculated, where i runs

from 1 to N. Once this is done, in the second step, using the rates, τi the escape time

from the current state is calculated and the new destination state is decided. The

net escape time from the current state is sampled from an exponential distribution

as follows:

τi = − log r1∑
i ki

(1.4)

where r1 is a uniform random variable in the interval 0 and 1. For the decision

of the next state, first a uniform random number r2 is picked from the interval 0 and

1. Then, a grid of probabilities is formed by stacking the following normalized rates

from 0 to 1:

Pi =
ki∑
i ki

Finally, the new state is decided based on where r2 falls onto in this grid. The basic

idea is that the states with higher Pi will have a higher likelihood of being chosen as

the new destination state. Let us briefly walk through the pictorial example shown

in Fig. 1.2. Starting from S0, there is only 3 possible escape states. Assume the

algorithm picked S12 as the new state, presumably because k12 is bigger than k11

and k13. Then, at state S12 we have 4 possible destination states (S0, S24, S25 and
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S11 S12 S13

S21 S22 S23 S24 S25 S26 S27 S28 S29

k11 k12 k13

k21 k22 k23 k24 k25 k26 k27 k28 k29

Figure 1.2: Pictorial description of a simple example Gillespie stochastic simulation.
System starts at state S0. The stochastic trajectory of the system depends on the
assigned rates. The net escape time from a state is picked from an exponential
distribution defined by the relevant rates as discussed in the text.
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S26). The following state should be chosen among these states according to their

respective escape rates.

In this simple setting, we did not make a differentiation between the forward and

backward rates. When running Gillespie simulations, one should make sure that the

system obeys detailed balance (reversibility). This is done by imposing the following

condition on forward (k1) and backward (k2) rates:

k1

k2

= exp (−β4F)

where 4F = F1 − F2 is the free energy difference between forward state 1 and back-

ward state 2 and β = (kbT)−1. kb is the Boltzmann constant and T is the absolute

temperature.

The organization of the rest of this thesis is as follows. On chapter 2, we first

describe our coiled coil model and discuss our results. Then, on Chapter 3, we move

on to our mechanochemical model of actin. Finally, we make a general summary of

this work and lay out some possible future directions.
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Chapter 2

Mechanical Response and

Conformational Amplification in

α-helical coiled coils

α-helical coiled coils are ubiquitous tertiary structural domains often found in

mechanoproteins. Coiled coils have mechanical rigidity, and are often involved in

force transmission between protein domains. While crystal structures of the coiled

coil are available, limited information exists on its conformational flexibility. The role

of hydrophobic interactions in determining the coiled coil conformation is not clear.

In this work, we examine the mechanical responses of typical coiled coils, and build

a coarse-grained mechanical model to describe the conformation of the protein. The

model treats α-helices as elastic rods. Hydrophobic bonds arranged in a repeated
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pattern determine the coiled coil structure. The model is compared to molecular dy-

namics simulations of coiled coils under force. We also estimate the effective bending

and twisting persistence lengths of the coiled coil. The model allows us to examine

unconventional responses of the coiled coil, including significant conformational am-

plification upon the binding of a small molecule. We find that the coiled coil does not

behave as a simple elastic rod and shows complex nonlinear responses. These results

are significant for understanding the role of coiled coil structures in chemoreceptors,

motor proteins and mechanotransduction in general.

2.1 Introduction

Alpha-helical coiled coils (CC) are a common rope-like protein motif found in

gene regulation [23], muscle contraction [24], molecular motors and cell signalling [25].

The number of unique CC structures identified in the Protein Data Bank is currently

941 [26]. How these ubiquitous protein motifs mechanistically contribute to diverse

biological functions is not clear. In this work, we explore the conformational flexibility

of the CC and develop a coarse-grained mechanical model to explain its response to

external perturbations. The model captures the essential features of CC mechanics.

We find that the CC does not behave as a simple rod-like structure. In some cases,

dramatic amplification of local conformational changes are observed. The complex

response to external loads may explain the roles of CC motifs in a variety of proteins
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found in the cell.

The basic CC structure is a homodimer where residues in each α-helix contain a se-

quence pattern called the heptad repeat, typically denoted alphabetically as abcdefg.

a and d are the hydrophobic residues which form the hydrophobic core that binds

the helices together. Because there are 3.64 residues per turn in the α-helix, a and d

residues form a helical arrangement on the surface of the α-helix. In order to main-

tain hydrophobic contact in the CC, the α-helices must twist and bend around each

other (Fig. 2.1) in a fashion that Crick first described as Knobs-into-Holes (KiH) [27].

Other interhelical interactions are also important: e- and g-type residue interactions

provide specificity to the structure [10], although they are generally weaker than a-a

and d-d type interactions. Interhelical residue interactions are also the basis of larger

and more complex α-helical bundles such as the recently found heptameric struc-

ture [28]. Therefore, mechanistic understanding of these α-helical bundles require

quantitative models of residue side-chain interactions.

An important structural aspect of the CC that is experimentally observable is

its pitch. Due to residue sequence irregularities, it is sometimes necessary to define

local and global pitch values. The pitch of perfect CC homodimers is 12-14 nm. For

trimeric or tetrameric structures, the upper limit of the pitch value becomes closer

to 20nm [29, 30]. Several studies also have discussed how the pitch is related to α-

helix properties based on geometric arguments [11,31]. Recently, Wolgemuth and Sun

(WS) developed a model to relate the CC pitch to the mechanical properties of the
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α-helix and the geometric pattern of hydrophobic residues [16]. The model assumed

a continuous interaction between helices and treated the hydrophobic interactions as

a constraint. WS showed that the CC under small deformation is rod-like, and bend-

ing and twisting stiffness of the CC can be estimated starting from the properties of

the α-helices. The mechanical model opens the possibility of understanding confor-

mational properties of the CC and how the CC responds to external forces. Several

studies along these lines have appeared [32]. Using Normal Mode Analysis (NMA)

and molecular dynamics (MD) simulations, bending and stretching stiffness and un-

folding of a CC have been studied [33, 34]. From NMA and MD data, Lakkaraju

and Hwang [35] recently suggested that conformations of longer CCs (> 70nm) could

be influenced by a critical buckling length longer than the persistence length. CC

conformational studies have also suggested that CCs have the allosteric potential and

they could be used as nanoswitches [36,37]. Additional conformational changes in the

CCs such as sliding of an individual helix with respect to another was shown to have

biological relevance [38,39]. In this work, we propose a simple scalable coarse-grained

model for the CC and α-helical bundles. Specifically, we introduce a discrete inter-

action potential to model the hydrophobic contact between a- and d-type residues.

We use this model to predict the mechanical response of a dimeric CC under force

and compare with molecular dynamics simulation results and thin rod theory [40].

We find that the hydrophobic contacts provide both distance and angular constraints

between the helices in CC. Under small forces, some of the mechanical response of
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Figure 2.1: A coarse-grained mechanical model of the coiled coil. (a) Tropomyosin
is a prototypical CC. Here, the crystal structure (PDBID: 2tma) is displayed. (b)
A section of the coiled coil, red and yellow beads representing a- and d-type residue
Cα’s respectively (c) The coiled coil model represents each α-helix as a slender rod
described by the rod position and local material frames (e1(s), e2(s), e3(s)) (Eq. 2.1).
The locations of the hydrophobic residues are uniquely defined with respect to these
parameters. (d) The interaction between hydrophobic residues is defined by the vector
between the residues, d, and the vector between the helix centers, R as shown in Eq.
2.14. For detailed definitions, see Models.
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the CC can be described by a rod. However, depending on how the forces are ap-

plied, complex mechanical response is seen. In some cases, small local conformational

changes in the CC is amplified by many fold over long distances. These responses

can have important implications in the biological functions of the CC. The structure

of this chapter is as follows: In the Results section we show the effects of parame-

ter choices on the model and the response of the model CC under different external

forces, then we discuss these results in Discussion and finally we provide a detailed

description of our model in Models.

2.2 Models

2.2.1 Coiled Coil Kinematics

The elements of the CC model are depicted in Fig. 2.1C and 1D. Each α-helix

is represented by a slender rod whose centerline is denoted as r(s) where s is the

unstretched arclength along the helix. For points along the helix, a material frame

(e1(s), e2(s), e3(s)) also describes the local orientation of the residues. This material

frame satisfies the Frenet equations:

∂ei
∂s

= −
∑
j,k

εijkejωk (2.1)

where εijk is the antisymmetric tensor; ω1,2 are the rates of torsion and ω3(s) is

the rate of twist for the α-helix. With these parameters (r(s), ω1(s), ω2(s), ω3(s)),
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the unstretched configuration of the helix is completely defined. In particular, the

positions of all residues can be written with respect to these quantities. We define

the position of the CA atom in the m-th residue as

hm = r(sm) + r0e2(sm) (2.2)

where sm is the arc-length position of the m-th residue. In the unstretched helix,

the helix rise per residue is 0.15nm, therefore sm − sm−1 = 0.15 and the arclength

distance between neighboring a-residues is 1.05nm; the radius r0 is taken to be 0.23

nm.

Because the residues form a helical pattern in the α-helix and the helix is intrin-

sically straight if there are no other influences, for an isolated helix, the instrinsic

torsion and twist of the Frenet frame is defined as

Ω1 = Ω2 = 0

Ω3 =
−π + mod(αp+ π, 2π)

ph0
(2.3)

where h0 = 0.15nm is the helical rise per residue along the centerline, p is the hy-

drophobic periodicity, and α is the angle between each residue.

