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Abstract 

 

Tissue engineering seeks to develop biological substitutes and/or to foster the remodeling 

of tissue by manipulating cells and their extracellular environment.  One of the many 

exciting subjects under tissue engineering involve the use of mesenchymal stem cells as 

paracrine factories to stimulate vascular repair via multiple chemical pathways.  There 

has been extensive in vitro research on the efficacy of stem cell-assisted therapies. 

However, hypothesized outcomes become more nebulous when translating into the 

clinical setting due to the many factors associated with the much more complicated in 

vivo system.  Among them are the difficulty in delivering the stem cells to the desired 

locations, the lack of visual information regarding the transplanted cells, and the inability 

to ensure that the transplanted cells are viable and can undertake the intended therapeutic 

mechanisms effectively.   

 

In this thesis, we explore several strategies of microencapsulating stem cells while 

allowing the transplanted cells to be effectively visualized with conventional clinical 

scanners noninvasively.  First, we developed a platform based on droplet microfluidics to 

produce small, highly uniform, imaging-visible microcapsules without cells.  We studied 

the capsules’ physical, chemical, and imaging properties as well as tissue compatibility in 

a chronic study involving gastric embolization in pigs. We then modified the platform to 

accommodate for the co-encapsulation of stem cells and imaging agents.  Lastly, we 

explored a 3-dimensional bioprinting platform using a piezoelectrically actuated inkjet 
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printer head.   The resulting microcapsules were able to achieve more rapid throughput 

compared to the microfluidic platform and was more amenable to the use of different 

carrying solutions, including biopolymers intended to enhance the efficacy of the 

encapsulated stem cells.  The smaller microcapsules produced by our platforms also 

allow for more controlled delivery using conventional catheters when compared to the 

larger conventional cell encapsulation techniques.  
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Chapter 1 Limitations in Site-Specific Stem Cell Delivery for Cardiac 

Regenerative Therapy 

 

1.1 Introduction 

Stem cell-based therapies have emerged as a promising strategy to treat many diseases by 

attempting to provide the body with the building blocks required for the reconstruction of 

damaged organs [1]. However, due to the complex nature of tissue biology, effective 

delivery of stem cells to targeted tissues to functionally carry out the intended therapeutic 

effects is a very complex undertaking. In order to overcome the physiological barriers 

imposed on cellular therapeutics, researchers from many disciplines, including medicine, 

biology, chemistry, and materials science, have come together in a highly dynamic 

interdisciplinary research field to develop strategies to circumvent these challenges.  

Currently there are two major areas of focus regarding stem cell-based therapies.  The 

first is on improving the acute retention and subsequent survival of stem cells to 

effectively increase the efficacy of the therapy.  The second concerns proper tissue 

integration to functionally replace lost cells in damaged organs. This thesis will use the 

heart as an example to highlight the current knowledge of therapeutic stem cell utilization 

relating to tissue regeneration, the existing pitfalls and limitations, and the approaches 

that have been developed to overcome them. 

 

1.2 Stem cells as a therapeutic agent 
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Through decades of continued research in stem cell activity and its therapeutic potential, 

the scientific community have gradually moved from disease management and damage 

mitigation to the regeneration of tissue and functional restoration. Unlike protein and 

gene therapy, whose approaches are based on relatively simple macromolecules, a cell is 

one of the most complex biopharmaceuticals. Proteins have defined structures that induce 

specific responses when interacting with specific targeted receptors.  In gene therapy, an 

intended sequence of nucleic acids is delivered to the nucleus of target cells, which in 

turn produces a specific effect encoded by the affected gene.  Because the molecular 

mechanisms behind protein and gene therapy are generally well established, development 

in this area has been focused on improving the efficiency of its delivery to achieve more 

pronounced therapeutic effects. As such, protein and gene therapy approaches are 

generally most effective at targeting a single defect rather than eliciting a complex 

biological regenerative response, for which stem cells seem to be better suited. However, 

cells are far more complex to utilize as a therapeutic. On the one hand, cells contain an 

entire genome worth of genetic information capable of producing thousands of proteins. 

Merely based on the proteins that they secrete, cells can already be targeting a multitude 

of receptors.  Furthermore, cells are dynamic and are able to react and secret different 

proteins depending on the types and concentrations of biochemical cues they encounter. 

Thus, the secretory profile of a cell can be drastically different when transplanted in vivo 

compared to what is observed in vitro under controlled culture conditions.  As such, cells 

can provide unique multi-dimensional therapeutic potentials suitable for tissue 

regenerative therapies, but at the same time their complexity makes them difficult to 

study. 
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In order to better develop strategies optimal for intracardial cell delivery, it is important 

to understand the mechanisms stem cells use to repair heart tissue, and the challenges 

recent developments have faced.  Stem cells interaction with the heart can be classified 

into direct cell intervention (remuscularization-based therapy) where stem cells directly 

integrate with the cardiac muscle, and indirect cell intervention (paracrine-based therapy) 

where stem cells facilitate cardiac tissue repair by secreted factors. 

 

1.2.1 Remuscularization-based therapies 

Remuscularization-based therapies seek to repopulate the heart with cells that will help to 

restore the pump function of the heart after injury.  Cardiomyocytes are typically used in 

this type of repair.  Alternatively, cardiac progenitor cells (either somatic or pluripotent 

stem cells derived) can also be used, but would require environmental cues to drive their 

differentiation into heart muscle cells in vivo after transplantation. Therapies based on 

remuscularization rely on the functional integration of muscle cells into the diseased heart, 

where the cells must be electrically and mechanically coupled with the host tissue in 

order for the organ to function properly. Skeletal myoblast studies serve as a strong 

reminder of the specific biological requirements needed for proper coupling [2]. This 

study showed that the lack of expression of gap junctional protein connexin 43, which is 

critical for electrical propagation between adjacent cardiomyocytes, after grafting 

possibly led to arrhythmic side effects in clinical trials. Therefore, in order to act as tissue 

replacement, it is important for a cellularized therapy to adhere to the specific biological 

requirements of functional heart muscle. 
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Moreover, structural organization is also important in the cell’s integration with the host 

tissue.  In the example of the heart, striated-sarcomeric organization is of fundamental 

importance for force generation in cardiomyocytes. Consequently, this phenotypic trait 

needs to be recapitulated in the transplanted cells in order to functionally contribute in the 

injured organ. Since the myocardium is composed of cardiomyocyte networks, the 

sarcomeric architecture also needs to be properly aligned with the host myofibrils to 

allow for a coordinated contraction [2]. Furthermore, the grafted cardiomyocytes will 

also require the expression of junctional proteins, such as N-cadherin and connexin-43, 

along the intercalated disks, in order to physiologically integrate them to the host tissue. 

These intercellular connections enable the passage of ions for electrical propagation, 

which allow the grafted cells to contract simultaneously with the surrounding tissue. The 

junctional connections are also vital for force transmission from transplanted graft to the 

host myocardium, thereby enabling the exogenous cardiomyocytes to contribute to 

overall contraction of the muscle [3].  As one can see, there exists a multitude of 

organizational factors that must be well integrated in order to ensure an effective therapy 

based on direct cellular intervention. 

 

1.2.2 Paracrine-based therapies 

Stem cells can also facilitate cardiac tissue repair by secreted factors, although the exact 

targets and mechanisms by which non-cardiac progenitor cells elicit their therapeutic 

effects remain unknown.  It is now well established that new muscle formation is not part 

of the observed effect, but rather the factors released by the injected cells form the basis 
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of the therapy. These factors can stimulate endogenous pathways, inducing angiogenesis, 

reducing apoptosis, or even activating the endogenous repair mechanisms, thereby 

attenuating the damage brought about by a myocardial infarction [4]. This ability has 

become known as the paracrine effect of stem cells and covers an array of cytokines and 

growth factors released by the cells upon their transplantation. The most striking example 

of paracrine effects is found in studies in which enriched culturing medium, collected 

after in vitro propagation of progenitor cells (also known as conditioned medium), is used 

as a therapeutic agent. In some studies [5, 6], it was demonstrated that mesenchymal stem 

cell-conditioned medium alone is sufficient to protect the myocardium and stimulate 

endogenous regenerative processes. Most notably, the activation of PIK3/Akt [7] and 

ERK1/2 [8] pathways has been observed after myocardial delivery of various cell types. 

These pathways are activated by growth factor receptors, such as EGFR and VEGFR, and 

elicit powerful anti-apoptotic and angiogenic signals to the heart. Some cytokines and 

growth factors can target remodeling and hypertrophic processes [9], while others can 

even stimulate the proliferation and migration of resident progenitor cells and thereby 

initiate endogenous regeneration [10]. Another component of the conditioned medium are 

nano-sized vesicles released by cells, including exosomes [11], which have also been 

shown to play a potent role in cardiac healing by delivering cytosolic stem cell cargo 

containing microRNAs and various other intracellular components [11]. Lastly, stem 

cells, such as mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs), have 

immuno-modulatory properties. In vitro, MSCs [12] and CSCs [13, 14] have been shown 

to suppress the proliferation of immune cells, such as T-cells and B-cells, while 

selectively expanding immunosuppressive regulatory T-cells. Since inflammation after 
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the injury can lead to adverse remodeling in the myocardium, the ability of stem cells to 

reduce or modulate the overall inflammatory reaction in the heart can lead to therapeutic 

benefits. 

 

1.3 Challenges in intracardial cell delivery 

Compared to standard drug formulations, cellular therapeutics have unique physical 

properties that require specialized delivery strategies to the injured heart.  As such, 

difficulties in administering the delicate stem cells may lead to poor cellular retention and 

survival of the cells, significantly dampening its therapeutic efficacy.   

 

1.3.1 Administration 

The mode of administration of a drug directly affects its subsequent biodistribution. 

Although oral administration is preferred for small compounds due to the ease of intake 

for patients, many biopharmaceuticals [15] and cells are not capable of surviving the 

harsh acidic environment of the stomach, and even less likely to permeate through the 

intestine wall into the blood stream.  The least invasive manner to inject cells into the 

heart is directly into the circulation by means of an intravenous injection [15]. Based on 

the homing potential of hematopoietic stem cells after intravenous bone marrow 

transplantation in leukemia patients [16], it was hypothesized that cardiac cell therapy 

could rely on chemo-attractant signals coming from the damaged heart to attract the 

circulating cells to the site of injury. However, the many obstacles present in systemic 

circulation proved it inefficient in delivering a therapeutic amount of cells to the damaged 
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heart. Alternatively, intracoronary injection allows for the administration of stem cells 

directly into the cardiac coronary circulation. This approach is facilitated by the fact that 

a large number of cardiac patients will undergo percutaneous coronary intervention (PCI) 

or angiography, a procedure in which a catheter is placed into the coronary vasculature 

[17]. The injection can also be tailored by targeting a specific coronary region that was 

affected by the ischemic event. Nonetheless, in such an approach, the injected cells are 

faced with high coronary flow and are required to transmigrate through the capillaries to 

reach the myocardium. Lastly, intramyocardial injection allows the administration of 

stem cells directly into the myocardial tissue with a minimally invasive thoracoscopic 

procedure or catheter-based needle injection systems [18]. This administration route is 

not restricted to coronary anatomy and is therefore the most direct and reliable manner to 

get the cells into the myocardium. Nonetheless, it can be difficult to inject the cells 

precisely into a preferred location, sometimes resulting in delivery into a remote region 

too far from the injury or into an infarcted area deprived of oxygen and nutrients [19]. 

 

1.3.2 Distribution 

The localization and distribution of an injected drug directly affects its effectiveness in 

carrying out its function. Similarly, the biodistribution of the stem cells after 

transplantation will subsequently affect its therapeutic potential.  Although a few studies 

have shown cell engraftment in the myocardium after intravenous injection [20, 21], the 

overall scientific consensus is that it remains a very inefficient process. The inability to 

trap intravenously injected cells could come from the lack of secreted chemo-attractant 

from the injury site and/or the reduced cardiac output dedicated to supplying the coronary 



   

 8   

 

arteries. In biodistribution studies [22], only trace amount of radioactively labeled cells 

are found in the heart with the predominated signal stemming from the lungs, liver, and 

spleen. Substantiating the benefits of a local administration route, a comparative 

biodistribution study [23] of radioactively labeled BM-MNC showed a superior 

engraftment rate in the infarct region after intracoronary delivery compared to 

intravenous infusion. However, it is important to note that not all cell types will behave 

similarly and enter the injured areas after administration. Differences in integrin 

expression or other cell surface proteins could lead to altered adhesion properties, thereby 

changing their engraftment kinetics. In studies with larger cell types [21] such as MSCs, 

there is a noticeable accumulation in the lungs after systemic delivery, likely stemming 

from these cells inability to move beyond a given capillary bed size. In a comparative 

study from van der Spoel et al. [24], radioactively labeled MSCs were injected 

intracoronary or intramyocardially and traced for their biodistribution after 4 h. The 

highest accumulation from both modalities was observed in the lungs (~ 25% of total 

cells), while also noting off-target accumulation in the liver, spleen, and kidney. Total 

retention in the heart did not differ between the two techniques, with the myocardium 

amassing 12% of the entire radioactive tracer pool in the body. Interestingly, local 

inspection of cell distribution by ex vivo γ-scan and histology revealed a stark distinction 

between the two techniques. Whereas intramuscular injection tended to accumulate in a 

site-specific manner (high signal at the mid-papillary level) with clusters of cells in the 

infarcted region and border zone, intracoronary infusion led to a scattered and diffused 

distribution throughout the targeted myocardium. Overall, biodistribution studies have 
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agreed that administration of stem cells, independent of the route, remains an ineffective 

process.  

 

1.3.3 Survival 

Once the cells have arrived at the targeted tissue, they must survive a rather toxic 

microenvironment. After suffering an ischemic event, the damaged myocardium is under 

oxidative stress as the native cells die and the immune cells infiltrate to start clearing the 

debris. Therefore, cellular therapeutics arrive in a hostile inflammatory milieu and are 

thereby susceptible to pro-apoptotic signaling. A study by Zhang et al. [26] showed the 

profound effect of this ischemic damage on transplanted cardiomyocytes. Although 

grafted cells remained viable within hours of injection (2% apoptotic cells), TUNNEL-

positive cells drastically increased to 30% over the first 24 h. Overall, they calculated that 

up to 90% of engrafted cells succumbed to these external stimuli over the course of 1 

week. Nonetheless, limited apoptotic cells are observed after 1 week; therefore, 

cardiomyocytes that did survive the initial insult seem to be stably integrated and were 

able contribute therapeutically. Although cardiomyocytes are highly sensitive to 

apoptotic signaling, these findings are not exclusively limited to them. In CSC 

transplantation studies, the survival rate after intramyocardial administration was around 

2% of the injected dose after 1 month [27, 28]. These observations have been further 

supported by numerous studies in which pro-survival strategies have been successfully 

implemented to make stem cells more resilient against external stimuli. Inhibiting pro-

death pathways have shown the ability to increase the number of cells in the myocardium 
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[29–31], highlighting the indirect environmental burden that stem cells are confronted 

with upon their transplantation. 

