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Abstract

In recent years, intelligent systems powered by artificial intelligence and computer vision

that perform visual recognition have gained much attention. These systems observe

instances and labels of known object classes during training and learn association

patterns that can be used during inference. A practical visual recognition system

should first determine whether an observed instance is from a known class. If it is from

a known class, then the identity of the instance is queried through classification. The

former process is commonly known as novelty detection (or novel class detection) in

the literature. Given a set of image instances from known classes, the goal of novelty

detection is to determine whether an observed image during inference belongs to one

of the known classes.

In this thesis, deep learning-based approaches to solve novelty detection is stud-

ied under four different settings. In the first two settings, availability of out-of-

distributional data (OOD) is assumed. With this assumption, novelty detection can

be studied for cases where there are multiple known classes and a single known class

separately. These two problem settings are referred to as Multi-class novelty detection

with OOD data and one-class novelty detection with OOD data in the literature,

respectively. It is also possible to study this problem in a more constrained setting

where only the data from known classes are considered for training. When there exists

multiple classes in this setting novelty detection problem is known as Multiple-class

novelty detection or Open-set recognition. On the other hand, when only a single class

exists it is known as one-class novelty detection.
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Finally, we study a practical application of novelty detection in mobile Active

Authentication (AA). For a practical AA-based novelty detector, latency and efficiency

are as important as the detection accuracy. Solutions are presented for the problem of

quickly detecting intrusions with lower false detection rates in mobile AA systems with

higher resource efficiency. Bayesian and Minimax versions of the Quickest Change

Detection (QCD) algorithms are introduced to quickly detect intrusions in mobile

AA systems. These algorithms are extended with an update rule to facilitate low

frequency sensing which leads to low utilization of resources.
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Chapter 1

Introduction

Supervised classification systems are trained with the knowledge of a finite set of

labeled training examples. When training data comes from c distinct known classes,

a classifier simultaneously learns a descriptive feature space and a decision rule that

segments the feature space into c non-overlapping regions. When an object outside the

known class set (known as a novel object) is introduced to the network, the network

will still associate it with one of the known c classes. The goal of novelty detection

is to identify whether a given object instance belongs to the known class set or not.

Once identified, open-set samples can be either discarded to prevent wrong association

or used to improve the classification system [1].

The role of a novelty detector in a classification framework is illustrated in Figure 1-

1(Top-left). Consider a wild animal classifier trained on three classes {Bear, Camel,

Elephant }. These three classes are known to the classifier (hence c = 3). Objective

of the novelty detector is to separate objects belonging to any other novel class from

known classes. For example, images of a fish, frog, dog and duck all will be considered

to be novel samples in this context since they were not included in the known class

set. Novelty detector essentially defines a novelty boundary that separates known class

samples from the rest of the world.

Novelty detection is encountered in many real-world computer vision applications
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Figure 1-1. Different formulations of the Novelty Detection problem.
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including outlier detection [2], anomaly detection [3], [4], medical imaging and mobile

active authentication [5],[6],[7]. In all of these applications, unavailability of sam-

ples from novel classes is either due to the openness of the problem or due to the

high cost associated with obtaining the samples of such classes. For example, in an

outlier detection application, it is counter intuitive to come up with outlier samples

to train a classifier. On the other hand, in mobile active authentication, samples of

alternative classes (users) are often difficult to obtain due to the privacy concerns

[8]. Depending on the resources available for training, novelty detection problem can

be studied under four different settings. These four settings are illustrated in Figure 1-1.

Multiple-class Novelty Detection. Identify whether a given object instance be-

longs to the known class set or not. Only known class objects may be used during

the training process. This problem is often referred to as the open-set classification

problem in the literature [9]. This setting is illustrated in Figure 1-1(Top-left).

Multiple-class Novelty Detection with Out-of-distribution Data. Given a set

of image instances from known classes and a set of out-of-distributional data, the goal

of novelty detection is to determine whether an observed image during inference belongs

to one of the known classes as shown in Figure 1-1(Top-right). Out-of-distributional

data (OOD) are multiple-class annotated data from a different problem domain [10].

For example, for a wild animal classifier, images of backpacks, flags and mugs can be

considered to be OOD. In this setting, deep networks trained on out-of-distributional

data may be used during training. This setting is simply referred to as Multiple-class

Novelty Detection in the literature [11].

One-class Novelty Detection. One-class novelty detection tackles the problem of

quantifying the probability that a test example belongs to the distribution defined

3



by training examples [12]. In one-class novelty detection, examples of only a single

class are observed during training. Therefore, deep features or deep models cannot be

utilized in this setting. One-class novelty detection is an extreme version of multiple-

class novelty detection as shown in Figure 1-1(bottom-left). The only difference in

this setting is that there exists only a single class as opposed to the former. Standard

one-class classification solutions can be applied to solve this problem.

One-class Novelty Detection with Out-of-distribution Data. Objective of this

setting is to recognize instances of a concept by using examples of the same concept

when annotated out-of-distributional data is available during training. As a result,

out-of-distributional data and deep models trained on such data may be used during

training. This setting is illustrated in Figure 1-1(bottom-right).

Out of all these four settings, Multiple-class novelty detection with out-of-distribution

data is the easiest setting to perform novelty detection on. With multiple known classes

along with annotated out-of-distributional data available, it is possible to learn a highly

informative embedding that will allow novelty detection more effective. Since multiple

class data of some form (either in known class set or in the out-of-distributional set)

are available, it is possible to learn a deep network-based representation in open-set

detection and one-class transfer learning settings as well. On the other hand, one-class

novelty detection, where training is permitted to use only samples from a single known

class cannot exploit pre-trained networks or features. Thus, it becomes a highly

challenging problem.
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Related Work

One-class Novelty Detection

One-class novelty detection is a well-defined research problem with standard evaluation

metrics that has received considerable attention in the recent past. It has been

traditionally treated as a representation learning problem. The earliest methods

in one-class novelty detection used Principal Component Analysis (PCA) [13] and

its kernel extension [14] to find a subspace that best describes the given concept.

With the advent of neural networks and deep learning, a similar mapping was sought

using auto-encoder networks [15]. Once such a mapping is learned, one-class novelty

detection is carried out either based on reconstruction error or by explicitly modeling

the normal behaviour of the known class in the latent space. In [14] and [16] the former

strategy has been used to perform novelty detection using mean squared error as the

novelty function. In [17], a Generative Adversarial Network (GAN) [18] is trained

to de-noise noisy samples of the given class. There, the discriminator’s prediction

in the image space is used to quantify reconstruction error. Following a slightly

different strategy, [19] proposes to learn a mapping between a random distribution

and the image manifold of the given class. In [19], the closest image to a query is

sought through back-propagation, where novelty detection is performed based on the

difference between the two images.

The latter strategy, where the behavior of the known class in the latent space is

modeled, has also received considerable attention in recent works. Earlier work of this

nature used one-class modeling tools such as One-class SVM [20] and Support Vector

Data Descriptor (SVDD) [21] on top of an obtained latent representation. One class

Support Vector Machines (SVMs) treats the origin as the out-of-class region and tries

to construct a hyperplane separating the origin with the class data.

Using a similar motivation, [21] proposed Support Vector Data Description (SVDD)
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algorithm which isolates the training data by constructing a spherical separation plane.

In [22], first, a GAN is used to obtain a latent representation. Then, the probability

distribution of the latent space is modeled as a product of two marginal distributions

where marginal distributions are learned empirically. In contrast, in [23] the latent

distribution is modeled using an auto-regressive network that is learned along with

the parameters of the auto-encoder. Using a different approach, deep-SVDD [12] tries

to learn a latent space where intra-class variance is low. The method proposed by

[12] is conceptually similar to [24] but does not use any external data in finding the

solution as done in the latter work.

In [25], visual anomalies in wire ropes are detected based on Gaussian process

modeling. Anomaly detection is performed by maximizing the KL-divergence in [26],

where the underlying distribution is assumed to be a known Gaussian. A detailed

description of various anomaly detection methods can be found in [3]. Some of the

earlier works in novelty detection focused on estimating a parametric model for data

and to model the tail of the distribution to improve classification accuracy [27],[4].

In [28], null space-based novelty detection framework for scenarios when a single

and multiple classes are present is proposed. However, it is mentioned in [28] that

their method does not yield superior results compared with the classical one-class

classification methods when only a single class is present. An alternative null space-

based approach based on kernel Fisher discriminant was proposed in [29] specifically

targeting one-class novelty detection. A detailed survey of different novelty detection

schemes can be found in [2], [30].

Mobile-based Active Authentication (AA) is another application of one-class

learning which has gained interest of the research community in recent years [5]. In

mobile AA, the objective is to continuously monitor the identity of the user based

on his/her enrolled data. As a result, only the enrolled data (i.e. one-class data) are

available during training. Some of the recent works in AA has taken advantage of
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CNNs for classification. Work in [31], uses a CNN to extract attributes from face

images extracted from the mobile camera to determine the identity of the user. Various

deep feature-based AA methods have also been proposed as benchmarks in [8] for

performance comparison.

Since one-class learning is constrained with training data from only a single class,

it is impossible to adopt a CNN architectures used for classification [32], [33] and

verification [34] directly for this problem. In the absence of a discriminative feature

generation method, in most unsupervised tasks, the activation of a deep layer is used

as the feature for classification. This approach is seen to generate satisfactory results in

most applications [35]. This can be used as a starting point for one-class classification

as well. As an alternative, autoencoders [36], [15] and variants of autoencoders [37],

[38] can also to be used as feature extractors for one-class learning problems. However,

in this approach, knowledge about the outside world is not taken into account during

the representation learning. Furthermore, none of these approaches were specifically

designed for the purpose of one-class learning.

Open-set Recognition

Open-set recognition has received considerable attention in the computer vision

community in recent years. The problem of open-set recognition was first formulated

in [9], where authors pointed out the possibility of an open-set sample generating a

very high activation score for one of the known class categories. Since then, several

other works have analyzed this challenge in the context of deep networks [39],[40]. In

[41], a k + 1 classifier for a k class problem was used where the extra class was treated

as the open-set class. A statistical method was used to apportion class probabilities

to the open-set class. This alternative formulation, OpenMax, was proposed as an

alternative to the SoftMax operator. In [42], a Generative Adversarial Network (GAN)

based framework was used to estimate open-set class activations. A similar approach
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was taken in [43] where counterfactual images that lie between decision boundaries

were used to simulate open-set class instances.

More recent works in open-set recognition have deviated from simulating open-

set classes. The method proposed in [44] used a class conditioned generator to

learn a representation that preserves only known-class samples. Then, open-set

recognition was carried out based on the reconstruction error associated with the

generator. In [45], the authors identified the importance of generative features in

open-set recognition. They first learn a sophisticated generative model (an extension

of a ladder network [46]) and append the learned feature with one of the classifier

features. Then, an OpenMax classifier was learned using the augmented features.

The feature augmentation proposed in our work is different from [45]. In [45], a

generative model and a classifier are trained independently. We learn a classifier

trained on the augmented input space and take into account the disparity between

the two representations as we compute class activation scores.

Multi-class Novelty Detection

Object classification schemes are often equipped with a suitable mechanism to detect

novel objects. For example, Eigenfaces [47] was accompanied by a reconstruction error-

based novel object detection method. In sparse representation-based classification

(SRC) algorithm [48], Sparsity Concentration Index (SCI) was proposed for the same

purpose. In contrast, there is no formal novelty detection mechanism proposed for

deep-learning based classification. In its absence, thresholding the highest class

activation score of the deep model has been used as a baseline in the literature [49].

As an alternative, several recent works have proposed novelty detection schemes based

on deep features [49],[50]. In the same spirit, it is also a possibility to use classical

novelty detection tools such as Kernel PCA [14], Kernel null space-based novelty

detection (KNFST) [28] and its variants [51],[11] on deep features. KNFST operating
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on deep-features produces the current state of the art performance in visual novelty

detection [11]. However, advantages of deep-learning are not properly exploited in all

of these approaches due to the absence of an end-to-end learning framework.

On the other hand, novelty detection problem has a close resemblance to both

anomaly detection [52], [3],[6] and open-set recognition problems [9],[49]. Therefore,

it is possible to solve anomaly detection using tools proposed in these alternative

domains. In anomaly detection, given a single normal class, the objective is to detect

out-of-class instances. One-class SVM [20] and SVDD [21] are two of the most widely

used tools in anomaly detection. Novelty detection can be viewed as an anomaly

detection problem if all known classes are considered as a single augmented class. On

the other hand, objective in open-set recognition (OSR) is similar to that of novelty

detection. But in addition, OSR requires correct classification of samples detected

as known samples. Therefore, it is also possible to use open-set recognition tools

to perform novelty detection. However, we note that due to subtle differences in

objectives, OSR algorithms are not optimal for novelty detection.

Adversarial Learning

Given a set of images, Generative Adversarial Networks (GANs) introduced in [18]

play a two-player game between a generator network and a discriminator network.

Here, the generator network tries to produce realistic images (fake images) from the

given image distribution whereas the discriminator network tries to distinguish fake

images from real images. At equilibrium, the generator network learns the distribution

of the given image set. In order to achieve this state, GAN theory dictates that there

should be a balance between the capacities of the two networks. In [53], GAN was

extended to the conditional setting. Based on this extension, GANs have been used

in many image-to-image translation applications. It was shown in [54] that GANs

can be used to learn stable representations even with deep convolutional networks,
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provided that certain design choices are made.

Self-Supervision

Self-supervision is an unsupervised machine learning technique where data itself

provides supervision. It is usually carried out in addition to a primary objective (such

as classification or detection) with the intention of producing a more generic and robust

feature. Recent works in self-supervision introduced several techniques to improve

the performance in classification and detection tasks. In all of these techniques, the

network is forced to learn the shape structures of the underlying objects and their

semantics thereby producing a richer feature.

For example, in [55], given an anchor image patch, self-supervision was carried

out by asking the network to predict the relative position of a second image patch.

To make such predictions, the network needs to learn object structure and relative

order. In [56], a multi-task prediction framework extended this formulation, forcing

the network to predict a combination of relative order and pixel color. In [57], the

image was randomly rotated by a factor of 90 degrees and the network was forced to

predict the angle of the transformed image. This method was simpler to implement

and produced better results than previous self-supervision techniques. In our work, we

follow [57] by using a series of different transformations (combination of rotating and

flipping the image) in place of rotations. To the best of our knowledge this is the first

attempt at using self-supervision for open-set recognition. The prediction of geometric

transformations has been previously utilized in [58] in the one-class classification

problem domain. However, [58] is different from our method as they used this network

to generate classifier responses to characterize a signature for a given class.
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Chapter 2

Background

In this chapter, we give a brief review of concepts in deep learning and one-class

classification. Specifically, we provide a brief background on deep-convolutional classi-

fier networks, deep-autoencoders, Generative Adversarial Networks (GAN), one-class

Support Vector Machines (OCSVM) and Support Vector Data Descriptor (SVDD).

Deep Classification Networks

Consider a c class fully-supervised object classification problem with a training im-

age set x = x1, x2, . . . , xn and the corresponding labels y = y1, y2, . . . , yn where

yi ∈ {1, 2, . . . c}. Deep convolutional neural networks seek to learn a hierarchical,

convolutional filter bank with filters that respond to visual stimuli of different levels.

Typically a network consists of two sub-networks in cascade; a feature extraction

network g and a classifier network h as shown in Figure 2-1(a). In c class classi-

fication, the top most convolutional filter activation g is subjected to a non-linear

transformation through the classifier network to generate the final activation vector

f ∈ Rc (for example, g is the conv5-3 layer in VGG16 [33] and conv5c in Resnet50

[59]. f is the fc8 and fc1000 layers in the respective networks). In a supervised setting,

network parameters are learned such that arg max f = yi for ∀i ∈ {1, 2, . . . , n}. This

is conventionally done by optimizing the network parameters using the cross-entropy
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Figure 2-1. Types of deep learning networks.

loss.

Cross-entropy Loss

Cross-entropy loss is a widely used loss function in classification network training.

Minimizing cross-entropy loss encourages an embedding that maximizes logit belonging

to the ground truth class relative to other classes. Mathematically it is defined as

follows,

− log efyi

c∑︁
i=1

efyj

, (2.1)

where yi is the ground truth label of the input and c is the total number of classes.

Autoencoder Networks

The auto-encoder is an encoder (En) - decoder (De) structure as shown in Figure 2-1(b).

It is trained with the objective of minimizing the distance between the input and the
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output of the network. In theory, any distance measure can be considered to learn

parameters of the autoencoder. For example, mean squared error defined as,

lMSE = ∥x−De(En(x))∥2
2, (2.2)

where x is the input image, can be considered for this purpose. Both encoder

and decoder networks consist of standard neural network components. It is the usual

practice to have a bottleneck latent-space in between with a dimension smaller than

the input. Due to this bottleneck, auto-encoder retains only essential information in

the latent space that is required for reconstruction. It has been shown in the literature

that adding noise to the input can reduce over-fitting and improve generalizabilty

of the network. When noise is added to the input, the network is referred to as a

denoising autoencoder [36]. In a denoising auto-encoder, given a noisy image, the

network is expected to reconstruct the denoised version of the image. Denoising

auto-encoders open up the possibility of having a latent dimension larger than the

input image dimension [36].

Generative Adversarial Networks (GANs)

Generative Adversarial Network is a type of a generative model that consists of two

sub-networks - a Generator (G) and a Discriminator (D). The set of images used to

train a GAN is referred to as real images. The goal of the generator network is to use

a random noise vector z to generate images that closely resemble real images. Images

generated by the generator is referred to as fake images. The goal of the discriminator

is to differentiate between real images from fake images.

In order to achieve this objective, discriminator is designed to generate a high score

for real images and a low score for fake images. Therefore, discriminator parameters

are learned such that log D(x) and log(1−D(G(z))) are maximized, where x and z are
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real image samples and random noise vectors, respectively. Therefore, optimization in

discriminator update becomes,

max
D

Ex∼px [log D(x)] + Ez∼pz [log(1−D(G(z)))]. (2.3)

On the other hand, the goal of the generator is to produce highly realistic fake

images that are good enough to fool the discriminator. Therefore, parameters of G are

learned such that the above loss is minimized. Hence, the full GAN training objective

becomes,

min
G

max
D

Ex∼px [log D(x)] + Ez∼pz [log(1−D(G(z)))]. (2.4)

In practice, a GAN is trained by iteratively updating discriminator and generator

networks. At equilibrium, generator learns to produce realistic fake images from

random noise and the distribution of fake images approaches that of real images[18].

One-class Classification

In one-class classification, a decision boundary is defined for a set of given data in a

chosen feature space. One-class Support Vector Machines(OCSVM)[20] and Support

Vector Data Descriptor(SVDD)[21] are two of the widely used formulations in one-class

classification.

One-class Support Vector Machines

One-class SVM is a special case of the standard SVM formulation. In the standard

SVM formulation, a maximum margin decision boundary is sought that can separate

positive and negative data points in a feature space. In the absence of any negative

data, in one-class SVM, the origin of the coordinate system is treated as a proxy for

negative data. Therefore, the optimization tries to find the hyper-plane that is furthest

away from the origin that separates positive data from the origin. This hyper-plane
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Figure 2-2. Different formulations of the one-class classification problem.

can be found by solving the following optimization problem for w and ρ:

min
w,ξ,ρ

1
2 ||w||

2 + 1
nν

n∑︂
i=1

ξi − ρ

s.t. wϕ((xi) > ρ− ξi

ξ ≥ 0,

(2.5)

where xi, ξi∀i are data points and slack variables, respectively. ϕ(.) is the feature

extraction function used to extract features. During inference, if a test sample xt

satisfies wϕ((xi) > ρ then it is declared as an instance of the positive class. In Figure 2-

2(left), a set of sample data is illustrated in a 2D feature space. In Figure 2-2(right),

obtained one-class SVM classification boundary is illustrated. Negative half space

defined by this boundary is shaded in red.

Support Vector Data Descriptor(SVDD)

In SVDD, the hyper-sphere with the lowest radii that can encapsulate training data is

sought through an optimization procedure. Specifically, the following optimization

problem is solved to find R and a:

min
R,a

R2 + C
n∑︂

i=1
ξi

s.t. ∥xi − a∥2 < R2 + ξi

ξ ≥ 0.

(2.6)

Learned parameters R and a are interpreted as the radii and the center of the hyper-

sphere. During inference, if a test sample xt satisfies ∥xt−a∥2 < R2, then it is declared
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to be from the positive class. In Figure 2-2(middle), the decision boundary obtained

by SVDD for a given sample data is illustrated.
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Chapter 3

Multiple-class Novelty Detection
with OOD Data

Given a set of known classes from a certain problem domain, generally unknown class

data from the same problem domain is unavailable. However, in some cases it is

possible to obtain data outside the known class from different problem domains, which

are referred to as out-of-distributional samples. For example, for a face recognition

application, ImageNet dataset [60] that contains images of objects may be considered

as out-of-distributional samples. However, since the out-of-distributional data are from

a different problem domain, they do not approximate the distribution of the novel

samples well.

Nevertheless, since the deep-models produce generalizable features, the knowledge

of out-of-distributional samples can be transferred to the original problem to aid

novelty detection. When the problem considered is a c class problem, and when the

out-of-distributional data of C classes are available, the following three strategies are

used to transfer the knowledge for novelty detection in the literature:

1. Fine-tuning: Network is first pre-trained on the out-of-distributional data and

later fine-tuned on the training data of the given domain. Novelty is queried by

thresholding the final activation score [49].

2. Feature Extraction: Conventional novelty detection techniques [28],[11],[50] are
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used based on the fine-tuned features.

3. Fine-tune (c + C): Network is first pre-trained on the out-of-distributional data.

Both the training data and the out-of-distributional data are used to perform fine-

tuning in (c + C) classes together. Novelty is determined in the same way as in

approach 1.

We note that in all these baselines, the out-of-distributional data is employed in

the training process. In fact, any novelty detection method operating on the pre-

trained/finetuned deep features are implicitly making use of the out-of-distributional

data. In this chapter, we introduce a new framework to perform novelty detection

based on transfer learning. First, we show that using cross-entropy loss alone for

training is not optimal for the novelty detection task. Secondly, we empirically show

that the out-of-distributional data can be used more effectively in training to produce

better novelty detection performance with respect to considered baseline solutions.

Specifically, we make following primary contributions in this paper.

Positive Filters

In section 2 a brief introduction to deep-classification networks was provided. Consider

a classification network trained on c classes with a convolutional feature extractor

network g. If there exist k filters in the top most convolution filter bank, its output g

is a set of k number of activation maps. The final activation vector of the network f is

a function of g. For a given class i, there exists some ki filters in the filter bank (1 ≤

ki ≤ k) that generally generates positive activation values. These activations provide

supporting (positive) evidence that an observed image is from class i. Conversely, all

remaining filters provide evidence against this hypothesis. Activation score of each

class in f is determined by taking into account the evidence for and against each class.

