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Abstract 

In microarray studies, the number of samples is relatively small compared to the number of genes per sample. An 

important aspect of microarray studies is the prediction of patient survival based on their gene expression profile. 

This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In 

this study, a new method based on combining wavelet approximation coefficients and Cox regression was 

presented. The proposed method was compared with supervised principal component and supervised partial least 

squares methods. The different fitted Cox models based on supervised wavelet approximation coefficients, the top 

number of supervised principal components and partial least squares components were applied to the data. The 

results showed that the prediction performance of the Cox model based on supervised wavelet feature extraction 

was superior over the supervised principal components and partial least squares components. The results suggested 

that the possibility of developing new tools based on wavelets for the dimensionally reduction of microarray data 

sets in the context of survival analysis. 
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1. Introduction 

Microarray studies are widely used in biological and medical studies because they allow researchers to monitor 

tens of thousands of gene expression profiles simultaneously. Much of the interest in microarray data analysis 

derives from the potential of identifying the genes that relate to biological processes, the classification of tumor 

types, the stages based on gene expression patterns, and the study of gene interactions [1,2]. However, because 

microarray data sometimes include patients survival data, it is important to study patients survival times (response) 

in terms of their corresponding gene expression levels (predictors). The discovery of the relationship between time 

to event (survival time) and gene expression profiles as covariates provide the possibility to obtain more accurate 

diagnosis and advanced treatment [3]. It is estimated that high-dimensional gene expression data could noticeably 

enhance the predictive ability of such survival models [4]. 

Survival analysis is a statistical method that especially deals with the modeling and analysis time from a well-

defined time origin until the occurrence of some event or end point of interest. A major complexity of analyzing 

such data is right censoring, where the event of interest is known to occur only after a certain time point. One 

popular regression model that takes into account the censored response is the Cox Proportional Hazards (CPH) 

regression model [5]. A substantial challenge in this setting comes from the fact that the number of genomic 

variables p is usually much larger than the number of subjects n (i.e., p>>n). Existing statistical methods such as 

CPH model require fewer predictors than cases [4]. Thus, a crucial step towards the application of microarrays in 

survival prediction is the dimensionality reduction from the gene expression profiles. In recent years, both feature 

selection and feature extraction methods have been widely used to predict the survival of cancer patients based on 

gene expression data [6]. 

Rosenwald et al. described a feature selection approach for identifying genes related to survival time that fits CPH 

models to each gene and selected those that pass a threshold for significance [7]. Liu et al. presented the adaptive 

L1/2 shooting regularization method, which is used for variable selection in the CPH model [8]. Alizadeh et al. 

described an approach in which he first clustered the genes and then fitted a CPH model using the average 

expression level of each cluster as a covariate [1]. Nguyen and Rocke and Park et al. considered the problem of 

relating survival time to gene expression by reducing the dimensionality via partial least squares method. The first 
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a few linear combinations of gene expressions obtained via PLS were subsequently used in a CPH regression 

model for predicting the survival probabilities [9,10]. Li and Luan developed a penalized estimation procedure for 

the CPH model using kernels, under the assumption that the covariate effects were smooth functions of gene 

expression levels [11]. 

Several studies have compared dimension reduction methods in survival prediction based on microarray data. 

Bøvelstad et al. applied seven dimension reduction methods in order to predict survival in patients with diffuse 

large B-cell lymphoma (DLBCL) using gene expression dataset. Totally, their results showed that the ridge 

regression had best performance [4]. 

One of the methods used for feature extraction from the high dimensional data is wavelet transform. Normally, 

one dimensional discrete wavelet transform (DWT) is used to reduce dimensionality in the analysis of high 

dimensional biomedical data [12]. The primary intuition for applying wavelets in the case of gene expression is 

that genes are often co-expressed in groups. It would be useful to treat the group as a single variable, akin to the 

motivation behind methods such as principal component analysis [12]. Studies showed that this method has 

acceptable performance in the field of dimension reduction in the classification framework [14-17].   

