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Abstract 

 

Arsenic is a well-known human carcinogen, naturally forming in the earth’s crust and 

leaching into drinking water sources. However, there is growing evidence that arsenic 

may also affect the immune system, thereby manipulating the host’s response to 

infection. Specific to this study, there is epidemiological evidence of increased 

tuberculosis mortality rates following arsenic exposure in a unique study area in the 

North of Chile. The effect of arsenic on tuberculosis mortality risk appeared stronger in 

men compared to women. Here, we aim to verify this increase of tuberculosis burden 

post-arsenic exposure in an adult mouse model. Adult male C57Bl/6 and A/J mice (age 5 

weeks) were chronically exposed to 0ppb, 100ppb or 1,000ppb inorganic arsenic, in the 

form of sodium (meta-)arsenite, in their drinking water. Three weeks after exposure 

started, mice were infected at 7-8 weeks of age to 100 or 10,000 colony forming units 

(CFU) of H37Rv strain of Mycobacterium tuberculosis (Mtb). CFU in lungs were 

assessed at 1, 7, and 28 days following infection to assess arsenic-induced differences in 

Mtb growth. Serum was also analyzed for select cytokine concentrations at these same 

time points and pre-infection. Our preliminary data indicates that arsenic may affect the 

innate and adaptive immune responses to Mtb infections, leading to higher Mtb burden in 

the lung at day 7 and 28 post-infection. In addition, we aim to investigate how arsenic 

specifically changes the function of macrophages, critical immune cells for controlling an 

Mtb infection. To this end, we analyzed nitric oxide, phagocytosis, and cytokine 

production of in vivo As-exposed macrophages. Our findings suggest a change in 
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macrophage function that may alter overall host immune response to Mtb infection. 

Future studies will focus on further investigating the causal mechanisms involved in the 

increased tuberculosis risk after arsenic exposure.  
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Background 

Arsenic  

 

Arsenic is a metalloid that naturally forms in the Earth’s crust in an inorganic, trivalent, 

or pentavalent form (Morton et al. 1994). Although naturally occurring, this chemical 

element has been associated with increases in skin, lung, bladder, and several other 

cancers, leading to its classification of a known human carcinogen in 2004 (IARC 2004). 

Arsenic has been found to leach into groundwater, a major source of drinking water for 

many communities, leading to wide scale human exposure (Ravenscroft et al. 2009). 

Although the World Health Organization (WHO) has set the permissible limit on the 

concentration of arsenic in drinking water to 10 µg/L (WHO 1996), countries such as 

India and Chile show concentrations several orders of magnitudes higher (Banerjee, 

Banerjee et al. 2009, Smith, Marshall et al. 2011). Cancer risks in these areas have been 

observed to be much greater than nearby regions that have drinking water arsenic 

concentrations near the WHO standard.  

 

In drinking water, arsenic is most commonly in its inorganic form with a valency of 3 

(AsIII; arsenite) or 5 (AsV; arsenate) (Naujokas, Anderson et al. 2013). It is not until after 

ingestion that arsenic is methylated into monomethylarsonic acid (MMAV), reduced to 

monomethylarsonous acid (MMAIII), methylated once more to dimethylarsonic acid 

(DMAV), and to reduced dimethylarsinous acid (DMAIII) (Gamble, Liu et al. 2006). The 

reduction step is carried out by thiols, especially glutathione (GSH) (Buchet and 
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Lauwerys 1988). During methylation, a methyl group is mainly donated from S-adenosyl 

methionine (SAM) by arsenic-3-methyltransferase (AS3MT) (Marafante and Vahter 

1984, Buchet and Lauwerys 1985, Marafante, Vahter et al. 1985, Buchet and Lauwerys 

1987). Methyl group donations from SAM also have a role DNA methylation; indeed, 

arsenic exposure has been observed to interfere with proper methylation of genes across 

the genome (Nohara, Baba et al. 2011). This pathway has been suggested as a mechanism 

of arsenic-induced carcinogenesis (Mass and Wang 1997). 

 

In mammals, when arsenic is consumed by drinking water it is immediately absorbed into 

the bloodstream. Arsenate is reduced to AsIII mainly in the blood (Nemeti and Gregus 

2004, Gregus and Nemeti 2005) and liver (Buchet and Lauwerys 1985, Marafante, 

Vahter et al. 1985), but also possibly in the stomach and GI tract (Herbel, Switzer Blum 

et al. 2002). Although the liver is the primary site of arsenic metabolism, there is also 

high methylating activity in the testes, kidney, and lung tissues (Healy, Casarez et al. 

1998). AsIII is then taken up by cells more readily than AsV  (Lerman, Clarkson et al. 

1983)  via aquaglyceroporins 7 and 9 (Liu, Shen et al. 2002) and methylated to MMAV 

and DMAV, the main excreted forms of human urine (Crecelius 1977). These forms can 

further be reduced to MMAIII and DMAIII (Gamble, Liu et al. 2006).  

 

There are dosimetric differences of arsenic concentration and species between mice and 

humans. For example, the final form of methylated arsenic in mice is trimethylarsine 

oxide (TMAO) (Vahter et al. 1984), but this form is not observed in human excretions 

(Le, Ma et al. 2000). Instead, human urine contains 10-15% inorganic arsenic, 20-25% 
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MMAV, and 45-50% DMAV 2-4 days after ingesting AsIII (Vahter 1994). Mice have also 

been observed to metabolize and excrete arsenic more effectively than humans, 

processing 75-95% of inorganic arsenic in 48 hours while humans only processes 40-70% 

in the same amount of time (Cohen, Arnold et al. 2006). This difference can be observed 

at the blood and plasma level. A study by Hall et al. observed 10 ppb total arsenic in 

blood levels after human injection of <50 ppb in drinking water (Hall, Chen et al. 2006). 

In the case of mice, Chen et al. observed only 20 ppb after 1,000 ppb in drinking water, 

suggesting that mice are nearly 5 times more efficient at methylating and excreting 

arsenic than humans (Chen, Arnold et al. 2011).   

 

Sex differences have also consistently been observed in human arsenic exposure studies, 

with males being at higher risk of developing skin lesions (Rahman, Vahter et al. 2006) 

and decrements in lung function (von Ehrenstein, Mazumder et al. 2005) than females. 

These differences may be due to the sex hormone-driven ability of females to methylate 

arsenic better than males, increasingly so during pregnancy (Lindberg, Ekstrom et al. 

2008). As estrogen levels are heightened in pregnancy, it is suggested that estrogen has a 

role in arsenic methylation efficiency. To address sex differences in the effect of arsenic 

exposure on APCs, Ferrario et al. exposed both human and mouse granulocyte-

macrophage progenitor cells to several species of arsenic. Although they did not observe 

any significant differences in cytotoxicity, there was increased proliferation at very low 

concentrations of AsIII in only female human and mouse granulocyte-macrophage 

progenitor cells (Ferrario, Croera et al. 2008). This may serve as a protective mechanism 
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for females, but future studies addressing the effect of arsenic exposure on both APC 

progenitor cells and mature APCs are required to elucidate the mechanisms involved.   

 

Exposure to arsenic is considered a world-wide issue, as the WHO estimates that over 

200 million persons are chronically exposed at levels greater than the WHO standard 

(WHO 2008). Indeed, high arsenic levels have been observed in the United States as 

well. Regions such as the Midwest, New England, and Rocky Mountain System have 

measured drinking water concentrations exceeding the regulatory standard (Welch, 

Westjohn et al. 2000). As of 2001, an estimated 13 million people are exposed to arsenic 

levels in drinking water in the United States exceeding the WHO standard (U.S. EPA 

2001). The human carcinogenicity of this chemical is well established, but recent studies 

have suggested other adverse health outcomes such as cardiovascular disease (Moon, 

Guallar et al. 2013) and diabetes (Kuo, Howard et al. 2015) Important here is evidence of 

immune system impairment by arsenic exposure (Selgrade 2007, Vahter 2008). Most 

recently, animal studies of arsenic in drinking water has been suggested a negative 

influence on immune cells involved in antigen presentation (Choudhury, Gupta et al. 

2016, Xu, McClain et al. 2016, Soria, Perez et al. 2017). 
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Immune Response Changes in APCs 

 

It has long been known that antigen presenting cells (APCs), particularly macrophages 

and dendritic cells, bridge the innate and adaptive immune responses (Joffre, Segura et al. 

