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Abstract

Over the past decade, healthcare systems around the world have transitioned from paper to elec-

tronic health records. The majority of healthcare systems today now host large, on-premise clusters

that support an institution-wide network of computers deployed at the point of care. A stream

of transactions pass through this network each minute, recording information about what medica-

tions a patient is receiving, what procedures they have had, and the results of hundreds of physical

examinations and laboratory tests. There is increasing pressure to leverage these repositories of

data as a means to improve patient outcomes, drive down costs, or both. To date, however, there

is no clear answer on how to best do this. In this thesis, we study two important problems that

can help to accomplish these goals: disease subtyping and disease trajectory prediction. In disease

subtyping, the goal is to better understand complex, heterogeneous diseases by discovering patient

populations with similar symptoms and disease expression. As we discover and refine subtypes,

we can integrate them into clinical practice to improve management and can use them to motivate

new hypothesis-driven research into the genetic and molecular underpinnings of the disease. In

disease trajectory prediction, our goal is to forecast how severe a patient’s disease will become in

the future. Tools to make accurate forecasts have clear implications for clinical decision support,

but they can also improve our process for validating new therapies through trial enrichment. We

identify several characteristics of EHR data that make it to difficult to do subtyping and disease

trajectory prediction. The key contribution of this thesis is a collection of novel probabilistic models

that address these challenges and make it possible to successfully solve the subtyping and disease

trajectory prediction problems using EHR data.
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Chapter 1

Introduction

Historically, documentation of healthcare care delivery was stored using paper records. In the last

decade, new legislature has pushed providers to adopt electronic health record (EHR) systems. The

Health Information Technology for Economic and Clinical Health (HITECH) Act pushed health-

care providers to transition from paper-based records to digitized databases and to implement

new programs around “meaningful use” of that data. Although the transition is still in progress,

the majority of healthcare systems today now host large, on-premise clusters that support an

institution-wide network of computers deployed at the point of care. Nearly everything that hap-

pens in a hospital passes through this software. Doctors review patient status, enter notes, and

place orders for laboratory tests and medication. Nurses check out prescribed medications using

automated dispensers, request consultations, and enter patient vitals into massive, patient-specific

spreadsheets. Valuable information that was once locked away in filing cabinets is now available

to analyze and process using computers. The best way to leverage that data to improve patient

outcomes and to drive down costs, however, is still an open question.

The idea of using computer programs and data to impact care has been around for decades and

preceded the widespread adoption of EHR systems. To highlight one example, Michael Pozen and

his colleagues fit a logistic regression model to predict the probability of acute ischemic heart disease

in patients that arrived at the emergency department (ED) [Pozen et al., 1980, 1984]. Although the

statistical methods are relatively simple, this work is remarkable for a number of reasons. First, the
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work focused not on a biological question, but instead on an operational inefficiency in care delivery.

When patients arrived in the ED with symptoms of ischemic heart disease, Pozen and his colleagues

observed that physicians responsible for triaging these patients would often overestimate a patient’s

risk. The consequence of this was that the cardiac care unit (CCU) was often filled to capacity

with patients who did not actually require the elevated care, which then made it harder to act

quickly when a patient arrived in critical condition. Pozen and his colleagues wondered whether

statistical estimates of severity could reduce CCU admission rates. Second, the authors of this

study worked hard to develop a solution that was as closely integrated with workflow as possible.

For eleven months, research assistants across six EDs manually collected 59 clinical features for

2801 patients. The authors used this data to fit a logistic regression model and implemented it

on handheld calculators that ED physicians could use while treating patients. Pozen et al. [1984]

report results on a prospective trial demonstrating a reduction in CCU capacity with no change

in outcomes for cardiac patients. These investigators went to remarkable lengths to “instrument”

care delivery and to integrate their solution back into the workflow of providers on the frontline,

and the effort lead to a real difference in care delivery.

Using EHR systems, work like that which was done by Pozen and his colleagues would be made

considerably easier. Many of the features that they collected are often routinely stored in the EHR,

and the predictive tool could be deployed through the EHR-provider interface. Nevertheless, EHR

data brings new challenges not encountered by early studies like the example above. Unlike studies

with a carefully designed data collection protocol, EHR data is collected as a by-product. EHR

systems are primarily a tool for coordinating care and for enabling administrative and financial

processes. This introduces new statistical and computational challenges that we must address in

order to maximize the value of this information. In this thesis, we identify and describe solutions

to to several of these challenges.
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1.1 Overview of Contributions

We focus on two core problems in this thesis: subtyping and disease trajectory prediction. Both

problems are difficult to solve because of a variety of biases and technical challenges posed by EHR

data. In the following sections, we motivate and describe these important problems, outline the

challenges that make them difficult to solve using EHR data, and preview the key contributions in

this thesis that address those challenges.

1.1.1 Discovering Disease Subtypes from Clinical Trajectory Data

Many diseases have no single canonical description; each patient is seemingly unique in how they

manifest the disease. For instance, asthma is functionally defined by acute inflamation of the

airways, but the severity of those symptoms, how they worsen or improve over time, and how

they are triggered vary widely across asthmatic individuals (e.g. Wenzel et al. 1999). Although

inhaled glucocorticosteroids effectively treat the symptoms, we do not have a clear understanding

of the underlying biological mechanisms that drive the observed heterogeneity across individuals.

In these complex, heterogeneous diseases we do not fully understand the “root causes”, which makes

it difficult to effectively treat more than the symptoms alone.

In Chapters 2 and 3, we develop new computational tools to help discover the root causes

of heterogeneous diseases by searching for subtypes [Saria and Goldenberg, 2015]; subpopulations

of patients that have similar clinical characteristics. The hypothesis underlying subtype-driven

research is that individuals with similar disease expression are likely to share biological mechanisms

driving the disease. As we discover and refine subtypes in a heterogeneous disease, we can begin

to further our understanding of it by searching for genetic or molecular differences across those

subtypes. Using EHR data we can study larger populations, which can accelerate subtype discovery

and help to more quickly find “root causes” of heterogeneous diseases.

Disease subtyping is a natural idea, and has been implemented using manual case review (e.g.

Barr et al. 1999a) and using automated clustering procedures of patient attributes (e.g. Haldar

et al. 2008, Moore et al. 2010). In this thesis, we show how to use clinical trajectory data extracted
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from EHRs to drive subtyping research [Schulam et al., 2015]. A clinical trajectory is time series

data reflecting a patient’s state over time. For instance, if a disease affects the respiratory system

then we might use the results of spirometry tests over time to monitor how lung function changes

throughout the course of the disease. Our proposal is to discover disease subtypes by searching for

groups of patients with similar disease progression patterns by leveraging clinical trajectory data.

Clinical trajectory data adds time as an important new dimension to the subtyping problem. Past

approaches that use snapshots of patient state may be underpowered because two subtypes can

look similar at a given point of the disease course. To successfully learn subtypes using clinical

trajectory data from EHRs, we must tackle an important and common type of bias.

EHR databases are a “convenience sample”; they are not as curated as those collected in

prospective studies. Subjects in an EHR study may differ in a number of important ways that

influence their clinical presentation, but that are unrelated to the pathophysiology driving the

disease. For example, patients may have incomplete medical histories (e.g. past surgeries). Or may

live in widely varying conditions at home, which is typically not reflected in health records (along

with other social determinants of health). If these important factors are not recorded in the EHR,

we cannot easily “control” for them using standard techniques; i.e. we cannot remove their effects

and isolate change in patient state due to the disease alone. When looking at EHR data, we do

not see a clear picture of the disease but instead see one that is convolved with myriad observed

and unobserved nuisance factors. We refer to these nuisance factors and their effects as unobserved

heterogeneity. The result is that there can be considerable differences between the raw EHR data

of two patients with the same subtype [Schulam et al., 2015].

We solve this problem by jointly modeling both the effects of the disease subtype and of the

nuisance factors on an individual’s clinical trajectory. Although we do not directly observe nuisance

factors, we show that we can instead model their aggregate effects at various “resolutions” [Schulam

et al., 2015]. For example, although we may not always record variables that reflect an individual’s

full medical history and living conditions at home, we know that the combined effects of those

factors are approximately constant over time. We refer to these as individual-specific long term
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effects. Similarly, although we do not observe all transient factors that might affect an individual’s

health (e.g. an infection), we know that the effects of these factors are only active over short time

periods. We refer to these effects as individual-specific short term effects. Our approach searches for

patients with similar clinical trajectories while simultaneously estimating and removing individual-

specific long and short term effects that would otherwise bias the subtypes that we learn. We show

that this approach helps us to discover more clinically significant disease trajectory subtypes than

state-of-the-art alternatives that do not account for unobserved heterogeneity.

1.1.2 Making Accurate and Reliable Disease Trajectory Predictions

Alvin Feinstein argued that a fundamental scientific challenge in clinical medicine is to develop

accurate procedures for predicting patient outcomes [Feinstein, 1983]. This claim reflects the idea

that the core of successfully managing and treating patients is a process of estimating and mitigating

risks [Spiegelhalter, 1986]. Predictive models in clinical medicine have been studied for decades, and

are most commonly built using statistical regression techniques [Steyerberg, 2009, Harrell, 2015].

In classical statistical regression, the goal is to determine a mathematical relationship between a

collection of measured input variables (e.g. age, gender, blood pressure) and an outcome (e.g. the

time to disease recurrence or the value of a future test result).

Predictions have also started to play a larger role in the design and implementation of clinical

trials through the idea of enrichment. The key idea behind enrichment is that we design enrollment

criteria based on the results of prognostic indicators [Temple, 2010, Freidlin and Korn, 2014]. For

example, if an experimental drug is thought to lower the risk of heart attacks, then we can make the

trial more efficient (i.e. require fewer subjects) by only enrolling those at highest risk [Simon and

Maitournam, 2004]. In many cases, the prognostic indicators are single risk factors or biomarkers

(e.g. family history or the result of a genetic test). A relatively new idea is to instead build

predictive models for trial enrichment. Instead of relying on a single test result or biomarker, this

approach pools together information across a variety of measurements and uses the predicted risk as

“synthetic” biomarker. This idea has been explored, for instance, in the context of trials targeting
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skin disease in scleroderma [Maurer et al., 2015].

EHRs capture a wide range of clinical data on large patient populations for long periods of

time, and so they are an attractive source of training data for fitting predictive models. Moreover,

because EHR data so closely mirrors the interactions between a patient and the healthcare system,

a predictive model fit to this data has the potential to be especially effective for guiding patient

management and driving trial enrichment (as opposed to models that are fit on more curated

datasets that are not similar to the environments in which the model will be used). To use EHR

data effectively, however, there are a number of obstacles that we must address:

Unobserved heterogeneity. Classical statistical regression models (which include linear mod-

els, random forests, and neural networks) all require a sufficiently informative collection of input

variables in order to achieve good performance. For example, if an individual’s prognosis heavily

depends on the presence of several genes, then we must include measures of those genes in our

model (or some correlated variable). Without those inputs, there is a cap on how well the model

will perform. EHR data, however, is commonly affected by unobserved heterogeneity; i.e. unmea-

sured factors that affect our clinical observations. There is therefore a fundamental limit on the

accuracy of classical regression models when applied to EHR data.

Policy shift. Patients in EHR data are being actively treated, and these treatment decisions

partially determine the distribution of our training data. When we fit a regression model to this

data, we are assuming that the policy in the training data remains unchanged in the test data as well.

There are at least two ways that such a model is unreliable. First, our model can perform poorly

if patients are treated differently than in the training data (i.e. if the assumption underlying our

regression model is violated). This is not uncommon; treatment policies can shift across hospitals,

across providers, and even over time at the same hospital. The second way that our model can

be unreliable is subtle and does not require a change in how patients are treated. It stems from

a mismatch between what our predictive model learns and how users often incorporate model

predictions into their workflow. Chapter 6 further elaborates on this second type of unreliability.
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Sparse and high dimensional data. In many diseases, there are multiple risk factors and

biomarker trajectories that we want to track over time. For example, in the complex autoimmune

disease scleroderma Varga et al. [2012], physicians monitor a variety of test results that each re-

flect the health of a different organ system (e.g. the lungs, vasculature, skin, and so on). These

trajectories are often sparsely and irregularly samples, and the markers are not always sampled at

the same time. Joint generative models can handle the missing data, and are a natural approach

for modeling these trajectories. This approach, however, introduces several additional challenges.

First, generative models are sensitive to incorrect statistical assumptions and it is difficult to accu-

rately model interactions between a large collection of trajectories. Second, it becomes increasingly

expensive to perform the computations needed to learn and make predictions with the model as we

include additional biomarker trajectories.

In Chapter 4, we build on the ideas developed for subtyping to describe a new framework

for predicting an individual’s disease progression that is accurate even when there is unboserved

heterogeneity. Our approach leverages observed predictors (e.g. age, gender, race, and so on)

along with an individual-specific hierarchy of unobserved factors [Schulam and Saria, 2015]. As we

gather more information about a patient, our approach dynamically updates estimates of subtype,

individual-specific long term, and individual-specific short term factors. At any given point in time,

our approach combines current estimates of these factors with observed predictors to produce more

accurate forecasts of a patient’s future disease activity. In Chapter 5, we describe an extension

of our framework that makes it simpler and more efficient to leverage high dimensional clinical

trajectory data to predict disease progression. We use a modular, two-stage approach that first fits

individual biomarker trajectory models and then learns to share inferences across those individual

models in a way that maximizes predictive performance [Schulam and Saria, 2016].

In Chapter 5, we demonstrate that our approach to predicting disease progression has strong

clinical utility by fitting a state-of-the-art model of lung disease progression in scleroderma, a com-

plex and heterogeneous autoimmune disease [Varga et al., 2012]. These results demonstrate the
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added predictive value of both solving the unobserved heterogeneity problem and of integrating

information across many biomarker trajectories. In clinical practice, these improvements in pre-

dicting disease progression can make it easier for clinicians to better anticipate their patients needs

and initiate treatment early enough to be most effective. In medical research, we can use the im-

proved predictions as more effective “synthetic biomarkers” to drive trial enrichment. In complex

heterogeneous diseases, where the rate of trial failure is especially high due to poor power [Temple,

2010], there is an opportunity to drive down costs and improve the quality of the data generated

in new trials.

In Chapter 6 we address the policy shift issue by blending ideas from predictive modeling and

causal inference [Schulam and Saria, 2017]. Fitting causal models to sparse and irregularly sampled

continuous-time disease trajectory data is challenging because both the measurement policy driving

when we record biomarkers and the treatment policy can introduce confounding. We describe a pro-

cedure that estimates causal models of continuous-time trajectory data in this challenging setting,

and lay out a set of assumptions that are sufficient to prove its correctness. Moreover, we motivate

our continuous-time causal model by showing that discretizing, or binning, continuous-time tra-

jectories to create discrete-time trajectories can introduce confounding bias. In our experiments,

we show that causal disease trajectory models are less sensitive to policy shift and therefore more

reliable. Finally, we demonstrate how our causal disease trajectory models can be used for planning

patient management by building a tool to predict the trajectory of kidney function under various

forms of dialysis for patients in the ICU.

Our approach to building reliable predictive models resolves several long-standing issues with

machine learning in clinical medicine. First, it is common practice to validate predictive models

using data from a target hospital before applying it in that new environment. This is because models

can fail to generalize from training data for many reasons (e.g. different case mix or changes in

treatment policies). The methods in Chapter 6 show how to build models that generalize even

when treatment policies change. Many of the same ideas can also be applied to mitigate other

reasons for poor generalization. Models fit with these techniques can help to remove some of the
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“due diligence” required before deploying models in clinical practice.

Finally, there are also implications for how predictive models are incorporated into a clinician’s

workflow. Steyerberg [2009] summarizes the issue with standard predictive models:

Unfortunately, choice of therapy based on prognostic models will directly affect the

validity of such models, but nevertheless prognostic models are needed even if they are

self-destroying. In some sense, not only the information on the patient is dynamic,

but so is any prognostic model, because it should be based on current and not on past

treatment protocols.

In short, classical predictive models are “one-shot” because the distribution of future data changes

once a clinician chooses treatment based on its output. Because predictive models trained using

the methods in Chapter 6 are robust to changes in treatment policy, they remain valid even after

a clinician uses the model to guide therapy. This makes it safer and easier to deploy predictive

models at the point of care because they do not need to be updated over time.
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Chapter 2

Disease Trajectory Subtypes

Disease subtyping is the process of stratifying a population of individuals with a shared disease

into subgroups that exhibit similar clinical traits; a task that is analogous to clustering in machine

learning. Under the assumption that individuals with similar traits share an underlying disease

mechanism, disease subtyping can help to propose candidate subgroups of individuals that should

be investigated for biological differences. Understanding these differences can shed light on the

mechanisms specific to each group. Observable traits useful for identifying sub-populations of simi-

lar patients are called phenotypes. Once subtypes are linked to a distinct underlying pathobiological

mechanism, they are then referred to as endotypes [Anderson, 2008].

Traditionally, disease subtyping research has been conducted as a by-product of clinical ex-

perience. A clinician may notice the presence of subgroups, and may perform a more thorough

retrospective or prospective study to confirm their existence (e.g. Barr et al. 1999b). Recently,

however, literature in the medical community has noted the need for more objective methods for

discovering subtypes [De Keulenaer and Brutsaert, 2009]. Growing repositories of health data

stored in electronic health record (EHR) databases and patient registries [Blumenthal, 2009, Shea

and Hripcsak, 2010] present an exciting opportunity to identify disease subtypes in an objective,

data-driven manner using tools from machine learning that can help to tackle the problem of comb-

ing through these massive databases. In this chapter, we describe such a tool, the Probabilistic

Subtyping Model (PSM), that is designed to discover subtypes of complex, systemic diseases using
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longitudinal clinical marker trajectories collected in EHR databases and patient registries.

Discovering and refining disease subtypes using clinical trajectories can benefit both the practice

and the science of medicine. Clinically, associating patients with disease trajectory subtypes can

help to reduce uncertainty in expected outcome of an individual’s case, thereby improving treat-

ment. Subtype trajectories can inform therapies and aid in making prognoses and forecasts about

expected costs of care [Chang et al., 2011]. Scientifically, disease subtypes can help to improve

the effectiveness of clinical trials [Gundlapalli et al., 2008], drive the design of new genome-wide

association studies [Kho et al., 2011, Kohane, 2011], and allow medical scientists to view related

diseases through a more fine-grained lens that can lead to insights that connect their causes and

developmental pathways [Hoshida et al., 2007]. Disease subtyping is especially useful for complex,

heterogeneous diseases where mechanism is often poorly understood. Examples of disease sub-

typing research include work in autism (e.g. State and Sestan 2012), cardiovascular disease (e.g.

De Keulenaer and Brutsaert 2009), and Parkinson’s disease (e.g. Lewis et al. 2005).

Clinicians commonly characterize complex disease using the level of disease activity present in an

array of organ systems. They typically measure the influence of a disease on an organ using clinical

tests that quantify the extent to which that organ’s function has been affected by the disease. The

results of these tests, which we refer to as illness severity markers (s-markers for short), are being

routinely collected over the course of care for large numbers of patients within EHR databases

and patient registries. For a single individual, the time series formed by the sequence of these

s-markers constitutes a disease activity trajectory. Operating under the hypothesis that individuals

with similar disease activity trajectories are more likely to share mechanism, this chapter shows how

to cluster individuals according to their longitudinal clinical marker data and learn the associated

prototypical disease activity trajectories (i.e. a continuous-time curve characterizing the expected

s-marker values over time) for each subtype.
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2.1 Controlling for Unobserved Heterogeneity

The s-marker trajectories recorded in EHR databases are influenced by many factors such as age

and co-existing conditions that are unrelated to the underlying disease mechanism [Lötvall et al.,

2011]. We call the effects of these additional factors nuisance variability. In order to correctly

cluster individuals and uncover disease subtypes that are likely candidates for endotyping Lötvall

et al. [2011], we must model and explain away nuisance variability. In many cases, however, these

additional factors are not recorded in our data (e.g. parts of the patient’s medical history might be

missing). When nuisance variability is caused by unmeasured factors, we refer to it as unobserved

heterogeneity, which we cannot control for by directly modeling the underlying factors.

We account for and remove unobserved heterogeneity by modeling the aggregate effects of unob-

served factors at various resolutions using latent variables. First, we use a population-level regres-

sion on to observed covariates— such as demographic characteristics or co-existing conditions— to

account for variability in s-marker values across individuals due to measured factors. For example,

lung function as measured by the forced expiratory volume (FEV) test is well-known to be worse in

smokers than in non-smokers [Camilli et al., 1987]. Second, we use individual-specific parameters to

account for variability across individuals that is not predicted using the observed covariates. This

form of variability may last throughout the course of an individual’s disease (e.g. the individual

may have an unusually weak respiratory system) or may be episodic (e.g. periods during which

an individual is recovering from a cold). After accounting for unobserved heterogeneity, we cluster

the time series formed by the residual activity to induce subtypes. We hypothesize that differences

across such clusters are more likely candidates for endotype investigations.

2.2 Contributions

In this chapter, we describe the Probabilistic Subtyping Model (PSM), a novel model for discovering

disease subtypes and associated prototypical disease activity trajectories using observational data

that is routinely collected in electronic health records (EHRs). To tackle unobserved heterogeneity,
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PSM learns clinical trajectory subtypes by simultaneously learning the subtypes and the effects

of unobserved nuisance factors. PSM controls for (1)nuisance variability due to observed factors,

(2) individual-specific long term unobserved heterogeneity, and (3) individual-specific short term

unobserved heterogeneity. Moreover, PSM learns clinical trajectory subtypes using sparse and

irregularly sampled time series, which is common in obserational EHR data. To evaluate PSM, we

use real and simulated data to demonstrate that, by accounting for unobserved heterogeneity, PSM

can accurately impute missing s-markers and accurately recover ground truth clinical trajectory

subtypes. Finally, we discuss novel subtypes discovered using PSM in the context of the complex

autoimmune disease, scleroderma [Varga et al., 2012].

2.3 Related Work

A large body of work has focused on identifying subtypes using genetic data (e.g. Chen et al.

2011). Enabled by the increasing availability of EHRs, researchers have also recently started to

leverage clinical markers to conduct subtype investigations. Chen et al. [2007] use the clinarray— a

vector containing summary statistics of all available clinical markers for an individual— to discover

distinct phenotypes among patients with similar diseases. The clinarray summarizes longitudinal

clinical markers using a single statistic, which ignores the pattern of progression over time. More

recently, Ho et al. [2014] used tensor factorization as an alternative approach to summarizing high-

dimensional vectors created from EHRs [Ho et al., 2014]. Others have used cross-sectional data

to piece together population disease progression trajectories (e.g. Ross and Dy 2013), but do

not model individual trajectories. Another approach to phenotyping using time series data, often

applied in the acute care setting, is to segment an individual’s time series into windows in order to

discover transient traits that are expressed over shorter durations (minutes, hours, or days). For

example, Saria et al. propose a probabilistic framework for discovering traits from physiologic time

series that have similar shape characteristics [Saria et al., 2011] or dynamics characteristics [Saria

et al., 2010]. Lasko et al. [2013] use deep learning to induce an over-complete dictionary in order to

define latent traits over shorter segments of clinical markers [Lasko et al., 2013]. Beyond s-markers,
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others have used ICD-9 codes— codes indicating the presence or absence of a condition— to study

comorbidity patterns over time among patients with a shared disease (e.g. Doshi-Velez et al. 2014).

ICD-9 codes are further removed from the biological processes measured by quantitative tests.

Moreover, the notion of disease severity is more difficult to infer from codes, which only record

binary presence/absence information.

Latent class mixed models (LCMMs) are a family of methods designed to discover subgroup

structure in longitudinal datasets using fixed and random effects (e.g., Muthén and Shedden 1999,

McCulloch et al. 2002, Nagin and Odgers 2010). Random effects are typically used in linear models

and allow an individual’s coefficients to be probabilistically perturbed from the population’s. This

alters the model’s fit to the individual over the entire observation period. Modeling s-marker data

for chronic diseases, where data are collected over tens of years, requires accounting for additional

influences such as those due to transient disease activity. The task of modeling variability between

related time series has been explored in other contexts (e.g. Listgarten et al. 2006, Fox et al. 2011).

These typically assume regularly sampled time series and model properties that are different from

those in our application.

Finally, previous work in the machine learning literature has also looked at relaxing the as-

sumption of regularly sampled data. Marlin et al. [2012] cluster irregular clinical time series from

in-hospital patients to improve mortality prediction. They use Gaussian process priors that allow

unobserved measurements to be marginalized [Marlin et al., 2012]. Lasko et al. [2013] also address

irregular measurements by using MAP estimates of Gaussian processes to impute sparse time series

[Lasko et al., 2013]. Neither of these methods account for unobserved heterogeneity.

2.4 Probabilistic Subtyping Model

We define a generative model for a collection of 𝑀 individuals with associated s-marker sequences.

For each individual 𝑖, the s-marker sequence has 𝑁𝑖 measurement times and values, which are de-

noted as 𝑡𝑖 ∈ R𝑁𝑖 and 𝑦𝑖 ∈ R𝑁𝑖 respectively. In addition to the measurement times and values,

each individual is assumed to have a vector of 𝑑 covariates 𝑥𝑖 ∈ R𝑑. The s-marker values 𝑦1:𝑀 are
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random variables, and we assume that 𝑡1:𝑀 and 𝑥1:𝑀 are fixed and known. The major concep-

tual pieces of the model are the subtype mixture model, covariate-dependent nuisance variability,

individual-specific long-term nuisance variability, and individual-specific short-term nuisance vari-

ability. We describe each of these pieces in turn. The graphical model in Figure 4.1 shows the

relevant hyperparameters, random variables, and dependencies.

2.4.1 Background: B-Splines

A common approach to fitting nonlinear functions of time while maintaining a linear dependence on

model parameters is to use a basis expansion. Such an expansion defines some non-linear function

𝑓(𝑡) as a linear combination of other functions 𝜑1(𝑡), . . . , 𝜑𝑝(𝑡):

𝑦 = 𝑓𝛽(𝑡) =
𝑝∑︁

𝑖=1
𝛽𝑖𝜑𝑖(𝑡) = Φ⊤(𝑡)𝛽, (2.1)

where 𝜑1, . . . , 𝜑𝑝 are bases in a vector space of nonlinear functions and Φ(𝑡) ∈ R𝑝 is the vector

containing the values of the 𝑝 basis functions evaluated at time 𝑡. The benefit of this formulation

is that the function 𝑓 is linear in the model parameters 𝛽, making it relatively easy to fit complex

models. B-splines are a particular family of basis functions that we can use to parameterize nonlin-

ear functions. Others include polynomial bases and radial basis functions. However, there are two

advantages to using B-splines. First, each basis function is non-zero only over a compact interval

of the real line, which improves statistical stability and also allows for computational speed ups

that take advantage of sparse basis matrices [Gelman et al., 2014]. This is in contrast to polyno-

mials, where each basis takes non-zero values globally. The second advantage is that the family

of functions parameterized by B-splines are not infinitely differentiable (in contrast to radial basis

functions) and therefore not smooth [Gelman et al., 2014]. This bias is often more realistic when

modeling biological data. Moreover, because B-splines are linear in their parameters, we can use

the well-developed machinery of linear regression for learning. Ch. 20 in Gelman et al. [2014] and

Ch. 5 in Friedman et al. [2001] have additional details.
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Figure 2.1: Graphical model for PSM.

Penalized B-splines

In practice, the parameters of a B-spline model are fit using a penalized least squares criterion. The

penalty is typically introduced in order to control the smoothness of the fit. For data 𝑦 measured

at times 𝑡 with corresponding basis matrix Φ(𝑡) = [Φ(𝑡1), . . . ,Φ(𝑡𝑛)]⊤, we minimize the following

objective:

𝐽(𝛽) = ‖𝑦 − Φ(𝑡)‖22 + 𝜌𝛽⊤Ω𝛽, (2.2)

where Ω is, for example, a first-order differences matrix as described by Eilers and Marx [1996].

The penalized objective is still quadratic in 𝛽 and so can be easily minimized.

2.4.2 Subtype Mixture Model

Each individual is assumed to belong to one of 𝐺 latent groups (representing a disease subtype).

The random variable 𝑧𝑖 ∈ {1, . . . , 𝐺} encodes subtype membership, and is drawn from a multinomial

distribution with probability vector 𝜋1:𝐺. The probabilities 𝜋1:𝐺 are modeled as a Dirichlet random
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variable with symmetric concentration parameter 𝛼. Formally, we have:

𝜋1:𝐺 ∼ Dirichlet(𝛼) (2.3)

𝑧𝑖 | 𝜋1:𝐺 ∼ Categorical(𝜋1:𝐺). (2.4)

We model each of the subtype prototypical disease activity trajectories using B-splines. Each

subtype’s disease activity trajectory is parameterized by a vector of coefficients 𝛽 ∈ R𝑝. The

coefficients 𝛽1:𝐺 are modeled as independent random vectors drawn from a multivariate normal

distribution:

𝛽𝑔 ∼ Normal(𝜇𝛽,Σ𝛽). (2.5)

2.4.3 Covariate-Dependent Heterogeneity

When one or more covariates are available that are known to influence clinical test results, but

are posited to be unrelated to the underlying disease mechanism, the influences can be accounted

for using covariate-dependent effects. For example, smoking status can partially explain why an

individual’s forced expiratory volume declines more rapidly, or African American race may be

associated with especially severe scleroderma-related skin fibrosis. By fitting a standard mixture

of B-spline regressions to s-marker data directly, the subtype random variable 𝑧𝑖 may incorrectly

capture correlations among groups of individuals with similar covariates. By including covariate-

dependent effects, we can adjust for these correlations and free the subtype mixture model to capture

residual correlations that are more likely to be due to a common underlying disease mechanism.

We model covariate-dependent effects by using 𝑥𝑖 to predict a vector of coefficients 𝛽𝑥 ∈ R𝑝 for

the same B-spline basis Φ that we use to model the subtype disease trajectories. To predict the

elements of 𝛽𝑥, we use 𝑝 linear functions of 𝑥. We stack the coefficients of these linear functions

in the rows of a matrix 𝐵 ∈ R𝑝×𝑑. We model each row 𝐵𝑘 of 𝐵 as multivariate normal random

17



variable

𝐵𝑘 ∼ Normal(𝜇𝐵,Σ𝐵). (2.6)

Modeling Treatments

If there are treatments that can alter long-term course and the points at which they are administered

vary widely across individuals, treatments become additional sources of nuisance variability that

we can model using time-dependent covariates. In scleroderma, our disease of interest, and many

other systemic diseases, no known drugs modify the long-term course of the disease, and so we do

not tackle this issue in this chapter.

2.4.4 Individual-Specific Long Term Unobserved Heterogeneity

An individual may express additional variability over the entire observation period beyond what is

explained away using covariates. For example, an individual may have an unusually weak respira-

tory system and so may have a lower baseline value (intercept), which may not be reflected in any

measured covariates. We model this form of variability using samples from a long-term Gaussian

process. Each individual 𝑖 has a separate long-term function

𝑓𝑖 ∼ GP(0, 𝑘), (2.7)

where 𝑘 is a covariance function with a weak dependence on time. Practically, this means that two

samples from the same patient will be correlated even if taken at different points in the disease

trajectory. The constant covariance is one example of such a covariance:

𝑘(𝑡1, 𝑡2) = 𝜈2. (2.8)

This is equivalent to drawing an individual-specific random intercept from a normal distribution

with variance 𝜈2.
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2.4.5 Individual-Specific Short Term Unobserved Heterogeneity

Finally, an individual may experience episodic disease activity that only affects a handful of mea-

surements within a small time window. For example, there may be periods during which an

individual is recovering from a cold, which temporarily weakens his or her respiratory system and

causes a temporary drop in forced expiratory volume. We model these transient deviations using

a short-term Gaussian process. Each individual 𝑖 has a separate short-term function

𝑓 ′
𝑖 ∼ GP(0, 𝑘′), (2.9)

where 𝑘′ is a covariance function that assigns stronger correlations to samples measured close in

time. One example of a short-term covariance function is the Ornstein-Uhlenbeck kernel:

𝑘′(𝑡1, 𝑡2) = 𝑎2 exp
{︂ |𝑡1 − 𝑡2|

𝑤2

}︂
. (2.10)

As 𝑎 increases, we encode the assumption that transient events can have an increasing effect on an

individual’s trajectory. The parameter 𝑤 encodes the expected time range over which we expect

these events to occur (i.e. smaller 𝑤 means that the events last for a shorter period of time).

2.4.6 S-marker Measurement Model

Given fixed model parameters Θ = {𝜋1:𝐺, 𝛽1:𝐺, 𝐵, 𝑘, 𝑘
′} and conditioned on the subtype 𝑧𝑖, long-

term individual effects 𝑓𝑖, and short-term individual effects 𝑓 ′
𝑖 , we model an individual’s measure-

ments 𝑦𝑖 as iid samples from a normal distribution

𝑦𝑖𝑗 | 𝑧𝑖, 𝑓𝑖, 𝑓
′
𝑖 ∼ Normal

(︁
Φ(𝑡𝑖𝑗)𝐵𝑥𝑖 + Φ(𝑡𝑖𝑗)𝛽𝑧𝑖 + 𝑓𝑖(𝑡𝑖𝑗) + 𝑓𝑖(𝑡𝑖𝑗), 𝜎2

)︁
. (2.11)

2.5 Learning and Inference

In this section, we assume that the number of subtypes 𝐺, long-term covariance function 𝑘, short-

term covariance function 𝑘′, and measurement variance 𝜎 are fixed upfront. To choose these values

19



we use domain knowledge and model selection procedures (e.g. BIC, cross validation, or held out

training data).

2.5.1 Learning

To learn the remaining model parameters Θ = {𝜋1:𝐺, 𝛽1:𝐺, 𝐵}, we use expectation- maximization

(EM) to optimize the joint log density of 𝑦1:𝑀 and Θ:

log 𝑝(𝑦1:𝑀 ,Θ) =
𝑀∑︁

𝑖=1
log 𝑝(𝑦𝑖 | Θ) + log 𝑝(𝜋1:𝐺) + log 𝑝(𝛽1:𝐺) + log 𝑝(𝐵). (2.12)

To calculate the density of 𝑦𝑖 we marginalize over the individual’s latent variables 𝑧𝑖, 𝑓𝑖, and 𝑓 ′
𝑖 .