 

Transplanted stem cells are not only susceptible to cytotoxic environments, but to the 

immune system as well. Within the immune system's defenses is the ability to recognize 

and remove foreign entities from the body. As has been observed in organ transplantation 

therapy, HLA complexes on cells present patient-specific glycoproteins to the host 

immune system, which is able to distinguish “self” from “foreign,” and has made it 

crucial to match donor and recipient organs before the procedure [32]. For stem cells, 

there exists a similar threat from this direct involvement of the body immune system, 

although it is slightly more complex [33]. First, many of the approaches are using the 

patient's own stem cells for treatment, thereby circumventing the risk. Although this is an 

option for adult stem cells, such as bone marrow derived or resident progenitor cells, it 

remains a complication when establishing a therapy with embryonic stem cells. Second, 

certain stem cells, most notably MSC, express low levels of HLA on their surface and 

have inherent ability to avoid detection by the immune system. These “immune 

privileged” cells can even act upon and modulate the immune system [12], consequently 

reducing inflammation at the site of injury. Nonetheless, the immune system is a crucial 

aspect to consider for the successful engraftment of the stem cells since a mismatch 

between donor and recipient will result in complete clearance of the therapeutics from the 

body. 
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1.4 Recent approaches to enhance stem cell delivery 

The direct injection of “naked” stem cells has been shown by many studies to have poor 

survival and retention rates, with around less than 3% of the injected dose remaining after 

several months. While there have been some efforts to enhance the retention, survival, 

and integration of stem cells in the heart (34–37), recent research sought to improve cell-

based therapies by modulating the performance of the stem cells, including pre-treatment 

of the cells, genetic manipulation, and material incorporation.  In the former case, cells 

can be “primed” with physical, biological, or pharmacological treatments to activate 

signaling cascades in cells to turn on processes that are fundamentally important for their 

survival and/or subsequent biological activity [38-98].  Similarly, stem cell performance 

can be enhanced by modifying their underlying genetic blueprint to display extrinsic 

functional properties that maximize survivability or even therapeutic effects [99-118].  

For the purposes of this thesis, we decided to place emphasis on latter strategy that utilize 

biomaterials to provide support and protection to the stem cells in paracrine-based 

therapeutic applications. 

 

1.4.1 Delivery using biomaterial scaffolds 

More recently, the use of biomaterials has emerged as an alternative approach to enhance 

the delivery of cells after transplantation into the infarcted myocardium. The properties of 

materials can physically support the cells to improve retention directly after 

administration and can further provide a protective environment to enhance the survival 

of the cellular cargo. Materials can also contain beneficial cues to modulate stem cell 

behavior and optimize the desired cellular response [61–64]. Different types of 
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biomaterial have been used to transplant stem cells [65–69], either natural derived or 

synthetic. Among the natural biomaterials, collagen [70–73], fibrin [74, 75], Matrigel 

[76], alginate [69], hyaluronic acid [77], and tissue-derived ECM [68] hydrogels are the 

most commonly used. Among the synthetic materials, peptide nanofibers [78] and 

poly(lactide-co-ϵ-caprolactone) [79] are the most frequently used for stem cell delivery. 

There are two main engineering approaches that have been explored with materials: 

patches and injectables. 

 

Patch-based approaches are usually characterized by the generation of a tissue-like 

structure in vitro, which is then transplanted in vivo. The main advantage of this approach 

is that the cells are cultivated under precise culture conditions and proliferation, 

differentiation, and tissue structure can be tightly monitored to enhance stem cell survival. 

One of the main limitations of this approach is nutrient diffusion that usually limits the 

thickness of the constructs and long-term in vitro culture. The use of tissue printing 

technology may overcome this limitation. Recently, CSCs have been printed in alginate 

[80] and gelatin/hyaluronic acid scaffolds [77]. The particular porous structure, which 

can be achieved by tissue printing technology, preserves cell viability up to 4 weeks in 

culture when compared with a nonporous structure [80]. Similarly to other patch-based 

approaches, the construct can be transplanted in vivo in a myocardial infarction model 

leading to a significant reduction in adverse remodeling and an increase in cell survival 

[77]. One potential obstacle to patch-based transplantation is inadequate integration of the 

graft with the host myocardium. Although in paracrine-based strategies secreted factors 



   

 13   

 

can easily cross this barrier, it might hinder proper coupling of cardiomyocytes with the 

native myocardium in remuscularization-based therapies. 

 

Injectable approaches are based on the injection of biomaterials and cells directly into the 

ventricular wall. Cells and matrix are mixed before transplantation and delivered through 

direct needle injection into the ventricular wall (epicardial injection) or a percutaneous 

catheter (transendocardial injection). The injectable approach takes advantage of the 

natural environment of the cardiac tissue to promote stem cell functionality and directly 

stimulates tissue repair at the site of implantation. The biomaterial should be liquid until 

the administration and undergo rapidly gelation after transplantation to avoid cell 

washout. Therefore, pH or temperature responsive materials that gel at physiological 

conditions (pH 7.4/37 °C) are often utilized to promote cellular encapsulation. Another 

potentially injectable application is based on the use of microspheres as cell carrier. Stem 

cells can be encapsulated into or attached to microspheres and delivered into the 

myocardium [81–83]. The biomaterial can also be functionalized with adhesion peptides 

[83] or growth factors [82] to enhance stem cell engraftment and survival [25] and [84]. 

 

When used in combination with stem cells, either injected or as a patch, all of the 

biomaterials mentioned above have been proven to be effective in enhancing cell 

engraftment and survival when compared to cell injection only. However, enhancing 

stem cell retention may not be enough to improve the beneficial effects of cell therapy 

alone. Recently biomaterials have also emerged as important support for stem cell 



   

 14   

 

differentiation and influence many biological processes including the endogenous 

regeneration. Different characteristics of a biomaterial can influence stem cell 

functionality upon transplantation. Natural biomaterials such as tissue-specific 

decellularized extracellular matrix contain many desirable pro-regenerative cues, such as 

sulfated glycosaminoglycans or tissue-specific ECM proteins, and may be advantageous 

in driving cardiac differentiation [68]. Matrix mechanical properties and stiffness is also 

known to influence cell phenotype [85–87], so it may be favorable to design a 

biomaterial with similar stiffness to the healthy tissue, although the ideal mechanical 

properties are currently unknown.  In short, many different design criteria should be 

considered when selecting a biomaterial for stem cell transplantation such as construct 

generation strategy and delivery method, gelation kinetics and stem cell engraftment, 

mechanical and biochemical composition, degradation products, biocompatibility, and 

electrical properties. 

 

1.5 Conclusion 

In summary, stem cell-based therapy has garnered a lot of traction in recent years as an 

effective tool to facilitate repair and regeneration of diseased organs.  However, recent 

advances in site-specific delivery have been met with challenges, especially in 

intracardial delivery.  These challenges include the lack of retention of effective doses of 

therapeutic cells in regions of pathology, and the inability of the therapeutic components 

to functionally integrate with the host tissue.  This thesis explores several strategies in 

enhancing the delivery mechanism as well as the therapeutic effectiveness of the 

delivered stem cells.  It contains the following specific aims: 



   

 15   

 

Specific Aim 1: Generating highly uniform, imaging –visible microcapsules using droplet 

microfluidics.  By utilizing microfluidics technology, hydrogel microcapsules can be 

produced with smaller sizes and higher uniformity compared to conventional 

microcapsules, leading to deeper vascular penetration allowing for more site-specific 

delivery. The reduced capsule profile eliminates the need to use custom microcatheters 

with larger diameters, which in turn may minimize side-effects associated with 

intracardial delivery of larger microcapsules, such as blockages and microembolisms. 

Furthermore, the co-encapsulation of imaging agents allow for long-term noninvasive 

tracking of the microcapsules.   

Specific Aim 2: Encapsulation of stem cells and imaging agents using droplet-

microfluidics-based platform. Alginate hydrogel provides microcapsules with a 

selectively-permeable encapsulation matrix that allows the diffusion of nutrients and the 

filtration of immunogenic macromolecules.  The encapsulated stem cells are protected 

from many of the toxic elements associated with naked cell delivery to pathological 

tissues, and are viable for long-term transplantation. The co-delivery of imaging-visible 

microcapsules also allows for long-term noninvasive tracking.  

Specific Aim 3: Piezoelectric inkjet bioprinting of microcapsules containing stem cells, 

imaging agents, and biopolymers. While microfluidics devices places limitations on 

throughput and surface properties of the aqueous solution used, the piezoelectric 

bioprinting platform enables microcapsule production with a wider range of materials at 

higher throughputs. Incorporation of biopolymers into the hydrogel matrix may provide 

adhesion sites stem cells need for improved metabolism and survival.  At the same time, 

the printing of biopolymer-hydrogel composite microcapsules may enable controlled 
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degradation of targeted structures, achieving microcapsules with dynamic pore sizes or 

with pure biopolymer compositions that are otherwise difficult to produce.  
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Chapter 2 Generating Uniform, Imaging-Visible Microcapsules Using 

Droplet Microfluidics-based Platform 

 

2.1 Introduction 

Successful cellular microencapsulation relies heavily on the physical and chemical 

properties of the artificial matrix in which the encapsulated stem cells reside.  Before we 

attempt cellular encapsulation, we aimed at developing a platform capable of producing 

small, robust, spherical hydrogel microcapsules that can withstand the delivery procedure 

and hostile microenvironments present at the pathological tissues.  Furthermore, we 

sought to embed sensitive imaging agents within the microcapsules to allow for persistent 

noninvasive monitoring of the transplanted microcapsules.  As proof of concept, we 

demonstrated in vivo delivery of custom made imaging-visible microcapsules in a 

preclinical study involving X-ray-guided transarterial chemoembolization (TACE) in 

pigs.  

 

2.1.1 X-ray-guided transarterial chemoembolization (TACE) 

TACE involves the delivery of embolic capsules along with chemotherapeutic agents into 

targeted blood vessels to occlude arteries that feed tumors. The technique provides a 

minimally invasive method to starve tumors of oxygen and nutrients.  It also allows high 

doses of chemotherapeutics to be administered in a localized region without resulting in 

systemic toxicities (1). However, current clinical formulations of embolic capsules are 
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not readily visible directly conventional imaging techniques such as X-ray. Thus, the 

location of the embolic capsules can only be inferred from repeated delivery of contrast 

solutions to the region of interest followed by qualitative assessments of the extent of the 

occlusion. After delivery, the contrast soon washes out, leaving only radiolucent embolics 

behind. As a result, the risk of embolic agents being delivered to the wrong portion of the 

organ or leaking out into healthy organs is a concern. To minimize the risk of non-target 

embolization (NTE), physicians tend to deliver an insufficient numbers of embolic 

capsules, often leading to sub-optimal treatment. Because NTE or reflux may occur in 

90% of TACE procedures (2), embolic capsule therapy has been primarily restricted to 

the treatment of tumors. While embolization is a well-accepted treatment for 

hepatocellular carcinoma, non-resectable metastatic disease, and renal tumors, the 

expansion of embolization therapy to non-oncological applications has been severely 

thwarted due to the consequences of NTE. For instance, in uterine fibroid embolization 

(UFE), which is typically performed in young women to treat leiomyomas – a benign 

tumoral disease affecting fertility, undertreatment, to avoid NTE, often results in the need 

for reintervention (3). If the risk of NTE could be mitigated, repeat UFE procedures could 

potentially be reduced or eliminated. Therefore, the development of imaging-visible 

embolic agents could expand the repertoire of image-guided, minimally invasive 

applications that could be performed in otherwise healthy individuals. 

Commercially available preparations of embolic capsules are typically made of polyvinyl 

alcohol or tris-acryl gelatin (4), tend to have large polydispersity in diameter, and are 

difficult to label with contrast agents. For example, two of the smallest FDA-approved 

capsules range in size from 40 – 120 µm to 45 – 145 µm, or a standard deviation of 
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around 50% (5,6). While larger capsules have narrower distributions, the absolute size 

range is still around 200 – 300 µm, making selective and consistent embolization of small 

vessels difficult. Microfluidic capsule preparations involving crosslinking of alginate 

hydrogels are able to achieve particles on the order of tens of microns, while maintaining 

a narrow size distribution, thereby permitting highly selective embolization. However, 

typical microfluidic production methods have extremely low throughput and, thus, are 

not commercially practical. Furthermore, instability in the microfluidic flow can also 

result in gelation at the device nozzles, resulting in frequent device failure (7). To address 

these issues, we have developed a new method of alginate microcapsule production 

utilizing a novel, pseudo-check valve microfluidic device, which partitions the 

crosslinker-containing oil and alginate streams, thus limiting the chances of inadvertent 

gelation at the nozzles. This enables highly scalable, robust parallel generation of the 

microcapsules. Furthermore, by impregnating the alginate with contrast agents, imaging-

visible embolic beads (IEBs) can be prepared. The potential of this new X-ray-visible 

embolic agent to expand the use of particle embolics is demonstrated in otherwise healthy 

animals to prevent weight gain as an innovative and safe method with which to treat 

obesity. 

 

2.1.2 Advantages of Microfluidic Preparation 

A major advantage of microfluidic preparations is that the generated microcapsules are 

spherical, small, and uniform. While opinions differ on the importance of embolic 

capsule uniformity (15,26,27), spherical capsules are less likely than non-spherical 

particles, like PVA, to aggregate and occlude either the delivery catheter or proximal 
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portions of vessels (15,28). Small embolic capsules have the potential to embolize the 

vasculature at more distal branches (11,26,27,29), thereby making repeat embolization of 

the same capillary bed possible by preserving access through neighboring arterial 

branches or better mimicking liquid sclerosis agents, but with more precise placement. 

However, there have also been reports of unexpected side effects, such as non-target 

pulmonary embolization in some patients (5,6). In current clinical practice, reflux and 

NTE is prevented by erring on the side of underdosing, and can lead to incomplete 

treatment of malignancies and uterine fibroids. Thus, the ability to visualize the capsules 

directly is not only convenient, but also has the potential to enable delivery of precise 

quantities of embolic capsules to achieve effective vessel occlusion with minimal NTE. 

In particular, we have demonstrated a potential new application of IEBs—embolic 

therapy as a treatment for obesity—using standard clinical imaging equipment and 

devices where NTE would be unacceptable in an otherwise healthy individual. The 

stability and biocompatibility of the microcapsules was high without evidence of IEB 

destruction or foreign body reaction in both the stomach and kidney at three to four 

weeks post-administration. In addition, the persistent appearance of IEBs on cone-beam 

CT provides a means by which to determine the durability of the treatment in a particular 

individual without the need for repeated arteriograms.  