2012, Blum, Wearsch et al. 2013). This connection not only assists an early infection 

defense, but also the opportunity to fend off pathogens more effectively upon sequential 

infections. Fisher et al. were some of the first to observe negative effects of arsenic on 

APCs when they determined that sodium arsenite decreased the phagocytic ability of 

bovine alveolar macrophages (Fisher, McNeill et al. 1986). Without proper structure and 

function, APCs and their role in the immune response are compromised.  

 

Phagocytosis is a key strategy APCs use to contain an infection (Li, Petrofsky et al. 2002, 

Leemans, Thepen et al. 2005). Compromising this ability disrupts the process of 

pathogen destruction and antigen presentation. Several groups over the last twenty years 

have recorded similar findings to Fisher et al.’s dose-dependent decline in phagocytosis 

upon arsenic exposure, in both macrophages and dendritic cells (Sengupta and Bishayi 

2002, Banerjee, Banerjee et al. 2009, Mehrzad, Mahmudy Gharaie et al. 2017). Arsenic 

may have negative effects on the cytoskeleton, a structure required for efficient 

phagocytosis (Goodridge, Underhill et al. 2012). Banerjee et al. found a decrease in F-

actin expression in human monocyte-derived macrophages from an Indian population 

exposed to arsenic in drinking water (Banerjee, Banerjee et al. 2009). Although the 

authors drew the conclusion of decreased cell adhesion, F-actin is also necessary for 

phagocytosis (May and Machesky 2001). Indeed, the decrease in F-actin may be a driver 
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in a possible inhibition of filament lengthening required to produce pseudopods in this 

protective mechanism.  

 

Reactive oxygen species (ROS), nitric oxide (NO), and superoxide (SO) are additional 

mechanisms by which APCs use to combat pathogens. Released as free radicals, these 

chemical compounds are toxic to intracellular bacteria and parasites. Interference of these 

defenses would leave APCs unable to break down engulfed pathogens. Arkusz et al. 

observed a dose-dependent decrease in ROS production, as well as an inhibition of NO 

production in peritoneal macrophages after exposing mice to sodium arsenate in drinking 

water (Arkusz, Stanczyk et al. 2005). Interestingly, a previous report by Lantz et al. 

found SO production differences from alveolar macrophages between exposure methods 

and arsenic species. In vivo exposure of rats exhibited a greater increase of SO with AsIII 

than AsV. However, in vitro exposure decreased SO in a dose-dependent manner, again 

greater with AsIII than AsV (Lantz, Parliman et al. 1994). The increased sensitivity to AsIII 

than AsV is to be expected, as intracellular transport of the trivalent form is more efficient 

than the pentavalent form (Lerman, Clarkson et al. 1983). However, the differences in SO 

production between in vivo and in vitro arsenic exposure is most likely due to the vast 

difference in cellular-level dose. Although the in vitro concentrations of 0.1-100 µg/L 

(0.1-100 ppb) are environmentally relevant, an intratracheal installation of 1 mg/kg (0.2 

mg, or 200,000 µg, for a 200 g rat) is not. Epidemiological studies published since have 

shown conflicting results when extracting peripheral blood mononuclear cells (PBMCs) 

(Banerjee, Banerjee et al. 2009, Luna, Acosta-Saavedra et al. 2010). Banerjee et al. 

observed a decrease in NO production, but Luna et al. found a positive association 
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between arsenic exposure and NO, as well as SO, production. The discrepancy of NO 

production may be due to Banerjee et al. culturing monocytes until maturation into 

macrophages before experimentation, while Luna et al. performed their methods on 

undifferentiated monocytes. Although the increase of SO production with increased 

arsenic exposure observed by Luna et al. coincides with the in vivo exposure by Lantz et 

al., again, the studies tested two difference cell types. To elucidate changes in these free 

radicals, future studies should test macrophages from several areas of the body and match 

dose levels at the cellular level for in vitro and in vivo exposures.  

 

Changes in expression of genes with roles in APC immune response have also been 

reported (Kozul, Hampton et al. 2009). Kozul et al. observed differences in expression of 

immune response genes involved in cell migration, adhesion, differentiation, and 

proliferation after arsenic exposure in mice at the WHO standard level (Kozul, Hampton 

et al. 2009). The same group also determined 100 ppb of arsenic exposure in drinking 

water suppresses the mouse immune response to influenza A virus (Kozul, Ely et al. 

2009). A prenatal study by Rager et al. demonstrated an association between decreased 

expression levels of immune response-related miRNAs in newborn cord blood and 

maternal urinary arsenic levels (Rager, Bailey et al. 2014). A follow-up study showed 

that expression of genes encoding glucocorticoid receptors, receptors that play a 

regulatory role during responses to infectious diseases, was perturbed with prenatal 

exposure to inorganic arsenic (Rager, Yosim et al. 2014). Heideveld et al. demonstrated 

that glucocorticoid receptor activation differentiates monocytes to anti-inflammatory 

tissue macrophages, therefore suggesting changes in glucocorticoid receptor gene 
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expression impact the phenotypes of differentiating macrophages (Heideveld, Hampton-

O'Neil et al. 2018). These studies suggest that arsenic may not only affect immune 

signaling gene expression, but may also directly impair the body’s ability to combat and 

clear microbial infections.  

 

Another animal model used to observe the effect of arsenic exposure on the immune 

system is the zebrafish. In a study by Hermann and Kim, an exposure to 50 µM or 100 

µM of sodium arsenite to zebrafish larvae decreased Tumor Necrosis Factor (TNF) 

expression, which was associated with a decrease in respiratory burst from phagocytic 

cells (Hermann and Kim 2005). Navak et al. also observed a decline in TNF expression 

and respiratory burst activity, as well as several-fold increase in viral and bacterial loads 

in zebrafish embryos (Nayak, Lage et al. 2007). Both studies align with human studies of 

arsenic exposure in Bangladesh and Mexico, where down-regulation of TNF was 

observed (Argos, Kibriya et al. 2006, Salgado-Bustamante, Ortiz-Perez et al. 2010). 

Interestingly, arsenic exposure suppresses the release of TNF from macrophages of both 

humans (Banerjee, Banerjee et al. 2009) and animals (Lantz, Parliman et al. 1994), 

although one study did not observe any change (Arkusz, Stanczyk et al. 2005). These 

observations suggest a compromise of the innate response, perhaps through changes in 

morphology or cytokine production of antigen presenting cells (APCs) such as 

macrophages and dendritic cells.  
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Morphological Changes in APCs 

 

The maturation of monocytes to macrophages is dependent on colony stimulating factors 

produced by T cells, natural killer cells, and other macrophages (Hamilton, Stanley et al. 

1980). Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) differentiates 

monocytes to the proinflammatory M1 phenotype, while Macrophage Colony Stimulating 

Factor (M-CSF) drives differentiation to the anti-inflammatory M2 phenotype (Verreck, 

de Boer et al. 2004, Verreck, de Boer et al. 2006). Therefore, any upregulation of these 

growth factors will not only increase monocyte differentiation, but polarize the 

inflammatory microenvironment they reside in. Indeed, macrophages have demonstrated 

the ability to change between phenotypes in vivo and in vitro (Guiducci, Vicari et al. 

2005, Saccani, Schioppa et al. 2006). An epidemiological study of arsenic exposure in 

children in Hidalgo, Mexico, observed an association between increased secretion of 

GM-CSF by macrophages with increasing total arsenic in urine (Soto-Pena, Luna et al. 

2006). This may suggest an increase in differentiation to the M1 phenotype. Opposing 

this view is an in vitro study of human lung epithelial cells by Cui et al., demonstrating 

exposure to sodium arsenite polarizes macrophages to the M2 phenotype (Cui, Xu et al. 

2017). Interestingly, an in vitro study by Sakurai et al. found sodium arsenite to be 

cytotoxic to macrophages stimulated with M-CSF and produced macrophages with low 

adhesion, high T cell inducing capabilities, higher expression of antigen presentation 

receptors, and decreased phagocytic capabilities after GM-CSF stimulation (Sakurai, 

Ohta et al. 2005). These studies suggest arsenic exposure may not specifically polarize 

macrophages to specifically the known M1 or M2 phenotypes, but a complex hybrid 



 10 

phenotype that ultimately is incapable of adhering to a necessary location and 

phagocytosing pathogens. Additionally, M-CSF+arsenic-induced cytotoxicity of 

macrophages is a clear mechanism for immunosuppression.   

