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ABSTRACT. An approach is proposed for measuring the group consensus in the multiple 

attribute decision making (MADM) problems with experts’ various preference information on 

alternatives. In the approach, multiple decision makers give their preference information on 

alternatives in different formats. The uniformities and aggregation process with fuzzy 

majority method are employed to obtain the social fuzzy preference relation on the 

alternatives. Accordingly, the ranking values of the alternatives are obtained based on the 

obtained individual expert’s fuzzy preference relation and the social one. The group 

consensus can be measured based on the ranking values of the alternatives that are derived 

from the individual expert’s preference information and the social one. An example of 

selecting robots is presented as an illustration. 
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1. Introduction 

In Multiple attribute decision making (MADM) problems, alternatives are always 
evaluated against some noncommensurate and conflicting attributes. How to rank the 
alternatives or select the best one has attracted many researches (Chen and Hwang, 1992; 
Shih, 2005; Awasthi et al., 2007; Venkata Rao, 2008; Dalalaha et al., 2011; Ye, 2012; Liu et 
al., 2013). In MADM problems, the invited experts' preference information is often used to 
obtain the final selection of the best alternatives. However, the experts' judgments vary in 
form and depth. Different experts may use different ways when expressing their preference 
information on alternatives. The approaches to solving MADM problems can be classified 
into three categories according to the preference information given by the experts: (1) the 
approaches without preference information (Chen and Hwang, 1992; Awasthi et al., 2007; 
Dalalaha et al.,2011; Ye, 2012; Liu et al.,2013), (2) the approaches with information on 
attributes (Li, 1999; Weber, 1999；Xu， 2004; Xu, 2007; Chen and Niou, 2011; Yu et al., 
2013), and (3) the approaches with information on alternatives (Chen and Hwang, 1992; 
Chiclana et al., 1998;  Malakooti and Zhou, 1994；Montero， 2008；Nurmi， 2008; Fan et 
al., 2010; Wei et al., 2011). 

This study falls into the third category with experts’ preference information on 
alternatives, where several types of formats of preference information on alternatives are 
employed: preference orderings, utility values and fuzzy preference relations(Chiclana et al., 
1998), linguistic term vector, normal preference relation, selected subset, fuzzy selected 
subset (Zhang et al., 2004) and pairwise comparison(Saaty，2008). Preference orderings of 
alternatives can be transformed into fuzzy preference relations (Chiclana et al., 1998; Xu，
2004). Also utility values of alternatives are always converted into fuzzy preference relations 
for ranking of alternatives (Chiclana et al., 1998). After the preference information from 
multiple experts are uniformed, fuzzy majority method with fuzzy quantifier can be used to 
aggregate these uniformed preference information into a social one and to select the best 
acceptable alternative (Chiclana et al., 1998).  

Integration is an important task in decision support process (Chiclana et al., 1998; Rao, 
2008; Liu et al., 2010; Perçina and Kahramanb, 2010; Vu et al., 2014), as well as it does in 
group decision making process with preference information on alternatives (Cabrerizo et al., 
2013; Chiclana et al., 2013).  In group decision making process, multiple experts are always 
involved and express their preference information on alternatives in different formats due to 
different culture and education backgrounds, such as, fuzzy preference relations (Chiclana et 
al., 2013, pairwise comparison(Saaty, 2008), linguistics with different granularities (Mata, et 
al., 2009). Uniformities process and aggregation process are needed to determine the optimal 
alternative.   

In addition to find the optimal solution to the MADM with multiple experts’ preference 
information on alternatives, group consensus measurement is also an important issue in the 
process of decision making (Bryson, 1996; Kacpzrzyk et al., 1992; Herrera-Viedma et al., 
2005; Mata et al., 2009; Xu and Cai, 2011; Chiclana et al., 2013; Cabrerizo et al., 2013).  