Given 𝑧𝑖, it is straightforward to marginalize over 𝑓𝑖 and 𝑓 ′
𝑖 since 𝑝(𝑦𝑖, 𝑓𝑖, 𝑓

′
𝑖 | 𝑧𝑖) is a multivariate

normal distribution:

𝑦𝑖 | 𝑧𝑖 ∼ MultNormal
(︁
Φ(𝑡)𝐵𝑥𝑖 + Φ(𝑡)𝛽𝑧𝑖 ,𝐾𝑖 +𝐾 ′

𝑖 + 𝜎2I𝑁𝑖

)︁
, (2.13)

where we have defined the covariance matrices

[︀
𝐾𝑖
]︀
𝑗𝑘

= 𝑘(𝑡𝑖𝑗 , 𝑡𝑖𝑘) (2.14)
[︀
𝐾 ′

𝑖

]︀
𝑗𝑘

= 𝑘′(𝑡𝑖𝑗 , 𝑡𝑖𝑘) (2.15)

and used I𝑁𝑖 to denote the identity matrix with 𝑁𝑖 rows and columns. To marginalize over 𝑧𝑖, we

simply mix the 𝐺 multivariate normals:

𝑝(𝑦𝑖 | Θ) =
𝐺∑︁

𝑔=1
𝜋𝑔𝑝(𝑦𝑖 | 𝑧𝑖). (2.16)
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Expectation Step

Because we assume the covariance functions 𝑘 and 𝑘′ are fixed, we only need to compute the

posterior distribution of 𝑧𝑖 given 𝑦𝑖 for each individual. Fixing Θ, the posterior distribution of 𝑧𝑖 is

𝑞𝑖(𝑔) ∝ 𝜋𝑔𝑝(𝑦𝑖 | 𝑧𝑖 = 𝑔). (2.17)

Maximization Step

Conceptually, there are two parts to the maximization step. First, we must reestimate the subtype

prior probabilities 𝜋1:𝐺. Second, we must reestimate the parameters that determine the expected

value of 𝑦𝑖 (𝛽1:𝐺 and 𝐵).

Prior Probabilities To reestimate 𝜋1:𝐺, we consider the terms of the complete-data log likelihood

that depend on the prior probabilities:

𝐽1(𝜋1:𝐺) =
𝑀∑︁

𝑖=1
log 𝑝(𝑧𝑖 | 𝜋1:𝐺) + log 𝑝(𝜋1:𝐺) (2.18)

=
𝑀∑︁

𝑖=1

⎛⎝ 𝐺∑︁
𝑔=1

1𝑧𝑖=𝑔 log 𝜋𝑔

⎞⎠+
𝐺∑︁

𝑔=1
(𝛼− 1) log 𝜋𝑔 + 𝐶. (2.19)

After computing the expected value of 𝐽𝜋 with respect to the posteriors {𝑞𝑖}𝑀𝑖=1, we can maximize

𝑄𝜋 subject to the constraint that
∑︀𝐺

𝑔=1 𝜋𝑔 = 1 by setting

𝜋𝑔 =
∑︀𝑀

𝑖=1 𝑞𝑖(𝑔) + 𝛼− 1∑︀𝐺
𝑔′=1 𝜋𝑔′

. (2.20)

Mean Parameters To compute new estimates of the mean parameters (𝐵 and 𝛽1:𝐺), we intro-

duce some additional notation. First, define 𝑏 = vecr(𝐵) ∈ R𝑝𝑑 where vecr denotes the operation of

stacking the rows of 𝐵 into a single vector (i.e. flattening the matrix along its rows). The flattened
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vector has prior mean and covariance

𝜇𝑏 =
[︀
𝜇⊤

𝐵, . . . , 𝜇
⊤
𝐵⏟  ⏞  

𝑝 times

]︀⊤ (2.21)

Σ𝑏 = I𝑝 ⊗ Σ𝐵, (2.22)

where ⊗ denotes the Kronecker product. Next, for each individual 𝑖 we define the matrices

𝐶𝑖 = Φ(𝑡𝑖)
[︀
I𝑝 ⊗ 𝑥⊤

𝑖

]︀
(2.23)

𝐷𝑖 = Φ(𝑡𝑖) (2.24)

𝑆𝑖 = 𝐾𝑖 +𝐾 ′
𝑖 + 𝜎2I𝑁𝑖 . (2.25)

Using this notation, we can write the conditional distribution of 𝑦𝑖 given 𝑧𝑖 as

𝑦𝑖 | 𝑧𝑖 ∼ MultNormal(𝐶𝑖𝑏+𝐷𝑖𝛽𝑧𝑖 , 𝑆𝑖). (2.26)

The complete-data log likelihood as a function of 𝑏 and 𝛽1:𝐺 is therefore

𝐽2(𝑏, 𝛽1:𝐺) =
𝑀∑︁

𝑖=1
log 𝑝(𝑦𝑖 | 𝑧𝑖) + log 𝑝(𝑏) +

𝐺∑︁
𝑔=1

log 𝑝(𝛽𝑔) (2.27)

=
𝑀∑︁

𝑖=1
−1

2(𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑧𝑖)⊤𝑆−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑧𝑖)

+−1
2(𝜇𝑏 − 𝑏)⊤Σ−1

𝑏 (𝜇𝑏 − 𝑏) +
𝐺∑︁

𝑔=1
−1

2(𝜇𝛽 − 𝛽𝑔)⊤Σ−1
𝛽 (𝜇𝛽 − 𝛽𝑔). (2.28)

The partial derivatives are

𝜕𝐽2
𝜕𝑏

=
𝑀∑︁

𝑖=1
𝐶⊤

𝑖 𝑆
−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑧𝑖) + Σ−1

𝑏 (𝜇𝑏 − 𝑏) (2.29)

𝜕𝐽2
𝜕𝛽𝑔

=
𝑀∑︁

𝑖=1
1𝑧𝑖=𝑔𝐷

⊤
𝑖 𝑆

−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑔) + Σ−1

𝛽 (𝜇𝛽 − 𝛽𝑔). (2.30)

Taking expectations with respect to the posteriors {𝑞𝑖}𝑀𝑖=1 and setting these partial derivatives to
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zero, we obtain the following fixed-point equations that we can iterate until the values of 𝑏 and

𝛽1:𝐺 converge:

𝑏 =
(︁ 𝑀∑︁

𝑖=1
𝐶⊤

𝑖 𝑆
−1
𝑖 𝐶𝑖 + Σ−1

𝑏

)︁−1(︁ 𝑀∑︁
𝑖=1

𝐶⊤
𝑖 𝑆

−1
𝑖 (𝑦𝑖 −𝐷𝑖E𝑞𝑖 [𝛽𝑧𝑖 ]) + Σ−1

𝑏 𝜇𝑏

)︁
(2.31)

𝛽𝑔 =
(︁ 𝑀∑︁

𝑖=1
𝑞𝑖(𝑔)𝐷⊤

𝑖 𝑆
−1
𝑖 𝐷𝑖 + Σ−1

𝛽

)︁−1(︁ 𝑀∑︁
𝑖=1

𝑞𝑖(𝑔)𝐷⊤
𝑖 𝑆

−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏) + Σ−1

𝛽 𝜇𝛽

)︁
. (2.32)

2.5.2 Scalability

PSM is designed to aid in the subtype discovery process when large electronic health databases

are available for analysis, so the scalability of the learning algorithm is a natural concern. The

primary computational bottleneck of the PSM learning procedure is the E-step, which may be

expensive due to (1) the number of individuals in the analysis, or (2) the inversion of the individual

covariance matrices Σ𝑖 (in Equation 2.17). The computational complexity due to large 𝑀 can be

offset by parallelizing the E-step because the individual-specific latent variables are conditionally

independent given Θ. Inverting 𝑆𝑖 has computational complexity 𝒪(𝑁3
𝑖 ). Because we study disease

activity over the course of 10-20 years and because visit rates typically do not exceed 12 per year,

the number of measurements 𝑁𝑖 is typically on the order of 100-200 measurements, which is cheap.

2.5.3 Inference and Prediction

Given parameters Θ and observed data 𝑦𝑖 at times 𝑡𝑖, we can compute a posterior distribution over

the subtypes 𝑧𝑖 using Equation 2.17. In addition to the subtype, we can compute an estimate of the

individual’s long-term and short-term components (𝑓𝑖 and 𝑓 ′
𝑖 respectively). Given 𝑧𝑖, the long-term

individual variability at time 𝑡* has a normal distribution with mean and variance

E[𝑓𝑖(𝑡*) | 𝑧𝑖, 𝑦𝑖] = 𝐾*𝑆
−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑧𝑖) (2.33)

Var(𝑓𝑖(𝑡*) | 𝑧𝑖, 𝑦𝑖) = 𝐾** −𝐾*𝑆
−1
𝑖 𝐾⊤

* , (2.34)

23



where 𝐾** = 𝑘(𝑡*, 𝑡*), 𝐾* ∈ R1×𝑁𝑖 , and [𝐾*]1𝑖 = 𝑘(𝑡*, 𝑡𝑖𝑗). Similarly, given 𝑧𝑖 the short-term

individual variability at time 𝑡* has a normal distribution with mean and variance

E[𝑓 ′
𝑖(𝑡*) | 𝑧𝑖, 𝑦𝑖] = 𝐾 ′

*𝑆
−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑧𝑖) (2.35)

Var(𝑓 ′
𝑖(𝑡*) | 𝑧𝑖, 𝑦𝑖) = 𝐾 ′

** −𝐾 ′
*𝑆

−1
𝑖 𝐾 ′

*
⊤
, (2.36)

where 𝐾 ′
** = 𝑘′(𝑡*, 𝑡*), 𝐾 ′

* ∈ R1×𝑁𝑖 , and [𝐾 ′
*]1𝑖 = 𝑘′(𝑡*, 𝑡𝑖𝑗).

Finally, we can use PSM to impute missing measurements by computing the posterior distribu-

tion over an individual’s s-markers at time 𝑡*. Define the composite covariance function 𝑘′′ = 𝑘+𝑘′,

then the conditional distribution of 𝑦* at time 𝑡* given 𝑧𝑖 is a normal distribution with mean and

variance

E[𝑦* | 𝑧𝑖, 𝑦𝑖] = 𝐶*𝑏+𝐷*𝛽𝑧𝑖 +𝐾 ′′
*𝑆

−1
𝑖 (𝑦𝑖 − 𝐶𝑖𝑏−𝐷𝑖𝛽𝑧𝑖) (2.37)

Var(𝑦* | 𝑧𝑖, 𝑦𝑖) = 𝐾 ′′
** −𝐾 ′′

*𝑆
−1
𝑖 𝐾 ′′

*
⊤
, (2.38)

where 𝐾 ′
** = 𝑘′(𝑡*, 𝑡*), 𝐾 ′

* ∈ R1×𝑁𝑖 , [𝐾 ′
*]1𝑖 = 𝑘′(𝑡*, 𝑡𝑖𝑗), and

𝐶* = Φ(𝑡*)
(︀
I𝑝 ⊗ 𝑥⊤

𝑖

)︀
(2.39)

𝐷* = Φ(𝑡*). (2.40)

2.5.4 Estimating Kernel Parameters

The long-term and shor-term covariance functions 𝑘 and 𝑘′ are important sources of domain knowl-

edge. By choosing these functions carefully, we can place priors over the type of latent individual-

specific variability that we want to explain away when searching for subtypes. In some cases,

however, we may only want to choose a family of covariance kernels and would therefore need to

estimate the parameters from data. In this section, we briefly describe an extension to the EM

algorithm described above that includes updates to kernel parameters.
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Expectation Step

We extend the expectation step above by computing a joint posterior distribution over the subtype

𝑧𝑖, long-term individual variability 𝑓𝑖 ∈ R𝑁𝑖 , and short-term individual variability 𝑓 ′
𝑖 ∈ R𝑁𝑖 . Let 𝑓 ′′

𝑖

denote the concatenation of 𝑓𝑖 and 𝑓 ′
𝑖 , then the distribution over 𝑓 ′′

𝑖 given 𝑧𝑖 and 𝑦𝑖 is a multivariate

normal with mean and covariance

𝜇′′
𝑖 (𝑧𝑖) = 𝜎−2Σ′′

𝑖𝐴
⊤
𝑖

(︀
𝑦𝑖 − Φ(𝑡𝑖)𝐵𝑥𝑖 − Φ(𝑡𝑖)𝛽𝑧𝑖

)︀
(2.41)

Σ′′
𝑖 (𝑧𝑖) =

⎛⎜⎝𝜎−2𝐴⊤
𝑖 𝐴𝑖 +

⎛⎜⎝𝐾−1
𝑖 0

0 𝐾 ′
𝑖
−1

⎞⎟⎠
⎞⎟⎠

−1

. (2.42)

We see that the posterior distribution over 𝑓 ′′
𝑖 is a mixture of multivariate normals.

Maximization Step

To update our estimates of the kernel parameters given the posterior distribution of 𝑓 ′′
𝑖 , we maximize

the expected log priors log 𝑝(𝑓𝑖) and log 𝑝(𝑓 ′
𝑖) with respect to the kernel hyperparameters 𝜃 and 𝜃′.

In general, there is no closed form maximizer of the likelihood of a GP with respect to the kernel

parameters (e.g. for the length scale of an RBF kernel), so we can instead use zero or first order

searches to maximize

𝑀∑︁
𝑖=1

E[log 𝑝(𝑓𝑖)] =
𝑀∑︁

𝑖=1
−1

2 log |𝐾𝑖| −
1
2 tr
(︁
𝐾−1

𝑖

𝐺∑︁
𝑔=1

𝑞(𝑧𝑖)(𝜇𝑖𝜇
⊤
𝑖 + Σ𝑖)

)︁
+ 𝐶𝑖. (2.43)

Estimating marginal covariances. Many covariance kernels have a parameter that determines

the marginal covariance of the Gaussian process. In the special case where the remaining pa-

rameters are fixed, we can update this marginal covariance parameter with a single expression in

the maximization step. Suppose we can write the prior covariance of 𝑓𝑖 as 𝜈2𝐾𝑖, where 𝜈2 is the

marginal covariance parameter, then the value of 𝜈2 that maximizes Equation 2.43 is

𝜈2 =

∑︀𝑀
𝑖=1 tr

(︁
𝐾−1

𝑖

∑︀𝐺
𝑔=1 𝑞(𝑧𝑖)(𝜇𝑖𝜇

⊤
𝑖 + Σ𝑖)

)︁
∑︀𝑀

𝑖=1 𝑛𝑖

. (2.44)
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Estimating 𝜎2. Estimating the noise variance 𝜎2 is straightforward once we’ve computed the

posterior over 𝑧𝑖, 𝑓𝑖, and 𝑓 ′
𝑖 . The sufficient statistic for re-estimating 𝜎2 conditioned on the latent

variables is simply the mean squared error:

𝜎2 =
∑︀𝑀

𝑖=1 ‖(𝑦𝑖 − Φ(𝑡𝑖)𝐵𝑥𝑖 − Φ(𝑡𝑖)𝛽𝑧𝑖 − 𝑓𝑖 − 𝑓 ′
𝑖)‖22∑︀𝑀

𝑖=1𝑁𝑖

(2.45)

To update 𝜎2 in the EM algorithm, we compute the expected value of each summand in the

numerator under 𝑞(𝑧𝑖, 𝑓
′′
𝑖 ), which is

𝐺∑︁
𝑔=1

𝑞𝑖(𝑔)
(︁
‖(𝑦𝑖 − Φ(𝑡𝑖)𝐵𝑥𝑖 − Φ(𝑡𝑖)𝛽𝑔 −𝐴𝑖𝜇

′′(𝑔))‖22 + tr
(︀
𝐴𝑖Σ′′(𝑔)𝐴⊤

𝑖

)︀)︁
(2.46)

2.6 Missing Data Assumptions

Trajectories in continuous-time can be thought of as random functions 𝐹 (·) (Gaussian processes

are an example of a family of distributions over random functions). Although the function specifies

infinitely many values, to learn continuous-time models we maximize the probability of a finite set

of observations (or a penalized version of this objective). In observational health care data, we need

to be careful that we do not bias our likelihood-based learners by unduly ignoring the dependence

between the finite set of times at which we observe the trajectory and the trajectory’s values at

those times. For example, if the trajectory is more likely to be sampled when its value is low, then

our model will learn that trajectories with high values are less likely than they actually are.

The aim of this section is to posit a set of assumptions about continuous trajectory observation

times that are (1) substantively reasonable, and (2) justify the use of standard likelihood-based

learning. At a high-level, we assume that trajectory observation times are functions of the previous

observation times and the values of the trajectory sampled at those times. These assumptions are

more formally encoded in the graphical model shown in Figure 2.2, which expresses dependencies

for an individual with three trajectory observations. In the figure, 𝐹 (·) denotes the full trajec-

tory, {𝑇1, 𝑇2, 𝑇3} are random variables denoting the times at which the trajectory is sampled, and

{𝑌 ⋆
1 , 𝑌

⋆
2 , 𝑌

⋆
3 } are the observed data. The conditional probability distribution of any 𝑌 ⋆

𝑖 given the
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Figure 2.2: Example missing data mechanism in continuous-time.

trajectory and associated observation time is simply:

𝑝(𝑌 ⋆
𝑖 = 𝑦⋆

𝑖 | 𝑇𝑖 = 𝑡𝑖, 𝐹 = 𝑓) = 1𝑓(𝑡𝑖)=𝑦⋆
𝑖
. (2.47)

These assumptions are reasonable in many healthcare settings. For example, in an ICU where

a patient is constantly under supervision, we can reasonably assume that clinical marker measure-

ments are made at times that depend on the previous observations (e.g. the individual is thought

to be at risk and so measurements are taken more frequently) and on previous observation times

(e.g. a measurement has not been recorded in a while, so we should collect a new one). In the

outpatient setting, an individual with a particular disease that is being actively managed by a

physician will have follow-up visits scheduled either routinely or more frequently if the physician is

especially concerned. On the other hand, modeling the progression of a disease such as the flu using

information from a general practitioner’s office may not satisfy our assumption because individual’s

with less severe manifestations are less likely to visit.

Conditioned on these assumptions about the dependencies between the trajectory, observa-

tion times, and observed values, we want to justify likelihood-based learning. Suppose we have

a trajectory model with parameters Θ that allows us to compute the probability of any finite

set of trajectory values. For example, we can compute 𝑝Θ(𝐹 (𝑡1) = 𝑦⋆
1, 𝐹 (𝑡2) = 𝑦⋆

2, 𝐹 (𝑡3) = 𝑦⋆
3).

The observed data, however, are the observation times and sampled values: {𝑇1:𝑛, 𝑌
⋆

1:𝑛}. Proper
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likelihood-based learning requires that we maximize:

𝑝(𝑇1:𝑛 = 𝑡1:𝑛, 𝑌
⋆

1:𝑛 = 𝑦⋆
1:𝑛). (2.48)

However, this expression is determined by both the observation time mechanism and the trajectory

model. Our goal is to show that this can be factored into two terms: one that depends on the

observed data and the observation time mechanism parameters, and the other that depends on the

sampled trajectory values and the trajectory model parameters Θ. To do this, we first see that

Equation 2.48 can be written as

∫︁
𝑝(𝐹 = 𝑓)𝑝(𝑇1:𝑛 = 𝑡1:𝑛, 𝑌

⋆
1:𝑛 = 𝑦⋆

1:𝑛 | 𝐹 = 𝑓)𝑑𝐹. (2.49)

The integrand in Equation 2.49 can be now be factored further to obtain

𝑝(𝐹 = 𝑓)
𝑛∏︁

𝑖=1
𝑝(𝑇𝑖 = 𝑡𝑖 | ℋ𝑖)𝑝(𝑌 ⋆

𝑖 = 𝑦⋆
𝑖 | 𝑇𝑖 = 𝑡𝑖, 𝐹 = 𝑓), (2.50)

where ℋ𝑖 is defined to be the previous 𝑖− 1 observation times and sampled trajectory values. Note

that the first term in the product of Equation 2.50 can be pulled out of the integral, allowing us to

write Equation 2.49 as

[︃
𝑛∏︁

𝑖=1
𝑝(𝑇𝑖 = 𝑡𝑖 | ℋ𝑖)

]︃ [︃∫︁
𝑝(𝐹 = 𝑓)

𝑛∏︁
𝑖=1

𝑝(𝑌 ⋆
𝑖 = 𝑦⋆

𝑖 | 𝑇𝑖 = 𝑡𝑖, 𝐹 = 𝑓)𝑑𝐹
]︃
. (2.51)

The left-hand factor above depends only on the observation time mechanism and the observed data.

Moreover, the right-hand factor depends only on the trajectory model and the sampled trajectory
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values, which we now show:

∫︁
𝑝(𝐹 = 𝑓)

𝑛∏︁
𝑖=1

𝑝(𝑌 ⋆
𝑖 = 𝑦⋆

𝑖 | 𝑇𝑖 = 𝑡𝑖, 𝐹 = 𝑓)𝑑𝐹

=
∫︁
𝑝(𝐹 = 𝑓)

𝑛∏︁
𝑖=1

1𝑓(𝑡𝑖)=𝑦⋆
𝑖
𝑑𝐹

=
∫︁
𝑝(𝐹 = 𝑓)1𝑓(𝑡1)=𝑦⋆

1 ,...,𝑓(𝑡𝑛)=𝑦⋆
𝑛
𝑑𝐹

= 𝑝Θ(𝑓(𝑡1) = 𝑦⋆
1, . . . , 𝑓(𝑡𝑛) = 𝑦⋆

𝑛). (2.52)

We therefore see that, given our observation time mechanism assumptions, maximizing the likeli-

hood of the sampled trajectory values under our trajectory model is equivalent to maximizing the

“proper” likelihood in Equation 2.48 with respect to the model parameters Θ. This result aligns

with Theorems 7.1 and 8.1 found in Rubin’s original paper on missing data [Rubin, 1976].

2.7 Experiments

The purpose of PSM is to discover subtypes, useful for tasks such as developing tailored treat-

ment plans and advancing understanding of underlying disease mechanisms. Exploratory clustering

method evaluations are typically two-fold. Quantitatively, we want to measure the model’s fit to

data. Qualitatively, we want to judge the insights that the model conveys. We therefore evaluate

PSM using two experiments. First, we investigate PSM’s ability to predict unobserved s-marker

measurements. In the absence of ground-truth subtypes that we can use to compute a cluster-based

metric, we instead measure the generalizability of PSM by evaluating posterior predictions of held-

out s-marker observations.1 Our second experiment involves qualitative analyses of the subtypes

discovered by PSM. We evaluate the clinical merit of the prototypical disease activity trajectories

discovered, and discuss follow-up clinical investigations that have stemmed from our results.
1Alternatively, one may use held-out data log-likelihood, but we choose predictive accuracy because the task of

prediction is natural in the clinical setting and it is therefore easier to interpret the significance of the results.
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Figure 2.3: Example model fits to individual pFVC trajectories. Samples from four subtype can-
didates are displayed; one subtype per 4 by 2 block of individuals. Solid lines show full model fit
(computed using Equation 2.37). Dots show observed pFVC values. Solid lines at the top of each
block show the prototypical s-marker trajectory for that subtype.

2.7.1 Scleroderma S-markers

Scleroderma is a multi-system autoimmune disease resulting in insults that include damage to the

skin, pulmonary system, and circulatory system. For our experiments we choose four datasets, each

containing the s-marker corresponding to one of the major organ systems implicated in scleroderma.

Total skin score (TSS) scores the thickness of the skin, which is used as a surrogate measure for the

degree of fibrosis. An increased TSS indicates more extensive fibrosis across the individual’s body.

Percent of predicted forced vital capacity (pFVC) measures the volume of air expelled from the lung

after maximum inhalation. pFVC is a measure of restricted ventilatory defect, which may reflect the

severity of interstitial lung disease (ILD). Percent of predicted diffusing capacity (pDLCO) measures

the efficiency of oxygen diffusion from the lungs to the bloodstream. Decreases in pDLCO indicate

a defect in gas exchange, which is associated with development of pulmonary arterial hypertension

(PAH). Finally, right ventricular systolic pressure (RVSP) measures systolic pressure in the chamber

of the heart that directly pumps blood through the pulmonary vasculature. Significantly increased

systolic pressure suggests an increased risk of heart failure due to pulmonary arterial hypertension.
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We focus here on the analysis of subtypes for each of the complications individually. If subtypes

exist, then a natural follow-up is to identify whether a common mechanism might jointly influence

trajectories for two or more organ systems, but this relies on first developing an understanding of

the individual s-markers; the focus of our analyses below.

2.7.2 Unobserved S-marker Prediction

Our first experiment evaluates the accuracy of s-marker value predictions at unobserved times for

models that account for varying levels of nuisance variability. The first model includes covariate

effects and group/subtype effects (C+G). The covariates provided to us were gender, African Amer-

ican race, and age at disease onset, which are well-known risk factors for severity in scleroderma

[Varga et al., 2012]. The second model includes individual-specific long-term effects in addition

to covariate and group effects (C+G+L). Finally, PSM includes covariate, group, long-term, and

short-term effects.

To choose the number of groups 𝐺 for each model, we use BIC as follows: we randomly generate

five folds of the data by subsampling 75% of the individuals without replacement. For each model

and for each choice of 𝐺, we compute the average BIC across the five folds and choose the number

of clusters that results in the largest sequential drop in BIC (i.e. we search for the “elbow”).

For each model, we use 𝑝 = 5 bases and weak priors for the parameters: 𝛼 = 2, 𝜇𝛽 = 𝜇𝐵 = 0,

and Σ𝛽 = Σ𝐵 = diag(105). For the long-term and short-term Gaussian processes, we use the

following covariance function:

𝑘(𝑡1, 𝑡2) = 𝜈(1 + 𝑡1𝑡2) (2.53)

𝑘′(𝑡1, 𝑡2) = 𝑎2 * exp
{︂
− 1

2ℓ2 (𝑡1 − 𝑡2)2
}︂
. (2.54)

To choose the hyperparameters of for 𝑘 and 𝑘′ (𝜈, 𝑎, and ℓ) and the measurement noise 𝜎2,

we perform a grid search using heldout log likelihood as the selection criterion. We search over

𝜈 ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. For 𝑎, ℓ, and 𝜎2 we search over the values {1, 2, 3, 4, 5}. We

time-aligned each individual using years since first scleroderma related symptom. We also truncate
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time at 15 years following the first scleroderma related symptom. We include an individual in the

experiment if they have at least four measurements of a particular s-marker. Using these criteria, we

included 1,011, 1,177, 1,114, and 504 individuals for TSS, pFVC, pDLCO, and RVSP respectively.

Within this subset of individuals, the average number of measurements for each s-marker over the

15 year period is: 9.1 for TSS, 8.6 for pFVC, 8.3 for pDLCO, and 6.0 for RVSP. The average time

in years between observed measurements for each s-marker is: 0.9 for TSS, 0.9 for pFVC, 1.0 for

pDLCO, and 1.3 for RVSP.

To estimate prediction error, we split the individual trajectories into 10 groups and use 10-fold

cross validation. We fit PSM on nine of the ten folds, and predict on the tenth fold. We select four

s-marker observations from each held-out trajectory and assign each to a point-level fold. For each

of the point-level folds, we condition on the remaining s-marker observations and use the MAP

estimates of the held-out observations as our predictions (Equation 2.37). We compute the root

mean squared error (RMSE) for each point-level fold across the trajectory-level folds, and finally

compute the mean RMSE and standard errors across point-level folds.

We report the RMSEs and standard errors in Table 2.1. We see that PSM significantly out-

performs the alternative models for TSS, pFVC, and RVSP. Although PSM has smallest RMSE

for pDLCO, the difference is not statistically significant. Figure 2.3 displays model fits to individ-

ual trajectories sampled from four of the discovered candidate subtypes (one subtype per 4 by 2

block of individuals) for the pFVC s-marker. Note that blocks display overall similar behavior, but

that long-term and short-term variability tailor predictions for each individual using the observed

markers.

S-marker C+G C+G+L PSM
TSS 5.32± 0.18 5.41± 0.07 *4.43± 0.14
pFVC 9.27± 0.49 9.34± 0.46 *7.69± 0.39
pDLCO 15.03± 1.82 15.13± 1.93 14.08± 1.77
RVSP 12.21± 0.50 12.11± 0.44 *10.89± 0.27

Table 2.1: RMSE with standard errors for s-marker prediction. Bold shows best performance on
s-marker; * shows statistical significance (𝑝 ≤ 0.05).
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2.7.3 Simulated Data Trajectory Estimate Accuracy

Another natural question is whether modeling these sources of variability reduces bias in our esti-

mates of the prototypical trajectories. In other words, do the individual deviations cancel out so

that PSM offers no benefit over less expressive models like C+G? For this, we turn to simulated

data and investigate whether PSM recovers prototypical trajectories more accurately than C+G

and C+G+L.

The simulation model samples observation time-stamps by sampling the 𝑁𝑖 from a Poisson

distribution, and, conditioned on 𝑁𝑖, samples 𝑡𝑖 ∈ R𝑁𝑖 from a Gaussian mixture model. The 𝑦𝑖

are then sampled from a subtype mixture model with a hierarchy of individual-specific long-term,

short-term, and iid noise.

To simulate an s-marker trajectory, we use an observation model and a measurement model.

The observation model is used to select measurement times for each simulated trajectory 𝑖. We

define a minimum number of observations 𝑁 ′ and and an average number of additional observations

𝜆𝑁 . The number of observations for individual 𝑖 is then sampled as

𝑁𝛿 ∼ Poisson(𝜆𝑁 ) (2.55)

𝑁𝑖 ← 𝑁 ′ +𝑁𝛿. (2.56)

Given the number of observations 𝑁𝑖, we use a Gaussian mixture model with an individual-specific

number of components to sample the actual measurement times 𝑡𝑖 ∈ R𝑁𝑖 . This is designed to

replicate the sporadic observation patterns we have observed in our data. We have noted that many

individuals have clusters of measurement activity rather than a consistent sampling frequency. Each

curve has at least one Gaussian, and the number of additional Gaussians is drawn from a Poisson

with mean parameter 𝜆𝑔. For each Gaussian, location and scale parameters are drawn from a

uniform distribution and inverse gamma distribution respectively. A mixing distribution is then

drawn randomly from a Dirichlet distribution with concentration 𝛼. Finally, the 𝑁𝑖 measurement

times are sampled from the individual’s Gaussian mixture model. The observation model generates
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Figure 2.4: Comparison of pFVC trajectories and simulated trajectories.

measurement values by sampling from a subtype mixture model with a hierarchy of long-term,

short-term, and iid noise as in PSM. Figures 2.4A and 2.4B show a sample of pFVC trajectories

and simulated trajectories respectively. For each simulation, we sampled 200 s-marker trajectories

from 4 subtypes with coefficients 𝛽𝑔 sampled from a multivariate normal with mean 0 and identity

covariate matrix. We set 𝑁 ′ = 4 and 𝜆𝑁 = 8. Each individual-specific Gaussian mixture model

had at least 1 component with the number of additional components drawn from Poiss(1). The

scales for each Gaussian were drawn from InverseGamma(8, 8). In the Gaussian process, we set the

bandwidth ℓ = 2.5.

We compare the same three models used above, but do not simulate covariates and so they are

not included. To measure bias, we find the alignment between estimated and true trajectories that

minimizes the RMSE averaged across each estimated-true pair; to compute RMSE between two

curves, we use a discrete approximation.

The iid noise 𝜎 = 0.1 for all simulations, and the left column of Table 2.2 shows the amplitude

𝑎 of short-term individual variability and standard deviation of individual-specific intercept terms

𝜈. Individual specific slope variance was set to 10−4 for all simulations. We see that as more
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Figure 2.5: Discovered subtypes for all four s-markers. Panel (A) shows pFVC, panel (B) shows
TSS, panel (C) shows pDLCO, and panel (D) shows RVSP. Prototypical s-marker trajectories are
shown in black, and individuals sampled from the subtype are shown in color. Colored lines show
the individualized s-marker trajectory, and colored points show the observed s-markers. Best viewed
in color.

nuisance variability is added, PSM is able to recover less biased trajectory estimates. In Section

A4 of the supplementary material, we provide plots that show example individual trajectories from

these experiments and how they contribute to the bias of prototypical trajectory estimates.

(𝜈, 𝑎) G G+L PSM
(0.00, 0.10) 0.27± 0.06 *0.04± 0.01 0.07± 0.06
(0.00, 0.15) 0.34± 0.05 *0.05± 0.01 0.09± 0.06
(0.10, 0.15) 0.34± 0.04 0.11± 0.05 0.14± 0.08
(0.15, 0.15) 0.34± 0.05 0.18± 0.04 *0.13± 0.06
(0.20, 0.15) 0.36± 0.05 0.25± 0.07 *0.14± 0.07
(0.25, 0.15) 0.36± 0.06 0.32± 0.07 *0.18± 0.04

Table 2.2: Estimated trajectory RMSE and standard errors (computed over 20 replications) for
simulations. Bold indicates best performance, statistical significance is indicated using * (𝑝 ≤ 0.05).

2.7.4 Discovered Subtypes

We now present a qualitative discussion of the discovered subtypes. For all results below, we use

the same setup as in the heldout s-marker prediction experiments. We begin with pFVC. Figure

2.5A displays the clusters we learn using PSM on pFVC trajectories of 1,177 individuals with 𝐺 = 9

(chosen using BIC), and Figure 2.3 displays individual trajectory fits from 4 of the 9 clusters. We

first focus on the subtypes displayed in panels (A), (B), and (C) of Figure 2.3. Each of these show

distinct patterns of decline: individuals in (A) have a steady, linear progression, those in (B) decline

quickly within the first five years and then stabilize, and those in (C) are stable for the first five to
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ten years and then decline rapidly. Many of these individuals have at least one measurement that

drops by more than 7% from the previous observation, which is clinically considered to suggest

interstitial lung disease (see, for example, Beretta et al. 2007). It is clear, however, that they

display unique patterns of decline, which has raised the question of whether individuals with these

different subtypes differ with respect to their antibody profiles (since scleroderma is an autoimmune

disease).