 

Sakurai et al. reported that in vitro exposure to inorganic and organic arsenic to induced 

cytolethality in mature, extracted peritoneal and alveolar macrophages (Sakurai, Ohta et 

al. 2004). Indeed, prior to their 2004 study they had knowledge of patterns of 

macrophage cell death due to both inorganic and organic (i.e. methylated) arsenic 

species. The inorganic species mainly induced necrosis, while methylated arsenic induced 

mostly apoptotic cell death (Sakurai, Kaise et al. 1998). While it is unclear though what 

mechanisms these endpoints occur by, this study supports the idea of different forms of 

arsenic affecting the immune system through different pathways. It may be suggested that 

inflammatory conditions are induced by inorganic forms and less so by methylated forms.  

Since pathogens such as Listeria monocytogenes (Rogers, Callery et al. 1996), 

Mycobacterium tuberculosis (Mtb) (Watson, Hill et al. 2000), and Yersninia 

pseudotuberculosis (Monack, Mecsas et al. 1998) induce apoptosis rather than necrosis of 

immune cells to avoid a heightened immune response, it may be speculated that 

methylated forms of arsenic at the cellular level may lead to enhanced susceptibility to 

infection.    

 

The following year, Sengupta and Bishayi also published findings of abnormal shaping of 

murine splenic macrophages after the same exposure treatment, describing the shape as 

“deviating from spherical outline” (Bishayi and Sengupta 2003). An epidemiological 
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study by Banerjee et al. of an adult human population chronically exposed to arsenic in 

West Bengal, India, observed data that both supports and opposes this abnormal shaping. 

Although they found decreased expression of F-actin, an important protein for 

cytoskeletal structure and function (Tang, Janmey et al. 1999), they observed “cell 

rounding” instead of deviations from spherical outline, upon arsenic exposure (Banerjee, 

Banerjee et al. 2009). They instead look to the “fried-egg”-like appearance of blood 

monocyte-derived macrophages as the normal morphology (Young, Lowe et al. 1990). 

Although there is disagreement on healthy cell structure, both groups found a loss of 

adhesion capabilities in the arsenic-exposed macrophages. Loss of migration capabilities 

upon exposure to sodium arsenite have also been observed in dendritic cells (Patterson, 

Vega et al. 2004, Kozul, Ely et al. 2009). These adhesion capabilities are important for 

the ability of macrophages to collect around sites of inflammation and infection, where 

they migrate to and are needed most (Pixley and Stanley 2004). Therefore, loss of these 

capabilities may negatively impact an immune response to infection. 
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Cytokine Changes and Possible Mechanisms 

 

Proinflammatory cytokines are generally beneficial for combating infections. In 

inflammatory conditions, proinflammatory cytokines such as TNF are produced mainly 

by APCs (Kozul, Hampton et al. 2009). Kozul et al. found significant increases in TNF 

mRNA expression and protein, but decreases in interleukin (IL)-1b mRNA expression 

and protein, following in vivo exposure to 10 and 100 ppb sodium arsenite (Kozul, 

Hampton et al. 2009). It is unclear why some inflammatory cytokines increase while 

others do not, especially since LPS can induce TNF and IL-1b genes through the same 

pathway (Reimann, Buscher et al. 1994). Mehrzad et al., opposing Kozul et al., found in 

vitro sodium arsenite exposure to increase dendritic cell production of IL-6 and IL-1b 

(Mehrzad, Mahmudy Gharaie et al. 2017). These studies suggest that exposure to arsenic 

may drive macrophages and dendritic cells to inflammatory cytokine production, but 

through different mechanisms not yet distinguished.  

 

Sakurai et al. found that organic arsenicals added in vitro also increased production of 

TNF in peritoneal macrophages from male CDF1, ICR, C3H/HeN, and C3H/HeJ mice 

(Sakurai, Kaise et al. 1998). Importantly, Sakurai et al. also observed a decrease in TNF 

production from macrophages exposed to methylated arsenic species (Sakurai, Kaise et 

al. 1998). This finding suggests that the methylation of arsenic as a potentially protective 

mechanism to prevent APCs from creating inflammatory microenvironments, but perhaps 

also creating an environment susceptible to infection. Interestingly, Lantz et al. observed 

a decrease in lipopolysaccharide (LPS)-induced production of TNF by male Sprague-
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Dawley rat alveolar macrophages after exposure to both As(III) and As(V) in vivo, but 

not in vitro (Lantz, Parliman et al. 1994). AsIII had a greater suppression of TNF 

production than AsV. These findings oppose the findings from Sakurai et al. (increased 

TNF) (Sakurai, Kaise et al. 1998). However, a caveat may be that Lantz et al. observed 

LPS-induced inflammatory cytokine production as opposed to basal levels by Sakurai et 

al. Additionally, the studies used two different animal models. Taken together, there is 

not yet conclusive evidence of an increased production of inflammatory cytokines by 

APCs upon exposure to arsenic.    
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Vulnerability to Infectious Diseases 

 

In 2000, Bishayi injected heat-killed S. aureus into mice after two weeks of daily 

intraperitoneal injections of 0.5 mg/kg body weight of sodium arsenite. Bishayi found 

that infecting mice with S. aureus after 2 weeks sodium arsenite exposure resulted in a 

lower titer of agglutinating antibodies when compared to the antibody titers produced 

without sodium arsenite exposure (Bishayi 2000). This is evidence that sodium arsenite 

impacted the magnitude of immunoglobulin production by B cells in response S. aureus. 

When infected with viable bacteria, peritoneal macrophages exposed to sodium arsenite 

showed a decreased capacity for intracellular killing capacity and ability to chemotax to 

bacteria (Bishayi 2000). Sengupta and Bishayi investigated the immune response further 

by studying splenic macrophages, cells that are vital to defense against a broad spectrum 

of pathogens. They reported that arsenite treatment resulted in decreased NO release, 

reduced phagocytic capacity, and increased DNA fragmentation in splenic macrophages, 

suggesting increased apoptosis (Sengupta and Bishayi 2002). To test the hypothesis that a 

reduction in the functional capacity of splenic macrophages  leads to increased 

vulnerability to infection, Bishayi and Sengupta injected live S. aureus and found a 

reduction in the chemotactic index,  an increased bacterial load and delayed bacterial 

clearance (Bishayi and Sengupta 2003).  

 

When taking into consideration the findings of Bishayi and Sengupta, they suggest that 

exposure to arsenic increases vulnerability to challenge withpathogens that require NO 

production and phagocytosis for control and clearance. NO release has been shown to be 
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an important component in the immune response against intracellular protozoan parasites 

such as Leishmania and in control of malaria.(Mellouk, Green et al. 1991, Seguin, Klotz 

et al. 1994, Klotz, Scheller et al. 1995). The role of phagocytosis in infection control is 

perhaps most evident in tuberculosis (TB), and thus arsenic exposure is likely to have a 

detrimental effect on the outcome of infection with Mtb (Li, Petrofsky et al. 2002, 

Leemans, Thepen et al. 2005). In support of this idea, Smith et al. found exposure to 

arsenic in drinking water to increase TB mortality rates in an early-life arsenic exposed 

human population in Chile (Smith, Marshall et al. 2011).   

 

Indeed, the incidence of several respiratory diseases and infections have been associated 

with arsenic exposure. A study by George et al. observed an association between 

pediatric arsenic urine levels and pediatric pneumonia in Bangladesh (George, Brooks et 

al. 2015). In the mouse model, lower respiratory tract infections (Rahman, Vahter et al. 

2011) and worsened influenza morbidity (Kozul, Ely et al. 2009, Rahman, Vahter et al. 