 

2.2 Materials and Methods 

2.2.1 Microfluidic device fabrication 

A two-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated as 

previously described (38). Briefly, a 30-µm positive photoresist layer (SPR 220-7, 
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Microchem Corp) was spin-coated onto a silicon wafer treated with 

hexamethyldisilazane. Valve pads were formed by exposing the resist at 5,000 mJ/cm2 

through a patterned photomask. After development, an SU-8 3050 negative photoresist 

layer was spin-coated, exposed at 350 mJ/cm2, and developed to provide 80-µm-tall main 

fluidic channels. The valve control mold was fabricated on a separate wafer using SU-8 

3050 photoresist under the same conditions.  

A thin PDMS layer (Sylgard 184, Ellsworth Elastomers, 15:1 base-to-curing agent wt/wt 

ratio) was spun onto the fluidic mold, while a thicker layer (7:1 base-to-curing agent) was 

cast onto the valve control mold, and baked for seven and 12 minutes at 80 °C, 

respectively. The two layers were aligned and bonded before sealing with a glass 

coverslip using an oxygen plasma treatment. 

 

2.2.2 Microcapsule preparation 

The pseudo-check valve between the alginate and oleic acid channels was initially 

pressurized at 10 psi with deionized water for closure. Calcified oleic acid was prepared 

by dissolving calcium chloride (2 g) in ethanol (10 mL), and then, mixed with oleic acid 

(10 mL, Sigma-Aldrich). After 48 hours, phase separation occurred, and the ethanol-rich 

top phase was removed and calcified oleic acid was diluted 10-fold with oleic acid to 

give the final working calcified oil, which was introduced into the device at 20 psi. Next, 

alginate (1 wt%, Pronoval UP LVG, FMC Biopolymer) was prepared in natural saline 

(0.9% sodium chloride) and delivered into the device at 25 psi. Last, the crosslinking 

solution was prepared by mixing IPA with a 20 wt% aqueous calcium chloride solution 

(2:1 v/v), and introduced near the outlet at 5 psi. The generated microcapsules were 
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collected from the chip by pipetting the mixture from the outlet of the device and stored 

at 4 °C. Microcapsules were rinsed with natural saline before use. 

 

2.2.3 Contrast agent capsule impregnation 

Barium sulfate (Sigma-Aldrich) suspended in PBS was sonicated for 15 minutes 

(Microson Cell Disruptor XL) to disrupt clumps of crystals to minimize device nozzle 

clogging. The suspension was mixed with alginate to yield a 10 wt% barium sulfate 

solution in 1 wt% alginate. This barium sulfate-alginate solution was then introduced into 

one channel of the microfluidic device, ultimately resulting in the formation of IEBs. 

 

2.2.4 Microcapsule characterization  

Environmental scanning electron microscopy (FEI Quanta ESEM 200 microscope) of 

capsules was performed at 5 °C and 800 Pa. Microcapsule stability at 37 °C in PBS, 

100% serum, or 10% serum was determined based on measured microscopic diameter 

using an optical microscope (ImageJ, n=150 capsules) after 0, 7, 14, 21 and 28 days. 

Microcapsules stored in IPA/calcium buffer at 4 °C were evaluated at 18 months for 

changes in size. The permeability of the microcapsules was analyzed by incubating 

microcapsules with fluorescently labeled lectins of different sizes (36, 75, 120, and 150 

kD) for 72 hours.  After 72 hours, the microcapsules are rinsed with PBS, allowed to 

settle for 15 minutes, and then repeated the rinse for three times before imaging (37). 

IEBs used in animal studies were prepared under aseptic conditions using ethylene oxide-

sterilized microdevices and filtered solutions. The sterility of the IEBs for in vivo studies 

were determined using the Endosafe®-PTS Reader and integrated software system 
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(Charles River Laboratories) using 005 EU/ml Endosafe®-PTS cartridges. IEB aliquots 

were tested for contamination. 

 

2.2.5 IEB radiopacity 

The sensitivity of IEB detection was determined in vitro. Microcentrifuge tubes loaded 

with saline, oil, different volumes of IEBs, and different concentrations of iodinated 

contrast agent (iohexol, GE Healthcare) were imaged on a clinical fluoroscopy system 

(Axiom Artis, Siemens). Digital radiographs (48 cm intensifier size, 72 kV, and 62 mA) 

and a cone beam computed tomography (CBCT, 20s DR-Head DynaCT, Siemens Axiom 

Artis, 20 s rotation, 0.4° increments, 217° rotation, and 543 projections) were acquired to 

determine IEB visibility relative to iodinated contrast agents. A second phantom was 

created using a 96-well plate with serial iohexol dilutions in PBS (n = 5), serial IEB 

dilutions suspended in agarose (Type VII, Sigma Aldrich, n = 5), and serial unlabeled 

capsule dilutions suspended in agarose (n = 5). One well contained normal saline, and 

one well contained mineral oil. The phantom was imaged on a clinical, dual-energy 

computed tomography system (SONMATOM Definition Flash, Siemens, 0.5 mm slice 

thickness, 17.7 cm2 field-of-view, 512  512 image matrix, 80 keV/211 mAs and 

140 keV/109 mAs energy levels).  

 

2.2.6 In vivo studies  

All protocols were approved by the Institutional Animal Care and Use Committee at the 

Johns Hopkins University School of Medicine. Female Yorkshire pigs (25 – 30 kgs) were 

fasted overnight prior to any anesthetic induction. Animals were sedated with an 
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intramuscular injection of tiletamine/zolazepam (100 mg/ml telazol), ketamine 

(100 mg/ml), and xylazine (100 mg/ml) at a dose of 1 ml/50 lbs body weight, induced 

with intravenous propofol, intubated, and placed on general inhalational anesthesia 

(isoflurane). Under ultrasound guidance, a 5 Fr introducer was placed in the femoral 

artery. Blood was then obtained for serum chemistries and a complete blood count.  

 

2.2.7 Renal embolization 

To optimize the handling characteristics and visibility of IEBs relative to conventional 

embolic capsules, six pigs (n = 4 acute study; n = 2 chronic study) were subjected to 

selective renal artery embolization under X-ray fluoroscopy and general anesthesia. A 

cone beam computed tomography (CBCT, DynaCT, Siemens Axiom Artis or Artis Zee, 

8 s digital subtraction angiogram [DSA], 48 cm field size, 0.5 degrees/step, 210 degree 

rotation, 94 kV, and 475 mA) was obtained during renal artery injection of iodinated 

contrast (5 cc/s for 12 s of iohexol, Omnipaque, GE Healthcare). Then, a 5 Fr high-flow 

angiographic catheter (SOS Omni Selective Catheter, Angiodynamics) was used to select 

either the left or right kidney. A DSA (63 kV, 320 mA, 3 frames/s, 32 cm field size, and 

manual iohexol injection) was then acquired of the selected kidney. A microcatheter 

(Renegade Hi-Flo, Boston Scientific Corp.) was then advanced over a 0.016-inch 

steerable wire (Fathom, Boston Scientific Corp.) into either the inferior or superior pole 

of the kidney using the DSA roadmap. A DSA was then obtained of the selected kidney 

pole. IEBs (0.1 ml) were then injected (without iodinated contrast) into the microcatheter 

during direct fluoroscopic visualization (e.g., DSA). Persistence of the IEBs was 

evaluated on radiographs and CBCT without contrast. In acute studies, after flushing the 
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microcatheter outside the body, it was repositioned in the contralateral kidney. A DSA 

was acquired and the microcatheter was advanced into the selected kidney pole and 

conventional embolic capsules (Embozene, 300 – 500 µm, Merit Medical), mixed with 

iohexol were injected under direct fluoroscopic visualization until stasis was achieved. 

The catheters were then removed, and, using a pigtail catheter in the aorta at the level of 

the renal arteries, a DSA CBCT was obtained of both kidneys.  

For chronic studies, only IEBs were administered, followed by a CBCT without contrast, 

and a DSA. The introducer was removed, and the animal was allowed to recover. Repeat 

CBCTs without iodinated contrast injections were obtained at approximately weekly 

intervals in the animals under general anesthesia for three weeks post-embolization. 

Routine blood work was also repeated at each imaging session. At the final imaging 

study, an aortic DSA and DSA-CBCT were obtained. The animal was then humanely 

euthanized and the kidneys and highly perfused organs were harvested for gross and 

histopathological examination. 

 

2.2.8 Gastric fundus embolization 

As a novel treatment for obesity where NTE would be unacceptable (11), BAE was 

performed in anesthetized normal Yorkshire pigs (n = 3 acute; n = 4 chronic) using sterile 

technique. Under X-ray fluoroscopic guidance, a 5 Fr angiographic guide catheter 

(Mickelson, Angiodynamics) was advanced over a guide wire into the abdominal aorta to 

select the celiac axis and obtain a pre-embolization DSA to identify the vessels feeding 

the gastric fundus (Fig. 2-6A). A microcatheter (Renegade Hi-Flo, Boston Scientific Corp 

or Surefire™ Infusion System, SureFire Inc.) was advanced over a 0.016-inch wire 
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(Fathom, Boston Scientific Corp.) into the fundal branches of the gastric artery. A DSA 

of each of the selected vessels was then obtained, followed by a CBCT during a 25% 

iohexol injection using parameters similar to those of renal CBCT. If, at the appropriate 

location, IEB embolization (0.05 – 0.1 ml) was performed during direct fluoroscopic 

visualization, a post-embolization CBCT without contrast was obtained. The 

microcatheter was then removed and flushed outside the body and repositioned to 

perform IEB embolization in one to two additional fundal arterial branches. Three of 

seven animals were humanely euthanized acutely after the BAE procedure; four animals 

survived for four weeks. In the chronic studies, proton pump inhibitors (40 mg 

omeprazole PO) were administered starting 72 hours prior to embolization. Upper 

gastrointestinal endoscopy was performed at one-week post-embolization in anesthetized 

animals. At four weeks post-embolization, a non-contrast CBCT was obtained followed 

by a contrast-enhanced CBCT. The animal was then humanely euthanized and the 

stomach, spleen, pancreas, kidney, and liver were assessed by gross and histopathology. 

Paraffin-embedded tissue blocks were scanned with CBCT to determine the distribution 

of IEBs prior to sectioning in the chronic animals. 

 

2.2.9 Weight, blood collection and hormonal analysis 

Following the procedure, animals were housed in individual units and resumed their 

normal swine pellet diet 2.3 kcal/gram (Teklad Miniswine Diet 8753, Harlan 

Laboratories) given twice a day. At baseline and weekly intervals for four weeks 

following the procedure, pigs were sedated using the aforementioned protocol and body 

weight of each animal was measured. At the same time points, 5mL whole blood was 
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collected from a peripheral ear vein into EDTA-coated vacutainer tubes and 3mL was 

transferred into a separate tube containing 30 μl DPP-IV inhibitor (10 μl/mL blood, 

Millipore DPP4-010) and 58 μl Aprotinin (500KIU, Sigma A3428). Samples were 

maintained on ice until centrifuged at 3500 rpm for 10 min at 4˚C and supernatant serum 

was stored at -80˚C until processed using standard immunoassay kits. Total ghrelin was 

measured using radioimmunoassay with iodine 125–labeled bioactive ghrelin as the 

tracer and a rabbit polyclonal antibody (Phoenix Pharmaceuticals). GLP-1 was measured 

using ELISA (Phoenix Pharmaceutical). 

 

2.2.10 Endoscopy 

One week post-procedure, animals were sedated and upper endoscopy was performed by 

a senior gastroenterology fellow. Two days prior to endoscopy pigs are fed Ensure (4  8 

fl oz bottles, 220 cal/bottle) twice a day. An adult upper endoscope (Olympus America 

Inc, Center Valley, Pa or Pentax Medical, Montvale, N.J.) was advanced into the 

esophagus and the stomach for examination.  Any obvious lesions were documented and 

biopsied using biopsy forceps (Boston Scientific Corp, Natick, Mass).  All animals 

underwent protocol biopsies using the biopsy forceps, targeting each segment of the 

stomach separately. Normal saline solution was given IV to replace fluid loss during the 

procedure. At the conclusion of the endoscopic examination, the pigs were extubated and 

recovered from general anesthesia within 2 to 4 hours. The pigs were evaluated daily, and 

oral feedings with standard chow were resumed on postoperative day 1. 

 

2.2.11 Image analysis 
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For in vitro studies of IEB sensitivity, the mean Hounsfield units were determined in 

manually drawn regions of interest of equal area on dual-energy CT image 

reconstructions (Syngo Multimodality workstation, Siemens). Linear regression analyses 

were performed of the Hounsfield units vs. serial iodinated contrast agent or IEBs 

concentrations to determine the radiopacity of the IEBs. For in vivo studies, DSA images 

were reviewed on a Syngo multimodality workstation to determine the IEB visibility 

during injection and the evidence of reflux that resulted in NTE by two observers. Post-

embolization DSAs were reviewed for the degree of truncation of the selected vessel. 

CBCTs were reviewed for the presence or absence of radiopacity indicative of IEBs. 

 

2.2.12 Histopathological assessment 

Hematoxylin and eosin (H&E) staining was performed on the embolized organs and 

adjacent structures, which may have received NTE, to detect the presence, location, and 

integrity of IEBs and/or conventional embolic capsules, as well as to determine whether 

inflammation was present. Trichrome staining was performed on sections adjacent to the 

H&E staining to determine the degree of fibrosis of the embolized organs. 

Immunohistochemical staining (mouse anti-human myeloid/histiocyte antigen, MAC387, 

Dako) was performed to determine whether macrophages were present to gauge the 

degree of foreign body reaction to the IEBs. In the chronic BAE study, 

immunohistochemical staining for ghrelin (clone 1ML-1D7, MAB10404, Millipore) was 

performed on the stomach fundus. 

 

2.3 Results  
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2.3.1 Operation of microfluidic device 

There are five functionally distinct regions in our microfluidic device. Pseudo-check 

valves are actuated at 10 psi, followed by the introduction of the calcified oil (20 psi) and 

alginate (25 psi) through the continuous phase channel and discrete phase channels, 

respectively (Fig. 2-1A). The actuated polydimethylsiloxane (PDMS) membrane deforms 

and seals the valve pad region, preventing the crosslinker-containing oil from entering the 

alginate channels and causing undesired crosslinking, while permitting forward flow of 

the higher-pressure alginate stream (Fig. 2-1B). The two phases interact at the nozzle, in 

the droplet generation region, where the extruding alginate stream is side-sheared into 

droplets by the oil. The calcium diffuses across the oil/water interface, partially 

crosslinking and stabilizing the nascent microcapsules. At the crosslinking region, the 

microspheres are introduced into an excess of calcium, with the isopropyl alcohol (IPA) 

acting as the phase-transfer agent (Fig. 2-1C). Capsules are then collected at the outlet 

and stored in the alcohol-rich crosslinking solution, which also acts as a sterilizer. Using 

40 parallel nozzles in a single device, with each nozzle operating at 20 – 30 Hz (for a 

total of around 1 kHz, movie S1), more than 3  106, or approximately 0.2 mL/hr/chip of 

50 µm capsules can be generated. Representative devices were continuously operated for 

two to four hours and generated about 2 – 8  106 capsules or 0.1 – 0.4 mL of IEBs, 

depending on the capsule diameter. While the current design employs 40 parallel nozzles, 

further scaling-up, including the use of parallel chips, could be performed with few 

problems. 