However, few studies have used wavelet transform in the area of survival analysis. For example, Liu used 

continuous wavelet transform combined with a genetic algorithm to select genes related to survival in colon cancer 

[16]. This study aimed to introduce a dimension reduction strategy for transforming the high-dimensional gene 

expression data into a low dimensional space based on wavelet transform. Accordingly, a predictive survival model 

was built upon the reduced dimensional space. Then, the proposed novel supervised method of feature extraction 

was compared with the supervised principal component analysis (PCA) and the supervised partial least squares 

(PLS) method. 
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2. Material and methods 

2.1. Simulation Setup: 

We performed simulation study to evaluate and compare the performance of the proposed supervised wavelet 

method with Supervised PCA and Supervised PLS. The simulated data set was first presented by Bair et al., for 

evaluation purposes [18]. Following Bair et al. simulated data set X consisted of 5000 genes and 100 samples. All 

expression values were generated as standard normal random numbers with a few exceptions. Genes 1–50 in 

samples 1–50 had a mean of 1.0. We randomly selected 40% of the samples to have a mean of 2.0 in genes 51–

100, 50% of the samples to have a mean of 1.0 in genes 101–200, and 70% of the samples to have a mean of 0.5 

in genes 201–300. 

The survival times of samples 1–50 were generated as normal random numbers with a mean of 10.0 and a standard 

deviation of 2.0, and the survival times of samples 51–100 were generated as normal random numbers with a mean 

of 8.0 and a standard deviation of 3.0. For each sample, a censoring time was generated as a normal random 

number with a mean of 10.0 and a standard deviation of 3.0. If the censoring time turned out to be less than the 

survival time, the observation was considered to be censored [18]. 

2.2. Real-life datasets 

We applied the supervised wavelet transform method to a set of gene expression data with survival information 

on two real datasets. The first dataset was related to the diffuse large B-cell lymphoma (DLBCL) dataset of 

Rosenwald et al. and the second dataset was related to the lung cancer dataset of Beer et al. [7,20]. 

The DLBCL dataset included expression measurements of 7,399 genes on 240 patients, together with their survival 

times. A total of 138 deaths were observed during the study with the median death time of 2.8 years. The dataset 

is available at http://llmpp.nih.gov/lymphoma/data.shtml.  

The lung cancer dataset also included expression measurements of 7,129 genes on 86 lung adenocarcinoma 

patients, together with their survival times. The survival times were observed in 24 patients, and the censored 

times, in 62 patients. A detailed description of lung cancer dataset can be found in the original publication [20]. 

We used the dataset from the study conducted by Zhao et al. in 2008[21]. 
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2.3. Cox proportional hazards model 

The CPH model is the most commonly used model in survival analysis. It is also known as the Cox regression 

model. It factorizes the time dependence of the event rate from the covariate dependence, as follows: 

ℎ(𝑡, 𝑥) = ℎ0(𝑡) exp(𝛽𝑇𝑥)                                                                                                                                                   (1) 

where ℎ(𝑡, 𝑥) represents the hazard function at time t for a subject with covariates x. For different covariates, CPH 

regression models the hazard as a proportional factor applied to time-dependent baseline hazard that corresponds 

to a reference population for which the covariate values are all zero. This baseline hazard function is ℎ0(𝑡) and 

the effect of the covariates x is modeled linearly using 𝛽𝑇𝑥, which is known as the risk score. The coefficient 

vector β is estimated by maximizing the partial likelihood:  

𝑙(𝛽) = ∏ (
exp (𝛽𝑇𝑥𝑗)

∑ exp (𝛽𝑇𝑥𝑙)𝑙∈𝑅𝑗

)𝑘
𝑗=1                                                                                                                                             (2) 

𝑅𝑗 represents all patients at risk at the 𝑗th failure time and k the number of distinct failure times. The hazard ratio 

between different observations 𝑖 and 𝑗 by Eq (1) is assumed to be constant and independent of time: 

ℎ𝑖(𝑡,𝑥𝑖)

ℎ𝑗(𝑡,𝑥𝑗)
=

𝑒𝑥𝑝 (𝛽𝑇𝑥𝑖)

𝑒𝑥𝑝 (𝛽𝑇𝑥𝑗)
                                                                                                                                                              (3) 

Consequently, the Cox regression model is a proportional hazards model [5]. 