2011, Ramsey, Foong et al. 2013) were found in arsenic exposed groups. Lung diseases 

that may lead to respiratory infections have also been found to be associated with arsenic 

exposure, such as bronchiectasis (Smith, Marshall et al. 2006) and chronic obstructive 

pulmonary disease (D'Ippoliti, Santelli et al. 2015). Importantly, studies by both Smith et 

al. and D'Ippoliti et al. both found COPD outcomes from arsenic exposed patients to be 

more frequent in males than females, suggesting sex differences are maintained in the 

face of arsenic exposure (Smith, Goycolea et al. 1998, D'Ippoliti, Santelli et al. 2015).  
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Sex differences observed in infectious disease outcomes associated with arsenic exposure 

include the study by Smith et al., where males had significantly more excess pulmonary 

TB deaths than females (Smith, Marshall et al. 2011). Increased acute respiratory tract 

infections by arsenic exposure were only observed in male infants, adding more evidence 

to males experiencing more immunotoxicity (Raqib, Ahmed et al. 2009). Sex-dependent 

increases in risk of infectious respiratory diseases, and perhaps infections in general, may 

be partly explained by females methylating arsenic more efficiently than males 

(Lindberg, Ekstrom et al. 2008). These mechanisms may be addressed in a mouse model 

exposed to arsenic and infected with Mtb, leading to a disease where APCs are vital in 

defense. 
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Tuberculosis 

 

Approximately 2 billion persons have latent or active tuberculosis (TB) infections 

(Rhines 2013). To date, TB continues to be a top cause of death due to a single infectious 

agent (Lozano, Naghavi et al. 2012). In 2013, nearly 1.5 million persons died due to TB-

related deaths worldwide (Centers for Disease Control and Prevention, 2014). The 

pathology of this disease centers around the aerobic bacterium Mtb entering the alveolar 

passages in aerosol droplets, where mainly dendritic cells and macrophages engulf these 

bacilli (Guirado, Schlesinger et al. 2013). After migrating throughout the lung tissue, 

these infected cells may also induce dissemination of the disease to other organs via the 

circulatory and lymphatic systems (Frieden, Sterling et al. 2003).  

 

Under ideal conditions, APCs can efficiently degrade bacteria and present bacterial 

antigens on their surface by the major histocompatibility complex (MHC) class II 

pathway. In this way, the antigen can be detected by T cells to initiate the adaptive 

immune response (Amigorena, Drake et al. 1994). However, some strains of Mtb can 

prevent the fusion of the phagosome and lysosome to escape acidic conditions and 

degradation (Armstrong and Hart 1975). Under these conditions, an accumulation of 

infected macrophages and a surrounding border of lymphocytes form a granule to prevent 

spread to the rest of the body (Cosma, Sherman et al. 2003).    

 

Sex differences have been noted in epidemiological studies of TB. The disease is more 

prevalent in men than women, observed in 2004 with 1.4 million smear-positive male 
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cases compared to 775,000 female (Dye 2006). Interestingly, there is evidence of 

smoking being a significant effect modifier of the sex differences in TB notifications 

(Watkins and Plant 2006). Furthermore, underreporting of cases in women may be likely 

due to the social stigma of diagnosis and less availability of healthcare to women 

(Thorson and Diwan 2001, Thorson, Hoa et al. 2004). Ultimately, these studies suggest 

that behavior and environmental factors may account for much of observed sex 

differences in TB. However, sex hormones such as estradiol have been shown to play a 

role in IFNg production by iNKT cells (Gourdy, Araujo et al. 2005). Although there is a 

general dearth of studies providing concrete evidence of biological factors that determine 

sex differences in TB outcomes, investigations pairing arsenic exposure, having well 

known biological sex differences, and TB infections may elucidate the mechanisms of 

sex-determined immune response.   

  



 19 

Macrophages and TB 

 

Macrophages are vital to the immunological response against Mtb and TB pathology, as 

they are the main cell infected and play a key role in the formation of the granulomas that 

contain the spread of infection (Li, Petrofsky et al. 2002, Leemans, Thepen et al. 2005). 

Decreased phagocytic capabilities observed after arsenic exposure (Sengupta and Bishayi 

2002, Banerjee, Banerjee et al. 2009) may inhibit the ability of macrophages to contain 

the Mtb infection (Dannenberg 1989). Upon Toll-like receptor 2 (TLR2) recognition of 

Mtb, macrophages produce proinflammatory cytokines such as TNF and IL-6 that, along 

with IFNγ, generate a Th1 response for controlling and clearing the infection (Law, 

Weiden et al. 1996). When activated by IFNg from activated CD4+ T cells, the 

macrophage generates nitric oxide (NO) radicals from L-arginine via inducible Nitric 

Oxide Synthase (iNOS) to kill the engulfed bacterium (Morris and Billiar 1994, Nathan 

and Xie 1994). Importantly, NO species have been shown to be vital in combating TB 

and NO-resistant strains correlating with high virulence (Chan, Xing et al. 1992). 

Proinflammatory cytokine production and high production of NO are part of the classical 

(M1) phenotype, opposite to the alternative (M2) phenotype with low production in both 

(Cui, Xu et al. 2017). To efficiently clear an Mtb infection, macrophages are polarized to 

the M1 phenotype (Sahu, Kumar et al. 2017). Although more consistent evidence is 

necessary, studies suggest that TNF production may decrease with arsenic production 

(Lantz, Parliman et al. 1994, Sakurai, Kaise et al. 1998). After phagocytosis, F-actin-

dependent endocytic trafficking and antigen presentation are also vital to an effective 

immune response against Mtb infection (Tang, Janmey et al. 1999). Influences of arsenic 
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on macrophage adherence, cytokine production, phagocytosis, and antigen presentation 

may explain the doubling of TB mortality upon arsenic exposure observed in Chile 

(Smith, Marshall et al. 2006). 
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Study Design 

 

No published data to date has investigated the immunological effect of arsenic in an Mtb 

infection model. Sillé et al., in unpublished data, observed a significant increase in colony 

forming units (CFU) between 100 ppb and 1,000 ppb in arsenic-exposed mice upon 

infection with 400 CFU Erdman Mtb (unpublished, Sillé et al. 2016, Supplemental Figure 

3). In our current study, our group also exposed mice to inorganic arsenic, in the form of 

sodium arsenite, in drinking water 3 weeks before infection to replicate the effects seen 

by Bishayi and Sengupta and Kozul et al. suggesting vulnerability to infectious disease 

outcomes (Sengupta and Bishayi 2002, Bishayi and Sengupta 2003, Kozul, Ely et al. 

2009).  

In the work presented in this thesis we will test the hypothesis that ingesting 

environmentally relevant levels of sodium arsenite in drinking water during adulthood 

will affect macrophage function in a way that will lead to worsened health outcomes 

during Mtb infection. Aim 1 of this study is to develop an in vivo TB-arsenic mouse 

model. Under this aim, our subhypotheses are 1) the effect of arsenic on Mtb burden is 

dose dependent and 2) arsenic exposure induces an anti-inflammatory microenvironment 

to inhibit a proper immune response to an Mtb infection. Aim 2 of this study is to observe 

ex vivo the effect of in vivo arsenic exposure on macrophages. Subhypotheses under this 

aim are 1) upon arsenic exposure, macrophages are less effective at destroying Mtb and 

2) arsenic-exposed macrophages create a microenvironment more susceptible to damage 

by Mtb via changes in phenotype and function. 
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To address Aim 1, we tested our adult mouse model of arsenic exposure and Mtb 

infection at different arsenic concentrations and with different mouse strains. Increasing 

arsenic doses allowed us to determine the presence of a dose-response relationship. Dose 

was determined by calculating environmentally relevant doses at the animal, tissue, and 

cellular level. For every part per billion (ppb) of sodium arsenite in drinking water, an 

immune cell in the mouse should be exposed to intracellular levels of 1 nM of total 

arsenic (Xu, Lauer et al. 2016). Therefore, we expect a 10-fold loss as 1 nM = 0.1ppb. 

Concentrations of 100 ppb and 1,000 ppb have been reported as environment exposures 

in , India (Banerjee, Banerjee et al. 2009) and Chile (Smith, Marshall et al. 2011). 

