
A Policy Specification Language for Composite Services

Muhammad Asim
a
, Susana González Zarzosa

b
, Qi Shi

a
and

Bo Zhou

a,

a
School of Computing & Mathematical Sciences, Liverpool John Moores University

email:{m.asim, q.shi, b.zhou} @ljmu.ac.uk

b
Atos Spain S.A., Madrid, Spain
email: susana.gzarzosa@atos.net

Abstract— Creating complex systems by combining smaller

component services is one of the fundamental concepts in

Service Oriented Architecture. Service compositions are built

by combining loosely coupled services that are, usually, offered

and operated by different service providers. While this

approach offers several benefits, it makes the implementation

and representation of the security requirements difficult. This

paper reviews several requirement specification languages and

analyses their suitability for composite services. A set of

requirements is identified and a comparison between different

specification languages is presented along with some

conclusion on the suitability of each language in expressing

security requirements for composite services.

Keywords- policy languages; composite services; security;

service-oriented computing

I. INTRODUCTION

Service-based applications are a new class of software

systems that allow enterprises to offer their software

systems as services by following the principal of Service

Oriented Architectures (SOA). A service itself is a unit that

offers certain functionality. If no single service can satisfy

the functionality required by the user, then SOA allows

multiple services to be composed to form a larger

application in order to fulfil the user requirements. A SOA

platform provides a foundation for modelling and

composing multiple services in an ad hoc manner [1] [2].

Aniketos is an EU research project [3] that addresses

trustworthy and secure service compositions with run-time

monitoring and adaptation of services. One important task in

the Aniketos project is to choose a specification language

that is able to express security requirements, properties or

policies for composite services. Also, it is a suitable policy

language to specify what we need to monitor at runtime.

Besides, the specifications should be able to be generated by

both humans and software. In general, this language should

serve to other purposes as well, e.g., it should specify the

security requirements for a service (either desired by a

consumer or advertised by a service provider). Naturally, we

may use one language for requirements specification and

another one for monitoring these requirements, but then

there is a need for a transformation engine. Thus, one

language for both purposes significantly reduces the

complexity.

This paper reviews several security requirement

specification languages and analyses their suitability for a

modern, flexible, secure service platform. A set of

requirements is identified and a comparison between

different specification languages is presented along with

some conclusion on the suitability of each language in

expressing security requirements for services that are

composite in nature. We use the Aniketos Platform as a

reference point to discuss these languages and there

suitability for composite services.

The paper is organized as follows: The next section

presents the requirements for a specification language.

Specification languages are discussed in Section 3. The

suitability of the language ConSpec for the project Aniketos

is discussed in Section 4. Section 5 presents the conclusion

on specification language choice.

II. SPECIFICATION LANGUAGES REQUIREMENTS

In the context of the Aniketos Platform development, we
are mainly looking for specification languages which are
able to address the following requirements. The selected list
of requirements is a result of analysis that has been carried
out on more than fifty scenarios coming from three different
domains (air traffic management, telecommunication and e-
government) [4] [5].

 (Rec-01) Cross-composite- The language for contract
specification shall be able to express the properties for a
hierarchical service. It should support both atomic and
composite services. Complex services often have a
complex hierarchical structure. Thus, the contract
specification language should be able to describe the
desired and provided properties, taking into account that
some parts of the service are provided by the services at
the lower end of the hierarchy.

 (Rec-02) Generalizable and Unambiguous- The language
for contract specification shall be general enough to
express requirements of various kinds. Security
requirements, which one would like to express with the
language could be very different. These requirements
may include presence of some countermeasures, various
access control policies, well-known security properties,
or a numerical security target (e.g., Risk level).

 (Rec-03) Intelligible- There shall be no difference
whether the set of policies is created by a human or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/42477858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

software. The language should be easily interpretable
both by humans and through automated means.

TABLE 1: CONTRACT/POLICY SPECIFICATION LANGUAGE REQUIREMENTS

Rec-01-

01

The specification language should be able to express

the scope of the policies to determine if it applies to a

single or multiple executions of the same service.

Rec-02-

01

The specification language should have unambiguous

and restricted semantics to improve its clarity and

simplicity.

Rec-02-

02

The specification language should be able to

represent state transitions.