 

2.3.2 Properties of IEBs 
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By varying channel dimensions, microcapsules with diameters in the target range of 20 

up to 70 µm were synthesized consistently. Microcapsules prepared on a microfluidic 

device with channel dimensions of 100 µm  100 µm, and a nozzle cross-section of 

30 µm  30 µm were highly uniform (41.5 ± 3.5 µm diameter, Fig. 2-1D and Fig. 2-2A). 

In the case of barium sulfate-impregnated IEBs, the pinch-off process could be disturbed 

by barium sulfate crystals, which was added to impart radiopacity to the capsules, 

resulting in slightly larger and more variable capsule diameters under the same conditions 

(48.8 ± 4.9 µm diameter, Fig. 2-2B). The average diameter of the microcapsules was 

most significantly affected by microchannel geometry, which was moderately dependent 

on the relative velocities and viscosities of the calcified oil and alginate solution, and 

weakly dependent on the absolute flow rates of the two phases. This mirrored our 

computational models and experimental results and expectations from previously 

reported findings (8-10). This lack of dependence on the flow makes it convenient to 

control the speed of capsule generation by adjusting the pressures of the input solutions 

without significantly affecting the capsule diameter.  

 

The IEB density was significantly higher than water due to the addition of barium sulfate, 

which allows the capsules to be washed without centrifugation. The environmental 

scanning electron microscopy (ESEM) images confirmed that the barium sulfate crystals 

were completely contained within the gel matrix, thereby maintaining the spherical 

microsphere shape (Fig. 2-1E). IEBs stability was demonstrated at 37°C in serum, IPA, 

and PBS for 10 days (Fig. 2-2C) and for at least 18 months when stored at 4°C in the 

crosslinking solution with minimal clumping (52.3 ± 8.6 µm, n = 125). IEBs were 
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permeable to lectins with molecular weights up to 75 kD, but impermeable to lectins with 

molecular weights of 120 kD or higher (Fig. 2-3). 

 

2.3.3 Radiopacity of IEBs 

IEBs were readily visualized on conventional X-ray digital subtraction angiography, cone 

beam computed tomography (CBCT), and multi-detector CT (MDCT). A linear 

relationship between radiopacity and barium-impregnated IEB concentration was 

demonstrated on MDCT (Fig. 2-4A). Unlabeled capsules had a radiopacity similar to 

agarose and water (13 ± 33 HU unlabeled capsules vs. 11 ± 17 HU agarose hydrogel). 

CBCT was able to detect aliquots of 5 µL of IEBs with radiopacity exceeding 10% 

dilutions of iohexol (Fig. 2-4B) and CT numbers approaching those of bone (2809 ± 1208 

HU), whereas the appearance on X-ray fluoroscopic images of IEBs was similar to 10% 

dilutions of a iohexal (Fig. 2-4C-D). 

 

2.3.4 Renal delivery of IEBs in vivo 

Endotoxin assays of IEBs were negative (< 2.5 EU) in all studies. Smaller IEBs, e.g., ~30 

µm, containing barium sulfate administered in the first two renal embolization studies, 

were readily visualized in one animal, but poorly visualized in another. Subsequent renal 

and bariatric arterial embolization (BAE) studies used 50 µm IEBs.  Real-time direct 

fluoroscopic visualization of IEBs was successful in all renal embolizations (Fig. 2-5A). 

IEB reflux occurred in one out of five animals, resulting in non-target embolization to the 

superior kidney pole. This demonstrates the advantage of real-time feedback of embolic 

capsule delivery. In the two chronic renal embolization studies, the IEBs were visualized 



   

 47   

 

during delivery with fluoroscopic imaging (Fig. 2-5A) and up to three weeks post-

administration on CBCT (Fig. 2-5B, yellow arrow).  For comparison, commercially 

available non-imaging-visible Embospheres (100 – 300 µm) were delivered to the 

superior pole of the opposite kidney (Fig. 2-5B, blue arrow).  CBCT scan fused with 

DSA (Fig. 2-5B) also shows that IEBs were able to traverse and embolize further 

downstream of the vasculature when compared to the commercially available 

Embospheres, despite being released from an equivalent location.  On gross examination 

of the kidneys (Fig. 2-5C) and histopathology (Fig. 2-5D), the capsules were intact at 

three weeks post-administration with no evidence of fibrosis or inflammatory infiltrate. 

Renal infarction consistent with IEB embolization occurred as expected in the two 

chronic studies. All studies demonstrated IEBs lodged in the distal aspects of the arterial 

tree toward the kidney cortex (Fig. 2-5C-D). 

 

2.3.5 Gastric delivery of IEBs in vivo 

Successful embolization of one to three arteries supplying the gastric fundus was 

achieved using 0.7 – 1.5  106 of 50 µm IEBs with fluoroscopic visualization of the IEBs 

without iodinated contrast administration (Fig. 2-6A).  Superficial gastric ulceration was 

observed in three of six BAE animals upon post-embolization endoscopic examination. In 

one animal, where all three fundal vessels were embolized, significant gastric ulceration 

occurred, resulting in diminished food intake for the first week post-embolization. All 

BAE pigs had retained residual chyme visible in the stomach at 1-week associated with 

impaired gastric emptying. There was no ulceration identified at the gastric fundus. 

Normal gastric mucosa without evidence of any ulceration was present in all sham 
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animals. All other dissected organs appeared grossly normal upon examination without 

evidence of injury in both BAE and sham animals. 

 

IEBs were visible (week 1: 655.8 ± 568.0 HU; week 4: 750.2 ± 685.8 HU) over the 

course of the 4-week study (Fig. 2-6B-D), had signal intensities comparable to that of 

cancellous bone (center of vertebrae, week 1: 605.6 ± 106.2 HU; week 4: 507.0 ± 98.1 

HU), and were clearly distinguishable from bulk tissue (antrum, week 1: 87.8 ± 58.4 HU; 

week 4: 64.4 ± 19.7 HU). Weight declined (Fig. 2-6E) in BAE animals at one week 

compared to a net gain in sham animals (BAE: –0.9 ± 2.3 lbs; sham: 2.9 ± 1.9 lbs) and 

weight gain remained significantly impaired at 4 weeks (8.3 ± 3 lbs vs. 13.6 ± 2 lbs, 

P<0.01). Relative to baseline, at 4 weeks post-administration, BAE animals had an 

average weight gain of 14 ± 7 % while sham animals had an average of 21 ± 2 % weight 

gain.  Failure of BAE pigs to gain weight was moderated by decreased serum ghrelin 

(Fig. 2-6F, 1226 ± 523 pg/ml vs. 1706 ± 143pg/ml, P < 0.001) and increased GLP-1 (Fig. 

2-6G, 9.8 ± 10 pM vs. 5.9 ± 2 pM, P < 0.001) compared to sham animals.  Although the 

IEBs were not visible grossly in the stomach, they were detected on CBCT in post-

mortem sections, as well as by histopathological examination (Fig. 2-7A-C). In addition, 

there was no evidence of IEBs on CBCT nor was there pathology suggestive of non-

target embolization to the pancreas, spleen, liver, or distal esophagus. However, ghrelin 

production was suppressed in the embolized fundus, based on immunohistochemistry 

assessment (Fig. 2-7D-I). 

 

2.4 Discussion  
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2.4.1 Rationale for Microfluidic Device Design 

Droplet microfluidics focused on biomarker detection, drug screening, etc. (12) have 

been an active area of research for the past decade. By performing on-chip crosslinking, 

the technology has been extended to the generation of small therapeutic microspheres 

(e.g., ~50 µm). For alginate microcapsules, crosslinking can be achieved in a number of 

ways. The simplest method is to rapidly crosslink the droplets by introducing them into a 

calcium or barium bath as they exit the microfluidic device (13,14), which tends to yield 

inhomogeneous and tear-drop shaped capsules that are not ideal for embolization (14-16). 

At excessively high generation frequencies, these capsules may also form clumps while 

crossing the oil-water interface. Alternatively, crosslinking can be achieved by fusing the 

droplets with separately-prepared crosslinker droplets (17), direct mixing of alginate and 

crosslinker streams prior to droplet formation (18), or by infusing the continuous phase 

with gelation inducers (e.g., slowly-diffusing crosslinkers or compounds that activate 

crosslinker precursors) (19,20). Droplet fusion methods typically require fine-tuning of 

timing to ensure synchronization and are consequently fairly slow and sensitive to flow 

velocity fluctuations, while direct mixing is difficult to control without rapid gelation and 

nozzle clogging. Thus, we adopted an approach using calcified oil to induce gelation 

(20). Since gelation at the nozzle is essentially a competition between diffusion of 

calcium into the alginate, and convective flow of the alginate out of the nozzle, the slow 

diffusion of the calcium across the oil/water interface minimizes nozzle failure, while 

simultaneously ensuring microcapsule sphericity and matrix homogeneity (16,20). 
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Despite the various alternative approaches listed above, the preparation of significant 

quantities of embolic generating microdevices that are suitable for medical use has not 

been previously shown. From our experience, this is, in part, because the devices are 

prone to fail as a result of accidental gelation in the channels and at the nozzles. In 

conventional droplet microdevices, the droplet generation channels must be primed with 

the continuous phase (i.e., oil) to achieve stable droplet generation (21,22). However, 

residual crosslinker molecules introduced into matrix channels during priming inevitably 

causes gelation and clogging of said channels. In addition, the two phases must be loaded 

with a slow and tedious ramp-up of the pressure aided by visual feedback to reduce 

backflow (22). In our device, the alginate channels are isolated from the oil stream with 

our pseudo-check valves to allow device priming without risking alginate channel 

contamination. Furthermore, the solutions can be directly loaded at the desired final 

pressure without any ramp-up, significantly simplifying microcapsule production. The 

valves also protect the process from exogenous pressure shock, such as moving the 

device on a microscope stage for inspection, thereby improving the robustness and 

prolonging the duration of device operation. 

 

In previously described conventional devices, the rate of capsule generation is typically 

slow (14,18-20). Because droplet generation is an inherently unstable process, involving 

transient undulations of the flow velocities and even backflow of the continuous phase 

into the discrete phase channel (7,23,24), parallelization gives rise to complex behavior 

that results in poor control over size distribution, and is, hence, non-trivial (25). For 

microcapsule matrices that involve on-chip crosslinking, this resultant errant flow pattern 
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also contributes to compromised device longevity. However, our valves impart high 

fluidic resistance that ameliorates the effects of the complex flow patterns, which is 

particularly pronounced when nozzles are in close proximity. This partly accounts for the 

relatively narrow size distribution in our preparations. The combination of 

straightforward sample loading, device robustness and longevity, high-throughput, and 

scalability make our method a practical device for microcapsule manufacturing for 

embolic applications.  

 

2.4.2 Imaging-visible microcapsules allow better dosing control 

Although embolics are frequently used to prevent gastric bleeding, the concept of 

bariatric arterial embolization (BAE) as a means to treat obesity is a relatively new 

concept (11,30-32). While, theoretically, one might expect BAE would lead to gastric 

perforation due to necrosis, the high turnover rate of the gastrointestinal lining and the 

stomach’s rich blood supply are relatively forgiving. Since organs, such as the spleen, 

pancreas, liver, and esophagus, share a common vascular supply with the stomach, NTE 

could result in significant morbidity. In fact, in a canine BAE study, Bawudun et al. 

found significant NTE to the liver with the use of a sclerosing agent for BAE (31). In a 

swine BAE model, Paxton et al. were able to prevent weight gain in swine using 

conventional embolic capsules, but 40 % of animals developed gastric ulceration away 

from the embolized area suggesting NTE occurred (11,32). Because of the lack of X-ray 

visibility of conventional embolic agents, none of these prior studies could directly assess 

the full extent of NTE except by post-mortem evaluation. Imaging-visible embolic 

capsules have been created by co-incubation of conventional embolic capsules with 
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lipiodol, an iodinated oil (33,34). However, the radiopacity was insufficient for capsule 

tracking on real-time fluoroscopy during delivery. In addition, lipiodol eluted from the 

capsules preventing long-term serial imaging of the capsule location. Thus, the 

radiopacity of the IEBs in our studies was sufficient for visualization during delivery, but 

did not cause significant artifacts on CBCT. The capsule visibility on CBCT was retained 

for at least one month post-administration. Nonetheless, additional studies will be 

required to determine longer term capsule stability in vivo before moving to clinical trials. 

 

An alternate approach to prevent NTE is to utilize catheters that have anti-reflux 

mechanisms that prevent retrograde flow of the embolic (35,36). However, the problem 

of embolic agent localization would still remain unresolved, and aggressive injection of 

large quantities of embolic material could inadvertently send embolic material into 

anastomotic vessels, which are prevalent in the stomach. Thus, the combination of anti-

reflux catheters and our X-ray-visible embolic agents may provide the best solution for 

preventing non-target embolization and under or overdosing of embolic agents. In our 

hands, gastric ulceration and NTE during BAE could be prevented by a variety of 

mechanisms: (1) An anti-reflux catheter prevented retrograde flow of the IEBs; (2) The 

extent of vessel occlusion could be monitored in real-time using the radiopacity of the 

IEBs on X-ray fluoroscopy and CBCT; and (3) Bariatric arterial embolization was limited 

to two of three vessels supplying the gastric fundus. Due to the remarkable flexibility of 

this microcapsule generation method, multiple payloads, such as other contrast agents, 

drugs, radiolabels, or cells, could be envisioned by premixing the material with the 

alginate before introduction into the microfluidic device. In case of encapsulation of 
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active payloads, the high viscosity of the alginate maintains a homogeneous suspension 

without sedimentation during the synthesis process. It is worth noting that the 

permeability and stability characteristics of our 50 µm IEBs is similar to 300 – 500 µm 

unlabeled alginate capsules and contrast agent-impregnated alginate microcapsules made 

by the traditional droplet generation method (37). However, due to the small size of the 

microfluidic device and high throughput production, one could envision the 

encapsulation of drugs or cells could be performed just prior to delivery in the X-ray 

angiographic suite. 