In addition to the residue positions, it is also necessary to define the parameters

specifying the hydrophobic bonds. The bond vector between m-th hydrophobic pair

is

dm = hm − h′m (2.4)

where the prime denotes the complimentary second helix in the CC and h′m = r′(s′m)+
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Parameter Symbol Value

Intrinsic α-helical twist† Ω3 -0.6 nm−1

Intrinsic α-helical bending torsion Ω1,2 0.0

Helical rise per residue h0 0.15 nm

Hydrophobic periodicity p 7

Angle between residues α 97.7◦

Helix bending persistence length lp 90 nm

Helix twist persistence length lt 45 nm

Helix stretching modulus C 3600 pN

Hydrophobic bond length(*) D0 0.45nm

Hydrophobic bond elevation angle(*) Θ1 π/2 rad

Hydrophobic bond azimuth angle(*) Θ2 1.25 rad

Centerline Distance Parameter(*) R0 0.92nm

Energy scale kBT 4.2 pNnm

Bond distance stiffness(*) k1 70 pN nm−1

Bond angular stiffness(*) k2 200 pNnm

Hardcore repulsion parameter(*) k3 50 pNnm

Table 2.1: Parameters in our coarse-grained mechanical model. The values
are for Cortexillin CC, which has P = 12nm. Several parameters are established
properties of the CC and α-helices, and are not fitted. The fitted parameters are
marked in astericks. †This value is used for the cortexillin structure used in the MD
study. The intrinsic twist for typical helices such as in the leucine zipper is closer to
−0.46nm−1.
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r0e
′
2(s
′
m) is the CA position of the second helix. The distance between helix centerlines

is

Rm = r(sm)− r′(s′m). (2.5)

In our definitions, we treat the hydrophobic residues as attached rigidly to the he-

lix material frame. Thus, the interaction potential between hydrophobic residues is, in

principle, defined by the relative orientations of the helix frames (e1(sm), e2(sm), e3(sm))

and (e′1(s
′
m), e′2(s

′
m), e′3(s

′
m)). To make the definitions simple, we defined a triad cen-

tered around the m-th hydrophobic residue (v1(m),v2(m),v3(m)) as shown in Fig.

2.1D. The orthogonal vectors are:

v3(m) =
1

2
[e3(sm) + e′3(s

′
m)] (2.6)

v′2(m) =
Rm

|Rm|
(2.7)

v1(m) = v′2(m)× v3(m) (2.8)

v2(m) = v3(m)× v1(m) (2.9)

The orientation of the hydrophobic bond vector with respect to this frame is shown

in Fig. 2.1D. We define two angles, θ1,m and θ2,m, for the m-th residue between 2

helices as

cos(θ1,m) =
dm · v3(m)

|dm|

cos(θ2,m) =
dm · v1(m)

|dm|
(2.10)
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Geometrically, we see that θ1,m gives the amount of sliding of a helix along the CC

centerline, while θ2,m is the angle of rigid body rotation of one helix with respect

to the other. In our model, the conformational energy of the CC is thus com-

pletely defined by the six parameter helix configurations (r(s), ω1(s), ω2(s), ω3(s)) and

(r′(s′), ω′1(s
′), ω′2(s

′), ω′3(s
′)), and the hydrophobic bond parameters (dm,Rm, θ1,m, θ2,m).

2.2.2 Coiled Coil Conformational Energy

Having defined the kinematic variables, we can write the total conformational

energy of the CC as a sum of the conformational energy of the helices and bond

energies of the hydrophobic contacts:

E = E0[r, ω1, ω2, ω3] + E0[r
′, ω′1, ω

′
2, ω

′
3] + ∆E (2.11)

where E0 is the conformational energy of the α-helix; ∆E is the energy of hydropho-

bic contact between helices. The conformational dynamics of the α-helix has been

studied. It was shown that helices are rod-like and the bending and twisting stiffness

of the helices are relatively sequence independent. Thus, one may write the helix

conformational energy as

E0 =

∫ L

0

[
1

2
A
(
ω2
1(s) + ω2

2(s)
)

+
1

2
B(ω3(s)− Ω3)

2

]
ds

+

∫ L

0

1

2

C
√
g

(
√
g − 1)2ds (2.12)

where L is the length of the helix. Here, the first line represents the bending and

twisting energy of the helix. The second line is the stretching energy. The amount of
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stretch of the helix or the metric g is defined as

g =

∣∣∣∣∂r(s)

∂s0

∣∣∣∣2 (2.13)

where s0 is the initial arc-length of the helix without any other influences. A and B

are the bending and twist moduli of the helix, respectively. C is the stretch modulus.

From molecular dynamics studies, it was shown that A/B ≈ 2, and A = kBT lp where

lp = 90nm is the persistence length and kBT = 4.2pNnm [41]. The parameters used

in the model are described in Table 2.1.

The hydrophobic interaction energy depends on the distance between the hy-

drophobic residues, dm = |dm|. In our model, we specify the bond energy as

∆E =
N∑
m=1

1

2
k1 (|dm| −D0)

2 +
1

2
k2(θ1,m −Θ1)

2

+
1

2
k2(θ2,m −Θ2)

2 + k3 exp
[
−(|Rm|/R0)

16
]

(2.14)

where N is the number of hydrophobic residue pairs in the CC. Interestingly, after

some trial and error, we found that all four terms in the bond energies are necessary,

suggesting that hydrophobic interactions between residues are complex and contain

both distance and angular constraints. The first term is the bond energy that depends

on the distance between the hydrophobic residues, |dm|. This distance can be defined

with respect to the CA atom of the residue as we have done, or with respect to other

atoms in the residue. This choice does not influence the final results, as long as the

most favorable distance, D0 is defined properly. The second and third terms constrain

26



the relative angle of the hydrophobic bond with respect the CC helices. We found

this term is necessary to reproduce the correct force response. Without this term,

the helices will tend to twist and slide with respect to each other when forces are

applied. This is not seen in molecular dynamics simulations. Finally, the last term

represents the hard-core repulsion between the helices. This term prevents the helices

from physically penetrating each other.

When forces are applied to the CC e.g., at one end of the dimer, the conformational

energy becomes

E = E − F ·
[

r(l) + r′(l)

2

]
(2.15)

where E is the same energy as Eq. (2.11). Eq. (2.15) implies that the force is

applied at the mid-point between two helices, or the force is shared equally. The

bending displacement u is therefore the difference in (r(l) + r′(l))/2 before and after

the application of force. There are other situations where the force is only applied to

one helix which can be similarly modeled.

2.2.3 Computation of Mechanical Equilibrium Con-

figurations

Formally, in the presence of an external force, the equilibrium configuration of

the CC can be computed by force and torque balance, which is equivalent to finding

the minimum energy configuration of Eq. (2.15). The variables are the centerline
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curves (r(s), r′(s′)) and the generalized torsions (ωi(s), ω
′
i(s
′)). The minimum energy

configurations are solutions of equations

δE

δr(s)
= 0,

δE

δr(s)
= 0

δE

δωi(s)
= 0,

δE

δω′i(s
′)

= 0 (2.16)

In practice, the calculations are carried out by discretizing (s, s′) into points (sk, s
′
k′)

with ∆s = sk − sk−1 = h0 = 0.15nm. The solutions of Eq. (2.16) is a set of vectors

with components labeled by k or k′. The solutions are obtained using conjugate

gradient search method. Gradients of the energy are computed numerically using 4th

order finite difference. Multiple initial starting configurations are chosen to test the

validity of the solutions.

2.2.4 Molecular Dynamics Simulations of Coiled

Coil Under Force

We use the CC dimer domain of cortexillin I (PDBID:1D7M) for our MD studies.

This is a relatively stiff CC with P = 12nm. By deleting residues starting from

the C-termini, the length of the CC is modified such that we obtain a 12.6nm (13-

Heptad) and a 8.4 nm (9-heptad) CC. In VMD [42] the structures are submersed

in TIP3 water and the overall electrical charge is neutralized with Cl− and Na+

ions. The molecular dynamics simulations are performed using NAMD [43] with

CHARMM27 [44] force field parameters. Particle Mesh-Ewald (PME) [45] is used for
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electrostatics calculations. NPT ensemble and periodic boundary conditions with a

rectangular box are applied. For the 9-heptad, system size is 4.5x12x4.5 nm and there

are 20,000 atoms. For the 13-heptad, the system size is 4.5x16x4.5 nm and there are

27,000 atoms. The temperature (310 K) and pressure (1 atm) in the simulations are

kept constant using Langevin dynamics. Initial energy minimization is done using

conjugate gradient method. Equilibration is done for 60 ps by heating up the system

from 0K to 310 K, and followed by 20 ns production (bending/twisting) runs. During

the production runs, in order to emulate the clamped boundary condition on one end,

positions of the first eight N-termini Cα atoms on both chains are fixed. These are

GLU243-MET244-ALA245-ASN246-ARG247-LEU248-ALA249-GLY250 on A and B

chains. The time step for the simulations is 2 fs. The trajectories are sampled at 10-ps

intervals. We use MATLAB [46] to analyze the MD trajectories. The simulations are

carried out in a Linux-based cluster with 8 nodes.

The bending responses of CCs to three different constant forces (7, 11 and 15 pN)

are studied using MD simulations. The bending forces are applied at the instanta-

neous cartesian coordinates of the C-termini residue Cα atoms on both chains, i.e.

residues GLU305-AB for the short CC and residues ALA333-AB for the longer. The

force magnitude on the two atoms is half the total bending force magnitude. The

forces are defined orthogonal to the plane spanned by two vectors: the initial cen-

terline vector of the CCs and the vector defined by the difference between the initial

positions of the C-termini Cα atoms of chains A and B. The instantaneous bending
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displacement is calculated as the tip-to-tip distance between the bent(instantaneous)

structure and the initial structure. Statistics are collected on the fluctuating struc-

tures for 15 ns, discarding the initial 5 ns.

For the CC twist calculations, we do not apply any torque to the structures.

Instead, we gather statistics on the twist angle φ of Eq. 3. In order to calculate the

angle φ, we first define triads along the centerline of the CC with a similar method

as shown in Ref. [41]. Then, from the relative rotation of these local frames, the

probability distributions of φ along the centerline are histogrammed for 15 ns. By

fitting the probability distributions of φ, we find the twist persistence length, Λt, as

a function of the CC length.

2.3 Results

2.3.1 Coiled Coil Pitch

The pitch of the CC dimer is directly measurable from X-ray structures. The

mechanical model presented in this work can compute the pitch by finding the me-

chanical equilibrium configuration without external forces. We define the pitch based

on the twist and bending of α-helix local frames (Fig. 2.1C) in the mechanical equi-

librium configuration. Using Eq. (2.1), which gives generalized torsions on these local
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Figure 2.2: Pitch of the coiled coil. (A) Pitch is plotted as a function of the intrinsic
twist of the hydrophobic residues in the α-helices, Ω3. Wolgemuth and Sun’s [16]
prediction with Γ = lt/lp=5 (circles), Γ = 0.5 (dashed line) is shown. The solid
line shows the solution to the Fraser and MacRae equation [11]. The crosses are the
mechanical model predictions for a 13-heptad repeat coiled coil. (B) The dependency
of the coiled coil pitch on the geometric parameters D0 and Θ0. The pitch varies less
than 10%, which suggests that mechanical constants k1 and k2 have a negligible effect
on the geometrical properties of the coiled coil.
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frames, the pitch P is:

P =
2πw3

w2
1 + w2

2 + w2
3

(2.17)

In general, because of the discrete hydrophobic residues in our model, ωi is a function

of the arclength s. Here, we report the pitch value averaged over the length of the

CC in Fig. 2.2.