We now turn to panel (D). Fibrosis in the lungs due to end-stage interstitial lung disease is

thought of as non-reversible damage. The individuals shown in panel (D), however, begin with

inhibited pulmonary function, but slowly recover. This pattern of recovery warrants additional

investigation; it is possible that in these patients, the initial insult is not due to end-stage lung

disease, but rather due to other causes of restricted ventilatory defect such as inflammation. Rec-

ognizing this pattern may alter clinical management of these patients. Moreover, if it is the case

that these patients all share a common comorbidity at the onset of disease, then it may suggest the

presence of another subtype whose underlying mechanism triggers the comorbid condition.

Figure 2.5B displays the clusters learned by PSM for Total Skin Score (TSS) using 𝑀 = 1, 011

individuals with 𝐺 = 5 (selected using BIC). TSS is a well-studied s-marker in scleroderma, and

is used for one of the primary clinical classification criteria. Individuals with more extensive skin

disease have higher TSS scores. Traditionally, skin disease in scleroderma is defined as limited

(minimal involvement at the system level) or diffuse (systemic level involvement) [Varga et al.,

2012]. Here we see five clusters: clusters 4 and 5 exhibit limited involvement, and clusters 1, 2, and

3 indicate different patterns of diffuse skin disease.

Figure 2.5C displays the clusters learned using PSM for pDLCO using 𝑀 = 1, 114 individuals

with 𝐺 = 11 (chosen using BIC). Clinicians monitor pDLCO to detect the onset of pulmonary

arterial hypertension (PAH), one of the most prominent sources of mortality among patients with

scleroderma. Once pDLCO is low enough, an individual will typically be screened using additional

diagnostic tests [Steen and Medsger, 2003]. It is clear from Figure 2.5D, however, that there are

several patterns of decline (seen in clusters 2, 8, 9, 10, and 11). Understanding whether particular
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patterns of pDLCO decline are more predictive of PAH may help to develop more effective clinical

heuristics.

Finally, Figure 2.5D displays the clusters learned using PSM for RVSP using 𝑀 = 504 indi-

viduals with 𝐺 = 5 (chosen using BIC). The RVSP results are noisier than the others, which may

be due to the inherent noise in the measurement process. RVSP is measured using an echocardio-

gram, and is inaccurate when the true underlying systolic pressure is between 30 and 45 mmHg

(millimeters mercury). We note that there are two groups (1 and 4) with stable, healthy pressures,

which are presumably individuals with no serious circulatory complications. The remaining three

clusters (2, 3, and 5) are more difficult to interpret because they are not associated with any known

patterns of heart involvement; this may be attributable to the noisiness of the observations, or

other phenomena that are as yet unknown. These remain the subject of future clinical follow up.

Joint Analysis of S-Markers

We have focused our analyses using PSM on single s-marker subtypes. A natural follow-up question

is whether we can infer clusters across multiple s-markers. If we are analyzing 𝐾 s-marker types,

then, as presented, PSM assumes the following joint distribution over s-marker sequences 𝑦𝑘
𝑖 and

memberships 𝑧𝑘
𝑖 :

𝐾∏︁
𝑘=1

𝑝(𝑦𝑘
𝑖 | 𝑧𝑘

𝑖 ,Θ)𝑝(𝑧𝑘
𝑖 ) (2.57)

One alternative is to replace the fully factored distribution over 𝑧1
𝑖 , . . . , 𝑧

𝐾
𝑖 with a complete joint

𝑝(𝑧1
𝑖 , . . . , 𝑧

𝐾
𝑖 ) to induce correlations across s-marker types. We can inspect the posterior distribution

over 𝑧1
𝑖 , . . . , 𝑧

𝐾
𝑖 to discover clusters defined over multiple s-markers.

A simpler alternative that does not depend modeling all s-markers jointly would be to represent

each individual using a vector of categorical variables indicating the PSM-discovered subtype for

each s-marker (e.g. [tss-type-1, pfvc-type-3, dlco-type-2, . . .]). We can then discover clusters across

multiple s-markers using a distance-based clustering method, such as hierarchical agglomerative

clustering (HAC).
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2.8 Discussion

This chapter describes the Probabilistic Subtyping Model, a novel method for clustering time series

of clinical markers obtained from observational EHR data to discover patient subtypes with similar

patterns of disease progression over time. We introduced the concept of unobserved heterogeneity—

effects due to factors such as age, co-existing conditions, and genetic profiles— that affect the

observed clinical test results, but are unrelated to the underlying disease mechanism and may not

always be recorded in our data. The hierarchy of latent variables in PSM allows us to simultaneously

estimate each individual’s latent subtype and any unobserved factors. This allows us to remove the

effects of those unobserved factors, and to discover more meaningful clinical trajectory subtypes.

The subtypes that PSM discovers can be used to guide both medical practice and research. As we

discover and refine subtypes for complex diseases, clinicians can associate individual patients with

specific subtypes, and use the canonical disease trajectory to guide and improve decision-making.

Subtypes are also valuable guides for basic medical research. Investigations that seek to understand

the biological reasons behind variation across subtypes can yield important insights into how to

best target the pathological mechanisms that drive the disease.
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Chapter 3

Continuous Subtyping: Disease

Trajectory Maps

In Chapter 2, we introduced the Probabilistic Subtyping Model (PSM) for discovering discrete,

latent disease trajectory subtypes within a larger population of individuals. The assumption that

discrete subpopulations exist, however, may not always be appropriate. For instance, disease

activity in the respiratory system might not be easily characterized as either “on” or “off”. Instead,

it might be easier to characterize disease activity as a continuum, or spectrum, along which we can

place an individual based on the extent to which their respiratory system has been affected.

In this chapter, we study this alternative perspective to exploring health trajectory data. We

describe the “Disease Trajectory Map”, a latent variable model that projects sparse and irregularly

sampled health trajectory data into a low-dimensional space using a nonlinear transformation.

There are two key advantages of this approach over discrete latent variable models. First, by

projecting the health trajectory data into a two or three dimensional space, we can visualize a

heterogeneous population using scatter plots. This might reveal interesting structure in the popu-

lation that might otherwise be difficult to spot using the raw time series data or clustering methods.

Second, the low-dimensional representations are compact numerical summaries (i.e. features) that

we can use to represent complex time series data in studies of the relationship between disease

trajectory and outcomes.
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3.1 Related Work

Clinical marker data extracted from EHRs is a by-product of an individual’s interactions with the

healthcare system. As a result, the time series are often irregularly sampled (the time between

samples varies within and across individuals), and may be extremely sparse (it is not unusual to

have a single observation for an individual). To aid the following discussion, we briefly introduce

notation for this type of data. We use 𝑀 to denote the number of individual disease trajectories

recorded in a given dataset. For each individual, we use 𝑁𝑖 to denote the number of observations.

We collect the observation times for subject 𝑖 into a column vector 𝑡𝑖 ≜ [𝑡𝑖1, . . . , 𝑡𝑖𝑁𝑖 ]⊤ (sorted in non-

decreasing order) and the corresponding measurements into a column vector 𝑦𝑖 ≜ [𝑦𝑖1, . . . , 𝑦𝑖𝑁𝑖 ]⊤.

Our goal is to embed the pair (𝑡𝑖, 𝑦𝑖) into a low-dimensional vector space wherein similarity between

two embeddings 𝑥𝑖 and 𝑥𝑗) implies that the trajectories have similar shapes. This is commonly

done using basis representations of the trajectories.

3.1.1 Fixed Basis Representations

In the statistics literature, (𝑡𝑖, 𝑦𝑖) is often referred to as unbalanced longitudinal data, and is com-

monly analyzed using linear mixed models (LMMs) [Verbeke and Molenberghs, 2009]. In their

simplest form, LMMs assume the following probabilistic model:

𝑤𝑖 | Σ ∼ MultNormal(0,Σ) (3.1)

𝑦𝑖 | 𝑤𝑖, 𝐵𝑖, 𝜇, 𝜎
2 ∼ MultNormal(𝜇+𝐵𝑤𝑖, 𝜎

2I𝑁𝑖). (3.2)

The matrix 𝐵𝑖 ∈ R𝑁𝑖×𝑑 is known as the design matrix, and can be used to capture non-linear

relationships between the observation times 𝑡𝑖 and measurements 𝑦𝑖. Its rows are comprised of 𝑑-

dimensional basis expansions of each observation time 𝐵𝑖 = [𝑏(𝑡𝑖1), · · · , 𝑏(𝑡𝑖𝑁𝑖)]⊤. Common choices

of 𝑏(·) include polynomials, splines, wavelets, and Fourier series. The particular basis used is

often carefully crafted by the analyst depending on the nature of the trajectories and on the

desired structure (e.g. invariance to translations and scaling) in the representation [Brillinger,

40



2001]. The design matrix can therefore make the LMM remarkably flexible despite its simple

parametric probabilistic assumptions. Moreover, the prior over 𝑤𝑖 and the conjugate likelihood

make it straightforward to fit 𝜇, Σ, and 𝜎2 using EM or Bayesian posterior inference.

After estimating the model parameters, we can estimate the coefficients 𝑤𝑖 of a given clinical

marker trajectory using the posterior distribution, which embeds the trajectory in a Euclidean

space. To flexibly capture complex trajectory shapes, however, the basis must be high-dimensional,

which makes interpretability of the representations challenging. We can use low-dimensional sum-

maries such as the projection on to a principal subspace, but these are not necessarily substantively

meaningful. Indeed, much research has gone into developing principal direction post-processing

techniques (e.g. Kaiser [1958]) or alternative estimators that enhance interpretability (e.g. Car-

valho et al. 2012).

3.1.2 Data-Adaptive Basis Representations

A set of related, but more flexible, techniques comes from functional data analysis where observa-

tions are functions (i.e. trajectories) assumed to be sampled from a stochastic process and the goal

is to find a parsimonious representation for the data [Ramsay et al., 2002]. Functional principal

component analysis (FPCA), one of the most popular techniques in functional data analysis, ex-

presses functional data in the orthonormal basis given by the eigenfunctions of the auto-covariance

operator. This representation is optimal in the sense that no other representation captures more

variation [Ramsay, 2006]. The idea itself can be traced back to early independent work by Karhunen

and Loeve and is also referred to as the Karhunen-Loeve expansion [Watanabe, 1965]. While nu-

merous variants of FPCA have been proposed, the one that is most relevant to the problem at hand

is that of sparse FPCA [Castro et al., 1986, Rice and Wu, 2001] where we allow sparse, irregularly

sampled data as is common in longitudinal data analysis. To deal with the sparsity, Rice and

Wu [2001] used LMMs to model the auto-covariance operator. When the data are sparse and the

number of bases is large, however, the estimate of the covariance matrix using LMMs can have high

variance. James et al. [2000] addressed this by constraining the rank of the covariance matrices—we

41



will refer to this model as the reduced-rank LMM, but note that it is a variant of sparse FPCA.

Although sparse FPCA represents trajectories using a data-driven basis, the basis is restricted to lie

in a linear subspace of a fixed basis, which may be overly restrictive. Other approaches to learning

a functional basis include Bayesian estimation of B-spline parameters (e.g. Bigelow and Dunson

2012) and placing priors over reproducing kernel Hilbert spaces (e.g. MacLehose and Dunson 2009).

Although flexible, these two approaches do not learn a low-dimensional representation.

3.1.3 Cluster-Based Representations

Mixture models and clustering approaches are also commonly used to represent and discover struc-

ture in time series data. Marlin et al. [2012] cluster time series data from the intensive care unit

(ICU) using a mixture model and use cluster membership to predict outcomes. Schulam and Saria

[2015] describe a probabilistic model that represents trajectories using a hierarchy of features, which

includes “subtype” or cluster membership. LMMs have also been extended to have nonparametric

Dirichlet process priors over the coefficients (e.g. Kleinman and Ibrahim 1998), which implicitly

induce clusters in the data. Although these approaches flexibly model trajectory data, the structure

they recover is a partition, which does not allow us to compare all trajectories in a coherent way

as we can in a vector space.

3.1.4 Lexicon-Based Representations

Another line of research has investigated the discovery of motifs or repeated patterns in continuous

time-series data for the purposes of succinctly representing the data as a string of elements of

the discovered lexicon. These include efforts in the speech processing community to identify sub-

word units (parts of words comparable to phonemes) in a data-driven manner [Varadarajan et al.,

2008, Levin et al., 2013]. In computational healthcare, Saria et al. [2011] propose a method for

discovering deformable motifs that are repeated in continuous time series data. These methods are,

in spirit, similar to discretization approaches such as symbolic aggregate approximation (SAX) [Lin

et al., 2007] and piecewise aggregate approximation (PAA) [Keogh et al., 2001] that are popular in
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data mining, and aim to find compact descriptions of sequential data, primarily for the purposes

of indexing, search, anomaly detection, and information retrieval. The focus in this paper is to

learn representations for entire trajectories rather than discover a lexicon. Furthermore, we focus

on learning a representation in a vector space where similarities among trajectories are captured

through the standard inner product on R𝑑.

3.1.5 Contributions

Our approach to simultaneously answering these questions is to embed individual disease trajec-

tories into a low-dimensional vector space wherein similarity in the embedded space implies that

two individuals have similar trajectories. Such a representation would naturally answer our first

question, and could also be used to answer the second by comparing distributions over representa-

tions across groups defined by different outcomes. To learn these representations, we introduce a

novel probabilistic model of longitudinal data, which we term the Disease Trajectory Map (DTM).

In particular, the DTM models the trajectory over time of a single clinical marker, which is an

observation or measurement recorded over time by clinicians that is used to track the progression of

a disease (see e.g. Schulam et al. [2015]). Examples of clinical markers are pulmonary function tests

or creatinine laboratory test results, which track lung and kidney function respectively. The DTM

discovers low-dimensional (e.g. 2D or 3D) latent representations of clinical marker trajectories that

are easy to visualize. We describe a stochastic variational inference algorithm for estimating the

posterior distribution over the parameters and individual-specific representations, which allows our

model to be easily applied to large datasets. To demonstrate the DTM, we analyze clinical marker

data collected on individuals with the complex autoimmune disease scleroderma (see e.g. Allanore

et al. 2015). We find that the learned representations capture interesting subpopulations consistent

with previous findings, and that the representations suggest associations with important clinical

outcomes not captured by alternative representations.
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3.2 Disease Trajectory Maps

To motivate Disease Trajectory Maps (DTM), we begin with the reduced-rank LMM proposed

by James et al. [2000]. We show that the reduced-rank LMM defines a Gaussian process with a

covariance function that linearly depends on trajectory-specific representations. To define DTMs,

we then use the kernel trick to make the dependence non-linear. Let 𝜇 ∈ R be the marginal mean of

the observations, 𝐹 ∈ R𝑑×𝑞 be a rank-𝑞 matrix, and 𝜎2 be the variance of measurement errors. As

a reminder, 𝑦𝑖 ∈ R𝑁𝑖 denotes the vector of observed trajectory measurements, 𝐵𝑖 ∈ R𝑁𝑖×𝑑 denotes

the individual’s design matrix, and 𝑥𝑖 ∈ R𝑞 denotes the individual’s representation. James et al.

[2000] define the reduced-rank LMM using the following conditional distribution:

𝑦𝑖 | 𝐵𝑖, 𝑥𝑖, 𝜇, 𝐹, 𝜎
2 ∼ MultNormal(𝜇+𝐵𝑖𝐹𝑥𝑖, 𝜎

2I𝑁𝑖). (3.3)

They assume an isotropic normal prior over 𝑥𝑖 and marginalize to obtain the observed-data log-

likelihood, which is then optimized with respect to {𝜇, 𝐹, 𝜎2}. As in Lawrence [2004], we instead

optimize 𝑥𝑖 and marginalize 𝐹 . By assuming a normal prior Normal(0, 𝛼I𝑞) over the rows of 𝐹 and

marginalizing we obtain:

𝑦𝑖 | 𝐵𝑖, 𝑥𝑖, 𝜇, 𝜎
2, 𝛼 ∼ MultNormal(𝜇, 𝛼⟨𝑥𝑖, 𝑥𝑖⟩𝐵𝑖𝐵

⊤
𝑖 + 𝜎2I𝑁𝑖). (3.4)

Note that by marginalizing over 𝐹 , we induce a joint distribution over all trajectories in the

dataset. Moreover, this joint distribution is a Gaussian process with mean 𝜇 and the following

covariance function defined across trajectories that depends on times {𝑡𝑖, 𝑡𝑗} and representations

{𝑥𝑖, 𝑥𝑗}:

Cov(𝑦𝑖, 𝑦𝑗 | 𝐵𝑖, 𝐵𝑗 , 𝑥𝑖, 𝑥𝑗 , 𝜇, 𝜎
2, 𝛼) = 𝛼⟨𝑥𝑖, 𝑥𝑗⟩𝐵𝑖𝐵

⊤
𝑗 + 1𝑖=𝑗𝜎

2I𝑁𝑖 (3.5)

This reformulation of the reduced-rank LMM highlights that the covariance across trajectories

𝑖 and 𝑗 depends on the inner product between the two representations 𝑥𝑖 and 𝑥𝑗 , and suggests
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that we can non-linearize the dependency with an inner product in an expanded feature space

using the “kernel trick”. Let 𝑘(·, ·) denote a non-linear kernel defined over the representations with

parameters 𝜃, then we have:

Cov(𝑦𝑖, 𝑦𝑗 | 𝐵𝑖, 𝐵𝑗 , 𝑥𝑖, 𝑥𝑗 , 𝜇, 𝜎
2, 𝜃) = 𝑘(𝑥𝑖, 𝑥𝑗)𝐵𝑖𝐵

⊤
𝑗 + 1𝑖=𝑗𝜎

2I𝑁𝑖 . (3.6)

Let 𝑦 ≜ [𝑦⊤
1 , . . . , 𝑦

⊤
𝑀 ]⊤ denote the column vector obtained by concatenating the measurement

vectors from each trajectory. The joint distribution over 𝑦 is a multivariate normal:

𝑦 | 𝐵1:𝑀 , 𝑥1:𝑀 , 𝜇, 𝜎2, 𝜃 ∼ MultNormal(𝜇,ΣDTM + 𝜎2I𝑁 ), (3.7)

where ΣDTM is a covariance matrix that depends on the times 𝑡1:𝑚 (through design matrices 𝐵1:𝑚)

and representations 𝑥1:𝑚. In particular, ΣDTM is a block-structured matrix with 𝑀 row blocks and

𝑀 column blocks. The block at the 𝑖th row and 𝑗th column is the covariance between 𝑦𝑖 and 𝑦𝑗

defined in (3.6). Finally, we place isotropic Gaussian priors over 𝑥𝑖. We use Bayesian inference to

obtain a posterior Gaussian process and to estimate the representations. We tune hyperparameters

by maximizing the observed-data log likelihood. Note that our model is similar to the Bayesian

GPLVM [Titsias and Lawrence, 2010], but models functional data instead of finite-dimensional

vectors.

3.2.1 Learning and Inference

As formulated, the model scales poorly to large datasets. Inference within each iteration of an

optimization algorithm, for example, requires storing and inverting ΣDTM, which requires 𝑂(𝑁2)

space and 𝑂(𝑁3) time respectively, where 𝑁 ≜
∑︀𝑀

𝑖=1𝑁𝑖 is the number of clinical marker obser-

vations. For modern datasets, where 𝑁 can be in the hundreds of thousands or millions, this is

unacceptable. In this section, we approximate the log-likelihood using techniques from Hensman

et al. [2013] that allow us to apply stochastic variational inference (SVI) [Hoffman et al., 2013].
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Inducing Points

Recent work in scaling Gaussian processes to large datasets has focused on the idea of inducing

points [Snelson and Ghahramani, 2005, Titsias, 2009], which are a relatively small number of

artificial observations of a Gaussian process that approximately capture the information contained

in the training data. In general, let 𝑓 ∈ R𝑀 denote observations of a GP at inputs {𝑥𝑖}𝑀𝑖=1 and

𝑢 ∈ R𝑃 denote inducing point values at inputs {𝑧𝑖}𝑃𝑖=1. Titsias [2009] constructs the inducing points

as variational parameters by introducing an augmented probability model:

𝑢 ∼ MultNormal(0,𝐾𝑃 𝑃 ) (3.8)

𝑓 | 𝑢 ∼ MultNormal(𝐾𝑀𝑃𝐾
−1
𝑃 𝑃𝑢, �̃�𝑀𝑀 ), (3.9)

where 𝐾𝑃 𝑃 is the Gram matrix between inducing points, 𝐾𝑀𝑀 is the Gram matrix between

observations, 𝐾𝑀𝑃 is the cross Gram matrix between observations and inducing points, and

�̃�𝑀𝑀 ≜ 𝐾𝑀𝑀 − 𝐾𝑀𝑃𝐾
−1
𝑃 𝑃𝐾𝑃 𝑀 . We can marginalize over 𝑢 to construct a low-rank approxi-

mate covariance matrix, which is computationally cheaper to invert using the Woodbury identity.

Alternatively, Hensman et al. [2013] extends these ideas by explicitly maintaining a variational

distribution over 𝑢 that d-separates the observations and satisfies the conditions required to apply

SVI [Hoffman et al., 2013]. Let 𝑦𝑓 = 𝑓 + 𝜖 where 𝜖 ∈ R𝑃 is iid Gaussian noise with variance 𝜎2,

then we use the following inequality to lower bound our data log-likelihood:

log 𝑝(𝑦𝑓 | 𝑢) ≥
𝑀∑︁

𝑖=1
E𝑓𝑖|𝑢[log 𝑝(𝑦𝑓𝑖 | 𝑓𝑖)]. (3.10)

In the interest of space, we refer the interested reader to Hensman et al. [2013] for details.

Evidence Lower Bound

When marginalizing over the rows of 𝐹 , we induced a Gaussian process over the trajectories, but by

doing so we also implicitly induced a Gaussian process over the individual-specific basis coefficients.

Let 𝑤𝑖 ≜ 𝐹𝑥𝑖 ∈ R𝑑 denote the basis weights implied by the mapping 𝐹 and representation 𝑥𝑖 in

46



the reduced-rank LMM, and let 𝑤:,𝑘 for 𝑘 ∈ [𝑑] denote the 𝑘th coefficient of all individuals in the

dataset. After marginalizing the 𝑘th row of 𝐹 and applying the kernel trick, we see that the vector

of coefficients 𝑤:,𝑘 has a Gaussian process distribution with mean zero and covariance function:

Cov(𝑤𝑖𝑘, 𝑤𝑗𝑘) = 𝛼𝑘(𝑥𝑖, 𝑥𝑗). Moreover, the Gaussian processes across coefficients are statistically

independent of one another. To lower bound the DTM log-likelihood, we introduce 𝑃 inducing

points 𝑢𝑘 for each vector of coefficients 𝑤:,𝑘 with shared inducing point inputs {𝑧𝑖}𝑃𝑖=1. To refer

to all inducing points simultaneously, we use 𝑈 ≜ [𝑢1, . . . , 𝑢𝑑] and 𝑢 = vecc(𝑈) to denote the

“vectorized” form of 𝑈 obtained by stacking its columns. Applying (3.10) we have:

log 𝑝(𝑦 | 𝑈, 𝑥1:𝑚) ≥
𝑀∑︁

𝑖=1
E𝑤𝑖|𝑈,𝑥𝑖)[log 𝑝(𝑦𝑖 | 𝑤𝑖)]

=
𝑀∑︁

𝑖=1
log MultNormal(𝑦𝑖 | 𝜇+𝐵𝑖𝑈

⊤𝐾−1
𝑃 𝑃𝑘𝑖, 𝜎

2I𝑁𝑖)−
𝑘𝑖𝑖

2𝜎2 tr(𝐵⊤
𝑖 𝐵𝑖) ≜

𝑀∑︁
𝑖=1

log 𝑝(𝑦𝑖 | 𝑈, 𝑥𝑖),

where 𝑘𝑖 ≜ [𝑘(𝑥𝑖, 𝑧1), . . . , 𝑘(𝑥𝑖, 𝑧𝑃 )]⊤ and 𝑘𝑖𝑖 is the 𝑖th diagonal element of �̃�𝑀𝑀 . We can then

construct the variational lower bound on log 𝑝(𝑦):

log 𝑝(𝑦) ≥ E
[︀
log 𝑝(𝑦 | 𝑈, 𝑥1:𝑀 )

]︀
− KL

(︀
𝑞(𝑈, 𝑥1:𝑀 )‖𝑝(𝑈, 𝑥1:𝑀 )

)︀
(3.11)

≥
𝑀∑︁

𝑖=1
E
[︀
log 𝑝(𝑦𝑖 | 𝑈, 𝑥𝑖)]− KL

(︀
𝑞(𝑈, 𝑥1:𝑀 )‖𝑝(𝑈, 𝑥1:𝑀 )

)︀
, (3.12)

where we use the lower bound in (3.11). Finally, to make the lower bound concrete we specify the

variational distribution 𝑞(𝑈, 𝑥1:𝑀 ) to be a product of independent multivariate normal distributions:

𝑞(𝑈, 𝑥1:𝑀 ) ≜ MultNormal(vecc(𝑈) | 𝑚,𝑆)
𝑀∏︁

𝑖=1
MultNormal(𝑥𝑖 | 𝑚𝑖, 𝑆𝑖), (3.13)

where the variational parameters to be fit are 𝑚, 𝑆, and {𝑚𝑖, 𝑆𝑖}𝑀𝑖=1.

Stochastic Optimization of the Lower Bound

To apply SVI, we must be able to compute the gradient of the expected value of log 𝑝(𝑦𝑖 | 𝑈, 𝑥𝑖)

under the variational distributions. Because 𝑈 and 𝑥𝑖 are assumed to be independent in the
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variational posteriors, we can analyze the expectation in either order. Fix 𝑥𝑖, then we see that

log 𝑝(𝑦𝑖 | 𝑈, 𝑥𝑖) depends on 𝑈 only through the mean of the Gaussian density, which is a quadratic

term in the log likelihood. Because 𝑞(𝑈) is multivariate normal, we can compute the expectation

in closed form.

E𝑞(𝑈)[log 𝑝(𝑦𝑖 | 𝑈, 𝑥𝑖)]

= E𝑞(𝑈)[log MultNormal(𝑦𝑖 | 𝜇+𝐵𝑖 ⊗ 𝑘⊤
𝑖 𝐾

−1
𝑃 𝑃𝑢, 𝜎

2I𝑁𝑖)]−
𝑘𝑖𝑖

2𝜎2 tr(𝐵⊤
𝑖 𝐵𝑖)

= log MultNormal(𝑦𝑖 | 𝜇+ 𝐶𝑖𝑚,𝜎
2I𝑁𝑖)−

1
2𝜎2 tr(𝑆𝐶⊤

𝑖 𝐶𝑖)−
𝑘𝑖𝑖

2𝜎2 tr(𝐵⊤
𝑖 𝐵𝑖),

where we have defined 𝐶𝑖 ≜ 𝐵𝑖 ⊗ 𝑘𝑖𝐾
−1
𝑃 𝑃 to be the extended design matrix and ⊗ is the Kronecker

product. We now need to compute the expectation of this expression with respect to 𝑞(𝑥𝑖), which

entails computing the expectations of 𝑘𝑖 (a vector) and 𝑘𝑖𝑘
⊤
𝑖 (a matrix). In this paper, we assume an

RBF kernel, and so the elements of the vector and matrix are all exponentiated quadratic functions

of 𝑥𝑖. This makes the expectations straightforward to compute given that 𝑞(𝑥𝑖) is multivariate

normal.1 We therefore see that the expected value of log 𝑝(𝑦𝑖) can be computed in closed form

under the assumed variational distribution.

We use the standard SVI algorithm to optimize the lower bound. We subsample the data,

optimize the likelihood of each example in the batch with respect to the variational parameters over

the representation (𝑘𝑖, 𝑆𝑖), and compute approximate gradients of the global variational parameters

(𝑚, 𝑆) and the hyperparameters. The likelihood term is conjugate to the prior over 𝑈 , and so we

can compute the natural gradients with respect to the global variational parameters 𝑚 and 𝑆

[Hoffman et al., 2013, Hensman et al., 2013]. Additional details on the approximate objective and

the gradients required for SVI are given in the supplement of Schulam and Arora [2016]. We provide

details on initialization, minibatch selection, and learning rates for our experiments below.
1Other kernels can be used instead, but the expectations may not have closed form expressions.
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Inference on New Trajectories

The variational distribution over the inducing point values 𝑢 can be used to approximate a posterior

process over the basis coefficients 𝑤𝑖 [Hensman et al., 2013]. Therefore, given a representation 𝑥𝑖,

we have that

𝑤𝑖𝑘 | 𝑥𝑖,𝑚, 𝑆 ∼ Normal(𝑘⊤
𝑖 𝐾

−1
𝑝𝑝 𝑚𝑘, 𝑘𝑖𝑖 + 𝑘⊤

𝑖 𝐾
−1
𝑝𝑝 𝑆𝑘𝑘𝐾

−1
𝑃 𝑃𝑘𝑖), (3.14)

where 𝑚𝑘 is the approximate posterior mean of the 𝑘th column of 𝑈 and 𝑆𝑘𝑘 is its covariance.

The approximate joint posterior distribution over all coefficients can be shown to be multivariate

normal. Let 𝜇(𝑥𝑖) be the mean of this distribution given representation 𝑥𝑖 and Σ(𝑥𝑖) be the covari-

ance, then the posterior predictive distribution over a new trajectory 𝑦* given the representation

𝑥* is

𝑦* | 𝑥* ∼ Normal(𝜇+𝐵*𝜇(𝑥*), 𝐵*Σ(𝑥*)𝐵⊤
* + 𝜎2I𝑁*). (3.15)

We can then approximately marginalize with respect to the prior over 𝑥* or a variational approxi-

mation of the posterior given a partial trajectory using a Monte Carlo estimate.

3.3 Experiments

We now use DTM to analyze clinical marker trajectories of individuals with the autoimmune

disease, scleroderma [Allanore et al., 2015]. Scleroderma is a heterogeneous and complex chronic

autoimmune disease. It can potentially affect many of the visceral organs, such as the heart, lungs,

kidneys, and vasculature. Any given individual may experience only a subset of complications,

and the timing of the symptoms relative to disease onset can vary considerably across individuals.

Moreover, there are no known biomarkers that accurately predict an individual’s disease course.

Clinicians and medical researchers are therefore interested in characterizing and understanding

disease progression patterns. Moreover, there are a number of clinical outcomes responsible for the

majority of morbidity among patients with scleroderma. These include congestive heart failure,
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pulmonary hypertension and pulmonary arterial hypertension, gastrointestinal complications, and

myositis [Varga et al., 2012]. We use the DTM to study associations between these outcomes and

disease trajectories.

We study two scleroderma clinical markers. The first is the percent of predicted forced vital

capacity (PFVC); a pulmonary function test result measuring lung function. PFVC is recorded in

percentage points, and a higher value (near 100) indicates that the individual’s lungs are functioning

as expected. The second clinical marker that we study is the total modified Rodnan skin score

(TSS). Scleroderma is named after its effect on the skin, which becomes hard and fibrous during

periods of high disease activity. Because it is the most clinically apparent symptom, many of the

current sub-categorizations of scleroderma depend on an individual’s pattern of skin disease activity

over time [Varga et al., 2012]. To systematically monitor skin disease activity, clinicians use the

TSS which is a quantitative score between 0 and 55 computed by evaluating skin thickness at 17

sites across the body (higher scores indicate more active skin disease).

3.3.1 Experimental Setup

For our experiments, we extract trajectories from the Johns Hopkins Hospital Scleroderma Center’s

patient registry; one of the largest in the world. For both PFVC and TSS, we study the trajectory

from the time of first symptom until ten years of follow-up. The PFVC dataset contains trajectories

for 2,323 individuals and the TSS dataset contains 2,239 individuals. The median number of

observations per individuals is 3 for the PFVC data and 2 for the TSS data. The maximum

number of observations is 55 and 22 for PFVC and TSS respectively.

We present two sets of results. First, we visualize groups of similar trajectories obtained by

clustering the representations learned by DTM. Although not quantitative, we use these visual-

izations as a way to check that the DTM uncovers subpopulations that are consistent with what

is currently known about scleroderma. Second, we use the learned representations of trajectories

obtained using the LMM, the reduced-rank LMM (which we refer to as FPCA), and the DTM to

statistically test for relationships between important clinical outcomes and learned disease trajec-
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Figure 3.1: (A) Groups of PFVC trajectories obtained by hierarchical clustering of DTM repre-
sentations. (B) Trajectory representations are color-coded and labeled according to groups shown
in (A). Contours reflect posterior GP over the second B-spline coefficient (blue contours denote
smaller values, red denote larger values).

tory representations.

For all experiments and all models, we use a common 5-dimensional B-spline basis composed

of degree-2 polynomials (see e.g. Chapter 20 in Gelman et al. [2014]). We choose knots using

the percentiles of observation times across the entire training set [Ramsay et al., 2002]. For LMM

and FPCA, we use EM to fit model parameters. To fit the DTM, we use the LMM estimate

to set the mean 𝜇 , noise 𝜎2, and average the diagonal elements of Σ to set the kernel scale 𝛼.

Length-scales ℓ are set to 1. For these experiments, we do not learn the kernel hyperparameters

during optimization. We initialize the variational means over 𝑥𝑖 using the first two unit-scaled

principal components of 𝑤𝑖 estimated by LMM and set the variational covariances to be diagonal

with standard deviation 0.1. For both PFVC and TSS, we use minibatches of size 25 and learn for

a total of five epochs (passes over the training data). The initial learning rate for 𝑚 and 𝑆 is 0.1

and decays as 𝑡−1 for each epoch 𝑡.

