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Abstract. Bed-wetting during normal sleep in children and young people has a 

significant impact on the child and their parents. The condition is known as 

nocturnal enuresis and its underlying cause has been subject to different 

explanatory factors that include, neurological, urological, sleep, genetic and 

psychosocial influences. Several clinical and technological interventions for 

managing nocturnal enuresis exist that include the clinician’s opinions, 

pharmacology interventions, and alarm systems. However, most have failed to 

produce any convincing results. Clinical information is often subjective and 

often inaccurate, the use of desmopression and tricyclic antidepressants only 

report between 20% and 40% success, and alarms only a 50% success fate. This 

position paper posits an alternative research idea concerned with the early 

detection of impending involuntary bladder release. The proposed framework is 

a measurement and prediction system that processes moisture and bladder 

volume data from sensors fitted into undergarments that are used by patients 

suffering with nocturnal enuresis. The proposed framework represents a level of 

sophistication in nocturnal enuresis treatment not previously considered.  

Keywords: Nocturnal Enuresis, Bedwetting, Machine Learning, Classification, 

Neural Networks, Sensors 

1. Introduction 

Although urination is a function performed effortlessly by healthy humans, it is an 

extremely complex process that involves the rapid and precise coordination of 

numerous muscles and nerves in the ureter, bladder, sphincter and urethra (Porth, 

2007). Nocturnal enuresis (incontinence or bedwetting) is an event that is commonly 

considered as a disruption to the normal process in achieving continence. Nocturnal 

enuresis occurs involuntary during sleep without any inherent suggestions of 

frequency or pathophysiology
1
 and its etiology is complex. However, it is believed to 

be caused by three main non-exclusive pathogenic mechanisms: nocturnal polyuria 

(passing large amounts of urine at night and normal amounts during the day) (Fatah, 
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Shaker, Ismail, & Ezzat, 2009), detrusor overactivity (involuntary contractions during 

the filling phase) (Prieto et al., 2012), and increased arousal thresholds (a patient’s 

inability to waken in response to signals from a full bladder) (Dhondt et al., 2009). 

The underlying reason for these conditions has been subject to different explanatory 

factors that include, neurological, urological, sleep, genetic and psychosocial 

influences (Butler, 2004; Campbell, Cox, & Borowitz, 2009; Culbert & Banez, 2008; 

Robson, 2009). Furthermore, general parental knowledge of the causes and effective 

treatments for Nocturnal Enuresis (NE) is lacking. Only 55% reported they would 

seek medical care for their child with NE and only 28% reported awareness of 

effective treatments (Schlomer, Rodriquez, Weiss, & Cropp, 2013). 

The condition is socially disruptive and stressful and is reported to affect 20-25% 

of five year olds, 5% at 10 years, and 1-2% of 15 year olds (Kennea & Evans, 2000). 

Data from UK Avon Longitudinal Study of Parents and Children (ALSPAC) put 

prevalence at 20% at 10 years, 9% at nine years and 1% at 15 years (Darling, 2010). 

Nocturnal enuresis can have profound effects on a child, low self-esteem (Thibodeau, 

Metcalfe, Koop, & Moore, 2013), social isolation (de Bruyne et al., 2009), and child 

abuse triggered by bedwetting (Can, Topbas, Okten, & Kizil, 2004). Although, 

primary and secondary care interventions help, it has a major impact on the quality of 

life and healthcare resources. According to the British Association of Urological 

Surgeons (BAUS) between three and six million people in the UK suffer with urinary 

incontinence of which nocturnal enuresis is a subset of
2
. Urinary incontinence 

collectively has a significant cost implication, with conservative estimates suggesting 

that £424 million is spent annually on treatment in the UK  

In this position paper, we focus on using sensors and artificial neural networks to 

determine the onset of a voiding episode before it occurs. This is achieved by utilizing 

sensors to detect moisture and bladder volume and a personalized alarm system that 

utilizes a neural network to train the system and predict the onset of voiding episodes. 

2. Nocturnal Enuresis: Diagnosis and Treatment 

A child that is at least five years old and experiencing bed wetting episodes at least 

twice a week for a minimum of three months would be diagnosed as suffering with 

nocturnal enuresis (Bettina, Shapira, & Dahlen, 2010). Investigations are triggered by 

complaints from the parents or child following presentation to a General Practitioner 

(GP) or referral to a specialist provider (Nalbantoglu et al., 2013a). At the initial 

assessment, clinicians are mindful of the risk of parent intolerance towards their 

child’s nocturnal enuresis since this can affect the treatments offered. During the 

initial assessment, a general history is completed to develop an understanding of the 

pattern of bedwetting over the previous few weeks. Further enquiry will include 

questions on urgency, frequency, and the type and amount of drinks consumed. 