 

2.4.3 IEBs as embolic agents 

Our study results demonstrate with histologic and endoscopic evidence that by 

embolizing the left gastric artery with an injection of contrast-infused IEBs, the flow of 

blood to the gastric fundus is occluded, thereby suppressing the secretion of the appetite 

inducing hormone ghrelin.  Weight steadily declined in animals that received BAE, and 

at 4 weeks post-administration, BAE animals experienced markedly lesser weight gain 

than those who had received sham embolization.  Moreover, this decrease correlated to 

an additional, substantial decrease in serum ghrelin levels as well as an increase in GLP-

1.  These results confirm the results of earlier studies, notably Arepally et. al (47) and 

Paxton et. Al (48), but our study differentiates itself from these authors’ work in a few 

notable respects. 

 

While Arepally et. al’s work demonstrated the effectiveness of gastric arterial 

embolization, their study also encountered difficulties.  Arepally et. al used morrhuate 
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sodium solution as a sclerosing agent, which while effective, nonetheless caused 

ulceration in the subjects because of its corrosiveness.  Moreover, the imaging techniques 

used (ultra-sonography and Digital Subtraction Angiography [DSA]) provided a great 

level of detail, but were inadequate to precisely image the vascular anatomy to the fundus 

because they lacked the dimensional perspective offered by CT (47).   This difficulty 

carried with it the attendant complication of non-target embolization and thereby 

additional ulceration in these embolized areas.  

 

Paxton et. al’s study was revelatory of the further possibilities offered by bariatric 

embolization, but was also hampered by some methodological difficulties.  Although 

Paxton et. al’s testing demonstrated the efficacy of using microbeads to embolize they 

nonetheless had difficulties imaging the course of treatment, likely because of their beads 

and the contrast being injected separately as well as their reliance on DSA to view their 

progress (48).  As a result there was still non-target embolization, and thus, ulceration in 

these additional areas. Furthermore, the authors noted that they were unable to confirm 

their endoscopic findings because they had not also performed a histological analysis 

(48). Nonetheless, Paxton et. al importantly found that beads were in fact more 

efficacious than morrhuate sodium, showing both fewer adverse effects and a more 

substantial decrease in ghrelin while still confirming Arepally et. al’s results.   

 

Our study both confirmed and improved on the above authors’ work by innovating a 

different approach to imaging the procedure. By using IEBs and imaging the target areas 

pre-procedure with a combination of DSA and CBCT, the target vascular anatomy was 
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embolized with maximum precision.  Moreover, additional CBCT was performed both 

immediately post-procedure and on a weekly basis thereafter to confirm the accuracy of 

the procedure and persistence of the IEBs. Thus the treated swine were embolized safely 

and with exacting precision. Additionally, by performing histological analysis in addition 

to endoscopy, we were able to correlate our findings, confirming the marked ghrelin 

decrease noted above in the results.  

 

However, the study demands more data to further substantiate our results, and therein lay 

the limitations of the study.  Data from a larger number of subjects over a longer testing 

period (4-6 months) will be much more revelatory of BAE’s potential as a treatment 

option for obesity and its adverse effects. In particular, the measurement of ghrelin, PYY 

and GLP-1 levels over a longer duration will elaborate on BAE’s efficacy, and a longer 

study will conclusively demonstrate the correlation between the embolization and adverse 

effects, including ulceration.  Nonetheless our study demonstrated BAE’s efficacy and 

readiness for early clinical trials. 

 

2.5 Conclusion 

We have developed a platform based on droplet microfluidics to generate highly uniform, 

small microcapsules with X-ray visibility at high throughputs.  These microcapsules are 

compatible with conventional minimally invasive imaging and delivery techniques, and 

are tissue compatible.  We have demonstrated that IEBs are effective as embolic agents 

and can provide visual feedback to the physician to minimize NTE, while offering 

enhanced control over site-specific delivery with more distal vascular penetration.  
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Compared to conventional microcapsules, IEBs offer reduced microcapsule profile, 

superior uniformity and traceability, and better proximity to the targeted tissue.  These 

properties are integral to the platform’s translation to intracardial delivery of stem cells, 

which will be discussed in the next chapter.  
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2.6 Figures 

 

 

Figure 2-1: Overview of functional components of the microfluidic device.  

(A) The pseudo-check valve is actuated before the continuous phase (oleic acid), discrete 

phase (alginate), and crosslinking solutions are loaded in that order into the device. (B) 

By setting alginate press (Palg) > valve pressure (Pvalve) > oil pressure (Poil), actuation 

deforms the PDMS membranes above the valves, which remain sealed until the alginate 

forces them open. The extruding alginate is side-sheared into droplets by the oncoming 

calcified oil stream. (C) Isopropyl alcohol (IPA) facilitates the phase transfer of nascent 

droplets from the middle, low-calcium oil stream to the lateral high-calcium IPA/aqueous 

mixture, to complete the crosslinking. (D) Histogram demonstrating that the average IEB 

diameter, as determined from environmental SEM (ESEM) images, is highly uniform 

(48.8 ± 4.9 µm, n = 84). (E) ESEM image of imaging-visible embolic capsules (IEBs) 

shows that the barium sulfate crystals are fully encapsulated within the gel matrix. Bar = 

50 µm.  
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Figure 2-2: Generated Microcapsules and IEBs.  

Representative phase contrast images of (A) plain alginate microcapsules and (B) IEBs 

showing high uniformity. (C) Alginate microcapsules incubated in physiologically-

relevant conditions show no significant physical deformations.  
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Figure 2-3: IEB permeablity.  

IEBs were permeable to 36 and 75 kDa (a and b, respectively), as shown by uptake of 

fluorescent lectins, but impermeable to 120 and 150 kDa lectins (c and d, respectively), 

which remain on the surface of the IEB. 
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Figure 2-4: Radiopacity and x-ray sensitivity of IEBs.  

(A) Graph of signal intensity (in Hounsfield units) calculated from multidetector 

computed tomography (MDCT) of different concentrations of iohexol or IEBs embedded 

in agarose with a linear regression fit. (B) Multiplanar reformat of cone beam CT (CBCT) 
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of aliquots of IEBs and iohexol, showing a similar radiopacity of IEBs to 10 % iohexol 

dilution. (C) Anterior-posterior radiograph obtained on flat-panel angiography system 

demonstrating the radiopacity of IEBs relative to iohexol. (D) Lateral radiograph of the 

same phantom shown in C. 
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Figure 2-5: In vivo IEB renal delivery.  

(A) Single frame from digital subtraction angiogram (DSA) during selective renal artery 

injection of IEBs (without iodinated contrast agent) demonstrating the ability to visualize 

IEB injections (arrows) in a conventional microcatheter. (B) CBCT image (white) fused 

with DSA of kidneys (red) to show delivered IEBs (yellow arrow) versus non-visible 

embospheres (blue arrow).  DSA also shows deeper perfusion on the side of IEB 

injection (left) compared to embospheres (right). (C) IEBs were visible grossly on 

postmortem examination in the renal cortex (arrows). (D) Trichrome staining at three 

weeks post-IEB administration demonstrates the intact IEBs (arrows) with fibrosis (blue) 

and loss of glomeruli structure consistent with renal infarction. Little inflammatory 

infiltrate is observed. 
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Figure 2-6: In vivo IEB gastric delivery.  

(A) Digital subtraction angiograms (DSA) of celiac artery, showing sites of embolization 

(circles, from left to right: right gastric artery, left gastric artery, fundal artery). (B) 

Radiopacity of IEBs as compared to antrum tissue and bone (cancellous portion of 

vertebrae). (C) Representative CBCT axial cross sectional images showing IEB 

hyperintensities (arrows) over 4 weeks. (D) Enlarged CBCT axial cross section showing 

continued IEB visualization (arrows) at 4 weeks post-administration.  (E) Average weight 

gain of pigs after IEB or sham treatment over 4 weeks. (F-G) Serum concentrations of (F) 

ghrelin and (G) GLP-1 over 4 weeks.   



   

 64   

 

 

Figure 2-7: IEB gastric histopathology.  

(A) Representative axial reconstruction from CBCT of paraffin-embedded fundal tissue 

at four weeks post-embolization with IEBs (arrow). (B) Trichrome staining 

demonstrating that the radiopacities (open arrow) in CBCT seen in A (yellow box) 

represent IEBs within vessels in the submucosal region of the tissue. (C) Magnified view 

(black box in B) showing IEBs remain intact. (D-I) Hematoxylin and eosin (D,G), 

trichrome (E,H), and anti-ghrelin (F,I) staining of fundal regions in a pig, four weeks 

after IEB administration, showing increased fibrosis (blue, E) and decreased ghrelin-

positive cells (F) in areas containing IEBs relative to areas that were not embolized (F 

and I, respectively) without evidence of gastric ulceration.  
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Chapter 3 Microencapsulation of Human Mesenchymal Stem Cells 

and Perfluorooctyl Bromide Imaging Agent in Uniform 

Alginate Microcapsules using Droplet Microfluidics 

 

3.1 Introduction  

Stem cells have emerged as a key element of regenerative medicine therapies due to their 

inherent ability to differentiate into a variety of cell phenotypes, thereby providing 

numerous potential cell therapies to treat an array of degenerative diseases and traumatic 

injuries (1).  A recent paradigm shift has emerged suggesting that the beneficial effects of 

stem cells may not be restricted to cell restoration alone, but also due to their transient 

paracrine actions. Stem cells can secrete potent combinations of trophic factors that 

modulate the molecular composition of the environment to evoke responses from resident 

cells. Based on this insight, current research directions include efforts to elucidate, 

augment and harness stem cell paracrine mechanisms for tissue regeneration.   

Despite many studies having demonstrated ways to controllably induce desired paracrine 

secretion in vitro, direct transplantation of stem cells into diseased tissues has met with 

many challenges (2).  Among them are significantly lower survival rates, ineffective 

therapeutic activity, and difficulty in visualizing transplanted cells.  In 1964, T.M.S. 

Chang (3) proposed the idea of using ultrathin polymer membrane microcapsules for the 

immunoprotection of transplanted cells and introduced the term 'artificial cells' to define 

the concept of bioencapsulation, which was successfully implemented 20 years later to 

immobilize xenograft islet cells.  When implanted into rats, the microencapsulated islets 
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corrected the diabetic state for several weeks. Since then, there has been considerable 

progress toward understanding the biological and technological requirements for 

successful transplantation of encapsulated cells in experimental animal models, including 

rodents and non-human primates. Bioencapsulation has provided a range of promising 

therapeutic treatments for diabetes, hemophilia, cancer and renal failure, among many 

studies. Additionally, the functional applicability of cell encapsulation in humans has also 

been reported in many clinical trials. 

In the case of treatment of myocardial ischemia and the promotion of cardiovascular 

tissue repair, the delivery of relatively large and non-uniform capsules (~100–300 µm) 

fabricated by conventional methods has met many challenges.   Among them are the 

inability to visualize and monitor transplanted cells, the larger needle or catheter required 

for administration (conventional catheters typically have an inner diameter of 200 µm), 

the increased risk of disrupting myocardial electrical conduction, and the potential for 

microvascular embolization.  In order to circumvent these issues, we have employed an 

approach based on droplet microfluidics to control capsule geometry and reduce the risk 

of undesired complications.  

Droplet microfluidics focused on biomarker detection, drug screening, etc. (4-12) have 

been an active area of research for the past decade. By performing on-chip crosslinking, 

the technology has been extended to the generation of small therapeutic microspheres 

(e.g., ~50 µm). For alginate microcapsules, crosslinking can be achieved in a number of 

ways. The simplest method is to rapidly crosslink the droplets by introducing them into a 

calcium or barium bath as they exit the microfluidic device (13,14), which tends to yield 

inhomogeneous and tear-drop shaped beads that are not ideal for vascular delivery (14-
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16). At excessively high generation frequencies, these beads may also form clumps while 

crossing the oil-water interface. Alternatively, crosslinking can be achieved by fusing the 

droplets with separately-prepared crosslinker droplets (17), direct mixing of alginate and 

crosslinker streams prior to droplet formation (18), or by infusing the continuous phase 

with gelation inducers (e.g., slowly-diffusing crosslinkers or compounds that activate 

crosslinker precursors) (19,20). Droplet fusion methods typically require fine-tuning of 

timing to ensure synchronization and are consequently fairly slow and sensitive to flow 

velocity fluctuations, while direct mixing is difficult to control without rapid gelation and 

nozzle clogging. Thus, we adopted an approach using calcified oil to induce gelation 

(20). Since gelation at the nozzle is essentially a competition between diffusion of 

calcium into the alginate, and convective flow of the alginate out of the nozzle, the slow 

diffusion of the calcium across the oil/water interface minimizes nozzle failure, while 

simultaneously ensuring microcapsule sphericity and matrix homogeneity (16,20). 

We have previously demonstrated that highly uniform microcapsules produced by a 

similar microfluidics-based platform can be used as embolic agents in embolic therapy, 

and is currently investigated in a preclinical study as a treatment for obesity.  Here we 

report a modified microfluidics platform for the encapsulation of human mesenchymal 

stem cells (hMSCs) and perfluorocarbon-based imaging contrast agents, resulting in 

smaller, more uniform microcapsules that allow for safer, less invasive and more precise 

cell delivery, and are traceable using conventional clinical scanners.  

 

3.2 Materials and Methods 

3.2.1 Microfluidic device fabrication 
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A two-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated as 

previously described (38). Briefly, in the fluidic layer mold, a positive 30 µm photoresist 

layer (SPR 220-7, Microchem Corp) was spin-coated onto a hexamethyldisilazane-treated 

silicon wafer. Valve pads were formed by exposing the resist at 5,000 mJ/cm2. After 

development, an SU-8 3050 layer was spin-coated, exposed at 350 mJ/cm2, and 

developed to provide 80-µm-tall main fluidic channels. The valve control mold was 

fabricated on a separate wafer using SU-8 3050 photoresist under the same conditions.  

A thin PDMS layer (Sylgard 184, Ellsworth Elastomers, 15:1 base-to-curing agent wt/wt 

ratio) was spun onto the fluidic mold, while  a thicker layer (7:1 base-to-curing agent) 

was cast onto the valve control mold, and baked for seven and 12 minutes at 80 °C, 

respectively. The two layers were aligned and bonded before sealing with a glass 

coverslip using an oxygen plasma treatment. 

 

3.2.2 Microcapsule preparation 

The pseudo-check valve between the alginate and oleic acid channels was initially 

pressurized at 10 psi with deionized water for closure. Calcified oleic acid was prepared 

by dissolving calcium chloride (2 g) in ethanol (10 mL), and then, mixed with oleic acid 

(10 mL, Sigma-Aldrich). After 48 hours, phase separation occurred, and the ethanol-rich 

top phase was removed and calcified oleic acid was diluted 10-fold with oleic acid to 

give the final working calcified oil, which was introduced into the device at 20 psi. Next, 

alginate (1 wt%, Pronoval UP LVG, FMC Biopolymer) was prepared in normal saline 

(0.9% NaCl) and delivered into the device at 25 psi. Last, the crosslinking solution was 

prepared by mixing IPA with a 20 wt% aqueous calcium chloride solution (2:1 v/v), and 
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introduced near the outlet at 5 psi. The generated microcapsules were collected from the 

chip by pipetting the mixture from the outlet of the device and stored at 4 °C. Microbeads 

were rinsed with PBS before use. 

