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Known, densely substituted 3-amino-5,7,8-trichloro-6-hydroxycinnoline-4-carbonitrile was synthesized
using a one pot synthetic protocol under base-mediated conditions in a polar medium. Condensation of
excess malononitrile with chloranil in ethanol at reflux gave quinone methide—2-(2,4,5-trichloro-3-
hydroxy-6-oxocyclohexa-2,4-dien-1-ylidene)malononitrile which was isolated as the triethylamine salt.
This represents an atom efficient, simple, and effective procedure for the preparation of a highly
substituted cinnolines that may serve as relay materials for antimalarial prototypes.

� 2015 Elsevier Ltd. All rights reserved.
An impressive range of bicyclic heterocyclic compounds have
been studied as prototypes for antimalarial drugs of which only a
handful have made the arduous and costly transition to clinically
useful chemotherapeutic agents (Fig. 1).1 Historically, they have
been based on their natural product counterparts and among these,
quinolines, such as quinine 1, have continued to feature promi-
nently in antimalarial drug research.2 Additionally, there are acri-
dine drugs, such as quinacrine 2, originating from unnatural vat
dyes which were themselves used to stain and quantify parasites
within mammalian cells.3 As part of our ongoing antimalarial pro-
gram aimed at uncovering undiscovered or neglected chemo-types,
we noted that cinnolines were under-represented within natural
products (an exception is the symmetrical compound 4849F 3.4 It
was of interest to study whether lead substances incorporating
such heterocycles (4 where X = N) could act as surrogates for the
quinoline ring system, especially for drugs such as chloroquine (4
where X = CH) and, more importantly, could evade induction and
persistence of drug resistance.5
Cinnolines, in general, have been rarely studied in terms of their
pharmacokinetic (ADMET) properties (especially pKa values)
whereas pharmacodynamic investigations, especially against our
malaria receptor of interest, heme, are unknown.2,6 Our studies
have focused on understanding how additional nitrogen groups
decorating bi- and tri-cycles modulate the lipophilicity,
pharmacokinetics, and drug receptor binding,7 especially in the
1,5-naphthyridine ring system, which is present in pyronaridine
5 (Fig. 1), a Chinese drug currently being fast tracked for global
dissemination by MMV/WHO.8

The criteria for selecting drugs according to a generalized
pharmacophore have been published2,6,9 and subsequently, we
have accumulated evidence of additional requirements that can
be used to select potentially useful antiparasitic compounds.10

These features include: (a) the capacity to hydrogen bond to the
two heme propionic acid side chains 6 and/or (b) orient in a geom-
etry11 that can initiate redox reactions by electron/hydrogen atom
transfer, facilitating conversion of the inert, stable, Fe(III) to a
reactive Fe(II) state.12 This type of oxidative stress is known to ini-
tiate and propagate damage to areas that traffic and accumulate
such drug–receptor complexes,13 including sensitive proteins
(e.g., hemoglobin),14 lipids15 and DNA.16
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Figure 1. Quinine 1, mepacrine (quinacrine) 2, 4849F 3, X = N 4a, chloroquine
(X = CH) 4b, pyronaridine 5, hemin chloride 6.
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Scheme 1. Synthesis of: 3-amino-5,7,8-trichloro-4-cyano-cinnolin-6-olate
trimethylamine salt 9c using a one pot reaction. Reagents and conditions: (i) wet
EtOH, Et3N (2 equiv), reflux; (ii) H2N–NH2 (wet), reflux, 10 min, 44% over 2 steps.
20-(2,5-Dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-diylidene)dimalononitrile,
10a–c (inseparable mixture), (iii) malononitrile (2 equiv) dry EtOH, Et3N (trace),
reflux, 30 min, then evaporate, �12 �C, 15 h, 90%.
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Our strategy has been to identify compounds that initiate
antiparasitic drug action from distonic anion radical cascades,17

using an automated, non-biological screen that could be converted
into a high-throughput mode using robotic auto-samplers.18 We
have previously reported that pulsed radiolysis19 and subsequent
negative ion electrospray mass spectrometry20 were ideally suited
to this task and have now identified selected cinnolines as
potential antiparasitic agents.21