Diaries are used as a self-reporting tool to record historical information (Bradley et 

al., 2011).  A physical examination following an initial assessment is often required 
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and laboratory tests requested to exclude other diseases, such as diabetes mellitus, 

urinary tract infection, and diabetes insipitus (Nalbantoglu et al., 2013b), (Vande 

Walle et al., 2012). Physical examinations include abdominal/flank examination for 

masses, bladder distension, and relevant surgical scars; examination of the perineum 

and external genitalia and neurological testing (Abrams et al., 2010) is completed.  

Lifestyle management is a first-line intervention that is useful during the 

exploratory stages of diagnosis, however, it is reported that only 20% of patients 

suffering with nocturnal enuresis respond successfully, while 80% will need 

additional treatment (Lottmann & Alova, 2007). One approach is to use alarms, which 

have produced mixed results that range between 50% and 80% depending on the 

population (children and families need to be highly motivated) (Glazener & Evans, 

2007). In another approach pharmacology interventions have also been routinely used 

in the treatment of nocturnal enuresis. The use of desmopressin shows that one third 

of children remain dry;  one third there is a partial effect, and in the remaining third it 

has no effect at all (Glazener & Evans, 2002).  

There have been several technological interventions for managing nocturnal 

enuresis that focus on detection and more recently on prediction, which have largely 

produced disappointing results. Arguably the earliest recorded attempt is the work of 

(Butler, 1994) who used a urine alarm system to alert the clinical staff at a hospital 

when bedwetting episodes by patients occurred (the problem is that the event has 

already happened and requires sheets and cloths to be washed and changed). Nilsson 

et al. (Nilsson & Gulliksson, 2011) proposed a similar alarm system that uses a 

moisture sensing mechanism fitted into undergarments that alert patients and careers 

when fixed levels of moisture are detected (again the event has already happened).  

3. Predicting the Onset of Nocturnal Enuresis (PRONE) 

The discussion so far has highlighted a number of ways to treat nocturnal enuresis. 

Some of these include medication, alarms and the use of advanced sensor technology. 

Whilst these do benefit children and their careers, they do not stop the occurrence of 

bedwetting and in many instances, only alert the child or parent once the event has 

already occurred. This means that the child has to deal with the effects of bedwetting, 

which include, changing cloths and bedding, embarrassment and shame and the 

stigma this brings. This position paper describes a solution for a possible framework 

to treat nocturnal enuresis that goes far beyond any existing solutions to date.  

3.1 Sensor Platform 

The proposed system, illustrated in Figure 2, provides an overview of the logical 

architecture that comprises the framework. The system operates in two modes; 

training mode and prediction mode.  



 

 

 

Figure 1: Proposed Prediction Framework of Nocturnal Enuresis 

In the training mode, the system monitors the voiding habits of children during 

normal sleep. The training phase monitors the initial occurrence of moisture in the 

undergarment. This triggers a pulse generator in the electromagnetic sensor (also 

fitted into the undergarment above the navel), to start sending electromagnetic waves 

to decipher how full the bladder is. These values are wirelessly transmitted to the 

mobile device and in turn passed to the neural network to predict the volume of urine 

in the bladder. This value is used to configure an alarm that is specific to the patients 

voiding habits. The learning phase is configurable, but it is envisaged that several 

weeks of data will be required to provide an estimate of the bladder volume and 

voiding events. Following the completion of this training phase, an alarm will be 

configured to a percentage below the averaged bladder volume and voiding episodes 

learned by the system of the training period. 

During prediction mode, electromagnetic data is continuously (or at set intermittent 

times), streamed wireless to the mobile device. This data is passed to the neural 

network and the predicted bladder volume level is passed to the alarm system. If the 

value is equal to or greater than the pre-configured alarm threshold as determined 

during the training phase, an alarm will be triggered that prompts the child to wake up 

and go to the toilet. The principle goal is to wake then just before the onset of a 

voiding episode.    