For the remainder of the paper, we call filters that provide evidence for and against a
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Figure 3-1. Positive and negative filters of the sand snake class in the Resnet50 trained
on ILSVRC12 dataset.

particular class as positive filters and negative filters of the class, respectively.

This concept can be easily explained by taking the Resnet architecture [59] as an

example. In Resnet, final convolution output g is subjected to global average pooling

followed by a fully connected layer. Therefore, the ith component of the final activation

vector f can be written as fi = Wi ×GAP (g), where GAP is global average pooling

operation (mean of filter map) and W is the weight matrix of the fully connected layer.

Here, activation of the ith class is a weighted summation of mean feature maps found

in g. From the above definition, filters associated with positive weights for a given

class in W can be identified as positive filters for that particular class. Conversely,

filters associated with the negative weights become negative filters of the class.

For example consider the Sand Snake class appearing in the ILSVRC12 dataset [60].

Shown in Figure 3-1 (top) are the weights associated with the Sand Snake class in the

final fully connected layer of the Resnet50 network trained on the ILSVRC12 dataset.

We recognize filters associated with positive and negative weights as positive and

negative filters, respectively for the given class. In Figure 3-1 (bottom) we visualize
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per-unit visualization of top positive and top negative filters for the considered class

using the DeepVis toolbox [61] (these are the images that are most likely to activate

the corresponding filters). By observation, we notice that the top positive filters are

activated when the network observes structures similar to snakes. On the other hand,

the top negative filters are unrelated to the appearance of sand snakes.

Proposed Method

Based on the above background, we propose to learn the distributions of known object

classes using a CNN framework with the objective of performing joint classification

and novelty detection. In our formulation, assuming each known class has a unique

single label, we force the final activation vector f to model the probability distribution

vector of known classes. Formally, for a given data-label pair (xi, yi), we expect fi = 1

and fj = 0, ∀j ̸= i. Once such a representation is learned, arg max f returns the

most-likely class of an observed sample. Then, max f yields the likeliness of the sample

belonging to the most likely class. Similar to binary classification, identity I of a test

instance can be queried using hard thresholding. In order to learn a representation

suitable for the stated objective, we use conventional classification networks as the

foundation of our work and propose the following two alternations.

1. Membership loss. Assuming each known class has a unique single label, if the

observed image is from a known class, only a single positive activation should appear

in f . We observe that when cross-entropy loss is used, this is not the case. To alleviate

this, we introduce a new loss called membership loss in addition to the cross-entropy

loss.

2. Globally negative filters. In a classification setting, a negative filter of a certain

class is also a positive filter of another class. In other words, there exist no explicit

negative filters. In our formulation, we propose to generate globally negative filters
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(filters that generate negative evidence for all known classes) to reduce the possibility

of a novel sample registering high activation scores.

conv5_3 fc8 conv5_3 fc8
Conventional CNN
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Proposed Method
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Positive Filters (Calculator)

Globally Negative Filters

(b)

Figure 3-2. (a) Activations of known (Calculator) and unknown samples (Playing Cards)
in a VGG16 model.

Limitations of Cross-Entropy Loss

When a classification network is trained, each element fi of the activation vector f

is first normalized using the softmax function to arrive at a normalized activation

vector f̃ as in, fj̃ = efj /
c∑︁

j=1
efj . When it is assumed that all image classes appearing

during inference are known ahead of time, jth element of vector f̃ is interpreted as

the likelihood of the input image xi belonging to the jth class. Neural network-based

classification systems are learned by minimizing the cross-entropy loss which is the

negative log likelihood of the correct class f̃ . However, since this is a relative measure,

the learned representation deviates from our objective due to the following reasons.

Firstly, even a low activation of the ground truth class could yield a low cross-

entropy provided that the activations of all other (non-matching) classes are very low.

As a result, lower score values may not get heavily penalized during training. Therefore,

a model trained using the cross-entropy loss may end up producing low activation

scores for known classes during inference. In closed set classification, this behavior will

not cause complications as long as the correct class records the highest score. However,

in threshold-based novelty detection, this poses a problem as having low scores for
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the positive class will result in false negatives. Secondly, the cross-entropy loss does

not penalize activations of unrelated classes as long as the correct class produces the

highest activation. As a result, inaccurate cross-class relationships are encouraged

during training.

In order to illustrate this point, we trained a VGG16 [33] based CNN classification

network using the first 128 classes of the Caltech256 dataset. For the considered

example, the Calculator class (indexed at 27) is a known class and the Playing Cards

class (indexed at 163) is a novel class. Shown in Figure 3-2 are the activations of

conv5-3 and fc8 layers of the network for two inputs of the two classes. As can be

seen from this figure, when the network observes a calculator object (known object),

it correctly associates the highest score in f to the correct class (class 27). However,

there is also a significant miss-association between the calculator class and coin (class

43), keyboard (class 45), dice (class 55) and joystick classes (class 120).

Membership Loss

In our approach, we first independently translate each activation score value fi into the

range 0− 1 using the sigmoid(σ) function. We interpret each transformed activation

score as the probability of the input image belonging to each individual class. If the

ground truth label of a given observation x is y, we aim at learning a function that

produces absolute probabilities for the membership of each class as follows

P(y = i) = σ(f(x)i) ∀i ∈ {1, 2, . . . c}. (3.1)

Ideally, the learned transformation will produce f(x)i = 1 for i = y and f(x)i = 0,

otherwise. We denote the risk of associating a higher score with a wrong class

(f(x)i = 1 for i ̸= y ) as RW 1 and risk of associating a low score with the correct

class (f(x)i = 0 for i = y) as RC0. We define the membership loss LM as the risk of

classification as

LM(x, y) = RC0(x, y) + λRW 1(x, y), (3.2)
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where λ is a positive scalar. With our formulation, we define RW 1(x, y) = [1− P(y =

1)]2 = [1 − σ(f(x)y)]2. Here, the quadratic term is introduced to impose a heavy

penalty on very high deviations. Similarly, RC0(x, y) becomes,

RC0(x, y) = 1
c− 1

c∑︂
i=1,i ̸=y

[P(i = 1)]2

= 1
c− 1

c∑︂
i=1,i ̸=y

[σ(f(x)i)]2.
(3.3)

By substitution, we get

LM(x, y) = [1− σ(f(x)y)]2 + λ
1

c− 1

c∑︂
i=1,i ̸=y

[σ(f(x)i)]2. (3.4)

Here, the parameter λ controls relative weight given to each risk source. In our

experiments, we set λ = 5. Taking the partial derivative of the membership loss yields

the following back-propagation formula

∂LM(x, y)
∂f(x)i

=

⎧⎨⎩−2[1− σ(f(x)i)]× σ(f(x)i)′ for i = y
2λ

c−1σ(f(x)i)× σ(f(x)i)′ for i ̸= y,
(3.5)

where, σ(f(x)i)′ = σ(f(x)i)(1− σ(f(x)i)).

The proposed membership loss does not operate on the closed-set assumption.

It takes individual score values into account in an absolute sense. Therefore, when

the membership loss is used, known samples that produce small activations will be

penalized regardless of the score values of the other classes. When the membership

loss is used together with the cross-entropy loss, the network learns a representation

that produces relatively higher activation scores for the correct class. For example,

consider the fc8 activation map of the proposed method for the Calculator object

input shown in Figure 3-2. There, we observe that the correct class (indexed at 27)

produces a large positive score whereas all other classes produce negative scores.

Globally Negative Filters

When a conventional classification network is used, novel images are often able to

produce very high activation scores there by leading to false positive detections. Such
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an example is shown in Figure 3-2(bottom) where a Playing Cards instance has

produced a very high activation score in the index corresponding to the Calculator

class (indexed at 27). Final activation score of a class is generated based on the

responses of the positive and negative filters. Once the network is trained, given

an input of a particular known class, the input stimulates some positive filters and

negative filters associated with the class. If the model is well trained, the response

of the positive filters exceeds the response of the negative filters to produce a high

positive activation score.

Given this background, it is interesting to investigate how a novel sample is able

to produce a high activation score. Let us revisit activations of Playing Cards image

(novel image) shown in Figure 3-2 (bottom). In this example, Playing Cards image

has stimulated some positive filters of the Calculator class despite the differences in

content. At the same time, by chance, it has not produced sufficient stimulation in

negative filters of the Calculator class, thereby producing a large positive activation

in f . This can be clearly observed in Figure 3-2 where both the Calculator and the

Playing Cards images have activated similar filters in the conv5-3 layer.

To this end, we make the following proposal. We wish to learn a set of filters

that are stimulated generally by natural images and produce evidence against all

known classes. In other words, these filters are negative filters with respect to all

known classes - hence we call them globally negative filters. If any of such filters are

stimulated during inference, it would prove greater evidence that the observed image

is novel. However, this proposal will succeed only if the globally negative filters are

stimulated by arbitrary images outside the known class set.

In order to learn the globally negative filters, we propose a joint-learning network

structure. In addition to the known object dataset, we use the out-of-distributional data

samples in training. For the remainder of the paper we refer the out-of-distributional

dataset as the reference dataset. We learn features that can perform classification
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in both the known dataset and the reference dataset. If the reference dataset has C

classes, once trained, the filter bank will contain positive filters of all c + C classes.

Filters associated with the reference dataset will likely act as negative filters for all

classes in the known dataset, thereby be globally negative. In this framework, the

globally negative filters are likely to respond to arbitrary natural images provided that

the reference dataset is a large-scale diverse dataset.

In Figure 3-2, we show the impact of using the globally negative filters. Visualization

of top activated filters for the Calculator class are shown at the top in Figure 3-2(b). As

can be seen from this figure, these filters are positively co-related with the Calculator

class. With the new formulation, we observe that playing cards object activates some

extra filters which are not in common with the calculator class (highlighted in red).

At the bottom of Figure 3-2(b) we visualize filters with the highest activation for the

Playing Cards object. By inspection, these two visualizations look arbitrary and do

not have an obvious association with any of the Caltech256 classes. We interpret

these filters as instances of the globally negative filters. Due to the availability of more

negative evidence, the overall activation value of the playing cards object has been

drastically reduced.

Training Procedure

We propose a network architecture and a training mechanism to ensure that the

network learns the globally negative filters. For this purpose, we use an external

multi-class labeled dataset which we refer to as the reference dataset.

We first select a CNN backbone of choice (this could be a simple network such as

Alexnet [32] or a very deep/complex structure such as DenseNet [62]). Two parallel

CNN networks of the selected backbone are used for training as shown in Figure 3-3(a).

The only difference between the two parallel networks is the final fully-connected layer

where the number of outputs is equal to the number of classes present in either dataset.
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For the purpose of our discussion, we refer the sub-network up to the penultimate

layer of the CNN as the feature extraction sub-network.

Initially, weights of the two feature extraction sub-networks are initialized with

identical weights and they are kept identical during training. Final layer of both

parallel networks are initialized independently. Weights of these two layers are learned

during training without having any dependency between each other. During training,

two mini batches from two datasets (reference dataset (R) and known classes (T)) are

considered and they are fed into the two branches independently. We calculate the

cross-entropy loss (Lce) with respect to the samples of the reference dataset and both

the membership loss (Lm) and the cross-entropy loss with respect to the samples of

known classes. The cumulative loss of the network then becomes a linear combination

of the two losses as follows,

CumulativeLoss = Lce(R) + α1 Lce(T ) + α2 Lm(T ). (3.6)

In our experiments, we keep α1, α2 = 1. The cumulative loss is back-propagated

to learn the weights of the two CNN branches. Reducing membership loss and

cross-entropy loss with respect to the known-class dataset increases the potential of

performing novelty detection in addition to classification as discussed in the preceding

sub-sect. On the other hand, having good performance (low cross-entropy loss) in the

reference dataset suggests the existence of filters that are responsive to generic objects

provided that the reference dataset is sufficiently diverse. When classes appearing in

the reference dataset do not intersect with known classes, these filters serve as the

globally negative filters.

Testing (Novelty Detection)

During inference, we propose to use the setup shown in Figure 3-3(b) where we only

consider the bottom CNN branch of the training network. Given a test image x, we
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Figure 3-3. Proposed architecture for multiple-class novelty detection with OOD data.

perform a forward pass using the learned CNN network to obtain the final feature f(x).

The largest element of f(x), max f(x) is thresholded using a predetermined threshold

γ to arrive at the identity of the test image. If the yielded score is below the threshold

γ, we identify the test sample to be novel. In a practical system, threshold γ is chosen

considering the percentile of the matched score distribution (for example threshold

can be chosen to be 95th percentile if the accepted false negative rate is 5%) . In

addition to the novelty detection procedure, the same network structure can be used

to perform classification as well. Here, arg max f(x) yields the identity of the predicted

class for the test sample x. We note that this step is identical to the classification

procedure used in the standard CNN-based classification.

Experimental Setup and Results

In this sect, we present experimental results for the novelty detection task. We first

describe the baseline methods used for comparison. Then, we introduce the four

datasets used for evaluation. Finally, we discuss the obtained results followed by the

analysis of the proposed method.
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Baseline Methods

We evaluate the proposed method on four novelty detection databases and we compare

its performance with the standard novelty detection schemes. We use the following

baseline comparisons based on the AlexNet [32] and the VGG16 [33] features fine-tuned

on the given dataset.

1. Finetune [33]: fc8 feature scores of the trained deep model are thresholded to

detect novel samples.

2. One-class SVM [20]: A one-class SVM classifier is trained for all known classes.

The maximum SVM score is considered during the inference.

3. KNFST [28], [11]: Deep features are normalized and histogram intersect kernel

method is used to generate inner products between the samples.

4. Local KNFST [51]: Deep features with histogram intersect kernel is considered

with 600 local regions.

5. OpenMax [49]: Activations of penultimate layer of a deep model are used

to construct a single channel class-wise mean activation vectors (MAV) and the

corresponding Weibull distributions.

6. K-extremes [50]: Mean activations of the VGG16 fc7 features are considered

for each class and top 0.1 activation indexes are binarized to arrive at the Extreme

Value Signatures.

7. Finetune(c+C): A (c+C) class CNN is trained by treating classes of the reference

dataset as the additional class.

In addition, we evaluate the performance based on the pretrained deep features (trained

on the ILSVRC12 database) for KNFST and local KNFST methods. Whenever pre-

trained features are use they are denoted by the suffix pre.
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Datasets

We use four publicly available multi-class datasets to evaluate the novelty detection

performance of the proposed method.

Caltech-256 CUB-200 Dogs FounderType-200

Figure 3-4. Sample images from multiple-class novelty detection evaluation datasets.

Caltech256 Dataset. The Caltech256 dataset is a fully annotated dataset which

consists of 30607 images from 256 object classes. Following the protocol presented in

[11], we first sorted the class names alphabetically and picked the first 128 classes as

the known classes and considered the images from the remaining 128 classes as the

novel images.

Caltech-UCSD Birds 200 (CUB 200) Dataset. The CUB-200 dataset includes

6033 images belonging to 200 distinct bird categories. Ground truth labels for each

image are provided. In our experiment, we sorted names of the bird categories

alphabetically and used the first 100 classes as the known classes. The remaining

classes were used to represent novel images.

Stanford Dogs Dataset. This dataset is a subset of the ImageNet dataset and was

originally intended for fine-grain classification. There are 20580 images belonging to

120 different dog breeds in this dataset. We considered the first 60 classes as the known

classes and treated the remaining classes as the novel classes during performance

evaluation.

FounderType-200 Dataset. This dataset is a collection of Chinese character images

in different font types. The dataset is organized based on the font-type. In total there

are 200 different font-types with 6763 images from each class in this dataset. Following
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the same convention as before, we picked the first 100 classes to represent the enrolled

classes. The remaining 100 classes were used to simulate the novel images.

In all datasets, following the protocol in [11], images of the enrolled classes

were randomly split into two even sets to form training and testing datasets of the

enrolled classes. Images of the novel classes were used only during testing. When

finetuning/extracting features from the caltech256 dataset following [63], we used the

pretrained model trained on the Places365 dataset [64]. For all other tasks, we used

the pretrained model trained on the ILSVRC12 dataset. Accordingly, the validation

sets of Places365 was used as the reference dataset for Caltech256. For all other tasks

the validation set of ILSVRC12 was considered.

Results

We evaluated all methods based on the VGG16 and the AlexNet features. We used

the training codes provided by the authors when evaluating the KNFST [28] and the

local KNFST [51] methods. Performance of each method is evaluated using the area

under the receiver operating characteristics (AUC) curve. Obtained AUC values for

each method are tabulated in Table 3-I for all datasets1.

When baseline methods are considered, a variance in performance can be observed

across datasets. In general, K-extremes has reported below-par performances compared

to the other methods. When the number of enrolled classes are very high, the mean

activation signature of a class looses its uniqueness. This is why K-extremes method

fails when very large number of classes are enrolled as suggested in [50]. In the

Caltech-256 and CUB-200 datasets, thresholding deep activations and OpenMax has

yielded better results among the baseline methods. In Caltech256, this has improved

marginally when the reference dataset (ILSVRC12) is incorporated. This method has

performed reasonably well in the FounderType-200 dataset but it’s performance in
1Source code of the proposed method is made available at

https://github.com/PramuPerera/TransferLearningNovelty
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Table 3-I. Novelty detection results (AUC of the ROC curve) on the evaluation datasets.
The best performing method for each dataset is shown in bold. Second best method is
shown in italics.

Method Caltech-256 CUB-200 Dogs FounderType
VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet VGG16 AlexNet

Finetune[33], [32] 0.827 0.785 0.931 0.909 0.766 0.702 0.841 0.650
One-class SVM[20] 0.576 0.561 0.554 0.532 0.542 0.520 0.627 0.612
KNFST pre[28] 0.727 0.672 0.842 0.710 0.649 0.619 0.590 0.655
KNFST[28], [11] 0.743 0.688 0.891 0.748 0.633 0.602 0.870 0.678
Local KNFST pre[51] 0.657 0.600 0.780 0.717 0.652 0.589 0.549 0.523
Local KNFST[51] 0.712 0.628 0.820 0.690 0.626 0.600 0.673 0.633
K-extremes[50] 0.546 0.521 0.520 0.514 0.610 0.592 0.557 0.512
OpenMax[49] 0.831 0.787 0.935 0.915 0.776 0.711 0.852 0.667
Finetune(c + C) 0.848 0.788 0.921 0.899 0.780 0.692 0.754 0.723
Deep Novelty (ours) 0.869 0.807 0.958 0.947 0.825 0.748 0.893 0.741

the Standford Dogs dataset is not convincing. In general, KNFST has out-performed

local KNFST except for in the Standford Dogs dataset. KNFST (and local KNFST)

operating on the finetuned deep features have performed better in general compared

to the pre-trained deep features. This trend has changed only in the Standford Dogs

dataset. Here we note that none of the baseline methods have yielded consistent

performance across datasets.

In comparison, the proposed method is able to produce the best performance across

all datasets. When AlexNet is used as the back-bone network, there is an improvement

of about 3.0% over the baselines in the CUB-200 and Standford Dogs datasets. In the

other two datasets this margin is 2.0%. In the Caltech256, CUB-200 and FounderType-

200 datasets, the improvements in AUC are in excess of 2.0% for the VGG16 model.

In the Standford Dogs dataset, the proposed method is able to introduce a significant

advancement of more than 7.0% in AUC compared with the baseline methods. In

general, we note that in datasets where the baseline performance is already very good,

as in the CUB-200 and FounderType 200 datasets, the improvement of the proposed

method is relatively small. On the other hand, when the baseline performance is poor,

the proposed method is able to generate a significant improvement in the performance.
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Ablation Study

In this subsect, we investigate the impact of each individual component of the proposed

framework. For the purpose of the ablation study, we use the validation dataset of the

ILSVRC12 dataset as the reference dataset. It should be noted that figures reported

in this subsect are different from Table 3-I due to this reason. Starting from the

traditional CNN architecture, we added one component of the proposed framework at

a time and evaluated the novelty detection performance on the Caltech-256 dataset as

a case study. Testing protocol presented in the preceding subsect was followed in all

cases. Considered cases are as follows.

a) Single CNN with the cross-entropy loss (AUC 0.854). This is the CNN

baseline where a CNN is trained using the enrolled classes conventionally.

b) Single CNN with the cross-entropy loss+membership loss (AUC 0.865).

The network architecture is the same as in case (a). In addition to the cross-entropy

loss, the membership loss is calculated with respect to the enrolled dataset.

c) Two Parallel CNNs with cross-entropy loss (AUC 0.864). The network

structure proposed in Figure 3-3(a) is used. In contrast, only the cross-entropy loss is

used in the bottom sub-network.

d) Proposed method (AUC 0.906). Proposed structure Figure 3-3(a) is used

for training.

In the proposed method, we introduced membership loss and a parallel network

structure as contributions. From the case study conducted, it appears that the novelty

detection performance improves compared to the baseline even when one of the

contributions are used. Moreover, we observe that the two contributions compliment

each other and generate even better results when combined together.
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Impact of the Reference Dataset

In the proposed method, we assumed the availability of a reference dataset with large

number of classes. In this subsect, we investigate the impact of the reference dataset

by varying the reference dataset of choice. In particular, we use the ILSVRC12,

Caltech-256 and Standford Dogs datasets as the reference datasets to perform novelty

detection using the proposed method in the CUB-200 dataset. Results obtained are

tabulated in Table 3-II. Here we have included the performance of the best baseline

method for the CUB-200 dataset (Finetune) from Table 3-I as a baseline.

Compared to ILSVRC12, when Caltech-256 is used as the reference dataset, AUC

drops by 0.005%. This further drops by 0.008% when the Standford Dogs dataset is

used. The ILSVRC12 dataset contains 1000 image classes and has significant variance

in images within each class. Caltech-256 is a similar multi-class dataset but with fewer

classes. Both of these datasets contain natural images. However since ILSVRC12

has more classes and more intra-class variance, we expect it to generate globally

negative filters better. Therefore, the performance drop of Caltech-256 compared to

ILSVRC12 is expected. On the other hand, the Standford Dogs dataset only contains

images of dogs. Therefore, filters learned using this dataset may not be generic to get

stimulated by the arbitrary inputs. Therefore, the drop in the performance is justified.

In conclusion, we note that the proposed method is able to out-perform baseline

novelty detection methods even when the reference dataset is varied. However, better

results are obtained when a larger dataset with high degree of intra-class variation is

used as the reference dataset.

Table 3-II. Impact of the reference dataset used. Results of the case study conducted on
the CUB-200 dataset by varying the reference dataset.

Baseline ILSVRC12 Caltech-
256

Dogs

Novelty Detection AUC 0.931 0.958 0.953 0.945
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Impact on Classification Accuracy

When a test image is present, the proposed method produces a set of class activation

scores. It is still possible to perform classification using the same system by associating

the test image with the class containing the highest activation. In what follows, we

consider test samples of the known classes and perform closed-set classification in the

same experimental setup described in sect 7. In other words, we do not consider novel

samples for the purpose of this study. Obtained classification accuracies for the four

datasets are tabulated in Table 3-III. Although the proposed method is designed for

the purpose of novelty detection, we note that the proposed changes have contributed

towards increasing the classification accuracy of the system as well. This is because

the membership loss explicitly enforces correct class to have a high score and all other

classes to have scores closer to zero.