In general, densely substituted cinnolines are difficult to con-
struct in a reproducible manner, and to the best of our knowledge,
one-pot methods from commercially available raw materials are
rare.22 Ideally, cinnolines are required to contain both hydrogen
atom donor and acceptor sites and either nitrile and/or halogen
groups. A literature search identified one suitable set of com-
pounds which Gomaa23 used to outline a synthesis of a densely
substituted halogenated cinnoline. This type of compound is easily
accessible in a two-step procedure from the antifungal compound
chloranil.24

Notably, in the first part of the synthesis, Gomaa23 employed
3 equiv of malononitrile to produce an apparently stable qui-
none-methide, which was isolated by preparative thin-layer chro-
matography. Upon close examination of this Letter, the following
questions arose regarding the quinone-methide formation step.
Firstly: (a) why were the reported mass ions 4 Da higher than
the expected mass ions?23 (b) did the use of excess malononitrile
imply inherent low reactivity of chloranil under the conditions
employed?21 and, if not; (c) why were products resulting from
multiple dehalo-alkylation not reported?23

We were also curious to determine whether this two-step
process could be converted to a ‘one-pot’ method, eliminating
the intermediate preparative TLC step23 and whether robust
analytical methods could be developed to rapidly monitor this
and similar reactions?

Herein, we describe a scalable one-pot method for accessing
highly halogenated cinnolines which avoids expensive chromato-
graphic purification and displays the expected spectrometric
profile. To the best of our knowledge, spectrometric monitoring
of such reactions using negative ion electrospray mass spectrome-
try remains unexplored and, consequently, the methodology out-
lined here may prove useful for optimizing this type of cinnoline
synthesis.

Results and discussion

During initial experiments it was observed that mixtures of
compounds were produced using Gomaa’s route (Scheme 1).18

Use of the stepwise synthesis as outlined by Gomaa, and also our
one-pot modification (without isolation of the unusually stable
quinone-methides), afforded a complex mixture of products (using
DMF as solvent) that were each identified either by isolation or by
Collision Induced Dissociation (CID) studies of negative ion
electrospray mass spectrometry. In the first part of the synthesis,
upon addition of one equivalent of triethylamine to the
chloranil/malononitrile solution in either methanol or ethanol, it
was noted that the pale green color rapidly transformed to an
intense blue species, suggesting formation of charge transfer
complexes or radical formation. The yield of semi-quinone radical
(�QH/Q��) of halogenated benzoquinones in polar media, such as
acetonitrile–water (1:1), has been suggested to be low (<20%) at
low substrate concentration but significantly increased upon addi-
tion of an H-atom donor, for example, 2-propanol (see ESI). It is
probable that the deep blue color observed in the reactions in
methanol also involved a semi-quinone radical. Gorner and
Sonntag25 have suggested that other mechanisms involving
�QH/Q�� radicals, including quenching of the triplet state at
enhanced halo-benzoquinones concentrations and H-atom
abstraction from an organic solvent in mixtures with water, must
also be considered. Interestingly, these were stable and could be
observed on TLC (see ESI).

When 2 equiv of malononitrile were used in anhydrous ethanol,
and the solution heated at reflux before being concentrated then
left overnight, symmetrical compounds, represented by an insepa-
rable mixture of tautomers 10a–10c were isolated in 90% yield (as
the free bases). These were characterized by spectroscopy and
spectrometry.26 Some of the impurities detected within this crude
mixture corresponded to compounds 13a–13c formed by the
addition of hydrazine to the tautomeric mixture of 10a–10c
(Scheme 2).

Addition of hydrazine

Using a modified method utilizing an aqueous quench rather
than recrystallization from DMF, gave a black precipitate that
could be further purified by washing with chloroform, thus avoid-
ing chromatographic purification. This aqueous work-up removed
many of the impurities that may have led Gomaa23 to suggest an
unusual mass spectral pattern. Investigation of the aqueous layer
using negative ion electrospray suggested the presence of various
species including 10a–10c. DEPT-Q 13C NMR spectroscopy23,26 of
the purified fraction confirmed the presence of the expected
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Figure 3. Various views of the 9a/9b cinnoline interacting with heme on the same
side as the axial substituent6 by hydrogen bonding. Molecular mechanics rendered
using Avogadro.28 Yellow (or black) dotted lines indicate hydrogen bonding (see ESI
for larger figure on a black background).
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number of 13C peaks, however the presence of two additional spe-
cies suggested that the isolated compound was salt 9c (Fig. 2).