2.4. Wavelet transform 

A wavelet is a "small wave", which has its energy concentrated in time. In signal processing, a transformation 

technique is used to transfer a data in another domain where hidden information can be extracted. Wavelets have 

a nice feature of local description and separation of signal characteristics, and give a tool for the analysis of 

transient or time-varying signal [12]. A wavelet is a set of orthonormal basis functions generated from dilation and 

translation of a single scaling function or father wavelet (φ), and a mother wavelet (ψ).  

Wavelet transforms are classified into two different categories: the continuous wavelet transforms (CWT) and the 

discrete wavelet transforms (DWT). DWT is a linear operation that operates on a data vector, transforming it into 
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a wavelets coefficient. The idea underlying DWT is to express any function 𝑓 (𝑡) ∈ 𝐿2 (𝑅) in terms of φ (t) and ψ 

(t) as follows: 

𝑓(𝑡) = ∑ 𝑐0(𝑘)

𝑘

φ(𝑡 − 𝑘) + ∑ ∑ 𝑑j(𝑘)2
−j

2

j=1𝑘

ψ(2−j𝑡 − 𝑘) 

= ∑ 𝑐j0
(𝑘)2

−j0

2𝑘 φ(2−j0𝑡 − 𝑘) + ∑ ∑ 𝑑j(𝑘)2
−j

2j=j0𝑘 ψ(2−j𝑡 − 𝑘)                                                                                  (4) 

where φ(t), ψ(t), 𝑐0 and 𝑑jrepresent the scaling function, mother wavelet function, scaling coefficients 

(approximation coefficients) at scale 0, and detail coefficients at scale j, respectively. The variable k is the 

translation coefficient for the localization of gene expression data. The scales denote the different (low to high) 

scale bands. The variable symbol 𝑗0 is scale (level) number selected. 

One-dimensional discrete wavelet transform decomposes a signal as a sum of wavelets at different time shifts and 

scales (frequencies) using DWT. For this purpose, the signal is passed through series of high pass and low pass 

filters in order to analyze low as well as high frequencies in the signal as follows: 

𝑐𝑗+1 = ∑ ℎ(𝑚 − 2𝑘)𝑐𝑗(𝑚)𝑚                                                                                                                          (5) 

𝑑𝑗+1 = ∑ ℎ1(𝑚 − 2𝑘)𝑐𝑗(𝑚)𝑚                                                                                                                       (6) 

where ℎ(𝑚 − 2𝑘) and ℎ1(𝑚 − 2𝑘) are the low-pass filters and high-pass filters. 

The whole process of obtaining the wavelet transform of 𝑓(𝑡) using the pyramid algorithm is shown in Fig. 1. 

At each level, the high pass filter produces detail coefficients (wavelet coefficients) d1, while the low pass filter 

associated with scaling function produces approximation coefficient (scaling coefficients) c1. Then the 

approximation coefficients c1 are split into two parts by using the same algorithm and are replaced by c2 and d2, 

and so on. This decomposition process is repeated until the required level is reached. The coefficient vectors are 

produced by down sampling and are only half the length of the signal or the coefficient vector at the previous 

level.  

The main advantage of the wavelet transform is that each basis function is localized jointly in both the time and 

frequency domains. From a viewpoint of time-frequency, the approximation coefficients are corresponding to the 

larger-scale low-frequency components, and the detail coefficients are corresponding to the small-scale high-



8 
 

frequency components. Generally, the former can be used to approximate the original signal, and the latter 

represents some local details of the original signal [12-15]. 

There are different families of wavelets symlet, coiflet, daubechies and biorthogonal wavelets. They vary in 

various basic properties of wavelets, like compactness. Among them, Haar wavelets belonging to Daubechies 

wavelet family are most commonly used wavelets in database literature because they are easy to comprehend and 

fast to compute. 