Additionally, higher concentrations are necessary to properly extrapolate findings to 

humans as mice are 5 times more efficient at methylating arsenic than humans  (Hall, 

Chen et al. 2006, Chen, Arnold et al. 2011)  

 

C57BL/6 was the main strain used here due to  the extensive studies on macrophage 

function (Dietert 2009), arsenic immunotoxicity (Waalkes, Liu et al. 2004, States, 

Barchowsky et al. 2011), and Mtb studies (Chackerian and Behar 2003). Testing both the 

most resistant (C57BL/6) (Medina and North 1998) and semi-resistant (A/J) (Jagannath, 

Hoffmann et al. 2000) strains of mice to infection with the H37Rv strain of Mtb created 

an opportunity to assess immune response changes in multiple Mtb susceptibility models. 

Body weight was assessed to monitor disease progression and for mortality studies, and 

CFU counts were performed as a quantitative assessment of bacterial load in select 

organs after infection. These assessments were taken at Day 1 for baseline, and Day 7 

and 28 to investigate the innate and adaptive immune responses against Mtb infections, 
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respectively. To qualitatively assess Mtb burden, histology was performed to visualize 

bacterial load, granuloma formation, and immune cell infiltration in the lung. The 

microenvironment was assessed by testing concentrations in serum before and after Mtb 

infection. 

 

To address Aim 2, we performed functional and molecular assays on stimulated and 

unstimulated peritoneal macrophages ex vivo after in vivo arsenic exposure. A 

phagocytosis assay was performed to determine changes in ability of exposed 

macrophages to engulf bacteria. A nitric oxide (NO) assay was performed to determine 

intracellular killing ability of exposed macrophages. To determine differences in cytokine 

output, a Luminex assay was performed on the supernatant of exposed peritoneal 

macrophages.  
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Methods 

 

Animal Care 

C57BL/6 and A/J mice were obtained from Charles River Laboratories and delivered at 5 

weeks of age. Mice were fed a low arsenic diet (Product #D10001 [a.k.a. AIN-76A]); 

protein 20.8% kcal, carbohydrate 67.7% kcal, fat 11.5% kcal) ad libitum).  Groups of 

mice were exposed to 0, 100, or 1,000 ppb sodium-(meta) arsenite (Sigma; St. Louis, 

MO; Catalog #S7400-100G) in drinking water that was tested to have arsenic levels of 

<10 ppb (Crystal Geyser Spring Water). Mouse weights were measured and drinking 

solutions were freshly prepared every 2-3 days. Food was replenished weekly. Drinking 

water and food intake were calculated per cage and averaged per mouse. All experiments 

using mice and murine macrophages were conducted with the approval by the 

Institutional Animal Care and Use Committee, Johns Hopkins University, Baltimore.  

 

Mycobacterial Strains  

Mtb strain H37Rv was used for in vivo mouse infections. Middlebrook 7H9 broth with 

0.2% glycerol, 10% oleic acid-albumin-dextrose-catalase (OADC) (Fisher Scientific; 

Hampton, NH), and 0.05% Tween 80 (Sigma-Aldrich; St. Louis, MO) was used for in 

vitro cultivation of H37Rv (Xu, Tasneen et al. 2018). 

 

Aerosol Infection Model  

Male C57BL/6 and A/J mice (8 to 9 weeks of age) were infected with H37Rv using the 

inhalation exposure system (Glas-Col; Terre Haute, IN) and a fresh log-phase broth 
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culture with an optical density at 600 nm of approximately 0.014 or 0.5 for exposure to 

100 and 10,000 CFU, respectively (Xu, Tasneen et al. 2018). Day of infection was 3-4 

weeks following the initiation of sodium-(meta) arsenite exposure. Weight loss threshold 

for euthanasia was 15% of the pre-infection weight (Franco, Correia-Neves et al. 2012). 

 

Colony Forming Unit (CFU) Analysis 

One to three mice from each exposure group were sacrificed 1 day after infection to 

evaluate inoculation rate. Five mice from each exposure group were sacrificed 7 and 28 

days after infection. The lungs from each day 7 and day 28 animals and the spleens and 

livers from Day 28 animals were homogenized in 2.5 mL of PBS and serial diluted before 

plating. 500 µL of homogenate was plated on each 7H11 agar plate containing polymyxin 

B (200,000 units/L); Sigma-Aldrich; St. Louis, MO), carbenicillin (50 mg/L); Sigma-

Aldridge; St. Louis, MO), trimethoprim lactate (20 mg/L) Sigma-Aldrich; St. Louis, 

MO), and amphotericin B (5 mg/L); Sigma-Aldrich; St. Louis, MO). Mycobacteria were 

incubated at 37°C for 3 weeks before counting. Counting was performed by two 

researchers, one blind to the exposure groups. 

 

Isolation of Peritoneal Macrophages 

Mice were injected intraperitoneally with 1.0 mL of sterile 3% thioglycollate medium 

(Sigma-Aldrich; St. Louis, MO); lavage fluid was harvested 4 days after injection as 

previously described (Zhang, Goncalves et al. 2008). Briefly, 8.0 mL PBS with 10% FBS 

was injected in the peritoneal cavity. The mouse was then gently shaken before 

withdrawing the solution. Cells were centrifuged at 1400 rpm for 10 minutes, red blood 
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cells were lysed with ACK lysis buffer, then centrifuged again before suspension in 

Dulbecco’s Modified Eagle’s Medium without phenol red (Sigma-Aldrich; St. Louis, 

MO) plus 10% fetal bovine serum (FBS; Sigma-Aldrich; St. Louis, MO), L-glutamine (2 

mM; Gibco; Montgomery County, MD), and murine M-CSF (20 µg/mL; BioVision; San 

Francisco, CA). 

 

TNF ELISA 

To measure the TNF concentration in serum, a mouse TNF ELISA was purchased from 

BioLegend (San Diego, CA) and performed according to manufacturer’s instructions. 

Serum samples were diluted 1 to 1 in 10% Fetal Bovine Serum. The lower limit of 

sensitivity of the assay was 7.8125 ng/mL.   

 

Luminex Assay 

A 32-plex mouse kit (Millipore; Burlington, MA) was used to detect eotaxin, G-CSF, 

GM-CSF, IFN- γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-

17, IP-10, KC, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1a, MIP-1b, MIP-2, RANTES, 

TNF, and VEGF concentrations in serum and cultured supernatant. The Luminex assay 

was performed according to the manufacturer’s protocol using DropArrayTM 96-well 

coated plates (Curiox; San Carlos, CA).   

 

Phagocytosis Assay 

pHrodoTM Red and Green Bioparticles® Conjugates for phagocytosis were purchased 

(Thermo Fisher Scientific; Waltham, MA) and performed according to manufacturer’s 
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instructions. Briefly, 1 mg/mL pHrodoTM E. coli was suspended by 2 mL Uptake Buffer 

and vortexed. Suspension was then transferred to a clean glass tube and vortexed. Culture 

medium was removed from plate of adhered cells and replaced with 100 µL pHrodoTM 

Bioparticles® suspension. Plate was then covered and transferred to incubator set at 37ºC 

for 3 hours. Measurements of 494 nm absorbance were taken once every hour after the 

fluorogenic dye-conjugated E. coli suspension was added to cells. Net phagocytosis is 

represented as Percent Effect, calculated by dividing the next experimental absorbance by 

the net positive control absorbance.  

 

Nitric Oxide Assay 

Nitric oxide production by macrophages was measured by modifications of what has 

been previously described (Arkusz, Stanczyk et al. 2005). Briefly, isolated cells (2 x 

105/well) were stimulated for 24 hours with LPS (Sigma-Aldrich; St. Louis, MO; 

1mg/mL) plus murine IFNg (Invitrogen; Carlsbad, CA; 6.25 ng/mL) and PAM(3)CSK(4) 

(Invitrogen; Carlsbad, CA; 1 mg/mL) plus murine IFNg (Gibco; Montgomery County, 

MD; 6.25 ng/mL). After stimulation, 50 µL of the supernatant was mixed with a freshly 

prepared Griess reagent (1% sulfanilamide, 0.1% napthylethylenediamine 

dihydrochloride, 2% phosphoric acid). The standard curve for nitrite was prepared using 

sodium nitrite (Sigma-Aldrich; St. Louis, MO) at concentrations of 0-200 µM. After 10 

minutes of incubation at room temperature, the absorbance of the samples and standards 

was measured at 546 nm. Crystal violet solution (Fisher Scientific; Hampton, NH) was 

added to the cells and read at 540 nm absorbance to control for cell count per well. 
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Statistical Analysis 

Lung CFU counts (x) were log transformed (as x + 1) prior to analysis and mean CFU 

counts were compared by 2-way ANOVA with Bonferroni’s correction for multiple 

comparisons tests (Xu, Tasneen et al. 2018). Mouse body weight changes over time were 

analyzed by linear regression. Analyses of TNF production, phagocytic activity, and NO 

production were also done by 2-way ANOVA with Bonferroni’s correction for multiple 

comparisons tests. Analyses of cytokines in Figures 5 and 8 were done by Students t-test 

with Welch’s correction. All analyses were performed using GraphPad Prism version 7 

(GraphPad; San Diego, CA).  
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Results 

 

Mycobacterial Load 

Colony forming units (CFU) were used to quantitatively assess the mycobacterial load of 

the collected organs. CFU increased with time post-infection, however, with no 

significant differences between 100 and 1,000 ppb arsenic exposure levels (Fig. 1). 