3.3.2 Qualitative Analysis of Representations

The DTM returns approximate posteriors over the representations x𝑖 for all individuals in the

training set. We examine these posteriors for both the PFVC and TSS datasets to check for

consistency with what is currently known about scleroderma disease trajectories. In Figure 3.1 (A)

we show groups of trajectories uncovered by clustering the posterior means over the representations,
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Figure 3.2: Same presentation as in Figure 3.1 but for TSS trajectories.

which are plotted in Figure 3.1 (B). Many of the groups shown here align with other work on

scleroderma lung disease subtypes (e.g. Schulam et al. 2015). In particular, we see rapidly declining

trajectories (group [5]), slowly declining trajectories (group [22]), recovering trajectories (group

[23]), and stable trajectories (group [34]). Surprisingly, we also see a group of individuals who we

describe as “late decliners” (group [28]). These individuals are stable for the first 5-6 years, but

begin to decline thereafter. This is surprising because the onset of scleroderma-related lung disease

is currently thought to occur early in the disease course [Varga et al., 2012]. In Figure 3.2 (A) we

show clusters of TSS trajectories and the corresponding mean representations in Figure 3.2 (B).

These trajectories corroborate what is currently known about skin disease in scleroderma. In

particular, we see individuals who have minimal activity (e.g. group [1]) and individuals with early

activity that later stabilizes (e.g. group [11]), which correspond to what are known as the limited

and diffuse variants of scleroderma [Varga et al., 2012]. We also find that there are a number of

individuals with increasing activity over time (group [6]) and some whose activity remains high

over the ten year period (group [19]). These patterns are not currently considered to be canonical

trajectories and warrant further investigation.

3.3.3 Associations between Representations and Clinical Outcomes

To quantitatively evaluate the low-dimensional representations learned by the DTM, we statisti-

cally test for relationships between the representations of clinical marker trajectories and impor-
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Table 3.1: Disease Trajectory Held-out Log-Likelihoods

PFVC TSS

Model Subj. LL Obs. LL Subj. LL Obs. LL

LMM -17.59 (± 1.18) -3.95 (± 0.04) -13.63 (± 1.41) -3.47 (± 0.05)
FPCA -17.89 (± 1.19) -4.03 (± 0.02) -13.76 (± 1.42) -3.47 (± 0.05)
DTM -17.74 (± 1.23) -3.98 (± 0.03) -13.25 (± 1.38) -3.32 (± 0.06)

Table 3.2: P-values under the null hypothesis that the distributions of trajectory representations
are the same across individuals with and without clinical outcomes. Lower values indicate stronger
support for rejection.

PFVC TSS

Outcome LMM FPCA DTM LMM FPCA DTM

Congestive Heart Failure 0.170 0.081 0.013 0.107 0.383 0.189
Pulmonary Hypertension 0.270 *0.000 *0.000 0.485 0.606 0.564
Pulmonary Arterial Hypertension 0.013 0.020 *0.002 0.712 0.808 0.778
Gastrointestinal Complications 0.328 0.073 0.347 0.026 0.035 0.011
Myositis 0.337 *0.002 *0.004 *0.000 *0.002 *0.000
Interstitial Lung Disease *0.000 *0.000 *0.000 0.553 0.515 0.495
Ulcers and Gangrene 0.410 0.714 0.514 0.573 0.316 *0.009

tant clinical outcomes. We compare the inferences of the hypothesis test with those made using

representations derived from the LMM and FPCA baselines. For the LMM, we project 𝑤𝑖 into

its 2-dimensional principal subspace. For FPCA, we learn a rank-2 covariance, which learns 2-

dimensional representations. To establish that the models are all equally expressive and achieve

comparable generalization error, we present held-out data log-likelihoods in Table 3.1, which are es-

timated using 10-fold cross-validation. We see that the models are roughly equivalent with respect

to generalization error.

To test associations between clinical outcomes and learned representations, we use a kernel

Figure 3.3: Scatter plots of PFVC representations for the three models color-coded by presence or
absence of pulmonary arterial hypertension (PAH). Groups of trajectories with very few cases of
PAH are circled in green.
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density estimator test [Duong et al., 2012] to test the null hypothesis that the distributions across

subgroups with and without the outcome are equivalent. The 𝑝-values obtained are listed in Ta-

ble 3.2. As a point of reference, we include two clinical outcomes that should be clearly related

to the two clinical markers. Interstitial lung disease is the most common cause of lung damage in

scleroderma [Varga et al., 2012], and so we confirm that the null hypothesis is rejected for all three

PFVC representations. Similarly, for TSS we expect ulcers and gangrene to be associated with

severe skin disease. In this case, only the representations learned by DTM reveal this relationship.

For the remaining outcomes, we see that FPCA and DTM reveal similar associations, but that

only DTM suggests a relationship with pulmonary arterial hypertension (PAH). Presence of fibro-

sis (which drives lung disease progression) has been shown to be a risk factor in the development

of PAH (see Chapter 36 of Varga et al. [2012]), but only the representations learned by DTM

corroborate this association (see Figure 3.3).

3.4 Discussion

We presented the Disease Trajectory Map (DTM), a novel probabilistic model that learns low-

dimensional embeddings of sparse and irregularly sampled clinical time series data. The DTM

is a reformulation of the LMM. We derived it using an approach comparable to that of Lawrence

[2004] in deriving the Gaussian process latent variable model (GPLVM) from probabilistic principal

component analysis (PPCA) [Tipping and Bishop, 1999], and indeed the DTM can be interpreted

as a “twin kernel” GPLVM (briefly discussed in the concluding paragraphs) over functional ob-

servations. The DTM can also be viewed as an LMM with a “warped” Gaussian prior over the

random effects (see e.g. Damianou et al. [2015] for a discussion of distributions induced by mapping

Gaussian random variables through non-linear maps). We demonstrated the model by analyzing

data extracted from one of the nation’s largest scleroderma patient registries, and found that the

DTM discovers structure among trajectories that is consistent with previous findings and also un-

covers several surprising disease trajectory shapes. We also explore associations between important

clinical outcomes and the DTM’s representations and found statistically significant differences in
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representations between outcome-defined groups that were not uncovered by two sets of baseline

representations.
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Chapter 4

Dynamic Personalized Disease

Trajectory Prediction

In Chapters 2 and 3, we described techniques for exploring disease trajectory data. Exploration

can shed light on complex disease and can lead to new scientific hypotheses about the underlying

mechanisms. In this chapter, we build on the ideas developed so far (those in PSM in particular)

to develop tools for predicting disease trajectories. Predictions of disease activity trajectories are

valuable for a number of reasons. For instance, the most effective treatments for many diseases

often have strong side effects. With an accurate forecast of future progression, physicians can give

more aggressive treatment to those who need it most. Predictions are also valuable for clinical trial

enrichment. By enrolling patients at highest risk for particular outcomes, it may be possible to

demonstrate that a therapy works using fewer subjects (i.e. the study has higher power). Accurately

predicting disease progression can therefore have a large impact on clinical decision-making and

also help to reduce the number of failed clinical trials in complex, heterogeneous diseases.

Predicting disease activity trajectories presents a number of challenges. As in subtyping, there

are multiple observed and latent factors that cause heterogeneity across individuals. One possible

factor is the individual’s subtype. Depending on which mechanism is driving the disease, there may

be very different overall trajectories (e.g. as in Figures 4.1a and 4.1b). If we knew the subtypes, it

would be straightforward to fit separate models to each subpopulation. In most complex diseases,
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however, the mechanisms are poorly understood and clear definitions of subtypes do not exist.

Other important latent factors are long-term, individual-specific characteristics such as behavior,

prior exposures, and genetic predispositions. For instance, a chronic smoker will typically have

unhealthy lungs and so may have a trajectory that is consistently lower than a non-smoker’s.

Individual-specific long term factors may not always recorded reliably in electronic health data.

Finally, an individual’s trajectory might be influenced by short-term factors—e.g. an infection that

temporarily harms respiratory function (similar to the “dips” in Figure 4.1c or the third row in

Figure 4.1d). The causes of these short-term trends are also rarely recorded in electronic health

record data. Without predictors that capture these many important factors, standard predictive

models will not have a sufficiently rich set of inputs to make accurate predictions.

In this chapter, we describe a predictive model of disease activity trajectories that directly

addresses these observed and latent sources of heterogeneity using components arranged into

four conceptual layers: a population level (observed factors), a subpopulation level (unobserved,

shared across individuals), individual-specific long term effects (unobserved, individual-specific),

and individual-specific short term effects (unobserved, individual- and time-specific). Together,

these four components allow individual trajectories to appear highly heterogeneous while simulta-

neously sharing statistical strength across observations at different “resolutions” of the data. When

making predictions for a given individual, we use Bayesian inference to dynamically update our

posterior belief over the unobserved components of this hierarchy given the clinical history, and use

the posterior predictive to produce a trajectory estimate. We evaluate this approach by developing

a state-of-the-art trajectory prediction tool for lung disease in scleroderma. We train the model

using a large, national dataset containing individuals with scleroderma tracked over 20 years and

compare our predictions against alternative state-of-the-art approaches. We find that our approach

yields significant gains in predictive accuracy of disease activity trajectories. Importantly, the ac-

curacy of our method improves over time as more clinical data is collected. This makes it possible

to fully leverage the complete set of up-to-date information from a patient’s medical history to, for

example, guide clinical management or drive trial enrollment.
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4.1 Related Work

The majority of predictive models in medicine explain variability in the target outcome by condi-

tioning on observed risk factors alone. However, these do not account for latent sources of variability

such as those discussed above. Further, these models are typically cross-sectional—they use fea-

tures from data measured up until the current time to predict a clinical marker or outcome at a

fixed point in the future. As an example, consider the mortality prediction model by Lee et al.

[2003], where logistic regression is used to integrate features into a prediction about the probabil-

ity of death within 30 days for a given patient. To predict the outcome at multiple time points,

typically separate models are trained. Moreover, these models use data from a fixed-size window,

rather than a growing history.

Researchers in the statistics and machine learning communities have proposed solutions that

address a number of these limitations. Most related to our work is that by Rizopoulos [2011],

where the focus is on making dynamical predictions about a time-to-event outcome (e.g. time

until death). Their model updates predictions over time using all previously observed values of a

longitudinally recorded marker. Besides conditioning on observed factors, they account for latent

heterogeneity across individuals by allowing for individual-specific adjustments to the population-

level model—e.g. for a longitudinal marker, deviations from the population baseline are modeled

using random effects by sampling individual-specific intercepts from a common distribution. Other

closely related work by Proust-Lima et al. [2014] tackle a similar problem as Rizopoulos [2011], but

address heterogeneity using a mixture model.

Another common approach to dynamical predictions is to use Markov models such as order-𝑝

autoregressive models (AR-𝑝), HMMs, state space models, and dynamic Bayesian networks (see e.g.

Murphy 2012). Although such models naturally make dynamic predictions using the full history

by forward-filtering, they typically assume discrete, regularly-spaced observation times. Gaussian

processes (GPs) are a commonly used alternative for handling continuous-time observations—see

Roberts et al. [2013] for a recent review of GP time series models. Since Gaussian processes

are non-parametric generative models of functions, they naturally produce functional predictions
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dynamically by using the posterior predictive conditioned on the observed data. Mixtures of GPs

have been applied to model heterogeneity in the covariance structure across time series (e.g. Shi

et al. 2005), however as noted Roberts et al. [2013], appropriate mean functions are critical for

accurate forecasts using GPs. In our work, an individual’s trajectory is expressed as a GP with

a highly structured mean comprising population, subpopulation and individual-level components

where some components are observed and others require inference.

More broadly, multi-level models have been applied in many fields to model heterogeneous

collections of units that are organized within a hierarchy [Gelman and Hill, 2006]. For example,

in predicting student grades over time, individuals within a school may have parameters sampled

from the school-level model, and the school-level model parameters in turn may be sampled from

a county-specific model. In our setting, the hierarchical structure—which individuals belong to

the same subgroup—is not known a priori. Similar ideas are studied in multi-task learning, where

relationships between distinct prediction tasks are used to encourage similar parameters. This has

been applied to modeling trajectories by treating predictions at each time point as a separate task

and enforcing similarity between sub-models close in time [Wang et al., 2012]. This approach is

limited, however, in that it models a finite number of times. Others, more recently, have developed

models for disease trajectories (see Ross and Dy 2013, Schulam et al. 2015 and references within) but

these focus on retrospective analysis to discover disease etiology rather than dynamical prediction.

Schulam et al. [2015] incorporate differences in trajectories due to subtypes and individual-specific

factors. We build upon this work here. Finally, recommender systems also share information across

individuals with the aim of tailoring predictions (see e.g. Marlin 2003, Adomavicius and Tuzhilin

2005, Sontag et al. 2012), but the task is otherwise distinct from ours.

4.2 Latent-Hierarchy Trajectory Model

To predict an individual’s disease trajectory, we build off of the Probabilistic Subtyping Model

(PSM) described in Chapter 2. As in the PSM, we model a measurement 𝑦𝑖𝑗 on individual 𝑖 at

time 𝑡𝑖𝑗 using a hierarchy observed and unobserved factors: a population component, a subpop-
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Figure 4.1: Plots (a-c) show example marker trajectories. Plot (d) shows adjustments to a popula-
tion and subpopulation fit (row 1). Row 2 makes an individual-specific long-term adjustment. Row
3 makes short-term structured noise adjustments. Plot (e) shows the proposed graphical model.
Levels in the hierarchy are color-coded. Model parameters are enclosed in dashed circles. Observed
random variables are shaded.

ulation (subtype) component, an individual long-term component, and an individual short-term

component. Specifically, we model 𝑦𝑖𝑗 using an additive model comprised of terms that use infor-

mation at increasingly granular scales:

𝑦𝑖𝑗 | 𝑧𝑖, 𝑓𝑖, 𝑓
′
𝑖 ∼ Normal

⎛⎜⎜⎝ Φ(𝑡𝑖𝑗)𝐵𝑥𝑖⏟  ⏞  
(A) population

+ Φ(𝑡𝑖𝑗)𝛽𝑧𝑖⏟  ⏞  
(B) subpopulation

+ 𝑓𝑖(𝑡𝑖𝑗)⏟  ⏞  
(C) long-term

+ 𝑓 ′
𝑖(𝑡𝑖𝑗)⏟  ⏞  

(D) short-term

, 𝜎2

⎞⎟⎟⎠ (4.1)

The hierarchy that we use in the latent-hierarchy trajectory model (LTM) is similar to those

developed for the PSM (Section 2.4). We briefly review these four components.

4.2.1 Population Level

The population model predicts aspects of an individual’s disease activity trajectory using observed

baseline characteristics (e.g. gender and race), which are represented using the feature vector

𝑥𝑖 ∈ R𝑑. This sub-model is shown within the orange box in Figure 4.1e. As in the PSM, we

estimate 𝑝 linear functions of 𝑥𝑖 that determine the coefficients of a function within the span of

B-spline bases Φ(𝑡) ∈ R𝑝 (see Section 2.4.1 for a review of B-splines). We collect the coefficients of
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these linear models into a matrix 𝐵 ∈ R𝑝×𝑑.

4.2.2 Subpopulation Level

We model an individual’s subpopulation (or subtype) using a discrete-valued latent variable 𝑧𝑖 ∈ {1, . . . , 𝐺},

where 𝐺 is the number of subtypes. We associate each subtype with a unique disease activity tra-

jectory represented using a B-spline with bases Φ(𝑡) ∈ R𝑝 and coefficients 𝛽𝑔. This component

explains differences such as those observed between the trajectories in Figures 4.1a and 4.1b.

In many cases, features at baseline may be predictive of subtype. For example, in scleroderma,

the types of antibody an individual produces (i.e. the presence of certain proteins in the blood)

are correlated with certain trajectories. We can improve predictive performance by conditioning

on baseline covariates to infer the subtype. To do this, we use a softmax linear regression to define

feature-dependent marginal probabilities:

log 𝜋𝑔(𝑥𝑖)← 𝑤⊤
𝑔 𝑥𝑖 − log

𝐺∑︁
𝑔′=1

𝑒
𝑤𝑇

𝑔′ 𝑥𝑖 (4.2)

𝑧𝑖 | 𝑥𝑖 ∼ Categorical
(︀
𝜋1:𝐺(𝑥𝑖)

)︀
. (4.3)

4.2.3 Individual Long-Term Level

This level models deviations from the population and subpopulation models using parameters that

are learned dynamically as the individual’s clinical history grows. This component can explain, for

example, differences in overall health due to an unobserved characteristic such as chronic smoking,

which may cause atypically lower lung function than what is predicted by the population and

subpopulation components. Such an adjustment is illustrated across the first and second rows of

Figure 4.1d. As in the PSM, we model this factor using a long-term Gaussian process with mean

zero and covariance function 𝑘 that is a relatively weak function of time:

𝑓𝑖 ∼ GP(0, 𝑘). (4.4)
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4.2.4 Individual Short-Term Level

Finally, the short-term component captures transient trends in the individual’s disease trajectory.

For example, an infection may cause an individual’s lung function to temporarily appear more

restricted than it actually is, which may cause short-term trends like those shown in Figure 4.1c

and the third row of Figure 4.1d. As in the PSM, we model this factor using a short-term Gaussian

process with mean zero and covariance function 𝑘′ that assigns higher correlations to observations

measured closer in time:

𝑓 ′
𝑖 ∼ GP(0, 𝑘′). (4.5)

4.3 Learning and Inference

As in the PSM, we assume that the number of subtypes 𝐺, the long-term covariance function 𝑘, and

the short-term covariance function 𝑘′ are fixed. In practice, we choose these using model selection

procedures.

4.3.1 Learning

To estimate the remaining parameters Θ = {𝑤1:𝐺, 𝛽1:𝐺, 𝐵}, we maximize the log likelihood of the

observed data using the expectation maximization (EM) algorithm.

Expectation Step

As in the PSM, we only need to compute the posterior distribution of 𝑧𝑖 given 𝑦𝑖 (because we

assume that 𝑘 and 𝑘′ are fixed). The posterior is

𝑞𝑖(𝑔) ∝ 𝑝(𝑧𝑖 = 𝑔 | 𝑥𝑖)𝑝(𝑦𝑖 | 𝑧𝑖 = 𝑔). (4.6)
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Maximization Step

Given the posteriors over 𝑧𝑖, {𝑞𝑖}𝑀𝑖=1, the method to reesimate the population regression parameters

𝐵 and the subtype coefficients 𝛽1:𝐺 are the same in this model as in the PSM. One important

difference is that we have replaced the marginal subtype probabilities 𝜋1:𝐺 with a softmax regression.

To fit the softmax regression parameters, we maximize the following expected log likelihood

𝐽(𝑤1:𝐺) =
𝑀∑︁

𝑖=1
E𝑞𝑖 [log 𝑝(𝑧𝑖 | 𝑥𝑖)] (4.7)

=
𝑀∑︁

𝑖=1

𝐺∑︁
𝑔=1

𝑞𝑖(𝑔)
(︂
𝑤⊤

𝑔 𝑥𝑖 − log
𝐺∑︁

𝑔′=1
𝑒

𝑤⊤
𝑔′ 𝑥𝑖

)︂
. (4.8)

There is no closed form solution to this maximization problem, so we use an iterative first-order

optimization algorithm (e.g. L-BFGS). To iteratively compute the updates, we must compute the

gradient of 𝐽 with respect to 𝑤𝑔:

𝜕𝐽

𝜕𝑤𝑔
=

𝑀∑︁
𝑖=1

𝑞𝑖(𝑔)(1− 𝜋𝑔(𝑥𝑖))𝑥𝑖 − (1− 𝑞𝑖(𝑔))𝜋𝑔(𝑥𝑖)𝑥𝑖. (4.9)

4.3.2 Inference and Prediction

Given model hyperparameters (𝐺, 𝑘, and 𝑘′) and estimated parameters (𝑤1:𝐺, 𝛽1:𝐺, 𝐵), we can

dynamically predict an individual’s future trajectory for each subtype using the posterior predictive

𝑝(𝑦* | 𝑦𝑖, 𝑧𝑖) (4.10)

where 𝑦* is the s-marker at some time 𝑡* (usually in the future). Using Equation 4.6, we can average

over Equation 4.10 using 𝑞𝑖 or predict using the MAP estimate of 𝑧𝑖.

Given 𝑥𝑖 and 𝑧𝑖, the s-marker trajectory 𝑦𝑖 is a Gaussian process with mean and covariance

functions

𝑚(𝑡; 𝑧𝑖) = Φ(𝑡)𝐵𝑥𝑖 + Φ(𝑡)𝛽𝑧𝑖 (4.11)

𝑣(𝑡1, 𝑡2) = 𝑘(𝑡1, 𝑡2) + 𝑘′(𝑡1, 𝑡2) (4.12)
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Figure 4.2: Plots (a) and (c) show dynamic predictions using the LTM for two individuals. Red
markers are unobserved. Blue shows the trajectory predicted using the most likely subtype, and
green shows the second most likely. Plot (b) shows dynamic predictions using the B-spline GP
baseline. Plot (d) shows predictions made using the LTM without individual-specific adjustments.

It is therefore straightforward to compute Equation 4.10 using the Gaussian process prediction

equations. Let 𝑡* ∈ R𝑁* denote a vector of measurement times at which we would like to predict

the markers 𝑦* ∈ R𝑁* . Next, define the following matrices:

𝐾𝑖 ∈ R𝑁𝑖×𝑁𝑖 , [𝐾𝑖]𝑗𝑘 = 𝑣(𝑡𝑖𝑗 , 𝑡𝑖𝑘) (4.13)

𝐾* ∈ R𝑁*×𝑁𝑖 , [𝐾*]𝑗𝑘 = 𝑣(𝑡*𝑗 , 𝑡𝑖𝑘) (4.14)

𝐾** ∈ R𝑁*×𝑁* , [𝐾**]𝑗𝑘 = 𝑣(𝑡*𝑗 , 𝑡*𝑘). (4.15)

The posterior predictive of 𝑦𝑖 given 𝑧𝑖 is multivariate normal with mean and covariance

𝜇*(𝑧𝑖) = 𝑚(𝑡*; 𝑧𝑖) +𝐾*(𝐾𝑖 + 𝜎2I𝑁𝑖)−1(𝑦𝑖 −𝑚(𝑡𝑖; 𝑧𝑖)) (4.16)

Σ* = 𝐾** −𝐾*(𝐾𝑖 + 𝜎2I𝑁𝑖)−1𝐾⊤
* . (4.17)

4.4 Experiments

We demonstrate our approach by building a tool to predict the lung disease trajectories of indi-

viduals with scleroderma. Lung disease is currently the leading cause of death among scleroderma
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patients, and is notoriously difficult to treat because there are few predictors of decline and there

is tremendous variability across individual trajectories [Allanore et al., 2015]. Clinicians track lung

severity using percent of predicted forced vital capacity (PFVC), which is expected to drop as the

disease progresses. In addition, demographic variables and molecular test results are often available

at baseline to aid prognoses. We train and validate our model using data from the Johns Hopkins

Scleroderma Center patient registry, which is one of the largest in the world. To select individuals

from the registry, we used the following criteria. First, we include individuals who were seen at

the clinic within two years of their earliest scleroderma-related symptom. Second, we exclude all

individuals with fewer than two PFVC measurements after their first visit. Finally, we exclude

individuals who received a lung transplant. The dataset contains 672 individuals and a total of

4, 992 PFVC measurements.

For the population model, we use constant functions (i.e. observed covariates adjust an individ-

ual’s intercept). The population covariates (𝑥𝑖) are gender, African American race, and indicators

of ACA and Scl-70 antibodies—two proteins believed to be connected to scleroderma-related lung

disease. Note that all features are binary. For the subpopulation B-splines, we set boundary knots

at 0 and 25 years (the maximum observation time in our data set is 23 years), use two interior knots

that divide the time period from 0-25 years into three equally spaced chunks, and use quadratics

as the piecewise components. These B-spline hyperparameters (knots and polynomial degree) are

also used for all baseline models. We select 𝐺 = 9 subtypes using BIC. The covariates in the

subtype marginal model are the same used in the population model. For the long-term GP we use

a constant covariance function 𝑘(𝑡1, 𝑡2) = 𝜈2 and for the short-term GP we use an OU covariance

kernel 𝑘(𝑡1, 𝑡2) = 𝑎2 exp{ℓ−1|𝑡1 − 𝑡2|}. We set 𝜈 = 4, 𝑎 = 6, ℓ = 2, and 𝜎2 = 1.

4.4.1 Baseline Models

First, to compare against typical approaches used in clinical medicine that condition on baseline

covariates only (e.g. Khanna et al. 2011), we fit a regression model conditioned on all covariates
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included in 𝑥𝑖 above. The mean is parameterized using B-spline bases (Φ(𝑡)) as:

𝑦 | �⃗�𝑖𝑧 = Φ(𝑡)⊤

⎛⎝𝛽0 +
𝑑∑︁

𝑗=1
𝑥𝑖𝑗𝛽𝑗 +

𝑑∑︁
𝑗=1

∑︁
𝑘 ̸=𝑗

𝑥𝑖𝑗𝑥𝑖𝑘𝛽𝑖𝑗

⎞⎠ . (4.18)

The second baseline is similar to Rizopoulos [2011] and Shi et al. [2012] and extends the first

baseline by accounting for individual-specific heterogeneity. The model has a mean function iden-

tical to the first baseline and individualizes predictions using a GP with covariance function 𝑘+ 𝑘′

(using hyper-parameters as above). Another natural approach is to explain heterogeneity by using

a mixture model similar to Proust-Lima et al. [2014]. However, a mixture model cannot adequately

explain away individual-specific sources of variability that are unrelated to subtype and therefore

fails to recover subtypes that capture canonical trajectories (we discuss this in detail in the sup-

plemental section). The recovered subtypes from the full model do not suffer from this issue. To

make the comparison fair and to understand the extent to which the individual-specific component

contributes towards personalizing predictions, we create a mixture model (Proposed w/ no person-

alization) where the subtypes are fixed to be the same as those in the full model and the remaining

parameters are learned. Note that this version does not contain the individual-specific component.

4.4.2 Evaluation Metrics

We make predictions after one, two, and four years of follow-up. Errors are summarized within four

disjoint time periods: (1, 2], (2, 4], (4, 8], and (8, 25] years1. To measure error, we use the absolute

difference between the prediction and a smoothed version of the individual’s observed trajectory.

We estimate mean absolute error (MAE) using 10-fold CV at the level of individuals (i.e. all of

an individual’s data is held-out), and test for statistically significant reductions in error using a

one-sided, paired t-test. For all models, we use the MAP estimate of the individual’s trajectory. In

the models that include subtypes, this means that we choose the trajectory predicted by the most

likely subtype under the posterior. Although this discards information from the posterior, in our

experience clinicians find this choice to be more interpretable.
1After the eighth year, data becomes too sparse to further divide this time span.
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4.4.3 Qualitative Results

In Figure 5.4 we present dynamically updated predictions for two patients (one per row, dynamic

updates move left to right). Blue lines indicate the prediction under the most likely subtype and

green lines indicate the prediction under the second most likely. The first individual (Figure 5.4a) is

a 50-year-old, white woman with Scl-70 antibodies, which are thought to be associated with active

lung disease. Within the first year, her disease seems stable, and the model predicts this course with

57% confidence. After another year of data, the model shifts 21% of its belief to a rapidly declining

trajectory; likely in part due to the sudden dip in year 2. We contrast this with the behavior of

the B-spline GP shown in Figure 5.4b, which has limited capacity to express individualized long-

term behavior. We see that the model does not adequately adjust in light of the downward trend

between years one and two. To illustrate the value of including individual-specific adjustments, we

now turn to Figures 5.4c and 5.4d (which plot predictions made by the LTM with and without

personalization respectively). This individual is a 60-year-old, white man that is Scl-70 negative,

which makes declining lung function less likely. Both models use the same set of subtypes, but

whereas the model without individual-specific adjustment does not consider the recovering subtype

to be likely until after year two, the full model shifts the recovering subtype trajectory downward

towards the man’s initial PFVC value and identify the correct trajectory using a single year of

data.

4.4.4 Quantitative Results

Table 5.1 reports MAE for the baselines and the LTM. We note that after observing two or more

years of data, our model’s errors are smaller than the two baselines (and statistically significantly

so in all but one comparison). Although the B-spline GP improves over the first baseline, these

results suggest that both subpopulation and individual-specific components enable more accurate

predictions of an individual’s future course as more data are observed. Moreover, by comparing

the LTM with and without personalization, we see that subtypes alone are not sufficient and that

individual-specific adjustments are critical. These improvements also have clinical significance. For
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Predictions using 1 year of data
Model (1, 2] % Im. (2, 4] % Im. (4, 8] % Im. (8, 25] % Im.
B-spline with Baseline Feats. 12.78 12.73 12.40 12.14
B-spline + GP 5.49 7.70 9.67 10.71
Proposed 5.26 *7.04 8.6 10.17 12.12
Proposed w/ no personalization 6.17 7.12 9.38 12.85

Predictions using 2 years of data
B-spline with Baseline Feats. 12.73 12.40 12.14
B-spline + GP 5.88 8.65 10.02
Proposed *5.48 6.8 *7.95 8.1 9.53
Proposed w/ no personalization 6.00 8.12 11.39

Predictions using 4 years of data
B-spline with Baseline Feats. 12.40 12.14
B-spline + GP 6.00 8.88
Proposed *5.14 14.3 *7.58 14.3
Proposed w/ no personalization 5.75 9.16

Table 4.1: MAE of PFVC predictions for the two baselines and the LTM. Bold numbers indicate
best performance across models (* is stat. significant). “% Im.” reports percent improvement over
next best.

example, individuals who drop by more than 10 PFVC are candidates for aggressive immunosup-

pressive therapy. Out of the 7.5% of individuals in our data who decline by more than 10 PFVC,

our model predicts such a decline at twice the true-positive rate of the B-spline GP (31% vs. 17%)

and with a lower false-positive rate (81% vs. 90%).

4.5 Conclusion

We have described a hierarchical model for making individualized predictions of disease activity

trajectories that accounts for both latent and observed sources of heterogeneity. We empirically

demonstrated that using all elements of the LTM’s hierarchy allows our model to dynamically

personalize predictions and reduce error as more data about an individual is collected. Although

our analysis focused on scleroderma, our approach is more broadly applicable to other complex,

heterogeneous diseases [Craig, 2008]. Examples of such diseases include asthma [Lötvall et al.,

2011], autism [Wiggins et al., 2012], and COPD [Castaldi et al., 2014]. There are several promising

directions for further developing the ideas presented here. First, we observed that predictions are

less accurate early in the disease course when little data is available to learn the individual-specific

adjustments. To address this shortcoming, it may be possible to leverage time-dependent covariates
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in addition to the baseline covariates used here. Second, the quality of our predictions depends

upon the allowed types of individual-specific adjustments encoded in the model. More sophisticated

models of individual variation may further improve performance. Moreover, approaches for auto-

matically learning the class of possible adjustments would make it possible to apply our approach

to new diseases more quickly.
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Chapter 5

Coupling Trajectory Models to

Improve Predictions

In this chapter, we extend the Latent-Hierarchy Trajectory Model (LTM) by conditioning on base-

line information, previous observations of the trajectory, and additional time-dependent clinical

markers (henceforth referred to as auxiliary markers) as they are collected. Like the target clini-

cal marker, the auxiliary marker trajectories are typically heterogeneous and sampled at irregular

(and sometimes sparse) times. This makes it difficult to condition on these inputs in a standard

discriminative model. For instance, we might use the mean and variance of an auxiliary marker

in the past six years as features in a predictive model, but these inputs will likely be noisy. They

might be noisy because there are few observations (e.g. only one observation in the past six years),

or because of the heterogeneity in the population. In some cases, there may be no past auxiliary

markers at all and so these features will be missing.

One natural approach to handling the sparsity issue is to build a joint model of both the

auxiliary markers and the target marker. Once we have a joint model, we can make predictions

by computing the conditional distribution of the target marker given the auxiliary markers. For

instance, Rizopoulos and Ghosh [2011] propose a joint linear mixed effects model (LMM) over

multiple markers. Proust-Lima et al. [2014] describe an alternative approach using a discrete

mixture model. Joint model approaches raise a number of different issues. First, joint models often
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scale poorly as more auxiliary markers are included (e.g. the number of model parameters in an

LMM grows quadratically). Second, as we include new auxiliary markers we must reformulate the

joint model and take care to faithfully capture statistical dependencies between all markers. This

grows increasingly difficult as the number of markers grows.

This chapter describes a scalable framework for predicting a target marker trajectory that allows

us to include multiple auxiliary clinical marker histories as inputs. Our approach makes it easy to

handle irregular sampling patterns across input markers (as in joint models). Moreover, the num-

ber of parameters and computational complexity scales linearly with the number of markers, which

makes it possible to apply our approach in high-dimensional settings where many different marker

types are available. Finally, our approach minimizes the impact of incorrectly specifying the statis-

tical dependencies across markers by learning to share inferences across each marker-specific model

in a way that maximizes predictive performance of the target marker. We apply our approach to the

problem of predicting lung disease trajectories in scleroderma, a complex autoimmune disease. We

show that our approach significantly improves over state-of-the-art baselines in predictive accuracy

and we provide a qualitative analysis of our model’s output to build intuition for why it works. In

addition, we show that our model is clinically relevant by demonstrating improvements over the

baseline models in early detection of individuals who develop aggressive lung disease (defined as a

clinically significant drop in lung function).

5.1 Related Work

Most predictive models used in medicine are cross-sectional—they use features from data measured

up until the current time to predict a clinical marker or outcome at a fixed point in the future. As

an example, consider the mortality prediction model by Lee et al. [2003], where logistic regression is

used to integrate features into a prediction about the probability of death within 30 days for a given

patient. To predict the outcome at multiple time points, it is common to fit separate models (e.g.,

Wang et al. 2012, Zhou et al. 2011). Moreover, these models are trained to use features extracted

from a fixed-size window, rather than a dynamically growing history. These models also tackle
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heterogeneity in a limited way—any differences across individuals must be explained by observed

features alone.