Rec-03-

01

The specifications should be able to be developed for

integration with computer programs, i.e., Java.

Rec-03-

02

The learning of the language should not require too

much technical training in order to be able to express

new requirements, properties or policies.

We could make these requirements even more specific as

listed in Table 1.

III. SPECIFICATION LANGUAGES

In the literature, we can find a huge amount of work on

policy specification languages as well as several taxonomies

of these languages. We will start discussing some of these

existing classifications that will help us in the search for a

suitable specification language to be used in Aniketos and to

choose the main potential candidate languages.

First, Bonatti et al. [6] differentiate the following groups

of rule-based policy specifications performed by the

REWERSE (Reasoning on the Web with Rules and

Semantics) Project [7]. They differentiate the following

groups of rule-based policy specifications:

1) Logic-based policy languages: focused on those

languages with unambiguous semantics that enhance

clarity, simplicity and modularity. The main advantages

of these logic languages are: (i) they are very suitable

for validation and verification; (ii) their declarative

nature makes them expressive enough to formulate a

wide range of policies with simplicity.In this category

we find for example the eXtensible Access Control

Markup Language (XACML) that is the standard for

policy specification developed by the OASIS

consortium.

2) Action languages: including those languages that can

be used to represent actions, changes and their effects.

Most of them describe dynamic situations according to

a so-called state-action model. One of the most popular

logic-based approaches of action languages is

EventCalculus.

3) Business rules: based on those languages that are more

concerned in the formulation of statements about how a

business must be done or in other words, the guidelines

and restrictions that apply to states and processes in an

organization. They distinguish here three categories of

rules: reaction rules (“ON event IF condition is fulfilled

THEN perform action”), derivation rules (each rule

expresses the knowledge that if one set of statements

happens to be true, then some other set of statements

must also be or become true) and integrity constraints

(assertions that must be satisfied in all evolving states).

One of the more relevant business process description

languages is the Business Process Execution Language

for Web Services (BPEL4WS).

4) Controlled natural languages: which are defined like

“subsets of natural languages whose grammars and

dictionaries have been restricted in order to reduce or

eliminate both ambiguity and complexity”. Therefore,

this category would be included in what it is called

“semantic languages”. An example is PROTUNE that is

the name of the policy language and meta-language

developed in the REWERSE Project.

 To summarize, from the analysis performed by

REWERSE, we select the following potential languages for

a further study taking into consideration the requirements

indicated above for Aniketos:

 XACML

 Event Calculus

 Web Service Description Language (WSDL)

/BPEL4WS

 PROTUNE (and other relevant semantic web

languages)

 In the PrimeLife Project [8], they define three types of

policies that they considered important parts of any privacy

policy that have to be covered by any policy language: (i)

data handling; (ii) access control; and (iii) trust policies. The

languages selected from the PrimeLife study are:

 XACML

 The Platform for Privacy Preferences (P3P)

 Finally, we are going to analyse the Contract

Specification Language (ConSpec) that is an automata-

based policy specification language presented in the

literature [9] as a potential language for specifying both

policies and contracts in various security enforcement

related tasks of the application lifecycle.

 In the next subsections, we discuss in more detail each

one of the selected policy languages that we have

considered as candidates in Aniketos.

A. eXtensible Access Control Markup Language

eXtensible Access Control Markup Language (XACML)

[22] is an Extensible Markup Language (XML) based

language used to express and interchange access control

policies. It is designed to express authorization policies in

XML against objects that are themselves identified in XML.

XACML is a general purpose policy language and it can be

used to protect any resource type (i.e., not just data), but it is

difficult to write XACML policies and even more difficult

to reason over (i.e., it is unsatisfactory regarding

requirement Rec-03-02). Therefore we could use this

language in Aniketos project since it would allow encoding

most of security properties that will be included into the

Contract (requirement Rec-01), but we would need to

"misuse" the constraint part of XACML policies since

XACML is tailored towards Access Control policies.