With fuzzy preference relation being the basic format of the decision makers’ opinions, 
Kacpzrzyk et al. (1992) propose an approach to calculating the group consensus based on the 
concept of fuzzy majority. The linguistic quantifiers are employed to represent a fuzzy 
majority. The group consensus is “soft” based on the fuzzy linguistic quantifiers, which is 
determined by the decision makers’ subjective attitudes.  In Brysons’ study (1996), a method 
is proposed for measuring the consensus between two vectors by calculating the cosine value 
of their included angle.  Herrera-Viedma et al. (2005) propose a support system model for 
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reaching the consensus in group decision-making problems where experts express their 
opinions  in linguistic preference relations with multiple granularities.  By means of designing  
the basic linguistic term set,  multigranular linguistic information is uniformed. A similarity 
function is defined to compute the consensus degrees amongst the experts (Herrera-Viedma et 
al., 2005). Mata et al. (2009) propose an adaptive consensus model for group decision making 
problems with experts’ multigranular linguistic opinions. With fuzzy preference relation and 
multiplicative preference relations as the formats of experts’ opinions respectively, Xu and 
Cai (2011) propose two methods for determine the weights of experts so that the group 
consensus be maximum respectively, i.e. goal programming model and quadratic 
programming model. Then two iterative algorithms are developed for group decision making 
to reach the consensus, respectively. By using the nonparametric Wilcoxon statistical test, 
Chiclana et al. (2013) present a detailed experimental study on comparing five most widely 
used distance functions for measuring the consensus in group decision-making problems. 
Cabrerizoet et al. (2013) analyze some prospects and open questions in applying consensus 
model based on soft consensus measures when dealing the group decision making (GDM) 
problems.  

However, the group consensus measure approach to MADM with decision maker (DM)s’ 
different formats of preference information on alternatives is not common. This paper 
proposes an approach to measuring the group consensus in MADM with DMs’ preference 
information on alternatives in the formats of preference orderings, utility values, fuzzy 
preference information, linguistic term vector, selected subset, fuzzy selected subset, pairwise 
comparison on alternatives. The DMs’ various preference information is normalized into 
fuzzy preference relation respectively, and aggregated the results into a social one based on 
fuzzy majority method with fuzzy quantifier; Then, the ranking values of the alternatives are 
assessed based on the obtained fuzzy preference relation and the social one; According to the 
ranking values of the alternatives, which are derived from the individual expert’s preference 
information and the social one, the group consensus can be measured.  

This paper is organized as follows: Section 2 describes the MADM problem with 
preference information on alternatives in various formats; Section 3 focuses on preference 
uniformities, where the different types of preference information on alternatives are 
transformed into fuzzy preference relation respectively. In section 4, preference aggregation 
and exploitation are conducted.  Section 5 proposes the approach to measuring the group 
consensus. In section 6, an example is used to illustrate the proposed approach. Conclusion is 
given in section 7. 

2. Problem description 

The following assumptions or notations are used to represent the MADM problems: 
let S=(S1, …, Sm), denote a discrete set of )2( ≥m  possible alternatives. 
let R=(R1, …, Rn) denote a set of )2( ≥n  attributes. 
let nmijaA ×= ][  denote the decision matrix where ija ( 0≥ ) is the consequence with a 

numerical value for alternative iS  with respect to attribute jR , i=1, …, m,  j=1, …, n. 
 let E = ( e1, e2, …, eK ) denotes the set of experts. Different experts can express their 

preference on the candidate alternatives in different formats, i.e., preference orderings, 
utility values and fuzzy preference information. 

This paper considers the MADM problems with experts’ preference information on 
alternatives in following formats. 
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 preference orderings can be used by an expert to express his preference on the alternatives: 
Ok=(Ok(1),…Ok(m)), where )(⋅ko  is a permutation function over the index set {1, …, m} 
and )(iok  represents the position of alternative iS  in the preference ordering, i=1, …, m. 
The alternatives are ordered from the best to the worst.  
 utility values, or an utility vector can be used by an expert to express his preference on the 

alternatives: 
kU  =( ku1 ,…, 

k
mu ), ∈k

iu (0,1), mi ≤≤1 , where k
iu  represents the utility 

evaluation given by the decision maker to alternative iS .  
 fuzzy preference information on alternatives can be given by an expert. The DM’s 

preference relation is described by a binary fuzzy relation P in S, where P is a mapping 
→× SS (0, 1) and ikp  denotes the preference degree of alternative iS  over kS . We assume 