The pitch strongly depends on the value of the helix intrinsic twist, Ω3. For

historical reasons and simplification purposes, the angle between hydrophobic residues

α is taken to be α = 2π/3.6 = 100◦. In fact, as Chothia [47] and Phillips pointed out

[30] there are an average of 3.64 residues in every α-helix turn, thus yielding α = 98.9◦.

This small difference may seem insignificant, but it has a profound influence on the

CC pitch because Ω3 changes from 0.33 rad/nm to 0.46 rad/nm. Fig. 2.2A shows

the predicted pitch as a function of Ω3. We see that the pitch changes by 50% as α

changes by 2◦! For most α-helices, Ω3 ranges from -0.2 to -0.9 [47].

In our CC model, the hydrophobic bond energy is defined by additional parame-

ters: k1 and k2 are the bond distance stiffness and bond angle stiffness, respectively.

D0 is the equilibrium hydrophobic bond length and Θ1,2 are the equilibrium hydropho-

bic bond angles (see Models section). We find that choices of stiffness parameters,

in general, have a small effect on the CC pitch. However, geometric parameters D0

and Θ2 have a more pronounced effect (Fig. 2.2B). As the hydrophobic bond length

and contact angles are varied, the pitch varies by roughly 10%. Θ2 also has a more

pronounced effect than Θ1. These parameters, along with sequence inhomogeneity,
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Figure 2.3: Bending response of the CC model compared to molecular dynamics
simulations. The bottom end of the CC is clamped (both position and orientation of
the material frame are fixed). The applied force is directed to the right (vectors). The
average MD structures before (cyan) and after (red) the application of the bending
force is shown, along with the coarse-grained mechanical model (green lines). Views
from the side and top are shown. The right plot shows the magnitude of the bending
displacement, |u|, versus the magnitude of the applied force for the 8.4nm (red) and
12.6nm (blue) CC. The lines represent the predictions of the mechanical models:
current model (solid lines) and Wolgemuth and Sun’s [16] prediction with Γ = 0.5
(dashed lines). The MD results (symbols) with error bars are compared to model
predictions (lines). Both MD and the CC model show a significant bending response
perpendicular to the applied force direction (out-of-plane deflection), although our
model shows a smaller out-of-plane deflection (0.5 nm) when compared to the MD
result (2.0 nm) at 15pN bending force.
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will contribute to the diversity of CC pitches observed in protein structures.

2.3.2 Coiled coil Bending and Buckling

CCs often serve as mechanical linkages between protein domains. It is therefore

important to address the response of the CC to external force. Here we examine

the bending property of the CC and ask whether it can be effectively modeled as a

thin rod. Using our coarse-grained mechanical model and Eq. 2.15, we compute the

response of the CC under forces ranging from 5 to 15 pN (Fig. 2.3). The computed

bending displacement, u, is compared to molecular dynamics simulations of real pro-

tein structures in explicit solvent under a constant force. Fig. 2.3 shows the molecular

structures of the CC under force and the observed deflections. MD simulations are

performed on two different CCs (8.4 and 12.6 nm in length) and 3 different forces: 7,

11 and 15 pN. After equilibrating, we collect statistics on the fluctuating structure for

15ns. The shown structure is the average equilibrium structure of the CC. Superim-

posed on the MD results are the results our coarse-grained mechanical model results.

The model has no free parameters except for stiffnesses k1, k2 and k3. The best fit

results are shown in Fig. 2.3. The model suggested by Wolgemuth and Sun [16]

constrains the distance between helices and does not allow the helices to slide with

respect to each other, which can be thought of as k1 = k2 =∞ in our present model.

We see that both models compare well with MD results, although WS is significantly

worse for short CCs. By allowing finite stiffness, our current model is better matched
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Figure 2.4: Bending response of the coiled coil compared to a slender rod. (A) A
vertical force is applied to buckle the coiled coil structure. Our model shows that
the critical buckling force as a function of the CC length (points) is well described
by the buckling of a slender rod (solid line) in Eq. (2.18). The fitted CC persistence
length, lp =200nm. However, the bending response of the coiled coil is not completely
described by a slender rod. (B) shows the comparison between our model with the
slender rod bending response with rod lp =200nm.
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with the MD results. The MD result also shows additional complex behavior that is

not captured by our model. Perhaps additional long range interactions suggested by

Lakkaraju and Hwang [35] can improve the model predictions.

Both the MD and the mechanical model show responses to the applied force that

are not replicated by a slender rod. For example, when a slender rod is subjected

to a force at one end with the other end held fixed, the deformation of the rod is

confined within the plane spanned by the force vector and the opposite end. For the

CC, we observe a substantial deflection in the out of plane direction (Fig. 2.3). This

is because the α-helices are not confined to the bending plane, there is a significant

component of the torque in the direction perpendicular to the deflection plane. The

complete problem requires considering the bending response of helical rods, which is

beyond the scope of the work here. Nevertheless, MD and our model show similar

qualitative out-of-plane movement.

By examining the bending response of the CC, we also can estimate the effective

bending persistence length (bending modulus) of the CC. There are several ways to

obtain this estimate. Fig. 2.4A shows the Euler buckling response of the CC. The

position and orientation of the CC is fixed at one end. The other end is subjected

to a vertical downward force. The critical buckling force is compared with the rod

theory prediction:

Fb =
π2lpkBT

4L2
(2.18)

where L is the length of the CC and kBT = 4.2pNnm. The coarse-grained mechanical
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model behaves quite similar to the rod theory. The best fit that gives the effective

bending persistence length of the CC is lp =200nm, although a range of persistence

length from 160-200nm can all explain the observed buckling force. However, when

a horizontal force is applied that bends the CC, the response is again somewhat

different from the slender rod model with lp = 200nm (Fig. 2.4B). Aside from the

observed out-of-plane bending, the net displacement as a function of the CC length is

also consistently less than predictions of the rod model with lp = 200nm. Suggesting

that the CC may be slightly stiffer than the effective rod prediction. The length

dependence of the bending displacement also behaves differently than a standard rod.

Therefore, describing the CC as a rod with a single bending constant is problematic.

Bathe et al. [48] predicted that the bending response of parallel bundles will have a

component that depend on the stretching of the transverse bonds. The overall bending

constant of the bundle is also length dependent (mode-dependent bending). This is

consistent with our model which shows a length dependent bending modulus and

shows that CCs cannot be described as simple rods with a fixed mechanical bending

modulus. This result has important implications in mechanics of motor proteins

where force transmission between motor domains are carried out by CCs [49].

2.3.3 Coiled Coil Twist

Twisting of CCs is a common deformation encountered in proteins. The connec-

tion between cargos and molecular motors are often made of CCs, and the processive
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Figure 2.5: Twist persistence length, Λt, of the coiled coil. From MD simulations, the
twist persistence length (blue line) can be estimated from the angular fluctuations
of the coiled coil twist, in a manner similar to Ref. [41]. The model prediction (red
line) is obtained from applying a known torque to the CC structure and compute
the twist response. Also shown is Wolgemuth and Sun’s [16] prediction with Γ = 0.5
(green line). Results show that the twist persistence length of the coiled coil is around
100nm, although there is some length dependence.
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(walking) motion of the motor introduces torsion into the CC domain. To obtain

an estimate of the twist modulus of the CC, we examined MD simulation results

and our coarse-grained model predictions. For a straight rod only undergoing twist

deformations, the conformational energy is

E =
1

2

∫ L

0

ltkBT (ω3 − Ω3)
2ds =

1

2

Λt

L
kBTφ

2 (2.19)

where L is the rod length, Λt is the twist persistence length and φ is the twist angle at

the end of the rod. In MD, we have examined the conformational fluctuation of the

CC and obtained probability distribution of the twist angles. From the probability

distributions, which are roughly Gaussian functions of φ, we obtained the twist per-

sistence length, Λt, as a function of the CC length (Fig. 2.5). The simulation result

is compared to our coarse-grained model, where we have examined the response of

the CC to an applied torque. The comparison shows that CC has a twist persistence

length of ∼100nm. However, the twist persistence length depends on the length of

the CC, which implies nonlinear behavior. Our model agrees with the MD results for

CC lengths around 10-12nm. For shorter lengths, the applied torque generates twist

by twisting the individual α-helices. For longer lengths, the applied torque bends the

α-helices and reduces the CC pitch. The prediction of WS (see Appendix of [50])

suggests a slightly higher twist persistence length, presumably because the angular

springs characterizing the hydrophobic bond are flexible in reality. WS assumes a

completely rigid interaction in the hydrophobic bond.
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2.3.4 Conformational Amplification

So far, we have focused on the overall mechanical behavior of the CC. We have

compared the CC response to rod-like objects. However, the CC has more complicated

mechanical responses that are biologically important. For example, the microtubule

binding domain of dynein appears to undergo a deformation where one helix is shifted

with respect to the other [38, 39]. Small molecules can also bind the CC and induce

a small local conformational change. The Tar receptor of E. coli binds an aspartate

molecule at one end of the CC. Upon binding, this molecule shifts one helix with

respect to the other, and introduces a piston motion along the centerline of the CC

of about 1.6Å [51]. We find that our model predicts a significant amplification of this

type of conformational change, defined as m2/m1 where m1 is the magnitude of the

pistoning displacement and m2 is the bending displacement at the distal end (Fig.

2.6). For example, for a 40nm long CC, m1 = 1.6Å translates to a bending movement

of m2 = 5nm, a 30 fold amplification. Note that the free energy needed to introduce

the small piston displacement is quite small and can derive from the binding free

energy of the small ligands (Fig. 2.6). The amount of amplification depends on the

length of the CC. Along the same lines, if a small twist at the end of one of the helices

is introduced, a bending motion also can occur in the distal end. A twist of 90 degrees

in one of the helices can translate into a small bending movement at the distal end,

although the degree of amplification is significantly less.

Fig. 2.6B shows the strains in the hydrophobic bonds in a 40nm CC with an
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Figure 2.6: Conformational amplification in the coiled coil. (A) At one end of the
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initial piston movement of 0.3nm. Most of the significant strains occur within the

first 5nm of the CC. There is also significant bending strains in the α-helices. In an

experiment such as in Ref. [39] where the α-helices are artificially tied together using

disulfide bonds, the overall bending of the CC can be prevented.