B. Event Calculus

Event Calculus (EC) [10] is a first-order temporal

logical language for representing actions and their effects

that can be used to specify properties of dynamic systems,

which change over time. Such properties are specified in

terms of events and fluents. An event in EC is something

that occurs at a specific instance of time (e.g., invocation of

an operation) and may change the state of a system. Fluents

are conditions regarding the state of a system, which are

initiated and terminated by events. A fluent may, for

example, signify that a specific system variable has a

particular value at a specific instance of time or that a

specific relation between two objects holds.

ecXML [11] is an XML formalisation of the Event

Calculus that is used to describe how a contract’s state

evolves, according to events that are described in the

contract. The main advantage of this language for Aniketos

is that it is very suitable for runtime monitoring and can be

used to represent properties, policies and contracts in a

dynamic environment (Rec-01). But it is more oriented

towards states and actions than services, and the syntax

could become too complicated for compound services and

expression of hierarchies (Rec-02). Moreover, it would

require a big effort to accomplish requirement Rec-03 to

automate the generation and runtime monitoring of these

rules in Java code.

C. Web Service Definition Language / Business Process

Execution Language for Web Services

The WSDL [12] is the World Wide Web Consortium

(W3C) standard language for web service descriptions. It is

an XML format used to create a flexible Service Level

Agreement (SLA) for web services defining mutual

understandings and expectations of a service between the

service provider and service consumers. It uses a very

limited syntax that defines services as collections of

network endpoints or ports.

The Business Process Execution Language for Web

Services (BPEL4WS) [13] is a language used for specifying

business process behaviour based on Web Services, which

was created to overcome the limits of WSDL. It allows

building definitions of a business process (that can be either

an executable itself or a business protocol) where both the

process and its partners are modelled as WSDL services.

The language is layered on top of several XML

specifications (WSDL 1.1, XML Schema 1.0, and

XPath1.0) but makes no use of semantic information.

This language is a service-oriented composition

language that forms the base of Aniketos, but we want to

express also security properties and trustworthiness (Rec-

01). Consequently we need something that provides more

information than BPEL4WS.

D. PROVisional TrUst Negotiation

PROvisional TrUst Negotiation (PROTUNE) [14] is a

natural language for the specification of rule based policies

on the semantic web defined by REWERSE [7]. It is a

logic-based and declarative policy language that includes

logical axioms to constrain the behaviour and how the web

resources must be used. But the main feature of PROTUNE

that makes it different from the previously discussed

languages is that it is a semantic web language.

The semantic web languages are developed to allow

intelligent agents in the semantic web to reason and make

decisions policy-driven based on the knowledge it is

provided by the semantics. Therefore, one of the main

advantages of these semantic web languages for Aniketos is

that it facilitates greater automatic machine interpretability

of conditions, taking decisions and performing tasks

(covering the requirement Rec-03). Besides, this kind of

language provides an enormous expressivity and can be

used to represent complex knowledge in a distributed

environment and support classification in hierarchies

(requirements Rec-01 and Rec-02). But this last feature is

also a big drawback (high complexity) due to which it

cannot be considered in the project Aniketos. Reasoning

with a semantic web language is difficult and it requires a

well-defined semantic that should be developed specifically

for Aniketos. Furthermore, its high expressiveness can lead

to non-standard formalism and sometimes to complexity in

the reasoning.

The semantic web languages standardized by the W3C

are (i) Resource Description Framework (RDF) [15] and (ii)

Web Ontology Language (OWL) [16].

OWL includes more vocabulary and consequently

extends the facilities offered by XML, RDF and RDF

Schema (RDF-S) for expressing meaning and semantics

what makes it easier to represent machine interpretable

content on the Web. In turn, OWL provides three

increasingly expressive sublanguages: OWL Lite, OWL

Description Logic (OWL DL), and OWL Full.

In the case of PROTUNE, the syntax is based on normal

logic program rules. Finally, we can take into consideration

two prominent semantic web languages based on OWL,

which appear in much of the literature: Rei and KAoS

[17][18]. Rei is a policy language based on OWL-Lite that

includes logic-like variables to provide more flexibility in

the specification of relationships that are not possible in

OWL. For example, it is possible to define individual and

group based policies that could be useful in large scale

distributed environments for saving time. They are

associated with agents, called subjects, by means of the has

construct: has(Subject, PolicyObject).

KAoS is another policy language based on OWL with

the following distinguishing features: (i) it does not assume

that the policies are applied in homogeneous components:

(ii) it supports dynamic runtime policy changes; (iii) the

framework is extensible to different execution platforms;

(iv) the KAoS framework is intended to be robust and

adaptable in continuing to manage and enforce the policy of

any combination of components.