that P  is reciprocal, by definition, (i) 1=+ kiik pp  and (ii) −=iip  (symbol ‘−’ means that 
the decision maker does not need to give any preference information on alternative iS ), 

ki,∀  (Chiclana et al., 1998). 
 Let ) ..., ,,( 21

k
m

kkk lllL =  be a linguistic term vector given by an expert ke . Where,  k
il  is the 

linguistic evaluation by ke  to alternative iS , i=1, …, m .  
 Let },...,,{

21 miii SSSS =  be a selected subset of S  by an expert, to express the preference on 

part of the alternatives. ⊂S S , mi < m. Alternatives in S  are equivalent and dominate those 
in the left of S . The alternatives in SS /  are also equivalent to each other.  
 Let )},(),...,,(),,{(~

2211

k
ii

k
ii

k
ii nn

lSlSlSS = , min < , be a fuzzy selected subset of S used by an 

expert ke , to express the preference on part of the alternatives using linguistic terms. k
i j

l  is a 

linguistic term, nj ii  ,...,1= .  
 pairwise comparison on alternatives: Let H= mmijh ×)(  be a pairwise comparison matrix used 

by an expert ke . Where ijh  represents the ratio of the preference of alternative iS  to jS  and 
can be given in Saaty's 1-9 scale (Satty, 2008). Matrix H represents the following 
characteristics: 

ijh =
jih

1 ,             jimji ≠=  ;,...,1,                                         (1) 

iih =1,                 mi ,...,1=                                                     (2) 
 

ijh >0,                mji ,...,1, =                                                   (3) 
 

3. Preference uniformities 

When multiple experts are involved in the decision process, usually two phases are 
needed to find the final solution: aggregation and exploitation. Aggregation is to combine 
opinions on alternatives from different perspectives; Exploitation is to rank the alternatives or 
to select the best one based on the social information on the alternatives. In this section, in 
order to aggregate the different formats of preference information on alternatives from 
multiple experts, the following types of preference information on alternatives are converted 
into fuzzy preference relations respectively. 
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3.1. Transform preference orderings into fuzzy preference relation 

An expert can use preference orderings to express his or her preference on the 
alternatives. In this paper, the preference orderings would be transformed into fuzzy 
preference relations as follows (Chiclana et al., 1998): 

)
1
)(

1
)(1(2

1

−
−

−
+=

m
io

m
jop

kk
k
ij ,              mji ≤≠≤1                    (4) 

3.2. Transform utility vector into fuzzy preference relation 

Also an expert can use an utility vector to express the preference on the alternatives. The 
utility vector can be transformed into fuzzy preference relations as follows (Chiclana et al., 
1998): 

22

2

)()(
)(

k
j

k
i

k
ik

ij uu
u

p
+

= ,                mji ≤≠≤1                           (5) 

3.3. Transform linguistic term vector into fuzzy preference relation 

In 1980, Yager proposes a method for transforming a fuzzy number into a centroid index. 
Cheng revise Yager’s  method (1998) as follows: 

Given a trapezoidal fuzzy number C~ , denoted by (a, b, c, d, w). The membership 
function is defined as in (6). Function ],0[],[:)(~ wbaxf L

C →  is continuous and strictly 

increasing. Therefore, its inverse function exists, denoted by )(~ xg L
C . At the same time, 

],0[],[:)(~ wdcxf R
C →  is continuous and strictly increasing, and its inverse function also 

exists, denoted by )(~ xg R
C . )(~ xg L

C  and )(~ xg R
C  are both continuous on (0, w).  

The centorid point ( x , y ) of C~  is defined as, 

∫∫∫
∫∫∫

++

++
= d

c
R

C

c

b

b

a
L

C

d

c
R

C

c

b

b

a
L

C

dxfdxdxf

dxxfxdxdxxf
Cx

~~

~~
)~(                                      (6) 

 

∫∫
∫∫

+

+
= w R

C
w L

C

w R
C

w L
C

dygdyg

dyygdyyg
Cy

0
~

0
~

0
~

0
~

)~(                                                  (7) 

Then the value of C~  is obtained as,  

value( C~ )= 22 )()( yx +                                                         (8) 
 
Chen (2001) proposes a simplified method of transforming a trapezoidal fuzzy number C~  

denoted by (a, b , c, d) into a numerical value as  

4
)~( dcbaCD +++
=                                                                (9) 
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This simplified method is also applicable for the triangular fuzzy numbers since a 
triangular fuzzy number is a special case of a trapezoidal fuzzy number with b=c (Chen, 
2001). 
 