Table 3-III. Classification accuracy obtained for conventional fine-tuning and the proposed
method for the four evaluation datasets.

Caltech-
256

CUB-200 Dogs FounderType

VGG16 0.908 0.988 0.730 0.945
Proposed Method 0.939 0.990 0.801 0.950

Network Hyper-parameters

For all experiments (networks A-C) a batch size of 32 was used with a weight decay

of 0.0005. Stochastic Gradient Descent was used as the solver. For all datasets except

for the Standford Dogs dataset, base learning rate was set to 0.001. For the Standford

Dogs dataset base learning rate was set to 0.0001 to prevent exploding gradients. In

all cases, learning rate decay policy with a factor of 0.1 for each 10000 iterations was

used. For the VGG16-based networks, all layers up to Conv5-3 were fixed during

training. For the AlexNet-based networks, all convolutional layers were fixed during

training.
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VGG16 AlexNet
Figure 3-5. ROC curves obtained for novelty detection in the Caltech256 dataset.

VGG16 AlexNet
Figure 3-6. ROC curves obtained for novelty detection in the CUB200 dataset.

ROC Curves

In this subsection, we present the ROC curves obtained in each experiment. The ROC

curves obtained for the Caltech256, CUB200, FounderType200 and Standford Dogs

datasets are shown in Figures 1-4, respectively. It can be seen from these figures, the

proposed method has obtained the best ROC curves in all cases.

Summary

A deep learning-based solution that takes advantage of out of distribution data was

presented targetting multiple-class novelty detection applications. We build up on the

conventional classification networks and introduce two novel contributions; namely,

membership loss and a training procedure that produces globally negative filters. In
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VGG16 AlexNet
Figure 3-7. ROC curves obtained for novelty detection in the FounderType200 dataset.

VGG16 AlexNet
Figure 3-8. ROC curves obtained for novelty detection in the Stanford Dogs dataset.
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the proposed method, novelty is quarried simply by thresholding the highest activation

of the output vector. We demonstrate the effectiveness of the proposed method on

four publicly available multi-class image datasets and obtain state-of-the-art results.
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Chapter 4

One-class Novelty Detection with
OOD Data

Contemporary one-class classification schemes trained solely on the given concept have

failed to produce promising results in real-world datasets ([23],[12] has achieved an

Area Under the Curve in the range of 60%-65% for CIFAR10 dataset[65]). However,

we note that computer vision is a field rich with labeled datasets of different domains.

In this chapter, we investigate how data from a different domain can be used to solve

the one-class classification problem.

In order to solve this problem, we seek motivation from generic object classification

frameworks. Many previous works in object classification have focused on improving

either the feature or the classifier (or in some cases both) in an attempt to improve

the classification performance. In particular, various deep learning-based feature

extraction and classification methods have been proposed in the literature and have

gained a lot of traction in recent years [32], [33]. In general, deep learning-based

classification schemes have two subnetworks, a feature extraction network (g) followed

by a classification sub network (h), that are learned jointly during training. For

example, in the popular AlexNet architecture [32], the collection of convolution layers

may be regarded as (g) where as fully connected layers may collectively be regarded as

(h). Depending on the output of the classification sub network (h), one or more losses
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are evaluated to facilitate training. Deep learning requires the availability of multiple

classes for training and extremely large number of training samples (in the order of

thousands or millions). However, in learning tasks where either of these conditions

are not met, the following alternative strategies are used:

(a) Multiple classes, many training samples: This is the case where both

requirements are satisfied. Both feature extraction and classification networks, g

and h are trained end-to-end (Figure 4-1(a)). The network parameters are initialized

using random weights. Resultant model is used as the pre-trained model for fine

tuning [32], [59].

(b) Multiple classes, low to medium number of training samples: The feature

extraction network from a pre-trained model is used. Only a new classification network

is trained in the case of low training samples (Figure 4-1(b)). When medium number

of training samples are available, feature extraction network (g) is divided into two

sub-networks - shared feature network (gs) and learned feature network (gl), where

g = gs ◦ gl. Here, gs is taken from a pre-trained model. gl and the classifier are learned

from the data in an end-to-end fashion (Figure 4-1(c)). This strategy is often referred

to as fine-tuning [66].

(c) Single class or no training data: A pre-trained model is used to extract

features. The pre-trained model used here could be a model trained from scratch (as

in (a)) or a model resulting from fine-tuning (as in (b)) [35], [8] where training/fine-

tuning is performed based on an external dataset. When training data from a class is

available, a one-class classifier is trained on the extracted features (Figure 4-1(d)). It

is possible to consider features from the output of the classification sub-network h or

features from an intermediate layer of the classification sub-network. To be generic,

we denote the collection of layers used for feature extraction as hc for the remainder

of this chapter.

In this work, we focus on the task presented in case (c) where training data from
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Figure 4-1. Different deep learning strategies used for classification.

a single class is available. Strategy used in case (c) above uses deep-features extracted

from a pre-trained model, where training is carried out on a different dataset, to

perform one-class classification. However, there is no guarantee that features extracted

in this fashion will be as effective in the new one-class classification task. In this work,

we present a feature fine tuning framework which produces deep features that are

specialized to the task at hand. Once the features are extracted, they can be used to

perform classification using the strategy discussed in (c).

In our formulation (shown in Figure 4-1 (e)), starting from a pre-trained deep

model, we freeze initial features (gs) and learn (gl) and (hc). Based on the output of

the classification sub-network (hc), two losses compactness loss and descriptiveness

loss are evaluated. These two losses, introduced in the subsequent sections, are used to

assess the quality of the learned deep feature. We use the provided one-class dataset

to calculate the compactness loss. An external multi-class reference dataset is used to

evaluate the descriptiveness loss. As shown in Figure 4-2, weights of gl and hc are

learned in the proposed method through back-propagation from the composite loss.

Once training is converged, system shown in setup in Figure 4-1(d) is used to perform

classification where the resulting model is used as the pre-trained model.
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Figure 4-2. Overview of the proposed method.

Objective Function

In this section, we formulate the objective of one-class feature learning as an opti-

mization problem. In the classical multiple-class classification, features are learned

with the objective of maximizing inter-class distances between classes and minimizing

intra-class variances within classes [67]. However, in the absence of multiple classes

such a discriminative approach is not possible.

In this light, we outline two important characteristics of features intended for

one-class classification.

Compactness C. A desired quality of a feature is to have a similar feature represen-

tation for different images of the same class. Hence, a collection of features extracted

from a set of images of a given class will be compactly placed in the feature space.

This quality is desired even in features used for multi-class classification. In such cases,

compactness is quantified using the intra-class distance [67]; a compact representation

would have a lower intra-class distance.

Descriptiveness D. The given feature should produce distinct representations for
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images of different classes. Ideally, each class will have a distinct feature representation

from each other. Descriptiveness in the feature is also a desired quality in multi-class

classification. There, a descriptive feature would have large inter-class distance [67].

It should be noted that for a useful (discriminative) feature, both of these charac-

teristics should be satisfied collectively. Unless mutually satisfied, neither of the above

criteria would result in a useful feature. With this requirement in hand, we aim to

find a feature representation g that maximizes both compactness and descriptiveness.

Formally, this can be stated as an optimization problem as follows,

ĝ = max
g
D(g(t)) + λC(g(t)), (4.1)

where t is the training data corresponding to the given class and λ is a positive

constant. Given this formulation, we identify three potential strategies that may be

employed when deep learning is used for one-class problems. However, none of these

strategies collectively satisfy both descriptiveness and compactness.

(a) Extracting deep features. Deep features are first extracted from a pre-trained

deep model for given training images. Classification is done using a one-class classifi-

cation method such as one-class SVM, SVDD or k-nearest neighbor using extracted

features. This approach does not directly address the two characteristics of one-class

features. However, if the pre-trained model used to extract deep features was trained

on a dataset with large number of classes, then resulting deep features are likely to be

descriptive. Nevertheless, there is no guarantee that the used deep feature will possess

the compactness property.

(b) Fine-tune a two class classifier using an external dataset. Pre-trained

deep networks are trained based on some legacy dataset. For example, models used for

the ImageNet challenge are trained based on the ImageNet dataset [63]. It is possible

to fine tune the model by representing the alien classes using the legacy dataset.

This strategy will only work when there is a high correlation between alien classes
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Normal Chair Objects

Abnormal Chair Objects

(a)

(b)

(c)

(d)

(e)

Figure 4-3. Possible strategies for one-class classification in abnormal image detection.
(a)Image samples. (b) AlexNet features. (c) Binary CNN (d) Fine-tuning (e) Proposed
method.

and the legacy dataset. Otherwise, the learned feature will not have the capacity to

describe the difference between a given class and the alien class thereby violating the

descriptiveness property.

(c) Fine-tune using a single class data. Fine-tuning may be attempted by using

data only from the given single class. For this purpose, minimization of the traditional

cross-entropy loss or any other appropriate distance could be used. However, in such

a scenario, the network may end up learning a trivial solution due to the absence of a

penalty for miss-classification. In this case, the learned representation will be compact

but will not be descriptive.

Let us investigate the appropriateness of these three strategies by conducting a

case study on the abnormal image detection problem where the considered class is

the normal chair class. In abnormal image detection, initially a set of normal chair

images are provided for training as shown in Figure 4-3(a). The goal is to learn a

representation such that, it is possible to distinguish a normal chair from an abnormal
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chair.

The trivial approach to this problem is to extract deep features from an existing

CNN architecture (solution (a)). Let us assume that the AlexNet architecture [32] is

used for this purpose and fc7 features are extracted from each sample. Since deep

features are sufficiently descriptive, it is reasonable to expect samples of the same class

to be clustered together in the extracted feature space. Illustrated in Figure 4-3(b) is

a 2D visualization of the extracted 4096 dimensional features using t-SNE [68]. As

can be seen from Figure4-3(b), the AlexNet features are not able to enforce sufficient

separation between normal and abnormal chair classes.

Another possibility is to train a two class classifier using the AlexNet architecture

by providing normal chair object images and the images from the ImageNet dataset as

the two classes (solution (b)). However, features learned in this fashion produce similar

representations for both normal and abnormal images, as shown in Figure4-3(c). Even

though there exist subtle differences between normal and abnormal chair images, they

have more similarities compared to the other ImageNet objects/images. This is the

main reason why both normal and abnormal images end up learning similar feature

representations.

A naive, and ineffective, approach would be to fine-tune the pre-trained AlexNet

network using only the normal chair class (solution (c)). Doing so, in theory, should

result in a representation where all normal chairs are compactly localized in the

feature space. However, since all class labels would be identical in such a scenario,

the fine-tuning process would end up learning a futile representation as shown in

Figure4-3(d). The reason why this approach ends up yielding a trivial solution is due

to the absence of a regularizing term in the loss function that takes into account the

discriminative ability of the network. For example, since all class labels are identical,

a zero loss can be obtained by making all weights equal to zero. It is true that this is

a valid solution in the closed world where only normal chair objects exist. But such a
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network has zero discriminative ability when abnormal chair objects appear.

None of the three strategies discussed above are able to produce features that

are both compact and descriptive. We note that out of the three strategies, the first

produces the most reasonable representation for one-class classification. However, this

representation was learned without making an attempt to increase compactness of the

learned feature. Therefore, we argue that if compactness is taken into account along

with descriptiveness, it is possible to learn a more effective representation.

Proposed Loss Functions

In this work, we propose to quantify compactness and descriptiveness in terms of

measurable loss functions. Variance of a distribution has been widely used in the

literature as a measure of the distribution spread [69]. Since spread of the distribution

is inversely proportional to the compactness of the distribution, it is a natural choice to

use variance of the distribution to quantify compactness. In our work, we approximate

variance of the feature distribution by the variance of each feature batch. We term

this quantity as the compactness loss (lC).

On the other hand, descriptiveness of the learned feature cannot be assessed using

a single class training data. However, if there exists a reference dataset with multiple

classes, even with random object classes unrelated to the problem at hand, it can be

used to assess the descriptiveness of the engineered feature. In other words, if the

learned feature is able to perform classification with high accuracy on a different task,

the descriptiveness of the learned feature is high. Based on this rationale, we use

the learned feature to perform classification on an external multi-class dataset, and

consider classification loss there as an indicator of the descriptiveness of the learned

feature. We call the cross-entropy loss calculated in this fashion as the descriptiveness

loss (lD). Here, we note that descriptiveness loss is low for a descriptive representation.

With this formulation, the original optimization objective in equation (4.1) can be
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re-formulated as,

ĝ = min
g

lD(r) + λlC(t), (4.2)

where lC and lD are compactness loss and descriptiveness loss, respectively and r is

the training data corresponding to the reference dataset. The tSNE visualization of

the features learned in this manner for normal and abnormal images are shown in

Figure 4-3(e). Qualitatively, features learned by the proposed method facilitate better

distinction between normal and abnormal images as compared with the cases is shown

in Figure 4-1(b)-(d).

Terminology

Based on the intuition given in the previous section, the architecture shown in Figure 4-

4 (a) is proposed for one-class classification training and the setup shown in Figure 4-4

(b) for testing. They consist of following elements:

Reference Network (R): This is a pre-trained network architecture considered for

the application. Typically it contains a repetition of convolutional, normalization,

and pooling layers (possibly with skip connections) and is terminated by an optional

set of fully connected layers. For example, this could be the AlexNet network [32]

pre-trained using the ImageNet [63] dataset. Reference network can be seen as the

composition of a feature extraction sub-network g and a classification sub-network hc.

For example, in AlexNet, conv1-fc7 layers can be associated with g and fc8 layer with

hc. Descriptive loss (lD) is calculated based on the output of hc.

Reference Dataset (r): This is the dataset (or a subset of it) used to train the

network R. Based on the example given, reference dataset is the ImageNet dataset

[63] (or just a subset of the ImageNet dataset).

Secondary Network (S): This is a second CNN where the network architecture is

structurally identical to the reference network. Note that g and hc are shared in both

of these networks. Compactness loss (lC) is evaluated based on the output of hc. For
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Figure 4-4. (a) Training, and (b) testing frameworks of the proposed DOC method.

the considered example, S would have the same structure as R (AlexNet) up to fc8.

Target Dataset (t): This dataset contains samples of the class for which one-class

learning is used for. For example, for an abnormal image detection application, this

dataset will contain normal images (i.e. data samples of the single class considered).

Model (W): This corresponds to the collection of weights and biases in the network,

g and hc. Initially, it is initialized by some pre-trained parameters W0. 1

Compactness loss (lC) : All the data used during the training phase will belong

to the same class. Therefore they all share the same class label. Compactness loss

evaluates the average similarity between the constituent samples of a given batch. For

a large enough batch, this quantity can be expected to represent average intra-class

variance of a given class. It is desirable to select a smooth differentiable function as

lC to facilitate back propagation. In our work, we define compactness loss based on

the Euclidean distance.

Descriptiveness loss (lD) : Descriptiveness loss evaluates the capacity of the learned

feature to describe different concepts. We propose to quantify discriminative loss by

the evaluation of cross-entropy with respect to the reference dataset (R).

For this discussion, we considered the AlexNet CNN architecture as the reference
1For the case of AlexNet, pre-trained model can be found at www.berkleyvison.com.
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network. However, the discussed principles and procedures would also apply to any

other CNN of choice. In what follows, we present the implementation details of the

proposed method.

Architecture

The proposed training architecture is shown in Figure 4-4 (a) 2. The architecture

consists of two CNNs, the reference network (R) and the secondary network (S) as

introduced in the previous sub-section. Here, weights of the reference network and

secondary network are tied across each corresponding counterparts. For example,

weights between convi (where, i = 1, 2.., 5) layer of the two networks are tied together

forcing them to be identical. All components, except Compactness loss, are standard

CNN components. We denote the common feature extraction sub-architecture by g(.)

and the common classification by sub-architecture by hc(.). Please refer to Appendix

for more details on the architectures of the proposed method based on the AlexNet

and VGG16 networks.

Compactness loss

Compactness loss computes the mean squared intra-batch distance within a given

batch. In principle, it is possible to select any distance measure for this purpose.

In our work, we design compactness loss based on the Euclidean distance measure.

Define X = {x1, x2, . . . , xn} ∈ Rn×k to be the input to the loss function, where the

batch size of the input is n.

Forward Pass: For each ith sample xi ∈ Rk, where 1 ≤ i ≤ n, the distance between

the given sample and the rest of the samples zi can be defined as,

zi = xi −mi, (4.3)
2Source code of the proposed method is made available online at

https://github.com/PramuPerera/DeepOneClass
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where, mi = 1
n−1

∑︁
j ̸=i xj is the mean of rest of the samples. Then, compactness loss

lC is defined as the average Euclidean distance as in,

lC = 1
nk

n∑︂
i=1

zi
T zi. (4.4)

Backpropagation:. In order to perform back-propagation using this loss, it is

necessary to assess the contribution each element of the input has on the final loss. Let

xi = {xi1, xi2, . . . , xik}. Similarly, let mi = {mi1, mi2, . . . , mik}. Then, the gradient of

lb with respect to the input xij is given as,

∂lC
∂xij

= 2
(n− 1)nk

[︄
n× (xij −mij)−

n∑︂
k=1

(xik −mik)
]︄
. (4.5)

Detailed derivation of the back-propagation formula can be found in the Appendix.

The loss lC calculated in this form is equal to the sample feature variance of the batch

multiplied by a constant (see Appendix). Therefore, it is an inverse measure of the

compactness of the feature distribution.

Training

During the training phase, initially, both the reference network (R) and the secondary

network (S) are initialized with the pre-trained model weights W0. Recall that

except for the types of loss functions associated with the output, both these networks

are identical in structure. Therefore, it is possible to initialize both networks with

identical weights. During training, all layers of the network except for the last four

layers are frozen as commonly done in network fine-tuning. In addition, the learning

rate of the training process is set at a relatively lower value ( 5 × 10−5 is used in

experiments). During training, two image batches, each from the reference dataset and

the target dataset are simultaneously fed into the input layers of the reference network

and secondary network, respectively. At the end of the forward pass, the reference
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network generates a descriptiveness loss (lD), which is same as the cross-entropy

loss by definition, and the secondary network generates compactness loss (lC). The

composite loss (l) of the network is defined as,

l(r, t) = lD(r|W ) + λlC(t|W ), (4.6)

where λ is a constant. It should be noted that, minimizing this loss function leads to

the minimization of the optimization objective in (4.2).

In our experiments, λ is set equal to 0.1 Based on the composite loss, the network

is back-propagated and the network parameters are learned using gradient descent

or a suitable variant. Training is carried out until composite loss l(r, t) converges. A

sample variation of training loss is shown in Figure 4-5. In general, it was observed

that composite loss converged in around two epochs (here, epochs are defined based

on the size of the target dataset).

Intuitively, the two terms of the loss function lD and lC measure two aspects of

features that are useful for one-class learning. Cross entropy loss values obtained

in calculating descriptiveness loss lD measures the ability of the learned feature to

describe different concepts with respect to the reference dataset. Having reasonably

good performance in the reference dataset implies that the learned features are

discriminative in that domain. Therefore, they are likely to be descriptive in general.

On the other hand, compactness loss (lC) measures how compact the class under

consideration is in the learned feature space. The weight λ governs the mutual

importance placed on each requirement.

If λ is made large, it implies that the descriptiveness of the feature is not as

important as the compactness. However, this is not a recommended policy for one-

class learning as doing so would result in trivial features where the overlap between

the given class and an alien class is significantly high. As an extreme case, if λ = 0

(this is equivalent to removing the reference network and carrying out training solely
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on the secondary network (Figure 4-1 (d)), the network will learn a trivial solution. In

our experiments, we found that in this case the weights of the learned filters become

zero thereby making output of any input equal to zero.

Therefore, for practical one-class learning problems, both reference and secondary

networks should be present and more prominence should be given to the loss of the

reference network.

Figure 4-5. Variation of loss functions during training in the proposed method.

Testing

The proposed testing procedure involves two phases - template generation and matching.

For both phases, secondary network with weights learned during training is used as

shown in Figure 4-4 (b). During both phases, the excitation map of the feature

extraction sub-network is used as the feature. For example, layer 7, fc7 can be

considered from a AlexNet-based network. First, during the template generation

phase a small set of samples v = {v1, v2, . . . , vn} are drawn from the target (i.e.

training) dataset where v ∈ t. Then, based on the drawn samples a set of features

g(v1), g(v2), . . . , g(vn) are extracted. These extracted features are stored as templates
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and will be used in the matching phase.

Based on stored template, a suitable one-class classifier, such as one-class SVM

[20], SVDD [21] or k-nearest neighbor, can be trained on the templates. In this work,

we choose the simple k-nearest neighbor classifier described below. When a test image

y is present, the corresponding deep feature g(y) is extracted using the described

method. Here, given a set of templates, a matched score Sy is assigned to y as

Sy = f(g(y)|g(t1), g(t2), . . . , g(tn)), (4.7)

where f(.) is a matching function. This matching function can be a simple rule such

as the cosine distance or it could be a more complicated function such as Mahalanobis

distance. In our experiments, we used Euclidean distance as the matching function.

After evaluating the matched score, y can be classified as follows,

class(y) =

⎧⎨⎩1, if Sy ≤ δ

0, if Sy > δ,
(4.8)

where 1 is the class identity of the class under consideration and 0 is the identity of

other classes and δ is a threshold.

Memory Efficient Implementation

Due to shared weights between the reference network and the secondary network, the

amount of memory required to store the network is nearly twice as the number of

parameters. It is not possible to take advantage of this fact with deep frameworks

with static network architectures (such as caffe [70]). However, when frameworks that

support dynamic network structures are used (e.g. PyTorch), implementation can be

altered to reduce memory consumption of the network.

In the alternative implementation, only a single core network with functions g and

hc is used. Two loss functions lC and lD branch out from the core network. However in

this setup, descriptiveness loss (lD) is scaled by a factor of 1− λ. In this formulation,
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first λ is made equal to 0 and a data batch from the reference dataset is fed into the

network. Corresponding loss is calculated and resulting gradients are calculated using

back-propagation Then, λ is made equal to 1 and a data batch from the target dataset

is fed into the network. Gradients are recorded same as before after back-propagation.

Finally, the average gradient is calculated using two recorded gradient values, and

network parameters are updated accordingly. In principle, despite of having a lower

memory requirement, learning behavior in the alternative implementation would be

identical to the original formulation.

Experimental Results

In order to asses the effectiveness of the proposed method, we consider three one-class

classification tasks: abnormal image detection, single class image novelty detection

and active authentication. We evaluate the performance of the proposed method in all

three cases against state of the art methods using publicly available datasets. Further,

we provide two additional CNN-based baseline comparisons.