E. Platform for Privacy Preferences

The P3P [19], published by the W3C, enables web sites

to express their privacy practices in a standard format that

can be retrieved automatically and interpreted easily by user

agents. P3P user agents will allow users to be informed of

site practices (in both machine and human readable formats)

and to automate decision-making based on these practices

when appropriate. But this option has been discarded for

Aniketos because a report [20] on the assessment of P3P

and Internet privacy finds that P3P fails to comply with

baseline standards for privacy protection. It is a complex

and confusing protocol that also fails to address many of the

privacy problems. The report concludes that there is little

evidence to support the industry claim that P3P will

improve user privacy citing the widely accepted Fair

Information Practices.

F. ConSpec Language

The ConSpec [9] language with its syntax shown in Fig.

1 is strongly inspired by the policy specification language

PSLang, which was developed by Erlingsson and Schneider

in [21] for runtime monitoring. However, even though

ConSpec is a more restricted language than PSLang, it is

expressive enough to write policies referring to multiple

executions of the same application, as well as to executions

of all applications of a system, in addition to policies about

a single execution of the application and of a certain class

object lifetime according to the scope of the policy.

Effectively, a ConSpec contract specifies a set of guards

each with an associated set of reactions. A guard is defined

as a method prototype. A reaction is a set of expressions

specifying state changes, where the left hand side specifies

the state before and the right hand side the state afterwards.

Whenever the guard method is called in the code, the state

expression is checked and, if the left hand side of the

expression matches the current state, the right hand side

expression is applied to update it. In the event that the state

fails to match any of the left hand side expressions, the

contract is considered to be violated. The following example

states that, once the file Secret.dat has been opened,

plaintext socket connections can no longer be used. Note

that the skip keyword is used to represent no state change.

Figure 1. Syntax of ConSpec

One of the attractive features of this approach is that the

use of a finite state machine coupled with guards defined

against explicit methods means that the ConSpec script

defines not just the policy but also the means to identify it.

However, we can also see from the above example that

ConSpec was originally developed for use with single

isolated pieces of software, written in a specific language (in

the case of the Aniketos project, this is Java). This impacts

the cross-composite requirements.

The language has therefore been extended to support

composed services [1][2]. This can be achieved in one of

two ways. First, a single ConSpec file can be defined to

apply across a set of composed services. This requires there

to be a single centrally managed finite automata state

machine that all guard events refer back to. In this case,

rather than specifying methods for the guards, a service

identifier must also be specified. Service identifiers can also

be passed as a parameter to the reaction, so that the state

change can be predicated on service properties as well. In

this case, earlier guards that identify particular functionality

in a particular service can be used to correlate with guards

identifying different functionality at a later time. It also

allows more flexibility in defining contracts, since ideally

the contract should be independent of the service

composition that its applied to. Second, each service can be

given its own ConSpec file. In this case there’s effectively

an automaton applied to each service. However, there needs

to be correlation between the services, so a further central

BEFORE File.Open(String path) PERFORM

 path == "Secret.dat" -> {private = true;}

BEFORE Socket.Send(String sd, String data)

PERFORM

 private == false -> {skip;}

automaton is needed at the composition level. State changes

at the service level generate events, which are then matched

against guards at the composition level which potentially

update the central automaton. An attractive feature of using

finite automata is that they are themselves compositional:

this arrangement is equivalent to a finite automaton applied

across all services. This allows cross-composition.

The policies written in ConSpec are easily interpretable

by humans. It has a comparatively simple semantics, and is

simple to learn. ConSpec is an automata-based language.

Although this feature slightly reduces its expressiveness (in

comparison with its predecessor PSLan [21], or other

declarative languages as EventCalculus [10], XACML [22],

PROTUNE [14], etc.), it allows automatic reasoning on it.

For example, in the project we needed to check that

requirements desired by a consumer could be fulfilled by a

service provider. Furthermore, it is simple to define a policy

decision point for monitoring purposes if an automaton is

available. Finally, ConSpec defines different scopes of its

application. Thus, we may define a policy for a single

execution of a service or multiple executions. Overall,

ConSpec provides an unambiguous, cross-composite and

intelligible approach, which makes it a more suitable

specification language for composite services.