This suggests that the elasticity of protein structures can transmit and amplify

conformational signals over long distances, and may explain the action of small ligands

binding to CC structures. In the Tsr receptor, the distal end of the receptor contacts

other signaling proteins and neighboring receptors, leading to cooperativity between

receptors. Our model suggests that the cooperativity arises from intrinsic mechanical

properties of α-helical bundles. This mechanism is in contrast to the “wedge” mech-

anism of Yu and Koshland [52], which invokes a series of bond re-arrangement to

explain the propagation of small conformational changes. Since proteins are mechan-

ical structures, a more plausible mechanism involves large scale flexible movements

based on geometrical arrangement of protein components.

2.4 Discussion

In this work, we explored the conformational properties of the CC in response

to applied forces and torques, and developed a coarse-grained mechanical model to

describe the conformational dynamics. The model treats the CC motif as two elastic

α-helices bonded together by a regular pattern of hydrophobic bonds. The model is
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able to quickly compute the conformational response of long CCs without resorting

to costly atomistic simulations. The model is also compared to MD simulations for

short CCs. Our model is able to reproduce most of the bending and twist response

observed in MD simulations, suggesting that the model is a reasonable representation

of the actual protein structure. Of course, there are other ways of parameterizing

the model and the hydrophobic bonds, but it is clear that the model must consider

angular constraints provided by the hydrophobic interactions. Our model can also be

made more quantitative by considering the sequence dependence of the hydrophobic

interaction, which can be added by introducing sequence-dependence in parameters

listed in Table 2.1. Additional factors such as possible long range interactions are not

considered here, but could be important for longer CCs.

While the elastic properties of the α-helix is reasonably simple, we find that the CC

shows more complex mechanical properties. For example, from examining the buck-

ling properties of CCs, it is possible to estimate the CC bending persistence length of

200nm, approximately two times the persistence length of the α-helix. Experimental

measurements of CC persistence length exist in literature [53–55]. However, differ-

ent measurement techniques seem to yield significantly different results. Part of the

reason could be the length dependence of the CC mechanical response and the way

external forces are applied in the measurements. We also find that CCs are more com-

plex, and a simple rod model does not explain all the bending responses. For instance,

the bending displacement has a component that is out of the plane of the bending

43



force. The bending persistence length also appears to be slightly length dependent.

The twist persistence length shows a similar complexity and length dependence. CCs

are often domains in motor proteins that connects the motor to the cargo. In single

molecule experiments, the motion of the cargo is tracked and observed. Our study

shows that the cargo motion is not a direct reflection of the motion of the motor

because of the complex response of the CC domain.

For real proteins, if sufficient forces are applied the hydrophobic bonds will even-

tually break, leading to possible unfolding of the structure. Indeed, studies suggest

that the hydrophobic bond energy is roughly 10kBT . In our model, the spring-like

interaction potential does not allow the bonds to break. To introduce structures that

can fail, it is possible to define the interaction potential by introducing a cutoff. If the

total energy of the bond, ∆E, exceeds the cutoff, the bond fails. With this, we find

that CCs can with stand significant forces before failing, although the direction of the

applied force and the length of the CC are important. For example, for perpendic-

ularly applied bending forces such as in Fig. 2.3, the 13nm structure can withstand

100pN before breaking of the hydrophobic bonds are observed. In biologically rele-

vant situations, molecules rarely experiences forces of such magnitude. For example,

molecular motors often exert forces that are less than 10pN. Therefore, we expect that

CCs function mostly as a folded and intact structure during common deformations.

CC domains in proteins are often involved in mechanotransduction and chemical

signaling. Our model suggests that these functions can be explained within one unified
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picture. The CC structure responds to externally applied forces and changes confor-

mation over long distances. We also discover that the CC structure responds to local

and small perturbations and amplifies them over long distances. The amplification

depends on the length of the CC, and may explain why the bacterial chemoreceptor

is nearly 40nm in length. The amplification also suggests that cooperative properties

of receptor arrays may be mechanical in origin, and mechanical properties of proteins

is an important aspect for understanding protein function in general.
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Chapter 3

A Mechanochemical Model of

Actin Filaments

In eukaryotic cells, actin filaments are involved in important processes such as

motility, division, cell shape regulation, contractility and mechanosensation. Actin

filaments are polymerized chains of monomers, which themselves undergo a range

of chemical events such as ATP hydrolysis, polymerization and depolymerization.

When forces are applied to F-actin, in addition to filament mechanical deformations,

the applied force must also influence chemical events in the filament. We develop

an intermediate-scale model of actin filaments that combines actin chemistry with

filament-level deformations. The model is able to compute mechanical responses of F-

actin during bending and stretching. The model also describes the interplay between

ATP hydrolysis and filament deformations, including possible force-induced chemical
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state changes of actin monomers in the filament. The model can also be used to

model the action of several actin-associated proteins, and for large-scale simulation of

F-actin networks. All together, our model shows that mechanics and chemistry must

be considered together to understand cytoskeletal dynamics in living cells.

3.1 Introduction

Actin filaments play central roles in important cellular processes such as motil-

ity, division, morphogenesis, cell shape regulation and mechanosensation. In cells,

actin monomers polymerize into dynamic filaments that form an entangled network.

Filaments in the network are constantly undergoing changes such as polymerization

and depolymerization, branching and severing/fragmentation. This dynamic mor-

phological change enables the network to remodel itself in response to external stim-

uli. Actin polymerization and depolymerization have been studied in vitro and in

vivo [15, 56, 57]. The mechanical properties of actin networks also have been exam-

ined in a range of experiments, from single filaments [58–60] to networks with actin

associated proteins [61]. These experiments demonstrate that actin possesses unique

mechanical and chemical properties, yet many of these observations have not been

explained theoretically. In particular, there does not exist a unified model where the

mechanics and chemistry of actin are considered together on an equal footing. Here,

we develop such a mechanochemical model, and demonstrate that forces can have
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a strong influence on actin chemistry. This mechanochemical coupling may explain

some of actin’s unique properties in the cell. The model is also applied to examine

the role of several actin associated proteins. The model represents an intermediate

scale description of actin filaments, which provides a crucial link from the molecular

scale to the cytoplasmic cellular scale.

There have been many important studies on the unique roles of actin in the cell.

For instance, a molecular mechanism of actin-driven cell motility, together with the

action of actin associated proteins have been proposed [56, 62, 63]. Actin filaments

polymerize at the cellular leading edge, and extend the membrane forward. Arp2/3

promotes branching of new filaments from existing filaments. Slightly behind the

leading edge, ADF/cofilin promotes severing of existing actin filaments [56, 64, 65]

while transmembrane integrin adhesions form between filaments and the extracellular

substrate to anchor the leading edge. These processes are known to control the

filament length distribution and dynamics of filament turnover [66, 67]. Dynamics

of actin filaments is also known to be involved in other important cellular functions

such as endocytosis [68, 69] and cytokinesis [69, 70]. A common feature during these

processes is that actin filaments are under the action of mechanical forces, either

from the cell membrane or molecular motors. Actin network remodeling, together

with the activity of non-muscle myosin II and adhesion molecules, also play a crucial

role in cellular mechanosensation [71–73]. A recent modeling study has shown how

actin-myosin bundles (stress fibers) can form in response to cell substrate mechanical
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stiffness [73]; although, it is also pointed out that actin filaments alone can have

mechanosensing properties [74]. These properties mostly arise from structural changes

in the actin filament under external forces. Therefore, an improved understanding of

actin mechanical response and how forces can regulate actin chemistry are important

for elucidating the mechanisms of actin function in the cell.

Actin filament is a staggered double helix formed by nucleation and directional

polymerization of G-actin monomers [57]. The monomers that polymerize on the

same helix are connected via longitudinal bonds (non-covalent interaction) while the

monomers on two opposite helices interact through diagonal bonds. The intrinsic

bond energy of a longitudinal bond was shown to be three times larger than a diagonal

bond [75]. The filament subunits can be found in three bound nucleotide states,

ATP, ADP and the reaction intermediate ADP.Pi. The bonds between subunits

with ATP are lower in free energy [76]. Recent studies [77–79] have proposed full

atomistic models of actin filaments by fitting the known atomic structures of G-

actin monomers into low resolution electron microscopy images. However, there is

accumulating evidence that F-actin is an inherently polymorphic filament [74,80–82].

The structural polymorphism also potentially affects the mechanical properties of

single filaments.

Mechanical properties of actin filaments and networks have been studied exten-

sively [21,61]. In particular, computational [83,84] and experimental [58–60,85] stud-

ies on the persistence length of the actin filament have been performed. Although the
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Figure 3.1: A coarse-grained model of an actin filament. (A) The model represents
the filament as two helical chains of monomers staggered with respect to each other.
The configuration of the filament is described by bond distances, bond angles and
local material frames attached to each monomer (see Methods). (B) The interaction
between intra-strand monomers is defined by bond distance l, relative twist angle θ,
and relative bending angle φ. (C) The interaction between inter-strand monomers is
defined by bond distance d, relative twist angle ϕ, and relative bending angle ψ. For
detailed definitions, see Methods.
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average persistence length with all subunits in the ATP state (F-ATP) is about 17µm,

the data shows a large variation ranging from several to a few tens of microns [59].

One of the factors that can affect bending stiffness is the nucleotide state of the sub-

units, i.e., ATP or ADP [58, 86]. From computational studies, F-ATP was found to

be twice as stiff as F-ADP, and this is attributed to a structural change of DNase

I-binding loop in subdomain 2 [87,88]. The identity of the bound nucleotide is not the

only factor that could affect filament stiffness. Due to the helical structure of F-actin,

mechanical coupling of bending and twist was shown to be important, especially for

short filaments [89]. In addition, factors such as ions, pH, drugs and other proteins

can change filament behavior [58]. Actin interacts with more than a hundred different

actin binding proteins (ABPs) and these interactions alter the intrinsic mechanical

properties of actin filaments and networks. Among these, Arp2/3 and Cofilin are

two well studied examples [90, 91]. Cofilin cooperatively severs actin filaments by

increasing the intrinsic longitudinal bond length and decreasing the pitch of the stag-

gered helical actin structure while the actin filament length stays the same [74,92,93].

