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Abstract

Although we are in an era of precision cosmology, there is still much about our

Universe that we do not know. Moreover, the concordance ΛCDMmodel of cosmology

faces many challenges at all scales relevant to cosmology. Either discrepancies have

been discovered with ΛCDM predictions or the model has simply broken down and

is not a useful predictor. The current rate of expansion is incorrectly predicted by

ΛCDM, as are the size and distribution of dwarf halo galaxies for Milky Way like

galaxies. Obtaining the observed cores in galaxies with the standard description of

dark matter is troublesome and requires more than the base ΛCDM model, as does

understanding star formation and how it impacted galaxy evolution requires much

more than base ΛCDM knowledge and many more.

My work focuses on probing different scales in cosmology with different techniques

to extract information about our Universe and its history. I use ultra-high-energy

cosmic-rays (UHECRs) as a probe of the local universe and tested tidal disruption

events (TDES) as a possible source of the UHECRs. By analyzing energy require-
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ments, source densities and observed fluxes, I find that TDEs can explain the observed

UHECR flux. The assumption of TDEs as the source of UHECRs can lead to a a

measurement of the density of super massive black holes which reside in the center

of galaxies. At a larger scale, I build a tool to extract the luminosity function of CO

from star-forming galaxies with line intensity maps (LIMs) and convolutional neural

networks (CNNs). This new technique allows a faster analysis of LIMs in a more

model-independent way than previous techniques. Finally, at the largest observable

scales, I probe potential dark matter interactions and their impact on the cosmic mi-

crowave background (CMB). This work explores how different dark matter interaction

mechanisms impact the CMB when considered simultaneously and individually.

As cosmology is a science of many scales, all of these scales must be studied to

improve our understanding of the Universe. Dong so, my thesis has wide-ranging

implications for cosmic-rays, star formation and galaxy evolution, and dark matter

interactions.
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Chapter 1

Introduction

Cosmology is a field of many scales with different physics governing these different

scales. The universe itself is large, but its history and evolution vary based on what scale is

being considered. Dwarf galaxies orbiting Milky-Way-like galaxies are described differently

than the large-scale structure governing superclusters of galaxies. At still larger scales, cos-

mologists study the cosmic microwave background (CMB), the oldest light in the Universe,

the scale of which is the size of the observable Universe. At the other end of the spectrum,

the physics of very small scale is also relevant to cosmology. The early universe was a much

denser and hotter place and is described by particle physics. Therefore, in attempting to

understand the nature of the universe, we must learn about physics at many scales.

Due to its agreement with numerous data sets, the flat ΛCDM model has become the

concordance model of cosmology [1–13]. Within ΛCDM there is radiation, baryon, cold dark

matter (CDM) and dark energy. Radiation encompasses either photons or any relativistic
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CHAPTER 1. INTRODUCTION

species of matter and is negligible in terms of its impact on the universe today. Baryons or

what people generally consider as normal matter make up roughly 5% of the energy density

of the universe. A slightly different form of matter is cold dark matter which accounts for

25% of the energy density of the universe. It is cold because it has little to no thermal

velocity and is dark because we do not observe it through interactions with photons [14,15],

but rather only gravitationally [16–18]. The rest of the universe, around 70%, is in the form

of dark energy which would explain the accelerated expansion of the universe [19–22]. Dark

energy can take many forms, but the simplest model that is extremely successful is that it

is a cosmological constant Λ.

Although ΛCDM does an excellent job of describing the universe, it is not perfect and

there is much room for improvement. Nearly perfect fluids are used in ΛCDM to describe

the components of the Universe. Small perturbations to these fluids describe the growth and

formation of structure. However, this approach fails when perturbations become too large

and non-linear as they must to correctly evolve to today’s Universe. CDM can explain the

density profiles, number densities and hierarchical nature of galaxies, but does not correctly

predict the density profiles in the center of galaxies, nor the right number and size of dwarf

galaxies [23–29]. Small changes to the CDM model such as allowing the dark matter to

self-interact may alleviate some of these issues [24, 30, 31]. These changes would leave an

imprint in the CMB. However, dark matter is not the only ingredient in our Universe,

galaxies also contain baryons. Complex baryonic physics also influences galactic structure

formation. Baryons may cause feedback in galaxies and shape the distribution of matter

within [32–36]. It is possible that baryonic physics may be a solution to the lack of dwarf
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CHAPTER 1. INTRODUCTION

galaxies observed [37–39]. Our observations of the Universe depend on the light we observe,

but that can be heavily influenced by the baryonic physics within galaxies that is not fully

understood. To uncover the mysteries of the Universe, my research is focused on probing

the universe at different scales to better understand its structure and evolution.

This thesis is divided into the following chapters. In Chapter 2, I present my work

with ultra-high-energy cosmic rays1(UHECRs), both within an observed hot spot and the

isotropic flux. In this work, I concentrated on the local universe and was interested in the

energetics and distribution of sources required to produce the observed UHECR flux [40]. I

find that tidal disruption events (TDEs) could be a possible source of the observed UHCER

hot spot as well as the isotropic flux due to their rates, density of source black holes and

fraction of energy that can be converted from the TDE itself into UHECRs. Simply put,

TDE happen when a star comes close enough to a super massive black hole (SMBH) such

that gravitational tidal forces overcome the binding energy of the star and tear it apart.

Some fraction of the star will then form a short-lived accretion disk that produces an

intense flair [41]. Jets can be produced by the TDEs that can then accelerate particles

to ultra-high energies. On a slightly larger scale, I was interested in how one can extract

information from line intensity maps (LIMs). LIMs are three dimensional images that

are obtained by observing a single spectral line at multiple redshifts. They give us a low

resolution spatial map of the structure of the universe and can access previously un-probed

regions of the universe. In Chapter 3, I present my work in a new, semi-model-independent

framework to extract the luminosity function of the source galaxies from LIMs. Instead

of the conventional power spectrum and voxel intensity distribution technique, I make use
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CHAPTER 1. INTRODUCTION

of the machine-learning tool of convolutional neural networks [42]. Finally, in Chapter 4,

I explore the largest distance scales in cosmology with the CMB, in particular, the effects

of DM interacting with the visible sector on this observable. Here I compare and contrast

the effects of DM-baryon scattering and DM self annihilation on the CMB and determine

the circumstances that dictate which of these effects dominates the resultant constraints [in

preparation]. Doing so, I find regions where the two effects are comparable and must both

be considered to derive constraints. In these regions, new CMB observables are predicted.

Furthermore, two specific models are tested and I find caveats to the general predictions of

which interaction dominates.

Of the many scales relevant to cosmology, in Chapter 2, I explore the smaller, inter-

galactic scales with UHECRs. In the past decade, the ability to observe UHECRs has

improved significantly with the advent of the Pierre Auger Observatory (PAO) and the

Telescope Array (TA). Recently, both the TA and the PAO have detected regions of excess

UHECRs as compared to an isotropic background [43, 44], with statistical significances of

≳ 3σ and ≳ 2σ, respectively. Even barring the observed excesses, the sources of UHECRs

themselves remain unknown.

This work explores the local universe for two reasons. Firstly, although UHECRs are

expected to be extra-galactic, they cannot come from too far away. UHECRs may interact

with CMB photons during their flight and lose a large fraction of their energy [45, 46].

UHECRs are hence not expected to survive a journey of more than 200 Mpc. Secondly,

the observed excesses are expected to originate somewhere close to the Milky Way. Due to

1For the purpose of this work, UHECRs will be defined as cosmic rays with energies above 57 EeV.
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intergalactic magnetic fields, the UHECRs will be randomly deflected during their flight [47].

Any source much farther than 4 Mpc away will spread out its cosmic rays over a large patch

of the sky rather than appear as a sky-localized excess.