IV. CONSPEC IN THE ANIKETOS PROJECT

Based on the above analysis, we selected the ConSpec

language as a specification language for the Aniketos

platform and extended it (as discussed above) to support the

composite nature of services. In the scope of the Aniketos

project, we have created a tool, which provides a graphical

user interface for making and changing ConSpec policies.

The tool is called a ConSpec Editor illustrated in Fig. 2.

Figure 2. ConSpec editor

 ConSpec policies can be created with the ConSpec Editor

without knowing the ConSpec language. As an example, the

ConSpec policies are used by a monitoring module

developed as a part of the Aniketos project. The monitoring

module is responsible for the runtime monitoring of a

service to ensure that the service behaves in compliance

with a pre-defined security policy. For more details about

the monitoring framework, see [2].

 Consider the following example where a service designer

creates a travel booking composition that consists of several

tasks, such as ordering, booking hotel, booking flight,

payment and invoice, and each task is performed by a

component service. The service designer might want that the

payment service component should only be invoked when it

has a trustworthiness value ≥ 90%. This requirement could

easily be specified using the ConSpec language as shown in

Fig. 3.

RULE ID Trustworthiness
SECURITY STATE
 String ServiceID=Payment;
 int trust_threshold = 90;
 /* assume trustworthiness is in [0%,..., 100%]*/

BEFORE invoke (serviceID)
PERFORM
 (eval_Trust(serviceID) >= trust_threshold) -> skip
 condition1 -> update

Figure 3. ConSpec policy example 1

 The monitoring module in adherence to the policy

monitors services to ensure that only a payment service with

trustworthiness value ≥ 90% is used. In another example,

where a service designer imposes the separation of duty

constraint for a particular service composition, i.e., both

service A and service B should be offered by different

providers.

RULE ID SoD_Goal

SECURITY STATE

string serviceProvider = _;

string guardedTask1 = ServiceA;

string guardedTask2 = ServiceB;

BEFORE v#service.start
(string id, string type, int time, int date,

string provider) PERFORM

(id == guardedTask1 || id == guardedTask2) &&
serviceProvider == "_" -> {serviceProvider =
provider; }

(id == guardedTask1 || id == guardedTask2) &&
!(serviceProvider == "_") && !(provider ==
serviceProvider) -> {skip}

!(id == guardedTask1) && !(id == guardedTask2)
-> {skip}

Figure 4 . ConSpec policy example 2

The requirement for the above example can be specified

in ConSpec as illustrated in Fig. 4.

V. CONCLUSION ON SPECIFICATION LANGUAGE CHOICE

The different languages discussed here exhibit interesting
properties in relation to their suitability for composite
service. However, comparing the requirements and needs
that the Aniketos platform requires to express security
policies and the previous descriptions of the different
languages, we can conclude that ConSpec is the best solution
for the main reasons summarized below:

 It is extended to offer unambiguous, cross-composite

solutions with important elements of generalizability

for composite services.

 It is developed as a language for representing security

relevant behaviours of an application in terms of Java

calls, which allows the rules to be generated and

checked at runtime also by software or security

automata.

 A policy written in the ConSpec language is easily

interpretable by humans and the simplicity of the

language allows a comparatively simple semantics and

a reasonably fast learning curve.

 Although ConSpec does not allow any arbitrary type to

represent the security state of a service, it includes tags

for expressing security requirements in different stages

of the application life cycle. It makes it possible to

indicate constraints that can be applied to multiple

executions of a service, as well as interactions with

other services.

TABLE 2. MATCHING OF SPECIFICATION LANGUAGES TO REQUIREMENTS

 Table 2 summarizes the requirements that are covered by
each of the different languages presented above.

REFERENCES

[1] D. Llewellyn-Jones, M. Asim, Q. Shi, and M. Merabti,
“Requirements for Composite Security Pattern Specification,” Second
International Workshop on Cyberpatterns 2013: Unifying Design
Patterns with Security, Attack and Forensic Patterns, Abingdon, UK.,
2013, pp. 70-77.