Also, Cofilin-decorated actin filaments are experimentally found to be 4 times softer

than standard F-Actin [93]. It was shown that the most probable location of sev-

ering on the filament is at the boundaries between cofilin decorated and bare actin

region [94, 95]. On the other hand, Arp2/3 promotes actin filament branching by

nucleating new filaments at an angle 70◦ with respect to the mother filament [96].

A recent experimental study demonstrated that Arp2/3 binds preferentially to the

51



convex side of a bent filament [97]. This has clear implications on filament branching

especially at the cellular cortex region where actin is under large bending forces.

Chemical and mechanical properties of actin have been two separate directions

for modeling studies. Extensive experimental studies [15] have provided rich infor-

mation on chemical kinetics of actin and its binding partners, and paved the way for

elaborate simulations [95,98–102]. Mechanical behaviors of actin monomers [87] and

filament models [84, 93] have been studied with detailed molecular dynamics (MD)

simulations. However, MD currently cannot access filament-scale biologically rele-

vant phenomena. Therefore, coarse-grained (CG) models have been proposed at the

cost of lost atomistic detail [83,103–105]. Elastic rod theory has been also previously

used to study F-actin buckling and force production [106] and filament severing by

cofilin [107]. These studies provide important insights into global F-actin behavior.

How the global behavior is affected by the interaction between helical strands and

nonlinearities such as local perturbations on elasticity, single actin subunit kinemat-

ics and cooperativity yet remains as an active area of research. To fully understand

the role of actin in the cell however, it is important to develop models that can ex-

amine the interplay between mechanics and chemistry [108]. Currently, a detailed

mechanochemical model of actin filaments does not exist. In this work, we build a

simple mechanical model of the actin filament that can simultaneously compute fila-

ment deformations as well as internal chemical kinetics. We parameterize the model

using available experimental and computational data, and use the model to address
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chemical state changes when the filaments are under external forces. The model com-

bines stochastic chemical dynamics with mechanical deformations. We outline the

basic framework of the model in the next section. After the discussion of the ob-

tained results, we address how the model can be improved for larger scale simulations

and predictions.

3.2 Methods

The undeformed actin filament is a straight double helical structure shown in

Fig.3.1A. The monomer is roughly 6 nm in diameter and the pitch of the double helix

is 72 nm [109]. Within the double helix, monomers bind to each other through

non-covalent interactions, forming longitudinal bonds between monomers in each

helical strand and diagonal bonds between adjacent monomers in opposite helical

strands [75]. The monomer is also structurally asymmetric. Therefore, the configu-

ration of the monomer is described by the position of its center of mass as well as a

coordinate frame that describes its orientation in space. We describe the interaction

between actin monomers using a set of linear and angular bonds. The bond variables

are described in Fig.3.1.

In addition to the mechanical model, monomers in F-actin can have either ATP,

ADP.Pi or ADP in the nucleotide pocket. The mechanical properties of the monomers

depend on its chemical state. Therefore, our mechanical bond model depend on the
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Table 3.1: Bond stiffness parameters, bond free energies and intrinsic geometric param-
eters for our model.

ATP–ATP ADP–ADP

k` [pN/µm] 4.8× 106 4.29× 106

kθ [pN·µm] 0.27 0.12

kφ [pN·µm] 0.33 0.17

kd [pN/µm] 9.99× 103 9.71× 103

kϕ [pN·µm] 5.4 5.1

kψ [pN·µm] 1.2 0.5

∆Glong [kBT ] −20.07 −18.07

∆Gdiag [kBT ] −8.08 −6.08

`0 [nm] 6.00 6.00

θ [◦] 28.55 28.55

φ [◦] -6.43 -6.43

d0 [nm] 6.00 6.00

ϕ0 [◦] 104.27 104.27

ψ0 [◦] 60.00 60.00
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chemical states of the monomers. In this work, we specify the parameters for ATP-

ATP and ADP-ADP bonds (Table 3.1).

Finally, when actin filaments are under external force, the applied force will in-

fluence chemical transitions in the monomers. We investigate the influence of this

mechanochemical coupling by developing a simple model for the transition rate be-

tween chemical states. We use this model and the Gillespie simulation algorithm to

investigate how F-actin deforms under forces.

3.2.1 The Mechanochemical Model

Binding interaction between actin monomers can be thought of as a deformation

free energy as a function of the vector connecting the centers of mass and relative ori-

entations of the coordinate frames. Such a model would involve 6 kinematic variables,

3 for translation and 3 for rotation, but would have a large number of parameters,

most of which are currently unknown. For describing bonds between actin monomers,

however, motions that give rise to sliding of one monomer on the surface of the other,

and rolling of the monomers with centers of mass fixed are likely not allowed (note

that in both cases, the bond length remains the same). These motions should not

be introduced because they lead to dislodging of the actin-actin binding interface.

This eliminates two translational variables and a rotational variable. Therefore, the

simplest model involves three variables, describing the distance between the centers

of mass and two angular variables related to the relative orientations of the coordi-
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nate frames (Fig.3.1). Each longitudinal bond is parameterized by the bond length `,

torsion angle θ, and bond angle φ. Likewise each diagonal bond vector d is described

with bond length d and two angular variables ϕ and ψ. The definitions of variables for

the longitudinal and diagonal bonds are shown in Fig.3.1B and C. These kinematic

variables can all be written as functions of monomer positions pi.

Binding free energies for longitudinal and diagonal bonds have been reported

in the literature [75]. The mechanical free energy as a function of the kinematic

variables, however, is likely complicated. Here we consider small deformations and

expand the free energy to quadratic order around the equilibrium geometry of the

filament. Specifically, we consider an expansion of the free energy E around the

reference configuration: E = E0 + 1
2

(v − v0)
T ∂2E
∂v2

∣∣∣
v0

(v − v0), where v is the vector

of kinematic variables (`, θ, φ, d, ϕ, ψ), and ∂E
∂v

∣∣∣
v0

= 0. E0 is a constant that is the

energy of the reference configuration, and the second term is written as a sum of

quadratic terms without bilinear coupling. In total, the free energy can be written as

E =
2∑

n=1

Nb∑
i=1

(
∆Glong + U

(n)
i (`

(n)
i , θ

(n)
i , φ

(n)
i )
)

+

Nd∑
j=1

(
∆Gdiag + V (j)(dj, ϕj, ψj)

) (3.1)

where

U
(n)
i =

1

2
k`(`

(n)
i − `0)2 +

1

2
kθ(θ

(n)
i − θ0)2 +

1

2
kφ(φ

(n)
i − φ0)

2 (3.2)

with n = 1, 2 denoting the identity of the strand, and

V (j) =
1

2
kd(dj − d0)2 +

1

2
kϕ(ϕj − ϕ0)

2 +
1

2
kψ(ψj − ψ0)

2. (3.3)
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Here, ∆Glong and ∆Gdiag denote the bond free energies for the longitudinal and diag-

onal bond, respectively. Nb denotes the number of longitudinal bonds in each helix,

which is also related to the number of monomers Nm in each helix as Nb = Nm − 1.

Nd denotes the number of diagonal bonds and is given as Nd = 2Nm − 1. When

external forces are applied, the filament will deform and change shape, the work done

by the external force is included in the energy by adding the work term as

W = −f · p2Nm (3.4)

where p2Nm denotes the position of the monomer at the distal end where external

force f is applied. The center of mass positions and the coordinate frames of the

first monomers of each strand have been fixed. These frames are chosen such that

the centerline of a relaxed filament lies along the z-axis. The direction of f is par-

allel to z-axis for stretching and orthogonal to z-axis for bending. The mechanical

equilibrium shape of the filament is obtained by minimizing the total energy with

respect to the positions and orientations of all monomers for the given boundary

conditions. Therefore, for a purely mechanical treatment of F-actin, the equilibrium

conformation depends only on the equilibrium bond variables but not the intrinsic

bond energies. One can also examine thermal fluctuations around the mechanical

equilibrium configuration using this model.

An important feature of actin is that the monomer can adopt different chemical

states. Thus, all of the model parameters in Eq. 3.1 are potentially functions of the

chemical state of the monomer (Table 3.1). In principle the monomers can have ATP,
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ADP.Pi or ADP in the nucleotide pocket. Transitions between these chemical states

are described by rate constants. The rate of irreversible hydrolysis of ATP to ADP.Pi

within the subunits is on the same order of F-actin polymerization and the conversion

from ADP.Pi to ADP state is 100 times slower than ATP-ADP.Pi hydrolysis [15]. As

a result, in a filament, the number of subunits with ADP.Pi and ADP is significantly

higher than that of ATP subunits. Here we consider a simplified set of chemical states

by representing ADP.Pi state as an ATP state and assume that these two states have

similar bond energetics and mechanical properties.

The bond free energies, ∆Glong and ∆Gdiag, are dependent on the chemical state

of monomers involved in each bond and ∆Glong is significantly lower than ∆Gdiag [79].

For example, when both monomers are in ADP states, it is estimated that ∆Glong =

−18.07 kBT and ∆Gdiag = −6.08 kBT [75]. Here kB and T denotes the Boltzmann

constant and absolute temperature, respectively. ATP hydrolysis in actin filaments

has been shown to be fast and irreversible, and ADP.Pi state is the intermediate and

rate limiting state [15]. In physiological conditions, the actual free energy difference is

small (<0.5 kBT ), albeit a decreasing function of inorganic phosphate concentration

in the medium. For illustrating mechanochemical effects, we use 2kBT [76] as the

free energy difference in this work, with the understanding that Pi concentration can

influence this number. From this information, we can infer the intrinsic free energy

for ATP-ATP and ATP-ADP bonds, which is listed in Table 3.1.

In addition to bond energies, bond stiffnesses (k`, kθ, kφ) and (kd, kϕ, kψ), as well as

58



equilibrium configurations (`0, θ0, φ0) and (d0, ϕ0, ψ0) are all potentially functions of

monomer chemical state. There is potentially a set of parameters for each ATP-ATP,

ATP-ADP and ADP-ADP bond. From actin filament structural studies, there is no

evidence of structural differences between ATP and ADP filaments. For example, if

`0 is different in ATP vs. ADP monomers, the overall length of the filament would

depend on the monomer chemical state. Therefore, we assume that the equilibrium

configurations are independent of the bond type. However, mechanical properties of

the filament does depend on the nucleotide states, and therefore there are potentially

three sets of stiffnesses in our model. How we obtain the ATP-ATP and ADP-ADP

stiffness parameters are discussed in the next section. We also assume that ATP-ADP

stiffness parameters are the average of the ATP-ATP and ADP-ADP parameters.