The statistics and machine learning communities have proposed solutions that address a number

of these limitations. Most related to our work is that by Rizopoulos [2011], where the focus is on

making dynamical predictions about a time-to-event outcome (e.g. time until death) using all

previously observed values of a longitudinally recorded marker. As more data is collected, they

dynamically update posterior distributions over individual-specific longitudinal model parameters,

which serve as time-varying features for the time-to-event prediction. Proust-Lima et al. [2014]

tackles the same task but uses a mixture model over the longitudinal data. As more observations

are collected, the posterior over a set of classes is updated, each of which has a distinct set of

time-to-event model parameters. These are both state-of-the-art models for the task of dynamical

disease trajectory prediction; we will revisit them in our experimental section where we use the

approaches as baselines.

More broadly, a common approach to dynamical prediction is to use Markov models such as

order-𝑝 autoregressive models (AR-𝑝), HMMs, state space models, and dynamic Bayesian networks

(e.g. Hassan and Nath 2005, Quinn et al. 2009, Murphy 2002). While such models naturally make

dynamic predictions using the full history by forward-filtering, they typically assume discrete,

regularly-spaced observation times. Gaussian processes (GPs) are a commonly used alternative for

handling continuous-time observations—see Roberts et al. [2013] for a recent review of GP time

series models. Since Gaussian processes are non-parametric generative models of functions, they

naturally produce functional predictions dynamically through the posterior predictive distribution.

A number of authors have proposed variants of GPs that account for heterogeneity in the mean

function (e.g. Lázaro-Gredilla et al. 2012, Shi et al. 2012) and the covariance function (e.g. Shi

et al. 2005). To scale GPs to multivariate time series, however, requires careful selection of the

covariance function, which can be challenging in high-dimensional settings (e.g., Dürichen et al.

2015). Recent work by Liu and Hauskrecht [2014] combines the advantages of Markov models

(e.g. AR processes and state space models) and Gaussian processes to make predictions of clinical
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laboratory test results. Although the task is similar, we focus on making predictions in highly

heterogeneous populations, which their approach does not explicitly address.

Methods from functional data analysis (FDA) can also be used to analyze continuous-time tra-

jectories (see, e.g., Ramsay 2006). A common approach in FDA is to project irregular observations

on to a functional basis, such as B-splines, and then analyze the time series in coefficient space. A

drawback of this approach is that the coefficient estimates can have high variance when a time series

has too few observations, which is common in clinical data. James and Sugar [2003] address this

issue using a low-rank parameterization of the mean and covariance functions. This work is closely

related to ours, but focuses on retrospective analysis of longitudinal data rather than dynamic

prediction. Another related line of work in the FDA literature is function-to-function regression

(e.g., Oliva et al. 2015). In most approaches to function-to-function regression (FFR) the input

and output are defined on fixed domains. In contrast, our problem requires updated predictions as

the clinical history continues to grow; both the input and output domains are therefore constantly

changing. In addition, FFR methods typically assume that the data are densely sampled, which is

rare in health care.

In the disease progression modeling literature (see Mould 2012 for a recent review), there is

an extensive body of work on methods for analysis of patient time series to discover canonical

trajectories of progression. These focus on retrospective analysis to discover disease etiology rather

than dynamical prediction of an individual’s trajectory (e.g., Jackson et al. 2003, Wang et al. 2014).

Recently, others have extended disease progression modeling to incorporate heterogeneity in disease

trajectories due to subtypes (see Schulam et al. 2015 and references within). The focus of these

contributions, however, like in other disease progression modeling work, is on discovery rather than

prediction.

5.2 Coupled Latent-Hierarchy Trajectory Model

Our goal is to predict a continuous function modeling the future trajectory of a target clinical

marker (e.g. PFVC) that tracks disease progression in a specific organ. To make our predictions,
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Figure 5.1: Plots (a-c) show example marker trajectories. Plot (d) shows four individuals with
adjustments to a population and subpopulation fit (row 1). Row 2 makes an individual-specific
long-term adjustment. Row 3 makes individual-specific short-term adjustments. To simplify, we
only show mean functions; posterior uncertainty intervals are omitted.

we will use a collection of baseline (i.e. static) markers measured when an individual first presents,

the previously observed values of the target marker, and the previously observed values of a col-

lection of auxiliary clinical markers tracking related organ systems. See Figure 5.5a-d for example

applications; the posterior distribution over the PFVC values (blue and green shaded regions)

are conditioned upon baseline markers (e.g. gender and race), the observed PFVC values (black

points), and auxiliary marker histories (e.g. TSS). We learn our model from a database of clinical

histories of individuals, which are comprised of the individuals’ baseline information and irregularly

sampled trajectories of both the target and auxiliary markers. Formally, our model will estimate

the following conditional distribution (notation is described in the subsequent paragraph):

𝒟(𝑖, 𝑡) ≜ 𝑝(𝑦𝑖(·) | 𝑦𝑖,≤𝑡, 𝑦1:𝐶,𝑖,≤𝑡, 𝑥𝑖). (5.1)

Notation. For an individual 𝑖, we denote each target marker observation using 𝑦𝑖𝑗 and its

measurement time using 𝑡𝑖𝑗 where 𝑗 ∈ {1, . . . , 𝑁𝑖}. We use 𝑦𝑖 ∈ R𝑁𝑖 and 𝑡𝑖 ∈ R𝑁𝑖 to denote all

of individual 𝑖’s marker values and measurement times respectively. We assume that the target
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Figure 5.2: Two-stage procedure for fitting the Coupled Latent Trajectory Model (C-LTM).

marker observations are noisy observations of a latent continuous-time function (the trajectory),

which we denote using 𝑦𝑖(·). Each individual has baseline (static) information collected into a

vector, which we denote using 𝑥𝑖. We use 𝐶 to denote the number of auxiliary marker types, 𝑁𝑐𝑖 to

denote the number of observations of the 𝑐th type, and use 𝑦𝑐𝑖𝑗 and 𝑡𝑐𝑖𝑗 to denote individual 𝑖’s 𝑗th

measurement of marker type 𝑐. We use 𝑦𝑐𝑖 ∈ R𝑁𝑐𝑖 and 𝑡𝑐𝑖 ∈ R𝑁𝑐𝑖 to denote the vector containing

all of individual 𝑖’s 𝑐th marker values and times respectively. We will also frequently need to refer

to the vector of marker values observed up until a time 𝑡, which we denote using 𝑦𝑖,≤𝑡 (𝑦𝑐𝑖,≤𝑡 for

auxiliary markers). Similarly, for markers observed after a time 𝑡, we use 𝑦𝑖,>𝑡 (𝑦𝑐𝑖,>𝑡 for auxiliary

markers). The term 𝑦1:𝐶,𝑖,≤𝑡 refers to all auxiliary markers measured on individual 𝑖 up until time

𝑡.

At a high-level, we will model Eq. 5.1 by first assuming that each clinical marker trajectory

(both target and auxiliary) can be d-separated (rendered conditionally independent) of all other

marker types given a marker type-specific latent variable. We denote these latent variables using
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𝑧𝑖 for the target marker and 𝑧𝑐𝑖 for auxiliary marker 𝑐, and will describe them further later in this

section. Under this assumption, we can write Eq. 5.1 as

𝒟(𝑖, 𝑡) =
∑︁
𝑧𝑖

𝑝(𝑦𝑖(·) | 𝑧𝑖, 𝑦𝑖,≤𝑡, 𝑥𝑖)𝑝(𝑧𝑖 | 𝑦𝑖,≤𝑡, 𝑦1:𝐶,𝑖,≤𝑡, 𝑥𝑖)

∝
∑︁
𝑧𝑖

𝑝(𝑦𝑖(·) | 𝑧𝑖, 𝑦𝑖,≤𝑡, 𝑥𝑖)𝑝(𝑦𝑖,≤𝑡 | 𝑧𝑖, �⃗�𝑖)𝑝(𝑧𝑖 | 𝑦1:𝐶,𝑖,≤𝑡, 𝑥𝑖)

∝
∑︁
𝑧𝑖

𝑝(𝑦𝑖(·) | 𝑧𝑖, 𝑦𝑖,≤𝑡, 𝑥𝑖)⏟  ⏞  
LTM predictive,

Eq. 4.16

𝑝(𝑦𝑖,≤𝑡 | 𝑧𝑖, 𝑥𝑖)⏟  ⏞  
LTM likelihood,

Eq. 2.13

∑︁
𝑧1:𝐶,𝑖

𝑝(𝑧𝑖, 𝑧1:𝐶,𝑖 | 𝑥𝑖)⏟  ⏞  
Coupling Model,

Section 5.2.2,
Eq. 5.9

𝐶∏︁
𝑐=1

𝑝(𝑦𝑐𝑖,≤𝑡 | 𝑧𝑐𝑖, 𝑥𝑖).⏟  ⏞  
LTM likelihood,

Eq. 2.13 and 2.16

(5.2)

We will learn this parameterization of 𝒟(𝑖, 𝑡) in two stages. The model for the target and

each of the auxiliary markers are learned independently during the first stage; using these, the

LTM predictive and likelihood terms are computed in Eq. 5.2. We treat the target and auxiliary

markers as instances of the Latent Trajectory Model (LTM); another latent variable model can be

used if better suited to the domain. The coupling model is learned in the second stage, and is

described in Section 5.2.2. We refer to the model created by combining these components as the

Coupled Latent Trajectory Model (C-LTM), which we describe in Section 5.2.3. An overview of

the procedure used to fit the C-LTM is shown in Figure 5.2.

5.2.1 Background: Conditional Random Fields

Conditional random fields (CRFs) provide a framework for modeling and learning the joint distri-

bution of a collection of random variables conditioned on some set of observations (see e.g. Murphy

[2012]). The parameterization is identical to that of Markov random fields (MRF), but the factors

that define the distribution can be functions of the observations (this allows the distribution to

vary depending on the values of the observations). For some output 𝑦, input 𝑥 and parameters 𝜃,

the conditional probability is defined to be:

𝑝(𝑦 | 𝑥, 𝜃) = 1
𝑍(𝑥, 𝜃)

∏︁
𝑐

𝜓𝑐(𝑦𝑐 | 𝑥, 𝜃), 𝑍(𝑥, 𝜃) ≜
∑︁
𝑦′

∏︁
𝑐

𝜓𝑐(𝑦′
𝑐 | 𝑥, 𝜃), (5.3)
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where 𝜓𝑐(𝑦𝑐 | 𝑥, 𝜃) is a non-negative factor that can be interpreted as scoring the configuration of

the subset of variables 𝑦𝑐 given the observations 𝑥 and parameters 𝜃. The term 𝑍(𝑥, 𝜃) is called

the partition function and ensures that the distribution is normalized. When we can write

log𝜓𝑐(𝑦𝑐 | 𝑥, 𝜃) = 𝜃⊤
𝑐 𝑓𝑐(𝑦𝑐, 𝑥) ⇐⇒ 𝜓𝑐(𝑦𝑐 | 𝑥, 𝜃) = exp

{︁
𝜃⊤

𝑐 𝑓𝑐(𝑦𝑐, 𝑥)
}︁
, (5.4)

where 𝑓𝑐 extracts some vector of features from the observations 𝑥 and the target 𝑦𝑐, then we say that

the CRF is a log-linear model. Log-linear models have a number of desirable properties, the most

relevant to this work being the ease with which we can differentiate the log-likelihood with respect

to model parameters. To compute the derivative with respect to 𝜃𝑐 (the parameters corresponding

to the 𝑐th factor) we have:

𝜕 log 𝑝(𝑦 | 𝑥, 𝜃)
𝜕𝜃𝑐

= 𝑓𝑐(𝑦𝑐, 𝑥)− 𝜕 log𝑍(𝑥, 𝜃)
𝜕𝜃𝑐

. (5.5)

To compute the partial derivative in the second term on the RHS, first note that

𝜕𝑍(𝑥, 𝜃)
𝜕𝜃𝑐

=
∑︁
𝑦′

⎛⎝∏︁
�̸�=𝑐

𝜓𝑑(𝑦′
𝑑 | 𝑥, 𝜃𝑑

⎞⎠ 𝜕𝜓𝑐(𝑦′
𝑐 | 𝑥, 𝜃𝑐)
𝜕𝜃𝑐

(5.6)

=
∑︁
𝑦′

⎛⎝∏︁
�̸�=𝑐

𝜓𝑑(𝑦′
𝑑 | 𝑥, 𝜃𝑑

⎞⎠𝜓𝑐(𝑦′
𝑐 | 𝑥, 𝜃𝑑)𝑓𝑐(𝑦′

𝑐, 𝑥). (5.7)

This implies that the partial derivative of log𝑍(𝑥, 𝜃) is simply:

𝜕 log𝑍(𝑥, 𝜃)
𝜕𝜃𝑐

= 1
𝑍(𝑥, 𝜃)

𝜕𝑍(𝑥, 𝜃)
𝜕𝜃𝑐

= E𝑦 [𝑓𝑐(𝑦𝑐, 𝑥) | 𝑥] (5.8)

This means that the gradient of the log-likelihood with respect to a set of parameters 𝜃𝑐 is the

difference between the observed features 𝑓𝑐(𝑦, 𝑥) and their expectation under the current set of

parameters 𝜃. To learn the weights, we can apply gradient-based algorithms to optimize the likeli-

hood of a set of observed training input-output pairs. In addition, a regularizer is often added to

the objective to discourage complexity or induce sparsity. We will use these ideas in the derivation

of our learning algorithm. See Ch. 19 in Murphy [2012] for further details.
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5.2.2 Coupling Model

The Coupled Latent Trajectory Model (C-LTM) seeks to learn and capture correlations across

trajectories of different marker types. In scleroderma, for example, an individual with worse lung

trajectories (e.g. the rapidly declining lung trajectory subtype) is more likely to have a severe

skin disease trajectory. In the C-LTM these types of dependencies are captured by the term

𝑝(𝑧𝑖, 𝑧1:𝐶,𝑖 | 𝑥𝑖) shown in Eq. 5.2. We parameterize this distribution using a conditional random

field with singleton and pairwise factors defined over 𝑧𝑖 and 𝑧1:𝐶,𝑖. Singleton factors can depend on

the baseline covariates 𝑥𝑖. Pairwise factors are defined only between the clinical marker random

variables 𝑧𝑖 and each of the auxiliary marker latent variables 𝑧𝑐𝑖. Both are parameterized linearly.

The coupling model therefore has the following form:

log 𝑝(𝑧𝑖, 𝑧1:𝐶,𝑖 | 𝑥𝑖) ∝ 𝜑(𝑧𝑖, 𝑥𝑖) +
𝐶∑︁

𝑐=1
𝜑(𝑧𝑐𝑖, 𝑥𝑖) + 𝜓(𝑧𝑖, 𝑧𝑐𝑖)

= 𝜃⊤𝑓(𝑧𝑖, 𝑥𝑖) +
𝐶∑︁

𝑐=1
𝜃⊤

𝑐 𝑓𝑐(𝑧𝑐𝑖, 𝑥𝑖) + 𝜂⊤
𝑐 𝑔𝑐(𝑧𝑖, 𝑧𝑐𝑖). (5.9)

5.2.3 Predicting Trajectories using the C-LTM

To predict trajectories (i.e. compute Eq. 5.1), we combine the LTM likelihood (Eq. 2.13), the

LTM predictive (Eq. 4.16), and the coupling model (Eq. 5.9). Let ℓ𝑖,≤𝑡(𝑧𝑖) stand as shorthand for

log 𝑝(𝑦𝑖,≤𝑡 | 𝑧𝑖, 𝑥𝑖) and ℓ𝑐𝑖,≤𝑡(𝑧𝑐,𝑖) stand as shorthand for log 𝑝(𝑦𝑐𝑖,≤𝑡 | 𝑧𝑐𝑖, 𝑥𝑖), then we see that

𝒟(𝑖, 𝑡) ∝
∑︁
𝑧𝑖

𝑝(𝑦𝑖(·) | 𝑧𝑖, 𝑦𝑖,≤𝑡, 𝑥𝑖)
∑︁

𝑧1:𝐶,𝑖

𝑢(𝑧𝑖, 𝑧1:𝐶,𝑖 | ℋ(𝑖, 𝑡)), (5.10)

where we have defined ℋ(𝑖, 𝑡) to be the set of information contained in the clinical history of

individual 𝑖 at time 𝑡: {𝑦𝑖,≤𝑡, 𝑦1:𝐶,𝑖,≤𝑡, 𝑥𝑖}, and used 𝑢(𝑧𝑖, 𝑧1:𝐶,𝑖 | ℋ(𝑖, 𝑡)) to denote the following

unnormalized weight assigned to all values of the latent variables given the history:

𝑢(𝑧𝑖, 𝑧1:𝐶,𝑖 | ℋ(𝑖, 𝑡)) ≜

exp
{︃
ℓ𝑖,≤𝑡(𝑧𝑖) + 𝜃⊤𝑓(𝑧𝑖, 𝑥𝑖) +

𝐶∑︁
𝑐=1

ℓ𝑐𝑖,≤𝑡(𝑧𝑐𝑖) + 𝜃⊤
𝑐 𝑓𝑐(𝑧𝑐𝑖, 𝑥𝑖) + 𝜂⊤

𝑐 𝑔𝑐(𝑧𝑖, 𝑧𝑐𝑖)
}︃
, (5.11)
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Figure 5.3: The factor graph of the coupled latent trajectory model. Empty nodes denote latent
random variables, and shaded nodes denote observed variables. The latent trajectory model (LTM,
described in Chapter 4) acts as a data-driven factor linking observed target and auxiliary marker
histories into predictions.

To make 𝒟(𝑖, 𝑡) a proper distribution, we normalize 𝑢(𝑧𝑖, 𝑧1:𝐶,𝑖 | ℋ(𝑖, 𝑡)) to obtain

𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)) =
∑︀

𝑧1:𝐶 𝑢(𝑧𝑖, 𝑧1:𝐶 | ℋ(𝑖, 𝑡))∑︀
𝑧

∑︀
𝑧1:𝐶 𝑢(𝑧, 𝑧1:𝐶 | ℋ(𝑖, 𝑡)) ≜

𝑍 ′
𝑖,𝑡(𝑧𝑖)
𝑍𝑖,𝑡

. (5.12)

then we can write 𝒟(𝑖, 𝑡) (Eq. 5.1) as

𝒟(𝑖, 𝑡) =
∑︁
𝑧𝑖

𝑝(𝑦𝑖(·) | 𝑧𝑖, 𝑦𝑖,≤𝑡, 𝑥𝑖) 𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)). (5.13)

Intuitively, we see that the predictive distribution under C-LTM is simply a weighted com-

bination of the subtype-specific predictive distributions under LTM (Eq. 4.16). Moreover, the

distribution 𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)) is the marginal distribution over 𝑧𝑖 in a conditional random field with

structure similar to the coupling model (Eq. 5.9) but augmented with additional singleton factors

defined by the LTM likelihood functions given the marker trajectory histories. The LTM likelihood

factors in Eq. 5.11 are added into the model unchanged, but additional parameters {𝛾, 𝛾1:𝐶} can be

included to reweight those terms (a similar idea is used in Raina et al. [2003]).1 The factor graph
1When using a penalty, we can center the weights at 1 so that the default behavior is to leave the likelihood factors
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for this conditional random field is shown in Figure 5.3. Note that the weight 𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)) can

be efficiently computed in time linear in the number of auxiliary markers using the junction tree

algorithm. This is in contrast to a typical joint model over 𝑧𝑖, 𝑧1:𝐶,𝑖, which would scale exponentially

in the number of auxiliary markers.

The C-LTM offers a number of advantages for predictive modeling of disease trajectories in

domains where many other related marker trajectories are available. First, it allows irregularly and

sparsely sampled trajectories to be neatly summarized using modularized, single-marker generative

models. These can capture important latent factors and account for marker-specific measurement

models and noise processes. Second, we can discriminatively use auxiliary marker trajectory his-

tories when modeling Eq. 5.1 instead of specifying a joint generative model, which sidesteps the

challenges associated with correctly specifying dependencies between many different marker types.

Finally, the model can be used in continuous time and dynamically updates predictions as new

markers arrive.

5.2.4 Learning the C-LTM

We have described two components of our approach: the Latent Trajectory Model (LTM) and the

coupling model. When these components are combined as shown in Section 5.2.3, then we obtain

the C-LTM. The C-LTM has two conceptually distinct sets of parameters. The first set are those

belonging to the individually trained LTMs for each marker type. To learn these, we can use the

EM algorithm described in Schulam and Saria [2015]. To learn the parameters for the C-LTM,

we keep the single-marker model parameters fixed (e.g. those learned for the LTM), and use a

standard gradient-based CRF learning algorithm (as described in Section 5.2.1) to optimize the

penalized log-likelihood of example trajectory predictions.

To learn the parameters of the latent-factor CRF regression, we directly maximize the con-

ditional probability of future target markers given previously observed target markers, previously

observed auxiliary markers, and static baseline covariates on a collection of examples extracted from

retrospective data. Suppose we are given records containing the target marker, auxiliary markers,
unchanged as in Eq. 5.11
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and baseline covariates for 𝑀 individuals. We choose a collection of times 𝒯 that will be used to

create training examples of history-future pairs. For example, we may choose 𝒯 = {1, 2} because

early management decisions are made using prognoses at years 1 and 2. We emphasize, however,

that the model is not restricted to making predictions at years 1 and 2; it can make predictions

at arbitrary times. The times 𝒯 are simply used to create training instances. We also note that

it is possible to train specialized models for different time periods. For example, we may train one

model for making predictions in the first 2 years and another for beyond 4 years. Given the 𝑀

records and times 𝒯 , we define the objective:

𝐽(𝛾, 𝛾1:𝐶 , 𝜃, 𝜃1:𝐶 , 𝜂1:𝐶) =
𝑀∑︁

𝑖=1

∑︁
𝑡∈𝒯

log 𝑝(𝑦𝑖,>𝑡 | ℋ(𝑖, 𝑡)) (5.14)

=
𝑀∑︁

𝑖=1

∑︁
𝑡∈𝒯

log

⎛⎜⎜⎝∑︁
𝑧𝑖

𝑝(𝑦𝑖,>𝑡 | 𝑧𝑖, 𝑥𝑖)⏟  ⏞  
(A)

𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡))⏟  ⏞  
(B)

⎞⎟⎟⎠ , (5.15)

where (A) is the subtype-specific multivariate normal likelihood in Eq. 2.16 and (B) is the condi-

tional distribution over 𝑧𝑖 shown in Eq. 5.12. To learn the parameters, we maximize this objective

with respect to 𝜃, 𝜃1:𝐶 , and 𝜂1:𝐶 using gradient-based methods (e.g. L-BFGS). In our experiments,

we optimize a regularized version of the objective, but for simplicity this section discusses the

computations required to compute the gradient of Eq. 5.14 only. Consider a single summand of

Eq. 5.14

log 𝑝(�⃗�𝑖,>𝑡 | ℋ(𝑖, 𝑡)) = log
(︃∑︁

𝑧𝑖

𝑝(�⃗�𝑖,>𝑡 | 𝑧𝑖, 𝑥𝑖)𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡))
)︃
. (5.16)

To reiterate, the parameters of the density 𝑝(�⃗�𝑖,>𝑡 | 𝑧𝑖, 𝑥𝑖) are assumed to have been learned in a

separate step (e.g. using the EM algorithm from Section 2.5.1), and so we are only concerned with

estimating the parameters of the singleton and pairwise factors in the CRF: 𝜃, 𝜃1:𝐶 , 𝜂1:𝐶 .
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Gradient of the Objective

We derive the gradient for a single summand of the objective (Eq. 5.14), which are combined

additively to form the full gradient used at each iteration. Although our model is log-linear over

all latent variables 𝑧𝑖 and 𝑧1:𝐶,𝑖, Eq. 5.16 is not linear in the parameters because we marginalize

over the unobserved auxiliary subtypes 𝑧1:𝐶 . We therefore have that the partial derivative of Eq.

5.16 with respect to any parameter 𝜃𝑘 is:

𝜕 log 𝑝(𝑦𝑖,>𝑡 | ℋ(𝑖, 𝑡))
𝜕𝜃𝑘

=

(︁∑︀
𝑧𝑖
𝑝(𝑦𝑖,>𝑡 | 𝑧𝑖, 𝑥𝑖)𝜕𝑝(𝑧𝑖|ℋ(𝑖,𝑡))

𝜕𝜃𝑘

)︁
𝑝(𝑦𝑖,>𝑡 | ℋ(𝑖, 𝑡)) . (5.17)

To complete the expression for the partial derivative, we need to compute the partial derivative of

the probability of a given target marker latent variable 𝑧𝑖 with respect to the parameter 𝜃𝑘. We

have that:

𝜕𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡))
𝜕𝜃𝑘

= 𝜕

𝜕𝜃𝑘

𝑍 ′
𝑖,𝑡(𝑧𝑖)
𝑍𝑖,𝑡

= 1
𝑍𝑖,𝑡

𝜕𝑍 ′
𝑖,𝑡(𝑧𝑖)
𝜕𝜃𝑘

+ 𝑍 ′
𝑖,𝑡(𝑧𝑖)

𝜕𝑍−1
𝑖,𝑡

𝜕𝜃𝑘
. (5.18)

We can now leverage identities from the theory of log-linear models to continue with the deriva-

tion. In particular, recall that log-linear models are in the exponential family of distributions. As

a consequence, we can consider the parameters 𝜃, 𝜃1:𝐶 , 𝜂1:𝐶 as the natural parameters of the distri-

bution. The corresponding sufficient statistics are therefore the factors in the log-linear model:

𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖) = [𝑓⊤(𝑧𝑖, 𝑥𝑖), 𝑓⊤
1 (𝑧1,𝑖, 𝑥𝑖), . . . , 𝑓⊤

𝐶 (𝑧𝐶,𝑖, 𝑥𝑖), 𝑔⊤
1 (𝑧𝑖, 𝑧1,𝑖), . . . , 𝑔⊤

𝐶 (𝑧𝑖, 𝑧𝐶,𝑖)]⊤.

An important property of exponential families is that the gradient of the log-normalizing-constant

with respect to the natural parameters is simply the expected value of the sufficient statistics

computed using the current value of the natural parameters. Note that both 𝑍 ′
𝑖,𝑡(𝑧𝑖) and 𝑍𝑖,𝑡 are

normalizing constants of exponential family distributions. In the case of 𝑍𝑖,𝑡 this is trivial to see

because it is the normalizing constant of our log-linear model. In the case of 𝑍 ′
𝑖,𝑡(𝑧𝑖) we see that

it is the normalizing constant of a log-linear model over the auxiliary marker latent variables 𝑧1:𝐶
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given both 𝑧𝑖 and the clinical history ℋ(𝑖, 𝑡). We therefore have:

𝜕 log𝑍 ′
𝑖,𝑡(𝑧𝑖)

𝜕𝜃𝑘
= E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | 𝑧𝑖,ℋ(𝑖, 𝑡)]

=⇒
𝜕𝑍 ′

𝑖,𝑡(𝑧𝑖)
𝜕𝜃𝑘

= 𝑍 ′
𝑖,𝑡(𝑧𝑖)E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | 𝑧𝑖,ℋ(𝑖, 𝑡)] , (5.19)

𝜕 log𝑍𝑖,𝑡

𝜕𝜃𝑘
= E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | ℋ(𝑖, 𝑡)]

=⇒
𝜕𝑍−1

𝑖,𝑡

𝜕𝜃𝑘
= − 1

𝑍𝑖,𝑡
E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | ℋ(𝑖, 𝑡)] , (5.20)

where we have used 𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 to denote the feature (or sufficient statistic) corresponding to

the parameter 𝜃𝑘. By plugging these partial derivatives back into Eq. 5.18, we have

𝜕

𝜕𝜃𝑘

𝑍 ′
𝑖,𝑡(𝑧𝑖)
𝑍𝑖,𝑡

=
𝑍 ′

𝑖,𝑡(𝑧𝑖)
𝑍𝑖,𝑡

(E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | 𝑧𝑖,ℋ(𝑖, 𝑡)]− E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | ℋ(𝑖, 𝑡)]) (5.21)

= 𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)) (EΘ [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | 𝑧𝑖,ℋ(𝑖, 𝑡)]− EΘ [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | ℋ(𝑖, 𝑡)]) .

(5.22)

In words, we see that the partial derivative with respect to a parameter 𝜃𝑘 is the expected value

of its corresponding feature given that we have observed the target marker latent variable 𝑧 and

clinical history ℋ(𝑖, 𝑡) minus the expected value of the feature given only the clinical history ℋ(𝑖, 𝑡).

The difference is then weighted by the probability of observing the target marker latent variable

given the clinical history. By plugging this expression back into Eq. 5.17, we arrive at the final

expression for the partial derivative of a single summand with respect to 𝜃𝑘:

𝜕 log 𝑝(𝑦𝑖,>𝑡 | ℋ(𝑖, 𝑡))
𝜕𝜃𝑘

(5.23)

=
∑︁
𝑧𝑖

𝑝(𝑦𝑖,>𝑡 | 𝑧𝑖)𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡))
𝑝(𝑦𝑖,>𝑡 | ℋ(𝑖, 𝑡)) (E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | 𝑧𝑖,ℋ(𝑖, 𝑡)]− E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | ℋ(𝑖, 𝑡)])

=
∑︁
𝑧𝑖

𝑝(𝑧𝑖 | 𝑦𝑖,>𝑡,ℋ(𝑖, 𝑡)) (E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | 𝑧𝑖,ℋ(𝑖, 𝑡)]− E [𝑇 (𝑧𝑖, 𝑧1:𝐶,𝑖, 𝑥𝑖)𝑘 | ℋ(𝑖, 𝑡)]) . (5.24)

The partial derivative has a nice interpretation. Each summand has similar structure to the partial

derivative of 𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)) (Eq. 5.21), but the weight conditioned on only the clinical history

has been replaced with a weight conditioned on both the clinical history and the future target
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marker trajectory. The partial derivatives of the summands of the objective in Eq. 5.14 are added

together to obtain the partial derivative with respect to the objective. These partial derivatives are

combined to form a gradient, which is easily plugged into existing first-order optimization routines.

Optionally, the objective can be augmented with a regularizer to restrict the complexity of the

model or to encourage a sparse solution to the learning problem.

Scalability

The EM algorithm used to learn the parameters of the LTM poses no serious challenges to scalability.

The primary computational burden lies in the E-step wherein sufficient statistics from all individuals

are computed and collected. This is linear in the number of patient records being analyzed, but

since the inference required to compute the sufficient statistics can be performed independently

for each individual given the current parameter estimates, the E-step can be easily parallelized to

offset slow learning due to large numbers of patient records. For any given individual, the E-step

is dominated by the inversion of the 𝑁𝑖 × 𝑁𝑖 covariance matrix. We do not expect this to be

problematic, however, because clinical markers in chronic diseases are observed at a maximum rate

of 12 times per year. Moreover, such diseases occur over periods on the order of tens of years.

Therefore, the number of measurements will be at most on the order of 100-200.

Learning the parameters of the CRF requires a sweep through all 𝑀 |𝒯 | training instances in

order to compute and aggregate the gradient at each iteration. The primary computational burden

is computing the expected values of the features (Eq. 5.21), however, the tree-structured graphical

model shown in Figure 5.3 allows the junction tree algorithm to run in time linear in the number

of auxiliary markers. On a standard laptop, we are able to train the model on 772 patients (5,458

PFVC measurements) in 10-20 minutes.

Online inference for predicting a given individual’s future trajectory is also computationally

straightforward. The key quantities are (1) the weights 𝑝(𝑧𝑖 | ℋ(𝑖, 𝑡)) in Eq. 5.13, which are easily

computed using the junction tree algorithm in time linear in the number of auxiliary markers, and

(2) the subtype-specific predictive densities 𝑝(𝑦𝑖(·) | 𝑧𝑖, 𝑦𝑖,≤𝑡, 𝑥𝑖), which have the same complexity
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as the E-step in the LTM learning algorithm.

5.3 Experiments

We demonstrate our approach by building a tool for predicting lung disease trajectories for indi-

viduals with scleroderma. Lung disease is currently the leading cause of death among scleroderma

patients, and is notoriously difficult to treat due to the lack of accurate predictors of decline and

tremendous variability across individual trajectories [Allanore et al., 2015]. Clinicians use percent

of predicted forced vital capacity (PFVC) to track lung severity, which is expected to drop as the

disease progresses. In addition, they collect demographic information and other clinical marker

values that measure the impact of disease on the different organ systems involved in scleroderma.

5.3.1 Data Description

We train and validate our model using data from the Johns Hopkins Scleroderma Center patient

registry, one of largest collections of clinical scleroderma data in the world. Demographic infor-

mation is collected during the patient’s first visit to the clinic. PFVC and other clinical markers

are collected during routine visits thereafter. To select individuals from the registry, we used the

following criteria. First, we include individuals who were seen at the clinic within two years of their

earliest scleroderma-related symptom2 (1, 186 individuals). Second, we exclude all individuals with

fewer than two PFVC measurements after first being seen by the clinic (398 individuals). Finally,

we exclude individuals who received a lung transplant (16 individuals) because their natural tra-

jectory is altered by the intervention. Transplants are rare so removing patients with transplants

should not introduce significant bias. We note that other interventions are common in scleroderma,

but none have been proven to significantly alter the long-term course of the disease. For example,

steroids are commonly administered, but there have been no randomized controlled trials confirm-

ing its effects on patients with scleroderma-related lung disease—see, for example, Ch. 35 in Varga

et al. [2012]. Immunosuppressants are also commonly used to treat scleroderma-related lung dis-
2Date of first symptom is established during the first encounter by both the patient and clinician.
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ease, but the proven effects are modest and have only been demonstrated over the course of one

year [Tashkin et al., 2006]. We assume that these types of transient interventions are well-modeled

by the individual-specific short-term component, and so we do not explicitly model the treatment

effects of steroids or immunosuppressants in our data. Others have developed methods for estimat-

ing treatment effects from observational time series (see Athey et al. and references within; more

recently, see Xu et al. [2016] for an application using functional data). Treatment effects can be

incorporated within the trajectory likelihood in diseases where treatments are suspected to alter

long term trajectory. We leave this more general case as a direction for future work. Our final

data set contains 772 individuals and a total of 5, 458 PFVC measurements tracking individuals

over a period of 20 years. The first, second, and third quartiles of the total number of PFVC

measurements for an individual are 3, 5, and 9 respectively. The maximum number of PFVC mea-

surements for one individual is 63. The first, second, and third quartiles of the measurement times

are 1 year, 2.8 years, and 5.9 years. The first, second, and third quartiles of elapsed time between

measurements are 0.4 years, 0.7 years, and 1.10 years. The minimum and maximum elapsed time

is 0.002 years and 16.4 years respectively.