3.2 Electromagnetic Wave Sensors  

The communication platform is a Bluetooth low energy (BLE) network with 

supporting services for data processing, aggregation, storage and distribution. All 

sensors have a BLE interface connecting them to the network. Sensors transmit data 



 

 

using the Generic Attribute Profile (GATT) protocol in BLE (Gupta, 2013) and all 

data is pre-processed using signal processing techniques. In the first instance, data is 

used to set the parameters of the algorithm and during runtime data is used for real-

time prediction. The sensors are robust to variations in skin, fat, muscle thickness and 

bladder sizes. Electromagnetic waves are attenuated while passing through the 

bladder. Different attenuation is encountered at different frequencies. This is 

primarily because different body tissue, such as muscle, fat and skin own different 

relative permittivity. This means that electromagnetic waves undergo numerous 

reflections from the boundary between two tissues/organs that have different relative 

permittivity. This method is proposed to detect the presence of water because the 

value of the relative permittivity of the water (in this instance urine) is much larger 

than the values of the relative permittivity of the surrounding organs and tissues.  

A large reflection of the incident electromagnetic signal pulse occurs. The position, 

amount of water, and the water concentration in the reflecting organ, can be estimated 

since the electromagnetic signals own a fine range resolution and good penetration 

ability. The signals from the transmitting and receiving antenna are processed using 

classification and prediction algorithms, which represent the relation between the 

signal frequencies and bladder volume. Bladder volume prediction is triggered during 

training by moisture sensors fitted into undergarments that consist of two electricity 

conductors separated by an insulated moisture absorbing material. Figure 2 illustrates 

the two sensor systems  

 

Figure 2: Moisture and Bladder Volume Sensor 

In prediction mode, a similar process is followed. Data is streamed or sampled at 

set time intervals, as discussed above, vectors are created and transmitted for signal 

processing and bladder volume prediction. 

3.3 Adaptive Neural Network Architecture 

A system to predict the occurrence of nocturnal enuresis before it occurs is 

provided by the proposed framework. The purpose of the system is to raise an alarm 

to the user using a mobile device based on the information collected from the 

developed sensor technology. Since the bladder volume varies from one person to the 

other, an adaptive system will be designed to personalize prediction and alarm 

thresholds. A pipelined structure similar to the adaptive fully recurrent pipelined 

neural network architecture proposed by Haykin and Li (Haykin, 1995) for the 

prediction of future occurrences of bedwetting, is introduced. The main structure of 

the proposed network is the recurrent pi-sigma unit (Shin & Ghosh, 1991) as shown in 



 

 

Figure 3 (a), due to their simplicity and the high learning capabilities of higher order 

neural networks, which make them suitable for mobile device processing.  

The network comprises a number of concatenated recurrent pi-sigma neural 

networks. It is designed to adaptively predict highly nonlinear and non-stationary 

signals, such as the bedwetting signal. Similar to the adaptive fully recurrent pipelined 

neural network architecture, the proposed network is designed using the principles of 

divide and conquer. This means that to solve a complex problem, it has to be broken 

into a number of smaller sub-problems. The proposed network is called pipelined 

recurrent pi-sigma neural network (PRPSN). Figure 3 (b) shows the general structure 

of the proposed network, while Figure 4 shows a specific structure of the proposed 

network with two modules for the recurrent pi-sigma units and m external inputs.  
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a) Structure of recurrent Pi-sigma 

Network 

b) Proposed Pipelined Pi-sigma Network 

Figure 3: (a) The structure of the Recurrent Pi-sigma network (b) The proposed 

pipelined Pi-sigma network 

Let q represent the total number of recurrent pi-sigma neural networks, which are 

concatenated with each other. Each recurrent pi-sigma neural network is called a unit 

(or a module) and consists of M-1 external inputs, except for the last unit, which 

consists of M external inputs. All the units of the PRPSN receive the output from 

previous units as input, except the last module in the proposed pipeline. 

In Figure 4, the inputs and outputs, as well as, the processing equations of the 

pipelined recurrent pi-sigma neural network are presented.   
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Figure 4: Module recurrent pi-sigma pipelined neural network architecture with m 

external inputs and second order pi-sigma units. 

If S(t) represents the nonlinear and non-stationary signal at time t obtained from the 

sensor, then the external input vector presented to the i
th

 module of the pipelined pi-

sigma network is defined as follows: 

T
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Let yi represent the output of module i, which is defined as follows: 
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where f is a nonlinear transfer function and vi is the net internal activation of 

module i. 

For the last module of the polynomial pipelined network: 
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where k is the order of the recurrent pi-sigma unit.  

For all other modules:  
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The proposed network can be trained using the real-time learning algorithm 

developed by Williams and Zipser [62]. Instead of assuming that the weights are 

constants during the whole trajectory, this condition is relaxed and the weights are 

updated for each input pattern presentation. The advantage of this learning algorithm 

is that the epoch boundaries are no longer required, making the implementation of the 

algorithm simpler and letting the network be trained for an indefinite period.   