Transitions between chemical states are usually described by chemical reaction

rates. Because the configurations of the monomers can potentially change with

the chemical state, the reaction rates are not constants but are reaction rate func-

tions [110,111]. This framework has been used for muscle contraction [112], molecular

motors [110, 113] and enzyme turnover [114] in general. Indeed, if the global confor-

mation of actin is somehow fixed, hydrolysis would still proceed. Therefore, the total

energy of the filament is actually a function of monomer positions, pn and monomer

chemical states

E ≡ E(p1, . . . ,p2Nm , s) (3.5)

where s is an integer that labels the chemical state of the filament. If each monomer
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can be in ATP or ADP states, then s ranges from 1 to 22Nm . If we are interested in

rupture of actin filaments, the bonds between monomers can also break. This implies

that the number of states is potentially 22Nm×(2Nb+Nd) (see below). The transition

rate functions satisfy detailed balance

ks→s′

ks′→s
= exp

[
−β(E(p1, . . . ,p2Nm , s)− E(p′1, . . . ,p

′
2Nm

, s′))
]

(3.6)

where (p1, . . . ,p2Nm) and (p′1, . . . ,p
′
2Nm

) are the mechanical equilibrium configura-

tions for the s and s′ states, respectively. Note that these chemical state changes can

occur at different monomer configurations, consistent with the idea that monomers

can hydrolyze and turnover ATP at different rates at different configurations. In

addition, we assume that the monomer configurations reach mechanical equilibrium

much faster than the chemical transition rates. This is usually the case where pro-

tein conformation relaxation is on the order of microseconds or less. In contrast, the

hydrolysis rates are on the order of 0.1s−1. Therefore, the chemical transitions occur

at configurations of mechanical equilibrium in state s before the reaction occurs.

Detailed rate functions for chemical state changes have been measured for mechanopro-

teins such as myosin [115], but have not been measured for actin. A simple model

that is consistent with the detailed balance condition is to write

ks→s′ = k0s→s′ exp

[
−1

2
(E(p1, . . . ,p2Nm , s)− E(p′1, . . . ,p

′
2Nm

, s′)−∆ε)/kBT

]
(3.7)

and

ks′→s = k0s′→s exp

[
1

2
(E(p1, . . . ,p2Nm , s)− E(p′1, . . . ,p

′
2Nm

, s′)−∆ε)/kBT

]
(3.8)
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Figure 3.2: Force-induced chemical state change of monomers in actin filaments. As
a schematic example, ATP-ATP bond and ATP-ADP bond energies are plotted as a
function of bond length. At equilibrium, l0, the ATP-ATP bond is favored. However,
due to differences in the bond stiffness, as the bond is stretched, the ATP-ADP bond
can become favorable, leading to a change in the monomer chemical state.

where ∆ε is the free energy change of filament in absence of mechanical terms U
(n)
i

and V (j); ∆ε = 2(∆Glong(s) − ∆Glong(s′)) + (∆Gdiag(s) − ∆Gdiag(s′)). k0s→s′ is the

transition rate in the absence of mechanical forces. In the absence of forces, the rate

functions are evaluated at the strain-free configuration. In this case, U
(n)
i and V (j)

are zero, and the rates reduce to the force-free reaction rates, which obeys detailed

balance:

k0s→s′

k0s′→s
= exp [−β∆ε] (3.9)

Note that these chemical rate functions are phenomenological. The actual rates

should depend on how mechanical work changes the transition state energy of these

chemical reactions. For a 1-D chain of linear springs, if ATP-ATP springs have
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a different stiffness than ATP-ADP bonds, then as the strain increases, the bond

energies of these states can become equal, suggesting higher probabilities of ATP-

ADP conversion (Fig.3.2). If the bond stiffnesses are the same, but the bond lengths,

`0, depend on the bond type, then the direction of the applied force would influence

ATP to ADP conversion. Since the difference in bond energies is typically small,

small forces can have significant effects on ATP conversion in actin filaments.

With these rate phenomenological functions, then it is straightforward to perform

simulations of actin filament mechanical deformation and ATP hydrolysis simultane-

ously. We use the Gillespie algorithm to perform stochastic transitions and energy

minimization to find mechanical equilibrium configurations [113]. Note that when

external forces are applied to filament, energy differences between states will change,

leading to faster conversion of ATP to ADP in monomers. In addition, if actin

monomer bonds are allowed to break, the mechanical work done by external forces

will enhance the rate of bond breakage, leading to filament rupture. The concept here

is similar to fracture mechanics which also relates the rate of fracture with the total

energy change.

3.2.2 Estimation of Model Parameters

To perform mechanical deformation calculations, stiffness parameters for each

spring in our model are needed. We have six stiffness parameters: k`, kθ, and kφ

for a longitudinal bond, and kd, kϕ, and kψ for a diagonal bond. Although the free
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energies of these bonds have been estimated, these stiffness parameters have not been

measured. However, we can use mechanical deformation data such as stretching to

determine the model parameters. Recently, Chu and Voth [83] reported the force-

extension curve with coarse grained molecular dynamics (MD) model for the actin

filament in both ATP and ADP states. The length of the actin filament under con-

sideration was 0.106 µm. We used this as a reference for the comparison of stretching

deformation from our model. Table 3.1 shows the stiffness parameters obtained by

matching our model stretching results with the MD results.

The equilibrium configurations (`0, θ0, φ0) and (d0, ϕ0, ψ0) are also potentially func-

tions of monomer chemical state. This would imply that ATP-actin filament would

have a slightly different conformation than ADP-actin filament. From crystal struc-

ture as well as cryo-electron microscopy studies, there is no evidence that the global

filament shape depends on monomer chemical state. Therefore we assume these pa-

rameters are constants.

The mechanical model here is similar to the work in [89] which defines a biopoly-

mer using single monomers and their interactions. However, while [89] derives me-

chanical parameters from microscopic data (bond stiffness, subunit interface area and

geometry), in the current work we obtain these parameters from global mechanical

properties of a filament. To investigate the possible significant effects of the choice of

parameters, we performed sensitivity analysis of filament deformation as a function

of changes in mechanical parameters (Table3.2). For the stretching case 400 pN, and
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Table 3.2: Percent change in bending and stretching strain due to 1 percent perturbations
on the stiffness parameters

k` kθ kφ kd kϕ kψ

F-ATP Bend 0.91 0.31 5.72 0.09 0.04 0.18

F-ATP Stretch 9.04 0.08 0.13 0.16 0.04 0.60

F-ADP Bend 0.84 0.26 4.37 0.12 0.05 0.19

F-ADP Stretch 9.21 0.08 0.12 0.10 0.04 0.49

for the bending case 10 pN force were applied as explained in the previous section.

The filament length in the simulation is 0.232 µm. We perturbed each parameter by

increasing or decreasing individually by 1 % to obtain the average percent changes.

In case of stretching, the linear spring of the longitudinal bond, k`, is the most sen-

sitive and the second sensitive is kψ. In case of bending, one of angular springs kψ in

the diagonal bond is the most sensitive and k` is the second sensitive. This applies

regardless of the chemical state of monomers. From this, one can see that the linear

spring in the longitudinal bond is important in the mechanical response to external

forces. When it comes to pure twist, one can infer that kθ will contribute the most.
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Figure 3.3: Mechanical properties of an actin filament according to the coarse-grained
model. (A) Stretching strain as a function of force, f, filament length and filament
type, F-ATP (solid lines) or F-ADP (dotted lines). (B) κ, stiffness of filament twist-
stretch coupling, is shown as a function of filament length, F-ATP (solid lines), F-ADP
(dotted lines). Shown in inset is the increase of average pitch of 0.46µm long filament
as a function of stretching strain. (C) Bent configuration of a 0.145µm F-ATP and the
best fit 2D (x− z plane) thin rod as seen from two different viewing angles. Applied
bending force is in x-direction with a magnitude of 4 pN. (D) Percent contribution of
the out-of-plane filament tip deflection to the overall tip deflection due to bending as
a function of filament length. Applied bending force is 0.2 pN. F-ATP (solid lines), F-
ADP (dotted lines). Inset shows the amount of out-of-plane tip deflection for different
filament lengths and bending forces, 0.2 pN (solid line), 4 pN (dashed line).
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3.3 Results

3.3.1 Model Predictions of F-actin Deformation

Under Load

We utilize our F-actin model to investigate mechanical deformation as a function

of the applied force. Stretching and bending deformation calculations are performed

for varying filament lengths and applied forces. In each calculation, we consider

changes in the chemical state of the monomer: i.e., where all the monomers are either

in ATP or ADP states, respectively.

In Fig.3.3A, the equilibrium strain, ε = (l− l0)/l0, as a function of stretching force

f is plotted for several different forces and lengths. As expected, an actin filament

with ADP in the catalytic site is softer than with ATP. We find that ε is a linear

function of the applied force for up to f = 200 pN. The stretching modulus can be

computed by analyzing the strain as a function of force. We find that the modulus

is µ = 250MPa. In cases where there are a mixture of ATP and ADP monomers

in the filament, the modulus is also well described by an interpolation relationship:

µ = xµATP + (1− x)µADP , where x is the fraction of ATP monomers.

While F-actin is quite stiff under stretch, because it is helical, stretching defor-

mation is naturally coupled to filament twist. This coupling has been discussed as a

possible mechanism of mechanosensation [74]. We define κ as the stretch-twist cou-
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pling parameter: f = κΘ, where f is the magnitude of the stretching force and Θ

is the induced twist at the end of the filament. Fig.3.3B shows κ as a function of

filament length, L. The error bars represent results from different stretching forces

(20, 100, 200, 400 pN). The plotted relationship obeys the power law κ ∼ Lb where

b is around -3/2. In the inset of Fig.3.3B, we see that the F-actin pitch also changes

(shown for 0.46 µm ATP filament) as a function of stretching strain. These results

indicate that a helical structure must naturally couple twist with the tension in the

filament. If there are actin-associated proteins bound on the filament, binding kinetics

and conformations of these proteins would be affected by tension. This could be an-

other underlying mechanism during cellular mechanosensation where actin filaments

are pulled by myosin motors in stress-fibers.

A helical structure such as F-actin will also respond with out-of-plane bending

when a force is applied perpendicular to the filament. This is caused by bend-twist

coupling, which is also common in other helical bundles such as the coiled coil [50].