Although there were no significant differences between exposure groups, trends of 

increased CFU were observed at Day 7 and 28 post-infection. When observed as 

individual points, these trends more obviously show an increase in the arsenic-exposed 

groups at both 100 and 1,000ppb (Fig. 2). Mortality, assessed by weight, was not 

significantly different between exposure groups of C57BL/6 or A/J strains (Supp. Fig. 1). 

No significant differences were observed in food or water intake. 

 

In alignment with the weight threshold set by Franco et al. (Franco, Correia-Neves et al. 

2012), C57BL/6 and A/J mice were sacrificed at Day 20 and 19, respectively, once >15% 

of pre-infection body weight was lost. No significant differences or trends were observed 

in lung CFU counts between mouse strains or between arsenic-treated or untreated within 

strains. In the liver, CFU counts were significantly higher in 1,000 ppb C57BL/6 than in 

the 0 ppb and 1,000 ppb A/J. No significant differences were observed in spleen CFUs. 

Trends between exposures within the same strains were also observed in liver and spleen 

CFU. 
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Cytokines 

Tumor Necrosis Factor (TNF) levels were measured in serum of mice exposed to 0 ppb 

or 1,000 ppb arsenic starting 3 weeks prior to infection until sacrifice (Fig. 3). Serum was 

collected prior to infection, and at days 1, 7, and 28 post-infection. At pre-infection, the 

1,000 ppb arsenic-exposed group concentrations were greater than 0 ppb. Day 1 and 7 

post-infection, there was a trend for the TNF levels in the serum to be lower in arsenic-

exposed group than unexposed. These post-infection levels in arsenic-exposed group 

increased production of this cytokine at Day 28.  None of the differences were 

statistically significant. 

 

Overall, 32 cytokines were measured by the Luminex assay. However, in serum, only 16 

of the assays had readings in the detectable range (eotaxin, G-CSF, IFNγ, IL-1α, IL-1β, 

IL-5, IL-6, IL-17, IL-9, IP-10, KC, MCP-1, M-CSF, MIG, MIP-2, and RANTES). Of this 

group, cytokines demonstrating differences in concentration between exposure groups in 

pre-infection serum were eotaxin, G-CSF, IP-10, and IL-17 (Fig. 4). IP-10 concentrations 

were significantly reduced in arsenic-exposed groups, and eotaxin and G-CSF 

demonstrated trends in lower concentrations than the unexposed groups. IL-17 was 

higher in the arsenic-exposed group but the difference was not statistically significant. 

 

Of the same 32-plex cytokine panel, only IFNγ, IL-6, KC (CXCL1), and MIP-2 (CXCL2) 

had readings at detectable levels. Of these, IFNγ and IL-6 had observable differences 

between groups (Fig 8). A trend of decreased IFNγ and increased IL-6 concentrations 
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were found in the 1,000ppb compared to 0ppb arsenic group. There were no statistically 

significant differences between exposure groups.  

 

Phagocytosis 

Phagocytosis was expressed as ‘percent effect’ in peritoneal macrophages isolated from 

mice exposed to 0, 100 or 1,000 ppb of arsenic for 3 weeks (Fig. 6). After 1 hour, there 

appears to be a trend for a negative relationship between phagocytosis and arsenic levels 

in unstimulated cells. However, in the LPS/IFNγ -stimulated cells there were equal levels 

of the percent effects for all treatment and control groups. None of the differences were 

statistically significant. 

 

After 2 hours, the 1,000 ppb-exposed group remained lower than percent effect of the 

unexposed group in the unstimulated cells. Interestingly, the 100 ppb-exposed group 

appeared to not only increase in phagocytic activity, but also have greater percent effect 

than the unexposed group. In the stimulated groups at this time point, there appears to be 

a trend of increased phagocytosis with increasing arsenic levels. Overall, the average 

phagocytic activity levels are still comparable to the 1 hour time point. Again, none of the 

differences were statistically significant. 

 

After 3 hours, there is a noticeable decrease in the phagocytic percent effect overall due 

to degradation of the E. coli present by the cells. In the unstimulated cells, similar the 2-

hour time point, the 1,000 ppb-exposed group remains lower than water and 100 ppb-

exposed groups. Again, the 100 ppb-exposed cells have the highest percent effect of the 
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exposure groups. In the stimulated cells, the trend of increasing phagocytosis with 

increasing arsenic levels becomes more evident. None of the mean values were 

statistically significantly different from each other. 

 

NO Production 

Nitric oxide (NO) production was measured ex vivo in peritoneal macrophages from mice 

exposed to 100 or 1,000 ppb arsenic or water for 3 weeks (Fig. 7). In cells stimulated 

with LPS and IFNγ, the 100 ppb-exposed and 1,000 ppb-exposed groups produced more 

NO than unexposed. This was emulated in groups stimulated by PAM(3)CSK(4) and 

murine IFNγ, (Fig. 7) but with higher levels in each exposure group. In both groups, 100 

ppb-exposed cells had the highest NO concentrations of the exposure groups. NO was not 

detected in unstimulated cells of any of the exposure groups.  The differences in the NO 

levels were not statistically significant. 
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Discussion 

 

Several areas of the world with a high prevalence of TB, such as Chile and Bangladesh, 

have also been exposed to high levels of arsenic. For this reason, it is important to 

understand the potential synergistic effects on health outcomes of these two agents. In 

this study, we aim to illuminate the mechanisms that may explain epidemiological 

findings that appear to document an increased mortality from TB in populations 

chronically exposed to high levels of arsenic (Smith, Marshall et al. 2011). In our animal 

model, we aimed to assess mortality, morbidity, and mycobacterial load in mice exposed 

to increasing concentrations of arsenic. We did not observe significant differences 

between weight gain or loss due to infection between any of the exposure groups (Supp. 

Fig. 1). However, CFU counts revealed a trend of increasing bacterial load from 

increasing arsenic concentration, analogous to the findings by Sillé et al. (unpublished, 

Sillé et al. 2016). Although not statistically significant, differences of +/- 0.5 log in CFU 

are defined as biologically significant. Therefore, the +0.25 changes in CFU for arsenic-

exposed mice may be considered a biologically relevant trend (Tasneen, Williams et al. 

2015). This data is particularly convincing as neither weight nor food and water intakes 

by any exposure groups were significantly different. Unlike Sillé et al., we did not 

observe differences in lung bacterial load between arsenic exposure doses.  

 

To assess lung bacterial load and dissemination differences between C57BL/6 and A/J 

mouse strains, we collected the lung, liver, and spleen of both strains with respective 

exposure groups. Jagannath et al. observed significantly greater CFU in the lungs, liver, 



 34 

and spleen of A/J compared to C57BL/6 mice when exposed to a 1,000 CFU Mtb 

infection (Jagannath, Hoffmann et al. 2000). The authors describe the difference observed 

as due to a genetic defect in the A/J strain that results in a deficiency of the fifth 

complement component (C5) (Cinader, Dubiski et al. 1964, Wetsel, Fleischer et al. 

1990), an important component for opsonizing Mtb for phagocytosis (Schorey, Carroll et 

al. 1997, Schlesinger 1998). Here, we observed either no significant difference in the 

number of CFU between A/J than C57BL/6 mice at 19/20 days post-infection. One 

difference to note is our administration of a 10,000 CFU infection. This inoculation 

resulted in a shorter pathological timeline than the study by Jagannath et al., perhaps 

preventing necessary development of disease to develop a difference in bacterial loads. 