Active-galactic-nuclei (AGN) and gamma-ray bursts (GRBs) have been suggested to be

UHECR sources, but they run into some unresolved problems [48–50]. We instead explore

the possibility of using TDEs to explain the UHECR flux. The flux of UHECRs we would

observe depend on a few factors. These factors include the distance to the host galaxy and

the mass of the SMBH. From the SMBH mass we can then determine the rate of TDEs

in a given galaxy [51]. While the UHECRs would be released during a small timescale, we

observe them over a long time scale (possibly tens of thousands of years) [47,52]. This spread

is due to the random strengths and orientations of intergalactic magnetic field orientations

along the path of the UHECR from the host galaxy to the Milky Way. Cosmic rays with

different energies are deflected differently and have different path lengths, spreading out

their arrival time. For the localized excesses, I investigated whether a single source could

both produce the amount of excess observed and do it continuously. The local UHECR hot

spot is used to fit parameters to determine the UHECR flux from a single TDE which is

then used to predict the isotropic UHECR flux that should be observed on Earth. I find

the expected isotropic flux is in rough agreement with the observed one. On relaxing some

assumptions that went into the calculation, the observational and theoretical fluxes can

match better.

Chapter 3 focuses on a new technique I engineered to gain information from line inten-

sity maps (LIMs). LIMs probe galaxy evolution and large-scale structure without resolving
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individual emitting sources. They map the aggregate emission of a single spectral line

over cosmological scales [53]. Specifically, this work relates to the carbon monoxide (CO)

Mapping Array Pathfinder (COMAP) experiment which maps the CO emission from star-

forming galaxies over redshifts 2.4− 3.4 [54]. The distance scale this work explores is of the

order of a few tens of thousands of Mpc (∼100 times larger than the scales in Chapter 2).

LIMs are a relatively new technique to conduct surveys that are not luminosity-limited.

This emerging field is still figuring out how to extract as much information as possible from

these maps. In this chapter, I develop a new technique to determine the underlying CO

galaxy brightness luminosity function from a LIM. There is no direct way to go from a

LIM to the underlying luminosity function so non-analytic techniques must be used. A

previous method involved running a Markov Chain Monte Carlo and assumed a physical

model to fit which parameters of the model would result in an LIM with a power spectrum

and voxel intensity distribution (PS/VID) that match that of the observed LIM [55]. This

technique is slow and strongly model dependent. My new method makes use of machine

learning, specifically convolutional neural networks (CNNs). A CNN is a machine-learning

tool meant for extracting information from images and a LIM is just a three-dimensional

image. The CNN was trained to take in a single LIM with possible noise and foregrounds

and to return the underlying CO galaxy brightness luminosity function. A specific model

was chosen to generate mock LIMs to train on, but the CNN was trained to be as model

independent as possible. I found that the trained CNN was as or more accurate than the

PS/VID method, as well as orders of magnitude faster and more robust. When tested on

mock LIMs made with a different underlying physical model, the CNN had biases in its
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expected luminosity function, but was still fairly accurate. More work must be done to

optimize the use of CNNs for LIMs, but this work was the first step in introducing their

use to the LIM community.

Finally, in Chapter 4, I compare the effects of dark matter annihilation and baryon

scattering on the CMB. The CMB contains information about the early Universe, a much

younger, denser and warmer place. A snapshot of the density perturbations at that time

is encoded in the temperature and polarization anisotropies of CMB light. The CMB is

a powerful tool to investigate the interactions of dark matter as it encompasses a large

range of scales - from the size of the observable universe down to the small scales of particle

physics and particle interactions. New dark matter interactions will change how these

perturbations evolved and what they looked like when the photons of the CMB last scattered

[13, 56–83]. Previous studies of the impact of interacting dark matter on the CMB have

generally focused on individual interactions at a time. It is unclear if these interactions

should be studied separately or if a joint analysis is necessary. My work aims to determine

the circumstances under which these interactions can be considered individually and when

they must be considered simultaneously as well as general classes of models for which either

interaction dominates the constraints.

By comparing interaction rates for baryon scattering and annihilation to their individual

CMB limits, I determined the scenarios in which scattering would dominate and when

annihilation would dominate the CMB constraints. I then test individual interaction models

to confirm the analytic prediction and check for new possible signatures in the CMB. For

these individual models, the analytic predictions were confirmed, and regions of parameter
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space were found where both models equally impacted the CMB leading to new features in

the CMB power spectra.

By probing the universe at different scales, we obtain different information about its

structure and evolution. The flux of UHECRs gives information about the density and

distribution of local galaxies as well as a test of astrophysical mechanisms required to

produced them. The CO LIMs explore properties of galaxies around the peak of star

formation. Through the CMB power spectra, we can learn about the early universe as well

as the particles that make up everything. Combining information from all these scales and

times will lead to a better understanding of our Universe.
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Chapter 2

Ultra-high-energy-cosmic-ray

hotspots from tidal disruption

events

In the past decade the ability to observe ultra-high-energy cosmic rays1(UHECRs) has

increased significantly with the advent of the Pierre Auger Observatory (PAO) and the

Telescope Array (TA). Recently, both the TA and the PAO have detected regions of excess

UHECRs as compared to an isotropic background [43, 44], with statistical significances of

≳ 3σ and ≳ 2σ, respectively.

The sources of UHECRs are still unknown. One possibility is active-galactic-nucleus

jets [48]. However, Ref. [84] derived a relation between the AGN electromagnetic luminosity

1For the purpose of chapter work, UHECRs will be defined as cosmic rays with energies above 57 EeV.
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and its UHECR luminosity. Reference [49] then used the Veron-Cetty and Veron catalogue

[85], along with this luminosity relation, to infer that the observed AGN are not luminous

enough to explain the full-sky UHECR flux. Gamma-ray bursts (GRBs) are also capable of

producing UHECRs [50], but they would have to have a rather flat spectrum of UHECRs

produced by an individual GRB and would have to yield far more energy to UHECRs than

to photons in order to explain the full-sky flux [84].

We consider a third mechanism as the dominant source of UHECRs, namely tidal

disruption events (TDEs). A star is disrupted by a super massive black hole (SMBH) when

it passes by close enough that tidal forces overcome the binding energy of the star. Some

fraction of the star then becomes bound to the SMBH and forms a short-lived accretion

disk which produces an intense flare2, while the rest continues on [41]. Some of the TDEs

produce jets, which were first proposed as a source of UHECRs in Ref. [84], and then

expanded upon in Ref. [52], which showed that they can generate the luminosity required

to account for the full-sky UHECR flux.

In 2014, the TA reported a “hot spot” of UHECRs in a circle of radius 20◦, centred

at a right ascension of 146.◦7 and declination of 43.◦2 [43]. Reference [86] tried to identify

possible extragalactic sources for the hot spot, taking into account possible deflection of

the UHECRs by Galactic and intergalactic magnetic fields. After accounting for random

deflections by stochastic intergalactic magnetic fields (IGMFs), they drew a straight line

through the images of the different rigidity bins of the events in the hotspot, expecting

2The SMBH does not need to be an AGN—i.e., actively accreting from the accretion disk—in order for
the disruption to cause rapid accretion. The in-falling gas from the disrupted star could form an accretion
disk with rapid accretion resulting in a relativistic jet outflow [84].
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the source to lie along this line. Two possible sources were identified, M82 and Mrk 180.

While Mrk 180 is located roughly 185 Mpc away, near the GZK radius, and is thus unlikely

to be the source, M82 is a starburst galaxy only 3.8 Mpc away [87] and moreover has a

∼ 3× 107M⊙ SMBH at its centre [88]. The SMBH does not exhibit any AGN activity.

Likewise, the Pierre Auger Observatory has noted a “warm spot,” an excess of events

in the direction of Centaurus A (Cen A). Cen A is also (coincidentally) approximately 3.8

Mpc away [89], with a SMBH with a mass estimated to be 5× 107M⊙. Unlike M82’s, this

SMBH does exhibit AGN activity.