Using a different model, the twist-bend coupling length of F-actin was predicted to

be 0.4 µm [89]. This result can be compared to the elastic thin rod theory which is

a standard methodology in defining mechanical properties of biofilaments. Fig.3.3C

shows the bending geometry of a 0.145 µm ATP actin filament and the best thin rod

theory comparison. In Fig.3.3D, we quantify the out-of-plane deflections in terms

of filament length, amount of bending force and monomer chemical state. From our

results, we see that the thin rod theory predicts no out-of-plane bending and therefore
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Figure 3.4: Persistence length Lp derived from the mechanical model and the effect of
broken bonds. (A) Lp prediction obtained from fitting thin rod theory to deformations
in intact filaments (solid lines). Dotted lines with errorbars represent the mean and
standard deviation in Lp for filaments with randomly broken bonds (see text for
details). All the filaments are bent under 1 pN force. Different chemical states of
the filaments are denoted as F-ATP (triangles) and F-ADP (circles). (B) The ratio
of bending deflection of a filament with a broken longitudinal bond at a particular
index (abscissa) to the deflection of an intact filament. Filament length is 0.29µm
and bent under 4 pN.

is not an accurate model for short actin filaments. For long filaments (> 1µm), the

out-of-plane bending is less important. The inset of Fig.3.3D shows that the amount

of out-of-plane deflection levels out once a critical filament length and bending force

are reached.

68



3.3.2 Bending persistence length and effects of bro-

ken bonds

Bending properties of F-actin is important for understanding the mechanical be-

havior of the cellular cytoplasm and the dynamics of actin network remodeling under

force [61]. In the cell, actin filaments also experience forces from membranes and

other proteins, as well as forces from thermal fluctuations [99]. Therefore, it is possi-

ble that some of the bonds in the filaments are broken. In addition, monomers in the

filament can be either in ATP or ADP states. From the bending simulation results,

we can estimate the bending persistence length, Lp, by comparing the bending results

of our model with those from the elastic thin rod theory. This comparison serves as

a verification of our model and enables us to explore the role of broken bonds and

filaments with different monomer chemical states in determining the overall actin

network mechanics.

Fig.3.4A shows the obtained bending persistence length values of F-actin with

different structural conditions. The obtained persistence lengths of an intact F-ATP

and intact F-ADP under 1 pN force are in good agreements with the reported val-

ues [58, 59], 16 ∼ 9 µm. Note that due to helical nature of the filament, there is

some length dependence in Lp. In the second set of the simulations, 5% of all the

bonds in the filament are randomly broken. This calculation is repeated 20 times

and bending data are averaged. The corresponding error bars for ATP and ADP
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filaments are shown in Fig.3.4A. As the portion of broken bonds increases, the mean

persistence length decreases and the standard deviation increases (data not shown).

Note that we compute the persistence length from the comparison of the bending

deflection (tip-to-tip vector) projected onto the plane of the applied force because

thin rod theory predicts the shape of a filament only in 2D (See Fig.3.3C). Strictly

speaking, if we include out-of-plane deflection due to the bend-twist coupling effect,

the corresponding persistence length would be slightly lower than the values shown.

However, bend-twist coupling is not significant in longer filaments and therefore is

ignored.

The physical location of the broken bond on a filament also strongly influences

the overall bending of the filament under force. In Fig.3.4B, we show the ratio of

the bending deflection of a 0.29 µm filament under 4 pN with a broken longitudinal

bond at a particular index of one strand to the deflection of an intact filament. We

observe that broken bonds that are closer to the fixed boundary increase the amount

of bending deflection. The effect of the location of the broken bonds on bending also

diminishes as filament length increases. We do not observe any significant difference

due to breaking of diagonal bonds.
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Table 3.3: Model parameters for bonds in a Cofilactin filament

Parameter Value

`0 [nm] 6.20

θ [◦] 34.94

φ [◦] -9.34

d0 [nm] 6.00

ϕ0 [◦] 107.47

ψ0 [◦] 58.80

3.4 Influence of Actin Binding Proteins

In the cell, a large number of actin binding proteins (ABPs) interact with the

filament network and alter the biochemical and mechanical state of the network.

Our model can be used to investigate the influence of actin binding proteins on the

filament structure. There have been studies of ABPs interacting with actin using

MD. In our modeling approach, we can describe the role of ABPs by considering how

these proteins can change structural parameters such as (`0, θ0, φ0) and/or stiffness

parameters (k`, kθ, kφ) for each monomer. Binding of a single ABP can potentially

change these parameters for the bound actin, and these local changes can be amplified

to global changes in the actin structure.

Changes in the F-actin pitch upon ABPs binding has been observed experimen-

tally [92, 116]. ADF/Cofilin is an important ABP whose cellular function is to sever
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actin filaments by introducing local mechanical deformations. Cofilin binds between

two actin monomers and affects the actin-actin longitudinal bond. Therefore, its

function can be modeled by changing the longitudinal bond parameters while leaving

the diagonal bond unchanged [93]. To obtain the change in `0 in response to cofilin

binding, we can consider the relationship between the helical pitch and the helical

contour length while keeping the filament length and radius fixed. A helical contour

is described by the vector r(t) = (r0 cos at, r0 sin at, bt) where the contour length t

ranges from [0, L]; a = 1/(r20 + (P/2π)2)1/2, b = (P/2π)/(r20 + (P/2π)2)1/2 and P

is the helical pitch. If the contour length changes from t to t′, the changes in the

filament length is given by
√
gb′L − bL, where ∂t′/∂t =

√
g is the change in heli-

cal contour length, and b′ is obtained with the new pitch P ′. Since cofilin does not

appear to change the filament length, we can solve for
√
g and P ′ using the equa-

tion
√
gb′L − bL = 0. Fig.3.5A shows the solution of this equation plotted as

√
g

vs. P ′. This result suggests that the new actin-actin bond length with cofilin, `′0, is

approximately 1% longer, and the pitch of the cofilin decorated filament is roughly

60nm.

In addition to a change in `0, [117] also showed that upon binding of cofilin,

actin monomers tilt towards the helical contour axis by 6-12◦. This corresponds to

a modification of φ0 in our model. Table 3.3 shows the model parameters for the

cofilin modified actin-actin longitudinal bond. Fig.3.5B shows the overall filament

conformation with a number of monomers decorated with cofilin. As noted by recent
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studies [95], we observe that maximum strain occurred at the boundaries between

decorated and non decorated monomers. Finally, Fig.3.5C shows the possible coop-

erativity when 2 cofilins are bound to the same filament. As cofilin changes the bond

parameters of a single longitudinal bond, it induces local mechanical strain on the

neighboring bonds. We can compute the total strain energy of the filament as a func-

tion of distance between 2 bound cofilins. We define ∆E as the difference between

the energy of a single filament with 2 cofilins and 2 times the energy of the filament

with one cofilin. This difference can be thought of as a cooperative binding energy.

Fig. 3.5C shows that this cooperativity is generally favorable when 2 cofilin

molecules are in the near vicinity. The degree of cooperativity decreases as the dis-

tance between two cofilins increases. Also, we observe that there is anticooperativity

beyond two second nearest neighbor cofilins (i and i±2). Another way to understand

the action of cofilin is that it introduces a local mechanical defect; these defects can

interact over long distances, leading to anticooperativity. Note that by stretching the

actin-actin bond, cofilin also catalyzes conversion from ATP-actin to ADP (see next

section). This leads to eventual filament severing.

Arp2/3 is another actin binding protein whose main cellular function is to nucle-

ate new filaments by creating a branch from an existing filament. A recent study [97]

showed that Arp2/3 preferentially binds to the convex side of a curved filament con-

fined on a 2D surface. They explained this phenomena by treating the actin filament

as a structureless rod and considering curvature fluctuations of the filament. They
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Figure 3.5: Influence of actin binding proteins. (A) The stretch (or compression)
strain in the longitudinal bond lengths, l, for a fixed filament length and radius
(see text). The stretching strain is shown as a function of changing pitch. (B)
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manner. Blue monomers are decorated with cofilin. (C) Cooperative binding energy
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(D) Conformation of a 1.01 µm F-ATP bent under 0.5 pN. (E) Longitudinal bond
strains of the filament shown in D. (F) Angular strain on the longitudinal bonds of
the filament shown in D. In both (E) and (F), the peaks and valleys labeled by Ai
and Bi corresponds to the outer in inner positions labeled in D.
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proposed that Arp2/3 prefers to bind to highly curved configurations, and bending bi-

ases the curvature fluctuation. Within our model, actin is a double helix, and without

considering fluctuations, we can examine the equilibrium structure when the filament

is curved. Specially, we can examine the strains in the actin-actin bonds when the

filament is curved. Fig.3.5D shows a 1.01 µm F-ATP bending under 0.5 pN. Fig.3.5E

and F show the linear and angular strain in the bonds in the bent structure shown in

Fig.3.5D. The results show that the strain in the inner strand (measured with respect

to positive curvature as shown in Fig.3.5D inset) is different than the outer strand.

This result is obtained for mechanical equilibrium structures without considering fluc-

tuations. It arises because of helical nature of F-actin. Arp2/3 could potentially bind

between actin monomers with positive strain, and therefore preferentially bind on the

outer strand of positively curved filaments.

3.5 Force-induced Chemical State Change

and Mechanosensation

In earlier results, we showed that the mechanical properties of F-actin depends

on the hydrolysis state of the monomers. ATP-actin, even though is structurally

very similar to ADP-actin, at the filament level is slightly stiffer. The consequence of

such a mechanical difference is that externally applied forces can alter the chemical

state of monomers in the filament. The basic concept is shown in Fig.3.2. If the

75



bond energy is plotted as a function of the monomer-monomer bond length, then

the equilibrium length, l0, is identical for ATP-ATP bond vs. ATP-ADP bond. The

free energy difference of ATP-ADP bond is taken to be as higher by 2kBT . (Other

energy differences can be used as well, and would change the quantitative influence

of force on actin chemistry.) As a force is applied and l increases away from l0, the

difference in the curvature of the energy landscape will lead to a crossing point. At

this point, ATP-ATP bond has the same free energy as the ATP-ADP bond, therefore

the probability of converting one of the monomers to ADP is enhanced. As l increases

further, the ADP-actin state becomes more favorable. Thus, the equilibrium between

ATP and ADP states (actually ADP.Pi and ADP states) is influenced by forces and

changes in the mechanical energy. In the Model section, we discussed a simple model

to modify the rate constants while preserving detailed balance. The actual rates may

differ quantitatively, but the overall effect must remain the same.