Another dissimilarity was the choice of vendor; our group purchased both strains from 

Charles River Laboratories, whereas Jagannath et al. purchased from Jackson 

Laboratories (Jagannath, Hoffmann et al. 2000). Recent studies have determined 

immunological endpoints to be dependent on mouse vendor source, including severity of 

infection and microbiota composition (Ericsson, Davis et al. 2015, Villarino, LeCleir et 

al. 2016). Of note, there was a trend for increased liver and spleen CFU in 1,000 ppb-

treated groups for both C57BL/6 and A/J strains. This suggests differences in the ability 

of the immune system to contain Mtb infection and prevent dissemination to the rest of 

the body due to the migration of infected macrophages and dendritic cells (Chackerian, 

Alt et al. 2002).   

 

After 3 weeks of arsenic exposure, we tested serum for differences in cytokines relevant 

to combating TB before and after aerosol infection. A cytokine well known for this role is 



 35 

TNF, a cytokine released by macrophages upon infection that is associated with increased 

NO production (Flynn, Goldstein et al. 1995). Here, we sampled serum from pre-

infection, as well as Day 1, 7, and 28 post-infection. At pre-infection, our observations 

reflect the in vitro findings by Sakurai et al. of increased TNF with arsenic exposure 

(Sakurai, Kaise et al. 1998). However, as we exposed mice to arsenic in vivo, the arsenic 

species in our mouse serum are likely to be a metabolized form due to methylation by the 

blood and liver (Buchet and Lauwerys 1985, Marafante, Vahter et al. 1985, Nemeti and 

Gregus 2004, Gregus and Nemeti 2005). Kozul et al. observed an increase of TNF 

expression after 5-6 weeks of sodium arsenite exposure in drinking water, suggesting an 

increase in its production as well (Kozul, Hampton et al. 2009). On Day 1 and Day 7 

post-infection, production of this cytokine is less in arsenic-exposed groups than 

unexposed. The difference is most striking in Day 1, suggesting the arsenic-exposed 

group is more susceptible to the infection shortly after Mtb aerosol. This finding is 

analogous to the zebrafish infection/arsenic-exposure models by Hermann et al. and 

Nayak et al. where decreased concentrations of TNF were observed (Nayak, Lage et al. 

2007, Kozul, Hampton et al. 2009). It isn’t until Day 28 post-infection that TNF levels in 

arsenic-exposed animals are once again greater than those of unexposed groups. This U-

curve of arsenic-exposed TNF production during infection may suggest an interplay 

between arsenic and infection. Though TNF levels in unexposed mice gradually 

increased overtime with infection, as expected, there seems to be a shunting effect in the 

arsenic-exposed group early on in infection that later recovers around the time of 

adaptive immunity. Therefore, it may be speculated that arsenic exposure is most 

damaging to the immune response against Mtb early on in infection by negatively 
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effecting the innate immune response. Perhaps cells with roles in innate immunity, such 

as the macrophage, may experience functional changes due to arsenic exposure. 

 

Also sampled in this study were 32 different cytokines from the blood at pre-infection 

after 3 weeks arsenic exposure. Here, we observed a significant decrease in IP-10 in the 

serum of arsenic-exposed mice. IP-10, also referred to as CXCL10, is an interferon 

gamma-induced chemokine that is expressed by APCs that binds to the receptor CXCR3 

on monocytes, NK cells and T cells and is considered a downstream marker of cell 

mediated immunity against Mtb (Ruhwald, Aabye et al. 2012). Indeed, numerous clinical 

studies have shown that IP-10 is on par with and, in the case of children and persons with 

low CD4 T cell counts, a better biomarker for TB infection diagnosis than IFN γ 

(Ruhwald, Aabye et al. 2012). Therefore, an arsenic-mediated decrease in IP-10 may 

compromise the immune response to Mtb infection. IP-10 has even been suggested as a 

biomarker to differentiate between stages of tuberculosis infection (Wergeland, Pullar et 

al. 2015). In future studies of TB mouse models, tracking IP-10 levels may serve as an 

effective way to track tuberculosis progression in the context of arsenic exposure. 

 

Two other cytokines evaluated here that showed differences in expression were eotaxin 

(CCL11) and Granulocyte Colony-Stimulating Factor (G-CSF/CSF1). Both cytokines 

demonstrated a trend for decreased levels in the serum in the arsenic-exposed groups. 

Eotaxin has a role in eosinophil recruitment to inflammatory tissues and has also been 

used as a tuberculosis biomarker, specifically for detecting pulmonary tuberculosis (Choi, 

Kim et al. 2016). Good responders to anti-tuberculosis treatments demonstrated increased 
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levels of eotaxin (Choi, Kim et al. 2016), and eotaxin is lower in active tuberculosis 

patients compared to those with latent infections (Djoba Siawaya, Beyers et al. 2009). 

Therefore, it is possible that lower eotaxin levels is indicative of an immune system that 

is less apt to control an Mtb infection. Just as IP-10, eotaxin too can be used as a 

biomarker in future TB mouse models.  

G-CSF, known for its essential role in the induction of the Th1 response (Gonzalez-

Juarrero, Hattle et al. 2005, Rothchild, Stowell et al. 2017), frequently increases with Mtb 

infection to produce macrophages with the phenotype appropriate to combat this 

pathogen (Higgins, Sanchez-Campillo et al. 2008, Cho, Park et al. 2013). Additionally, 

Szeliga et al. determined that GM-CSF (CSF2), another member of the CFS family, has 

an essential role of protecting alveolar structure and regulating macrophages and 

dendritic cells to contain Mtb in granulomas (Szeliga, Daniel et al. 2008). Therefore, it 

may be suggested that a decrease in GM-CSF may leave the body more vulnerable to the 

damaging effects of TB. The levels of GM-CSF in our model can only be speculated, as it 

was not at detectable levels in the serum from naïve (uninfected) mice (data not shown).   

 

IL-17, as opposed to the other select cytokines, had a trend of increased concentration in 

serum from arsenic exposed groups.  This increase in IL-17 could reflect a direct 

response to Mtb or could represent a response to a break in barrier integrity and exposure 

to components of the microbiome. Vested with the ability to recruit neutrophils to 

mucosal sites (Miyamoto, Prause et al. 2003) and modulate granulopoiesis 

(Schwarzenberger, La Russa et al. 1998), IL-17 appears as only beneficial for fighting an 

Mtb infection. However, a shift from Th1 to Th17 response may produce excessive IL-17 
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to, in turn, extensively recruit neutrophils and cause tissue damage (Torrado and Cooper 

2010). It may not be so beneficial to respiratory health in TB patients if arsenic induces 

an increase in IL-17. 

 

To assess immunogenic changes at the cellular level, we tested a functional attribute of 

peritoneal macrophages ex vivo after 3 weeks of in vivo exposure to 0, 100, or 1,000 ppb 

arsenic. The phagocytic activity of the macrophages was assessed by fluorogenic reagents 

every hour for 3 hours. For unstimulated cells, there is a trend for decreased phagocytosis 

with increasing arsenic concentrations. This pattern was also observed by Fisher et al. in 

an in vitro bovine model, and Banerjee et al. in an in vitro human model (Fisher, McNeill 

et al. 1986, Banerjee, Banerjee et al. 2009). However, neither of these studies stimulated 

their macrophages before their respective phagocytosis assay. In our study, when we 

stimulated these macrophages with LPS and IFNγ a trend of a positive relationship 

between arsenic and phagocytosis was observed. This has not been published before, and 

it suggests deeper complexity to the relationship between arsenic and phagocytic ability. 

Future studies should focus on the differences in the interaction with arsenic with the 

cytoskeleton of unstimulated and stimulated macrophages, as changes in this network are 

known to affect phagocytosis (May and Machesky 2001, Banerjee, Banerjee et al. 2009). 

Unlike the 1st hour, the 2nd and 3rd hour of the assay showed that the 100 ppb arsenic-

exposed macrophages had the greatest phagocytic ability. Readings were made out to 

these time points to look for potential delay in phagocytosis. High phagocytosis readings 

at 100 ppb compared to the 1,000 ppb and 0 ppb treatments suggests a non-linear dose 
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response that numerous studies have found in arsenic exposure models (Arkusz, Stanczyk 

et al. 2005, Burchiel, Lauer et al. 2014, Xu, McClain et al. 2016). 