2.4.1. Supervised wavelet transform 

The proposed method starts by adopting a univariate Cox model for each gene: 

ℎ(𝑡, 𝑥𝑔) = ℎ0(𝑡) exp(𝛽𝑇𝑥𝑔), for each gene𝑔 = 1,2, … ,7399,  

The covariates, each representing a different gene, are then sorted by increasing absolute values of the Wald’s 

statistic  
𝛽

𝑠𝑒(𝛽)
 , which are measures of the correlation between the gene expression level and patient survival. Then, 

in each step we pick out the top number of genes included with higher Wald’s statistic. Then, this reduced set of 

genes is modeled by the one-dimensional discrete wavelet transform to extract the relevant information and finally, 

the wavelet approximation coefficients in the first levels of decomposition are used in a multiple Cox regression 

model (Eq (1)). Note that, numbers of selected genes in this stage are considered proportional to the sample size. 

The Haar wavelet transform in the first level is applied on the preselected genes.  

2.5. Supervised principal components analysis 

Bair and Tibshirani and Bair et al. proposed the supervised principal components regression [18, 19]. This 

procedure first picks out a subset of the gene expressions that is correlated with survival by using univariate 

selection, and then applies PCA to this subset. In our analysis, we pick out top number of genes with higher Wald’s 

statistic. Then, we apply principal components analysis to this subset of genes and in each step, include the top 

number of principal components that will be comprised of at least 75% of the total variance into a multivariate 

Cox model. 
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2.6. Partial least squares method 

Partial least squares (PLS) is a supervised dimension reduction technique that is usually employed to correlate a 

response variable to the explanatory variables. PLS components are linear combinations of the predictor variables, 

constructed to maximize an objective criterion based on the sample covariance between response and covariates. 

PLS finds components that are both dependent on the variance of the gene expressions and the covariance between 

the gene expressions and the survival, whereas the components in PCA only depend on the variance of the gene 

expressions [9]. Many methods have been suggested to perform PLS for Cox regression. We used the method 

which was provided by the plsRcox package. In this study, the number of PLS components was fixed like for the 

Supervised PCA method. 

2.6. Model building and model evaluation criteria 

In order to evaluate the proposed method, in all experiments (simulation and real-life), data set was randomly 

divided into training (2/3 of the data) and test (1/3 of the data) sets for 50 times. The methods (supervised wavelet, 

supervised PCA and supervised PLS) were applied to the training set and the test set was used to calculate the 

evaluation measures. These data sets included 66 samples from 100 samples for simulated data, 160 samples from 

240 patients for DLBCL data and 60 samples from 86 patients for lung cancer data. 

For predicting survival of patients based on gene expression, we applied the proposed dimension reduction method, 

supervised PCA and supervised PLS in stage 1 in each data set, and then used the data in the reduced subspace to 

apply in the multiple CPH model in stage 2. In fact, following the evaluation scheme proposed by Bøvelstad et al. 

in each experiment, the parameters were estimated (𝛽𝑡𝑟𝑎𝑖�̂�) from the training data set for a given method.  Then, 

in the test set for each patient, the obtained estimates were used to derive a prognostic index (PI) (𝑃𝐼 = �́� 𝛽𝑡𝑟𝑎𝑖�̂�). 

Then, this PI index was used in the Cox model for calculating the evaluation criteria. The above procedure was 

repeated for 50 times [3, 4]. It is noted that various numbers of preselected genes were tested in each situation. 

Next, the results of model evaluation criteria were computed for each dataset. These methods were compared in 

terms of the mean of the criteria values. MATLAB r2012a software and R statistical package were used for data 

analysis. 
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The predictive performance of a fitted Cox model based on supervised wavelet coefficients, supervised principal 

components, and supervised partial least squares components were evaluated using R2 statistic, Concordance 

Probability Estimate(CPE), Likelihood ratio test statistic, Integrated Brier Score and C index. 

Moreover, in order to evaluate the effect of adding clinical information to genomic data on the performance of 

model for a lung cancer data set, clinical information was added to genomic data. The clinical features for each 

patient were included age, sex, stage, tumor size and nodal status. 