Microcapsules were prepared under aseptic conditions using ethylene oxide-sterilized 

microdevices and filtered solutions. The sterility of the microcapsules were determined 

using the Endosafe®-PTS Reader and integrated software system (Charles River 

Laboratories) using 005 EU/ml Endosafe®-PTS cartridges (data not shown). 

 

3.2.3 Human mesenchymal stem cell culture and microencapsulation 

Human mesenchymal stem cells was cultured using Mesenchymal Stem Cell Growth 

Medium BulletKit (Lonza) using manufacturer protocols in T75 Corning Falcon tissue 

culture treated flasks.  Cells for microencapsulation were extracted at 80% confluency 

and mixed gently with alginate to a final concentration of roughly 4×106 cells/mL.  The 

mixture is fed through the custom microfluidic device to produce uniform microcapsules, 

centrifuged to remove waste and excess calcium solution, then transferred to 24-well 

plate with media for culture in incubator.  Media is replaced twice a week for up to 4 

weeks.   

 

3.2.4 Cell viability 

Cell viability is determined by Live/Dead staining or by AlamarBlue cell viability assay 

(Thermo Fisher Scientific, DAL1025).  Microcapsules are incubated with 2 µM Calcein 

AM (Sigma Aldrich) for 20 minutes and with 5 µM propidium iodide (Sigma Aldrich) 
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for 5 minutes and imaged immediately.  AlamarBlue assay was conducted according to 

manufacturer suggested protocols.  

 

3.2.5 Contrast agent impregnation 

PFOB emulsions were made ultrasonicating a mixture of equal parts lecithin (Sigma 

Aldrich) and 1-Bromoheptadecafluorooctane while sitting on ice, as described 

previously. The resulting PFOB emulsion is added to ProNova ultrapure LVG alginate 

(Novamatrix) to a final composition of 12% PFOB emulsions and 1.5% alginate.   

 

3.2.6 Microbead characterization and sterilization 

To characterize the diffusion of calcium across the oil-water interface into the alginate 

gel, a fluorescent calcium dye (10 µM Fluo-4, Invitrogren) was incorporated into the 1 

wt% alginate solution. Fluorescent readings were then obtained as the beads traversed the 

microfluidic device. To calculate the concentration of free calcium, we use the formula 

Cafree = Kd

F − Fmin

Fmax − F
 

Where Kd = 345 nM for Fluo-4, and Fmin and Fmax are the fluorescence intensity measured 

for 10 µM Fluo-4 in PBS with no calcium and 1 mM calcium chloride, respectively. By 

monitoring the fluorescence intensity, we were able to estimate the concentration of free 

calcium in the gel matrix. The dissociation constant of calcium-alginate depends on the 

composition of the calcium. The dissociation constant reported for the alginic acid L-

guluronan component (poly-GluA) and D-mannuronan (poly-ManA) is 2  10-4 M and 1 

 10-3 M, respectively (39). For the alginate used in our microfluidic device (NovaMatrix 
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PRONOVA UP LVG, high-GluA), we estimated the dissociation constant to be closer to 

the lower end of this range at 4  10-4 M.  

Fluorescence images were acquired during the bead-generation process (QImaging 

Intensified Retiga mounted on Olympus IX-71 Inverted Microscope, FITC fluorescence 

cube; Settings for the camera on QCapture software were as follow: exposure = 11.4 ms; 

intensifier gain = 3365; CCD gain = 10.5; and offset = 477) and processed with ImageJ 

(NIH, Bethesda, MD). Results of calcium uptake are described in the Supplementary 

Note. 

To examine the dependence of bead diameter on alginate flow rate, a computational 

model of the droplet generation process was created using COMSOL. A two-phase flow 

level set model was used to investigate the relationship between droplet size and alginate 

flow rate in a T-junction side-shearing droplet generator. In addition, simulations were 

performed to determine the effect of cross channel and nozzle width on bead diameter. 

The simulations were compared to experiments performed in a single-nozzle microfluidic 

device with nozzle dimension of 50  25 µm, and an 80  80 µm cross channel while 

varying the alginate pressure (4-15 psi). High-speed videos (Casio Exilim EX-F1 camera) 

of the bead generation were analyzed (ImageJ) to determine the bead diameters, 

generation frequency, and flow rates of both the alginate and oleic acid. 

Environmental scanning electron microscopy (FEI Quanta ESEM 200 microscope) of 

beads was performed at 5 °C and 800 Pa. Microbead stability at 37 °C in PBS, 100 % 

serum, 10 % serum, or natural saline was determined based on measured microscopic 

diameter using an optical microscope and shape changes (ImageJ, n=150 beads) after 0, 

1, 3, 7 and 10 days. Microbeads stored in IPA/calcium buffer at 4 °C were evaluated at 
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18 months for changes in size. The permeability of the microcapsules was analyzed using 

fluorescently labeled lectins (36, 75, 120, and 150 kD) as previously described (37). 

Microcapsules used in animal studies were prepared under aseptic conditions using 

ethylene oxide-sterilized microdevices and filtered solutions. The sterility of the 

microcapsules for in vivo studies were determined using the Endosafe®-PTS Reader and 

integrated software system (Charles River Laboratories) using 005 EU/ml Endosafe®-

PTS cartridges. microcapsule aliquots were tested for contamination. 

 

3.2.7 Microcapsule radiopacity 

The sensitivity of microcapsule detection was determined in vitro. Microcentrifuge tubes 

loaded with saline, oil, different volumes of microcapsules, and different concentrations 

of iodinated contrast agent (iohexol, GE Healthcare) were imaged on a clinical 

fluoroscopy system (Axiom Artis, Siemens). Digital radiographs (48 cm intensifier size, 

72 kV, and 62 mA) and a cone beam computed tomography (CBCT, 20s DR-Head 

DynaCT, Siemens Axiom Artis, 20 s rotation, 0.4° increments, 217° rotation, and 543 

projections) were acquired to determine microcapsule visibility relative to iodinated 

contrast agents. A second phantom was created using a 24-well plate with serial 

microcapsule dilutions suspended in agarose (Type VII, Sigma Aldrich, n = 5). The 

phantom was imaged on a clinical, dual-energy computed tomography system 

(SONMATOM Definition Flash, Siemens, 0.5 mm slice thickness, 17.7 cm2 field-of-

view, 512  512 image matrix, 80 keV/211 mAs and 140 keV/109 mAs energy levels).  

 

3.2.8 In vivo studies 
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All animal studies were approved by the Institutional Animal Care and Use Committee at 

the Johns Hopkins University School of Medicine. Female Yorkshire pigs (25 – 30 kgs) 

were fasted overnight prior to any anesthetic induction. Animals were sedated with an 

intramuscular injection of tiletamine/zolazepam (100 mg/ml telazol), ketamine (100 

mg/ml), and xylazine (100 mg/ml) at a dose of 1 ml/50 lbs body weight, induced with 

intravenous propofol, intubated, and placed on general inhalational anesthesia 

(isoflurane). Blood was then obtained for serum chemistries and a complete blood count. 

Alginate capsules and PFOB-impregnated microcapsules are injected to the leg muscle 

and imaged by cone beam computed tomography (CBCT, DynaCT, Siemens Axiom 

Artis or Artis Zee, 8 s digital subtraction angiogram [DSA], 48 cm field size, 0.5 

degrees/step, 210 degree rotation, 94 kV, and 475 mA).   

 

3.2.9 Image analysis 

For in vitro studies of microcapsule sensitivity, the mean Hounsfield units were 

determined in manually drawn regions of interest of equal area on dual-energy CT image 

reconstructions (Syngo Multimodality workstation, Siemens). Linear regression analyses 

were performed of the Hounsfield units vs. serial iodinated contrast agent or 

microcapsules concentrations to determine the radiopacity of the microcapsules. For in 

vivo studies, CBCTs were reviewed for the presence or absence of radiopacities 

indicative of microcapsules. 

 

3.2.10 Histopathological assessment 
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Hematoxylin and eosin (H&E) staining was performed to detect the presence, location, 

and integrity of microcapsules and/or conventional embolic beads, as well as to 

determine whether inflammation was present. Trichrome staining was performed on 

sections adjacent to the H&E staining to determine the degree of fibrosis of the tissue. 

Immunohistochemical staining (mouse anti-human myeloid/histiocyte antigen, MAC387, 

Dako) was performed to determine whether macrophages were present to gauge the 

degree of foreign body reaction to the microcapsules. 

 

3.3 Results 

3.3.1 Operation of microfluidic device 

There are five functionally distinct regions in our microfluidic device. Pseudo-check 

valves are actuated at 10 psi, followed by the introduction of the calcified oil (20 psi) and 

alginate (25 psi) through the continuous phase channel and discrete phase channels, 

respectively (Fig. 3-1A). The actuated Polydimethylsiloxane (PDMS) membrane deforms 

and seals the valve pad region, preventing the crosslinker-containing oil from entering the 

alginate channels and causing undesired crosslinking, while permitting forward flow of 

the higher-pressure alginate stream. The two phases interact at the nozzle, in the droplet 

generation region, where the extruding alginate stream is side-sheared into droplets by 

the oil. The calcium diffuses across the oil/water interface, partially crosslinking and 

stabilizing the nascent microbeads. At the crosslinking region, the microspheres are 

introduced into an excess of calcium. Beads are then collected at the outlet and stored in 

the calcium-rich crosslinking solution (Fig. 3-1E-F). Using 10 parallel nozzles in a single 

device, with each nozzle operating at 20 – 30 Hz, more than 1 × 106 caps/hr/chip, or 
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approximately 65 µL/hr/chip, of ~50-µm microcapsules can be generated. While the 

current design employs 10 parallel nozzles, we have shown that designs with 40 parallel 

nozzles that ran for 2 – 4 hours were able to generate approximately 0.5 – 1 mL of 

microcapsules in one instance.  Thus, we expect that further scaling-up, including the use 

of parallel chips, could be performed with few problems.   

 

3.3.2 Microcapsule size, shape, and variability (alginate vs. hMSC vs. PFOB) 

Microfluidic channel dimensions, flow velocities, and the surface tension of the primary 

solution are three major factors that govern capsule size, shape, and variability. Alginate 

microcapsules are produced at 49.346 ± 2.46 µm, while PFOB microcapsules are 

produced at 47.32 ± 3.98 µm, and alginate microcapsules containing hMSCs are 

produced at 48.03 ± 5.76 µm (Fig. 3-1G).  The average aspect ratio of the microcapsules 

are 0.91 ± 0.07 (alginate), 0.92 ± 0.07 (PFOB), and 0.90 ± 0.13 (hMSC) (Fig. 3-1H).  

Due to minute differences in each custom microfluidic device, each batch of 

microcapsules produced have slightly different average sizes.  With a target size of 50 

µm, three batches of alginate microcapsules were produced using three different 

microfluidic devices.  Their respective average sizes were 52.99 ± 4.54 µm, 45.44 ± 5.42 

µm, and 49.35 ± 2.46 µm (Fig. 3-1I), and they are statistically insignificant.  

 

3.3.3 Microcapsule permeability and stability 

The microcapsules were incubated with fluorescently labeled lectins (36, 70, 120 and 150 

kDa) to assess their permeability to molecules of corresponding sizes.  Figure 3-2B 

shows that after a 72-hour incubation period, both plain alginate microcapsules and 
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PFOB-impregnated alginate microcapsules are relatively permeable to molecules ≤ 75 

kDa, while molecules ≥ 120 kDa are mostly excluded.  Representative images (Fig. 3-

2A) shows that 36 kDa and 70 kDa lectins are uniformly distributed inside the capsules 

after 72 hours, whereas 120 kDa and 150 kDa lectins are only visible on the surface of 

the microcapsules and have almost no penetration.   

To assess microcapsules stability in various conditions, microcapsules with and without 

PFOB were incubated in normal saline, phosphate buffered saline, 10% fetal bovine 

serum, and 100% fetal bovine serum and media for 2 weeks (Fig. 3-2D).  No significant 

change in microcapsule size and morphology was observed in any of the conditions.  

Additionally, high pressure flow tests indicated that alginate microcapsules were able to 

withstand the shear stress without significant deformation (before: 52.99 ± 4.54 µm; 

after: 54.00 ± 8.10 µm) (Fig. 3-2E). 

 

3.3.4 Viability of microencapsulated hMSC and encapsulation efficiency 

Representative images showing encapsulated hMSCs in alginate microcapsules are 

shown in Figure 3-3A.  Viability staining indicates that the encapsulated hMSCs are 

74.75 ± 15.46 % viable immediately post-encapsulation, and maintains a steady viability 

throughout the 10 days of the experiment, with 74.38 ± 12.59 % viable at 10-days post-

encapsulation (Fig. 3-3C).  Viability was measured by calcein AM and propidium iodide 

staining at day-0 (immediately post-encapsulation), day-1, day-2, day-3, day-7, and day-

10.  There were 1.52 cells per microcapsules on day-0, and 1.55 cells per microcapsule 

on day-10.   Some hMSC-containing microcapsules were taken after 2 days of 

encapsulation and liquefied with sodium citrate.  The extracted hMSCs were replated in a 
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cell culture flask, incubated for 12 hours and stained for viability.  The replated hMSCs 

were 100% viable and demonstrated healthy focal adhesion, cell morphology, and 

proliferative activity (Fig. 3-3B).  When co-encapsulated with 12% PFOB, hMSCs were 

27.65 ± 8.57 % viable at day-0, and 20.70 ± 29.27 % viable at day-10 (Fig. 3-3C).   

To assess whether the cytotoxicity of the PFOB emulsions can be mitigated by delivering 

encapsulated cells and encapsulated imaging agents separately, PFOB emulsions and 

PFOB microcapsules were co-cultured with hASCs over 7 days (Fig. 3-3D).  At a cell-to-

microcapsule ratio of 1:2, hASCs were 98.88 ± 2.91 % viable with encapsulated PFOB 

on day-1, compared to 81.49 ± 8.60 % viable with free unencapsulated PFOB emulsions. 

At a ratio of 1:10, they were 88.00 ± 7.36 % and 80.31 ± 5.26 %, respectively.  At a ratio 

of 1:20, they were 82.86 ± 4.91 % and 76.00 ± 2.12 %, respectively. At 24% PFOB 

emulsions, which were equivalent to the concentration cells experience when co-

encapsulated with PFOB, they were 64.76 ± 1.25 % viable.  