The baseline demographic information includes gender and African American race, both of

which have been shown to be associated with disease severity in scleroderma [Allanore et al., 2015].

Antibody data are also collected at baseline, but since these are only available for a small subset

of individuals, we do not include that data here. For time-dependent predictors, we include 5

auxiliary clinical markers. Three of the auxiliary markers are similar to PFVC in that they are

continuous-valued test results used to measure the health of organ systems. We include: percent of

predicted forced expiratory volume in one second (PFEV1), which measures the force with which

air is expelled from the lungs; percent of predicted diffusing capacity (PDLCO), which measures the

efficiency of oxygen diffusion from the lungs to the bloodstream; and total skin score (TSS), which

is a cumulative measure of the thickness of the skin at various points on the body. In addition, we

include 2 severity scores—clinical Likert-scaled judgements of organ damage severity: Raynaud’s

phenomenon (RP) severity score, which measures the severity of damage to the extremities by issues
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related to the vasculature, and GI severity score that measures the severity of damage to the GI

tract. For the interested reader, a more detailed discussion of these markers and their relationship

to the disease can be found in Varga et al. [2012].

5.3.2 Experimental Setup

For the 4 continuous-valued clinical markers (PFVC, PFEV1, PDLCO, TSS) we use the LTM and

for the 2 severity scores (GI and RP) we use a simpler model that we will describe later. For the

population model, we use constant functions (i.e. the basis expansion Φ𝑝(𝑡) contains an intercept

term whose coefficient is determined by baseline covariates). For the subpopulation B-splines, we

set boundary knots at 0 and 25 years (the maximum observation time in our data set is 23 years),

use two interior knots that divide the time period from 0-25 years into three equally spaced chunks,

and use quadratics as the piecewise components. For the individual-specific long-term basis Φℓ, we

use the same basis as the population model (constant functions).

We divide our data into 10 folds and use log-likelihood on the first fold for tuning hyper-

parameters. For PFVC, we select 𝐺 = 9 subtypes using BIC. For the kernel hyperparameters

Θ1 = {Σ𝑏, 𝛼, ℓ, 𝜎
2} we set Σ𝑏 ∈ R to be 16.0, which corresponds to the variance of individual-

specific intercepts. We set 𝛼 = 6, ℓ = 2, and 𝜎2 = 1 using a grid search over values chosen using

domain knowledge. Qualitatively, these make sense; we expect transient deviations to last around

2 years and to change PFVC by around ±6 units. Finally, we penalize the expected log-likelihood

with respect to 𝛽1:𝐺 as in Eq. 2.2 and set the weight 𝜌 = 0.01, which was chosen based on the

clinical interpretability of the learned subtype trajectories. The remaining 9 folds were used for

our cross-validation experiments. The parameters of each trajectory model are estimated indepen-

dently for each fold (e.g. the B-spline coefficients of the subtype trajectories). For the severity

scores, which are Likert-scaled and not continuous, we use a simple naive Bayes generative model

wherein the latent “class” is an indicator of whether the individual ever reaches a high severity

level (a cut-off in the severity scale determined by clinical collaborators). Severity score observa-

tions are treated as iid draws from a class-specific multinomial distribution (i.e. the likelihood for
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these auxiliary markers is a multinomial distribution over severity scores). Finally, we estimate the

parameters of the C-LTM by maximizing the objective in Eq. 5.14 augmented with an 𝐿1 regular-

izer. We optimize the objective using the Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)

algorithm [Andrew and Gao, 2007]. To generate training examples for the C-LTM, we use times

𝒯 = {1, 2, 4} (the first three quintiles of observation times in our data) to fit three different models.

We choose time points earlier in the disease course because this is when it is most valuable to

leverage all available information. In our cross-validated experimental results below, we estimate

the penalty of the 𝐿1 regularization term in each fold by splitting a portion of the training data

into a development set. We sweep the penalty from 1.0× 10−7 to 1.0× 10−1 and choose based on

development set performance.

5.3.3 Baselines

As a first baseline, we fit a regression model using static predictors only (features in �⃗�𝑖). This is to

compare against typical approaches in clinical prediction which rely only on observed features to

predict disease progression (e.g. Khanna et al. 2011). The regression function is as follows, where

Φ(𝑡) is a B-spline basis:

𝑦 | �⃗�𝑖𝑧 = Φ(𝑡)⊤

⎛⎝𝛽0 +
𝑑∑︁

𝑗=1
𝑥𝑖𝑗𝛽𝑗 +

𝑑∑︁
𝑗=1

∑︁
𝑘 ̸=𝑗

𝑥𝑖𝑗𝑥𝑖𝑘𝛽𝑖𝑗

⎞⎠ . (5.25)

The following baselines reflect state-of-the-art approaches for dynamical prediction. The focus for

each of these models, as discussed in the related work section, is on dynamical prediction of single

marker trajectories using the marker history and static measurements collected during the first visit.

The second baseline, like Rizopoulos [2011] and Shi et al. [2012], defines a single mean function

parameterized in the same way as the first baseline and models individual-specific variations using

a GP with the same kernel as in Chapter 4 (using hyper-parameters). The third baseline is a

mixture of B-splines, which models subpopulations that can express different trajectory shapes (as

in Proust-Lima et al. 2014). Finally, we use the LTM (no coupling to auxiliary markers) as a

baseline. All B-spline bases used in these baseline models are parameterized in the same way as
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the C-LTM (described above).

5.3.4 Evaluation

Prediction accuracy for all models is measured using the absolute error between the predicted and

a smoothed version of the individual’s observed trajectory. We make predictions after one, two,

and four years of follow-up, which are summarized using averages computed in the second year of

follow-up (𝑡 ∈ (1, 2]), in the third and fourth year of follow-up (𝑡 ∈ (2, 4]), fifth to eighth year of

follow-up (𝑡 ∈ (4, 8]), and beyond the eighth year of follow-up (𝑡 ∈ (8, 25])3. Mean absolute errors

(MAE) and standard errors are estimated using 9-fold CV4 at the level of individuals (i.e. all of

an individual’s data is held-out). Significance tests are computed against baselines using a paired

t-test with point-wise predictions aggregated across folds.

5.3.5 Results

In this section, we present four sets of results. The first two are qualitative, and demonstrate the

advantages of the C-LTM over the baseline models using examples. In the first qualitative analysis,

we compare predictions made by C-LTM to those made by the B-spline mixture and the B-spline

+ GP. In the second qualitative analysis, we compare the C-LTM inferences with those from the

LTM, which is a state-of-the-art single-marker model. The second two results are quantitative.

The first compares predictive accuracies between the baseline models and the C-LTM. The second

investigates clinical utility by using each model to predict a severity score that we use to detect

individuals with aggressive lung disease.

Visual Comparison to Baselines

In Figures 5.4a, 5.4b, and 5.4c, we show the dynamic predictions made using the C-LTM, the

B-spline mixture, and the B-spline + GP baselines on a sample patient.5 For each model, we show

95% posterior intervals for the future trajectory. For the C-LTM and B-spline mixture, the most
3After the eighth year, data becomes too sparse to further divide this time span.
4Recall that the first of 10 folds is used for hyperparameter estimates.
5This patient was selected as an exemplar for the types of errors commonly made by the baseline models.
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Figure 5.4: Examples of predictions made using 1, 2, and 4 years of data (moving across columns
from left to right). Plot (a) shows dynamic predictions using C-LTM. Red markers are unobserved.
Blue shows the trajectory predicted using the most likely subtype, and green shows the second
most likely. Plot (b) shows dynamic predictions for the B-spline mixture baseline. Plot (c) shows
the same for the B-spline + GP baseline.

likely subtype is shown in blue and the second most likely is in green. The B-spline mixture (Figure

5.4b) cannot explain individual-specific sources of variation (e.g. short-term deviations from the

mixture mean) and so over-reacts to the slight rise in PFVC seen in the last two observed (black)

measurements in the second panel (year 2). The B-spline + GP (Figure 5.4c) cannot capture long-

term differences in trajectory means (e.g. due to subtypes) and so pulls back to the population

mean over time even after four years of data suggest a declining trajectory. On the other hand, at

year 1 the C-LTM (Figure 5.4a) maintains the hypothesis that the individual may decline or return

to stability (correctly putting most weight on the former). After 2 years of data, the temporary

recovery seems to have caused confidence in the declining trajectory to fall (going from 66% to
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39%), but the top-weighted hypothesis is still correct. After 4 years of data, the model again

becomes confident in the declining trajectory. Clinically, this robustness to short-term changes is

important. After having seen the recovery between years 1 and 2, a clinician may become less

immediately concerned with the individual’s future lung disease, possibly delaying immunotherapy

until a rapid decline becomes more evident. Note that the B-spline mixture, on the other hand,

over-reacts to the recovery and predicts that the individual will continue to recover.

Analysis of Example Inferences

In Figure 5.5a-d, we show the C-LTM’s target and auxiliary marker inferences for four different

patients. For the target marker (PFVC) and auxiliary markers (TSS, PDLCO, and PFEV1),

we show the most likely (blue) and second most likely (green) subtype and their corresponding

trajectories. For the RP and GI severity score markers, we show the most likely severity class (high

versus low). The dashed lines indicate the threshold at which high and low are determined based

on judgements by our clinical collaborators. For PFVC, PFEV1, and PDLCO lower values indicate

more severe progression. For TSS, higher values indicate severe progression. In Figures 5.5e-h, we

show the predictions made by LTM to visually compare against predictions made using the baseline

markers and PFVC history only (i.e. that do not leverage information from auxiliary markers).

In Figure 5.5a, we see a 55 year-old woman who presents with mildly impaired lung function

(approximately 65 PFVC), but seems to recover over the course of the first year to reach a PFVC

above 75 (considered by clinicians to be relatively healthy). Using this information alone, one may

suspect that she will not have future lung issues. Indeed, this is what LTM predicts as shown in

Figure 5.5e. By examining her auxiliary markers, however, we see that the picture is less clear. In

particular, PFEV1 (a clinical marker closely related to PFVC) both decreases and increases over

that period. C-LTM infers a mildly declining trajectory for PFEV1. In addition, PDLCO is also

noisy and overall low, which suggests that the blood is not efficiently absorbing oxygen. This can

happen for a number of reasons, but active lung disease is one of them. Finally, we see that her

initial skin score is quite high and C-LTM projects it to stay high for the next few years, which is
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Figure 5.5: The predicted PFVC trajectory and the auxiliary markers are shown for two different
patients. Red markers are unobserved. For the auxiliary markers TSS, PFEV1, and PDLCO
we show the most likely (blue) and second most likely (green) subtype and their corresponding
trajectories. For the RP and GI severity scores, we show the most likely severity class (high versus
low). The dashed lines indicate the threshold at which high and low are determined clinically.
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associated with active lung disease. We see that C-LTM has successfully incorporated inferences

about the future trends of the auxiliary markers and correctly predicts that this woman’s PFVC

will decline after this initial improvement.

In Figure 5.5b, we see a 75 year-old white woman who presents with healthy lung function

(approximately 85 PFVC), but is consistently declining over the course of the first year by nearly

15 PFVC. A clinical rule of thumb is that a drop in 10 PFVC over the course of a year warrants close

monitoring for active lung disease. We see that LTM extrapolates this initial trend and predicts

that this individual will continue to decline rapidly (Figure 5.5f). Just as in the previous example,

however, the auxiliary markers paint a more complete picture of this individual. In the first few

PFEV1 observations, we see that this decline is not quite as pronounced and the progression is

predicted to be more mild. In PDLCO we see that oxygen is absorbed into the blood at healthy

levels and also predicted to remain stable (although incorrectly in this case). Finally, C-LTM

predicts that the RP and GI severity scores will remain low, which also supports the prediction

that this woman will stabilize. Note that in this example C-LTM overestimates the course of

PDLCO and TSS. Although the model still makes the correct prediction for PFVC in spite of this

mistake, it highlights that the performance of our approach may be further improved with better

auxiliary marker inferences. As research in systems biology yields new insights into modeling

specific measurements more precisely, the modular architecture of C-LTM makes it possible to

improve overall performance by incorporating improved versions of the target or auxiliary marker

models.

In Figure 5.5c, we see a 76 year-old white woman that presents with healthy lung function (just

under 90 PFVC), which also appears to be stable given the subsequent test result taken later that

same year. The LTM predicts that this individual’s most likely course is to remain stable. From

the PFEV1 trajectory, however, we see that there was a large initial loss in PFEV1, which, together

with the unusually high skin score (TSS) suggests that this woman’s disease is active. The activity

in the other organ systems allows the C-LTM to offset the stability seen in the first two PFVC

measurements and correctly predict the consistently declining lung trajectory.
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Predictions using 1 year of data
Model (1, 2] (2, 4] (4, 8] (8, 25]
B-spline with Baseline Feats. 13.17 (0.43) 14.07 (0.61) 14.34 (0.65) 14.12 (1.04)
B-spline + GP 5.57 (0.24) 8.40 (0.19) 10.88 (0.42) 11.74 (0.76)
B-spline Mixture 6.31 (0.22) 7.59 (0.36) 9.82 (0.46) 13.77 (0.55)
LTM 5.70 (0.30) 8.02 (0.41) 11.17 (0.72) 13.93 (0.67)
C-LTM ⋆♣♦♠5.12 (0.20) ⋆♣♦♠6.88 (0.27) ⋆♣♠9.95 (0.51) ⋆13.70 (1.08)

Predictions using 2 years of data
B-spline with Baseline Feats. 14.07 (0.61) 14.34 (0.65) 14.12 (1.04)
B-spline + GP 6.51 (0.19) 9.79 (0.35) 10.95 (0.68)
B-spline Mixture 6.17 (0.29) 8.34 (0.36) 12.19 (0.48)
LTM 5.74 (0.29) 8.08 (0.37) 10.89 (0.62)
C-LTM ⋆♣♦♠5.58 (0.34) ⋆♣7.99 (0.61) ⋆♦11.27 (1.02)

Predictions using 4 years of data
B-spline with Baseline Feats. 14.34 (0.65) 14.12 (1.04)
B-spline + GP 6.60 (0.24) 9.53 (0.56)
B-spline Mixture 6.00 (0.37) 10.11 (0.56)
LTM 4.88 (0.28) 8.65 (0.59)
C-LTM ⋆♣♦5.04 (0.42) ⋆♣♦♠8.07 (0.35)

Table 5.1: Mean absolute error of PFVC predictions for the B-spline with baseline features, the B-
spline + GP, LTM, and C-LTM. Bold numbers indicate best performance across baseline models and
C-LTM. ⋆ indicates statistically significant improvement against the B-spline model with baseline
features only using a paired t-test (𝛼 = 0.05). ♣ indicates statistical significance compared against
the B-spline + GP. ♦ indicates statistical significance compared against the B-spline mixture. ♠
indicates statistical significance compared against LTM.

Finally, in Figure 5.5d, we see a 67 year-old African American man with mildly impaired lung

function early in the disease course (around 75 PFVC) that seems to recover over the next one

or two years to a healthier 85 PFVC. In Figure 5.5h, we see that the LTM predicts that a stable

trajectory thereafter is likely. By considering other organ systems, however, we see that this man’s

blood-oxygen diffusion is severely limited early in the disease course (nearly 25% of the predicted

DLCO). Moreover, we see that the this individual’s Raynaud’s phenomenon severity score is high

early on and correctly predicted to remain that way. The low PDLCO and high RP severity

score point to active vasculature disease, which is hypothesized to cause late deterioration in lung

function. We see that C-LTM correctly uses this evidence to predict an accurate disease trajectory.

Predictive Accuracy

In Table 5.1, we report performance of the C-LTM, LTM, and the three other baseline models.

First, we note that the C-LTM statistically significantly outperforms the B-spline with baseline

features for all predictions. This baseline makes static predictions using baseline information only,

and cannot adapt to an individual as new data becomes available. Moreover, after an initial amount
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Model / Years of Data 1 2 4
B-spline + GP 0.59 0.63 0.74

B-spline mixture 0.58 0.63 0.76
LTM 0.57 0.71 0.84

C-LTM 0.68 0.75 0.87
(a) AUCs for detecting declining individuals.

(b) ROCs comparing B-spline + GP at 1 year, B-spline mixture at 1 year, LTM
at 1 year, and C-LTM at years 1, 2, and 4.

Figure 5.6: Declining individual detection results.

of data has been collected on an individual, C-LTM statistically significantly outperforms all other

models. This is not surprising. When compared to the LTM, we see that C-LTM benefits from

leveraging information from auxiliary markers. As more information is collected, both models are

able to the individual and provide comparable predictions. The B-spline mixture is not able to

personalize beyond capturing long-term trends across subpopulations, so we see that it becomes less

competitive compared to both C-LTM and LTM as more data are collected. Finally, the B-spline

+ GP cannot capture long-term trends specific to subpopulations (as we saw in Section 5.3.5), and

so we see that it does poorly when making predictions.
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Clinical Utility

One may naturally wonder whether the observed improvements in MAE reported above translate

to practical benefits in the clinic. In the examples shown in Figure 5.5, we have walked through

cases where the model makes predictions that would seem unlikely if we were to consider PFVC

alone. This suggests that the model can augment expert clinical judgement and may serve to

protect against incorrect extrapolations. In this section, we further elaborate upon this intuition

by studying clinical utility quantitatively. In particular, we compare how well the B-spline + GP,

B-spline mixture, LTM, and C-LTM are able to detect individuals who will have rapidly declining

lung function. It is notoriously difficult to predict which scleroderma patients will rapidly decline

using only information from early in the disease course. In addition to improving prognoses, more

accurate detection of rapidly declining lung function can help to improve the recruitment for clinical

trials evaluating drugs for scleroderma-related lung disease. If we include many individuals in a

study who are predicted to have active lung disease but do not, the results of the study are blurred

because both arms of the trial may include many individuals without active lung disease.

To test how well these different models can detect individuals that will experience rapidly

declining lung function, we use the predictions of future PFVC measurements to produce a score.

The score is defined to be the difference between the individual’s first PFVC measurement and the

minimum predicted value in the future—this will be higher for individuals on whom a model predicts

deteriorating lung function and lower for those predicted to be stable. To label an individual as

declining, we require that they (1) have at least one observation within the first year of being seen

by the clinic, (2) have 3 years between their first and last measurements, (3) have at least 4 PFVC

measurements, and (4) have an initial PFVC measurement that is 20 PFVC higher than their last

measurement. Requirements (2) and (3) are to ensure that the trajectory can be reliably annotated

as declining or not. For each model, we make predictions at years 1, 2, and 4 and compute the score

described above for each individual. We then compute the AUC for each model at each year. Table

5.6a displays the results of this experiment. We see that C-LTM achieves higher AUC at all years

than the baseline models. Figure 5.6b displays the ROCs for the B-Spline + GP (green), B-Spline
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mixture (cyan), LTM (orange), and the C-LTM (black) at year 1 and also includes the ROCs for

the C-LTM model at years 2 (blue) and 4 (red) to visualize how performance improves as more

data is added. Clinically, an AUC of 0.87 for predicting individuals with lung decline after—on

average—four years of data is high and has not been shown previously.

5.4 Discussion

The goal of personalized (also called precision) medicine is to develop tools that help to tailor

prognoses to the characteristics and unique medical history of the individual. In this paper, we

describe an approach to personalized prognosis that uses an integrative analysis of multiple clinical

marker histories from the individual’s medical records. Our approach combines single-marker latent

variable models (the LTM) with a CRF coupling model to make more accurate predictions about

the future trajectory of a target clinical marker.

The coupled model (C-LTM) has several advantages. First, the marker-specific LTMs account

for marker trajectory shapes using components at the population, subpopulation, individual long-

term, and individual short-term levels, which simultaneously allows for heterogeneity across and

within individuals, and enables statistical strength to be shared across observations at different

“resolutions” of the data. Within an individual marker model, the population and subpopulation

components are learned offline, while estimates of the individual-specific parameters are refined

over the course of the disease as data accrues for that individual. Second, our coupling model

allows us to condition both the target and auxiliary marker histories to make predictions about

the future target marker trajectory. We therefore use the marker-specific latent variable models

to neatly summarize and extract information from the irregularly sampled and sparse data, while

simultaneously sidestepping the issue of jointly modeling both the target and auxiliary markers.

Our conditional formulation is less sensitive to misspecified dependencies between different marker

types and can also be easily scaled to diseases with a large number of auxiliary markers. Finally,

our model aligns with clinical practice; predictions are dynamically updated in continuous time as

new marker observations are measured. We also note that our description of the method and the
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experimental results focus on predicting the trajectory of a single clinical marker, but multiple latent

factor regression models can be easily fit so that many markers can be simultaneously predicted.

Using this extension, we only need to maintain different CRF parameters; the latent variable models

are shared since they are fit independently as a precursor to learning the CRF.

There are several shortcomings of our approach that are promising directions for future research.

First, the model implicitly assumes that the data generating process is noninformative (i.e. missing

data is missing at random [Little and Rubin, 2014]). This is appropriate for clinical markers

that are routinely collected, but additional machinery would be required to model markers whose

missingness is informative. For example, in some cases, additional measurements may be made

due to clinical suspicion caused by factors that are not clearly document in the health record.

Researchers have begun to explore more complex missing-data mechanisms for disease trajectory

modeling (see e.g. Lange et al. [2015]), and it will be important to incorporate these ideas into

the framework discussed here to integrate the full set of markers measured during a clinical visit.

Another shortcoming is our focus on discrete latent factors of the auxiliary marker trajectories.

Continuous-valued latent factors may also be useful, but would make learning and inference in the

latent factor CRF more challenging.

There are also several other immediate opportunities for improving the model. Auxiliary mark-

ers are integrated via separate marker-specific generative models. While we incorporated two dif-

ferent types of models—trajectory and maximum-severity based—both of which were data driven,

existing and new clinical knowledge should be brought to bear to improve these models, which we

expect will improve predictions of the target trajectories. Further, in this work, we focused on

modeling the dependency of the target subtype on the auxiliary markers. In addition, estimates of

the individual-specific long-term and short-term components may also benefit from conditioning on

the auxiliary markers. Finally, the parameters for the pairwise potentials learned in our model may

serve as a means for generating hypotheses about the co-evolution of organ-specific trajectories.

The ideas described here also open up other longer-term directions for future work. The C-

LTM does not account for the effects of treatment on an individual’s long-term trajectory. In many
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chronic conditions, as is the case for scleroderma, drugs only provide short-term relief (accounted for

in our model by the individual-specific adjustments). However, if treatments that alter long-term

course are available and commonly prescribed, then these should be included within the model as

an additional component that influences the trajectory. Learning these treatment effects from noisy

electronic health record data (e.g., Xu et al. 2016) present an exciting and challenging direction for

future work.

We have demonstrated our model by developing a prognostic tool for predicting lung disease

trajectories in patients with scleroderma, an autoimmune disease. We showed that the C-LTM

makes more accurate predictions than state-of-the-art approaches. Accurate tools for prognosis

can allow clinicians and patients to more actively manage their disease. These tools can also help

to enrich clinical trials, which commonly fail in complex, heterogeneous diseases due to inadequate

power. While we have focused model development and evaluation on scleroderma, this work is

broadly applicable to other complex diseases [Craig, 2008], many of which track disease activity

using clinical scales of severity. The C-LTM is most directly applicable to complex and heteroge-

neous chronic diseases. Examples of such diseases include lupus, multiple sclerosis, inflammatory

bowel disease (IBD), chronic obstructive pulmonary disease (COPD), and asthma. Extending the

ideas in this chapter to these other diseases is an opportunity to address important open challenges

in precision medicine.
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Chapter 6

Causal Trajectory Models and

Reliable Decision Support

Decision-makers in medicine are often faced with the challenge of estimating what is likely to happen

when they take an action. One use of such an estimate is to evaluate risk; e.g. is this patient likely

to die if I do not intervene? Another use is “what if?” reasoning to compare outcomes under

alternative actions; e.g. would changing therapy improve this patient’s outcome? In this chapter,

we discuss conditions under which predictive models (such as those in Chapters 4 and 5) can be

used to reliably answer such questions. In general, we show that standard supervised learning

algorithms can give unreliable, and even dangerous, answers to these important questions.

Consider, for instance, recent work to predict risk of death for hospitalized patients with pneu-

monia [Caruana et al., 2015]. The predictions were intended to help doctors decide whether a

patient should be sent home or kept in the hospital (i.e. send home if low-risk, otherwise treat

further). A subtle assumption underlying the intended use is that the risk prediction should repre-

sent the patient’s probability of dying without further treatment. After fitting the model, Caruana

et al. [2015] found that asthma counterintuitively reduced the probability of death due to pneu-

monia. They traced the result back to a policy at the hospitals that supplied the training data.

At those hospitals, asthmatics with pneumonia were directly admitted to the intensive care unit

(ICU), therefore receiving more aggressive treatment.
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The relationship between asthma and risk appeared counterintuitive because of a mismatch

between the policy at test time and the treatment policy in the training data. If asthmatics are

always given more care, it is natural to learn that risk of death is lower for asthmatics. This

relationship is surprising, however, if we interpret the model’s prediction as risk of death without

further treatment. In general, we expect that models used in decision support tools will frequently

be applied in settings where the policy is different from the one in the training data. This motivates

our definition of a stable learning algorithm: one that produces a model that is independent of the

policy in the training data. Because the learner does not depend on the policy in the training

data, it is robust to policy shifts that induce a mismatch between the train and test distributions.

Learning algorithms that are not stable produce models that are unreliable, and can even lead to

harmful decisions; e.g. “send a patient with asthma home because they have low-risk of death”.

To design stable learning algorithms, we show how to use learning objectives that predict

counterfactuals, which are collections of random variables {𝑌 [𝑎] : 𝑎 ∈ 𝒞} used in the potential

outcomes framework [Neyman, 1923, 1990, Rubin, 1978]. Counterfactuals model the outcome 𝑌

after an action 𝑎 is taken from a set of choices 𝒞. Counterfactual predictions are broadly applicable

to a number of decision-support tasks. In medicine, for instance, when evaluating a patient’s risk

of death 𝑌 to determine whether they should be treated aggressively, we want an estimate of how

they will fare without treatment. This can be done by predicting the counterfactual 𝑌 [∅], where

∅ stands for “do nothing”. In online marketing, to decide whether we should display ad 𝑎1 or 𝑎2,

we may want an estimate of click-through 𝑌 under each (i.e. predict 𝑌 [𝑎1] and 𝑌 [𝑎2]).

To build stable predictive models in temporal settings, we develop the Counterfactual Gaussian

Process (CGP) to predict the counterfactual future progression of continuous-time trajectories

under sequences of future actions. The CGP can be learned from and applied to time series data

where actions are taken and outcomes are measured at irregular time points; a generalization

of discrete time series. Figure 6.1 illustrates an application of the CGP. We show an individual

with a lung disease, and would like to predict her future lung capacity (y-axis). Panel (a) shows

the history in the red box, which includes previous lung capacity measurements (black dots) and

101



Figure 6.1: Best viewed in color. An illustration of the counterfactual GP applied to health care.
The red box in (a) shows previous lung capacity measurements (black dots) and treatments (the
history). Panels (a)-(c) show the type of predictions we would like to make. We use 𝑌 [𝑎] to
represent the potential outcome under action 𝑎.

previous treatments (green and blue bars). The blue counterfactual trajectory shows what might

occur under no action, which can be used to evaluate this individual’s risk. In panel (b), we show

the counterfactual trajectory under a single future green treatment. Panel (c) illustrates “what if?”

reasoning by overlaying counterfactual trajectories under two different action sequences; in this

case it seems that two future doses of the blue drug may lead to a better outcome than a single

dose of green.

6.1 Contributions

Our key methodological contribution is the Counterfactual Gaussian process (CGP), a model that

predicts how a continuous-time trajectory will progress under sequences of actions. We derive an

adjusted maximum likelihood objective that learns the CGP from observational traces; irregularly

sampled sequences of actions and outcomes denoted using 𝒟 = {{(𝑦𝑖𝑗 , 𝑎𝑖𝑗 , 𝑡𝑖𝑗)}𝑛𝑖
𝑗=1}𝑚𝑖=1, where 𝑦𝑖𝑗 ∈

R ∪ {∅}, 𝑎𝑖𝑗 ∈ 𝒞 ∪ {∅}, and 𝑡𝑖𝑗 ∈ [0, 𝜏 ].1 Our objective accounts for and removes the effects of

the policy used to choose actions in the observational traces, making the algorithm stable to policy

shift. We derive the objective by jointly modeling observed actions and outcomes using a marked

point process (MPP; see e.g., Daley and Vere-Jones 2007), and show how it correctly learns the

CGP under a set of assumptions analagous to those required to learn counterfactual models in
1𝑦𝑖𝑗 and 𝑎𝑖𝑗 may be the null variable ∅ to allow for the possibility that an action is taken but no outcome is

observed and vice versa. [0, 𝜏 ] denotes a fixed period of time over which the trajectories are observed.
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other settings.

We demonstrate the CGP on two decision-support tasks. First, we use the CGP to predict

risk: the likelihood of a poor outcome given that we do not intervene. We show that the CGP

is stable and does not depend on the action policy in the training data. On the other hand, we

show that predictions made by a model trained using a classical supervised learning objective is

unstable. In our second experiment, we use data from a real intensive care unit (ICU) to learn

the CGP, and qualitatively demonstrate how the CGP can be used to compare counterfactuals and

answer “what if?” questions, which could offer medical decision-makers a powerful new tool for

individualized treatment planning.

6.2 Related Work

Decision support is a rich field; because our main methodological contribution is a counterfactual

model for time series data, we limit the scope of our discussion of related work to this area.

6.2.1 Causal Inference

Counterfactual models stem from causal inference. In that literature, the difference between the

counterfactual outcomes if an action had been taken and if it had not been taken is defined as the

causal effect of the action (see e.g., Pearl 2009 or Morgan and Winship 2014). Potential outcomes

are commonly used to formalize counterfactuals and obtain causal effect estimates [Neyman, 1923,

1990, Rubin, 1978]. Potential outcomes are often applied to cross-sectional data; see, for instance,

the examples in Morgan and Winship 2014. Recent examples from the machine learning literature

are Bottou et al. [2013] and Johansson et al. [2016].

6.2.2 Potential Outcomes in Discrete Time

Potential outcomes have also been used to estimate the causal effect of a sequence of actions in

discrete time on a final outcome (e.g. Robins 1986, Robins and Hernán 2009, Taubman et al.

2009). The key challenge in the sequential setting is to account for feedback between intermediate
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outcomes that determine future treatment. Conversely, Brodersen et al. [2015] estimate the effect

that a single discrete intervention has on a discrete time series. Recent work on optimal dynamic

treatment regimes uses the sequential potential outcomes framework proposed by Robins [1986]

to learn lists of discrete-time treatment rules that optimize a scalar outcome. Algorithms for

learning these rules often use action-value functions (Q-learning; e.g., Nahum-Shani et al. 2012).

Alternatively, A-learning is a semiparametric approach that directly learns the relative difference

in value between alternative actions [Murphy, 2003].

6.2.3 Potential Outcomes in Continuous Time

Others have extended the potential outcomes framework in Robins [1986] to learn causal effects of

actions taken in continuous-time on a single final outcome using observational data. Lok [2008] pro-

poses an estimator based on structural nested models [Robins, 1992] that learns the instantaneous

effect of administering a single type of treatment. Arjas and Parner [2004] develop an alternative

framework for causal inference using Bayesian posterior predictive distributions to estimate the

effects of actions in continuous time on a final outcome. Both Lok [2008] and Arjas and Parner

[2004] use marked point processes to formalize assumptions that make it possible to learn causal

effects from continuous-time observational data. We build on these ideas to learn causal effects

of actions on continuous-time trajectories instead of a single outcome. There has also been recent

work on building expressive models of treatment effects in continuous time. Xu et al. [2016] propose

a Bayesian nonparametric approach to estimating individual-specific treatment effects of discrete

but irregularly spaced actions, and Soleimani et al. [2017] model the effects of continuous-time,

continuous-valued actions. Causal effects in continuous-time have also been studied using differen-

tial equations. Mooij et al. [2013] formalize an analog of Pearl’s “do” operation for deterministic

ordinary differential equations. Sokol and Hansen [2014] make similar contributions for stochastic

differential equations by studying limits of discrete-time non-parametric structural equation models

[Pearl, 2009]. Cunningham et al. [2012] introduce the Causal Gaussian Process, but their use of

the term “causal” is different from ours, and refers to a constraint that holds for sample paths of
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the GP.

6.2.4 Reinforcement Learning

Reinforcement learning (RL) algorithms learn from data where actions and observations are in-

terleaved in discrete time (see e.g., Sutton and Barto 1998). In RL, however, the focus is on

learning a policy (a map from states to actions) that optimizes the expected reward, rather than a

model that predicts the effects of the agent’s actions on future observations. In model-based RL, a

model of an action’s effect on the subsequent state is produced as a by-product either offline before

optimizing the policy (e.g., Ng et al. 2006) or incrementally as the agent interacts with its environ-

ment. In most RL problems, however, learning algorithms rely on active experimentation to collect

samples. This is not always possible; for example, in healthcare we cannot actively experiment

on patients, and so we must rely on retrospective observational data. In RL, a related problem

known as off-policy evaluation also uses retrospective observational data (see e.g., Dudík et al.

2011, Swaminathan and Joachims 2015, Jiang and Li 2016, Păduraru et al. 2012, Doroudi et al.

2017). The goal is to use state-action-reward sequences generated by an agent operating under an

unknown policy to estimate the expected reward of a target policy. Off-policy algorithms typically

use action-value function approximation, importance reweighting, or doubly robust combinations

of the two to estimate the expected reward.