2.6.1. R2 statistic 

R2statistic measures the proportion of variation in survival data that may be explained by the predictor. A predictor 

with good predictive performance can explain a high proportion of variation in the survival data. On the other 

hand, a poor predictor may explain only a little variation in the data. Accordingly, when comparing models, the 

model with the larger R2 statistic is usually preferred [6]. Nagelkerke et al. suggested a general definition of the 

R2 statistic that may be employed for Cox proportional hazard model as follows: 

𝑅2 = 1 − exp (−
2

𝑛
(𝑙(�̂�) − 𝑙(0)))                                                                                                                (7) 

where 𝑙(. ) indicates the log-likelihood function [22]. In the present study, R2 values are those which were provided 

by the coxph() R function. 

2.6.2. Concordance Probability Estimate 

The discriminatory power of a statistical model is assessed by concordance probability estimate (CPE). This 

estimator is merely a function of the regression parameters and the covariate distribution without using the 

observed event and censoring times. A value of one for CPE denotes the perfect discrimination [23]. 

2.6.3. C index 

Concordance, or C-statistic, is a valuable measure of model discrimination in analyses involving survival time 

data. In general, consider selecting random pairs of patients and for each pair note, whether the model correctly 

predicts an order, e.g., a higher model score for the better result. Concordance is then the fraction of pairs for 
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which the model is correct. A completely random prediction would have a concordance of 0.5, a perfect rule a 

concordance of one [24]. 

2.6.4. Likelihood ratio test statistic 

The likelihood ratio test is a global goodness-of-fit test statistic for a Cox regression model. The test statistic for 

the likelihood ratio test is given as follows: 

𝐿𝑅 = −2𝑙𝑛𝐿𝑅 − (−2𝑙𝑛𝐿𝐹)                                                                                                                             (8) 

Where R denotes the reduced (PH) model obtained when all 𝛽’s are 0, and F denotes the full model. Thus, the 

performance is good when LR is large [5]. 

2.6.5. Integrated Brier Score (IBS) 

At a given time point t, the Brier score for a single subject is defined as the squared difference between observed 

survival status (e.g., 1 = alive at time t and 0 = dead at time t) and a model based prediction of surviving time t. 

The Brier score is given by: 

𝐵𝑆(𝑡) =
1

𝑁
∑ (𝑝𝑖(𝑡) − 𝑜𝑖(𝑡))2𝑊𝑛

𝑖=1                                                                                                               (9) 

Where N is the sample size, 𝑜𝑖(𝑡)is the observed survival at time t and 𝑝𝑖(𝑡) is the predicted probability at time t. 

The weight W is used to remove a large censoring bias. The Integrated Brier Score (IBS) is a summary of the 

prediction error over event time by integrating the formula (9). The smaller the Brier score, the better the survival 

prediction would be [25]. 

3. Results 

The results of the predictive performance of the fitted Cox models based on approximation wavelet coefficients, 

the top number of principal components and partial least squares components for simulated, DLBCL and lung 

datasets are shown in Tables 1 to 3, respectively. In general, the results showed that the Cox model based on 

supervised wavelet feature extraction method was superior over the supervised principal components and partial 

least squares components in terms of different evaluation criteria for three data sets. Although, in simulated data 

set all methods have a similar performance in terms of the Integrated Brier Score. 
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The results showed the spread of mean values of five evaluation measures over the 50 data sets are fairly large. 

These variations caused by selecting the data at random into 50 data sets as well as the variations of the prediction 

methods performance for the given datasets. In order to determine how much of the variation was due to the 

prediction methods, we used the supervised wavelet method as a benchmark, and for each of the two other methods 

computed the difference between the evaluation criteria in each of the conditions. 

Fig.2 to Fig.6 showed the boxplots of these differences in each evaluation criterion for the 50 data sets. The median 

values for R2, C index, CPE and LR were positive, which showed supervised wavelet method performed better 

than other methods. In addition, the median values for the Integrated Brier Score criterion in the different 

conditions was negative. Totally, simulation results and real data analysis confirmed the suitable performance of 

the supervised wavelet method. 

The results of the predictive performance of the fitted Cox models based on combination of clinical and genomic 

information for a lung data set are shown in Tables 4. The results showed that adding clinical information leads to 

an increase in the predictive ability of the model in three mentioned methods (supervised wavelet, supervised PCA, 

supervised PLS). 