 

3.3.5 In vitro imaging properties 

PFOB microcapsules produced using the electrospraying (large microcapsules) and 

microfluidics methods were visualized and compared by conventional cone beam 

computed tomography (CBCT).  PFOB-containing microcapsules were arranged in 10-

µL, 20-µL, and 50-µL dots (small microcapsules) and 20-µL, 30-µL, and 50-µL dots 

(large microcapsules) and embedded in 3% agarose (Fig. 3-4A-B).  The microfluidics-

made (small) microcapsules demonstrated higher radiopacity (10-µL: 2804 ± 154 

Hounsfield Units (HU), 20-µL: 2211 ± 154 HU, 50-µL: 2711 ± 82 HU) than 

electrosprayed (large) microcapsules (20-µL: 1469 ± 52 Hounsfield Units (HU), 30-µL: 
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1543 ± 122 HU, 50-µL: 714 ± 66 HU).  This also demonstrated that a conventional CT 

scanner was sensitive to as little as 10 µL or 9.55 × 104 of our microfluidics-made PFOB 

microcapsules.  A larger quantity of microcapsules was used to compare against natural 

saline (0.9% NaCl), and the oleic acid used in the microfluidic device (Fig. 3-4C-D, Air: 

-1023 ± 2 HU, Saline: 33 ± 38 HU, Large PFOB microcapsules: 809 ± 43 HU, Small 

PFOB microcapsules: 1305 ± 71 HU, oleic acid: 7 ± 24 HU).  A serial dilution of small 

PFOB microcapsules embedded in 3% agarose between 0 - 50% was visualized to 

determine the relationship between capsule radiopacity and quantity (Fig. 3-4E and Fig. 

3-4F, 0%: 111 ± 104 HU, 10%: 130 ± 112 HU, 20%: 139 ± 128 HU, 30%: 336 ± 145 

HU, 40%: 507 ± 192 HU, 50%: 747 ± 193 HU).  A linear relationship was observed at 

concentration greater than 20%.   The radiopacity of small and large PFOB microcapsules 

from Fig. 3-4C was also included to show linear correlation with the serial dilution, 

assuming a packing density of ~74% after centrifugation.  

 

3.4 Discussion 

3.4.1 Modifications to allow cell encapsulation 

In the previous chapter, we have demonstrated the ability to generate highly uniform 

alginate microcapsules with and without barium sulfate.  The process was facilitated by 

the removal of the oily carrying phase solution (oleic acid) by introducing a fast flowing 

stream of organic solvent (isopropanol) to “pinch” the partially gelated microcapsules out 

of its water-in-oil emulsion and into aqueous solution.  However, in the case of cell 

encapsulation, a high concentration organic solvent could not be used.  In order to 

minimize the stem cells’ exposure to oleic acid and the high calcium environment, a 
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heparinized calcium chloride solution was used to collect the microcapsules frequently.  

The microcapsules then underwent a series of centrifugations and sodium chloride rinses 

to effectively remove the oleic acid from the solution and promptly transferred to media 

for culture.  Empirically, this procedure improved the cells’ overall viability, allowing the 

cells to start at a higher initial viability rate and remain high for the duration of the study.    

 

3.4.2 Microcapsule permeability and stability 

Semi-permeability is one of the most important property and rationale for encapsulating 

stem cells.  We demonstrated that the microcapsules produced by this platform are 

relatively permeable to proteins less than 75 kDa, while molecules larger than 120 kDa 

are effectively excluded.  This ensures the permeation of nutrients and waste, as well as 

important secreted therapeutic factors such as vascular endothelial growth factor (VEGF, 

~34-43 kDa), interleukin-6 (IL-6, ~22-27 kDa), Angiogenin (~14.4 kDa), which are 

important cytokines that regulate inflammation and promote vascular repair.  Critical 

antibodies, immunogenic proteins, and complement system activating proteins are 

upwards of 150kD and are filtered by the semipermeable capsule matrix.  We also 

showed that the capsule crosslink integrity is maintained even in a non-calcified 

environments and in solutions containing concentrated serum proteins.  Furthermore, we 

showed that the microcapsules are unaffected when subjected to high pressure injection 

through a conventional microcatheter.  This ensures that the transplanted hMSCs are 

adequately protected by the microcapsules.   

 

3.4.3 Viability of microencapsulated hMSC and encapsulation efficiency 
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Figure 3-3 shows that hMSCs can be encapsulated in small uniform microcapsules with 

consistent viability, with average viability between 71-77 % over 10 days.  We believe 

that the viability can be improved by including cell adhesion factors and cell-friendly 

biomaterials such as collagen and fibrin into the microcapsule matrix.  To assess whether 

the encapsulation process impacts the metabolic activity of the cells, we extracted the 

hMSCs after 2 days of encapsulation by liquefying the alginate capsule matrix.  As 

shown in Fig. 3-3C, the replated hMSCs demonstrated growth behavior indicative of 

normal development, including adequate filopdia extension as well as cell division.   

On the other hand, when cells are co-encapsulated with PFOB, we found that hMSC 

viability was consistently lower than those encapsulated in plain alginate.  This may be 

due to the surfactants used in formulating the encapsulated PFOB emulsions having a 

cytotoxic effect. Thus, we have determined that co-encapsulation of stem cells with 

PFOB emulsions was not effaceable, and instead recommend the co-delivery of 

microcapsules containing hMSCs with microcapsules containing PFOB emulsions to 

achieve the combination effect of cell therapy and clinical visualization.   

 

3.4.4 In vitro imaging properties 

Fig. 3-4 demonstrates that the small PFOB microcapsules produced by the microfluidics 

platform may offer enhanced radiopacity as well as sensitivity over the large PFOB 

microcapsules, possibly due to a more efficient packing volume.  In Fig. 3-4A, the 10-µL 

aggregation of PFOB microcapsules is clearly distinguishable over the agarose phantom, 

whose radiopacity is similar to that of bulk muscular tissue, in the CBCT cross section.  

However, the respective markers for large and small PFOB microcapsules did not follow 
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a linear relationship, likely due to the varied thickness and width of the markers.  Figure 

3-4E-F shows the radiopacity of serially diluted PFOB microcapsules in the same 3% 

agarose phantom.  While the radiopacity of the 10% dilution falls too close to the 

background intensity of the agarose phantom, the intensities of the 20-50% dilutions do 

follow a linear relationship.  From that we can extrapolate a linear regression line that 

correlates signal intensity with microcapsule concentration or quantity.  If we assume that 

the small PFOB microcapsules from Fig. 3-3C have a packing density of 0.740 after 

being centrifuged, its radiopacity lays within reasonable range of the linear regression 

line extrapolated in Fig. 3-4F.  These results suggest that our PFOB microcapsules will be 

easily visualized when transplanted in vivo.  Furthermore, we will be able to determine 

the amount of microcapsules transplanted, and also be able to serially track these 

microcapsules noninvasively, as we have previously shown with microcapsules 

containing barium sulfate imaging agent.     When combined with the delivery of 

encapsulated hMSCs, we can achieve effective paracrine-based cell therapy, while at the 

same time being able to visualize and trace the delivery of these microcapsules over long 

periods.   

 

3.5 Conclusion 

Our microfluidic platform enables hMSC encapsulation into highly uniform hydrogel 

microcapsules.  The reduced microcapsule size compared to conventional encapsulation 

methods is amenable to delivery with commercial microcatheters, which should enable 

more site-specific administration into most organs for regenerative therapy.  The 

microcapsules protects the encapsulated cells from the harmful or immunogenic large 



   

 89   

 

molecules or cells, and allows adequate passage for nutrients and waste to ensure long-

term survival and the release of soluble therapeutic small molecules. Furthermore, 

encapsulation with perfluorocarbon imaging agents allow for sensitive visualization using 

conventional clinical CT scanners, which will allow for more precise cell delivery with 

the ability of serial visualization and tracking. Consequently, this provides for a more 

efficient way to deliver stem cells and sustained imaging agent with decreased risk of 

side effects, which can potentially lead to new therapeutic strategies. 
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3.6 Figures 

 

 

Figure 3-1: Physical characterization.  

Schematic of microfluidic device at the (A) droplet formation junction and (B) device 

outlet showing the phase transfer of capsules into aqueous solution. Phase contrast 

images showing (C) the droplet formation junction and (D) device outlet without phase 

transferring solution to demonstrate the uniformity of the capsules. Phase contrast images 

of (E) alginate capsules (1.5% w/w) and (F) embedded with perfluoro-octyl bromide 

(PFOB, 12% w/w). (G) Typical size distribution of a single batch of alginate and PFOB-

embedded microcapsules, and (H) between multiple batches. (I) Circularity of alginate 

and PFOB capsules. Scale bar is 100 µm.   
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Figure 3-2: Chemical and mechanical characterization.  

Fluorescence of (A) alginate microcapsules and PFOB-embedded alginate microcapsules 

incubated with fluorescently tagged lectin molecules of various sizes (36 kDa, 75 kDa, 

120 kDa, 150 kDa) after 24 hours. (B) Mean relative fluorescence intensity quantified 

over 72 hours. (C) Microcapsule size stability in calcified normal saline, PBS, 10% fetal 

bovine serum (FBS), 100% FBS, over 14 days. (D) Representative phase contrast images 
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of alginate microcapsules (embedded with a blue dye) subjected to rapid injection 

through a 200-µm inner-diameter microcatheter. 
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Figure 3-3: Cell encapsulation and viability.   

Representative images showing (A) hMSCs in alginate microcapsules and (B) hMSCs 

extracted after 2 days of encapsulation and re-cultured for 12 hours. White arrows 

indicate cell division.  Green: calcein AM. Red: propidium iodine.  (C) Viability of 
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encapsulated MSCs with and without PFOB co-encapsulation over 10 days.  (D) 

AlamarBlue metabolic assay of hASC co-cultured with PFOB microcapsules and free 

PFOB emulsions at various concentrations.   
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Figure 3-4: Radiopacity of PFOB microcapsules by cone beam computed tomography.  

(A,B) Sensitivity of electrospray-made (large) PFOB microcapsules and microfluidics-

made (small) PFOB microcapsules as 10-µL, 20-µL, 50-µL markers embedded in 3% 
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agarose. (C,D) Radiopacity of natural saline, large PFOB microcapsules, small PFOB 

microcapsules, and oleic acid. (E,F) Serial dilution of small PFOB microcapsules 

embedded in 3% agarose phantom, extrapolated to show linear relationship with the 

small and large PFOB microcapsules measured in (D).   
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Chapter 4 Piezoelectric Bioprinting of Human Mesenchymal Stem 

Cells, Induced-Pluripotent Stem Cells, and Ethiodized Oil 

in Alginate Microcapsules 

 

4.1 Introduction 

In Chapter 3 we demonstrated the ability to encapsulate stem cells and imaging agents in 

highly uniform hydrogel microspheres using a droplet microfluidics-based platform.  

However, there are limitations to the platform.  Among them is its sensitivity to the 

aqueous solution’s wetting properties.  At the device nozzle where alginate is extruded 

and side-sheared into droplets, if the surface tension of the aqueous solution containing 

the hydrogel precursor changes drastically, droplets would not form.  This became 

evident when the device nozzles became easily clogged as we introduced various 

biopolymers, such as fibrinogen and gelatin, to the mixture.  Thus, the device is not very 

amenable to microcapsule production using different solutions.    

 

Another drawback to the microfluidic platform is scalability.  As discussed earlier, it is 

possible to increase the throughput of microcapsules production by increasing the flow 

rate, and also by increasing the number of nozzles on the device.  The former can be 

achieved by increasing the applied pressure to the system to a certain degree before the 

excessive pressure causes the device to fail.  However, the latter method isn’t readily 

achievable.  The number of nozzles on a given device is determined by the design 

features during the microfabrication process.  As such, in order to increase the number of 
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nozzles, we must construct a new mold, which is time consuming.  In this chapter, we 

explore a piezoelectric bioprinting platform that combines the high throughput of the 

conventional electrospraying techniques, with controllability on the scale of the 

microfluidics platform, with the added bonus of spatial control in three dimensions.  

 

4.1.1 Piezoelectric inkjet bioprinting 

Freeform fabrication techniques such as stereolithography, fused deposition modelling 

and 3-dimensional inkjet printing are capable of manufacturing scaffolds for use in tissue 

engineering with complex internal architecture [1–3]. The incorporation of cells into 

these scaffolds however, still poses a significant problem. Current cell-seeding techniques, 

whether static or dynamic, can result in non-uniform distribution, limited penetration 

depth and utilize a limited variety of cell types [4,5]. Klebe [6] was the first to propose 

the use of micropositioning techniques to precisely locate individual cells in structures. 

Mironov and Boland explored this concept further and demonstrated its feasibility [7,8]. 

A number of research groups have now used inkjet printing as a method for the 

deposition of biochemical factors to make microarrays and to promote cell adhesion or 

direct cell growth [9–12]. Inkjet printing has also been used to selectively deposit and 

position living cells, with the earliest work using bacteria [13].  

 

Inkjet printers generate and position droplets using one of two different mechanisms. In 

continuous inkjet printing (CIJ), a stream of fluid is passed through a small orifice and 

breaks up into small droplets by Rayleigh instability. If an electric charge is imparted to 
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the drops, they can subsequently be steered by applying an electrostatic or magnetic field. 

In drop-on-demand inkjet printing (DOD), the drops are only formed when required and 

spatial control is achieved by mechanically positioning the print-head before drop 

ejection. DOD can be further subdivided through distinguishing the mechanism by which 

a drop is ejected. With thermal DOD a heater is used to vaporize a small volume of the 

fluid to be printed in a chamber immediately behind the printing orifice. The resulting 

bubble expands rapidly and imparts the energy required to eject a drop. In piezoelectric 

and electrostatic DOD, the mechanical impulse is applied directly, by either a rapid 

change in shape of a piezoelectric crystal or by an electrostatically driven mechanical 

displacement adjacent to the fluid-filled chamber. CIJ operates at much faster droplet 

generation rates than DOD printers, however, the need to use an electrically conducting 

fluid and the possibility of contamination during the recirculation process are limitations 

for biological applications.  In this study we use a piezoelectrically actuated DOD printer 

to dispense stem cell microcapsules with high uniformity and high throughput.   

 

4.2 Materials and Methods 

4.2.1 Cells and culture conditions 

Human mesenchymal stem cells were cultured in Mesenchymal Stem Cell Growth 

Medium (MSCGM, Loonza).  Human induced pluripotent stem cells were cultured using 

E8 media (Essential 8 medium, ThermoFisher Scientific). Cells were cultured using 

standard procedures in T75 culture flasks and incubated at 37 °C at 5% CO2.  Once the 

cells are ready for use, they are rinsed with PBS and trypsinized (Trypsin-EDTA 0.05%, 

ThermoFisher Scientific) and incubated for 2-3 minutes or until at least 90% of cells have 
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detached from the flask and are in single cell suspension.  The trypsin is then neutralized 

by the addition of media and transferred to a conical tube to be centrifuged at 1000 rpm 

for 5 mins.  The supernatants are removed and the cell pellet is resuspended in a sodium 

alginate solution (0.75%, ProNova LVG UP, Novamatrix) at a concentration of ~ 3 × 106 

cells/mL.  The resulting solution is then loaded to a tubing as “ink” to the piezoelectric 

inkjet printer.    