Experimental Setup

Unless otherwise specified, we used 50% of the data for training and the remaining

data samples for testing. In all cases, 40 samples were taken at random from the

training set to generate templates. In datasets with multiple classes, testing was done

by treating one class at a time as the positive class. Objects of all the other classes

were considered to be alien. During testing, alien object set was randomly sampled to

arrive at equal number of samples as the positive class. As for the reference dataset, we

used the validation set of the ImageNet dataset for all tests. When there was an object

class overlap between the target dataset and the reference dataset, the corresponding

overlapping classes were removed from the reference dataset. For example, when

novelty detection was performed based on the Caltech 256, classes appearing in both
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Caltech 256 and ImageNet were removed from the ImageNet dataset prior to training.

The Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)

Curve are used to measure the performance of different methods. The reported

performance figures in this paper are the average AUC figures obtained by considering

multiple classes available in the dataset. In all of our experiments, Euclidean distance

was used to evaluate the similarity between a test image and the stored templates.

In all experiments, the performance of the proposed method was evaluated based on

both the AlexNet [32] and the VGG16 [33] architectures. In all experimental tasks,

the following experiments were conducted.

AlexNet Features and VGG16 Features (Baseline). One-class classification

is performed using k-nearest neighbor, One-class SVM[20], Isolation Forest[13] and

Gaussian Mixture Model[13] classifiers on fc7 AlexNet features and the fc7 VGG16

features, respectively.

AlexNet Binary and VGG16 Binary (Baseline). A binary CNN is trained by

having ImageNet samples and one-class image samples as the two classes using AlexNet

and VGG16 architectures, respectively. Testing is performed using k-nearest neighbor,

One-class SVM[20], Isolation Forest[13] and Gaussian Mixture Model[13] classifiers.

One-class Neural Network (OCNN). Method proposed in [71] applied on the

extracted features from the AlexNet and VGG16 networks.

Autoencoder [15]. Network architecture proposed in [15] is used to learn a repre-

sentation of the data. Reconstruction loss is used to perform verification.

Ours (AlexNet) and ours (VGG16). Proposed method applied with AlexNet and

VGG16 network backbone architectures. The fc7 features are used during testing.

In addition to these baselines, in each experiment we report the performance of

other task specific methods.
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(a) (b) (c)

Figure 4-6. Sample images from datasets used for evaluation. (a)PASCAL VOC +
Abnormal 1001 dataset. (b) Caltech 256 dataset. (c) UMDAA02 dataset.

Results

Abnormal Image Detection: The goal in abnormal image detection is to detect

abnormal images when the classifier is trained using a set of normal images of the

corresponding class. Since the nature of abnormality is unknown a priori, training

is carried out using a single class (images belonging to the normal class). The 1001

Abnormal Objects Dataset [72] contains 1001 abnormal images belonging to six classes

which are originally found in the PASCAL [73] dataset. Six classes considered in the

dataset are Airplane, Boat, Car, Chair, Motorbike and Sofa. Each class has at least

one hundred abnormal images in the dataset. A sample set of abnormal images and

the corresponding normal images in the PASCAL dataset are show in Figure 4-6(a).

Abnormality of images has been judged based on human responses received on the

Amazon Mechanical Turk. We compare the performance of abnormal detection of

the proposed framework with conventional CNN schemes and with the comparisons

presented in [72]. It should be noted that our testing procedure is consistent with the

protocol used in [72].
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Results corresponding to this experiment are shown in Table 4-I. Adjusted graphical

model presented in [72] has outperformed methods based on traditional deep features.

The introduction of the proposed framework has improved the performance in AlexNet

almost by a margin of 14%. Proposed method based on VGG produces the best

performance on this dataset by introducing a 4.5% of an improvement as compared

with the Adjusted Graphical Method proposed in [72].

Table 4-I. Abnormal image detection results on the 1001 Abnormal Objects dataset.

Method AUC (Std. Dev.)
Graphical Model [72] 0.870
Adjusted Graphical Model [72] 0.911
Autoencoder[15] 0.674 (0.120)
OCNN AlexNet[71] 0.845 (0.148)
OCNN VGG16[71] 0.888 (0.0460)
AlexNet Features KNN 0.790 (0.074)
VGG16 Features KNN 0.847 (0.074)
AlexNet Binary KNN 0.621 (0.153)
VGG16 Binary KNN 0.848 (0.081)
AlexNet Features IF 0.613 (0.085)
VGG16 Features IF 0.731 (0.078)
AlexNet Binary IF 0.641 (0.089)
VGG16 Binary IF 0.715 (0.077)
AlexNet Features SVM 0.732 (0.094)
VGG16 Features SVM 0.847 (0.074)
AlexNet Binary SVM 0.736 (0.115)
VGG16 Binary SVM 0.834 (0.083)
AlexNet Features GMM 0.679 (0.103)
VGG16 Features GMM 0.818 (0.072)
AlexNet Binary GMM 0.696 (0.116)
VGG16 Binary GMM 0.803 (0.103)
DOC AlexNet (ours) 0.930 (0.032)
DOC VGG16 (ours) 0.956 (0.031)

One-Class Novelty Detection: In one-class novelty detection, the goal is to assess

the novelty of a new sample based on previously observed samples. Since novel

examples do not exist prior to test time, training is carried out using one-class learning

principles. In the previous works [28],[29], the performance of novelty detection has

been assessed based on different classes of the ImageNet and the Caltech 256 datasets.

Since all CNNs used in our work have been trained using the ImageNet dataset, we

use the Caltech 256 dataset to evaluate the performance of one-class novelty detection.

The Caltech 256 dataset contains images belonging to 256 classes with total of 30607
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images. In our experiments, each single class was considered separately and all other

classes were considered as alien. Sample images belonging to three classes in the

dataset are shown in Figure 4-6 (b). First, consistent with the protocol described

in [29], AUC of 20 random repetitions were evaluated by considering the American

Flag class as the known class and by considering boom-box, bulldozer and can-non

classes as alien classes. Results corresponding to different methods are tabulated in

Table 4-II.

In order to evaluate the robustness of our method, we carried out an additional

test involving all classes of the Caltech 256 dataset. In this test, first a single class is

chosen to be the enrolled class. Then, the effectiveness of the learned classifier was

evaluated by considering samples from all other 255 classes. We did 40 iterations of

the same experiment by considering first 40 classes of the Caltech 256 dataset one at

a time as the enrolled class. Since there are 255 alien classes in this test as opposed

to the first test, where there were only three alien classes, performance is expected to

be lower than in the former. Results of this experiment are tabulated in Table 4-III.

It is evident from the results in Table 4-II that a significant improvement is obtained

in the proposed method compared to previously proposed methods. However, as shown

in Table 4-III this performance is not limited just to a American Flag. Approximately

the same level of performance is seen across all classes in the Caltech 256 dataset.

Proposed method has improved the performance of AlexNet by nearly 13% where

as the improvement the proposed method has had on VGG16 is around 9%. It is

interesting to note that binary CNN classifier based on the VGG framework has

recorded performance very close to the proposed method in this task (difference in

performance is about 1%). This is due to the fact that both ImageNet and Caltech 256

databases contain similar object classes. Therefore, in this particular case, ImageNet

samples are a good representative of novel object classes present in Caltech 256. As a

result of this special situation, binary CNN is able to produce results on par with the
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Table 4-II. Novelty detection results on the Caltech 256 where American Flag class is
taken as the known class.

Method AUC (Std. Dev.)
One Class SVM [20] 0.606 (0.003)
KNFST [28] 0.575 (0.004)
Oc-KNFD [29] 0.619 (0.003)
Autoencoder[15] 0.532(0.003)
OCNN AlexNet[71] 0.907 (0.029)
OCNN VGG16[71] 0.943 (0.035)
AlexNet Features KNN 0.811 (0.003)
VGG16 Features KNN 0.951 (0.023)
AlexNet Binary KNN 0.920 (0.026)
VGG16 Binary KNN 0.997 (0.001)
AlexNet Features IF 0.836 (0.005)
VGG16 Features IF 0.910 (0.035)
AlexNet Binary IF 0.795 (0.007)
VGG16 Binary IF 0.907 (0.033)
AlexNet Features SVM 0.878 (0.007)
VGG16 Features SVM 0.951 (0.029)
AlexNet Binary SVM 0.920 (0.008)
VGG16 Binary SVM 0.942 (0.031)
AlexNet Features GMM 0.842 (0.004)
VGG16 Features GMM 0.901 (0.023)
AlexNet Binary GMM 0.860 (0.009)
VGG16 Binary GMM 0.924 (0.025)
DOC AlexNet (ours) 0.930 (0.005)
DOC VGG16 (ours) 0.999 (0.001)
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proposed method. However, this result does not hold true in general as evident from

other two experiments.

Table 4-III. Average Novelty detection results on the Caltech 256 dataset.

Method AUC (Std. Dev.)
One Class SVM [20] 0.531 (0.120)
Autoencoder[15] 0.623 (0.072)
OCNN AlexNet[71] 0.826 (0.153)
OCNN VGG16[71] 0.885 (0.144)
AlexNet Features KNN 0.820 (0.062)
VGG16 Features KNN 0.897 (0.050)
AlexNet Binary KNN 0.860 (0.065)
VGG16 Binary KNN 0.902 (0.024)
AlexNet Features IF 0.794 (0.075)
VGG16 Features IF 0.890 (0.049)
AlexNet Binary IF 0.788 (0.087)
VGG16 Binary IF 0.891 (0.053)
AlexNet Features SVM 0.852 (0.057)
VGG16 Features SVM 0.902 (0.050)
AlexNet Binary SVM 0.856 (0.058)
VGG16 Binary SVM 0.909 (0.047)
AlexNet Features GMM 0.790 (0.083)
VGG16 Features GMM 0.852 (0.087)
AlexNet Binary GMM 0.801 (0.083)
VGG16 Binary GMM 0.870 (0.069)
DOC AlexNet (ours) 0.959 (0.021)
DOC VGG16 (ours) 0.981 (0.022)

Active Authentication (AA): In the final set of tests, we evaluate the performance

of different methods on the UMDAA-02 mobile AA dataset [8]. The UMDAA-02

dataset contains multi-modal sensor observations captured over a span of two months

from 48 users for the problem of continuous authentication. In this experiment, we

only use the face images of users collected by the front-facing camera of the mobile

device. The UMDAA-02 dataset is a highly challenging dataset with large amount of

intra-class variation including pose, illumination and appearance variations. Sample

images from the UMDAA-02 dataset are shown in Figure 4-6 (c). As a result of these

high degrees of variations, in some cases the inter-class distance between different

classes seem to be comparatively lower making recognition challenging.

59



During testing, we considered first 13 users taking one user at a time to represent the

enrolled class where all the other users were considered to be alien. The performance

of different methods on this dataset is tabulated in Table 4-IV.

Table 4-IV. Active Authentication results on the UMDAA-02 dataset.

Method AUC (Std. Dev.)
One Class SVM [20] 0.594 (0.070)
Autoencoder[15] 0.643 (0.074)
OCNN AlexNet[71] 0.595 (0.045)
OCNN VGG16[71] 0.574 (0.039)
AlexNet Features KNN 0.708 (0.060)
VGG16 Features KNN 0.748 (0.082)
AlexNet Binary KNN 0.627 (0.128)
VGG16 Binary KNN 0.687 (0.086)
AlexNet Features IF 0.694 (0.075)
VGG16 Features IF 0.733 (0.080)
AlexNet Binary IF 0.625 (0.099)
VGG16 Binary IF 0.677 (0.078)
AlexNet Features SVM 0.702 (0.087)
VGG16 Features SVM 0.751 (0.075)
AlexNet Binary SVM 0.656 (0.112)
VGG16 Binary SVM 0.685 (0.076)
AlexNet Features GMM 0.690 (0.077)
VGG16 Features GMM 0.751 (0.082)
AlexNet Binary GMM 0.629 (0.110)
VGG16 Binary GMM 0.650 (0.087)
DOC AlexNet (ours) 0.786 (0.061)
DOC VGG16 (ours) 0.810 (0.067)

Recognition results are comparatively lower for this task compared to the other

tasks considered in this paper. This is both due to the nature of the application and

the dataset. However, similar to the other cases, there is a significant performance

improvement in proposed method compared to the conventional CNN-based methods.

In the case of AlexNet, improvement induced by the proposed method is nearly 8%

whereas it is around 6% for VGG16. The best performance is obtained by the proposed

method based on the VGG16 network.
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Discussion

Analysis on mis-classifications: The proposed method produces better separation

between the class under consideration and alien samples as presented in the results

section. However, it is interesting to investigate on what conditions the proposed

method fails. Shown in Figure 4-7 are a few cases where the proposed method produced

erroneous detections for the problem of one-class novelty detection with respect to

the American Flag class (in this experiment, all other classes in Caltech256 dataset

were used as alien classes). Here, detection threshold has been selected as δ = 0.

Mean detection scores for American Flag and alien images were 0.0398 and 8.8884,

respectively.

As can be see from Figure 4-7, in majority of false negative cases, the American

Flag either appears in the background of the image or it is too closer to clearly identify

its characteristics. On the other hand, false positive images either predominantly

have American flag colors or the texture of a waving flag. It should be noted that the

nature of mis-classifications obtained in this experiment are very similar to that of

multi-class CNN-based classification.

0.80881.057

0.4241 0.3080 0.000 0.000 0.000

0.000 0.000 0.000

False Negatives False Positives

Figure 4-7. Sample false detections for the one-class problem of novelty detection
(American Flag).

Using a subset of the reference dataset: In practice, the reference dataset is

often enormous in size. For example, the ImageNet dataset has in excess of one million

images. Therefore, using the whole reference dataset for transfer learning may be

61



inconvenient. Due to the low number of training iterations required, it is possible to

use a subset of the original reference dataset in place of the reference dataset without

causing over-fitting. In our experiments, training of the reference network was done

using the validation set of the ImageNet dataset. Recall that initially, both networks

are loaded with pre-trained models. It should be noted that these pre-trained models

have to be trained using the whole reference dataset. Otherwise, the resulting network

will have poor generalization properties.

Number of training iterations: In an event when only a subset of the original

reference dataset is used, the training process should be closely monitored. It is best

if training can be terminated as soon as the composite loss converges. Training the

network long after composite loss has converged could result in inferior features due

to over-fitting. This is the trade-off of using a subset of the reference dataset. In our

experiments, convergence occurred around 2 epochs for all test cases (Figure 4-5). We

used a fixed number of iterations (700) for each dataset in our experiments.

Effect of number of templates: In all conducted experiments, we fixed the number

of templates used for recognition to 40. In order to analyze the effect of template

size on the performance of our method, we conducted an experiment by varying the

template size. We considered two cases: first, the novelty detection problem related

to the American Flag (all other classes in Caltech256 dataset were used as alien

classes), where the recognition rates were very high at 98%; secondly, the AA problem

where the recognition results were modest. We considered Ph01USER002 from the

UMDAA-02 dataset for the study on AA. We carried out twenty iterations of testing

for each case. The obtained results are tabulated in Table 4-V.

According to the results in Table 4-V, it appears that when the proposed method

is able to isolate a class sufficiently, as in the case of novelty detection, the choice
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Table 4-V. Mean AUC (with standard deviation values in brackets) obtained for different
template sizes.

Number of templates 1 5 10 20 30 40
American Flag 0.987 0.988 0.987 0.988 0.988 0.988
(Caltech 256) (0.0034) (0.0032) (0.0030) (0.0038) (0.0029) (0.0045)
Ph01USER002 0.762 0.788 0.806 0.787 0.821 0.823
(UMDAA02) (0.0226) (0.0270) (0.0134) (0.0262) (0.0165) (0.0168)

of the number of templates is not important. Note that even a single template can

generate significantly accurate results. However, this is not the case for AA. Reported

relatively lower AUC values in testing suggests that all faces of different users lie in

a smaller subspace. In such a scenario, using more templates have generated better

AUC values.

Impact of Different Features

In this subsect, we investigate the impact of different choices of hc and g has on the

recognition performance. Feature was varied from fc6 to fc8 and the performance

of the abnormality detection task was evaluated. When fc6 was used as the feature,

the sub-network g consisted layers from conv1 to fc6, where layers fc7 and fc8 were

associated with the sub network hc. Similarly, when the layer fc7 was considered

as the feature, the sub-networks g and hc consisted of layers conv1 − fc7 and fc8,

respectively.

In Table 4-VI, the recognition performance on abnormality image detection task

is tabulated for different choices of hc and g. From Table 4-VI we see that in both

AlexNet and VGG16 architectures, extracting features at a later layer has yielded

in better performance in general. For example, for VGG16 extracting features from

fc6, fc7 and fc8 layers has yielded AUC of 0.856, 0.956 and 0.969, respectively. This

observation is not surprising on two accounts. First, it is well-known that later

layers of deep networks result in better generalization. Secondly, Compactness Loss is

minimized with respect to features of the target dataset extracted in the fc8 layer.
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Therefore, it is expected that fc8 layer provides better compactness in the target

dataset.
Table 4-VI. Abnormal image detection results for different choices of the reference dataset.

fc6 fc7 fc8
DOC AlexNet (ours) 0.936 (0.041) 0.930 (0.032) 0.947 (0.035)
DOC VGG16 (ours) 0.856 (0.118) 0.956 (0.031) 0.969 (0.029)

Impact of the Reference Dataset

The proposed method utilizes a reference dataset to ensure that the learned feature

is informative by minimizing the descriptiveness loss. For this scheme to result in

effective features, the reference dataset has to be a non-trivial multi-class object

dataset. In this subsect, we investigate the impact of the reference dataset on the

recognition performance. In particular, abnormal image detection experiment on the

Abnormal 1001 dataset was repeated with a different choice of the reference dataset.

In this experiment ILSVRC12 [63], Places365 [64] and Oxford Flowers 102 [74] datasets

were used as the reference dataset. We used publicly available pre-trained networks

from caffe model zoo [70] in our evaluations.

In Table 4-VII the recognition performance for the proposed method as well as

the baseline methods are tabulated for each considered dataset. From Table 4-VII

we observe that the recognition performance has dropped when a different reference

dataset is used in the case of VGG16 architecture. Places365 has resulted in a drop of

0.038 whereas the Oxford flowers 102 dataset has resulted in a drop of 0.026. When

the AlexNet architecture is used, a similar trend can be observed. Since Places365

has smaller number of classes than ILVRC12, it is reasonable to assume that the

latter is more diverse in content. As a result, it has helped the network to learn more

informative features. On the other hand, although Oxford flowers 102 has even fewer

classes, it should be noted that it is a fine-grain classification dataset. As a result, it

too has helped to learn more informative features compared to Places365. However,
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due to the presence of large number of non-trivial classes, the ILVRC12 dataset has

yielded the best performance among the considered cases.

Table 4-VII. Abnormal image detection results for different choices of the reference
dataset.

ILVRC12 Places365 Flowers102
AlexNet Features KNN 0.790 (0.074) 0.856 (0.056) 0.819 (0.075)
VGG16 Features KNN 0.847 (0.074) 0.809 (0.100) 0.828 (0.077)
AlexNet Binary KNN 0.621 (0.153) 0.851 (0.060) 0.823 (0.084)
VGG16 Binary KNN 0.848 (0.081) 0.837 (0.090) 0.839 (0.077)
AlexNet Features IF 0.613 (0.085) 0.771 (0.107) 0.739 (0.098)
VGG16 Features IF 0.731 (0.078) 0.595 (0.179) 0.685 (0.154)
AlexNet Binary IF 0.641 (0.089) 0.777 (0.092) 0.699 (0.129)
VGG16 Binary IF 0.715 (0.077) 0.637 (0.159) 0.777 (0.110)
AlexNet Features SVM 0.732 (0.094) 0.839 (0.062) 0.818 (0.076)
VGG16 Features SVM 0.847 (0.074) 0.776 (0.113) 0.826 (0.077)
AlexNet Binary SVM 0.736 (0.115) 0.847 (0.065) 0.823 (0.083)
VGG16 Binary SVM 0.834 (0.083) 0.789 (0.114) 0.788 (0.089)
AlexNet Features GMM 0.679 (0.103) 0.832 (0.069) 0.779 (0.076)
VGG16 Features GMM 0.818 (0.072) 0.782 (0.103) 0.771 (0.114)
AlexNet Binary GMM 0.696 (0.116) 0.835 (0.068) 0.815 (0.101)
VGG16 Binary GMM 0.803 (0.103) 0.770 (0.103) 0.777 (0.110)
DOC AlexNet (ours) 0.930 (0.032) 0.896 (0.019 ) 0.899 (0.052)
DOC VGG16 (ours) 0.956 (0.031) 0.918 (0.049) 0.930 (0.059)

Derivations

Batch-variance Loss is a Scaled Version of Sample Variance: Consider the

definition of batch-variance loss defined as,

lb = 1
nk

∑︁n
i=1 zi

T zi where, zi =
[︄
xi − 1

n−1
∑︁

j ̸=i xj

]︄
. Re-arranging terms in zi,
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But,
[︄
xi − 1

n

∑︁n
j=1 xj

]︄T [︄
xi − 1

n

∑︁n
j=1 xj

]︄
is the sample variance σ2

i . Therefore,

lb = 1
nk

n∑︂
i=1

n2σ2
i

(n− 1)2

Therefore, lb = βσ2, where β = n2

k(n−1)2 is a constant and σ2 is the average sample

variance.

Backpropagation of Batch-variance Loss:

Consider the definition of batch variance loss lb,

lb = 1
nk

∑︁n
i=1 zi

T zi where, zi = xi −mi.

From the definition of the inner product,

zi
Tzi = ∑︁k

j=1 zij
2. Therefore, lb can be written as,

lb = 1
nk

n∑︂
i=1

k∑︂
l=1

(xil −mil)2.

Taking partial derivatives of lb with respect to xij. By chain rule we obtain,

∂lb
∂xij

= 2
nk

k∑︂
l=1

xil −mil ×
∂xil −mil

∂xij

.

Note that ∂xij−mij

∂xij
= 1 when j = l. Otherwise, ∂xij−mij

∂xij
= −∂mij

∂xij
= −1

n−1 .

∂lb
∂xij

= 2
nk

[︄
xij −mij −

1
n− 1

∑︂
l ̸=j

xil −mil

]︄
.

∂lb
∂xij

= 2
nk

[︄
n

n− 1xij −mij −
1

n− 1

n∑︂
l=1

xil −mil

]︄
.

∂lb
∂xij

= 2
(n− 1)nk

[︄
n× (xij −mij)−

n∑︂
l=1

(xil −mil)
]︄
.
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Detailed Network Architectures

Shown in Figure 4-8 are the adaptations of the proposed method to the existing CNN

architectures- (a) AlexNet and (b) VGG16, respectively. We have used these two

architectures to carry out all experiments in this paper. In both architectures, two

images from the target dataset t and the reference dataset r are fed into the network

to evaluate cross entropy loss and batch-variance loss. Weights of convolution and

fully-connected layers are shared between the two branches of the network. For all

experiments, stochastic gradient descent algorithm is used with a learning rate of

5× 10−5 and a weight decay of 0.0005.