4. Discussion 

This study employed the supervised dimension reduction method based on wavelet transform and modeled 

survival times in the presence of right censoring and taking into account the microarray data information. The 

proposed method was evaluated by simulations and applied to the Rosenwald et al’s DLBCL dataset and Beer et 

al’s Lung cancer dataset [7,19]. 

Considering the fact that most genes are irrelevant to patients’ survival, we analyzed the reduced dataset given by 

selecting genes that were significantly related to survival time based on the Wald’s statistic. If the wavelet 

transform is performed directly by using all of the genes in a data set, there is no guarantee that the resulting 

wavelet coefficients will be related to survival [21,22]. Thus, this study introduced a supervised form of wavelet 

transform that can be considered as supervised wavelet. After extracting supervised wavelet approximation 

coefficients using discrete Haar wavelet transform, the coefficients had higher predictive performance than the top 



13 
 

number of principal components and the top number of partial least squares components. Hence, our results 

suggested that the wavelet coefficients are an efficient way to characterize the features of high dimensional 

microarray data. It seems that, these results exhibit the possibility of developing more efficient tools using wavelets 

for the dimensionally reduction of microarray data sets in the context of survival analysis.  

The main purpose of the feature extraction method using wavelet transform is that the approximation coefficients 

usually comprise the majority of the important information [15].In addition, this method can usually condense or 

de-noise a signal without appreciable degradation due to using a different view of data than those presented by 

conventional methods. In addition, the powerful capability of the DWT to compress the signal energy makes it a 

good candidate for feature extraction applications. The DWT compresses most of the energy from the input signal 

and concentrates it in a few high-magnitude coefficients in the transformed matrix. The DWT also reduces the size 

of the input signal to half of its original size. Keeping only a number of these high-magnitude coefficients (in 

addition to their locations) while discarding the rest of the coefficients in the transformed signal can produce a 

valid feature vector representation of the input signal [14]. 

The wavelet feature extraction method does not depend on the training dataset to obtain the basis of feature space 

compared to PCA and PLS methods. Therefore, the wavelet feature extraction method reduces the computation 

load compared to PCA and PLS [16]. 

The flexible characteristic of our proposed method makes it appropriate not only for correlating censored patient 

survival data with microarray gene expression data but also with large-scale biological data stemming from other 

high-throughput technologies such as DNA copy number analysis and proteomics. 

Although the proposed method was better than supervised principal components and supervised partial least 

squares components based on two popular data sets and brief simulation, it is suggested that comprehensive 

simulation is used in future studies in order to evaluate of this method compared with the other dimension reduction 

methods. 

The future investigations can focus on different ways of preselecting gene in the first stage of the proposed method. 

For example, rather than ranking genes based on their Wald’s statistic, one would use a different metric to measure 
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the association between a given gene and survival time. On the other hands, another mother wavelet and different 

level of decomposition can be studied.  

5. Conclusion 

This study showed the Cox model based on supervised wavelet feature extraction method had superior predictive 

performance over the supervised principal components and supervised partial least squares components based on 

top selected genes. These results exhibit the possibility of developing more advanced tools using wavelets for the 

dimension reduction of microarray data sets in the context of survival analysis.  
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TABLE 1: Performance of different Cox models for simulated dataset.  