Various solvents were used to improve yields of 9a/9b of which
ethanol gave the highest yield (Table 1). The reaction could be
accelerated using microwave irradiation (entry 7, Table 1), how-
ever, this also resulted in the formation of impurities that were dif-
ficult to remove from the final product (Scheme 2).

13C INADEQUATE NMR spectroscopy was considered as being
useful in the characterization of similar compounds,27 but we
found this to be an inefficient option for our anticipated drug dis-
covery program. Thus, alternative analytical methods were sought
to characterize 9a/9b and also lay groundwork for the preparation
of libraries of cinnoline compounds. Consequently, before a
detailed pharmacological study of our cinnoline lead substance
9c, could be undertaken, a study of its synthesis and behavior
under both positive and negative ion electrospray mass spectrom-
etry was thought desirable to further explore the subsequent
action of 9a/9b at the heme-drug receptor.

Positive ion electrospray mass spectroscopic analyses of the salt
revealed a nominal base peak at 102 Da, suggesting the abundance
of triethylamine. In contrast, negative ion electrospray MS of the
crude material (ESI) showed that the anion radical was formed,
(287 Da). Preliminary calculations suggested that formation of
the distonic radical anion was thermodynamically favored (MM2
calculations, not shown) which was then ejected to form a
tri-aza-substituted compound. Although, other structures could
be invoked, involving di-aza-cumulenes,29 none were capable of
losing N2. Any mechanism must also account for the loss of HCl,
which suggested that both substituents were in close proximity
and, since the molecule was planar, by necessity appended upon
the same ring ejecting N2. Consequently, the current investigation
employed Collision Induced Dissociation (CID) mass spectra to
determine the fragmentation. To the best of our knowledge, elec-
trospray mass spectra of substituted cinnolines in the negative
ion mode are unknown, although some generalizations involving
electron ionization of benzo[c]cinnoline derivatives were reported.
Bowie et al. noted that loss of nitrogen (from either the molecular
ion or a fragment ion) featured in all of their spectra, confirming
the presence of a AN@NA group.30 In spectra involving 1-, 2-, or
3-substituted benzo[c]cinnolines, the M-N2, process precedes
fragmentation through Me, Cl, NH2, NMe2, or CO2H substituents,
but for those possessing either MeO, EtO, NEt2, CO2Me or CO2Et
substituents, fragmentation proceeds via loss of the substituent
and, subsequently, ejection of N2.30
N

45.5

45.5

8.7

8.7

8.7

H49.6

13.3 13.3

49.6N

49.6
13.3

predicted

found:45.6 ppm

N
N

O
Cl

Cl
Cl

N

NH2

Figure 2. Selected 13C NMR data 3-amino-5,7,8-trichloro-6-((triethyl-l5-azanyl)
oxy)cinnoline-4-carbonitrile (in DMSO-d6).

Table 1
Synthesis of 9c under different reactions conditions

Entry Solvent Temp (�C) 9a/9b (%)

1 Water Reflux 0
2 Water 25 0
3 Ethanol 25 0
4 Ethanol Reflux 44
5 THF 25 0
6 THF Reflux 0
7 Solvent free Melt 30
Preliminary mass spectrometry and molecular modeling (see
Figs. 2 and 3, ESI) identified that this compound could potentially
interact with heme by hydrogen bonding. In summary, the
reported protocol is a simple, novel and versatile one-pot method
for the synthesis of cinnolines which are isolated as a salt. Further
investigations are currently underway in our laboratory to explore
the scope of this procedure using other nitriles suitable for evalu-
ation in pharmacological assays and dehalogenation reactions of
9a/9b (using excess Mg/t-BuOH) for the preparation of simpler
halo-cinnolines related to chloroquine 4a (Fig. 1).
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