Summary

We introduced a deep learning solution for the problem of one-class classification,

where training samples of a single class are available along with out-of-distribution data

during training. We proposed a feature learning scheme that engineers class-specific

features that are generically discriminative. To facilitate the learning process, we

proposed two loss functions descriptiveness loss and compactness loss with a CNN

network structure. Proposed network structure could be based on any CNN backbone

of choice. The effectiveness of the proposed method is shown in results for AlexNet

and VGG16-based backbone architectures. The performance of the proposed method

is tested on publicly available datasets for abnormal image detection, novelty detection

and face-based mobile active authentication. The proposed method obtained the

state-of-the-art performance in each test case.
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Figure 4-8. CNN architectures based on AlexNet and VGG16 backbones for the proposed
method.
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Chapter 5

One-class Novelty Detection

As discussed earlier, with the advent of deep learning, one-class novelty detection

has received considerable amount of attention in the literature. Contemporary works

in one-class novelty detection focus on learning a representative latent space for the

given class [16, 22]. Once such a space is learned, novelty detection is performed

based on the projection of a query image onto the learned latent space. Two distinct

strategies are commonly used for this purpose in the literature. In the first strategy,

the difference between the query image and its inverse image (reconstruction) is used

as a novelty detector. Various distance measures ranging from mean squared error

[16] to discriminator output [17] have been used in the literature for this purpose.

In comparison, the second strategy explicitly models the learned latent space using

a distribution [12, 22, 23]. We consider the former strategy for novelty detection.

We investigate limitations of existing representation learning techniques and propose

learning a latent space that exclusively generates only in-class examples, to improve

performance in novelty detection.

Existing work focuses on generating a latent representation that preserves details of

the given class. In doing so, it is assumed that when an out-of-class object is presented

to the network, it will do a poor job of describing the object, thereby reporting a

relatively higher reconstruction error. However, this assumption does not hold at all

times. For example, experiments done on digits in the literature [22, 23] suggest that
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Figure 5-1. Limitations of in-class representation based novelty detection.

networks such as auto-encoders trained on digits with a simple shape such as 0 and 1

have high novelty detection accuracy. In contrast, digits with complex shapes, such as

digit 8, have relatively weaker novelty detection accuracy. This is because a latent

space learned for a class with complex shapes inherently learns to represent some of

out-of-class objects as well. As an example, the latent space learned on digit 8 is also

able to represent other digits such as 1,3,6,7 reasonably well – thereby producing very

low distance error values for out-of-class examples as shown in Figure 5-1 (middle).

We note that the requirement in novelty detection is not only to ensure that in-class

samples are well represented; it is also to ensure that out-of-class samples are poorly

represented. To the best of our knowledge, none of the previous work has addressed the

latter requirement. In this work, we propose One-Class GAN (OCGAN), a two-fold

latent space learning process that considers both these requirements.

At a high-level, we learn a latent space that represents objects of a given class

well. Secondly, we ensure that any example generated from the learned latent space is

indeed from the known class. In other words, if the network is trained on a digits of 8,

we ensure that any sample drawn from the latent space, when used to generate an

image, corresponds to an image of digit 8. This ensures that out-of-class samples are

not well represented by the network. Shown in Figure 5-1(bottom) are the outputs

generated by the proposed method for the inputs shown in Figure 5-1(top). Since the

entire latent space corresponds to images from digit 8, all projections into the latent

space in return produce images of digit 8
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Motivation

Let us reconsider an autoencoder trained on digit 8 where a network trained to

represent a given class has ended up providing good representation for images of other

classes. When images of a given class are sufficiently diverse, smoothly transitioning

between the projection of one in-class image in the latent space to that of another can

be done along infinitely many different paths – this is particularly the case for latent

spaces with high dimensionality. In training auto-encoders, we model projections of

only observed examples into the latent space - not all possible paths between the

corresponding latent points.

In Figure 5-2 we visualize a path traced in the latent space between two points

corresponding to two different images of the given class (class 8). This visualization

reveals that as we transition from one point to the other in the latent space along the

specified path, certain intermediate latent samples resemble the likeness of digit 1.

When the network observes an instance of digit 1, it gets projected onto such samples.

Since digit 1 is well represented by the network, its reconstruction error will be low,

although it is out of class. The core idea of our proposal is based on this observation.

We argue that if the entire latent space is constrained to represent images of the given

class, the representation of out-of-class samples will be minimal – thereby producing

high reconstruction errors for them.

With this strategy in mind, we explicitly force the entirety of the latent space to

represent only the given class. When applied to the example in Fig. 5-2, all latent

samples along any path between the two 8’s will reconstruct into a set of digit 8

images. Visualization of the path as shown in Figure 5-2(b) validates this claim. As

a result, when an out-of-class digit 1 is presented to the model, there will be a high

difference between the digit and the reconstruction of the digit (which will now look

more like a digit 8). As a result, the proposed method is able to produce superior
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Figure 5-2. Illustration of the latent space learned for digit 8 using a denoising-autoencoder
network (left) and OCGAN(right).

novelty detection performance.

Proposed Strategy

The proposed solution, OCGAN, consists of four components: a denoising auto-

encoder, two discriminators (latent and visual discriminator) and a classifier. The

proposed network is trained using adversarial principles. We describe each of these

components in detail below.

Denoising auto-encoder: Following previous work, we use a denoising auto-encoder

network to learn a representation for the given concept. Encoder network and the

Decoder network are denoted by symbols En and De respectively. Our strategy

revolves around densely sampling from the latent space. To facilitate this operation,

with the intention of having a bounded support for the latent space, we introduce a

tanh activation in the output layer of the encoder. Therefore, support of the latent

space is (−1, 1)d, where d is the dimension of the latent space. In our implementation,

we add zero mean Gaussian white noise with a variance of 0.2 to input images and
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train the auto-encoder using mean squared error loss as shown below:

lMSE = ∥x−De(En(x + n))∥2
2, (5.1)

where x is an input image and n ∼ N (0, 0.2). In addition, adversarial loss terms

introduced in the following sections are also used to learn parameters of the auto-

encoder. Since the decoder part of the auto-encoder also acts as the generator of

images from latent space, we use the words decoder and generator interchangeably in

the remainder of the text.

Latent Discriminator: The motivation of our method is to obtain a latent space

where each and every instance from the latent space represents an image from the

given class. If representations of the given class are only confined to a sub-region of

the latent space, this goal is not possible to achieve. Therefore, we explicitly force

latent representations of in-class examples to be distributed uniformly across the latent

space. We achieve this using a discriminator operating in the latent space that we call

latent discriminator Dl . The latent discriminator is trained to differentiate between

latent representations of real images of the given class and samples drawn from a

U(−1, 1)d distribution. We consider a loss of the form:

llatent = −(Es∼U(−1,1)[log Dl(s)] + Ex∼px [log(1−Dl(En(x + n)))]) (5.2)

where, px is the distribution of in-class examples. We train the latent discriminator

along with the auto-encoder network using maxEn minDl
llatent. Since the latent

space is a hyper-cube with support (−1, 1)d, at equilibrium, the latent projections

of examples from the given class are expected to be distributed evenly following a

U(−1, 1)d distribution.

Visual Discriminator: In order for the network not to represent any out-of-class

objects, we propose to sample exhaustively from the latent space and ensure corre-

sponding images are not from out-of class. Since there are no negative classes present
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during training, this condition is difficult to enforce. Instead, we make sure that all

images generated from latent samples are from the same image space distribution as

the given class. In order to enforce this constraint, we use a second discriminator that

we call visual discriminator (Dv).

Visual discriminator is trained to differentiate between images of the given class

and images generated from random latent samples using the decoder De(s), where s

is a random latent sample. We refer to latter images as fake images for the remainder

of the paper. When the visual discriminator is fooled, fake images chosen at random

in general will look similar to examples from the given class. We evaluate adversarial

loss lvisual as follows.

lvisual = −(Es∼U(−1,1)[log Dv(De(s))] + Ex∼pl
[log(1−Dv(x))]). (5.3)

We learn visual discriminator together with the auto-encoder network using

maxDe minDv lvisual.

Informative-negative Mining: The components described thus far account for the

core of the proposed network. Shown in Figure 5-3(a) is a visualization of fake images

obtained by jointly training these three sub-networks using digit 9. Figure 5-3(a)

suggests that the proposed network is able to generate plausible images of the given

class for majority of the random latent samples. However, as indicated in the figure

there are few cases where the produced output looks different from the given class.

For example, the highlighted digit in Figure 5-3(a) looks more like a zero than a nine.

This result suggests that despite the proposed training procedure, there are latent

space regions that do not produce images of the given class. This is because sampling

from all regions in the latent space is impossible during training – particularly when

the latent dimension is large. A naive solution to this problem is to reduce the

dimensionality of the latent space. However, with a lower dimension, the amount

of detail the network preserves goes down. As a result, although all latent samples
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(a) (b)

Figure 5-3. Visualization of generated images from random latent samples when the
network is trained (a) without and (b) with informative-negative mining.

produce an in-class image, a very low dimensionality would diminish performance in

novelty detection.

As an alternative, we propose to actively seek regions in the latent space that

produce images of poor quality. For the remainder of the paper we refer to these

images as informative-negative samples. We use informative-negative samples to train

the generator so that it learns to produce good quality in-class images even for these

latent samples. However, we continue to use samples chosen at random to train two

discriminators, as feeding weaker samples would hinder training of discriminators. In

order to find informative-negative samples, first we start with random latent-space

samples and use a classifier to assess the quality of the image generated from the

sample. The loss of the classifier is used to back-propagate and compute gradients in

the latent space. We then take a small step in the direction of the gradient to move

to a new point in the latent space where the classifier is confident that the generated

image is out-of-class.

Classifier: The role of the classifier is to determine how well the given image resembles

content of the given class. Ideally such a classifier can be trained using positive and

negative examples of a given class. However, since there are no negative training

samples available, we train a weaker classifier instead. In the proposed mechanism,

if the content belongs to the given class, the classifier deems it positive, and if the

content bears no resemblances to the positive class, the classifier deems it negative.
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We train the classifier using reconstructions of in-class samples as positives and

fake images, those that are generated from random samples in the latent space, as

negatives. This classifier is trained independent of other network elements using binary

cross entropy loss lclassifier. In other words, the classifier loss is not considered while

learning generator and discriminator parameters. Initially, since the quality of fake

samples is poor, the classifier is able to obtain very low loss value. As the quality of

fake images improves with training, differentiation becomes harder and it forces the

classifier to become smarter.

It should be noted that the classifier’s prediction of a given image as a negative may

or may not mean that the given image always corresponds to an informative-negative

latent sample. Even if it does not, such images do not hinder the training process at

all, and training proceeds as usual.

Since the informative-negative classifier does not participate in the GAN game,

there is no requirement to balance the capacity of the classifier with the generator

(whereas, this is the case for both other discriminators). Therefore, it is possible to

make the classifier very strong to increase its confidence in in-class reconstructions.

Figure 5-4 shows the impact of the informative-negative mining procedure using a

few illustrative examples. In the figure, image pairs before and after negative mining

are displayed. We have shown cases where the original images are not largely changed

in the bottom row. In the top row we have shown a few examples where the input

images have been substantially altered as a result of informative-negative mining. For

example, the top left sample of digit 2 appears to be a digit 7 after the process. In

Figure 5-3(b), we show the impact of this procedure by visualizing a few fake images

generated from random latent samples for digit 9. It is evident from the figure that

informative-negative mining has helped in generating digits of the desired class more

consistently across the whole latent space.

Full OCGAN Model: The full network of OCGAN and the breakdown of each
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Figure 5-4. Effectiveness of informative-negative mining.

individual component of the proposed network is shown in Figure 5-5. The network

is trained in two iterative steps. In the first step, all other sub-networks except the

classifier network are frozen. The classifier network is trained with reconstructed

in-class examples and generated fake examples. Then, it is frozen and the auto-encoder

and two discriminators are trained adversarially. The latent discriminator is trained

based on latent projections of in-class images and random samples drawn from U(−1, 1)

distribution. The visual discriminator is trained using fake images generated from

random latent samples and real images from the given class. Discriminators are trained

by minimizing the loss llatent + lvisual.

Prior to each generator step, informative-negative samples are sought in the latent

space using a batch of random samples drawn from the U(−1, 1) distribution, and using

gradient descent steps from the classifier’s loss in the latent space. The auto-encoder

is trained using informative-negative samples and latent projections of (noise-injected)

real examples of the given class using 10× lMSE + lvisual + llatent. A larger weight

is given to the lMSE term to obtain good reconstructions. The coefficient was chosen

empirically based on the quality of reconstruction. In our implementation, we started

mining for informative-negative samples only after the network started producing

fake images of reasonable quality. Steps of the training procedure is summarized in

Algorithm 1.
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Input : Set of training data x, iteration size n
Output : Models: En, De
for iteration 1 to → n do

Classifier update: keep Dl, Dv, En, De fixed.
l1 = En(x + n)
l2 = U(−1, 1)
lclassifier = C(De(l2), 0) + C(De(l1), 1)
Back-propagate lclassifier to change C

Discriminator update:
llatent = Dl(l1, 0) + Dl(l2, 1)
lvisual = Dv(De(l2), 0) + Dv(x, 1)
Back-propagate llatent + lvisual and change Dl, Dv

Negative mining : Keep all networks fixed.
for sub-iteration 1 to → 5 do

lclassifier = C(De(l2), 1)
Back-propagate lclassifier to change l2

end
Generator update: keep Dl, Dv, C fixed.
llatent = Dl(l1, 1) + Dl(l2, 0)
lvisual = Dv(De(l2), 1) + Dv(x, 0)
lmse = ||x−De(l1)||2
Back-propagate llatent + lvisual + λlmse to change En, De

end
Algorithm 1: Training methodology of the OCGAN model: Dl, Dv and C
represent the outputs of the latent discriminator, visual discriminator and the
classifier respectively. En and De are the encoder and the decoder/generator
respectively. Real label and fake label are denoted by 1 and 0 respectively.
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Figure 5-5. Illustration of OCGAN architecture: the network consists of four sub-networks
: an auto-encoder, two discriminators and a classifier.

Network Architecture and Hyper-parameter Selection: The auto-encoder is

a symmetric network with three 5 x 5 convolutions with stride 2 followed by three

transposed convolutions. All convolutions and transposed-convolutions are followed by

batch normalization and leaky ReLU (with slope 0.2) operations. A tanh activation

was placed immediately after the last convolution layer to restrict support of the latent

dimension. We used a base channel size of 64 for the auto-encoder and increased

number of channels by a factor of 2 with every layer.

The visual discriminator and classifier are networks with three 5 x 5 convolutions

with stride 2. Base channel size of two networks were chosen to be 12 and 64

respectively. Latent discriminator is a fully connected network with layers of sizes 128,

64, 32 and 16 respectively. Batch normalization and ReLu activations were used after

each layer in all networks.

At the end of training, we selected the model that resulted in minimum MSE

on the validation set for evaluation. Model hyper-parameters such as learning rate,

latent space size were chosen based on the MSE of validation set. The number of base

channels in each network and coefficient of loss terms were decided based on the plot

of training loss of each network component.
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Experimental Results

Evaluation Methodology

We test the effectiveness of the proposed method using four publicly available multi-

class object recognition datasets. In order to simulate a one-class setting, each class at

a time is considered as the known class, as proposed in [23], [22] and [12]. The network

is trained using only samples of the known class. During testing, we treat the union

of remaining classes as out-of-class samples. Following previous work, we compare the

performance of our method using Area Under the Curve (AUC) of Receiver Operating

Characteristics (ROC) curve. Here, we note that there exist two protocols in the

literature for one-class novelty detection.

Protocol 1 : Training is carried out using 80% of in-class samples. The remaining

20% of in-class data is used for testing. Negative test samples are randomly selected

so that they constitute half of the test set.

Protocol 2 : Use the training-testing splits of the given dataset to conduct training.

Training split of the known class is used for training / validation. Testing data of all

classes are used for testing.

The work of [22] used the 2nd protocol to evaluate their performance in MNIST[75],

FMNIST[76] and COIL100[77] datasets, whereas the authors of [23] and [12] chose

the 1st protocol on MNIST and CIFAR10[65] datasets. We compare our method on

these baselines using the relevant protocol for fair comparison.

Datasets and Experimental Results

In this section we briefly introduce each dataset used for evaluation and present

experimental results for the proposed method. In Figure 5-6, a few representative

examples from the considered datasets are shown. We tabulate results corresponding

to Protocol 1 in Table 5-I and results of protocol 2 in Tables 5-II and 5-III.
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CIFAR10 COIL FMNIST MNIST

Figure 5-6. Representative images from the datasets used for evaluation. Images in each
column belong to the same class.

COIL100 : COIL100 is a multi-class dataset where each object class is captured

using multiple different poses. There are 100 image classes in the dataset with a

few images per class (typically less than hundred). Figure 5-6 suggests that the

intra-class difference is very small for this dataset. As a result, all considered method

produces high AUC values for protocol 1 as shown in Table 5-I. Our proposed method

of OCGAN records 0.995 AUC, surpassing [22] which reported AUC of 0.968.

fMNIST : fMNIST is intended to be a replacement for MNIST, where the dataset

comprises of 28×28 images of fashion apparels/accessories. As evident from Figure 5-6,

fMNIST is a more challenging dataset compared to both COIL100 and MNIST, since

there is considerable amount of intra-class variances. The proposed method improves

novelty detection performance by over 2% compared to [22] for this dataset, using

protocol 1.

MNIST : MNIST dataset contains hand-written digits from 0-9 with a 28 × 28

resolution. This dataset has been widely used to benchmark one-class novelty detection

results. In terms of complexity, it is an easier dataset compared to fMNIST, but more

challenging than COIL100. We report performances of the proposed method on this

dataset using both protocols.

When protocol 1 was used, our OCGAN model yielded an improvement of about

3% compared to state-of-the-art [22] method. As shown in Table 5-II, when protocol
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Table 5-I. Mean One-class novelty detection using Protocol 1.

MNIST COIL fMNIST
ALOCC DR [17] 0.88 0.809 0.753
ALOCC D [17] 0.82 0.686 0.601
DCAE [16] 0.899 0.949 0.908
GPND [22] 0.932 0.968 0.901
Ours: OCGAN 0.977 0.995 0.924

Table 5-II. One-class novelty detection results for MNIST dataset using Protocol 2.

0 1 2 3 4 5 6 7 8 9 MEAN
OCSVM [20] 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.9513
KDE [13] 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.8143
DAE [15] 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.8766
VAE [38] 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.9696
Pix CNN [78] 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.6183
GAN [19] 0.926 0.995 0.805 0.818 0.823 0.803 0.890 0.898 0.817 0.887 0.8662
AND [23] 0.984 0.995 0.947 0.952 0.960 0.971 0.991 0.970 0.922 0.979 0.9671
AnoGAN [19] 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.9127
DSVDD [12] 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.9480
OCGAN 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.9750

2 is used, our method has not only registered a better average AUC value, it has

reported best AUC for individual classes in 9 out of 10 classes.

CIFAR10 : CIFAR10 is an object recognition dataset that consists of images from

10 classes. Out of the considered datasets, CIFAR10 is the most challenging dataset

due to it diverse content and complexity. Specifically, it should be noted that all other

datasets are very well aligned, without a background. In comparison, CIFAR10 is not

an aligned dataset and it contains objects of the given class across very different settings.

As a result, one-class novelty detection results for this dataset are comparatively weaker

for all methods. Out of the baseline methods, [12] has done considerably better than

other methods. Following their work, we carried out the same pre-processing in our

experiments. In addition, we subtracted the class-mean image from all training and

testing images. We obtained comparable results to deep-SVDD with the proposed

method where we recorded average AUC of 0.6566.
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Table 5-III. One-class novelty detection results for CIFAR10 dataset using Protocol 2.

AIRPLANE AUTOMOBILE BIRD CAT DEER DOG FROG HORSE SHIP TRUCK MEAN
OCSVM [20] 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.5856

KDE [13] 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.6097
DAE [15] 0.411 0.478 0.616 0.562 0.728 0.513 0.688 0.497 0.487 0.378 0.5358
VAE [38] 0.700 0.386 0.679 0.535 0.748 0.523 0.687 0.493 0.696 0.386 0.5833

Pix CNN [78] 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.5506
GAN [19] 0.708 0.458 0.664 0.510 0.722 0.505 0.707 0.471 0.713 0.458 0.5916
AND [23] 0.717 0.494 0.662 0.527 0.736 0.504 0.726 0.560 0.680 0.566 0.6172

AnoGAN [19] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.6179
DSVDD [12] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.6481

OCGAN 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.6566

Ablation Study

In order to investigate the effectiveness of each additional component of the proposed

work, we carried an ablation study using the MNIST dataset. Specifically, we consider

four scenarios. In the first scenario we consider only the auto-encoder. In the second

and third scenarios, we use auto-encoder with the visual and latent discriminators

respectively. In the final scenario, we consider the full proposed model, OCGAN.

Mean AUC for each class of MNIST dataset is tabulated in Table 6-V.

We note that the AUC value obtained for the auto-encoder is already high at 0.957.

Therefore even slightest of improvement from this point is significant. When a latent

discriminator is introduced, performance of the system improves marginally by 0.2%.

When a visual discriminator is added on top, the performance improves further by

1%. When informative-negative mining as added, performance is further improved by

a 0.4%.

Table 5-IV. Ablation study for OCGAN performed on MNIST.

Without any Discriminators 0.957
With latent Discriminator 0.959
With two Discriminators 0.971
Two Discriminators + Classifier 0.975
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Summary

In this chapter, we dived deep into mechanics of reconstruction-error based one-class

novelty detection. We showed that a network trained on a single class is capable of

representing some out-of-class examples, given that in-class objects are sufficiently

diverse. In order to combat this issue we introduce a latent-space-sampling-based

network-learning procedure. First we restricted the latent space to be bounded

and forced latent projections of in-class population to be distributed evenly in the

latent space using a latent discriminator. Then, we sampled from the latent space

and ensured using a visual discriminator that any random latent sample generates

an image from the same class. Finally, in an attempt to reduce false positives we

introduced an informative-negative mining procedure. We showed that our OCGAN

model outperforms many recently proposed one-class novelty detection methods on

four publicly available datasets. Further, by performing an ablation study we showed

that each component of the proposed method is important for the functionality of the

system.
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Chapter 6

Multiple-class Novelty Detection/
Open-set Recognition

In this chapter, we consider multiple-class novelty detection problem in the absence

of out of distribution data1. Since there exists annotated data belonging to multiple

classes, it is possible to train a deep-classification network in this setting. A naive

solution to the stated problem is to threshold the probability of the most probable

class produced by the network [79]. CNNs are trained with the objective of maximizing

the probability of the correct class over the training data. Therefore, if the training

process generalizes well enough, query samples from known classes can be expected to

produce high probabilities. However, the open-set recognition literature [9] points out

the possibility of novel object samples producing equally high probabilities.