#Gene Method 𝐂𝐢𝐧𝐝𝐞𝐱 ± 𝐬𝐞 𝐂𝐏𝐄 ± 𝐬𝐞 𝐑𝟐 ± 𝐬𝐞 𝑳𝑹 ± 𝒔𝒆 𝑰𝑩𝑺 ± 𝒔𝒆 

40 Supervised Wavelet 0.924± 0.002 0.904± 0.003 0.766± 0.006 96.906± 1.729 0.153± 0.000 

 Supervised PCA 0.907± 0.002 0.850± 0.003 0.709± 0.003 81.564± 0.700 0.153± 0.000 

 Supervised PLS 0.919± 0.005 0.865± 0.005 0.739± 0.005 89.083± 1.311 0.155± 0.000 

30 Supervised Wavelet 0.914± 0.002 0.877± 0.004 0.720± 0.009 83.313± 2.284 0.150± 0.000 

 Supervised PCA 0.897± 0.003 0.842± 0.014 0.684± 0.007 76.448± 1.410 0.151± 0.004 

 Supervised PLS 0.910± 0.003 0.853± 0.016 0.711± 0.008 82.436± 1.791 0.151± 0.004 

20 Supervised Wavelet 0.899± 0.006 0.837± 0.030 0.682± 0.005 72.253± 2.233 0.153± 0.003 

 Supervised PCA 0.886± 0.004 0.827± 0.025 0.648± 0.009 69.357± 1.873 0.154± 0.004 

 Supervised PLS 0.895± 0.003 0.835± 0.027 0.669± 0.011 73.691± 2.273 0.154± 0.003 

10 Supervised Wavelet 0.870± 0.006 0.823± 0.023 0.618± 0.013 65.800± 1.419 0.154± 0.004 

 Supervised PCA 0.855± 0.011 0.810± 0.002 0.582± 0.008 58.072± 1.845 0.154± 0.003 

 Supervised PLS 0.866± 0.009 0.818± 0.001 0.609± 0.009 62.484± 1.767 0.156± 0.003 
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TABLE 2: Performance of different Cox models for DLBCL dataset.  

#Gene Method 𝐂𝐢𝐧𝐝𝐞𝐱 ± 𝐬𝐞 𝐂𝐏𝐄 ± 𝐬𝐞 𝐑𝟐 ± 𝐬𝐞 𝑳𝑹 ± 𝒔𝒆 𝑰𝑩𝑺 ± 𝒔𝒆 

40 Supervised Wavelet 0.755 ± 0.005 0.744 ± 0.004 0.401 ± 0.011 78.739± 1.815 0.237± 0.007 

 Supervised PCA 0.711 ± 0.004 0.695 ± 0.003 0.270± 0.000 42.636± 1.762 0.245± 0.005 

 Supervised PLS 0.723± 0.003 0.698± 0.003 0.294± 0.007 55.883± 1.449 0.250± 0.005 

30 Supervised Wavelet 0.723 ± 0.005 0.727 ± 0.007 0.325 ± 0.013 70.303± 2.618 0.244± 0.004 

 Supervised PCA 0.709 ± 0.004 0.692 ± 0.003 0.262 ± 0.008 42.087± 1.825 0.245± 0.003 

 Supervised PLS 0.713± 0.002 0.697± 0.002 0.289± 0.007 54.898± 1.418 0.251± 0.004 

20 Supervised Wavelet 0.730± 0.002 0.714 ± 0.002 0.323 ± 0.009 59.708± 2.699 0.243± 0.004 

 Supervised PCA 0.709 ± 0.003 0.688 ± 0.003 0.260± 0.008 41.327± 2.079 0.245± 0.003 

 Supervised PLS 0.719± 0.002 0.696± 0.003 0.282± 0.006 53.130± 1.486 0.249± 0.004 

10 Supervised Wavelet 0.703± 0.004 0.686 ± 0.005 0.255 ± 0.007 49.838± 1.832 0.248± 0.003 

 Supervised PCA 0.699 ± 0.005 0.686 ± 0.003 0.254 ± 0.013 41.056± 2.045 0.252± 0.004 

 Supervised PLS 0.701± 0.003 0.684± 0.003 0.255± 0.007 45.648± 2.241 0.254± 0.006 
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TABLE 3:  Performance of different Cox models for Lung cancer dataset.  

#Gene Method 𝐂𝐢𝐧𝐝𝐞𝐱 ± 𝐬𝐞 𝐂𝐏𝐄 ± 𝐬𝐞 𝐑𝟐 ± 𝐬𝐞 𝑳𝑹 ± 𝒔𝒆 𝑰𝑩𝑺 ± 𝒔𝒆 

20 Supervised Wavelet 0.923 ± 0.005 0.876 ± 0.007 0.582 ± 0.014 54.986± 2.130 0.328± 0.015 

 Supervised PCA 0.892 ± 0.003 0.796 ± 0.010 0.471 ± 0.014 38.609± 1.637 0.353± 0.009 