In this chapter we investigate whether the TA hotspot can be explained by TDEs

in M82. We first derive basic constraints to the model parameters from timescale and

energetic arguments. We surmise that the UHECR hot spot is in roughly steady state in

which the UHECR flux results from several TDEs that have occurred within the timescale

for dispersion of a burst signal due to deflections in the Galactic and intergalactic magnetic

fields (although we do briefly consider the possibility that the hot spot arises from a single

burst.) This hypothesis is consistent if UHECRs are composed of protons or heavier nuclei

such as iron, although the consistent parameter space is a bit smaller for heavier nuclei.

Similar arguments apply to the warm spot from Cen A. We then investigate whether the

UHECR luminosity density implied by the observed fluxes from the SMBHs in M82 and

Cen A is consistent with the isotropic UHECR intensity that is observed. We find that

the isotropic flux inferred in this way is higher, by about a factor of 16, than the observed

isotropic flux, but we point out several factors that might alleviate the apparent discrepancy.
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The rest of this chapter is organized as follows. In Section 2.1, we review briefly the

evidence for the TA hot spot and the PAO warm spot and provide the fiducial values we use

for the hot-spot and warm-spot fluxes as well as the isotropic UHECR intensity. In Section

2.2 we discuss the constraints to TDE scenarios for the UHECR hot/warm spots that arise

from energetics and timscale considerations. In Section 2.3 we consider constraints to the

scenario that arise from consistency of the hot/warm-spot fluxes with the isotropic UHECR

intensity. In Section 2.4 we summarize, review the successes and weaknesses of the TDE

explanation for the hot/warm spots, and close with some speculations. In Section 2.5 we

conclude by considering some possible future measurements.

This chapter is based heavily on work in [40] with coauthors Ely D. Kovetz and Marc

Kamionkowski.

2.1 The hot and warm spots

The TA Collaboration reports evidence [43] for a UHECR excess in a circle of 20◦

radius. Because the TA does not report a value for the intensity in the hot spot, we use a

value from Ref. [90] who infer the (number) intensity Jhs in this hot spot to be,

E2Jhs = (4.4± 1.0)× 10−8GeV cm−2 s−1 sr−1, (2.1)

at an energy E = 1019.5 eV. The hot-spot energy flux in UHECRs with energies > 57 EeV

is Fhs = Ω20◦
∫∞
57EeV E Jhs(E) dE, where Ω20◦ ≃ 0.38 sr is the hot-spot solid angle. The
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energy dependence of Jhs(E) at energies above 57 EeV is, however, quite uncertain in the

hot spot, and even for the full-sky flux [see, e.g., Fig. 7 in Ref. [91], which shows considerable

disagreement between PAO and TA at the highest energies], so we use
∫∞
57EeV E Jhs(E) dE =

E2 Jhs|E=57EeV. We therefore take the energy flux in the hot spot to be,

Fhs = 1.7× 10−8 F1.7 GeV cm−2 s−1, (2.2)

and keep the quantity F1.7, which parametrizes our uncertainty in the flux, in our expressions

below.

Likewise, we take the observed isotropic (energy) intensity above 57 EeV to be Io =

7.9 × 10−9 GeV cm−2 s−1 sr−1. We take this value from Ref. [91] which uses data from

Refs. [92] and [93]. Again, to be consistent with our treatment of the hot-spot flux, we take

this to be the value of E2 Jiso at E = 57 EeV. This isotropic flux appears below only in

comparison to the hot-spot flux, and so it is appropriate to treat the full-sky flux in the

same way as the hot-spot flux.

We estimate the UHECR energy flux from Cen A implied by the PAO warm spot as

follows: Ref. [94] finds 13 events within a circle of radius 18◦, where 3.2 are expected from

an isotropic distribution. We thus take the energy flux from Cen A to be (13−3.2)/3.2 ≈ 3

times the isotropic energy flux in that circle, or

Fws = 7.6× 10−9GeV cm−2 s−1, (2.3)
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keeping in mind the considerable uncertainty in this value.

2.2 Time scales and energetics

Our aim here is to understand whether TDEs from accretion of stars onto the SMBH in

M82 may be responsible for the UHECR hot spot. We begin with some basic considerations,

starting with time scales.

The hot spot is observed to be spread over an angular region of size θ ∼ 20◦. Such a

spread is to be expected due to scattering in turbulent intergalactic magnetic fields (IGMFs)

as the UHECRs propagate the 3.8 Mpc distance from M82, and there may be additional

scattering (particularly for iron nuclei) from magnetic fields in the Milky Way. The rms

deflection angle for a UHECR of charge Z in a homogeneous turbulent magnetic field in

the limit of small deflections per coherence length is [47],

δrms ≈ 3.6◦ ZE−1
20 r

1/2
100λ

1/2
MpcBnG,rms, (2.4)

where BnG,rms is the rms strength of the magnetic field in nG, E20 is the UHECR energy in

units of 1020 eV, r100 = r/100 Mpc is the distance over which the magnetic fields act, and

λMpc is the magnetic-field coherence length in units of Mpc. We take δrms = θ/2 so that

a 2-dimensional region of size θ encloses ∼ 86% of the events. Consider first scattering in

Galactic magnetic fields. Characteristic values might then be λMpc ∼ 10−4, r100 ∼ 10−4,

and BnG ∼ 103 [95], implying Galactic deflection angles δrms,GMF ∼ 0.36◦Z. We thus infer,
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for these values, that for iron nuclei all the scattering could conceivably arise from Galactic

magnetic fields, although for protons, the scattering must arise in the IGMF. The value of

λMpc within the Milky Way is, however, not fully agreed upon yet [95]. A value of λMpc

slightly larger than 10−4 would still give a δrms ∼ 10◦ for iron nuclei, but a smaller value

would require the scatter of iron nuclei in the IGMF to be comparable to or greater than the

scatter in the GMF. Although we have surmised that UHECRs are dispersed by turbulent

magnetic fields, there could also be some additional dispersion due to coherent fields [96] in

the Galaxy.

Either way, scattering in magnetic fields also gives rise to a spread [50,52]

τ ≃ 3× 105
(
r100BnG

E20

)2

λMpcZ
2 yrs

≃ 3.5× 105
(
δrms

3.6◦

)2

r100 yrs, (2.5)

in the arrival times for UHECRs from a single TDE. Thus, if all the scattering takes place

in the Milky Way, for which r100 ∼ 10−4, then δrms ∼ 10◦ implies a dispersion of τ ∼ 270

yrs in the UHECR arrival times. If scattering occurs primarily in IGMFs, then the spread

in arrival times is τ ∼ 105. This is also roughly the same value of τ for iron nuclei if they are

scattered a comparable amount in the IGMF and GMF. We thus infer that UHECRs are

spread in arrival time by some magnetic-dispersion timescale 270 yrs ≲ τ ≲ 105 yrs, with

protons and iron nuclei at the higher end for a strong IGMF and iron nuclei at the lower

end only if there is an extremely weak IGMF (BnG ≈ 10−3 nG).

We now consider energetics. If the observed flux of UHECRs in the hot spot is Fhs ≃
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1.7 × 10−8 F1.7 GeV cm−2 sec−1, then the implied isotropic-equivalent source luminosity

is L = 4πD2F ≃ 8.3 × 10−7 F1.7M⊙c
2 yrs−1 (where D = 3.8 Mpc is the distance). If

the observed UHECRs are due to a single TDE spread over a time τ , then the isotropic-

equivalent energy implied with τ ≃ 270 yrs, the minimum τ possibly allowed for iron

nuclei, is 2.2 × 10−4 F1.7M⊙c
2. If the dispersion time is τ ≃ 105 yrs, the value required

for protons, then the isotropic-equivalent energy is 8.3 × 10−2 F1.7M⊙c
2. Of course, if the

TDE is beamed into a solid angle that subtends a fraction Ωjet ∼ 0.1 of 4π, then the energy

requirements can be relaxed by a factor ∼ 10. Still, we conclude that if UHECRs are iron

nuclei, the hot spot is conceivably due to a single burst. If the UHECRs are protons, the

energetics are prohibitive, unless the Milky Way magnetic-field parameters are altered so

that the angular spread in the hot spot arises from scattering in the Milky Way. Even if

the energetics can somehow be worked out, the notion that we are seeing a hot spot just

from M82 because of some chance occurrence (an extraordinarily energetic TDE at just the

right time) is unsatisfying, and even more unsatisfying if we must also explain the warm

spot as some similar chance occurrence in Cen A.