6.3 Counterfactual Models from Observational Traces

Counterfactual GPs build on ideas from potential outcomes [Neyman, 1923, 1990, Rubin, 1978],

Gaussian processes [Rasmussen and Williams, 2006], and marked point processes [Daley and Vere-

Jones, 2007]. In the interest of space, we review potential outcomes and marked point processes,

but refer the reader to Rasmussen and Williams [2006] for background on GPs.
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6.3.1 Background: Potential Outcomes

To formalize counterfactuals, we adopt the potential outcomes framework [Neyman, 1923, 1990,

Rubin, 1978], which uses a collection of random variables {𝑌 [𝑎] : 𝑎 ∈ 𝒞} to model the outcome

after each action 𝑎 from a set of choices 𝒞. To make counterfactual predictions, we must learn the

distribution 𝑃 (𝑌 [𝑎] | 𝑋) for each action 𝑎 ∈ 𝒞 given features 𝑋. If we can freely experiment by

repeatedly taking actions and recording the effects, then it is straightforward to fit a predictive

model. Conducting experiments, however, may not be possible. Alternatively, we can use obser-

vational data, where we have example actions 𝐴, outcomes 𝑌 , and features 𝑋, but do not know

how actions were chosen. Note the difference between the action 𝑎 and the random variable 𝐴

that models the observed actions in our data; the notation 𝑌 [𝑎] serves to distinguish between the

observed distribution 𝑃 (𝑌 | 𝐴,𝑋) and the target distribution 𝑃 (𝑌 [𝑎] | 𝑋).

In general, we can only use observational data to estimate 𝑃 (𝑌 | 𝐴,𝑋). Under two assumptions,

however, we can show that this conditional distribution is equivalent to the counterfactual model

𝑃 (𝑌 [𝑎] | 𝑋). The first is known as the Consistency Assumption.

Assumption 1 (Consistency). Let 𝑌 be the observed outcome, 𝐴 ∈ 𝒞 be the observed action, and

𝑌 [𝑎] be the potential outcome for action 𝑎 ∈ 𝒞, then: (𝑌 ≜ 𝑌 [𝑎] ) | 𝐴 = 𝑎.

Under consistency, we have that 𝑃 (𝑌 | 𝐴 = 𝑎) = 𝑃 (𝑌 [𝑎] | 𝐴 = 𝑎). Now, the potential outcome

𝑌 [𝑎] may depend on the action 𝐴, so in general 𝑃 (𝑌 [𝑎] | 𝐴 = 𝑎) ̸= 𝑃 (𝑌 [𝑎]). The next assumption

posits that the features 𝑋 include all possible confounders [Morgan and Winship, 2014], which are

sufficient to d-separate 𝑌 [𝑎] and 𝐴.

Assumption 2 (No Unmeasured Confounders (NUC)). Let 𝑌 be the observed outcome, 𝐴 ∈ 𝒞 be

the observed action, 𝑋 be a vector containing all potential confounders, and 𝑌 [𝑎] be the potential

outcome under action 𝑎 ∈ 𝒞, then: (𝑌 [𝑎] ⊥ 𝐴 ) | 𝑋.

Under Assumptions 1 and 2, 𝑃 (𝑌 | 𝐴,𝑋) = 𝑃 (𝑌 [𝑎] | 𝑋). An extension of Assumption 2

introduced by Robins [1997] known as sequential NUC allows us to estimate the effect of a sequence

of actions in discrete time on a single outcome. In continuous-time settings, where both the type
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and timing of actions may be statistically dependent on the potential outcomes, Assumption 2 (and

sequential NUC) cannot be applied as-is. We will describe an alternative that serves a similar role

for CGPs.

6.3.2 Background: Marked Point Processes

Point processes are distributions over sequences of timestamps {𝑇𝑖}𝑁𝑖=1, which we call points, and

a marked point process (MPP) is a point process where each point is annotated with an additional

random variable 𝑋𝑖, called its mark. For example, a point 𝑇 might represent the arrival time of a

customer, and 𝑋 the amount that she spent at the store. We emphasize that both the annotated

points (𝑇𝑖, 𝑋𝑖) and the number of points 𝑁 are random variables.

A point process can be characterized as a counting process {𝑁𝑡 : 𝑡 ≥ 0} that counts the number

of points that occured up to and including time 𝑡: 𝑁𝑡 =
∑︀𝑁

𝑖=1 I(𝑇𝑖≤𝑡). By definition, this processes

can only take integer values, and 𝑁𝑡 ≥ 𝑁𝑠 if 𝑡 ≥ 𝑠. In addition, it is commonly assumed that

𝑁0 = 0 and that Δ𝑁𝑡 = lim𝛿→0+ 𝑁𝑡 −𝑁𝑡−𝛿 ∈ {0, 1}. We can parameterize a point process using a

probabilistic model of Δ𝑁𝑡 given the history of the process ℋ𝑡− up to but not including time 𝑡 (we

use 𝑡− to denote the left limit of 𝑡). Using the Doob-Meyer decomposition [Daley and Vere-Jones,

2007], we can write Δ𝑁𝑡 = Δ𝑀𝑡 + ΔΛ𝑡, where 𝑀𝑡 is a martingale, Λ𝑡 is a cumulative intensity

function, and

𝑃 (Δ𝑁𝑡 = 1 | ℋ𝑡−) = E [Δ𝑁𝑡 | ℋ𝑡− ] = E [Δ𝑀𝑡 | ℋ𝑡− ] + ΔΛ𝑡(ℋ𝑡−) = 0 + ΔΛ𝑡(ℋ𝑡−),

which shows that we can parameterize the point process using the conditional intensity function

𝜆*(𝑡) d𝑡 ≜ ΔΛ𝑡(ℋ𝑡−). The star superscript on the intensity function serves as a reminder that it

depends on the history ℋ𝑡− . For example, in non-homogeneous Poisson processes 𝜆*(𝑡) is a function

of time that does not depend on the history. On the other hand, a Hawkes process is an example

of a point process where 𝜆*(𝑡) does depend on the history [Hawkes, 1971]. MPPs are defined by an

intensity that is a function of both the time 𝑡 and the mark 𝑥: 𝜆*(𝑡, 𝑥) = 𝜆*(𝑡)𝑝*(𝑥 | 𝑡). We have

written the joint intensity in a factored form, where 𝜆*(𝑡) is the intensity of any point occuring
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(that is, the mark is unspecified), and 𝑝*(𝑥 | 𝑡) is the pdf of the observed mark given the point’s

time. For an MPP, the history ℋ𝑡 contains each prior point’s time and mark.

6.3.3 Counterfactual Gaussian Processes

Let {𝑌𝑡 : 𝑡 ∈ [0, 𝜏 ]} denote a continuous-time stochastic process, where 𝑌𝑡 ∈ R, and [0, 𝜏 ] defines

the interval over which the process is defined. We will assume that the process is observed at a

discrete set of irregular and random times {(𝑦𝑗 , 𝑡𝑗)}𝑛𝑗=1. We use 𝒞 to denote the set of possible

action types, 𝑎 ∈ 𝒞 to denote the elements of the set, and define an action to be a 2-tuple (𝑎, 𝑡)

specifying an action type 𝑎 ∈ 𝒞 and a time 𝑡 ∈ [0, 𝜏 ] at which it is taken. To refer to multiple

actions, we use a = [(𝑎1, 𝑡1), . . . , (𝑎𝑛, 𝑡𝑛)]. Finally, we define the history ℋ𝑡 at a time 𝑡 ∈ [0, 𝜏 ] to

be a list of all previous observations of the process and all previous actions. Our goal is to model

the counterfactual:

𝑃 ({𝑌𝑠[a] : 𝑠 > 𝑡} | ℋ𝑡), where a = {(𝑎𝑗 , 𝑡𝑗) : 𝑡𝑗 > 𝑡}𝑚𝑗=1. (6.1)

To learn the counterfactual model, we will use traces 𝒟 ≜ {h𝑖 = {(𝑡𝑖𝑗 , 𝑦𝑖𝑗 , 𝑎𝑖𝑗)}𝑛𝑖

𝑗=1}
𝑚
𝑖=1, where 𝑦𝑖𝑗 ∈

R∪ {∅}, 𝑎𝑖𝑗 ∈ 𝒞 ∪ {∅}, and 𝑡𝑖𝑗 ∈ [0, 𝜏 ]. Our approach is to model 𝒟 using a marked point process

(MPP), which we learn using the traces. Using Assumption 1 and two additional assumptions

defined below, the estimated MPP recovers the counterfactual model in Equation 6.1.

We define the MPP mark space as the Cartesian product of the outcome space R and the set

of action types 𝒞. To allow either the outcome or the action (but not both) to be the null variable

∅, we introduce binary random variables 𝑧𝑦 ∈ {0, 1} and 𝑧𝑎 ∈ {0, 1} to indicate when the outcome

𝑦 and action 𝑎 are not ∅. Formally, the mark space is 𝒳 = (R∪{∅})× (𝒞 ∪ {∅})×{0, 1}× {0, 1}.

We can then write the MPP intensity as

𝜆*(𝑡, 𝑦, 𝑎, 𝑧𝑦, 𝑧𝑎) = 𝜆*(𝑡)𝑝*(𝑧𝑦, 𝑧𝑎 | 𝑡)⏟  ⏞  
[A] Event model

𝑝*(𝑦 | 𝑡, 𝑧𝑦)⏟  ⏞  
[B] Outcome model (GP)

𝑝*(𝑎 | 𝑦, 𝑡, 𝑧𝑎)⏟  ⏞  
[C] Action model

, (6.2)

where we have again used the * superscript as a reminder that the hazard function and densities
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above are implicitly conditioned on the history ℋ𝑡− . The parameterization of the event and action

models can be chosen to reflect domain knowledge about how the timing of events and choice of

action depend on the history. The outcome model is parameterized using a GP (or any elaboration

such as a hierarchical GP or mixture of GPs), and can be treated as a standard regression model that

predicts how the future trajectory will progress given the previous actions and outcome observations.

Learning

To learn the CGP, we maximize the likelihood of observational traces over a fixed interval [0, 𝜏 ].

Let 𝜃 denote the model parameters, then the likelihood for a single trace is

ℓ(𝜃) =
𝑛∑︁

𝑗=1
log 𝑝*

𝜃(𝑦𝑗 | 𝑡𝑗 , 𝑧𝑦𝑗) +
𝑛∑︁

𝑗=1
log 𝜆*

𝜃(𝑡𝑗)𝑝*
𝜃(𝑎𝑗 , 𝑧𝑦𝑗 , 𝑧𝑎𝑗 | 𝑡𝑗 , 𝑦𝑗)−

∫︁ 𝜏

0
𝜆*

𝜃(𝑠) d𝑠. (6.3)

We assume that traces are independent, and so can learn from multiple traces by maximizing

the sum of the individual-trace log likelihoods with respect to 𝜃. We refer to Equation 6.3 as the

adjusted maximum likelihood objective. We see that the first term fits the GP to the outcome data,

and the second term acts as an adjustment to account for dependencies between future outcomes

and the timing and types of actions that were observed in the training data.

Connection to Target Counterfactual

By maximizing Equation 6.3, we obtain a statistical model of the observational traces 𝒟. In general,

the statistical model may not recover the target counterfactual model (Equation 6.1). To connect

the CGP to Equation 6.1, we describe two additional assumptions. The first assumption is an

alternative to Assumption 2.

Assumption 3 (Continuous-Time NUC). For all times 𝑡 and all histories ℋ𝑡−, the densities 𝜆*(𝑡),

𝑝*(𝑧𝑦, 𝑧𝑎 | 𝑡), and 𝑝*(𝑎 | 𝑦, 𝑡, 𝑧𝑎) do not depend on 𝑌𝑠[a] for all times 𝑠 > 𝑡 and all actions a.

The key implication of this assumption is that the policy used to choose actions in the observa-

tional data did not depend on any unobserved information that is predictive of the future potential

outcomes.
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Regime 𝐴 Regime 𝐵 Regime 𝐶
Baseline GP CGP Baseline GP CGP Baseline GP CGP

Risk Score Δ from 𝐴 0.000 0.000 0.083 0.001 0.162 0.128
Kendall’s 𝜏 from 𝐴 1.000 1.000 0.857 0.998 0.640 0.562

AUC 0.853 0.872 0.832 0.872 0.806 0.829

Table 6.1: Results measuring reliability for simulated data experiments. See Section 6.4.1 for
details.

Assumption 4 (Non-Informative Measurement Times). For all times 𝑡 and any history ℋ𝑡−, the

following holds: 𝑝*(𝑦 | 𝑡, 𝑧𝑦 = 1) d𝑦 = 𝑃 (𝑌𝑡 ∈ d𝑦 | ℋ𝑡−).

Under Assumptions 1, 3, and 4, we can show that Equation 6.1 is equivalent to the GP used

to model 𝑝*(𝑦 | 𝑡, 𝑧𝑦 = 1). In the interest of space, the argument for this equivalence is deferred to

Section 6.7, which uses potential outcomes. We make an equivalent argument in Section 6.8 using

the language of causal Bayesian networks instead. Note that these assumptions are not statistically

testable (see e.g., Pearl 2009).

6.4 Experiments

We demonstrate the CGP on two decision-support tasks. First, we use the CGP for risk prediction

and show that it is stable; i.e. its predictions are insensitive to the action policy in the training

data. Classical supervised learning algorithms, however, are unstable (they depend on the action

policy) and this can make them unreliable decision-support tools. Second, we show how the CGP

can be used to compare counterfactuals and ask “what if?” questions for individualized treatment

planning by learning the effects of dialysis on creatinine levels using real data from an intensive

care unit (ICU).

6.4.1 Reliable Risk Prediction with CGPs

We first show how the CGP can be used for reliable risk prediction, where the objective is to predict

the likelihood of an adverse event. In this section, we use simulated data so that we can evaluate

using the true risk on test data. For concreteness, we frame our experiment within a healthcare
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setting, but the ideas can be more broadly applied. Suppose that a clinician records a real-valued

measurement over time that reflects an individual’s health, which we call a severity marker. We

consider the individual to not be at risk if the severity marker is unlikely to fall below a particular

threshold in the future without intervention. As discussed by Caruana et al. [2015], modeling risk

can help caregivers decide whether they need to intervene.

We simulate the value of a severity marker recorded over a period of 24 hours in the hospital;

high values indicate that the patient is healthy. A natural approach to predicting risk at time 𝑡 is

to model the conditional distribution of the severity marker’s future trajectory given the history

up until time 𝑡; i.e. 𝑃 ({𝑌𝑠 : 𝑠 > 𝑡} | ℋ𝑡). We use this as our baseline. As an alternative, we

use the CGP to explicitly model the counterfactual “What if we do not treat this patient?”; i.e.

𝑃 ({𝑌𝑠[∅] : 𝑠 > 𝑡} | ℋ𝑡). For all experiments, we consider a single decision time 𝑡 = 12hrs. To

quantify risk, we use the negative of each model’s predicted value at the end of 24 hours, normalized

to lie in [0, 1].

Data

We simulate training and test data from three regimes. In regimes 𝐴 and 𝐵, we simulate severity

marker trajectories that are treated by policies 𝜋𝐴 and 𝜋𝐵 respectively, which are both unknown to

the baseline model and CGP at train time. Both 𝜋𝐴 and 𝜋𝐵 are designed to satisfy Assumptions

1, 3, and 4. In regime 𝐶, we use a policy that does not satisfy these assumptions. This regime will

demonstrate the importance of verifying whether the assumptions hold when applying the CGP.

We train both the baseline model and CGP on data simulated from all three regimes. We test all

models on a common set of trajectories treated up until 𝑡 = 12hrs with policy 𝜋𝐴 and report how

risk predictions vary as a function of action policy in the training data.

Simulator

For each patient, we randomly sample outcome measurement times from a homogeneous Poisson

process with with constant intensity 𝜆 over the 24 hour period. Given the measurement times,

outcomes are sampled from a mixture of three GPs. The covariance function is shared between all
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classes, and is defined using a Matérn 3/2 kernel (variance 0.22, lengthscale 8.0) and independent

Gaussian noise (scale 0.1) added to each observation. Each class has a distinct mean function pa-

rameterized using a 5-dimensional, order-3 B-spline. The first class has a declining mean trajectory,

the second has a trajectory that declines then stabilizes, and the third has a stable trajectory.2 All

classes are equally likely a priori. At each measurement time, the treatment policy 𝜋 determines a

probability 𝑝 of treatment administration (we use only a single treatment type). The treatments

increase the severity marker by a constant amount for 2 hours. If two or more actions occur within

2 hours of one another, the effects do not add up (i.e. it is as though only one treatment is active).

Additional details about the simulator and policies can be found in Section 6.9.

Model

For both the baseline GP and CGP, we use a mixture of three GPs (as was used to simulate

the data). We assume that the mean function coefficients, the covariance parameters, and the

treatment effect size are unknown and must be learned. We emphasize that both the baseline GP

and CGP have identical forms, but are trained using different objectives; the baseline marginalizes

over future actions, inducing a dependence on the treatment policy in the training data, while

the CGP explicitly controls for them while learning. For both the baseline model and CGP, we

analytically sum over the mixture component likelihoods to obtain a closed form expression for

the likelihood, which we optimize using BFGS [Nocedal and Wright, 2006]. Predictions for both

models are made using the posterior predictive mean given data and interventions up until 12 hours.

Additional details are deferred to Section 6.10.

Results

We find that the baseline GP’s risk scores are unstable across regimes 𝐴, 𝐵, and 𝐶. The CGP

is stable across regimes 𝐴 and 𝐵, but unstable in regime 𝐶, where our assumptions are violated.

In Table 6.1, the first row shows the average difference in risk scores (which take values in [0, 1])

produced by the models trained in each regime and produced by the models trained in regime 𝐴.
2The exact B-spline coefficients can be found in the simulation code included in the supplement.
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In row 1, column 𝐵 we see that the baseline GP’s risk scores differ for the same person on average

by around eight points (Δ = 0.083). From the perspective of a decision-maker, this behavior could

make the system appear less reliable. Intuitively, the risk for a given patient should not depend

on the policy used to determine treatments in retrospective data. On the other hand, the CGP’s

scores change very little when trained on different regimes (Δ = 0.001), as long as Assumptions 1,

3, and 4 are satisfied.

A cynical reader might ask: even if the risk scores are unstable, perhaps it has no consequences

on the downstream decision-making task? In the second row of Table 6.1, we report Kendall’s 𝜏

computed between each regime and regime 𝐴 using the risk scores to rank the patient’s in the test

data according to severity (i.e. scores closer to 1 are more severe). In the third row, we report the

AUC for both models trained in each regime on the common test set. We label a patient as “at

risk” if the last marker value in the untreated trajectory is below zero, and “not at risk” otherwise.

In row 2, column 𝐵 we see that the CGP has a high rank correlation (𝜏 = 0.998) between the two

regimes where the policies satisfy our key assumptions. The baseline GP model trained on regime

𝐵, however, has a lower rank correlation of 𝜏 = 0.857 with the risk scores produced by the same

model trained on regime 𝐴. Similarly, in row three, columns 𝐴 and 𝐵, we see that the CGP’s AUC

is unchanged (AUC = 0.872). The baseline GP, however, is unstable and creates a risk score with

poorer discrimination in regime 𝐵 (AUC = 0.832) than in regime 𝐴 (AUC = 0.853). Although we

illustrate stability of the CGP compared to the baseline GP using two regimes, this property is

not specific to the particular choice of policies used in regimes 𝐴 and 𝐵; the issue persists as we

generate different training data by varying the distribution over the action choices.

Finally, the results in column 𝐶 highlight the importance of Assumptions 1, 3, and 4. The

policy 𝜋𝐶 does not satisfy these assumptions, and we see that the risk scores for the CGP are

different when fit in regime 𝐶 than when fit in regime 𝐴 (Δ = 0.128); the CGP is unstable if the

assumptions do not hold. Similarly, in row 2 the CGP’s rank correlation degrades (𝜏 = 0.562), and

in row 3 the AUC decreases to 0.829. Note that the baseline GP continues to be unstable when fit

in regime 𝐶.
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Figure 6.2: Example factual (grey) and counterfactual (blue) predictions on real ICU data using
the CGP.

Conclusions

These results have important implications for the practice of building predictive models for decision

support. Classical supervised learning algorithms can be unreliable due to an implicit dependence

on the action policy in the training data, which is usually different from the assumed action policy

at test time (e.g. what will happen if we do not treat?). Note that this issue is not resolved by

training only on individuals who are not treated because selection bias creates a mismatch between

our train and test distributions. From a broader perspective, supervised learning can be unreliable

because it captures features of the training distribution that may change (e.g. relationships caused

by the action policy). Although we have used a counterfactual model to account for and remove

these relationships to achieve stability, there may be other approaches that achieve the same effect

(e.g., Dyagilev and Saria 2016). Recent related work by Gong et al. [2016] on covariate shift aims to

learn only the components of the source distribution that will generalize to the target distribution.

As predictive models are becoming more widely used in domains like healthcare where safety is

critical (e.g. Li-wei et al. 2015, Schulam and Saria 2015, Alaa et al. 2016, Wiens et al. 2016, Cheng

et al. 2017), the framework we describe here is increasingly pertinent.

6.4.2 “What if?” Reasoning for Individualized Treatment Planning

To demonstrate how the CGP can be used for individualized treatment planning, we extract ob-

servational creatinine traces from the publicly available MIMIC-II database [Saeed et al., 2011].

Creatinine is a compound produced as a by-product of the chemical reaction in the body that

breaks down creatine to fuel muscles. Healthy kidneys normally filter creatinine out of the body,
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which can otherwise be toxic in large concentrations. During kidney failure, however, creatinine

levels rise and the compound must be extracted using a medical procedure called dialysis.

We extract patients in the database who tested positive for abnormal creatinine levels, which

is a sign of kidney failure. We also extract the times at which three different types of dialysis were

given to each individual: intermittent hemodialysis (IHD), continuous veno-venous hemofiltration

(CVVH), and continuous veno-venous hemodialysis (CVVHD). The data set includes a total of 428

individuals, with an average of 34 (±12) creatinine observations each. We shuffle the data and use

300 traces for training, 50 for validation and model selection, and 78 for testing.

Model

We parameterize the outcome model of the CGP using a mixture of GPs. We always condition

on the initial creatinine measurement and model the deviation from that initial value. The mean

for each class is zero (i.e. we assume there is no deviation from the initial value on average). We

parameterize the covariance function using the sum of two non-stationary kernel functions. Let

𝜑 : 𝑡 → [1, 𝑡, 𝑡2]⊤ ∈ R3 denote the quadratic polynomial basis, then the first kernel is 𝑘1(𝑡1, 𝑡2) =

𝜑⊤(𝑡1)Σ𝜑(𝑡2), where Σ ∈ R3×3 is a positive-definite symmetric matrix parameterizing the kernel.

The second kernel is the covariance function of the integrated Ornstein-Uhlenbeck (IOU) process

(see e.g., Taylor et al. 1994), which is parameterized by two scalars 𝛼 and 𝜈 and defined as

𝑘IOU(𝑡1, 𝑡2) = 𝜈2

2𝛼3

(︁
2𝛼min(𝑡1, 𝑡2) + 𝑒−𝛼𝑡1 + 𝑒−𝛼𝑡2 − 1− 𝑒−𝛼|𝑡1−𝑡2|

)︁
.

The IOU covariance corresponds to the random trajectory of a particle whose velocity drifts accord-

ing to an OU process. We assume that each creatinine measurement is observed with independent

Gaussian noise with scale 𝜎. Each class in the mixture has a unique set of covariance parame-

ters. To model the treatment effects in the outcome model, we define a short-term function and

long-term response function. If an action is taken at time 𝑡0, the outcome 𝛿 = 𝑡 − 𝑡0 hours later

will be additively affected by the response function 𝑔(𝛿;ℎ1, 𝑎, 𝑏, ℎ2, 𝑟) = 𝑔𝑠(𝛿;ℎ1, 𝑎, 𝑏) + 𝑔ℓ(𝛿;ℎ2, 𝑟),

where ℎ1, ℎ2 ∈ R and 𝑎, 𝑏, 𝑟 ∈ R+. The short-term and long-term response functions are defined as
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𝑔𝑠(𝛿;ℎ1, 𝑎, 𝑏) = ℎ1𝑎
𝑎−𝑏

(︁
𝑒−𝑏·𝑡 − 𝑒−𝑎·𝑡

)︁
, and 𝑔ℓ(𝛿 : ℎ2, 𝑟) = ℎ2 ·

(︀
1.0− 𝑒−𝑟·𝑡)︀. The two response functions

are included in the mean function of the GP, and each class in the mixture has a unique set of re-

sponse function parameters. We assume that Assumptions 1, 3, and 4 hold, and that the event and

action models have separate parameters, so can remain unspecified when estimating the outcome

model. We fit the CGP outcome model using Equation 6.3, and select the number of classes in the

mixture using fit on the validation data (we choose three components).

Results

Figure 6.2 demonstrates how the CGP can be used to do “what if?” reasoning for treatment

planning. Each panel in the figure shows data for an individual drawn from the test set. The

green points show measurements on which we condition to obtain a posterior distribution over

mixture class membership and the individual’s latent trajectory under each class. The red points

are unobserved, future measurements. In grey, we show predictions under the factual sequence

of actions extracted from the MIMIC-II database. Treatment times are shown using vertical bars

marked with an “x” (color indicates which type of treatment was given). In blue, we show the

CGP’s counterfactual predictions under an alternative sequence of actions. The posterior predictive

trajectory is shown for the MAP mixture class (mean is shown by a solid grey/blue line, 95% credible

intervals are shaded).

We qualitatively discuss the CGP’s counterfactual predictions, but cannot quantitatively eval-

uate them without prospective experimental data from the ICU. We can, however, measure fit on

the factual data and compare to baselines to evaluate our modeling decisions. Our CGP’s out-

come model allows for heterogeneity in the covariance parameters and the response functions. We

compare this choice to two alternatives. The first is a mixture of three GPs that does not model

treatment effects. The second is a single GP that does model treatment effects. Over a 24-hour

horizon, the CGP’s mean absolute error (MAE) is 0.39 (95% CI: 0.38-0.40),3, and for predictions

between 24 and 48 hours in the future the MAE is 0.62 (95% CI: 0.60-0.64). The pairwise mean

difference between the first baseline’s absolute errors and the CGP’s is 0.07 (0.06, 0.08) for 24
395% confidence intervals computed using the pivotal bootstrap are shown in parentheses
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hours, and 0.09 (0.08, 0.10) for 24-48 hours. The mean difference between the second baseline’s

absolute errors and the CGP’s is 0.04 (0.04, 0.05) for 24 hours and 0.03 (0.02, 0.04) for 24-48 hours.

The improvements over the baselines suggest that modeling treatments and heterogeneity with a

mixture of GPs for the outcome model are useful for this problem.

Figure 6.2 shows factual and counterfactual predictions made by the CGP. In the first (left-

most) panel, the patient is factually administered IHD about once a day, and is responsive to the

treatment (creatinine steadily improves). We query the CGP to estimate how the individual would

have responded had the IHD treatment been stopped early. The model reasonably predicts that

we would have seen no further improvement in creatinine. The second panel shows a similar case.

In the third panel, an individual with erratic creatinine levels receives CVVHD for the last 100

hours and is responsive to the treatment. As before, the CGP counterfactually predicts that she

would not have improved had CVVHD not been given. Interestingly, panel four shows the opposite

situation: the individual did not receive treatment and did not improve for the last 100 hours, but

the CGP counterfactually predicts an improvement in creatinine as in panel 3 under daily CVVHD.

6.5 Discussion

We have shown that classical supervised learning algorithms are, in general, not stable with respect

to the action policy in the training data. The models they learn may therefore be unreliable,

and even dangerous, decision-support tools. As a safer alternative, this paper advocates for using

stable learning algorithms that are independent of the action policy in the training data. To design

stable learning algorithms, we showed how to use potential outcomes [Neyman, 1923, 1990, Rubin,

1978] and counterfactual learning objectives (like the one in Equation 6.3). We introduced the

Counterfactual Gaussian Process (CGP) as a decision-support tool for scenarios where outcomes

are measured and actions are taken at irregular, discrete points in continuous-time. The CGP

builds on previous ideas in continuous-time causal inference (e.g. Robins 1997, Arjas and Parner

2004, Lok 2008), but is unique in that it can predict the full counterfactual trajectory of a time-

dependent outcome. We designed an adjusted maximum likelihood algorithm for learning the CGP
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from observational traces by modeling them using a marked point process (MPP), and described

three structural assumptions that are sufficient to show that the algorithm correctly recovers the

CGP.

We empirically demonstrated the CGP on two decision-support tasks. First, we showed that

the CGP can be used to make reliable risk predictions that are stable with respect to the action

policies used in the training data. This is critical because an action policy can cause a predictive

model fit using classical supervised learning to capture relationships between the features and out-

come (risk) that lead to poor downstream decisions and that are difficult to diagnose. In the second

set of experiments, we showed how the CGP can be used to compare counterfactuals and answer

“what if?” questions, which could offer decision-makers a powerful new tool for individualized

treatment planning. We demonstrated this capability by learning the effects of dialysis on creati-

nine trajectories using real ICU data and predicting counterfactual progressions under alternative

dialysis treatment plans.

These results suggest a number of new questions and directions for future work. First, the

validity of the CGP is conditioned upon a set of assumptions (this is true for all counterfac-

tual models). In general, these assumptions are not testable. The reliability of approaches using

counterfactual models therefore critically depends on the plausibility of those assumptions in light

of domain knowledge. Formal procedures, such as sensitivity analyses (e.g., Robins et al. 2000,

Scharfstein et al. 2014), that can identify when causal assumptions conflict with a data set will

help to make these methods more easily applied in practice. In addition, there may be other sets

of structural assumptions beyond those presented that allow us to learn counterfactual GPs from

non-experimental data. For instance, the back door and front door criteria are two separate sets of

structural assumptions discussed by Pearl [2009] in the context of estimating parameters of causal

Bayesian networks from observational data.

More broadly, this work has implications for recent pushes to introduce safety, accountability,

and transparency into machine learning systems. We have shown that learning algorithms sensitive

to certain factors in the training data (the action policy, in this case) can make a system less reliable.
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In this paper, we used the potential outcomes framework and counterfactuals to characterize and

account for such factors, but there may be other ways to do this that depend on fewer or more

realistic assumptions (e.g., Dyagilev and Saria 2016). Moreover, removing these nuisance factors is

complementary to other system design goals such as interpretability (e.g., Ribeiro et al. 2016).

6.6 Why Continuous Time?

Counterfactual models in discrete time have been studied extensively, so why do we need new

models and assumptions for modeling data in continuous time? Could we simply discretize the

continuous time data. In this section, we show that discretization can bias predictive models for

decision-making, which can lead to incorrect or harmful downstream decisions. We refer to this

phenomenon as discretization bias.

Discretization bias is a form of confounding caused by grouping individual observations into

equally sized bins and creating an aggregate observation by summarizing those observations (e.g.

using the average). This preprocessing step treats groups of observations as exchangeable, and

drops information about their specific values and measurement times. If the dropped information

is used in the policy, then estimates of the outcome model may be biased.

6.6.1 Simulated Markov Decision Process

To study discretization bias, we how how this common preprocessing step can affect the policy

learned by model-based solutions to discrete-time Markov decision problems. In a discrete-time

MDP, the outcome model predicts future values of a time series given the history, which includes

both previous observations and any actions or interventions applied to the system. When we

estimate an outcome model to derive a policy for an MDP, we want to estimate a causal model.

We show that discretization can confound this causal model.

Let 𝑌𝑘 be the 𝑘th observation of a discrete-time time series and let 𝑈𝑘 denote the 𝑘th action,
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then

𝑃
(︀
𝑌𝑘 | 𝒴𝑘,𝒰𝑘

)︀
(6.4)

is the outcome model, where 𝒴𝑘 is all previous observations [𝑌1, . . . , 𝑌𝑘−1] and 𝒰𝑘 is all previous

actions [𝑈1, . . . , 𝑈𝑘−1]. We assume that the distribution of actions 𝑈𝑘 is determined by a policy 𝜋,

that may depend on 𝒴𝑘, 𝒰𝑘, and 𝑌𝑘, which we call the history and denote using ℋ𝑘.

To show how discretization can confound estimates of Equation 6.4, we simulate time series

data from a two-dimensional discrete-time Gaussian hidden Markov model (SG-HMM). We define

a Gaussian discrete-time hidden Markov model by discretizing a stationary linear continuous-time

hidden Markov model. A stationary linear continuous-time model hidden Markov model is parame-

terized by five matrices: 𝐹 , 𝐺, 𝑄, 𝐻, and 𝑅. The first three matrices describe the system dynamics,

and the final two matrices describe the observation model. The dynamics are characterized using

the Itô stochastic differential equation

𝑑𝑋(𝑡) = 𝐹𝑋(𝑡)𝑑𝑡+𝐺𝑈(𝑡) + 𝐿𝑑𝛽(𝑡), (6.5)

where 𝑈(𝑡) is an input process and 𝐿 is the Cholesky factorization of the positive definite covariance

matrix 𝑄 and 𝛽(𝑡) is Brownian motion. The observation model is a simple multivariate normal

distribution:

𝑌 (𝑡) | 𝑋(𝑡) ∼ 𝒩
(︀
𝐻𝑋(𝑡), 𝑅

)︀
. (6.6)

Continuous to Discrete Conversion

A Gaussian discrete-time hidden Markov model is also parameterized by five matrices: 𝐴, 𝐵, 𝐶,

𝐻, and 𝑅. As before, the first three matrices define the dynamics model and the last two define

the obsrvation model. For 𝑘 ∈ [0, . . . , 𝑛𝑘], we define the distributions of the discrete-time random
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Figure 6.3: Graphical model for simulated data.

variables

𝑋𝑘 | 𝑋𝑘−1 ∼ 𝒩
(︀
𝐴𝑋𝑘−1 +𝐵𝑈𝑘−1, 𝐶

)︀
(6.7)

𝑌𝑘 | 𝑋𝑘 ∼ 𝒩
(︀
𝐻𝑋𝑘, 𝑅

)︀
. (6.8)

To discretize the continuous-time model described above, we need to define a mapping from

(𝐹,𝐺,𝑄,𝐻,𝑅) to (𝐴,𝐵,𝐶,𝐻,𝑅). The mapping depends on the timestep of the discretization,

which we will denote using 𝛿. The timestep determines the intervals at which we observe the

continuous-time process. Suppose that 𝑋(𝑡) is defined on the interval [0, 𝑇 ] and that 𝛿 is chosen

such that 𝑛𝑘𝛿 = 𝑇 , then the discretization defines the random variables

𝑋𝑘 ≜ 𝑋(𝑘𝛿) (6.9)

𝑌𝑘 ≜ 𝑌 (𝑘𝛿) (6.10)

for 𝑘 ∈ [0, . . . , 𝑛𝑘]. Using these definitions, we first calculate the conditional distribution of 𝑋𝑘
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given 𝑋𝑘−1. This conditional distribution has mean and covariance

𝜇 = Φ(𝛿)𝑋𝑘−1 +
∫︁ 𝛿

0
Φ(𝛿 − 𝑠)𝐺𝑈(𝑘𝛿 − 𝛿 + 𝑠)𝑑𝑠 (6.11)

Σ =
∫︁ 𝛿

0
Φ(𝛿 − 𝑠)𝑄Φ𝑇 (𝛿 − 𝑠)𝑑𝑠, (6.12)

where Φ(𝑠) = exp{𝐹𝑠}; the matrix exponential of 𝐹𝑠 (see, e.g., Särkkä and Solin 2014). We

therefore see that 𝐴 = Φ(𝛿) and that 𝐶 = Σ in our mapping from continuous-time to discrete-time.