When a discriminative classifier is trained, it learns a set of features that are

needed to discriminate between the known classes. In the ideal case, features that are

not essential to separate the known classes are discarded during the learning process.

We refer to these features as optimal closed-set features. However, optimal closed-set

features are likely insufficient for capturing differences between open-set samples and

known-classes [39]–additional features are likely required to separate the known classes

and open-set samples. Open-set samples could end up producing high class-activations,
1In this setting, open-set recognition and multiple-class novelty detection have been used inter-

changeably in the literature.
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Figure 6-1. (a) A classifier defines a positive half space for each class. (b) An open-set
object could project either near a decision boundary (samples B and C) or deep into the
positive half space (samples A and D) of a given class. (c) We learn a classifier which
takes into account more factors than just class separation.

depending on where in the feature space they are projected.

We investigate two techniques that reduce this effect. First, we extend optimal

closed-set features so that features have the capacity to describe shapes, structure

and semantics of known-class objects. During training, the classifier will consider the

overall semantics of images (not just the discriminative aspects) when class decision

boundaries are defined. As a result, open-set images will not be positioned in any of

the positive half-spaces on the grounds of having different semantics. We obtain such

diverse features by incorporating self-supervision in learning.

Second, we model the known-class objects using a generative model. Then, a clas-

sifier is learned by considering both the input image and its generative representation.

The classifier will take into account the correspondence between the two inputs when

the decision boundaries are obtained as shown in Figure 7-2(c). Since the generative

model is trained using known-class images, it will not represent open-set samples well.

As a result, open-set samples will demonstrate high disparity (Figure 7-2(c)) thereby

getting projected out-side the positive half spaces of known classes.
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Proposed Method

In this section, we motivate the need for a richer feature representation for effective

open-set recognition. Then, we introduce conditioning on generative representation

and self-supervision to overcome this challenge. Finally, we describe the proposed

training and testing procedure.

Challenges in Open-set Recognition

An illustration of why open-set recognition is challenging is shown in Figure 7-2. When

a classifier is trained, the positive half spaces of each class are identified (these half

spaces are described by the vector defined using the final fully connected layer weights

corresponding to the class). When a sample appears deeper in the identified positive

half space, it will generate a larger class activation. On the other hand, a sample

appearing near the half-space boundary will result in a lower class activation. When

the network is trained, a feature embedding is learned such that each training sample

is encouraged to be pushed deeper in to the positive space corresponding to its ground

truth. Therefore, as long as the query samples follow the same distribution as the

training samples, known-class samples are expected to produce large activation values.

Consider an open-set image that is projected onto one of the following regions:

1) Intersection of all class boundaries. This will arise when the open-set image

does not have any components/regions common with any of the known classes (See

points B and C in Figure 7-2)(b). In this case, the class activation scores of all classes

will be low. These types of open-set samples may be filtered by thresholding the

maximum class activation score.

2) Deep into the positive half space of a class. This situation (such as points

A and D in Figure 7-2(b)) arises when the open-set image has a semantically similar

component/region to that of a known class (or the network perceives to be so). As
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a result, the activation of the aforementioned class becomes high. These instances

cannot be easily rejected by considering class activations. We specifically focus on

the latter case and investigate techniques that can reduce class activation scores of

open-set samples.

Figure 6-2. Comparison of the network architectures. (a) A CNN network. (b) CNN
with self-supervision. (c) Proposed network.

Self-Supervised Learning

When a closed-set classifier is trained, the classifier learns only features that are

necessary to differentiate between known classes. However, these features are not

always descriptive enough to separate out open-set samples from known classes. By

introducing a more descriptive feature, we reduce the activation magnitude of open-set

samples. For this purpose, we extend the conventional classification network into a

multi-task network where an auxiliary classifier performs self-supervision.

We adopt the self-supervision framework proposed in [80]. In [80], a geometric

transformation is applied to an input at random from a finite set of transformations,
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and the self-supervision branch of the network is used to predict which transformation

was applied. In order to determine the transformation that was applied, the network

needs to learn structural properties of image content such as shape and orientation.

As a result, when a self-supervision branch is added on top of the classification task,

the intermediate features becomes more descriptive.

Figure 6-2(a) and (b) illustrate network architectures of a conventional classification

network and a classification network extended to perform self-supervision respectively.

In the former case, each training instance is passed through the classification network

(C) to produce a classification loss lc. In the latter case, the classification network

(C) has two output branches. Each forward pass consists of two steps. In the first

step, a classification loss lc is produced by passing the input through the open-set

classification branch. During the second step, the input image is subjected to a

random transformation. The transformed image is passed through the transformation

classification branch to arrive at self-supervision loss lss. When evaluating the self-

supervision loss, the transformation applied to the input is considered to be ground

truth. The network is trained by considering a composite loss of the form α1lc + α2lss.

In our experiments, we chose α1 = 0.8, α2 = 0.2 with the aim of giving more importance

to the primary classification task2. For our experiments we used 14 transformations

where each transformation was formed by randomly flipping the image (horizontally

and vertically) and by rotating image by multiples of 90 degrees.

In section 6, we demonstrate the effectiveness of introducing self-supervision

through an ablation study.

Augmenting with Generative Representation

As the second contribution of our work, we augment the input with its representation

obtained through a generative framework. Let us first consider a generative model
2Please refer to the supplementary material for a sensitivity analysis of these parameters.
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trained on the images of known classes. For example, the generative model can be a

deep auto-encoder network. Ideally, the generative model will be able to represent and

reproduce samples of known classes. On the other hand, since the generative model

has not seen samples from open-set classes, it will not be able to represent (re-produce)

such samples equally well. If this is the case, there will be high correspondence between

input images and reconstructed images generated by the generative model for known

class samples. Correspondence will be low for open-set samples.

In Figure 7-2(c), we illustrate the implication of augmenting a generative recon-

struction to the open-set problem. In this idealistic case, we have denoted the disparity

between the original image and the reconstructed image as an additional axis. Here,

the disparities for known samples are smaller compared to open-set samples. In this

scenario, the classifier will learn two new positive half planes defined by hyper-planes

similar to that of shown in Figure 7-2(c). If disparity is considerably high, it will force

opens-set samples to be outside the positive half space of all the classes.

Based on this intuition, we carry out the training process in two steps. First, we

train a generative network (G) using training samples. Then, given an input x, we

train the classification network (C) by considering the augmented input [x, G(x)] as

shown in Figure 6-2(c).

Training and Testing Procedure

Architecture. We use the network architecture proposed in [43]. The encoder

network used for the autoencoder consists of 10 convolutional 3 × 3 layers, where

each layer is followed by a batch-normalization and leaky ReLu(0.2) operation. The

decoder network has a similar structure to that of the encoder and is constructed with

transpose-convolution layers instead. The classifier network consists of 9 layers of 3×3

convolution filters followed by batch-normalization and leaky ReLu(0.2) operations. It

is terminated using a fully-connected layer. The only difference in our classifier from
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Generative Model Classifier Model Open-set Performance
1 2 3 4 5 Avg

Vanilla AE Vanilla CNN 78.0 76.7 84.9 84.9 79.4 80.8
Conditioned-AE Vanilla CNN 79.1 77.3 85.7 87.4 80.3 82.0
Conditioned-AE WRN28-10 77.5 81.7 86.2 87.5 82.6 83.1
WGAN WRN28-10 81.7 79.2 85.5 87.2 84.3 83.6

Table 6-I. Impact of using different architectures on open-set recognition on the CIFAR10
dataset. We observe that using more sophisticated generative models and classifiers both
improve open-set performance.

[43] is that our network accepts a 6-channel image as the input.

In order to investigate the impact that different architectures have on open-set

rejection performance, we vary the classifier and generative model and study the impact

they have on open-set recognition. In Table 6-I, we tabulate open-set recognition

performance in terms of AUC-ROC under different architectures across five different

known-openset splits for the CIFAR10 dataset. Here, vanilla AE and vanilla CNN

refers to the network architectures used in [43]. Conditioned AE [81] is a modified

version of Vanilla AE, where a fully connected layer classifier is connected to the

latent space. This version of the AE produces better known-openset separation in

reconstructed image space due to this additional constraint. WRN28-10 and WGAN

refers to standard wide-ResNet(depth 28 and width 10) [82] and Wasserstein GAN

[83] respectively. According to Table 6-I, we observe that using a more sophisticated

network, both as a generative model and a classification model have contributed

towards improving average open-set recognition performance.

Training. We trained all networks for 1000 iterations using the Adam optimizer with

a batch size 64, learning rate of 0.001 and parameters (0.5, 0.999). The training process

is outlined in Figure 6-2(c) and Algorithm 2. As descried in Algorithm 2, each training

sample is first passed through the classification branch of the network to obtain the

classification loss lc. Then, a transformation is randomly selected from the set of

available transformations. If the chosen transformation index is r, the transformed

image is passed through the self-supervision branch to produce a self-supervision loss
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Input : Training sample x,label y, Transformation Set T , Models: G, C ,
Weights α1,α2

Output : Models: G, C

Classification Step.
x̂←− G(x)
z = [x, x̂];
lc = CrossEntropy(C(z), y)
Self-supervision Step.
Pick transformation randomly.
r = rand(Ω(T ))
t = T [r];
z = [t(x), t(x)ˆ ];
lss = CrossEntropy(C(z), r)
lt = α1lc + α2lss

Backpropagate to change G and C.
Algorithm 2: Training Algorithm

which is calculated using cross-entropy by considering r as the ground-truth label.

The composite loss tl is backpropagated to find gradients associated with each network

weight. Finally, networks C and G are updated according to the network updating

algorithm.

Testing. During inference, the self-supervision branch of the network is disregarded

as shown in Figure 6-2(d). Given a query image x, first the augmented representation

[x, G(x)] is obtained. Then, the augmented input is passed through the classifier

network to obtain class activations a = C([x, G(x)]). If the maximum activation

max(a) is below a predetermined threshold γ, it is declared that the input is an

open-set instance. In practice, threshold γ is determined such that a minimum true

positive rate is guaranteed on a validation set. In our experiments we picked γ such

that true positive ratio is at least 0.9.

Experimental Results

We evaluate the performance of the proposed method on standard datasets used for

open-set recognition and compare with state-of-the art methods. First, we report per-
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formance on open-set recognition and out-of-distribution recognition tasks respectively.

Then we consider a case study on the CIFAR10 dataset to analyze performance of the

proposed method qualitatively. We conclude the latter section with an ablation study.

Open-set Recognition

Recent deep learning based open-set recognition methods followed the protocol in

[43] and used the numbers reported in [43] as a baseline for comparison. In [43], an

open-set recognition scenario is simulated on a multi-class classification dataset by

randomly selecting n classes as known. The remaining classes are considered to be

open-set classes. This protocol is used to simulate five trials of open-set recognition and

performance is measured using the average area under the curve of ROC (AUC-ROC)

curve.

Performance across different splits varies significantly (in our experiments AUC

for CIFAR10 varied between 77% to 87% across different splits). There are many

possible known-openset combinations one could consider when the above protocol is

followed(
(︂

10
6

)︂
for CIFAR10, SVHN and

(︂
200
20

)︂
for TinyImageNet). Open-set performance

is highly correlated with the classifier performance. A better classifier is able to reject

open-set samples more effectively (for example in [45], open-set performance improves

when a DenseNet backbone is used as compared to a vanilla CNN ). Therefore, for a

fair comparison, we argue that all methods should use identical splits and the same

network backbone.

In this spirit, we use the same autoencoder and classifier architectures as [43].

Further, we test on the same known-openset splits as [43]3. Note that [44] used

different known-openset splits in their evaluation. We used the code released by the

authors of [44]4 to evaluate open-set performance on the same splits and we report
3Exact splits used by [43] can be found at github.com/lwneal/counterfactual-open-set.
4Code is found at github.com/otkupjnoz/c2ae. We validated results obtained for considered class

splits with authors of [44].
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these results in our paper.

We carried out tests on the following datasets using the protocol described in [43]:

CIFAR10 and SVHN. Both CIFAR10 [65] and SVHN [84] are 10-class classification

datasets. CIFAR10 contains data from four vehicle classes and six animal classes.

SVHN is a dataset of photographed numbers. In our tests we considered splits from

[43] where six classes are chosen to be known. Remaining classes are considered to be

open-set.

CIFAR+10. CIFAR+10 training set consists vehicle classes of CIFAR10 dataset as

known-classes. Vehicle classes from CIFAR10 and 10 vehicle classes samples from

CIFAR100 [85] is considered to be open-set classes.

CIFAR+50. Same training setting as CIFAR10+. The vehicle classes from CIFAR10

and 50 vehicle classes samples from CIFAR100 are considered to be open-set classes.

TinyImageNet. TinyImageNet is a sub-set of 200 classes taken from the ImageNet

dataset [63]. 20 classes are considered to be known and remaining 180 classes are

considered to be open-set. Known-openset splits are chosen to be the same as in [43].

In Table 6-II, we tabulate open-set detection performance of known-classes for

the proposed method with baseline methods. For each experiment, we indicated

the openness[9], defined by 1−
√︂

K
M

, where K and M denote the number of known

classes and total number of classes, respectively. The performance of the baseline

methods is obtained from [45] and [43]. According to Table 6-II, the proposed

method has a significant improvement for the CIFAR10 dataset with an increase in

performance of over 10%. A similar improvement is seen for the CIFAR+10 and

CIFAR+50 test cases. Since CIFAR+50 dataset has more openness due to more

open-set classes, it has produced slightly lower performance compared to CIFAR+10.

For the SVHN dataset, the performance improvement is about 2%. For TinyImageNet,

our performance is on par with other open-set methods where the proposed method

performs marginally better. Table 6-III lists the closed set classification accuracy
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CIFAR10 CIFAR+10 CIFAR+50 SVHN TinyImageNet
13.39% 33.33% 62.86% 13.39% 57.35%

SoftMax 67.7± 3.8 81.6± N.R. 80.5± N.R. 88.6± 1.4 57.7± N.R.
OpenMax (CVPR16) [Bendale_2016_CVPR] 69.5±4.4 81.7± N.R. 79.6± N.R. 89.4±1.3 57.6± N.R.
G-OpenMax (BMVC17) [42] 67.5±4.4 82.7±N.R. 81.9± N.R. 89.6±1.7 58.0± N.R.
OSRCI (ECCV18) [43] 69.9±3.8 83.8± N.R. 82.7± N.R. 91.0±1.0 58.6± N.R.
C2AE (CVPR19) [44] 68.2 ± 4.1 82.3 ± 0.3 81.3 ± 0.3 89.3 ± 1.6 58.1 ± 1.9
CROSR(CVPR19) [45] N.R. N.R. N.R. 89.9±1.8 58.9±N.R.
Ours (Plain CNN) 80.7±3.9 92.8±0.2 92.6±0.0 93.5±1.8 60.8±1.7
Ours (WRN-28-10) 83.1±3.9 91.5±0.2 91.3±0.2 95.5±1.8 64.7±1.2

Table 6-II. Open-set detection performance in terms of AUC-ROC curve. N.R. is used
when the original work did not report a particular figure.

CIFAR10 CIFAR+10 CIFAR+50 SVHN TinyImageNet
Ours (Plain CNN) 92.8±1.7 94.4±0.0 94.4±0.0 96.6±0.4 49.2±2.9
Ours (WRN-28-10) 95.09±1.3 97.4±0.2 97.4±0.2 97.29±1.3 55.9±2.8

Table 6-III. Closed-set accuracy for the proposed method.

for each dataset. In both Tables 6-II and 6-III, we reported the performance of our

method when WideResNet28-10 [82] classifier is used. It can be observed that using

WideResNet, which is a better classifier, open-set recognition performance increases

in majority of time. This result suggests that better performance can be obtained by

using more sophisticated classifiers.

Out-of-distributional Detection

We evaluate the performance of the proposed method in Out-of-distributional detection

(OOD) [79] on CIFAR10 dataset. Out-of-distributional detection is a special case of

open-set detection. Here, it is assumed that the open-set samples follow a different

distribution than the known-set distribution. Following the protocol outlined in [45],

we considered all classes in CIFAR10 as known-classes and trained a 13-layer VGG

model as specified in [45]. The output channels of each 3 × 3 convolutional block

number were 64, 128, and 256, and they consist of two, two, and four convolutional

layers with the same configuration. Then, we consider test images from ImageNet and

LSUN dataset [86] as out-of-distributional images when each are cropped and resized

respectively [87].

Table 6-IV shows the out-of-distributional performance in terms of macro-averaged
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Training Method Detector ImageNet-Crop ImageNet-Resize LSUN-Crop LSUN-Resize

Cross-entropy SoftMax [79] 63.9 65.3 64.2 64.7
OpenMax [Bendale_2016_CVPR] 66.0 68.4 65.7 66.8

Counterfactual SoftMax [43] 63.6 63.5 65.0 64.8

LadderNet
SoftMax [79] 64.0 64.6 64.4 64.7
OpenMax [Bendale_2016_CVPR] 65.3 67.0 65.2 65.9
CROSR [45] 62.1 63.1 62.9 63.0

DHRNet
SoftMax [79] 64.5 64.9 65.0 64.9
OpenMax [Bendale_2016_CVPR] 65.5 67.5 65.6 66.4
CROSR [45] 72.1 73.5 72.0 74.9

Ours Activations 75.7 79.2 75.1 80.5
SoftMax 82.1 77.7 84.3 78.4

Table 6-IV. Performance of out-of-distributional object detection for CIFAR10 dataset
with VGG13 network. Performance is measured using macro-F1 measure.

F1 score. For the proposed method, following other OOD works [87], every sample

producing a score lower than a 10%th percentile of matched scores were identified as

open-set. It should be noted that it is customary to detect OOD samples based on

SoftMax scores [79]. Therefore in Table 6-IV we reported F1 scores for the proposed

method both when SoftMax scores and class activations are considered for decision

making. All other numbers except ours are taken from [45]. According to Table 6-IV,

the proposed method out-performs baseline methods in all test cases. It should be

noted that SoftMax scores yielded better OOD detection compared to class activation

scores whenever images are cropped instead of resized. This is not surprising as

an image crop contains little structure. As a result, image crops are more likely to

produce balanced probabilities thereby making open-set detection based on SoftMax

probabilities more effective.

Case Study and Ablation Study

We conducted a case-study on CIFAR10 dataset where all animal classes (bird, cat,

deer, dog, frog and horse) were considered to be known. Vehicle classes (airplane, car,

ship and truck) were considered to be open-set. We compare the performance of a

conventional CNN network (Figure 6-2(a)) with the proposed method (Figure 6-2(c)).

The conventional CNN produced a AUC of 84.35% where as the proposed method

produced an AUC of 91.24%.

Figure 6-3 visualizes the score histograms generated for open-set samples and
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(a) CNN (Baseline) (b) Proposed Method

Figure 6-3. Score histograms for open-set and known-set samples.

known-class samples for both methods. As evident from Figure 6-3, the proposed

method has better score separation between open-set and known-set samples. This

is why a larger AUC value has been obtained from the ROC curve for the proposed

method.

To understand why a better score separation was obtained, we visualized the final

feature space for both baseline CNN and the proposed method using tSNE [88] in

Figure 6-4. In both cases, six clusters can be observed in the tSNE visualization

plane in Figure 6-4; these clusters correspond to each class. However, there is a

considerable over-lap between known-set samples and open-set samples in the baseline

CNN (Figure 6-4(a)). On the other hand, under the proposed scheme (Figure 6-4(b))

overlap between known and open-set samples are less. Further we note that known

clusters appearing under the proposed method is more compact compared to the

baseline case. This is because proposed method models the whole data distribution

(as a result of self-supervision and generative feature augmentation) as opposed to

modeling just the boundary as usually done in conventional CNNs. The proposed

method has a lower overlap between known and open-set samples in the feature space.

Therefore, it produced better separation between known and open-set distributions as

shown in Figure 6-3.

In Figure 6-5, we show eight open-set images that had produced the largest
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(a) CNN (Baseline) (b) Proposed Method

Figure 6-4. tSNE visualization of the feature space for (a)Conventional CNN and for the
(b) proposed method.

activations in the baseline CNN. It should be noted that although these images have

generated high score activations, none of them have a close resemblance to any of the

known-set of classes. In the same figure, we illustrate class activation scores obtained

by the baseline CNN (middle column) and the proposed method (right column). Since

the range of activation scores is different under the two methods, as Figure 6-3 shows,

for a fair comparison we have normalized these scores using z-score normalization by

considering all open-set scores under each scheme.

According to Figure 6-3 (Middle), the baseline CNN has produced a score around 2

for all samples. On the other hand, under the proposed scheme, the same images have

generated lower scores. Except for the third and fourth images, activations produced

by all other images have been reduced by at least by a factor of half. This example

illustrates that the proposed method has even lowered activations for hard open-set

samples.

Finally, it is worth noting the contribution each component of our proposal has

towards the final outcome of the he algorithm. In order to assess this, we carried out

an ablation study on CIFAR10 by considering animal classes as known-set classes. We

considered following cases.

Baseline. The classifier network operating on only the input images as shown in
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Figure 6-5. Top Row: Visualization of open-set samples. Middle Row: z-score normalized
activations produced by the baseline CNN. Bottom Row: z-score normalized activations
generated by proposed method.

Figure 6-2(a).

Self-supervision. Classification network extended to perform self-supervision as

shown in Figure 6-2(b).

Augmented Classifier. Generative feature is used to augment the input image

space. A classifier is trained on the augmented input. No self-supervision is used.

Proposed method. Classifier is learned on augmented image space with self-

supervision (Figure 6-2(c)).

In Table 6-V we report closed-set classification accuracy along with open-set

rejection performance in AUC-ROC. According to Table 6-V, the baseline produced

a AUC-ROC value of 84.0%. The introduction of self-supervision and augmented

features both independently improved open-set performance by 4%, where improvement

induced by augmented features is marginally better than self-supervision. Finally,

when both techniques are combined (the proposed method), performance further

improves by 2.7% to arrive at 91.2%. This study demonstrates that each component

of the proposal is contributing towards the final performance boost that is observed.
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Classification Accuracy Open-set Rejection(AUC)
Baseline 89.7 84.4
Self-supervision 92.4 88.8
Augmented Classifier 91.5 88.4
Proposed Method 92.6 91.2

Table 6-V. Tabulation of classification performance in terms of accuracy and open-set
rejection performance(AUC) for the ablation study.

Input Images Reconstructed Images

Known

Open-set

Figure 6-6. Reconstructed images produced by the auto encoder trained on known-set
images.