 Supervised PLS 0.909± 0.005 0.801± 0.005 0.498± 0.008 40.77± 1.439 0.365± 0.011 

15 Supervised Wavelet 0.905 ± 0.004 0.846 ± 0.005 0.531 ± 0.007 45.466± 1.838 0.343± 0.007 

 Supervised PCA 0.894 ± 0.003 0.801 ± 0.007 0.469 ± 0.010 38.263± 1.678 0.349± 0.007 

 Supervised PLS 0.900± 0.002 0.803± 0.005 0.483± 0.008 39.954± 1.382 0.353± 0.009 

10 Supervised Wavelet 0.889 ± 0.006 0.813 ± 0.006 0.462 ± 0.018 38.357± 1.641 0.330± 0.010 

 Supervised PCA 0.878 ± 0.005 0.784 ± 0.009 0.441 ± 0.008 34.217± 1.671 0.335± 0.008 

 Supervised PLS 0.885± 0.003 0.788± 0.004 0.448± 0.007 36.087± 1.356 0.350± 0.007 

5 Supervised Wavelet 0.873 ± 0.006 0.795 ± 0.005 0.429 ± 0.001 31.906± 1.786 0.297± 0.007 

 Supervised PCA 0.853 ± 0.005 0.775 ± 0.006 0.387 ± 0.012 29.241± 1.784 0.315± 0.006 

 Supervised PLS 0.858± 0.005 0.771± 0.006 0.386± 0.010 29.650± 1.313 0.323± 0.006 
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TABLE 4:  Performance of different Cox models for Lung cancer dataset (Clinical + Genomic data).  

#Gene Method 𝐂𝐢𝐧𝐝𝐞𝐱 ± 𝐬𝐞 𝐂𝐏𝐄 ± 𝐬𝐞 𝐑𝟐 ± 𝐬𝐞 𝑳𝑹 ± 𝒔𝒆 𝑰𝑩𝑺 ± 𝒔𝒆 

20 Supervised Wavelet 0.949± 0.006 0.924± 0.010 0.669± 0.031 72.304± 2.589 0.431± 0.007 

 Supervised PCA 0.907± 0.008 0.844± 0.009 0.553± 0.033 52.020± 2.208 0.432± 0.007 

 Supervised PLS 0.914± 0.007 0.849± 0.009 0.564± 0.035 53.814± 2.366 0.435± 0.009 

15 Supervised Wavelet 0.916± 0.005 0.855± 0.011 0.558± 0.031 56.318± 3.017 0.433± 0.010 

 Supervised PCA 0.903± 0.007 0.836± 0.010 0.540± 0.034 53.478± 2.585 0.435± 0.009 

 Supervised PLS 0.908± 0.007 0.842± 0.012 0.552± 0.041 55.526± 2.398 0.435± 0.006 

10 Supervised Wavelet 0.906± 0.006 0.848± 0.008 0.552± 0.027 52.746± 2.872 0.426± 0.006 

 Supervised PCA 0.892± 0.009 0.831± 0.008 0.521± 0.029 48.092± 2.119 0.426± 0.007 

 Supervised PLS 0.905± 0.009 0.842± 0.009 0.542± 0.031 51.472± 2.562 0.430± 0.005 

5 Supervised Wavelet 0.895± 0.008 0.818± 0.011 0.499± 0.036 51.472± 2.760 0.352± 0.008 

 Supervised PCA 0.883± 0.009 0.803± 0.010 0.445± 0.042 46.336± 2.113 0.359± 0.008 

 Supervised PLS 0.879± 0.007 0.814± 0.010 0.481± 0.029 49.976± 2.152 0.355± 0.006 

 

 

 

 

 

 

 

 



21 
 

 

Figure Captions: 

 

 

FIGURE 1: The 1D wavelet decomposition process 

FIGURE 2: Box plot of the difference in model evaluation criteria between the supervised wavelet and the two 

other methods for simulated dataset with different number of preselected genes. 

FIGURE 3: Box plot of the difference in model evaluation criteria between the supervised wavelet and the two 

other methods for DLBCL dataset with different number of preselected genes. 

FIGURE 4: Box plot of the difference in model evaluation criteria between the supervised wavelet and the two 

other methods for Lung dataset with different number of preselected genes. 
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