[2] M. Asim, D. Llewellyn-Jones, B. Lempereur, B. Zhou, Q. Shi, and M.
Merabti, “Event Driven Monitoring of Composite Services,”The 5th

ASE/IEEE International Conference on Information Privacy, Security,
Risk, Washington D.C., USA, Sep 2013, pp. 550-557.

[3] Aniketos (Secure and Trustworthy Composite Services),
http://www.aniketos.eu, retrieved: April, 2015.

[4] Aniketos Consortium, Deliverable D2.3: Models and methodologies
for implementing Security-by-Contract for services,
2012,http://www.aniketos.eu/content/deliverables, retrieved: April,
2015.

[5] Aniketos Consortium, Deliverable D1.2: First Aniketos architecture
and requirements specification, 2012, http://www.aniketos.eu/content/
deliverables, retrieved: April, 2015.

[6] P. A. Bonatti et al. Rule-based Policy Specification: State of the Art
and Future Work. Technical Report IST506779/Naples/I2-
D1/D/PU/b1, Reasoning on the Web with Rules and Semantics,
REWERSE, August 31st, 2004.

[7] REWERSE: Reasoning on the Web with Rules and Semantics,
http://rewerse.net/, Retrieved: March, 2015.

[8] PrimeLife (Privacy and Identity Management in Europe for Life),
Deliverable D5.1.1: Final requirements and state-of-the-art for next
generation policies, August 2009, http://primelife.ercim.eu/, retrieved:
March, 2015.

[9] I. Aktug and K. Naliuka, “ConSpec: A Formal Language for Policy
Specification.”, In Proceedings of the First International Workshop on
Run Time Enforcement for Mobile and Distributed Systems , 2007,
pp. 2-12.

[10] M. P. Shanahan, The Event Calculus Explained, in Artificial
Intelligence Today, eds. M. J. Wooldridge and M. Veloso, Springer-
Verlag Lecture Notes in Artificial Intelligence no. 1600, Springer-
Verlag, pages 409-430, 1999.

[11] A. D.H. Farrell, M. J Sergot, M. Salle, and C. Bartolini, “Using the
Event Calculus for the Performance Monitoring of Service-Level
Agreements for Utility Computing” First IEEE International
Workshop on Electronic Contracting (WEC'04), 2004

[12] Web Service Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl, retrieved: March, 2015.

[13] Business Process Execution Language for Web Services Version 1.1,
http://public.dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel.pdf, 5
may 2003, retrieved: March, 2015.

[14] P.A. Bonatti, J.L. De Coi, D. Olmedilla, and L.Sauro, “PROTUNE: A
Rule-based PROvisional TrUst Negotiation Framework”, 2010.

[15] Resource Description Framework (RDF), http://www.w3.org/2001/s
w/wiki/RDF, retrieved: Feb, 2015.

[16] OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features/, WC3 Recommendation
February 2004, retrieved: Feb, 2015.

[17] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri and A.
Uszok, “Semantic Web Languages for Policy Representation and
Reasoning: A Comparison of KAoS, Rei and Ponder,” In
Proceedings of the 2nd International Semantic Web Conference
(ISWC2003). Springer-Verlag, 2003.

[18] L. Kagal, T. Finin and A. Joshi, “Declarative Policies for Describing
Web Service Capabilities and Constraints”, Proceedings of the 6th
international conference on E-Commerce and Web Technologies,
2005

[19] Platform for Privacy Preferences Project (P3P),
http://www.w3.org/P3P, retrieved: Feb, 2015.

[20] Electronic Privacy Information Center and Junkbusters, “Pretty Poor
Privacy: An Assesment of P3P and Internet Privacy” (June 2000),
http://epic.org/reports/prettypoorprivacy.html, retrieved: Feb, 2015.

[21] U. Erlingsson. The inlined reference monitor approach to security
policy enforcement. PhD thesis, Department of Computer Science,
Cornell University, 2004.

[22] eXtensible Access Control Markup Language (XACML) Version 3.0
(http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf),
retrieved: Feb, 2015.

http://www.aniketos.eu/
http://rewerse.net/
http://www.w3.org/TR/wsdl
http://www.w3.org/2001/sw/wiki/RDF
http://www.w3.org/2001/sw/wiki/RDF
http://www.w3.org/P3P
http://epic.org/reports/prettypoorprivacy.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