 

4.2.2 Microcapsule printing mechanism 

Printing experiments were carried out using a single-jet stationary piezoelectric printhead 

(Microjet MJ-AB-01, Microfab Inc.), which consists of a glass capillary bonded to an 

annular piezoelectric actuator (Fig. 4-2A-B). The capillary tapers to a fine orifice with a 

specific diameter through which droplets are ejected upon application of a suitable 

electrical pulse to the actuator.  The printhead driving waveform is controlled through the 

drive electronics, Jet Drive II (Microfab Inc.), and defined using an interfaced PC.  The 

precise shape of the electrical signal used to drive the piezoelectric actuator will influence 

the fluid mechanical forces during printing, and the optimal waveform will vary 

depending on the surface tension and acoustic properties of the fluid.   

An example of an electrical pulse is shown in Figure 4-1, marked with regions of interest.  

During the rise time, the tubular PZT expands its circumference while becoming thinner 

and shorter.  The fast deformation is transmitted through the epoxy bond to the glass tube 

and results in an outwards motion of the inner glass surface, which produces a negative 

pressure (with respect to the equilibrium). The negative pressure travels in the fluid at the 

speed of sound along the glass tube in the form of an expansion acoustic wave to both the 
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orifice and the supply end. The expansion wave is reflected as a compression wave 

(higher pressure than the equilibrium pressure in the glass tube) at the supply end and 

travels back towards the orifice. If the dwell time is selected to start when the positive 

pressure wave matches the piezoelectric actuator, the inwards motion of the inner glass 

surface reinforces it resulting in a faster and larger droplet.  

Figure 4-2D shows the sequence of events at the orifice leading to droplet formation 

starting with the equilibrium condition.  Fluid is flush at the orifice (first image). The 

fluid interface is then withdrawn from the equilibrium position at the arrival of the 

expansion wave at the orifice. The second image is after the compression wave reaches 

the orifice causing the fluid to emerge. Another expansion wave reaching the orifice 

causes the fluid to pull back (images three) and to break off and leave the orifice. The 

ejected fluid is pulled into a spherical drop by surface tension forces (image four). The 

images are obtained by a short pulse of light from an LED that is synchronized with the 

pulse generating the drop.  By adjusting the delay between the actuation pulse and the 

pulse applied to the LED, the droplets are captured at different locations during the flight 

path.  

 

4.2.3 Cell viability 

Cell viability is determined by Live/Dead staining or by trypan blue.  Microcapsules are 

incubated with 2 µM Calcein AM (Sigma Aldrich) for 20 minutes and with 5 µM 

propidium iodide (Sigma Aldrich) for 5 minutes and imaged immediately. 
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4.2.4 Imaging agent preparation 

Lipiodol emulsions were made ultrasonicating a mixture of equal parts lecithin (Sigma 

Aldrich) and lipiodol (ethiodized oil, Guerbet) while sitting on ice, as described 

previously. The resulting lipiodol emulsion is added to ProNova ultrapure LVG alginate 

(Novamatrix) to a final composition of 12% lipiodol emulsions and 1.5% alginate.   

 

4.3 Results  

4.3.1 Physical characterization of bioprinted alginate microcapsules  

Alginate microcapsules were bioprinted (Figure 4-3A and Figure 4-3B) using an 80-µm 

inner diameter piezoelectric printhead (53.46 ± 5.83 µm) and a 40-µm inner diameter 

piezoelectric printhead (32.77 ± 4.08 µm) with the following printing parameters: 38–40 

V, trise = tfall = 5 µs, tdwell = 15–20 µs, techo = 30–40 µs, with an operating frequency 

between 100-240 Hz.  This shows that print-head nozzle size is one factor that can 

control microcapsule morphology, and is important when considering the targeted 

delivery size.  One worth noting is that while switching print-head sizes on the 

piezoelectric printer is as easy as switching a light bulb, in order to change the desired 

size for the microfluidic platform, a new mold would have to be made. Thus the 

piezoelectric printing platform offers better versatility in this regard.  

 

To parallel the characterization performed on the microfluidics-generated microcapsules, 

we assessed the bioprinted microcapsule stability in normal saline, cell culture media, 

10% fetal bovine serum, and 100% fetal bovine serum for 2 weeks (Figure 4-3C).  No 
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significant change in microcapsule size and morphology was observed in any of the 

conditions.  Likewise, bioprinted microcapsules were also incubated with fluorescently 

labeled lectins (36, 70, 120 and 150 kDa) to assess their permeability to molecules of 

corresponding sizes.  Figure 4-4 shows that after a 72-hour incubation period, the 

microcapsules are relatively permeable to molecules ≤ 75 kDa, while molecules ≥ 120 

kDa are mostly excluded.  Representative images (Figure 4-4) show that 36 kDa and 70 

kDa lectins are uniformly distributed inside the capsules after 72 hours, whereas 120 kDa 

and 150 kDa lectins are only visible on the surface of the microcapsules and have no 

effective penetration.  These results are comparable to those of the properties of 

microfluidics-generated microcapsules.  

 

4.3.2 Bioprinted stem cell microcapsules 

The piezoelectric bioprinter can also print microcapsules with cells.  hMSCs (Figure 

4-5A) and hiPSCs (Figure 4-5B) were bioprinted with a viability of about 98%.  iPSCs 

were able to be encapsulated at a higher efficiency likely due to its smaller average size 

compared the hMSCs.  Nozzle clogging occurred on occasion when printing hMSCs, 

possibly due to cell aggregate build up.  Bioprinted rMSCs were encapsulated for 2 days 

under culture conditions, then released by capsule dissolution via 50mM sodium citrate.  

The extracted cells were replated for 12 hours to allow for focal adhesion and stained 

with calcein AM and propidium iodide.  Figure 4-5D shows replated rMSCs with healthy 

morphology, as well as a cell with two nuclei, indicating a cell undergoing mitotic 

division.  The replated rMSCs continued to grow at a normal rate.  Theses findings are 

comparable to other research groups who are active in the field [7,8,11,14-18]. 
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4.3.3 Co-encapsulation with imaging agents  

Several attempts at printing microcapsules containing PFOB were unsuccessful, thus we 

selected a different clinical imaging agent, lipiodol.  Since lipiodol is not an aqueous 

solution, it was first emulsified with surfactant before mixing with the alginate for 

printing. Microcapsules containing 0.75% lipiodol were printed as tear-drop shaped 

microcapsules with a mean diameter of 57.91 ± 3.83 µm Figure 4-6A).  The tear-drop 

morphology indicates that the solution likely has a very low surface tension and could not 

form a stable droplet before gelation.  This may be amended by altering the shape of the 

electrical pulse applied to the piezoelectric actuator to better balance the droplet ejection 

forces.  Though some optimization and imaging characterization will be required, the 

microcapsules containing lipiodol are potentially traceable using conventional clinical 

scanners, and may be co-delivered in conjunction with encapsulated stem cells.   

 

4.3.4 Co-encapsulation with biopolymer 

To assess the potential of incorporating biopolymers to the microcapsule matrix to 

enhance cellular survival and therapeutic activity, microcapsules containing 0.5% 

fibrinogen were successfully printed (Figure 4-6B, 62.48 ± 3.91 µm).  Another potential 

advantage to biopolymer incorporation is the ability to form secondary crosslinks.  For 

example, in the presence of thrombin, fibrinogen is converted to fibrin, which plays 

important roles in cell adhesion as well as tissue repair.  Incorporation of biopolymers 

into the capsule matrix not only provides a potential second layer of reinforcement to the 

encapsulation matrix, but can also be selectively and controllably degraded to modulate 
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the pore size of the microcapsule in situ.  Furthermore, the alginate can be removed by 

subsequent citrate dissolution to obtain pure fibrin microcapsules.  In this example, 1 

units/mL Thrombin was added to fibrinogen-containing microcapsules and incubated to 

facilitate secondary crosslinking.  After 24 hours, 50mM sodium citrate was added to the 

fibrinogen-containing microcapsules to dissolve the alginate.  However, after 

centrifugation, we were not able to recover any fibrin microcapsules.  This may be due to 

the fibrin concentration being too low to sustain its own rigid structure.  Using a similar 

procedure, alginate-fibrin microfibers were made (data not shown), and the alginate 

component was successfully removed, leaving behind intact fibrin fibers.  Nevertheless, 

further experimentation will be required to test the extent of these hypotheses.   

 

4.4 Conclusion 

The piezoelectric bioprinter introduces a few degrees of freedom compared to the 

microfluidics platform.  Whereas in the microfluidics setup, once the device starts 

flowing, it is rather difficult to change operating solutions due to the fact that crosslinking 

will occur at the nozzles if the solutions does not flow continuously, causing the device to 

fail.   With the piezoelectric platform, changing “bioink” or the printhead is simple and 

quick.  We also demonstrated the ability to control microcapsule size by changing the 

size of the printheads.  The resulting microcapsules had similar size distribution, stability 

in therapeutically relevant conditions, as well as permeability properties as the 

microfluidics-produced microcapsules.  Moreover, the piezoelectric printer platform has 

the ability to deposit cells at predefined positions with high spatial resolution, and thus its 

versatility is amenable to automated biofabrication of 2D and 3D structures for a wide 
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range of applications.  Lastly, we demonstrated that composite microcapsules can be 

printed together with biopolymers, potentially enhancing cell viability and introducing a 

degradable parameter that may pave way to timed release of cargo by dynamically 

changing the microcapsule pore size.   
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4.5 Figures 

 

 

Figure 4-1: Example of an actuating voltage signal to generate a droplet. 
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Figure 4-2: Piezoelectric bioprinter setup and schematic.  

(A) Photograph of bio-printer for cell encapsulation.  (B) Schematic illustration of 

hardware.  (C) Schematic illustration of the alginate-based template method for cell 

encapsulation.  Alginate gels rapidly on printing into a CaCl2 bath.  Other matrix proteins 

(e.g. fibrinogen, matrigel) gel more slowly.  The alginate can be dissolved in citrate 

solution and the capsules re-suspended in media for storage.  (D) Photographs of droplet 

dispensing from an 80 µm nozzle.  (E) Single hiPS cell embedded in a 50 µm diameter 

alginate/fibrin capsule.   
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Figure 4-3: Bioprinted microcapsule size and stability.   

Alginate microcapsules bioprinted using (A) 80-µm ad (B) 40-µm inner diameter 

piezoelectric printhead.  (C) Microcapsule size stability in normal saline, media, 10% 

fetal bovine serum (FBS), and 100% FBS over 14 days.  Scale bar = 100 µm. 
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Figure 4-4: Permeability of bioprinted alginate microcapsules.  

Microcapsules were incubated with fluorescent lectin of various sizes (36 kD, 70 kD, 120 

kD, 150 kD) for 72 hours and imaged.   Scale bar = 100 µm. 
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Figure 4-5: Bioprinting of MSC and iPSC.   

(A) Bioprinted microcapsules containing hMSC. (B) Bioprinted microcapsules 

containing iPSC. (C) Representative image showing bioprinted microcapsules containing 

hMSCs. (D) rMSCs were encapsulated for 2 days and released by capsule dissolution and 

recultured for 12 hours.  Green: calcein AM, Red: propidium iodine. White arrow: rMSC 

undergoing cell division. Scale bar = 100 µm. 
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Figure 4-6: Co-encapsulation with imaging agents and fibrinogen.  

Microcapsules containing (A) lipiodol emulsions and (B) fibrinogen.  Scale bar = 100 µm. 
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Chapter 5 Summary and Outlook 

 

Current development in stem cell delivery for cardiac regeneration suffers from many 

shortcoming.   Among them are the difficulty in delivering the stem cells to the desired 

locations, the lack of visual information regarding the transplanted cells, and the inability 

to ensure that the transplanted cells are viable and can undertake the intended therapeutic 

mechanisms effectively.  In this thesis we have proposed two innovative approaches to 

provide site-specific delivery of microencapsulated, immunoprotected, stem cells with 

imaging visible microcapsules.   

 

First, we developed a microfluidic platform capable of producing high uniform and very 

small hydrogel microcapsules embedded with high sensitivity imaging agents.  The 

reduced size of the microcapsules provides two significant advantages over conventional 

cell encapsulation techniques. Firstly, unlike the reduced microcapsules, conventional 

cell capsules are too large for the smaller sized commercially available microcatheters.  

Secondly, smaller microcapsules are able to penetrate smaller capillary beds, achieving 

cell delivery in a more controlled, site-specific manner.  We have demonstrated that 

microcapsules embedded with barium sulfate imaging agent can be serially monitored in 

large animal studies and does not elicit host immune responses.  

 

Next, we modified the microfluidics platform to allow for cellular encapsulation.  We 

demonstrated that hMSCs can be effectively encapsulated in the reduced microcapsules 
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with high long term viability.  Co-encapsulation with imaging agents were less viable 

than expected.  However, co-delivery of separately encapsulated imaging agents were 

viable with high CT sensitivity.  We also showed that encapsulated hMSCs were not 

functionally stunted by the encapsulation process.  

 

Lastly, we explored a platform of encapsulating stem cells and other materials using a 

piezoelectric inkjet bioprinter.  We demonstrated that the bioprinter platform is also 

capable of achieving very small and highly uniform stem cell microcapsules and imaging 

agent microcapsules for controlled site-specific stem cell delivery.  At the same time, it 

offers more versatility over the microfluidics platform including higher throughput, ease 

of changing printheads and operating parameters to control microcapsules size and 

morphology, as well as being amenable to a wider range of materials as its “bioink”.   

 

It would be interesting to further discover the potentials of the bioprinter platform.  In 

particular, we would like to explore the idea of using sodium alginate as a sacrificial 

template to produce pure fibrin or collagen microcapsules.  Sodium alginate has always 

been a biomaterial of choice for tissue engineering applications for its bioinertness.  On 

the other hand, selective degradability can be utilized to achieve controlled or timed 

release of selective cargo.  For example, encapsulated cells intended for direct 

intervention can be released after a timed delay after the hostile microenvironment has 

subsided, improving cell survival and retention.  
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Clearly, the work detailed in this thesis represent merely the tip of the iceberg of potential 

developments in the field of site-specific stem cell delivery for tissue regenerative 

applications.  Further innovation and discovery in this area will revolutionize the vast 

field of tissue engineering in ways that will greatly benefit the scientific community and 

society at large.   
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