3.4. Transform selected subset into fuzzy preference relation 

With a selected subset of S , e.g., },...,,{
21 miii SSSS = , the fuzzy preference relation on 

any two alternatives in S  can be defined as,  
 





 ∈∈

=
 otherwise,    ,5.0 

    , 1 ,SS/ , SS if  S
p jik

ij         jimji ≠=  ;,...,1,       (10) 

 
3.5. Transform fuzzy selected subset into fuzzy preference relation 

When an expert ke  gives fuzzy selected subset S~  on S , for any two alternatives iS  and 

jS , if they both belong to S~ , where ) , ,( iii
k
i ul βα=  and ) , ,( jjj

k
j ul βα= , the fuzzy 

preference relation on them is,  
 

k
ijp =

)()(
)(

k
j

k
i

k
i

lvaluelvalue
lvalue

+
,         jimji ≠=  ;,...,1,               (11) 

 
where )( k

ilvalue   and )( k
jlvalue  are the values obtained from (8) or (9).  

If none of iS  and jS  belong to S~ , then  
k
ijp = 0.5,              jimji ≠=  ;,...,1, .                                      (12) 

If iS  belongs to S~  and jS  does not, then  
k
ijp = )( k

ilvalue ,             jimji ≠=  ;,...,1,                               (13) 

where )( k
ilvalue  is the value obtained from (8) or (9). 

3.6. Transform pairwise comparison into fuzzy preference relation 

Suppose an expert ke  expresses a pairwise comparison matrix on S, H= mmijh ×)( . Then, 
the following formula can be used to transform H= mmijh ×)(  into a fuzzy preference relation 
(Zhang et al. , 2004) 

ijp = )log1(
2
1

9 ijh+ ,            jimji ≠=  ;,...,1,                          (14) 

4. Preference aggregation and exploitation 

4.1. Preference aggregation 
After the experts' preference information has been uniformed into fuzzy preference 

relations respectively, the next step is to aggregate these uniformed preference information 
into a social fuzzy preference relation. The social fuzzy preference relation can be obtained by 
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using the ordered weighted averaging (OWA) operator to aggregate individual fuzzy 
preference relations (Yager, 1998). An OWA operator of dimension K is a function F as 
follows, 

 F : (0,1) K  →  (0,1)                                                                 (15) 

In this paper, to aggregate 1
ijp , 2

ijp ,…, K
ijp , F is associated with a weight vector 

],...,,[ 21 KvvvV = , where ∈hv (0,1), h=1,…, K, and 1
1

=∑
=

K

h
hv . F  can be expressed as 

 F( 1
ijp , 2

ijp ,…, K
ijp )=

 
∑=⋅
=

K

h
hh

T cvCV
1

  ,   jimji ≠=  ;,...,1,                (16) 

where ],...,,[ 21 KcccC =  and hc  is the hth largest value among the collection of K
ijijij ppp ,..., , 21 , 

Kh ,...,1= . mm
l
ij

l pP ×= )(  is the matrix of the uniformed fuzzy preference relation on the 
alternatives from the expert le , l =1,…, K. The weight vector V can be obtained by a 
proportional quantifier Q (Yager, 1998), i.e., 
 

)/)1(()/( KhQKhQvh −−= ,            Kh ,...,1=                       (17) 
 
where Q is a fuzzy linguistic quantifier, e.g., "at least half" and "as many as possible". 