Another possibility is that the observed hot spot arises not from a single TDE, but

from a number of TDEs in M82. This may occur if the dispersion τ in arrival times

exceeds the typical time ∆t between TDEs in M82. If so, then we are seeing UHECRs from

N ≃ (τ/∆t) ≳ 1 bursts at any given time. The hot-spot flux in this case will vary by a

fractional amount ∼ N−1/2 over timescales ∼ τ . However, over the ∼ 5-yrs observation,

the observed flux will remain effectively constant. This scenario, as we will now show, is

plausible.
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We suppose that stars (which we assume for simplicity to all have a mass M⊙) are

captured by the SMBH with a rate Γ. We then suppose that only a fraction ζ produce

the type of jets that can accelerate UHECRs and that a fraction ξ of the stellar rest-mass

energy M⊙c
2 goes into UHECRs. We further suppose that the UHECR emission may be

beamed into a fraction Ωjet of the 4π solid angle of the sphere. In order to obtain the

observed UHECR hot-spot flux in steady state, we require that stars be captured by the

SMBH at a rate,

Γ = 8.3× 10−7

(
ΩjetF1.7

ξζ

)
yrs−1. (2.6)

The mean time between UHECR-producing events is

∆t = (ζΓ)−1 = 1.26× 106
ξ

ΩjetF1.7
yrs. (2.7)

Both equations (2.6) and (2.7) are for a single SMBH with jets produced by TDEs pointed

at the Earth. Here we are assume that all of the jets produced by TDEs from a particular

SMBH will always point in the same direction. If we were to assume that the direction of

these jets were uncorrelated with each other, then an extra factor of Ωjet would need to

be added to equations (2.6) and (2.7). The new factor of Ωjet would cancel out with the

previous because only Ωjet percentage of jets would be beamed towards the Earth. If this

mean time is to be smaller than the magnetic-dispersion time τ , we require

ξ

ΩjetF1.7
≲ 7.7× 10−2 τ5, (2.8)

where τ5 is the magnetic-dispersion time in units of 105 yrs.
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We now compare the mass-accretion rate implied by equation (2.6) with the Eddington

rate Ṁ = LEdd/c
2 ≃ 3.8 × 1045M3 erg s

−1/c2, where M3 is the SMBH mass in units of

3 × 107M⊙, for M82. Assuming that half of the disrupted star’s mass is accreted, we find

that the mass-accretion rate is smaller than Eddington if

ξ

ΩjetF1.7
≳ 6.0× 10−6M−1

3 ζ−1. (2.9)

It is not, strictly speaking, required that this condition be respected. It is conceivable that a

SMBH could appear quiescent, even with a super-Eddington time-averaged mass-accretion

rate, if the accretion is episodic. Still, the scenario may be a bit more palatable if we do not

have to wave away a super-Eddington accretion rate in this way. Or put another way, it is

simply interesting to note that the scenario can work with a sub-Eddington time-averaged

accretion rate as long as equations (2.8) and (2.9) are satisfied, or as long as

ζ ≳
7.6× 10−5

τ5M3
. (2.10)

This quantity must be ζ ≤ 1, and is estimated to be ζ ∼ 0.1 [52] (although that is a value for

the average over all SMBHs, and does not necessarily apply to a single SMBH). Such a value

is easily accommodated if τ5 ∼ 1, as we might expect for UHECR protons, and even fits for

iron nuclei, for which the lowest possible magnetic dispersion time gives τ5 ∼ 2.7× 10−3.

We have thus shown that the TA hot spot can be explained as a roughly steady-state

phenomenon by the sub-Eddington capture and tidal disruption of stars by the SMBH in

M82. The scenario works independent of whether the UHECRs are protons or iron nuclei,
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although the timescale parameter space is a bit narrower for iron nuclei, a consequence of

the larger deflection of iron nuclei in the Milky Way magnetic field.

2.3 Isotropic flux

We now investigate whether the isotropic UHECR flux implied by this scenario is con-

sistent with that observed under the assumption that the UHECR luminosity of M82 and of

Cen A are fairly typical for such SMBHs. This analysis applies not only to the hypothesis

that TDEs are responsible for the hot and warm spots, but to any scenario in which there

are hot/warm spots associated with Cen A and M82.

We begin with a simple analysis. The isotropic-equivalent luminosities of M82 and Cen

A are, respectively, 2.9×1043 F1.7GeV s−1 and 1.4×1043 F1.7GeV s−1. Both SMBHs are at

a distance R ≲ 4 Mpc, and so the UHECR luminosity density in a 4-Mpc sphere around us

is ρL ≃ 5.4 × 10−33F1.7GeV cm−3 s−1. If the UHECR emissions from Cen A and M82 are

both beamed into a fraction Ωjet of the 4π solid angle, then ρL is reduced by Ωjet. If M82 and

Cen A are not atypical, though, then there must be ∼ Ω−1
jet other beamed UHECR sources,

aimed in other directions, for every source that we see. This then cancels the Ωjet beaming

reduction leaving ρL unchanged. Since both Cen A and M82 appear, in the jetted-TDE

scenario, to be aimed at us, we infer that Ωjet is unlikely to be small in this scenario. The

tension we will find below between the hot/warm-spot fluxes and the isotropic intensity can

be relaxed, though, if both Cen A and M82 just happen to be highly beamed and both in

our direction. If our local neighbourhood is not atypical, then ρL provides an estimate of

19



CHAPTER 2. TDES AND UHECR HOT SPOTS

the universal UHECR luminosity density. If the local density is greater by a factor fρ than

the cosmic mean density, then the universal UHECR luminosity density is ρL/fρ.

The isotropic UHECR intensity (energy per unit area per unit time per unit solid angle)

is

I =

∫ RG

0
dr r2 f(r)

ρL
4πr2

=
ρL
4π

∫ RG

0
dr f(r) =

ρLRG

8π
, (2.11)

where RG ≃ 200 Mpc is the GZK radius, and the second equality is obtained by ap-

proximating the fraction of UHECR energy emitted at a distance r that makes it to us

to be f(r) ≃ 1 − (r/RG) [97]. If the TA hot spot and PAO warm spot are real and

attributed to M82 and Cen A, respectively, then the isotropic UHECR flux should be

I = 1.37 × 10−7 F1.7 f
−1
ρ GeV cm−2 s−1 sr−1. This is, for fρ = 1, 16 times greater than the

isotropic intensity Io = 7.9 × 10−9 GeV cm−2 s−1 sr−1. The discrepancy cannot be allevi-

ated with a smaller value of F1.7 because, as discussed after equation (2.2), we are using

the specific intensities at E ≃ 1019.5 eV, which are fairly well determined, as proxies for the

full energy flux and isotropic intensity.

It is, however, likely that the tension can be alleviated, at least in part, with a value

fρ > 1. The local overdensity is uncertain, but as one indication of the value of fρ, we can

use the total SMBH mass in the R ≃Mpc sphere, assuming that the UHECR luminosity

density is proportional to the density of mass SMBHs. In addition to the SMBHs in Cen

A and M82, there is also the ∼ 4 × 106M⊙ SMBH in the Milky Way and the ∼ 108M⊙

SMBH in Andromeda, a ∼ 7.7 × 107M⊙ SMBH in M81, as well as a ∼ 106M⊙ SMBH in

M32. This totals to ∼ 2.5 × 108M⊙ in SMBHs within a distance R ≃ 4 Mpc implying a
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local SMBH density ≃ 9.3 × 105M⊙ Mpc−3, roughly 3 times the universal SMBH density

≃ 2.9× 105M⊙ Mpc−3 [98]. There is still residual factor of ∼ 5 discrepancy that remains,

even accounting for this fρ ∼ 3, that must be accounted for if the TDE explanation for the

TA and PAO hot spots is to remain viable. This level of discrepancy is we believe, given the

order-of-magnitude nature of the analysis, as well as the measurement and astrophysical

uncertainties, not necessarily fatal for the TDE scenario. The local luminosity density ρL we

inferred could have been reduced a bit by considering a sphere of slightly larger radius; there

are uncertainties almost of order unity in the measured fluxes; and the Poisson fluctuation

in our inference of ρL is also of order unity.