In Figure 6-6 we visualize reconstructions (of randomly chosen samples) obtained

through the generative model. According to Figure 6-6, all reconstructed images take

the form of a blurry version of the input images. However, we note that known-set

samples carry more details compared to open-set classes. For an example, it is hard

to predict the class label of open-set classes by merely looking at the reconstructed

image. However, the amount of information preserved in the reconstructed image is

not a very good indicator to detect open-set images (AUC is merely 66.7% when it is

used as an indicator). Nevertheless, it provides information that can be leveraged to

make a better informed decision.
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Summary

We explore the detection of open-set samples more effectively by learning richer

feature representations than are usually needed for closed-set classification. We used

self-supervision and augmented the input image with a representation obtained from

a generative model to enhance network’s ability to reject open-set samples. These

improvements forced the classifier to look beyond what is required to perform closed-set

classification when producing decision regions. We evaluated the proposed method in

open-set detection and out-of-distributional image detection experiments where we

produced state-of-the-art results.

We carried out a study investigating the importance of each component of the

proposed method. Further, we demonstrated qualitatively how proposed method

results in better separation in feature space thereby producing lower activations for

open-set samples. Finally, we experimented with different choices of generative models

and classifiers, where we concluded that using more sophisticated models in both cases

would benefit open-set detection performance.
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Chapter 7

Data Efficient Novelty Detection
with Low Latency

In this chapter, we study a practical application of novelty detection in mobile Active

Authentication (AA). Mobile device security has become one of the major concerns

in modern day life due to sensitive information they contain. Active Authentication

is a device authentication method that essentially make use of the physiological

and behavioral biometrics using built-in sensors and accessories such as gyroscope,

touchscreen, accelerometer, orientation sensor, and pressure sensor to continuously

monitor the user identity [5]. In the decision making process, AA boils down to the

problem of novelty detection – where the enrolled users of the device become known

classes of the device. The goal of AA is to detect when an intruder (a person outside

the enrolled set of users) starts using the device. By definition, an intruder in this

context becomes a novel class instance. Therefore, AA can be solved using a novelty

detector trained on the enrolled users.

When designing a practical novelty detector for AA, one has to consider various

factors such as security and usability. It is well known that a balance needs to be

made between security and usability of a biometrics-based AA system [89–91]. The

design of usable yet secure AA systems raises crucial questions concerning how to

solve conflicts between mobile security and usability. In order to balance usability and
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security of an AA scheme, we must address the following fundamental challenges.

1. Accuracy : How accurately does a mobile AA system detect an attacker or

an intruder? Due to limitations of representation and classification models on mobile

devices, behavioral and physiological biometrics-based methods do not provide good

accuracy in practice. The AA system will be of little use in terms of security if it

produces a high degree of false positives. On the other hand, a higher false negative

rate would severely degrade the usability of the technology. Many recent approaches

in the literature have attempted to address this factor by proposing better features

and classifiers.

2. Latency : How long does it take to detect an attacker? If an AA system takes

too long (e.g. 1-3 minutes) to detect an intrusion, it would grant an intruder plenty of

time to extract sensitive information prior to the lock down. Hence, unless intruder

detection is sufficiently fast, the AA system would hold a little value in practice no

matter how high its detection accuracy is.

Consider a series of observations captured from a front-facing camera of an Android

device shown in Figure 7-1. Frames (A-I) belong to the genuine user of the device.

From frame J onwards an attacker starts to operate the device. In this scenario, frame

J signifies a change point (i.e. an intrusion). The AA system should be able to detect

intrusions with a minimal delay while maintaining a low rate of false detections. For

instance, note the changes in genuine user’s images in frames (D-F) due to camera

orientation and facial expressions. While having a fast response, an AA system ideally

should not falsely interpret these variations as intrusions.

3. Efficiency : How much resource does the system use? By definition, mobile

AA systems are continuous processes that run as background applications. If they

consume considerable amount of resources, memory and processing power, it could

slow down other applications and cause the battery to drain quickly. Despite the

improvements in mobile memory and processors, battery capacity remains to be a
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Figure 7-1. The problem of quick intrusion detection in face-based AA systems. (A-I)
show the genuine user with varying facial expressions. An intrusion occurs starting from
(J).

Figure 7-2. An overview of the proposed QCD-based AA method.

constraint due to limitations in heat transfer and space. Therefore, it can be expected

to be the bottleneck in terms of efficiency in years to come. If an AA application

causes battery to drain too quickly, then it is unrealistic to expect the users to use

AA technology as they would typically opt out from using such applications [92].

Therefore, efficiency has a huge impact over the usability of AA as a technology.

Recently, [93] studied the efficiency of a mobile AA system based on face biometric.

Experiments were conducted on a Google Nexus 5 device with 2GB of RAM and a

quad core 2.2GHz CPU. It was shown that the normal usage of the device consumes

about 520 mW of power and the facial attribute-based AA framework running at 4

frames per second consumes about 160.8mW additional power. It is needless to say

that nearly 30% increase in power consumption would take a toll on battery duration.

A trivial solution for this problem would be to decrease the sampling rate of data

acquisition. However, effects of such a measure on the detection performance have not

been studied in the literature.

Many existing AA systems attempt to improve the accuracy of the system by
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proposing sophisticated features and classifiers. However, how fast an AA system could

detect an intruder has not been widely studied in the literature. Yet, it remains to be

an important feature of an AA system. In this paper, we address the problem of quickly

detecting intrusions with lower false detection rates in mobile AA systems. We propose

Quickest Change Detection (QCD), which is a well-studied problem in statistical signal

processing and information theory, for the purpose of intrusion detection in mobile

AA systems. Figure 7-2 gives an overview of the proposed method. As opposed to a

conventional AA system, the proposed system utilizes all past observations along with

distributions of match and non-match data of the genuine user to arrive at a decision.

The proposed method does not require a specific feature nor a specific classifier;

therefor it can be built upon any existing AA system to enhance its performance.

Table 7-I. Notations used in this paper.

Notation Definition
xi Match score obtained at the ith

time instance
f0 Density of matched scores
f1 Density of non-matched
E[.] Expectation operator
P [.] Probability function
(x)+ Positive portion of x
T Time at an intrusion occurs
πn Probability of intrusion occurring

at time n
ρ Probability of an intrusion occur-

ring
Cα Set of possible solutions for thresh-

old α
pn Probability of change has occurred

at time n
L(.) Likelihood ratio
Mi Indicator of whether observation i

is recorded
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Table 7-II. List of abbreviations.

Abbreviation Meaning
AA Active authentication
ADD Average detection delay
ANO Average number of observations
APO Average percentage of observations
BQCD Bayesian Quickest change detection
CDC Change duty cycle
CPU Central processing unit
E-BQCD Efficient Bayesian quickest change

detection
E-MQCD Efficient minimax quickest change

detection
FAR False acceptance rate
LBP Local binary pattern
MQCD Minimax Quickest change detection
PFD Probability of false detections
PIN Personal identification number
QCD Quickest change detection
RAM Random access memory
WADD Worst average detection delay

Intruder Detection in AA

A typical AA system consists of several stages as illustrated in Figure 7-3. Initially,

sensor data of the genuine user is obtained through an enrollment phase and a set of

features are extracted from the enrolled data. Face images, swipe gesture coordinates,

gyroscope/ accelerometer readings and microphone amplitudes are popular choices of

data for this purpose. These set of features serve as the gallery at the matching stage.

Upon the initial login of the user, the device continuously collects the same set

of data as before during the normal operation of the device. This stage is the Data

Acquisition phase shown in Figure 7-3. Features generated with the collected data are

compared against the gallery using a Biometric System using a suitable authentication

algorithm. At the end of the comparison phase, a match score xi is obtained. At the

nth time instance based on previously observed matched scores x1, x2, ..., xn, a decision

is made as to whether an intrusion has occurred or not. If an intrusion has occurred,
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the phone is locked and the user is prompted to verify his/her identity by the means

of a primary verification method. This typically takes the form of a password or a

primary biometric such as fingerprint. Otherwise, the user is allowed to continue with

the device until the next sensor observation.

Figure 7-3. An overview of a typical AA system.

The score distribution obtained as explained for the genuine user is henceforth

referred to as the match score distribution (f0). Similarly, score distribution of non-

genuine users (intruders or attackers in this context) is referred to as the non-match

distribution (f1). Hence, when an intrusion occurs, the distribution of observations

changes from being match to non-match. Therefore, an intrusion point is treated

as a change point. With this background, we use the words pre-change distribution

and match distribution interchangeably. Similarly, post-change distribution and non-

match distribution are used interchangeably. If the match distribution has considerable

overlap with the non-match distribution, then the detection results tend to be poor.

This is typically the case in mobile devices where sensor data acquisition appears

in an unconstrained setup. For example, in the case of face-based AA, face images

captured by the front-facing camera contain profile faces, tilted faces as well as partial

faces. Therefore, the resulting match score distribution tends to be broad. On

the other hand, usage of more sophisticated tools that provides better separation

between the two distributions are not preferred for mobile applications due to hardware

limitations of the device. As a result, match and non-match distributions tend to

overlap considerably. In this context, a more scientific approach backed by a theoretical
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reasoning is essential to perform the detection of the change. To this end, we propose

the use of statistical QCD to detect intrusions in the mobile AA systems.

In the following subsections, we identify two essential characteristics such an AA

system needs to possess in order for it to be useful in practice.

Average Detection Delay (ADD)

The primary goal of an AA system is to promptly detect intrusion when the intruder

attempts to access the device. Therefore, detection delay of intruder attempts is an

important characteristic of a mobile AA system. If the system requires large number

of sensor samples to identify an intrusion, there is a possibility that information theft

has already occurred by the time intrusion was detected. Hence, from the point view of

security [94], it is more desirable to have an AA system with a low intrusion detection

delay.

Probability of False Detections (PFD)

On the other hand, if an AA system generates large number of false intruder detections,

it would reduce the usability [94] of the user. For example, consider the system shown

in Figure 7-3. The AA system prompts the user to enter a password every time AA

fails. If the AA system consistently generates false intruder detection alarms, the

user will be prompted to enter the password regularly - thereby greatly degrading

consumer experience (usability).

As a consequence, Average Detection Delay (ADD) and Probability of False

Detections (PFD) play a vital role in any AA system. If T is the real change point,

mathematically ADD and PFD at time τ are defined as follows

ADD(τ) = E[(τ − T )+]

PFD(τ) = P [τ < T ], (7.1)
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where E[.] and P [.] are the expectation and probability with respect to τ , respectively

and [(x)+] denotes the positive part of x.

From these definitions, one can see that there is an inverse correlation between

these two quantities. Generally, obtaining more sensor samples enhances the chance

of making a more accurate decision on whether an intrusion has occurred or not.

However, this can only be done at the cost of having a relatively larger intrusion

detection delay. Therefore, there is always a trade-off between intrusion detection

delay and false intruder detection rate. Since, the relationship between ADD and

PFD characterizes the performance of an AA system, we propose using the ADD-PFD

graph as a tool to compare the performance of different AA systems. Shown in Figure

7-4 are a set of ADD-PFD plots drawn for practical non-sequential AA systems. As

expected, in order to obtain very accurate detections (corresponding to a lower PFD),

more samples are required to be processed. Moreover, according to Figure 7-4, making

a decision based on fewer samples are prone to more false intruder detections.

Figure 7-4. Sample PFD-ADD curves of two AA systems.

Adhering to security and usability principles [94], the objective of an AA system is

to be able to detect intrusions while ensuring probability of false intruder detection
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is very low. Therefore, the AA system should operate in a region where both ADD

and PFD are comparatively low. For example, for the system represented by the red

curve in Figure 7-4, a practical choice would be to operate in the region denoted by

the solid line.

Based on this rationale, a better AA system should have a PFD-ADD curve

operating below other comparable systems. For example, considering the two operating

curves shown in Figure 7-4, system corresponding to the red colored line has a better

performance since its operating curve lies at a lower space compared to the other

system.

Quickest Change Detection

Quickest Change Detection is a branch of statistical signal processing that thrives

to detect the change point of statistical properties of a random process [95], [96],

[97]. The objective of QCD is to produce algorithms that detect the change with a

minimal delay (ADD) while adhering to false alarm rate constraints (PFD). Consider

a collection of obtained match scores, x1, x2, · · · , xn, from the AA system shown in

Figure 7-2. Assuming that individual scores are mutually independent, QCD theory

can be used to determine whether a change has occurred before time n or not. In the

following subsections we present two main formulations of QCD.

Bayesian QCD (BQCD)

In the Bayesian setting [95], it is assumed that the time τ when the change occurs is

distributed according to a geometric distribution, Geometric(ρ). Here, the value of ρ

is the probability of a change occurring (an intrusion in this context). Conditioned

on the change point τ , observations obtained before and after the change follows two

distinct distributions, f0 and f1. At each time n, based on πi = P{τ = i} for all

i < n, a decision is made as to whether a change has occurred or not. Based on this
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formulation, ADD and PFD can be redefined as

ADD(τ) = E[(τ − T )+] =
∞∑︂

n=0
πnEn[(τ − T )+] (7.2)

PFD(τ) = P [τ < T ] =
∞∑︂

n=0
πnPn[τ < T ], (7.3)

where, for a Geometric(ρ) distribution,

πn = P{τ = n} = (1− ρ)n−1ρ

for 0 < ρ < 1 and n > 0. Then the Bayesian QCD becomes an optimization problem

where the requirement is to minimize ADD subjected to a constraint on PFD. If the

class of stopping times adhering to the constrain α on PFD is defined as

Cα = {τ : PFD(τ) < α},

then the QCD problem takes the form of Shiryaev’s formulation [98], [95]. Objective

of the Bayesian QCD formulated by Shiryaev is to obtain a stopping time τ ∈ Cα to

minimize ADD(τ) for a given α. If pn is the posterior probability that a change has

occurred at time n given observations up to time n

pn = P [T ⩽ n|Xn],

where Xn = (x1, x2, ..., xn), then using the Bayes rule, it was shown in [95] that pn

follows a recursive formula as follows

pn+1 = Φ(xn+1, pn),

where

Φ(xn+1, pn) = pñL(xn+1)
pñL(xn+1) + (1− pñ) .

Here, pñ = pn + (1− pn)ρ and

L(xn+1) = f1(xn+1)
f0(xn+1)
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is the likelihood ratio with p0 = 0.

From Theorem 3.1 in [97], this recursive formula provides an optimal solution for

the problem in hand with a stopping time of

τs = inf{n ⩾ 1 : pn ⩾ Aα}

if A ∈ (0, 1) can be chosen such that PFD(τs) = α. This method is known as the

Shiryaev test and its proof can be found in [98], [97].

MiniMax QCD (MQCD)

In most of the practical AA systems, probability of intrusion is not known in advance.

Therefore, it is important to study QCD in a non-Bayesian setting. MiniMax QCD

formulation treats the change point τ as an unknown deterministic quantity [96], [97].

However, as earlier, it is assumed that pre-change distribution, f0, and post-change

distribution, f1, are known. Due to the absence of prior knowledge on the change

point, a reasonable measure of PFD is the reciprocal of mean time to a false detection

as follows

PFD(τ) = 1
E∞[τ ] .

Based on this definition of PFD, Lorden proposed a minimax formulation for QCD

[99], [96]. Consider the set of stopping times Dα for a given constraint α such that

Dα = {τ : PFD(τ) ⩽ α}.

Adhering to this constraint, Lorden’s formulation optimizes a cost function to solve

the minimax QCD problem. In particular, the cost function is the supremum of the

average delay conditioned on the worst possible realizations as follows

WADD(τ) = sup
n⩾1

ess sup En[(τ − n)+|Xn].

Lorden’s formulation tries to minimize the worst possible detection delay subjected to

a constraint on PFD [99]. It was shown in [97], that the exact optimal solution for

Lorden’s formulation of QCD can be obtained using the CumSum algorithm [100].
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CumSum Algorithm

Define the statistic W (n) such that

W (n) = max
1⩽k⩽n+1

n∑︂
i=k

log(L(xi)),

and W0 = 0, where L(Xn) = f1(Xn)/f0(Xn) is the log likelihood ratio. It can be

shown that the statistic W (n) has the following recursive form

Wn+1 = (Wn + log(L(Xn+1))+).

Time at which a change occured (τ) is chosen such that

τc = inf{n ⩾ 1 : Wn ⩾ b},

where b is a threshold. More details about the CumSum algorithm can be found in

[100], [96], [97], [95].

Proposed Algorithm

Based on the Bayesian and MiniMax QCD algorithms, we propose an authentication

algorithm to detect intrusions in an AA system. Essentially, our proposal is indepen-

dent of all other base elements of an AA system (Figure 7-3). Therefore, existing AA

systems can easily be extended to incorporate the proposed QCD method.

Training: In the training phase, the user is asked to perform a wide variety of tasks

and sensor data are obtained. Pre-determined features are then evaluated from the

obtained sensor data. Part of the obtained features are stored in memory to serve as

the gallery in the AA system. The remaining features are compared against chosen

gallery to build a match distribution. In addition, the gallery entries are used to

construct a non-match distribution based on the non-user features as illustrated in

Figure 7-2. For the experiments conducted in this paper, a sample of other class
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data was used to model the non-match distribution. In practice, a common set of

pre-obtained sensor data specific for the device can be used for this purpose. For

example, face images of different users obtained from the same device can be made

available in a cloud storage system for training.

input : Detection score of most recent iteration score, match score xn,
match distribution f0, non-match distribution f1, Threshold,
FloorThreshol

output : Detection of an intrusion (Boolean)
//If it’s the initial iteration set score to be zero;
if isempty(score) then

score = 0 ;
else

score = UpdateScore(score, xn, f0, f1, F loorThreshold);
//FloorThreshold is used only resource efficient versions;

end
if score > Threshold then

Detect = True;
else

Detect = False;
end
Return (Detect);

Algorithm 3: Main procedure proposed for decision making.

Testing: The proposed testing phase takes in to consideration a sequence of past

observations when making a decision. At time n, the same set of sensor data and

corresponding features gn of the probe is collected as in the enrollment phase. Obtained

features are compared against the signatures to obtain a score value xn. A decision is

made based on scores corresponding to all past observations x1, x2, · · · , xn and the

match distribution f0 and non-match distribution f1.

Described in Algorithm 3 is the proposed structure for decision making. A variable

score is initialized at zero and is updated using the method UpdateScore once a new

observation is observed. Once the score exceeds threshold A, a detection of a change

is declared. In this paper we present two variants of the method UpdateScore based

on BQCD and MQCD. Those methods are listed in Algorithm 4 and Algorithm 5,
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respectively.

input : score, xn, f0, f1
output : score

//Calculate likelihood ratio;
L = f1(xn)/f0(xn);
pñ = score + (1− score)ρ;
score← pñL

pñL+(1−pñ) ;
Return (score);

Algorithm 4: UpdateScore Method incorporating BQCD.

input : score, xn, f0, f1
output : score

//Calculate likelihood ratio;
L = log(f1(xn)/f0(xn));
score← score + L;
Return (score);

Algorithm 5: UpdateScore Method incorporating MQCD.

Illustrated in Figure 7-5 is the variation of detection scores when Bayesian QCD is

used for the video shown in Figure 7-1. Detection scores values increase when there is

significant variation in the expression. However, they decrease again once the neutral

expression is returned. Since the intrusion occurs in Frame 201, the score value is

seemed to be monotonically increasing. In this specific example, the likelihood ratio

becomes infinity after the change point. Therefore, according to Algorithm 4, the

score is increasing by the assigned constant C. It should be noted that, slope of the

curve could be increased by selecting a higher value for C in Algorithm 4. By the

time the score passes the predetermined threshold, it is declared that an intrusion

has occurred. For the set threshold in Figure 7-5, detection occurs with a delay of 9

samples.
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Figure 7-5. Variation of Bayesian QCD scores for the video shown in Figure 7-1.

Resource Efficient Quickest Change Detection

In this section, we discuss how QCD can be performed with having a lower burden on

the device resources. As noted in the introduction, a trivial solution to the problem of

resource limitation is to perform detection on a few selected samples of observations.

However, quickest detection performance may degrade greatly depending on how the

sampling is done. In what follows, we introduce a data driven sampling rule based on

data efficient QCD [96], [97], [101].

Consider a sequence of time instances t = 1, 2, · · · , i in which the device operates.

At each time i, i > 0, a decision is made whether to take or skip an observation at

time i + 1. Let Mi be the indicator random variable such that Mi = 1 if the score

xi is used for decision making, and Mi = 0 otherwise. Thus, Mi+1 is a function of

the information available at time i, i.e. Mi+1 = ϕi(Ii), where ϕi is the control law

at time i, and Ii = [M1, M2, · · · , Mi, xM1
1 , xM2

2 , · · · , sMi
i ] represents the information at

time i. Here, xMi
i represents xi if Mi = 1, otherwise xi is absent from the information
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vector Ii. Let T be the stopping time on the information sequence {Ii}. Then, average

percentage of observations (APO) obtained prior to the change point can be quantified

as

APO = E

[︄
1
T

T∑︂
n=1

Mn

]︄
. (7.4)

In the QCD scheme introduced in the previous section, observations are obtained

at every time instant. Therefore, APO is equal to 1. A lower APO can be obtained

while maintaining a lower ADD and PFD rates by employing an intelligent sampling

mechanism. When such a mechanism is used, average usage of resources (memory,

processing power, battery usage) are expected to decrease compared to the QCD

scheme [QCD_BTAS_2016]. We introduce a technique to achieve this based on

data efficient QCD.

Efficient Bayesian Formulation (E-BQCD)

In the Bayesian formulation of efficient QCD, an additional constraint based on the

number of observations used is introduced in the optimization procedure. Define the

Average Number of Observations (ANO) as

ANO = E

[︄ min(τ,T −1)∑︂
n=1

Mn

]︄
. (7.5)

This quantity essentially captures the number of observations taken prior to the change

point. It should be noted that ANO does not penalize additional observations taken

after the change point. Therefore, ANO is a more conservative measure of the number

of observations compared to APO, where T × APO ≥ ANO.

The efficient Bayesian QCD problem can be formulated as an optimization problem
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as follows[101],[97]
minimize

ϕ,τ
ADD(ϕ, τ)

subject to PFA(ϕ, τ) ≤ α

ANO(ϕ, τ) ≤ β.

(7.6)

In [101], an algorithm is presented to seek a possible solution for this optimization

problem. Consider Pn, the probability that change had occurred by time n,

pn = P (T ≤ n|In),

where p0 = 0. For A, B ≥ 0 and A > B the following control rule is proposed

Mn+1 =

⎧⎨⎩0, if pn < B

1, if pn ≥ B.

Based on the value of Mn+1, pn+1 is updated as

pn+1 =

⎧⎨⎩pñ, if Mn+1 = 0
pñL(xn+1)

pñL(xn+1)+(1−pñ) , if Mn+1 = 1,

where pñ = pn + (1− pn)ρ and L(xn+1) = f1(xn+1)
f0(xn+1) . An intruder detection is declared

at the earliest time (τD) when pn surpasses the threshold A, i.e. τD = inf{n ≥ 1 :

pn > A}. It was proved in [101] that this algorithm is asymptotically optimal for the

optimization formulation (7.6) for each fixed β when α→ 0.