If K
ijijij ppp ,..., , 21  are assigned importance Kzzz ,...,, 21 , respectively, and ht  is the 

importance associated with hc  correspondingly, Kh ,...,1= , then equation (17) is changed 
into follows: 

  ,  

1

1

1

1

1



















−



















=

∑

∑

∑

∑

=

−

=

=

=
K

l
l

h

l
l

K

l
l

h

l
l

h

t

t
Q

t

t
Qv          Kh ,...,1=                         (18) 

 
In this paper, semantics "most", involved in the fuzzy linguistic quantifier with a pair 

(0.3, 0.8), is used by the OWA operator to aggregate experts' individual preference relations, 
i.e. 

mmijgG ×= )(                                                                             (19) 

=ijg ),..., ,( 21 K
ijijijQ pppF ,         jimji ≠=  ;,...,1,                  (20) 

where )(⋅QF  is defined in equation (16) and Q is the fuzzy linguistic quantifier with "most" 
which is used to obtain the weight vector V  in equations (16) and (17). 

4.2. Preference exploitation (Chiclana et al., 1998) 

4.2.1. The quantifier guided dominance degree (QGDD)  

The QGDD is used to quantify the dominance that one alternative iS  has over the others 
in a fuzzy majority sense, i.e.,  

);,...,1,( ijmjpFQGDD I
ijQi ≠== ,       i=1, …, m                (21) 

where function )(⋅F  is defined in equation (16). Q  is a fuzzy linguistic quantifier defined in 
Chiclana et al. (1998).  
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4.2.2. The quantifier guided non-dominance degree (QGNDD)  

The QGNDD represents the degree to which alternative iS  is strictly dominated by 
alternative jS . It is calculated by  

),,...,1,1( ijmjpFQGNDD N
jiQi ≠=−= ,       mi ,...,1=         (22) 

where }0 ,max{ I
ij

I
ji

N
ji ppp −= . 

4.2.3. Selection policies of alternatives based on QGDD and QGNDD 

Given the QGDD and QGNDD of each alternative, the selection policy is composed of 
following three steps: 

Step1. The alternative with the maximum dominance degree and the maximum non-
dominance degree will be chosen as the solution to the decision problem, i.e., 

 
             }sup ,|{ j

SS
iii

QGDD QGDDQGDDSSSS
j∈

=∈=                                (23) 

 
            }sup ,|{ j

SS
iii

QGNDD QGNDDQGNDDSSSS
j∈

=∈=                          (24) 

 
where jQGDD  and jQGNDD  ( mj ,,1= ) are defined in (21) and (22), respectively. 

Step 2. Conjunction selection policy. 
 

Define QGNDDQGDDQGCP SSS ∩= . If φ≠QGCPS , then end. Otherwise continue to step 3. 
Step 3. Sequential selection policy. 

Dominance based sequential selection policy process QG-DD-NDD:   
If 1)(# =QGDDS , then end. This is the selection set. Otherwise, define 
 

}sup ,|{ j
SS

i
QGDD

ii
NDDDDQG QGNDDQGNDDSSSS

QGDD
j∈

−− =∈=       (25) 

This is the selection set.  
Non-dominance based sequential selection policy process QG-NDD-DD:   

If 1)(# =QGNDDS , then end. This is the selection set. Otherwise, define 
 

}sup ,|{ j
SS

i
QGNDD

ii
DDNDDQG QGDDQGDDSSSS

QGNDD
j∈

−− =∈=
    

    (26) 

This is the selection set.  

5. Group consensus measurement 

5.1. Determine the ranking values of alternatives     

The essence of measurement method is to determine the ranking values of alternatives 
based on the individual fuzzy preference relation kP ( mm

k
ij

k pP ×= )( ) and the social one G 

( mmijgG ×= )(  from (20)). Based on the fuzzy preference relation kP , the ranking values of 
the alternatives can be calculated as (Xu, 2004), 
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  )1
2

(
)1(

1

1

−+
−

= ∑
=

mp
mm

m

l

k
ij

k
iα ,          i=1, …, m                      (27) 

Thus, given the preference information from expert ie , suppose iInd , 

),...,,( 21
i
m

ii
iInd ααα= , i=1,…, K, be the ranking value vector of the alternatives derived from 

(27); In the same way, denote the ranking value vector of the alternatives from the social 
fuzzy preference relation G as 

 ) ,..., ,( 21
s
m

ssSoc ααα=                                                                 (28) 

5.2. Group consensus measurement 

Given two vectors, ),...,,( 21 imiii tttT =  and ),...,,( 21 jmjjj tttT = , the consensus between 
these two vectors is (Bryson, 1996):     

Con( ji TT , )=1- ),( sine ji TT                                                          (29) 

Thus, the consensus between the individual fuzzy preference relation kP  and the group 
(social) one G can be obtained based on the ranking value vectors derived from them, denoted 
as Con ( SocIndi , ). That is,  

G_Con= ∑
=

K

i
i SocIndCon

K 1
),(1                                                       (30) 

where Con( SocIndi , ) is defined in (29).  