So far we have been using the UHECR flux from M82 and Cen A to infer a luminosity

density, and the uncertainty from small-number statistics has been noted above. There is,

however, an additional uncertainty that may arise from the dependence of the mean TDE

rate on SMBH mass. SMBHs are distributed with a mass function dn/dM [98, 99], and

there is evidence that the TDE rate varies with the SMBH mass. We infer an UHECR

luminosity density from measurement of the UHECR flux from one or two ∼ 3 × 107

SMBHs. Suppose, though, that the TDE rate varies as Γ(M) = Γ(M = 3×107M⊙)(M/3×

107M⊙)
−β. The luminosity density we infer from the measured M82 flux would then be

Ltde

∫
(dn/dM)(M/3 × 107M⊙)

−β, where Ltde is the UHECR luminosity from one burst.

If we then use the best estimate β ≃ 0.22 from Ref. [51], the SMBH mass function from

Ref. [98], and integrate from 105M⊙ (below which there is little evidence for SMBHs) to

108M⊙ (above which stars will be swallowed without being tidally disrupted [100]), we

find—unfortunately for the TDE scenario—a luminosity density ∼ 1.7 times higher. This
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power-law index β is, however, quite uncertain, and if we suppose that it is instead β ≃ 0.5,

then the inferred luminosity density is decreased by ∼ 0.5. This may thus provide some

wiggle room for the tension between the M82 and Cen A fluxes and the isotropic intensity,

although is unlikely to be the entire explanation. Changes to the upper and lower limits of

integration do not alter this conclusion. We do note that the masses of the SMBHs in Cen A

and M82 are quite similar, both around (3−5)×107M⊙. If, for some reason, the TDE rate

were to be maximized for SMBHs of this mass, and smaller for SMBHs of both lower and

higher masses, then the universal UHECR luminosity could be reduced significantly relative

to what we inferred above. In this case, the high fluxes toward M82 and Cen, relative to

the isotropic intensity, would be a consequence of our chance proximity to two SMBHs of

this specific mass.

The tension between the hot/warm-spot fluxes and the isotropic intensity may also be

relaxed if UHECR consist at the source, at least in part, of other nuclei, like helium, carbon,

nitrogen, or oxygen. The path length of such nuclei through the intergalactic medium is

far smaller than the ∼ 200 Mpc GZK distance of protons and iron nuclei [97]. If there is

significant UHECR production in such nuclei, then the isotropic intensity inferred from the

measured D ≲ 4 Mpc luminosity density will be smaller. Such a scenario implies a different

observed UHECR composition in the hot/warm spots and in the isotropic component. There

may already be some evidence for intermediate-mass nuclei in UHECRs [101].
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2.4 Discussion: TDE scorecard

The previous sections lead to the following conclusion: Energetics make it unlikely,

although not impossible, that the hot spot toward M82 is the result of a single burst, a

tension that is probably greater if UHECRs are protons rather than iron nuclei. Disper-

sion in galactic and intergalactic magnetic fields disperse the UHECR arrival times. This

magnetic-dispersion time, if anything, has to be higher for protons than for iron nuclei.

The single-burst scenario is also unappealing as it implies that the hot spot is evanescent,

something that we see as a chance occurrence. This chance event is made even less likely if

the warm spot toward Cen A is also explained another chance event.

The energetics requirements are relaxed, though, if the UHECRs in the hot spot result

from a number of TDEs in M82 that have occurred over a magnetic dispersion time, a

scenario in which the UHECR fluxes in the hot/warm spots are roughly in steady state.

The required efficiency of UHECR production in each TDE event can then be reduced at

the expense of an increased TDE rate. We do show, though, that the TDE rates can still

remain low enough so that the time-averaged accretion rate in M82 remains sub-Eddington,

something that may be desirable, though not necessarily required, to explain the quiescent

nature of the SMBH in M82. (This is less of a concern, of course, for Cen A, which is

quite active.) This latter, softer, requirement, is satisfied, though, only at the expense of

introducing a slight tension in the required UHECR efficiency per TDE. That tension can

be reduced if the TDE is highly beamed. Significant beaming introduces, however, the

notion that the UHECR flux from M82 results from our chance position within the TDE’s
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jet, an ingredient that is less appealing if we must also explain the PAO warm spot in terms

of TDEs from Cen A’s SMBH. Any significant beaming requirement for Cen A would also

be more difficult given that the radio observed jet in Cen A is not pointed toward us.

We note that the time between jetted TDEs in our scenario is a bit higher than the

rate expected from existing TDE statistics. Scalings between TDE rates and SMBH masses

derived in [51] suggest that the characteristic time between TDEs in a 3 × 107M⊙ SMBH

is Γ−1 ∼ 104 yrs. [52] estimate further that only a fraction ζ ∼ 0.1 of TDEs are jetted.

If we take this value for M82, then the time between UHECR-producing events is roughly

the same as the magnetic-dispersion time. There are, however, considerable uncertainties

in these estimates, and there may also be considerable variation between the jetted fraction

for one particular SMBH and the mean inferred by averaging over all SMBHs.

We then investigated the isotropic flux of UHECRs that is expected if the sources

of UHECRs in M82 and Cen A are not atypical. This analysis applies not only to the

hypothesis that the UHECR sources in M82 and Cen A are TDEs, but to any scenario in

which there are hot/warm spots from Cen A and M82. The observed UHECR fluxes from

M82 and Cen A imply a local UHECR luminosity density. We find that if the universal

UHECR luminosity density is taken to be this local luminosity density, then the isotropic

UHECR intensity is about 16 times larger than that observed. There is, however, some

evidence that the local mass density in SMBHs is higher, perhaps by ∼ 3, than the universal

density. Even so, there is still a tension, at the ∼ 5 level, between the hot/warm spot

fluxes and the isotropic intensity. Possible explanations for this residual tension may arise

from our underestimate of the local overdensity; small-number statistics in the number of
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SMBHs; uncertainties in the characterization of the hot/warm spots; a mixed composition

of UHECRs including intermediate-mass nuclei with smaller GZK cutoffs; and/or some

SMBH-mass dependence of the TDE rate.

Before closing, it is interesting to wonder whether the SMBH ∼ 4 × 106M⊙ SMBH

at the centre of Milky Way should produce UHECRs [102]. The answer is probably not.

Assuming the Milky Way is a core galaxy, the expected time, from Ref. [51], between TDEs

for the Milky Way’s SMBH is 3.9 × 104 yrs. As discussed above, the magnetic-dispersion

time within the Milky Way can be, for reasonable magnetic-field parameters, quite a bit

smaller than this. It is thus not surprising that we do not see an UHECR hot spot toward

the Galactic centre, even if our SMBH does produce TDEs at the expected rate.

Finally, we speculate on the possibility that the IMBH in M82 (should the evidence for

that IMBH survive) may have something to do with the TA hot spot [103,104] . It may be

possible for IMBHs to produce their own TDEs. Another possibility is that IMBHs might

perturb the orbits of stars in a way similar to the Kozai mechanism, and thus increase the

rate of TDEs in the host galaxy [105]. The difference in the UHECR flux from M82 and

Cen A might thus be explained by an IMBH-enhanced TDE rate in M82 relative to what

it would be otherwise.

2.5 Conclusions

We have investigated the possibility that tidal disruption events fuelled by the accretion

of stars onto the SMBH in M82 could account for the hot spot reported by the Telescope
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Array and that TDEs onto the SMBH in Cen A could explain the warm spot seen by

the Pierre Auger Observatory toward Cen A. Given the measurement uncertainties and

considerable astrophysical uncertainties, it is difficult to make precise statements about the

viability of the scenario. Although there are some tensions at the order-of-magnitude level,

outlined in detail above, there is, as far as we can tell, no silver bullet that rules the scenario

out at the level of more than an order of magnitude.