Efficient MiniMax Formulation (E-MQCD)

In a non-Bayesian setting, due to the absence of a priori distribution on the change

point, a different quantity should be used to quantify the number of observations used

for decision making. Work in [96],[97], proposes change Duty Cycle (CDC) as

CDC = lim
n

sup 1
n

En

[︄
n−1∑︂
k=1

Mk|τ ≥ n

]︄
(7.7)

for this purpose. It should be noted that both CDC and APO are similar quantities.

With the definition of CDC, efficient QCD in a minimax setting can be formulated as
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the following optimization problem

minimize
ϕ,τ

ADD(ϕ, τ)

subject to PFA(ϕ, τ) ≤ α

CDC(ϕ, τ) ≤ β.

(7.8)

In [96], a two threshold algorithm called DE-CumSum algorithm, is presented as a

solution to this optimization problem. For suitably selected thresholds chosen to meet

constraints α and β, it is shown to obtain the optimal lower bound asymptotically as

α→ 0. The DE-CumSum algorithm is presented below.

Start with W0 = 0 and let µ > 0, A > 0 and h ≥ 0. For n ≥ 0 use the following

control rule

Mn+1 =

⎧⎨⎩0 if Wn < 0
1 if Wn ≥ 0.

Statistic Wn is updated as follows

Wn+1 =

⎧⎨⎩min(Wn + µ, o), if Mn+1 = 0
max(Wn + logL(Xn+1),−h), if Mn+1 = 1,

where L(x) = f1(x)
f0(x) . A change is declared at time τW , when the statistic Wn passes

the threshold A for the first time as

τW = inf{n ≥ 1 : Wn > A}. (7.9)

Modified Algorithm

Testing and training procedure under the resource efficient QCD-based detection is the

same as proposed in Section 7. Testing is done using the main method described in

Algorithm 3 in section 7. Here, we present two alternative variants of the UpdateScore

method based on resource efficient BQCD and MQCD. Different steps are summarized

in Algorithm 6 and Algorithm 7, respectively corresponding to the updates of E-BQCD

and E-MQCD.

In Algorithm 7.8, parameter D is a constant. In our tests, this parameter was set

to be equal to 1.Parameter FloorThreshold is set equal to 0.05 in both algorithms.
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input : score, xn, f0, f1, F loorThreshold
output : score

//Calculate the priori probability L = f1(xn)/f0(xn);
pñ = score + (1− score)ρ;
//Use priori to update score when score is small if score < FloorThreshold

then
score = pñ ;

else
score← pñL

pñL+(1−pñ) ;
end
Return (score);

Algorithm 6: UpdateScore method incorporating E-BQCD

input : score, xn, f0, f1, F loorThreshold
output : score

if score < 0 then
score =min(score+D,0) ;

else
score← max(score + log(f1(xn)

f0(xn)),−FloorThreshold) ;
end
Return (score);

Algorithm 7: UpdateScore method incorporating E-MQCD
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Evolution of score values when efficient Bayesian QCD is used is illustrated in Figure 7-

6 for the case shown in Figure 7-1. In order to demonstrate the effect of using

different sampling rates, the same experiment was conducted for a series of APO

values. Functionality of efficient QCD algorithm can be explained using Figure 7-6.

Consider the black line (corresponding to APO = 0.92%) in Figure 7-6. After the

initial observation at t = 1, no observations are taken until the score passes 0.05 at

t = 52. In this duration, score is updated using a priori probability. Hence, the score

is having a constant slope in this interval. At t = 52, as the score passes 0.05, an

observation is taken and the score is updated based on log-likelihood as outlined in

Algorithm 6. This causes a discontinuity in the graph by shifting the value of score

onto 0.0007. Since this value is lower than 0.05, no observation is taken at t = 53.

This process is continued until the score value surpasses the Threshold value when

an intrusion is declared.
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Figure 7-6. Variations of efficient Bayesian QCD scores for the video shown in Figure 7-1
for different APO values.

Furthermore, Figure 7-6 suggests that variations of scores across time is somewhat
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similar when APO is 100% and 48.1% for the considered case. This shows that

selecting sampling points intelligently could reduce the sampling rate almost by half

while producing near-identical performance for specific cases. The effect of sampling

on the detection performance is discussed in detail in the following section.

Experimental Results

Quickest Change Detection

We evaluated the performance of the proposed QCD methods using three publicly

available unconstrained AA datasets - Touchalytics [102], MOBIO [103], and UMDAA-

01 [104]. The following three previously proposed AA methods are used as the

benchmark for comparisons.

Single score-based authentication (SSA): The present score value xn alone is

used to authenticate the user. If the score value is above a predetermined threshold,

user is authenticated otherwise treated as an intrusion.

Time decay fusion (Sui et al.) [105]: In this method, two score samples fused by

a linear function is used along with a decaying function to determine the authenticity

of a user as, sn = wxn−1 + (1− w)xn × eτδt, where, w, τ are constants and δt is the

time elapsed since the last observation.

Confidence functions (Crouse et al.) [106]: A sequential detection score Slogin

is calculated by incorporating time delay since the last observation and a function

of the present score xn. The detection score is evaluated as, Slogin,n = Slogin,n−1 +

fmap(xn) +
∫︁ tnow

tprev
fdecdt. See [106] for the exact definitions of fmap and fdec.

The PFD-ADD curves, introduced in Section 7, are used to compare the perfor-

mance of different methods. The PFD-ADD plot for the BQCD and MQCD methods

can be obtained by varying the parameter Threshold and plotting the ADD values

corresponding to different PFD values. Similarly, the ADD-PFD curves for SSA and
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the method proposed by Sui et al. [105] and Crouse et al. [106] are obtained by

varying the decision making threshold.

The measure of ADD signifies the latency of detecting an attack. On the other

hand, PFD is a measure of false detections. A practical AA system should have a low

latency in decision making as well as low false detection rate. Therefore, better AA

systems are expected to have low ADD and PFD values. Hence, they should operate

towards the lower left corner of the PFD-ADD curve, as illustrated in Figure 7-4. As

a result, AA methods with very low operating values in the PFD-ADD plot are better

in terms of their performance.

(a) (b)
Figure 7-7. Sample detected face images from (a) the MOBIO dataset and (b) the
UMDAA-01 dataset.

In the absence of a proper mobile dataset with intrusions, experimental data was

obtained in the following manner for all datasets considered. For each dataset, all

possible pairs of users were considered at a time. For each pair of users, full length

signals (e.g. touch gestures or detected faces) of considered pair of users were merged

to obtain a trial with a single intrusion. As a result, only one intruder/attacker was

presented at each trial. Shown in Figure 7-1 is a sample trial obtained in this manner.

Frames A to I correspond to the enrolled images of the genuine user. An intruder is

presented at frame J and onwards. The intrusion point depends on the length of the

samples corresponding to the first (genuine) user and therefore is not pre-determined.

Each trial was tested using before mentioned methods to determine detection delay
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and probability of false detections under each method.

UMDAA-01 Dataset

The UMDAA-01 dataset [104] consists of images of 50 individuals taken from an

iPhone 5 device across three sessions performing five tasks including an enrollment

task. Both face images as well as touch gestures are simultaneously captured in this

dataset. Sample detected face images from this dataset are shown in Figure 7-7(b).

As suggested in [104], enrollment data was used as gallery and data from the other

sessions was used as probes. In addition 20 number of instances from the probe session

was used to obtain the match score distribution. When testing, 33 % of the remaining

subjects excluding the probe class and the target class were randomly chosen to obtain

the non-match distribution.

Results on the Face Data: Face images of the user were normalized and image

regions corresponding to eyes, nose, lips and eyebrows were extracted. The HOG

features [107] were extracted on each facial component. These features were concate-

nated to obtain the resulting feature for the given face. Cosine distance is used to

generate score values by matching enrollment data with probes. Figure 7-8 shows the

ADD-PFD plot corresponding the UMDAA-01 face data. From this figure, it can be

seen that both BQCD (ρ = 0.001) and MQCD outperform the other methods. This

can be seen by comparing their performances in the low PFD region.
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Figure 7-8. Performance curves obtained on the UMDAA-01 face dataset.
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Results on the Touch Data: From each swipe data, a 27-dimensional feature

vector is extracted using the method described in [102]. A single class SVM with

RBF kernel was used to generate matching scores. Figure 7-9 shows the ADD-PFD

curves corresponding to different methods on this dataset. It should be noted that

there exists a considerable similarity between single touch swipes of different users.

Therefore, from Figure 7-9, methods that rely on data of single or two swipes have

performed poorly. It can be seen that BQCD, MQCD and the method proposed by

Crouse et al. [106] that uses information from pre and post change distributions have

performed reasonably well. In general, the MQCD method yields faster detection

rates and low false detections compared to the other methods.
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Figure 7-9. Performance curves obtained on the UMDAA-01 touch dataset.

MOBIO Dataset

The MOBIO dataset [103] contains videos of 152 subjects taken across two phases

where each phase consists of six sessions each. Videos in this dataset are acquired

using a standard 2008 Macbook laptop computer and a NOKIA N93i mobile phone

(See Figure 7-7(a)). Following the protocol defined in [108], video frames of the 12th

session were considered as the enrollment data and video frames of all other sessions

were used as probes. We conducted our experiments on the laptop image data based

on the LBP features. Again, the cosine distance was used to generate the match

and non-match scores. Figure 7-10 shows the performance curves corresponding to
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different methods on the MOBIO dataset. Note that the images in this dataset are well

aligned and mostly frontal. As a result, pre-change and post-change distributions are

well separated. Hence, all considered methods yielded relatively better performance.

However, the BQCD and MQCD methods have performed marginally better than the

other compared approaches.
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Figure 7-10. Performance curves obtained on the MOBIO face dataset.

Touchalytics Dataset

The Touchalitics dataset contains touch data of 37 users collected across 7 tasks.

Similar to the UMDAA-01 touch dataset, touch gesture features are extracted using

the method described in [102] and a single class SVM with RBF kernel was used to

generate match and non-match scores. Figure 7-11 shows the performance of different

methods on this dataset. As before, making a decision based on a single swipe or

two swipes have appeared to perform poorly. The MQCD method performs the best

followed by the BQCD method and the method of Crouse et al. [106].

Discussion

From the above experiments, it can be seen that the BQCD and MQCD methods have

outperformed the other existing AA methods. Furthermore, in all cases, the MQCD

method has performed marginally better than the BQCD method. This is mainly

due to the error induced by approximating the change distribution by a Geometric

(ρ) distribution. In practice, where information on change (intrusion) probability is

126



0 10 20 30 40 50 60 70 80 90 100

PFD %

0

5

10

15

20

25

30

35

40

45

A
D

D
 /
 S

a
m

p
le

s

BQCD

Crouse et al

MQCD

Sui et al

SSA

Figure 7-11. Performance curves obtained on Touchalytics dataset.

unknown in advance, the MQCD method provides more usability as opposed to the

BQCD method.

Detection delay and probability of false detections of the proposed algorithm depend

on the type of features as well as the classifiers used for matching. The proposed

method is not restricted to any specific type of feature or a classifier. Therefore, by

using better features and classifiers it is possible to obtain even lower ADD and PFD

values.

Furthermore, it should be noted that, the detection delay rates (ADD) shown in

Figures 7-8, 7-9, 7-10, and 7-11 are highly inflated as a result of non-detected intrusions

due to the limitations of the features and/or classifiers. To further elaborate on this

point, let us consider the implementation of the MQCD method with a threshold

chosen such that PFD is at 5%. Tabulated in Table 7-III is the distribution of detection

delay (ADD) for the tests conducted. According to Table 7-III, nearly 90% of the

time, an intrusion can be detected using less than 7 samples. Therefore, the proposed

method would produce quick results for a small false detection rate in a practical

setting.
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2-3 S 4-5 S 6-7 S 8-
10S

>10
S

UMD-
Face

11.9 17.07 55.06 6.02 9.93

UMD-
Touch*

73.62 13.51 4.69 3.04 3.13

MOBIO 8.74 61.87 10.38 7.51 11.5
Touchalytics3.65 7.23 82.23 2.94 3.94
Mean 24.47 24.92 38.09 4.87 7.12

Table 7-III. Percentage breakdown of delay times (in samples) for a fixed PFD of 5% for
MQCD. *3% of PFD was used instead.

Resource Efficient QCD

Effect of extending QCD to incorporate resource efficiency through sampling was

studied on the before mentioned three datasets. Performance of the proposed sampling

method was compared against the following two benchmark sampling methods.

Fixed Time Step Sampling: Most of the existing AA systems employ a sampling

mechanism where sensor observations are obtained with a fixed inter-sample interval

[106],[105]. In our experiments, this interval was chosen to satisfy the given APO rate.

Dice Sampling: In this method, a weighted coin is tossed at every time instant to

determine whether a sample should be obtained or not [101],[96],[97]. The weight of

the coin is equal to the chosen APO value.

Same set of features and classifiers as described in Section 7 were used to evaluate

performance of the proposed methods. For each dataset considered in this paper,

E-BQCD and E-MQCD were applied on top of BQCD and MQCD for a specific APO

rate. In addition, BQCD method was implemented using time step sampling and

DICE sampling for comparison.

Shown in Figure 7-12 are the performance curves obtained for the UMDAA-01

face dataset for an APO of 21%. Performance curves have shifted to the left by some

margin and have moved slightly upwards as shown in the graph due to sampling. At
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Figure 7-12. Performance curves obtained on the UMDAA-01 face dataset for efficient
QCD.

a glance, performance appears to have improved despite lower sampling for a given

PFD value. In comparison, sampling with DICE and fixed time step has worsen the

initial result. The same trend seems to follow in the UMDAA-01 touch dataset as

seen in Figure 7-13 for an APO of 17%. Although BQCD tends to perform poorly

compared to MQCD, performance of resource efficient versions of BQCD and MQCD

are comparable.
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Figure 7-13. Performance curves obtained on the UMDAA-01 touch dataset for efficient
QCD.

Results obtained for the experiments done on the MOBIO face dataset for an APO

of 17% are shown in Figure 7-14. Both QCD methods yielded comparable results on

the MOBIO dataset in our earlier experiments. When resource efficient QCD was

employed, performance curves for both methods improved nearly by an equal amount

compared to the QCD performance. It should be noted that, both DICE and fixed

129



time sampling performances are much worse compared to E-QCD on the MOBIO

dataset.
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Figure 7-14. Performance curves obtained on the MOBIO face dataset for efficient QCD.

Final set of experiments were carried out on the Touchalytics touch dataset with

an APO rate of 17%. Results of these experiments are presented in Figure 7-15. As

in earlier cases, resource efficient QCD has outperformed QCD and other sampling

methods. However, there are a couple of notable differences. Unlike in earlier

experiments, E-BQCD and E-MQCD performance curves do not overlap in this case.

However, this is only due to the absence of a common operating region. In addition,

time step sampling performed better than DICE sampling on this dataset.
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Figure 7-15. Performance curves obtained on the Touchalytics touch dataset for efficient
QCD.

Resource efficient QCD have improved the performance of QCD and has performed

better than alternative sampling methods have. The exact shape of the performance

130



curves and gaps between each curves depend on the type of feature and classifier used.

Irrespective of this, efficient QCD has yielded better results on average. This can be

seen from the results summarized in Table 7-IV, where PFD values obtained for a

fixed detection delay of 15 samples for all considered datasets are listed.

Table 7-IV. The PFD % rate for a detection delay of 15 samples. The efficient QCD
methods use an APO of 17%. * APO of 21% used.

SSA Sui et
al [105]

Crouse
et al
[106]

BQCD MQCD E-
BQCD

E-
MQCD

DICE
[97]

TIMESTEP
[105],[106]

UMD-
Face*

5.1 4.6 4.0 3.5 3.4 1.8 2.1 5.5 4.8

UMD-
Touch

48.8 50.2 4.0 2.2 0.6 0.6 0.6 5.4 3.9

MOBIO 1.1 1.2 1.7 0.8 0.8 0.5 0.6 3.0 3.5
Touchalytics 24.6 14.8 3.1 3.8 3.5 NA 1.0 13.1 15.0

In order to investigate this phenomena further, we carried out a case study on

the UMDAA-01 face dataset. We conducted the above mentioned experiment on

the dataset for a range of APO values. The resulted performance curves are shown

in Figure 7-16. Performance curves in Figure 7-16 suggest that as APO decreases,

performance curves keep on shifting further left. However, at the same time, the

minimum possible detection time has also increased. Therefore, very low sampling

is not feasible if quick change detection is desired. On the other hand, for a fixed

detection delay, it might be possible to select a lower sampling rate so that lower

PFD is obtained. This result is true for all datasets we considered as evident from

Table 7-IV.

In Figure 7-17, we plot the minimum possible detection time for different APO

values for the test conducted on UMDAA-01 face dataset. As evident from this

figure, the minimum detection times increase as sampling fraction (APO) is increased.

Therefore, for practical applications, it is desired to select a moderate value for APO

when efficient QCD is used.
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Figure 7-16. Effect of using different APO values for sampling.
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Figure 7-17. Effect of sampling on minimum average detection delay.
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Discussion

Decreasing the sampling rate by selecting a threshold to achieve a lower APO have

decreased the PFD while increasing the ADD for all the cases considered. This

observation can be justified based on the score update mechanism. Consider the black

curve (APO = 0.93%) and the blue curve (APO = 9.1 %) in the score evolution shown

in Figure 7-6. Note that, with the way how sampling is performed, the black curve

had missed all the humps created due to irregularities in sensing. The blue curve on

the other hand, is affected only by a few humps due to sampling. However, due to low

sampling in humps, the blue curve has not risen as much as the red curve (APO =

100%) has. This suggests that for a constant threshold, occurrences of false detections

will be lower for the blue curve (APO = 9.1 %). Therefore, PFD decreases when

sampling is carried out. On the other hand, due to sampling, an intrusion may not be

sensed till the sampling that follows is carried out. This is clearly seen in the case of

the blue line in Figure 7-6. As a result, detection delay increases for a fixed threshold

when sampling is carried out as shown in Figure 7-17.

Summary

In this chapter, we addressed the issue of detecting novel samples with quickest

time with high utilization of resources. We considered Active Authentication as an

application for this discussion . We presented a method for detecting an intrusion in

an AA system with a minimal delay with a constraint on false detection rate. Two

variants of the QCD based on Bayesian and MiniMax formulations were introduced.

Performance of the proposed method was demonstrated using three publicly available

datasets.

The basic QCD methodologies were extended using resource efficient QCD where

a data driven observation sampling was introduced with the aim of increasing resource
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efficiency. The introduced algorithms not only reduced number of observations taken,

but also improve the performance of the system in terms of latency and false detections.

Validity of this result was demonstrated using various datasets.

The proposed method does not rely on a specific feature or a classifier for its

performance. This was verified in testing by using different classifiers and features

for different datasets. Therefore, existing AA methods can be extended using the

proposed method to enhance the performance. It was shown that the proposed method

is effective even when there is a considerable overlap between pre and post-change

distributions.
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Chapter 8

Discussion and Future Work

In this thesis, we considered the problem of novelty detection in four different settings.

For each setting, a deep-learning based solution was presented and the effectiveness of

the method was assessed on multiple benchmark datasets.

First, we propose a transfer learning-based solution for the problem of Multi-

class novelty detection with out of distribution data. In particular, we proposed an

end-to-end deep-learning based approach in which we investigate how the knowledge

contained in an external, out-of-distributional (OOD) dataset can be used to improve

the performance of a deep network for visual novelty detection. Our solution differs

from the standard deep classification networks on two accounts. First, we use a

novel loss function, membership loss, in addition to the classical cross-entropy loss

for training networks. Secondly, we used the knowledge from the external dataset

more effectively to learn globally negative filters, filters that respond to generic objects

outside the known class set. We showed that thresholding the maximal activation of

the proposed network can be used to identify novel objects effectively.

We extended this solution for one-class novelty detection with OOD data where

labeled out-of-distributional is used for feature learning in one-class classification.

This method operates on top of a Convolutional Neural Network (CNN) of choice

and produces descriptive features while maintaining a low intra-class variance in the
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feature space for the given class. For this purpose two loss functions, compactness loss

and descriptiveness loss are used along with a parallel CNN architecture. A template

matching-based framework is introduced to facilitate the testing process.

In addition, the problem of open-set recognition, where the goal is to determine

if a given sample belongs to one of the classes used for training a model (known

classes) was studied. The main challenge in open-set recognition is to disentangle

open-set samples that produce high class activations from known-set samples. Two

techniques are presented to force class activations of open-set samples to be low. First,

a generative model is trained for all known classes and then the input is augmented

with the representation obtained from the generative model to learn a classifier. This

network learns to associate high classification probabilities both when the image

content is from the correct class as well as when the input and the reconstructed

image are consistent with each other. Second, self-supervision was used to force the

network to learn more informative features when assigning class scores to improve

separation of classes from each other and from open-set samples.

Then, the classical problem of one-class novelty detection was considered. Given a

set of examples from a particular class, the goal is to determine if a query example is

from the same class. Presented method is based on learning latent representations of

in-class examples using a denoising auto-encoder network. The key contribution of the

algorithm is to explicitly constrain the latent space to exclusively represent the given

class. In order to accomplish this goal, firstly, latent space is forced to have bounded

support by introducing a tanh activation in the encoder’s output layer. Secondly, using

a discriminator in the latent space that is trained adversarially, encoded representations

of in-class examples are ensured to resemble uniform random samples drawn from the

same bounded space. Thirdly, using a second adversarial discriminator in the input

space, is it made sure that all randomly drawn latent samples generate examples that

look real. Finally, a gradient-descent based sampling technique that explores points in
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the latent space that generate potential out-of-class examples is used accelerate the

training process.

Finally, We discussed challenges arising in a practical dynamic novelty detection

system with respect to latency and data efficiency. We considered Active Authentica-

tion (AA) – which is a practical application of novelty detection as a case study for

this purpose. Quickest change detection and its data efficient extension were discussed

as potential solutions to this problem. We demonstrated how these solutions can be

used to obtain decisions with low latency in a resource constrained AA system.

In the future, I hope to address challenges practical novelty detection schemes come

across. First, I will study how deep learning based novelty detection can be applied

in large scale classification systems. In our experiments we observed that models

performing well in smaller datasets doesn’t necessary scale well to larger datasets

such as ImageNet. I hope to fuse predictions of multiple networks to arrive at more

robust predictions. In addition, I will study how novelty detectors can defend against

adversarial attacks. I will study different attack models for novelty detection and

present defense mechanisms to defend against them.

Further, I hope to study how deep learning-based novelty detection can be deployed

across different domains. In particular, I will study how a novelty detector trained on

a given domain can be adapted to a second domain when only few annotated samples

are available from the second domain. In addition, I will study how privacy preserving

deep novelty detection can be carried on mobile devices using Federated Learning

[109]. Finally, I will study how novelty detection can be applied in applications such

as video surveillance and biometric anti-spoofing.
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