 

 

The learning algorithm starts by initializing the weights of one of the network units 

to small random values. Then, the weights of this unit are trained and used as the 

initial weights for the PRPSN. The PRPSN is trained adaptively in which the errors 

produced from each module are calculated and the overall cost function of the PPNN 

is defined as follows: 
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where  is an exponential forgetting factor selected in the range (0, 1). At each 

time t, the output of each module yi(t) is determined and the error ei(t) is calculated as 

the difference between the actual value expected from each unit i and the predicted 

value yi(t). The weights are iteratively updated by gradient descent: 
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where  is the manually adjusted gain and    
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Then, the values of the triple 
)(tp i

ml  matrix are updated by differentiating the 

processing equations as follows:  
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The proposed neural network architecture will be used to capture the properties of 

the sensor signals and its structure will be adapted according to the training period. 

The values will be predicted adaptively over time.  

3.4 Mobile Platform 

In the network configuration, a mobile device will act as the GATT server. All data 

will be pre-processed using signal processing techniques. Features are extracted from 

the data and passed to the neural network to predict the bladder volume level. This 

process is performed in both training and prediction mode – in training mode it is 

used to set the alarm thresholds in relation to the detection of moisture and the volume 

level in the bladder. In prediction mode it is used to determine whether an alarm 

threshold has been reached – if this is the case an alarm is raised to wake the child as 

shown in Figure 5.   

 

Figure 5: Mobile Platform 

The proposed framework goes far beyond previous attempts to predict the likely 

time a child will wet the bed. It offers the means for the automated extraction of 

bladder measurements, by using advanced computer algorithms never attempted 

before in the prediction of nocturnal enuresis events that occur prior to bed-wetting. 

Overall, it is an adventurous medium risk/very-high impact appraoch, which will 



 

 

attempt to solve a significant real-world problem with advanced computer science 

methodologies. 

4. Discussion 

The timeliness of this work can be realistically judged in the context of large 

number of patients and the demographics of the population. The overall worldwide 

prevalence of unary incontinence is said to be 200 million people. In the UK, the 

figure is between three and six million and in the US, it is said to be 25 million. The 

economic cost of treating adults over the age of 40 suffering with urinary 

incontinence annually was estimated to be £536 million in 1999/2000 prices. In 

addition, it is estimated to cost the individual £207 million for managing their 

symptoms (£29 million and £178 million for men and women, respectively). The 

conservative estimate for treating children and adolescents is £424 million annually in 

the UK. In 2005, the annual cost-of-illness estimates for urinary incontinence in 

Canada, Germany, Italy, Spain, Sweden, and the United Kingdom was 7 billion euros. 

A US cost-of-illness study reported a total cost of $66 billion in 2007. These figures 

are likely to rise significantly over the next 20 years as awareness of the condition and 

the mean age of the population increases (Milsom et al., 2013).   

There is no real “gold standard” for the diagnosis and treatment of nocturnal 

enuresis. Taking into account the important role of prediction in the clinical 

assessment of NHS patients, and the large volume of nocturnal enuresis research 

articles based on alarm systems, we believe that there will be significant interest in the 

framework posited in this paper as it represents a level of sophistication and accuracy 

in nocturnal enuresis treatment not previously considered.  

5. Conclusion  

This paper has proposed a novel, low cost measurement and prediction system that 

detects the onset of nocturnal enuresis episodes before they occur, which current 

technologies cannot do. Commercial scale PrONE has the capacity to revolutionize 

the treatment of nocturnal enuresis and other incontinence conditions, while offering 

an affordable personalized device that allows children and their parents to manage 

their condition in the home. In the UK alone, PrONE presents the NHS with a real 

opportunity to treat nocturnal enuresis under the recommendations set out by NICE, 

and will also help the NHS significantly reduce the costs associated with treating this 

condition. 

The potential market for PrONE is vast, as personalized prediction systems can be 

used to offset the need for diagnostic and healthcare services. PrONE will improve 

the overall success rate of treatments (14 consecutive dry nights) while reducing 

relapses and help to gain a better and standardized understanding of the condition. It 

will reduce NHS costs and also costs incurred by parents (cleaning costs, mattress 

replacement, disposable products required). The anticipated efficiency of PrONE is 

such that it will standardize diagnosis and treatment compared with existing solutions 



 

 

and procedures as a result of its ease of use, data collection and communication 

capabilities between the child, parent and care practitioners.   

There is no other product on the market that covers such technology that can help 

to treat and understand nocturnal enuresis personalized to an individual’s condition 

and generalizable across all suffers of nocturnal enuresis. 
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