Future measurements should help shed additional light on the viability of TDEs as

the sources of UHECRs. The viability of the TDE scenario for the isotropic flux has been

discussed in Refs. [84] and [52], but if the hot/warm spots are real and attributed to M82

and Cen A, then there are additional challenges discussed above. It will be interesting to

see if the evidence for the hot and warm spots continues with more data (or perhaps gains

additional support from independent measurements, such as ultra-high-energy-neutrino de-

tection). If so, the characterization of those fluxes should improve. For example, there may

be differences in the energy distribution of UHECRs in the hot/warm spots, that come from

3.8 Mpc, versus those in the rest of the sky, which come from much greater distances and

thus experience greater photo-pion absorption.
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Deconfusing intensity maps with

neural networks

A significant experimental effort is underway to study the high-redshift universe with

line intensity mapping (LIM). LIM experiments probe galaxy evolution and large-scale

structure without resolving individual emitting sources. Instead, these surveys map the

aggregate emission of a single spectral line over cosmological scales see [53] for a review

Because the target emission comes from narrow spectral features, one can observe at may

closely-spaced frequency bands to map the distribution of emitters in three dimensions.

Intensity maps can therefore access a large number of spatial modes for large-scale structure

measurement, and can study the statistical properties of large numbers of galaxies which

are too faint to detect individually.

This great potential science output has spurred the creation of LIM surveys targeting a
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number of different spectral lines. The first line targeted was the 21 cm spin-flip transition

in neutral hydrogen, which has been long known as a powerful probe of large-scale structure

and reionization [106] and references therein. The 21 cm intensity mapping signal has been

detected in cross-correlation by a pair of surveys [107–109], and a number of other surveys

have been completed or are in progress across a wide swath of cosmic history [110–116].

Recently, though, there has been a surge of interest in using other lines for intensity map-

ping. Different lines trace different processes and different phases in the interstellar- and

intergalactic media, and also have different experimental systematics. There are tentative

detections of intensity maps of Lyman-α [117], CII [118, 119], and CO(1-0) [120], and ex-

periments are underway or proposed to make definitive measurements of these and other

lines [54,121–130].

With this degree of experimental investment, it is important to develop the necessary

theory and analysis tools to interpret the results of these surveys. Several challenges remain

with this task. Line intensities are determined by complex and highly nonlinear gas physics

which can only be captured by quite sophisticated models see, e.g. [131]. As a result of

this complexity, many works focus on constraining intermediate statistical properties of the

target galaxies, typically either a relationship between halo mass and line luminosity [54]

or a line luminosity function [132].

This goal is made more difficult by the unresolved nature of intensity mapping data,

as we must construct statistics which link the intensity field and the underlying galaxy

distribution. For example, the power spectrum of a map can be used to determine the first

two moments of the target luminosity function [133, 134]. Further detail can be obtained
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using, for example, the one-point statistics of a map [55,132]. However, these statistics may

not suffice to extract all of the useful information from a confused, highly non-Gaussian

intensity map, especially given that the target line is rarely the only or the most dominant

source of emission. These statistics must be modified and lose additional information due

to the near-guaranteed presence of foreground contamination, both from local Milky Way

emission see, e.g. [135,136] and from extragalactic sources [137,138]. In light of the difficulty

of measuring a luminosity function from a contaminated map, it may be useful to consider

different analysis approaches. In this work, we will explore possibilities for applying machine

learning methods to intensity maps.

In recent years, machine learning (ML) methods have shown to be very useful for a

variety of applications in the field of cosmology1, and will continue to contribute significant

cosmological insights over the following decade and beyond [139]. The utility of machine

learning methods emerges from their ability to find patterns in data, and, in many cases,

to relate these patterns to higher-level information about samples from the data set. For

example, when applying a neural network to solve the classic computer vision application of

classifying handwritten digits, the network learns patterns in the spatial distribution of the

two dimensional pixel intensities in order to predict the higher-level class (an integer between

0-9) of an individual digit sample drawn from the test set. Similarly, in cosmology, machine

learning can be used on data from simulations, observations, or (possibly) a combination

of the two to predict cosmological or astrophysical parameters [140–145], perform model

discrimination [146,147], augment simulations and create synthetic data [148–154], identify

1comprehensive list at https://github.com/georgestein/ml-in-cosmology
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structures and predict their properties [155–157], or to reconstruct initial conditions [158],

among many other applications.

Convolutional neural networks (CNNs) are a common class of deep learning first pro-

posed in [159, 160] and popularized by the state-of-the-art classification results of [161].

CNNs are best designed to process data that come in the form of multiple arrays; the most

common example being the three colour channels, or RGB pixel arrays, of two dimensional

images, and they have had success in a wide variety of detection, segmentation, and recogni-

tion applications. A CNN transforms from an input N-dimensional array to e.g. a prediction

of which class the array belongs to. Convolutional layers consist of a number of filters, each

containing of a set of trainable weights (determined through backpropagation [162]) which

are applied to a series of local patches of the previous layer. This allows the network to de-

tect local features in the previous layer, and the network can learn higher-level information

in each succeeding level.

CNNs are therefore particularly suited to problems in cosmology that require environ-

mental multi-scale information to solve. For example, it is well known that the large-scale

structure of the universe is defined by the network of clusters (small), filaments (elongated),

and voids (large), of the cosmic web [163], each with differing physical scales. One may then

hope that if, for example, the observable signal from clusters is related to the surrounding

environment: the first levels of a CNN will extract features relevant to the scale of a cluster,

following levels will focus on features relevant to broader cluster environments, succeeding

levels will add features related to the large-scale distribution of matter in the universe,

and this multi-scale information will be combined in the final levels to make a prediction
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(see [164] for investigations into which input stimuli excite individual feature maps at any

layer in a model).

Although powerful in theory, many observational cosmological applications of super-

vised machine learning still have obstacles to overcome before becoming competitive with

alternative methods. Astronomy is a field of observation, and contains little to no possibil-

ity of experimentation. Additionally, the exact amplitude, extent, and spectral evolution

of many of the cosmic signals that we are attempting to detect in fields such as intensity

mapping are presently unknown, and labeled observational data sets are in many cases the-

oretically difficult or impossible to acquire. The field has therefore been focused more on

studies performed on synthetic data to determine the general viability of machine learning

methods to extract cosmic signals.

The use of synthetic data is not uncommon in machine learning applications [165,166],

but is generally used to augment small existing data sets and is followed by additional

training on the true labeled data. Currently this is not possible for many observational

cosmology applications, so we must hope that: a) the synthetic data perfectly reproduces

reality, and that by training on synthetic observations and using the network to predict on

a true observation of our universe therefore produces no biases or uncertainties (unlikely),

b) the network is sufficiently robust to any differences between the synthetic and real data

(e.g. unaccounted for instrument errors, unknown foreground contamination, etc.), and any

biases and uncertainties are well understood, or c) labelled training data from cosmological

measurements becomes plentiful enough to rely on, and machine learned methods outper-

form traditional ones. In this work we rely purely on synthetic data, and focus on scenario
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b). By first studying the ideal case of perfectly known cosmic signal and instrument noise,

and then extending to add unknown foregrounds and noise to mock up a real observation,

we can shed light on the true ability of a network trained on synthetic data to measure

cosmic signals.

This work is not the first attempt train CNNs on simulated intensity maps. Previous

works primarily study maps of the 21 cm spin-flip transition in neutral hydrogen [167–

170]. Many of these works focus on the Epoch of Reionization (EoR), where the signal is

dominated by emission from the intergalactic medium which is gradually becoming ionized

by emission from the first galaxies. In this work. we consider a different regime, where line

emission primarily comes from within individual galaxies. In this case, individual sources are

typically small compared to instrument resolution, so there is a well-defined line luminosity

function that we can seek to constrain. We focus on CO intensity mapping as opposed to

HI, which gives insight into the molecular phase of the high-redshift ISM. We seek to be

as model-agnostic as possible in our predictions by forecasting constraints on the value of

the luminosity function in different bins rather than constraining a specific parameterized

model.