To define the matrix 𝐵, we make the assumption that 𝑈(𝑡) is defined on the grid [0, 𝛿, 2𝛿, . . . , 𝑛𝑘𝛿]

using a sequence of 𝑛𝑘 + 1 values 𝑈0, 𝑈1, . . . , 𝑈𝑘:

𝑈(𝑡) =
𝑛𝑘∑︁
𝑖=0

𝑈𝑖𝛿𝑖𝛿(𝑡), (6.13)

where 𝛿𝑖𝛿 is the Dirac delta function centered at 𝑖𝛿. If 𝑈(𝑡) has this form, then the integral in the

expression for the conditional expected value 𝜇 of 𝑋𝑘 given 𝑋𝑘−1 is

∫︁ 𝛿

0
Φ(𝛿 − 𝑠)𝐺𝑈(𝑘𝛿 − 𝛿 + 𝑠)𝑑𝑠 = Φ(𝛿)𝐺𝑈𝑘−1. (6.14)

Therefore, we have 𝐵 = Φ(𝛿)𝐺. To complete the mapping, note that 𝐻 and 𝑅 do not need to be

modified for the continuous to discrete conversion. In summary, we have

𝐴 = Φ(𝛿) (6.15)

𝐵 = Φ(𝛿)𝐺 (6.16)

𝐶 =
∫︁ 𝛿

0
Φ(𝛿 − 𝑠)𝑄Φ𝑇 (𝛿 − 𝑠)𝑑𝑠 (6.17)

𝐻 = 𝐻 (6.18)

𝑅 = 𝑅. (6.19)
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Figure 6.4: Sample trajectories from the stochastic spring model.

Stochastic Spring Model

For our experiments, we define the continuous-time model using a stochastic spring model. The

dynamics of the stochastic spring depend on two parameters 𝜈 and 𝛾, which we set to 1.0 and 0.5

respectively. The model is parameterized using

𝐹 =

⎡⎢⎣ 0.0 1.0

−𝜈2 −𝛾

⎤⎥⎦ (6.20)

𝐺 =

⎡⎢⎣0.0

0.5

⎤⎥⎦ (6.21)

𝑄 =

⎡⎢⎣10−8 0.0

0.0 10−2

⎤⎥⎦ (6.22)

𝐻 =
[︂
1.0 0.0

]︂
(6.23)

𝑅 =
[︂
10−4

]︂
. (6.24)

To simulate from the model, we draw an initial state 𝑋(0) from a two-dimensional normal

distribution with zero mean and identity covariance. Figure 6.4 shows a sample of simulated

trajectories from the stochastic spring model.
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Figure 6.5: Examples of the data used to learn 𝐵.

Simulating Actions

The actions 𝑈𝑘 ∈ {0, 1} are chosen dynamically based on the history of observed measurements

[𝑌1, . . . , 𝑌𝑘]. In particular, each 𝑈𝑘 has a Bernoulli distribution with a mean parameter that is

computed using a weighted average of the previously observed measurements. Let 𝜋𝑘 denote the

expected value of 𝑈𝑘, then

log 𝜋𝑘

1− 𝜋𝑘
= 𝛽0 + 𝛽1

𝑘∑︁
𝑖=1

𝑤𝑖𝑌𝑖. (6.25)

To compute the weights 𝑤𝑖, we define a parameter 𝛼 ∈ [0, 1]. In a history of 𝑘 measurements, the

weight for the 𝑖th measurement 𝑌𝑖 is

𝑤𝑖 ∝ 𝛼𝑘−𝑖. (6.26)

The weights are normalized to sum to one. We see that when 𝛼 = 0, the history has no effect (i.e.

the log odds are 0). On the other hand, when 𝛼 = 1 all of the previous measurements are weighted

equally. When 𝛼 ∈ (0, 1), the more recent measurements are given more weight.
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Missing Data in Histories

In our experiment, we randomly “drop” measurements 𝑌𝑘 with probability 𝑝𝑚 = 0.8. When a

measurement is dropped, we replace it with the null value ∅. To account for missing data in the

average used to compute 𝜋𝑘, we define the variable 𝑂𝑘 = 1 when 𝑌𝑘 is observed (i.e. it is not ∅),

and 𝑂𝑘 = 0 otherwise. We then modify the weight for measurement 𝑌𝑖 to be

𝑤𝑖 ∝ 𝑂𝑖𝛼
𝑘−𝑖. (6.27)

Coarsened Discrete Models

When time series data is dicretized, the observations are first grouped into a sequence of equal-sized

windows and then an aggregate measurement is computed from the measurements that fall into

the bin. The average (arithmetic mean) is typically used as the aggregation method.

Recall that 𝛿 is the unknown step size of the discrete-time system that generated our data. To

formalize the discretization preprocessing step, we introduce the idea of coarsening, which is an

operation on a discrete-time model that produces another discrete-time model with a timestep Δ

that is larger than 𝛿. Coarsening depends on an integer 𝑛𝑐 ≥ 2, which we refer to as the factor.

Given the coarsening factor 𝑛𝑐, we define new states 𝑋 ′
𝑘 and observations 𝑌 ′

𝑘 that are obtained by

stacking 𝑛𝑐 consecutive states (or observations) together to form a larger vector:

𝑋 ′
𝑘 =

[︀
𝑋𝑇

𝑛𝑐(𝑘−1)+1, . . . , 𝑋
𝑇
𝑛𝑐(𝑘−1)+𝑛𝑐

]︀𝑇 (6.28)

𝑌 ′
𝑘 =

[︀
𝑌 𝑇

𝑛𝑐(𝑘−1)+1, . . . , 𝑌
𝑇

𝑛𝑐(𝑘−1)+𝑛𝑐

]︀𝑇 (6.29)

If (𝐴,𝐵,𝐶,𝐻,𝑅) are the parameters of the original discrete-time HMM, then the distribution over

the coarsened states 𝑋 ′
𝑘 and 𝑌 ′

𝑘 is also a discrete-time HMM with parameters (𝐴′, 𝐵′, 𝐶 ′, 𝐻 ′, 𝑅′)

that depend only on (𝐴,𝐵,𝐶,𝐻,𝑅). The coarsened dynamics and measurement matrices have the
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following block structure:

[𝐴′]𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝐴𝑖 if 𝑗 = 𝑛𝑐,

0 otherwise.
(6.30)

[𝐵′]𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑖 < 𝑗,

𝐴𝑖−𝑗𝐵 otherwise.
(6.31)

[𝐶 ′]𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶 if 𝑖 = 𝑗 = 1,

𝐴𝑖−1𝐶(𝐴𝑖−1)𝑇 + 𝐶 if 𝑖 = 𝑗 > 1,

[𝐶 ′]𝑖𝑖(𝐴𝑗−𝑖)𝑇 if 𝑖 < 𝑗,

𝐴𝑖−𝑗 [𝐶 ′]𝑗𝑗 if 𝑖 > 𝑗.

(6.32)

The coarsened measurement model parameters 𝐻 ′ and 𝑅′ also have block matrix structure:

[𝐻 ′]𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝐻 if 𝑖 = 𝑗,

0 otherwise.
(6.33)

[𝑅′]𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑅 = if 𝑖 == 𝑗,

0 = otherwise.
(6.34)

Coarsening and Discretization

To discretize data, there is typically an aggregation step that summarizes a collection of observations

that fall into the same bin. One of the most common aggregation operations is taking the average of

all observations in a bin, and this is how we aggregate in our simulation experiment. Since averaging

is a linear operation, we see that preprocessing with discretization defines a new coarsened discrete-

time HMM with a new measurement model

𝐻 ′′ = [𝑛−1
𝑐 , . . . , 𝑛−1

𝑐 ]𝐻 ′ (6.35)

𝑅′′ =
𝑛𝑐∑︁

𝑖=1
𝑛−2

𝑐 𝑅2. (6.36)
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Figure 6.6: Action effect estimates (y-axis) for each model under policies with varying levels of
dependence on the history (x-axis). The coarsened-01 and continuous models produce the exact
same estimates, and so are overlaid in the plots.

6.6.2 Demonstrating Discretization Bias

We fit five models using maximum likelihood: four discrete-time models with coarsening factors 1,

10, 20, and 25 (when 𝑚 = 1, the coarsened model is the original SG-HMM), and one continuous-

time model. Because the SG-HMM is derived by discretizing a continuous-time model, all five

models depend on the same underlying parameters. Maximizing the likelihood of an SG-HMM is a

non-convex optimization problem, so we simplify by assuming that all parameters are known except

for the matrix 𝐵. Estimating 𝐵 is a concave optimization problem, which simplifies estimation and

helps to isolate the effects of discretization.

Figure 6.6 displays the results of the simulation experiment. We see that as 𝛽1 → 0, both

elements of 𝐵 (listed as B1 and B2) are accurately estimated for all models. As 𝛽1 becomes more

negative, however, we see that the models with larger coarsening factors 𝑚 are biased. In particular,

note that the models with 𝑚 = 20 and 𝑚 = 25 learn that actions have the opposite effect (i.e. B1 is

negative instead of positive). On the other hand, the continuous-time model gives the exact same,

unbiased, estimates of the parameters as the true model with coarsening factor 𝑚 = 1.

6.7 Equivalence of MPP Outcome Model and Counterfactual Model

At a given time 𝑡, we want to make predictions about the potential outcomes that we will measure

at a set of future query times q = [𝑠1, . . . , 𝑠𝑚] given a specified future sequence of actions a. This
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can be written formally as

𝑃 ({𝑌𝑠[a] : 𝑠 ∈ q} | ℋ𝑡) (6.37)

Without loss of generality, we can use the chain rule to factor this joint distribution over

the potential outcomes. We choose a factorization in time order; that is, a potential outcome is

conditioned on all potential outcomes at earlier times. We now describe a sequence of steps that

we can apply to each factor in the product.

𝑃 ({𝑌𝑠[a] : 𝑠 ∈ q} | ℋ𝑡) =
𝑚∏︁

𝑖=1
𝑃 (𝑌𝑠𝑖 [a] | {𝑌𝑠[a] : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡). (6.38)

Using Assumption 3, we can introduce random variables for marked points that have the same

timing and actions as the proposed sequence of actions without changing the probability. Recall our

assumption that actions can only affect future values of the outcome, so we only need to introduce

marked points for actions taken at earlier times. Formally, we introduce the set of marked points

for the potential outcome at each time 𝑠𝑖

A𝑖 =
{︀
(𝑡′,∅, 𝑎, 0, 1) : (𝑡′, 𝑎) ∈ a, 𝑡′ < 𝑠𝑖

}︀
. (6.39)

We can then write

𝑃 (𝑌𝑠𝑖 [a] | {𝑌𝑠[a] : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡) = 𝑃 (𝑌𝑠𝑖 [a] | A𝑖, {𝑌𝑠[a] : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡). (6.40)

To show that 𝑃 (𝑌 [𝑎] | 𝐴 = 𝑎,𝑋 = 𝑥) = 𝑃 (𝑌 [𝑎] | 𝑋 = 𝑥) in Section 6.3, we use Assumption 2 to

remove the random variable 𝐴 from the conditioning information without changing the probability

statement. We reverse that logic here by adding A𝑖.

Now, under Assumption 1, after conditioning on A𝑖, we can replace the potential outcome 𝑌𝑠𝑖 [a]
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with 𝑌𝑠𝑖 . We therefore have

𝑃 (𝑌𝑠𝑖 [a] | A𝑖, {𝑌𝑠[a] : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡) = 𝑃 (𝑌𝑠𝑖 | A𝑖, {𝑌𝑠[a] : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡). (6.41)

Similarly, because the set of proposed actions affecting the outcome at time 𝑠𝑖 contain all actions

that affect the outcome at earlier times 𝑠 < 𝑠𝑖, we can invoke Assumption 1 again and replace all

potential outcomes at earlier times with the value of the observed process at that time.

𝑃 (𝑌𝑠𝑖 | A𝑖, {𝑌𝑠[a] : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡) = 𝑃 (𝑌𝑠𝑖 | A𝑖, {𝑌𝑠 : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡).

Next, Assumption 4 posits that the outcome model 𝑝*(𝑦 | 𝑡′, 𝑧𝑦 = 1) is the density of 𝑃 (𝑌𝑡′ | ℋ𝑡),

which implies that the mark (𝑡′, 𝑦,∅, 1, 0) is equivalent to the event (𝑌𝑡′ ∈ d𝑦). Therefore, for each

𝑠𝑖 define

O𝑖 = {(𝑠, 𝑌𝑠,∅, 1, 0) : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} . (6.42)

Using this definition, we can write

𝑃 (𝑌𝑠𝑖 | A𝑖, {𝑌𝑠 : 𝑠 ∈ q, 𝑠 < 𝑠𝑖} ,ℋ𝑡) = (𝑌𝑠𝑖 | A𝑖,O𝑖,ℋ𝑡).

The set of information (A𝑖,O𝑖,ℋ𝑡) is a valid history of the marked point process ℋ−
𝑠𝑖

up to but

not including time 𝑠𝑖. We can therefore replace all information after the conditioning bar in each

factor of Equation 6.38 with ℋ𝑠−
𝑖

.

𝑃 (𝑌𝑠𝑖 | A𝑖,O𝑖,ℋ𝑡) = 𝑃 (𝑌𝑠𝑖 | ℋ−
𝑠𝑖

). (6.43)

Finally, by applying Assumption 4 again, we have

𝑃 (𝑌𝑠𝑖 ∈ d𝑦 | ℋ−
𝑠𝑖

) = 𝑝*(𝑦 | 𝑠𝑖, 𝑧𝑦 = 1) d𝑦. (6.44)
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Figure 6.7: The causal Bayesian network for the counterfactual GP.

The potential outcome query can therefore be answered using the outcome model, which we can

estimate from data.

6.8 Causal Bayesian Network

We can also characterize our key assumptions using causal Bayesian networks [Pearl, 2009]. Let

{(𝑡𝑗 , 𝑧𝑦,𝑗 , 𝑧𝑎,𝑗 , 𝑦𝑗 , 𝑎𝑗)}𝑗≥1 be a countable sequence of tuples of variables (a marked point process can

be characterized as a countable sequence of points and marks). Recall that 𝑡𝑗 is an event time, 𝑧𝑦,𝑗

is a binary random variable indicating whether an outcome is measured, 𝑧𝑎,𝑗 is a binary random

variable indicating whether an action is taken, 𝑦𝑗 ∈ ℛ ∪ {∅} is an outcome measurement, and

𝑎𝑗 ∈ 𝒞 ∪ {∅} is an action (the last two variables are ∅ when the respective indicator is 0).

We define the directed acyclic graph 𝒢 with nodes 𝒱 ≜ ∪𝑗≥1{𝑡𝑗 , 𝑧𝑦,𝑗 , 𝑧𝑎,𝑗 , 𝑦𝑗 , 𝑎𝑗} and edge set ℰ to

be the causal Bayesian network for the counterfactual GP. For any variables 𝑣1 ∈ {𝑡𝑗 , 𝑧𝑦,𝑗 , 𝑧𝑎,𝑗 , 𝑦𝑗 , 𝑎𝑗}

and 𝑣2 ∈ {𝑡𝑘, 𝑧𝑦,𝑘, 𝑧𝑎,𝑘, 𝑦𝑘, 𝑎𝑘}, the edge (𝑣1 → 𝑣𝑘) ∈ ℰ if 𝑗 < 𝑘 or if 𝑗 = 𝑘 and 𝑣1 is a parent of

𝑣2 in the right-most plate of Figure 6.7. We allow the variables {(𝑡𝑗 , 𝑧𝑦,𝑗 , 𝑧𝑎,𝑗 , 𝑎𝑗)}∞𝑗=1 to depend on
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a common unobserved parent 𝑢1, and the outcomes {𝑦𝑗}∞𝑗=1 to depend on a common unobserved

parent 𝑢2. The DAG in Figure 6.7 sketches the causal Bayesian network. For any index 𝑗, we show

the edges present between all variables at times 𝑘 < 𝑗.

We now formulate our causal query, and show that it is identified using observational traces

sampled from the distribution implied by the causal Bayesian network. For any time 𝑡 ∈ [0, 𝜏 ], our

goal is to predict the values of future outcomes under a hypothetical sequence of future actions

given the history up until time 𝑡. Define ℋ𝑡 = ∪𝑗:𝑡𝑗<𝑡{𝑡𝑗 , 𝑧𝑦,𝑗 , 𝑧𝑎,𝑗 , 𝑦𝑗 , 𝑎𝑗} to be the sequence of 𝑛

actions taken and outcomes measured prior to time 𝑡, and define ℱ𝑡 to be a sequence of 𝑚 tuples

corresponding to future actions and measurements. The variables in ℋ𝑡 ∪ ℱ𝑡 are connected using

the edge set definition described above. Let 𝑡 denote the 𝑚 future time points, 𝑧𝑦 the future

measurement indicators, 𝑧𝑎 the future action indicators, 𝑦 the future outcomes, and 𝑎 the future

actions. Our goal is to show that the following query is identified:

𝑝(𝑦 | do(𝑡, 𝑧𝑦, 𝑧𝑎,𝑎),ℋ𝑡) =
𝑚∏︁

𝑗=1
𝑝(𝑦𝑗 | 𝑦:𝑗 ,do(𝑡, 𝑧𝑦, 𝑧𝑎,𝑎),ℋ𝑡), (6.45)

where 𝑦:𝑗 denotes the vector of future outcomes before the 𝑗th. We will also use 𝑦𝑗: to denote all

outcomes measured after the 𝑗th (this notation will be used for the other variables as well). First,

consider any factor in the expression above. We define the future and past intervened-on variables

at time 𝑡𝑗 as

𝑓𝑗 ≜ {𝑎𝑗 , 𝑡𝑗:, 𝑧𝑦,𝑗:, 𝑧𝑎,𝑗:, �̄�𝑗:} (6.46)

𝑝𝑗 ≜ {𝑡:𝑗 , 𝑧𝑦,:𝑗 , 𝑧𝑎,:𝑗 , �̄�:𝑗 , 𝑡𝑗 , 𝑧𝑦,𝑗 , 𝑧𝑎,𝑗}. (6.47)

Using these shorthand definitions, we first prove the following equivalence

𝑝(𝑦𝑗 | 𝑦:𝑗 ,do(𝑝𝑗), do(𝑓𝑗),ℋ𝑡) = 𝑝(𝑦𝑗 | 𝑦:𝑗 , do(𝑝𝑗),ℋ𝑡). (6.48)

Intuitively, we are showing that actions taken after 𝑦𝑗 is measured do not affect its value. To justify

the equality, we use “Rule 3” from Pearl’s do-calculus (see Chapter 3 in Pearl 2009). We must
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show that 𝑦𝑗 is d-separated from 𝑓𝑗 in the mutilated DAG where all incoming edges to nodes in 𝑝𝑗

and 𝑓𝑗 have been removed. To show d-separation, let 𝑣 ∈ 𝑓𝑗 ∖ {𝑎𝑗} be some future intervened-on

variable at time step 𝑘 > 𝑗. Since all incoming edges have been removed, all paths starting at 𝑣

must be outgoing. Outgoing edges for 𝑣 in the original DAG either point to an outcome 𝑦ℓ for ℓ ≥ 𝑘

or some other intervened-on variable 𝑣′ ∈ 𝑓𝑗 ∖ {𝑎𝑗 , 𝑣}. The latter are removed in the mutilated

graph, so the only edges outgoing from 𝑣 must point to an outcome 𝑦ℓ for ℓ ≥ 𝑘. This implies that

all paths starting at 𝑣 must begin with an edge 𝑣 → 𝑦ℓ for some ℓ ≥ 𝑘. Because 𝑦ℓ is unobserved,

the only unblocked paths must then follow an outgoing edge (otherwise it would be a collider). All

outgoing edges from variables 𝑦ℓ for ℓ ≥ 𝑘 can only point to outcomes 𝑦ℓ′ for ℓ′ > ℓ, which in turn

must point to 𝑦ℓ′′ for ℓ′′ > ℓ′, and so on. Therefore, any path starting from 𝑣 must pass through

outcomes 𝑦 at strictly increasing times. Eventually, we will reach the final outcome, where there

are no outgoing edges, ending the path. We can conclude that no paths starting at 𝑣 can reach 𝑦𝑗 .

A similar argument shows that no path starting from 𝑎𝑗 can reach 𝑦𝑗 .

Next, we use “Rule 2” from the do-calculus to prove that

𝑝(𝑦𝑗 | 𝑦:𝑗 ,do(𝑝𝑗),ℋ𝑡) = 𝑝(𝑦𝑗 | 𝑦:𝑗 ,𝑝𝑗 ,ℋ𝑡). (6.49)

This requires showing that 𝑦𝑗 is d-separated from 𝑝𝑗 in the mutilated graph where all outgoing

edges from 𝑣 ∈ 𝑝𝑗 have been removed. For any 𝑣 ∈ 𝑝𝑗 , there are two types of incoming edges. The

first are edges originating from observed direct parents of 𝑣, and the second is the edge originating

from the unobserved variable 𝑢1. Any path from 𝑣 to 𝑦𝑗 must start with one of these edge types,

and therefore all that start with an edge to an observed parent of 𝑣 will be blocked, and any

unblocked path must start by going through 𝑢1. Now, 𝑢1 has no parents and any path must then

have a second edge from 𝑢1 to one of its children, which are all times 𝑡𝑘, indicators 𝑧𝑦,𝑘 or 𝑧𝑎,𝑘, and

actions 𝑎𝑘. We will analyze these possibilities using two cases. First, the second edge could go from

𝑢1 to a time 𝑡𝑘 where 𝑘 ≤ 𝑗, indicator 𝑧𝑦,𝑘 or 𝑧𝑎,𝑘 where 𝑘 ≤ 𝑗, or to an action 𝑎𝑘 where 𝑘 < 𝑗. The

only possible next step is to go through an incoming edge where the origin is not 𝑢1; all such edges

will be blocked, and so cannot reach 𝑦𝑗 . In the second case, an edge could go from 𝑢1 to a time
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or indicator at step 𝑘 > 𝑗, or an action at step 𝑘 ≥ 𝑗. These variables are unobserved, and so the

only valid next step is to follow an outgoing edge. Subsequent steps must all also follow outgoing

edges by the same logic, and so the path can never return to 𝑦𝑗 . We therefore can conclude that

there are no paths from 𝑣 ∈ 𝑝𝑗 to 𝑦𝑗 in the mutilated graph, so the equality holds. Together, the

two inequalities show

𝑝(𝑦 | do(𝑡, 𝑧𝑦, 𝑧𝑎,𝑎),ℋ𝑡) =
𝑚∏︁

𝑗=1
𝑝(𝑦𝑗 | 𝑦:𝑗 ,𝑝𝑗 ,ℋ𝑡). (6.50)

This shows that the structural dependencies encoded in the graph shown in Figure 6.7 can be

used in place of Assumption 3. In addition, we no longer need Assumption 1 (consistency), which

highlights an interesting difference between the potential outcomes and causal Bayesian network

frameworks. In Pearl’s causal DAGs, consistency is in fact a theorem derived from the axioms of the

framework, whereas it is assumed in the potential outcomes framework. This is shown in Corollary

7.3.2 in Pearl [2009], which follows from the Composition axiom and the definition of a “null”

intervention. Intuitively, the fact that consistency is a theorem in Pearl’s framework reflects the

assumption that the parent-child relationships in the DAG are sufficiently stable, autonomous, or

“local” [Pearl, 2009]. See Section 7.2.4 in Pearl [2009] for further information. Finally, Assumption

4 remains unchanged and simply allows us to treat measured outcomes 𝑦𝑗 as unbiased samples of

the process 𝑌𝑡𝑗 .

6.9 Simulation and Policy Details

For each patient, we randomly sample outcome measurement times from a homogeneous Poisson

process with with constant intensity 𝜆 over the 24 hour period. Given the measurement times,

outcomes are sampled from a mixture of three GPs. The covariance function is shared between all

classes, and is defined using a Matérn 3/2 kernel (variance 0.22, lengthscale 8.0) and independent

Gaussian noise (scale 0.1) added to each observation. Each class has a distinct mean function pa-

rameterized using a 5-dimensional, order-3 B-spline. The first class has a declining mean trajectory,

133



the second has a trajectory that declines then stabilizes, and the third has a stable trajectory.4 All

classes are equally likely a priori. At each measurement time, the treatment policy 𝜋 determines a

probability 𝑝 of treatment administration (we use only a single treatment type). The treatments

increase the severity marker by a constant amount for 2 hours. If two or more actions occur within

2 hours of one another, the effects do not add up (i.e. it is as though only one treatment is active).

Additional details about the simulator and policies can be found in the supplement.

Policies 𝜋𝐴 and 𝜋𝐵 determine a probability of treatment at each outcome measurement time.

They each use the average of the observed outcomes over the previous two hours, which we denote

using 𝑦(𝑡−2):𝑡, as a feature, which is then multiplied by a weight 𝑤𝐴 = −0.5 (𝑤𝐵 = 0.5 for regime 𝐵)

and passed through the inverse logit to determine a probabilty. The policy 𝜋𝐶 for regime 𝐶 depends

on the patient’s latent class. The probability of treatment at any time 𝑡 is 𝑝 = 𝛼𝑧𝜎(𝑤𝐴 · 𝑦(𝑡−2):𝑡),

where 𝛼𝑧 ∈ (0, 1) is a weight that depends on the latent class 𝑧. We set 𝛼1 = 0.2, 𝛼2 = 0.9, and

𝛼3 = 0.5.

6.10 Mixture Estimation Details

For both the simulated and real data experiments, we analytically sum over the component-specific

densities to obtain an explicit mixture density involving no latent variables. We then estimate the

parameters using maximum likelihood. The likelihood surface is highly non-convex. To account for

this, we used different parameter initialization strategies for the simulated and real data.

On the simulated data experiments, the mixture components for both the CGP and baseline

GP are primarily distinguished by the mean functions. We initialize the mean parameters for both

the baseline GP and CGP by first fitting a linear mixed model with B-spline bases using the EM

algorithm, computing MAP estimates of trace-specific coefficients, clustering the coefficients, and

initializing with the cluster centers.

On the real data, traces have similar mean behavior (trajectories drift around the initial cre-

atinine value), but differed by length and amplitude of variations from the mean. We therefore
4The exact B-spline coefficients can be found in the simulation code included in the supplement.
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centered each trace around its initial creatinine measurement (which we condition on), and use

a mean function that includes only the short-term and long-term response functions. For each

mixture, the response function parameters are initialized randomly: parameters 𝑎, 𝑏, and 𝑟 are

initialized using a LogNormal(mean = 0.0, std = 0.1); heights ℎ1 and ℎ2 are initialized using a

Normal(mean = 0.0, std = 0.1). For each mixture, Σ (L300) is initialized to the identity matrix; 𝛼

and 𝜈 are drawn from a LogNormal(mean = 0.0, std = 0.1).
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Chapter 7

Conclusion

As electronic health record systems become more widespread, there is increasing pressure on

providers to use that data in ways that improve patient outcomes, drive down costs, or both.

It is still an open question how to best accomplish these goals. In this thesis, we studied disease

trajectory subtyping and prediction. Subtyping has the potential to further our understanding of

the underlying biological mechanisms that drive a disease, which can guide clinical decisions and

lead to new therapies [Saria and Goldenberg, 2015]. Accurate predictive models of disease trajecto-

ries can improve clinical decision-making [Feinstein, 1983, Spiegelhalter, 1986] and can also lead to

new clinical trial enrichment strategies [Simon and Maitournam, 2004, Temple, 2010, Freidlin and

Korn, 2014]. We showed that there are several important types of bias that we must account for

in order to successfully tackle subtyping and prediction using EHR data, and we proposed novel

methods for doing so.

There has been a tremendous amount of growth in the machine learning for healthcare literature

over the past several years. How do the ideas in this thesis tie into recent trends? One trend is

an intense focus on applying deep neural networks to healthcare data (e.g. Lipton et al. 2015,

Rajkomar et al. 2018, Tomašev et al. 2019). Although we did not use deep neural networks in our

experiments, many of the findings are still relevant. First, none of these methods consider policy

shift and so are vulnerable to the failures discussed in Chapter 6. Second, unobserved heterogeneity

is not a problem that can be solved by richer models, so neural networks still need to account for
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this issue. Recurrent neural networks (RNNs) make predictions using the full history of a time

series, and so they could, in principle, learn to output the posterior predictive distribution of the

hierarchical latent variable model that we propose in Chapters 4 and 5. It is not clear, however,

whether RNNs will actually replicate this behavior in practice (the inductive bias may not be

strong enough). Moreover, to apply RNNs to sparse and irregularly observed disease trajectory

data, we must first discretize the data (recent work by Chen et al. 2018 relaxes this constraint,

but this approach is still nascent). As we showed in Chapter 6, discretizing by binning a continous

time series can introduce confounding and make the model sensitive to policy shift (and therefore

make it less reliable). Moreover, state-of-the-art techniques for handling missing data in clinical

trajectory data induces a dependence on measurement policies [Lipton et al., 2016], which, like

policy shift, can make the model less reliable. Causal inference and missing data are closely related

problems (see e.g. Tsiatis 2007), so the ideas from Chapter 6 may help to remove the dependence

on measurement policy.

Another recent trend in the machine learning for healthcare literature is a growing interest in

using reinforcement learning to automatically learn optimal treatment policies from EHR data.

For example, Prasad et al. [2017] learn a policy for weaning off of mechanical ventilators, and

Komorowski et al. [2018] learn a policy for giving fluids to septic patients. Surprisingly, few of these

studies address unobserved confounding and the potential effect it can have on the policies that

we learn. Moreover, practioners often discretize time series data prior to applying reinforcement

learning algorithms, which can introduce confounding bias (Chapter 6). Although confounding was

recently mentioned in a short comment by Gottesman et al. [2019], the issue has still not been fully

addressed by the RL community. The work in this thesis shows that there are still a number of

complexities that make unsupervised and supervised machine learning on EHR data difficult. In

our opinion, the machine learning for healthcare community should further map out and understand

these complexities before solving the more challenging problem of using reinforcement learning to

automatically treat patients. Many of the findings in the unsupervised and supervised settings

will likely be applicable to reinforcement learning, and will help to build confidence that we are
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developing safe and reliable technologies.

Finally, the broader machine learning community has recently started to investigate the reli-

ability of predictive models. Much of the work in this area has focused on model reliability in

response to adversarial attacks (e.g. Goodfellow et al. 2015). In this thesis, we instead focus on

reliability under shifts in the distribution of the data. We proposed using causal models as a means

to proactively account for shifts before seeing any data from the test distribution. Others have

generalized and improved on these ideas (e.g. Subbaswamy and Saria 2018, Subbaswamy et al.

2019, Rothenhäusler et al. 2018). As an alternative, there has been an independent stream of

work that uses samples from multiple distributions to learn robust causal models (e.g. Gong et al.

2016, Parascandolo et al. 2018) with fewer upfront assumptions. This alternative approach may be

valuable in healthcare as we begin to aggregate datasets across EHRs from multiple institutions. A

promising line of future research is to blend the essential ideas from these two approaches. A com-

bined strategy would benefit from the ability to inject domain knowledge through causal graphs,

and from the flexibility of data-driven approaches that adapt to shifts observed in our data.

Looking beyond recent trends in the machine learning community, there are increasing efforts

within hospitals to deploy EHR-based decision support tools. For example, data from the EHR

can be used to generate alerts and warn providers that a patient is at risk of an adverse event. The

majority of work studying these systems, however, uses modified versions of static clinical criteria

to generate alerts and have not demonstrated any clinical benefit (e.g. Al-Jaghbeer et al. 2018,

Downing et al. 2019). Although predictive models are recognized as a powerful alternative for gen-

erating alerts that may lead to better outcomes, there are no studies to date that have conclusively

demonstrated improvements. Judging by the literature, supervised learning in healthcare is far

from being a solved problem. There is still a considerable amount of ground to cover in order to

understand how to build machine learning systems that meaningfully augment provider decisions

and lead to improved patient outcomes. In our opinion, this is the most exciting future direction

for the machine learning for healthcare community. By actively engaging with stakeholders across

healthcare institutions (e.g. medical, quality improvement, and financial teams) and deploying real
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systems to solve their most pressing problems, our community has an opportunity to see where

some of the fundamental ideas in the machine learning literature fall short. Just as internet search

and advertising has driven innovation in machine learning over the past several decades, we believe

that pushing the boundaries of applied ML in high-impact areas such as healthcare will spur the

next generation of foundational ideas in our field.
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