6.  Illustration 

A robot user wants to select a robot and asks seven experts to help him make a decision. 
Four alternatives (i.e. 1S , 2S , 3S  and 4S ) are provided for the user to choose.  The attributes 
considered include: 1) 1R : costs ($10,000), 2) 2R : velocity (m/s), 3) 3R : repeatability (mm), 
4) 4R : load capacity (kg). Among the four attributes, 2R  and 4R  are of benefit type, and 1R  
and 3R  are of cost type. The decision matrix with the four attributes ( 1R , 2R , 3R  and 4R ) 
and the four alternatives ( 1S , 2S , 3S  and 4S ) is presented as follows: 



















=

1102.15.08.1
900.27.02.2
508.08.05.2
700.10.10.3

A .  

Suppose the experts 721 ,...,, eee  provide their opinions on the four alternatives to help the 
user.  They express their opinions as followings: 1e  gives a preference ordering, 1O ={3, 1, 2, 
4}. 2e  gives an utility vector, 2U ={0.7, 0.9, 0.6, 0.3}. 3e  expresses a vector of linguistic 

terms, 3L =("fair", "good", "good", "very good"). 4e  presents a fuzzy preference relation 
matrix 4P . 5e   provides a selected subset { 3S , 4S }.  6e  gives a fuzzy selected subset {( 2S , 
"good"), ( 4S ,"very good")}. 7e  gives a pairwise comparison matrix on the four alternatives as 
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follows: H = 



















122/15
2/113/13

2317
5/13/17/11

. Using the normalization functions above, the uniformed 

fuzzy preference relation matrices from these experts are obtained respectively:  

 



















−
−

−
−

=

6/103/1
6/53/13/2

13/26/5
3/23/16/1

1P , 



















−
−

−
−

=

2.01.058/9
8.0117/3685/36
9.0117/81130/81
58/4985/49130/49

2P ,  

 



















−
−

−
−

=

64.064.08.0
36.05.06923.0
36.05.06923.0
2.03077.03077.0

3P , 



















−
−

−
−

=

2.03.06.0
8.05.07.0
7.05.06.0
4.03.04.0

4P ,   

 



















−
−

−
−

=

5.011
5.011

005.0
005.0

5P , 



















−
−

−
−

=

164.01
025.05.0
36.075.075.0
05.025.0

6P ,  

 



















−
−

−
−

=

6401.03700.08272.0
3599.02483.07291.0
6300.07517.08907.0
1782.02709.01093.0

7P . 

 
The OWA operator with fuzzy linguistic quantifier "most" is used to aggregate the eight 

experts' opinions, with the corresponding weight vector being (0, 0, 0.15, 0.25, 0.25, 0.25, 0.1, 
0)T. The social fuzzy preference relation matrix is obtained as, 
 

 =G



















−
−

−
−

4561.03271.07011.0
5439.04032.06447.0
6729.05968.06739.0
2989.03553.03261.0

.  

 
Based on the exploitation method in 4.2, QGDD of the alternatives are calculated: 

1d =0.3028, 2d =0.6527, 3d =0.5131, 4d =0.3380, which is normalized into (0.1676, 0.3613, 
0.2840, 0.1871). The selection result of the alternatives is 2S .  

QGNDD of the alternatives are calculated: 1d =0.6416, 2d =1.0000, 3d =0.9484, 

4d =0.8493, which is normalized into (0.1865, 0.2908, 0.2758, 0.2469). The selection result of 
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the alternatives is 2S . Based on the selection results from QGDD and QGNDD, the best 
alternative selected is 2S .  