For our fiducial survey, we consider a map of the CO(1-0) line at redshift z ∼ 3 made

by the CO Mapping Array Pathfinder (COMAP) experiment [54], currently taking data at

the Owens Valley Radio Observatory. The CO luminosity function probes the abundance of

molecular gas in high-redshift galaxies. As stars form from molecular gas, the CO luminosity

is an important probe of the broader galactic ecosystem see reviews by, e.g. [171–173]. As

stated previously though, our ML methods will be directly relevant to any line which is
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emitted by a population of discrete sources.

We demonstrate that for our fiducial model the neural network we create can recover

the luminosity function from a CO intensity map with accuracy comparable to that of con-

ventional methods. The accuracy only degrades slightly when contamination is introduced

from instrument noise and uncleaned foregrounds. However, when testing on models on the

fringes of our training space, or on models which were not trained at all, we find that the

network sometimes outputs substantially inaccurate results. These findings demonstrate

that, while machine learning methods have great potential for this type of data analysis,

care must be taken when using synthetic data to analyze real observations.

This chapter is organized as follows. In Section 3.1, we describe how we generate our

data and training set. In Section 3.2, we describe the CNN that we will train. In Section

3.3, we test the accuracy of our CNN on different scenarios for underlying LIM, noise

and foregrounds. In Section 3.4, we discuss the strengths and weaknesses of our CNN. We

conclude in Section 3.5. Throughout this work we assume a cosmology consistent with [174]

with Ωm = 0.286, ΩΛ = 0.714, Ωb = 0.047, h = 0.7, σ8 = 0.82, and ns = 0.96.

This chapter is based heavily on work in [42] with coauthors Patrick C. Breysse and

George Stein.
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3.1 Simulated Maps

Very little actual CO intensity mapping data currently exists, so as stated above we

have to resort to synthetic data to train our neural network. For this purpose, we use a set

of simulated CO line intensity observations constructed by coupling the LCO(Mhalo) model

of [54] to dark matter halo catalogues created using the Peak Patch method [175]. Our goal

is to train a neural network that can take one of these simulated maps as input and output

a list of galaxy abundances at given CO luminosities. In addition to the intrinsic CO signal

we add various noise sources to our maps, including the thermal white noise expected from

the COMAP experiment, possible point source foregrounds with continuum spectra, and

‘geometric’ noise from crude approximations of typical instrumental scan strategies. Our

simulations are not intended to fully reproduce the range of possible signals and noise in a

real CO experiment. Rather they are meant to explore how a CNN-based analysis might

perform in a variety of conditions.

Table 3.1 lists the experimental parameters we use for our mock LIMs. We represent

our generated LIMs as three dimensional arrays of size 64x64x10. Each element records the

total intensity measured at that location in the map. The first two dimensions are spatial

dimensions on the sky representing a 1.5◦×1.5◦survey field, while the third dimension carries

the spectral information. Although COMAP is designed with 512 frequency channels, we

intentionally degrade the frequency resolution of our mocks down to 10 channels due to

memory considerations. The 64x64 maps oversample the COMAP beam somewhat, so we

can add in the effects of COMAP beam smoothing by convolving each slice of our maps with
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Parameter Value

Beam FWHM (armin) 4
Frequency Band (GHz) 26-34

Redshift coverage 2.4-3.4
Channel width (MHz) 15.6

Noise per 16 arcmin2 voxel (µK) 11
Field size (deg2) 2.25

Table 3.1: Experiment setup for COMAP Phase one.

a 4′ Gaussian filter. For a given spectral line, the observed frequency directly determines the

emission redshift, so the third dimension in our maps represents the redshift (or distance,

given a cosmological model) of CO emitters along the line of sight. In all of the following,

a “voxel” refers to a single element in a three-dimensional map, and a “pixel” refers to all

of the voxels along a line of sight when the first two dimensions (position on the sky) are

kept constant.

3.1.1 Dark Matter Simulations

We generated the large ensemble of dark matter halo catalogues required to train our

CNN using the Peak Patch method, a fully predictive initial-space algorithm to quickly

generate dark matter halo catalogues in large cosmological volumes [175].

To cover the full redshift range of the COMAP experiment (z = 2.4 − 3.4), with no

repetition of structure, the simulation box size was (1140 Mpc)3 (comoving) and used

a cubic lattice of 40963 particles. This achieves a minimum halo mass of 2.5×1010M⊙

[M200,M ], comparable to values typically assumed for the minimum mass of a CO-emitting

halo [54,133], and when projected onto the sky results in a 9.6◦×9.6◦ field. We then separate
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the 9.6◦×9.6◦ area into multiple 1.5◦×1.5◦ patches to match the size of a COMAP field.

Each 1.5◦×1.5◦ patch we use does not overlap with any other to minimize nonphysical

correlations in our training data.

The efficiency of the Peak Patch method allowed for 161 independent full-size realiza-

tions in 82,000 CPU hours. The resulting halo catalogues contain roughly 54 million halos,

each with a position, a velocity, and a mass. Peak Patch has the ability to simulate contin-

uous light-cones on-the-fly, so stitching snapshots together was not required to create the

light-cone. The dark matter halo catalogues were additionally mass corrected by abundance

matching along the light-cone to [176].

3.1.2 CO Modelling

The peak-patch simulations described above give us a map of dark matter halos, which

we can turn into a CO intensity map by assuming a CO luminosity-halo mass relation. For

this purpose, we adopt the model of [54] which we briefly summarize here.

The model is defined by empirical parametric relations between the halo mass Mhalo,

star formation rate (SFR), infrared (IR) luminosity LIR, and the CO luminosity LCO, in

the following chain:

Mhalo
A−→ SFR

B−→ LIR
C−→ LCO.

A: The star formation rate of a given dark matter halo is obtained by using the results

of [177, 178], which empirically quantified the average stellar mass history of dark

matter halos as a function of halo mass and redshift. A log-normal scatter of σSFR is
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added to describe the scatter about the mean value.

B: IR luminosities are given through the relation

SFR = δMF × 10−10LIR, (3.1)

where the SFR is in units of M⊙ yr−1 and LIR is in units of L⊙.

C: CO luminosities are obtained from the total infrared luminosity, assuming a power-law

relation of the form

log LIR = αlog L′
CO + β, (3.2)

where L′
CO is in units of K km s−1, which we then convert in our final maps to bright-

ness temperature in µK. A second log-normal scatter of σCO is also added to describe

the scatter about this mean value.

This model therefore contains five free parameters: three parameterizing the mean

relations {δMF , α, β} and two parameters describing the scatter about the mean, {σSFR,

σLCO
}. In this work, we vary all five parameters about their fiducial values in the training

step [54]. We do not train our CNN to predict these model parameters as one may do with

a Markov Chain Monte Carlo (MCMC) or similiar analysis. Our CNN is trained to relate

LIMs to luminosity functions independent of model.

We want to train our network with maps simulated from a variety of different CO-halo

connections, which we can accomplish by generating training data using different parameter

values. We will refer to models generated with the fiducial [54] parameters ‘fiducial Li’ maps
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and maps generated with random parameters ‘random Li’ maps. Here ‘Li’ refers to the first

author in Ref. [54]. We take as “priors” on these parameters 10% of the priors quoted

in [54].

We used the publicly available limlam mocker2 package for line intensity mocks to

create the COMAP intensity mocks and corresponding luminosity functions from the 161

halo catalogues, resulting in 5796 possible independent 1.5◦×1.5◦ COMAP mocks for each

choice of parameters/noise/foregrounds. Figure 3.1 shows range of luminosity functions

generated for training purposes. As the luminosity increases, the variance of the luminosity

increases as well.