 

Once phagocytosis is complete, the role of the macrophage is to kill the pathogen in the 

phagolysosome. The cell produces nitric oxide to degrade the bacteria and remove it. By 

assessing NO production, we evaluated the peritoneal macrophages’ potential to 

intracellularly kill Mtb. Here again observed that cells exposed to 100 ppb of arsenic had 

the highest NO production of the exposure groups. Overall, there is a trend for increasing 

NO production with increasing levels of in vivo arsenic exposure. This pattern disagrees 

with the in vitro exposure murine cell study by Arkusz et al. and the ex vivo human cell 

study by Banerjee et al. which both indicate that arsenic suppresses NO production in 

macrophages (Arkusz, Stanczyk et al. 2005, Banerjee, Banerjee et al. 2009). However, 

Luna et al. observed a positive relationship with NO production and arsenic levels in the 

urine of environmentally exposed children (Luna, Acosta-Saavedra et al. 2010). As their 

group suggests, this finding may be due to increasing oxidative stress. Arsenic has been 

shown to induce oxidative stress through reactive nitrogen species (RNS) and reactive 

oxygen species (ROS) (Wu, Chiou et al. 2001, Ding, Hudson et al. 2005). Indeed, the 

relationship between SO and arsenic exposure has also been controversial (Lantz, 

Parliman et al. 1994, Luna, Acosta-Saavedra et al. 2010). Future studies of RNS and ROS 

with arsenic exposure must account for the actual arsenic species the macrophage is 

interacting with. Accounting for this should tease out discrepancies between studies of 

RNS/ROS association with arsenic association. 
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To assess the microenvironment created by macrophages after in vivo arsenic exposure, 

we analyzed supernatant from stimulated macrophages. Although not statistically 

significant, the trend of decreased IFNγ was particularly noteworthy due to its vital role 

in Mtb resistance (Flynn, Chan et al. 1993). Although primarily produced by 

lymphocytes, IFNγ by neighboring macrophages may also be necessary for proper 

stimulation of macrophages (Nathan, Murray et al. 1983). Hermann et al. observed 

increased IFNγ expression with increased sodium arsenite doses, but it should be noted 

that this was in a zebrafish fish pathogen model and that concentrations of IFNγ were not 

measured at any level (Hermann and Kim 2005). A trend of increased macrophage IL-6 

production was observed in our model, which to our knowledge has not been reported 

before in an arsenic model. However, Mehrzad et al. reported increased IL-6 production 

by porcine dendritic cells, another APC (Mehrzad, Mahmudy Gharaie et al. 2017). There 

have also been reports of increased IL-6 levels in the lung in arsenic-exposed mice, 

suggesting an imbalance in redox status and disturbance of the Th1/Th2 balance (Li, 

Zhao et al. 2017). 

 

Our study suggests a compromised immunogenic microenvironment induced by arsenic 

influencing the function of macrophages vital for the immune response against Mtb 

infection. Yet, our results also demonstrate the complexity of how arsenic interacts with 

and influences cells of the innate immune response. Additionally, there is vast literature 

on the effect of arsenic on T cells, known to produce IFNg to create the M1 phenotype 

macrophages and the Th1 response (Soto-Pena and Vega 2008, Cho, Ahn et al. 2012). 

Future studies of the TB mouse model exposed to arsenic should aim to discriminate 
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between the effects arsenic has on the function of macrophages, dendritic cells, and T 

cells and their influence back on the regulation of the immune system responding to 

pathogens such as Mtb. In conclusion, we found relevant levels of arsenic in drinking 

water may compromise the immune response against Mtb infection. To this end, 

immunotoxicity at low levels of arsenic should be accounted for in public policy dictating 

environmental arsenic concentration limits, especially in areas of the world where 

tuberculosis is prevalent. 
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Figure 1 Lung CFU of varied iAs exposures with Mtb infection. Colony formation units (CFU) over post-M. 
tuberculosis (Mtb) infection timepoints. C57BL/6 mice were exposed to 0 or A) 100 or B) 1,000 parts per billion 
(ppb) of arsenic (iAs) 3 weeks prior to infection until sacrifice. Mice were infected with A) 100 or B/C) 10,000 
colony formation units (CFU) of Mtb. Mouse strain was C57BL/6. No statistically significant differences in CFU 
were observed between treatment groups in either study (p-value > 0.05). Trends of increased CFU in iAs-exposed 
mice were observed.
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Figure 2 Lung CFU of 100ppb and 1,000ppb iAs exposure with Mtb infection. Colony forming units (CFU) for A/B) 
Day 7 and C/D) Day 28 post-M. tuberculosis (Mtb) infection from the studies represented in Figure 1. Dilutions of A/C) 
10-1 and B/D) 10-5 are representative of the bacterial loads in the lung. Mice were exposed to A/C) 100 or B/D) 1000 parts 
per billion (ppb) of inorganic arsenic (iAs) or water starting 3 weeks prior to infection and until sacrifice. Mice were 
infected with 100 colony formation units M. tb. Mouse strain was C57BL/6. No statistically significant differences in CFU 
were observed between treatment groups in either study (p-value > 0.05). Trends of increased CFU within treatment groups 
were observed. 
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Figure 4 TNF serum levels with iAs exposure and Mtb infection. Tumor Necrosis Factor (TNF) serum concentrations 
pre- and post-100 CFU M. tuberculosis (Mtb) infection timepoints in the study represented by Figure 1B. Mice were 
treated with 0 or 1,000 parts per billion (ppb) of inorganic arsenic (iAs) starting 3 weeks prior to infection until sacrifice. 
Mouse strain was C57BL/6. No statistically significant differences in CFU were observed between treatment groups (p-
value > 0.05). 
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before M. tuberculosis (Mtb) infection in the study represented in Figure 1B. Mice were exposed to 
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Figure 6 Phagocytic activity post-iAs exposure. Phagocytic activity of C57BL/6 mice peritoneal macrophages 
after A) 1 hour B) 2 hours and C) 3 hours after phagocytosis effector treatment. Cells were tested ex vivo after 3 
weeks in vivo exposure to 0, 100 or 1000 parts per billion (ppb) inorganic arsenic (iAs). No statistically significant 
differences in CFU were observed between treatment groups (p-value > 0.05). 
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Figure 7 NO porduction post-iAs exposure. Nitric Oxide (NO) production by C57BL/6 mice peritoneal 
macrophages ex vivo after 48 hours stimulation. Cells were tested ex vivo after 3 weeks in vivo exposure of 0, 100 or 
1,000 parts per billion (ppb) inorganic arsenic (iAs). Mouse strain was C57BL/6. No statistically significant 
differences in CFU were observed between treatment groups (p-value > 0.05). 
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Figure 8 Macrophage cytokine production post-iAs exposure. Select cytokine concentrations 
measured in peritoneal macrophage supernatant after LPS + IFNγ stimulation. Mice were exposed 
to 0 or 1000 parts per billion (ppb) of inorganic arsenic (iAs) for 3 weeks. No statistically significant 
differences were observed between exposure groups (p-value > 0.05).
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Supplemental Figure 1 Body weight changes with iAs exposure and Mtb infection. Mouse weights (grams) by 
treatment group in study A (N=12), B (N=14), and C (N=8). Mice were exposed to A) 100 or B) 1000 parts per billion 
(ppb) of arsenic (iAs) or water starting 3 weeks before infection and until sacrifice. Mice were infected with A) 100 or 
B/C) 10000 colony formation units (cfu) of M. tuberculosis (M. tb). Mice strains were A/B) C57BL/6 or C) A/J. 
Infection occured on Day 21 and Day 14 in study A and B/C, respectively. No statistically significant differences in 
weight increase or decrease were observed between treatment groups in either study (p-value > 0.05). 
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Supplemental Figure 2 iAs exposure and Mtb infection lung CFU preliminary data. Unpublished data of 
C57BL/6 mice exposed to 0, 100, and 1000ppb arsenic (iAs) throughout M. tuberculosis (Mtb) infection and 
post-infeciton days. (*P<0.05)
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