The vector of the ranking values of alternatives from every expert’s preference are 
obtained as: 1Ind =(0.2222, 0.3333, 0.2778, 0.1667), 2Ind =(0.2749, 0.3096, 0.2526, 0.1629), 

3Ind =(0.1929, 0.2544, 0.2544, 0.2983),  4Ind =(0.2167, 0.2750, 0.2917, 0.2167), 

5Ind =(0.1667, 0.1667, 0.3333, 0.3333),  6Ind =(0.1875, 0.2800, 0.1875, 0.3450), 

7Ind =(0.1715, 0.3144, 0.2364, 0.2781), which is showed in table1.  

The vector of the ranking values of alternatives from the social fuzzy preference relation 
matrix is calculated as: Soc=(0.2067, 0.2870, 0.2576, 0.2487), which is showed in table1. 

The consensus index between the individual ranking value vectors for every expert is 
calculated and the results are shown in table 2. In addition, the consensus index between the 
ranking value vector from the individual expert’s preference and the social one is calculated 
and the results are shown in table 3. The group consensus index is 0.815.  

7.  Summary 

This paper proposes an approach to measuring the group consensus in MADM problem 
with multiple types of preference information on alternatives. The approach is composed of 
three steps: 1) normalize the DMs’ different formats of preference information into fuzzy 
preference relation respectively, and aggregate the results into a social one; 2) figure out the 
ranking values of the alternatives based on the fuzzy preference relation obtained from the 
individual DM’s preference information and the social one; 3) measure the group consensus 
according to the ranking values of the alternatives, which are derived from the individual 
DM’s preference information and the social one. The proposed approach is an extension for 
the current group decision making methods for consensus measurement by employing 
multiple formats of preference information from the experts. In addition, the group consensus 
measurement method proposed is innovative. The proposed approach is computationally 
simple, rational and can readily be incorporated into a computer-based system. 

This paper is not without limitation. In this paper, seven formats of preference 
information are considered, i.e., preference orderings, utility values, fuzzy preference 
information, linguistic term vector, selected subset, fuzzy selected subset, pairwise 
comparison. Other format of preference information is not considered, for example, the 
interval values. The future work will take into consideration other formats of preference 
information, for example, the interval values. 
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 Table 1. Ranking value vectors of alternatives derived from the experts’ preference  

Experts Ranking value vector of alternatives derived from the experts’ preference 
e1  (0.2222, 0.3333, 0.2778, 0.1667) 
e2  (0.2749, 0.3096, 0.2526, 0.1629) 
e3  (0.1929, 0.2544, 0.2544, 0.2983) 
e4  (0.2167, 0.2750, 0.2917, 0.2167) 
e5 (0.1667, 0.1667, 0.3333, 0.3333) 
e6 (0.1875, 0.2800, 0.1875, 0.3450) 
e7 (0.1715, 0.3144, 0.2364, 0.2781) 
Ranking value vector of alternatives from the social preference: (0.2067, 0.2870, 0.2576, 0.2487) 

 
 Table 2. Consensus between the individual expert’s preference 

 e1 e2 e3 e4 e5 e6 e6 
e1 1 0.8774 0.6948 0.8484 0.5376 0.6023 0.7478 
e2  1 0.6751 0.8145 0.5158 0.5928 0.6991 
e3   1 0.8126 0.7616 0.8347 0.8347 
e4    1 0.6740 0.6768 0.8005 
e5     1 0.6496 0.6503 
e6      1 0.8239 
e7       1 

 
Table 3. Consensus between individual expert’s preference and the social one 

 the social preference 
e1’ preference 0.8107 
e2’ preference 0.7812 
e3’ preference 0.8793 
e4’ preference 0.9023 
e5’ preference 0.6772 
e6’ preference 0.7664 
e7’ preference 0.8880 
The group consensus index  0.815 

 
 
 


	The QGDD is used to quantify the dominance that one alternative   has over the others in a fuzzy majority sense, i.e.,
	,       i=1, …, m                (21)
	where function   is defined in equation (16).   is a fuzzy linguistic quantifier defined in Chiclana et al. (1998).
	The QGNDD represents the degree to which alternative   is strictly dominated by alternative  . It is calculated by
	,                (22)
	where  .
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