Using the Gillespie stochastic simulation algorithm, we computed ATP-actin fila-

ments under bending forces up to 60 pN and stretching forces up to 600 pN and allow

the monomers to change their chemical state. As forces are applied, the individual

monomers stochastically change their chemical state according to rate constants de-

fined in Eqs.3.7 and 3.8. The rate constant, k0s→s′ , has been estimated [15]. Here

we report the equilibrium result as the simulation time approaches infinity. Fig.3.6A

shows the average stretching strain for a 112 nm long filament under different pulling

forces. Due to high stretching stiffness, the amount of strain buildup on the filament

76



is very small. This is the reason of why there is not a significant amount of chemical

state conversion into ADP. As the pulling force is increased, the monomers increas-

ingly convert to ADP. Eventually, at 600pN, all of the monomers are essentially in

ADP state. Note that our model currently does not allow the filaments to rupture. It

is likely that filaments would have a high probability of breaking before the filament

fully converts. Fig.3.6B shows the bending deformations while the chemical states of

the monomers are changing. We see that if monomers are allowed to convert to ADP,

the bending stiffness decreases as a function of applied force. This observation could

potentially explain the reversible stress softening behavior of F-actin [118]. Fig.3.6A

and B also show the average chemical state of the filament under force with a color

code (between red and green). For the bending case, together with Fig.3.3F, we can

conclude that the monomers under highest strain are closest to the left end which is

fixed. This is the reason why ADP rich monomers tend to appear in those locations.

Note that the magnitude of the bending forces can be quite low. At 20pN, there is

already a significant amount of conversion to ADP. For longer filaments (Fig.3.6C),

smaller bending forces are needed to induce chemical state change because of the

larger mechanical work done.

The results presented in Fig. 3.6 do depend on the choice of ∆ε, the difference

in bond free energies of ATP and ADP states. As an alternative, we may consider a

different parameter set in Table 3.1 with different relative magnitudes of diagonal and

longitudinal bonds. For example, a smaller ∆ε would lead to increasing populations
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Figure 3.6: Loading force-induced chemical state change of monomers in actin fila-
ments. (A) Stretching induced changes in the monomer chemical state as a function
of force. The filament length is 0.11µm. (B and C) Bending induced changes in the
monomer chemical state as a function of force. In (B), the filament length is 0.9µm
and in (C) the filament length is doubled, 0.17µm. In all figures, the average confor-
mation of filaments that correspond to a particular force are compared with filaments
with all ATP or all ADP. We see that for a longer filament, changes in chemical states
are more dramatic for the same force.
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of ADP subunits [119].

3.6 Discussion and Conclusion

We have introduced a mechanochemical model of actin filaments by explicitly con-

sidering the bonding interaction between actin monomers. The filament is described

as two helical strands connected by longitudinal and diagonal bonds. The chemical

state of the actin monomers can change, and the rate of ATP conversion depends on

the overall elastic energy of the filament. As expected, we find actin filaments are

mechanically stiff under stretch, but deform easily under bending forces. The model

shows that for filament length much longer than the helical actin pitch (> 1µm),

the filament mechanically deforms as a semi flexible rod. However, the mechanical

behavior depends on the chemical state of actin. ADP-actin filaments are softer than

ATP-actin. The model is also able to capture aspects of actin accessory proteins

interacting with the filament.

The model uses a coarse-grained description of actin monomer mechanics, and does

not consider internal conformational complexity of actin, although it does include pos-

sible conformational changes due to ATP hydrolysis. Therefore, it is an intermediate

scale model in between atomistic scale and the network scale. Internal conformational

complexity can also be partially captured using nonlinear mechanical models. Here,

simple harmonic spring-like functions are assumed for monomer-monomer interaction
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with no coupling between kinematic variables. This is the simplest model that still

reproduces the essential features of actin filament mechanics. More sophisticated

models can be made, but would require increased number of parameters. Neverthe-

less, the model parameters can be obtained from molecular dynamics simulations, or

fitting to experimental data. Further studies on the model parameters would improve

model predictions.

In this model, we examined chemical state change from ATP-actin to ADP-actin.

There are in fact many more possible chemical states, and this could underlie the

mechanochemical complexity of actin networks. For instance, after ATP is hydrolyzed

to ADP, the monomer can release inorganic phosphate and break the existing actin-

actin bond, especially when the filament is under high mechanical load. This can lead

to filament rupture. Actin filament rupture has been studied experimentally with

single filaments [120]. It was found that when the radius of curvature of the filament

is less than 300nm, the rupture probability increases. Also, using simple force balance

considerations in a nerve growth cone, a recent study [121] has estimated the forces

on a steady-state actin treadmill and showed the importance of filament rupture in

resistance to retrograde flow. The framework used in this work can be extended to

describe such situations.

By understanding the full range of mechanochemical behavior of actin, improved

models of actin’s role in the cell can be made. For instance, to understand cortical

actin network contraction and stress-induced softening seen in experiments, chemical
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state changes and turnover of actin monomers in response to forces must be exam-

ined. Our model is first such model in this direction. Extrapolating to the network

scale, these mechanochemical effects will significantly influence the viscoelasticity of

the network. Combined with nucleation, growth, contraction and turnover of the

network, a quantitative model of the cellular cytoplasm can be developed. Note that

these mechanochemical effects may lead to unique network properties that are not

present in static polymer networks where bonds between monomers are essentially

permanent. Therefore, new physics may be present and could lead to surprising

mechanistic insights for the cell.
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Chapter 4

Conclusions

4.1 Summary

In Chapter 2, we examined the mechanical responses of typical coiled coils, and

built a coarse-grained mechanical model to describe the conformations of the protein

under different load configurations.

Using molecular dynamics simulations we applied bending forces onto different

length coiled coil molecules. We observed that during bending a coiled coil molecule

deflects out of the plane of the applied force. This is due to the helical structure

of constituent alpha helices and the coiled structure of the coiled coil molecule. We

demonstrate that our model when bent can capture this bend-twist coupling. The con-

tinuum thin rod theory result cannot capture this out of plane bending phenomenon.

Also, our bending results are a better fit to MD results than our predecessor WS
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model.

In order to extract the bending persistence length of our coiled coil molecule, we

first fitted the critical buckling force data coming from thin rod theory prediction.

The best fitting bending persistence length was 200 nm, twice that of individual alpha

helices. After that, we compared our coiled coil bending deflection results with the

thin rod theory prediction. Our comparison showed that the deflection predictions

are not simply matching even though we are using the same single bending persistence

parameter. This mismatch and bend-twist coupling behavior suggest that coiled coil

mechanical response cannot be fully characterized by a single parameter.

Next, using molecular dynamics simulations we extracted twist persistence length

of different length coiled coil molecules. On average the twist persistence length is 100

nm, twice that of single alpha helices. We observed that the twist persistence length

slightly decreases as a function of the coiled coil length. Twist persistence length of

our model is about 100 nm, as well. However, the predecessor WS model coiled coil

twist persistence prediction is around 160 nm. We think this result is reasonable as

the WS model assumes that the hydrophobic bonds are rigid, thus harder to twist

Finally, using our model we simulated the situation of sliding of one alpha helix

in the coil while the other is fixed. We observed that a small sliding motion is con-

formationally amplified and caused the coiled coil to make a very significant bending

response at the other end of the coil. The cost to introduce this sliding motion is

within the range of the energy brought in by a small molecule binding to a filament.
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This conformational amplification behavior was found to be increasing as a function

of coiled coil length.

In Chapter 3, we described our mechanochemical model of F-actin. We quantified

single F-actin mechanical behavior depending on the monomer chemical states, fila-

ment length, the type of the applied forces and broken bonds. Firstly, we tested the

F-Actin model under stretching and found that the strain is close to the experimental

findings. We observed that when stretched, the filament tip twists. This tip twist

increases as a function of the filament length.

Secondly, just like in the case of coiled coil, F-actin has out of plane bending and

our model captures that behavior. We found that the amount of out of plane de-

flection decreases as the filament length increases. To check the effect of the broken

bonds on the bending response, we randomly broke 5 percent of all the bonds in

different length F-actin molecules. Our results showed that the introduction of bro-

ken bonds significantly decreased the bending stiffness of F-actin. We also observed

that breaking longitudinal bonds decreases filament bending stiffness more than the

diagonal bonds.

Thirdly, we simulated the working principles of two actin binding proteins, ARP2/3

and cofilin. Cofilactin has a different helical geometry than bare actin filaments. Us-

ing this information we modelled a cofilactin filament and brought a new angle to the

cooperativity of cofilin assembly around F-actin. Our model also brings a possible

explanation of the preferential binding of ARP2/3 and can predict the exact locations
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of where F-actin would branch by ARP2/3.

Finally, using our mechanochemical model we showed that under physiological

conditions under stretching, it is very hard for an ATP-F-actin filament to convert

the ATP molecules into ADP molecules. However, during bending there is enough

mechanical strain on the bonds to make chemical conversion to ADP. We also observed

that it takes a bigger amount of load for short filaments to convert ATP to ADP in

comparison with longer filaments.

4.2 Future Outlook

The main advantage of our proposed models over the atomistic simulations is their

speed. One possible extension of our models would be going one length scale up and

using the models to efficiently simulate the network/bundle behavior of filaments.

Another advantage of our models is their capability of simulating the effect of local

perturbations on the global filament response. In our coiled coil model we have

demonstrated this with helix sliding. There are several such biologically relevant

nonlinear perturbations and our model may be a proper tool to study and understand

mechanical response of biofilaments. Also, in our coiled coil study, we only reported

the results of the model with regularly repeated hydrophobic interactions. Nature is

full of irregularities. Our model might be used to understand the global effect of such

irregular interactions as well. In our actin model we dealt with two actin binding
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proteins only, but our model is flexible enough to study other binding partners, tool.

Actin polymerization is an important area of study. In our model, we assumed

that there is no polymerization and solely focused on the mechanical response of the

filament. Although introduction of polymerization into our simulations is not hard, we

note that this would increase the simulation times by increasing the filament lengths

and number of possible destination states. In addition to actin, our mechanochemical

model framework might be used to study other mechanosensitive structures. One

such structure is the focal adhesion complex (FAC). To make a mechanochemical

model of FAC however one needs to take into account the addition or deletion of new

monomers into the complex.
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