3.1.3 Noise and Foregrounds

2https://github.com/georgestein/limlam mocker
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Figure 3.1: Range of luminosity function values used while training. The shaded region is
the range where 95% of luminosity function values of a given luminosity fell. The orange
curve shows the ’Fiducial Li’ luminosity function and is different than the mean luminosity
function used in training. Note that the ’Fiducial Li’ curve is within 95% region of trained
luminosity functions.
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Model Type Summary Used for Training

CO Signal

Fiducial Li [54] CO-halo mass model with fidicual parameter values No
Random Li [54] model with randomly chosen parameter values Yes

Padmanabhan [179] CO-halo mass model with fiducial parameter values No
Less Bright Sources Random Li maps chosen to contain < 500 sources with L ≤ 106 L⊙ Yes1

Instrument Noise

No noise No added noise. Hypothetical sample-variance dominated measurement Yes
Fiducial Noise Thermal white noise with fiducial COMAP amplitude No
Random Noise Thermal white noise with amplitude drawn uniformly from [0, 7.98] Yes
Geometric Noise Added white noise to map edge with amplitude following Eq. (3.4) No

Foregrounds
No Foregrounds No added foregrounds, simulates perfect foreground cleaning Yes

Fiducial Foregrounds Point-source emitters drawn following [180] data No
Random Foregrounds [180] with random parameters Yes

1 ‘Less Bright Sources’ maps are a subset of the ‘Random Li’ mocks, so they appear naturally in the training data.

Table 3.2: Summary of signal, noise, and foreground models used for training and testing.
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To explore how our network might perform in a true analysis we must include instru-

mental noise and foregrounds in our simulations. In this study we use relatively simple

models for both of these effects, considering only thermal instrumental noise and point-

source extragalctic foregrounds.

Thermal noise can be modeled by adding an independent Gaussian random number

with zero mean and a variance of σ2
wn to each voxel of a LIM. In the case of COMAP Phase

1 the noise is expected to be σwn ≃ 11µK [54] in a 4′ voxel for a map with 512 frequency

channels. To scale this noise to different voxel sizes we make use of

σwn ∝ 1

δθ
√
δv

. (3.3)

We find that, in order to match the COMAP noise properties, our voxels need to have

σwn ≈ 4.39µK. As the noise properties of a given survey may not be precisely known a

priori, we will split our mocks between those with ‘fiducial noise’, i.e. those with the above

COMAP noise model, and those with ‘random noise’, in which we assume a different noise

amplitude σwn. In either case, a given mock will have a random realization of the given

noise model.

A uniform white noise is the only noise source in the ideal case, but in practice many

observations include additional, sometimes unknown, sources. One example comes from

the scan strategy of the telescope which in general results in different integration times on

different pixels, with the central region of the survey generally having a longer integration

and therefore a lower noise level. Later when testing our network, we will also include a
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model of this type of ‘geometric’ noise, where pixels within 5% of the edge of the survey

area have an additional white noise contribution given by

σgeo = σgeo,max
max(dmax − d, 0)

dmax
. (3.4)

In this simple model, σgeo,max is the maximum amount of geometric noise we should add at

the absolute edge, d is the shortest distance from the edge of the LIM to a given pixel as a

fraction of the the length of the LIM. We cut off the added noise at a distance dmax = 0.05.

For our tests we somewhat arbitrarily σgeo,max = 100µK. We leave detailed modeling of

specific scan strategies to future work.

Our simulated intensity maps also include radio point sources as possible foregrounds,

modeled following [181]. We assume the differential source count per unit area per flux is

described by the power law,

dN

dS
= N0

(
S

1mJy

)−γ

, (3.5)

where N0 is a normalization parameter per unit area and flux, S is the source flux, and γ

is the power-law index [180]. The range of the parameters in this foreground model were

found to be N0 = 32.1 ± 3.0 deg−2mJy−1 and γ = 2.18 ± 0.12 for frequencies around 30

GHz.

As we assume our foregrounds are continuum emitters, we assign them pixel-by-pixel

rather than voxel-by-voxel. As with our signal and noise models, we can choose to draw

either ‘fiducial foregrounds’ where we assume best fit parameter values from the above

foreground models, or ‘random foregrounds’, where we randomly assign parameter values
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before generating a realization. In each pixel, we Poisson draw the number of sources based

on the expected sources per square degree (thus neglecting large-scale structure correlations

in our foregrounds). We then randomly assign each source an overall with probability set

by Eq. (3.5) and a spectral index drawn from the distributions plotted in Figure 3 of [180].

We can then use this slope and normalization to compute the contribution of the source to

each of our frequency channels.

This is a somewhat simplistic and optimistic model of foreground contamination, as

it does not include Galactic emission and ignores emission from point sources below the

detection threshold of [180]. However it does capture the essential features necessary for

our purposes, in that it results in a map of bright, continuum emission which does not

correlate with the large-scale structure of our CO signal. As with the instrument noise, we

leave a detailed exploration of foreground emission to future work.

Both the white-noise and foreground additions to the LIMs are randomly generated

each time an LIM is used for training although there is a 10% and 50% chance that no noise

or foregrounds respectively are generated when training on a given map. The same is true

of geometric noise, but it is only used for testing purposes after training. We ensure these

additions are not static objects in order to help prevent overfitting and give the network

more unique LIMs to use for training. The reason to train some maps without noise and

foregrounds is to make the network more robust and handle situations in which they might

not be an issue. Conventional techniques exist for removing foregrounds and a future suvery

may be sample-variance dominated so we believe it is valid to train our network for such

scenarios.
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In the above we have described several different choices we can make when modeling

the signal and noise in our maps. For the convenience of the reader we summarize these

options in Table 3.1.3. Unless specified, a given map is assumed to use ‘random noise’ and

‘random foregrounds’ models.

In summary, to construct a single CO realization, we:

• Generate a dark matter halo catalogues 3.1.1

• Apply a CO-halo mass model, to paint CO luminosities onto halos (Sec. 3.1.2).

• Use the CO luminosities to produce clean CO LIMs as well as record the true under-

lying luminosity function (Sec. 3.1.2).

• Generate noise and foreground realization and add to map (Sec. 3.1.3).

• Apply Gaussian smoothing of 4′ beam to map to match COMAP beam size.

When training, we use the ‘Random Li’, ‘Random Noise’, and ‘Random Foreground’ models

from Table 3.1.3. The first three steps are done before training as it would take too long to

generate new LIMs from scratch each time one was needed. Noise, foregrounds, and beam

smoothing are added during training each time a LIM is looked at.

Sample slices of our mock LIMs can be seen in Figure 3.2. We show a ‘Fiducial Li’ LIM

as well as maps for white noise, foregrounds, and the sum of all three components. Both the

foregrounds and features of the original random Li LIM are visible in the combined LIM.

For clarity, we also show a realization of the Geometric Noise that we will use for later tests,

as well as a version of the combined signal/noise/foreground map before beam smoothing.
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Figure 3.2: Single slices of different components of our LIMs. All of the maps have had
the log-modulus applied to their intensities (see Eq. 3.6). Top Left : ‘Fiducial Li’ LIM.
Top right : ‘Fiducial Noise’-only realization. Middle left : Point source foregrounds from
‘Fiducial Foregrounds’ model. Middle right : Sum of previous signal, noise, and foreground
maps. Bottom left : ‘Geometric Noise’ realization. Bottom right : Signal+noise+foreground
map before beam smoothing. Note the difference in the color scales between the top two
rows and the bottom row.

45



CHAPTER 3. LIM WITH NEURAL NETWORKS

3.2 Convolutional Neural Network

The goal of our CNN is to take any LIM as input, and output values of the underlying

luminosity function. Due to GPU-memory and training-speed constraints we use 64x64x10

maps. By using less frequency channels than COMAP is capable of, we can make a larger

CNN, train with larger batch sizes and train faster. Our forecasts will thus underestimate

the constraining power of a network which could handle the full 64x64x512 COMAP data

cube.

CNNs are fast NNs designed for classification and regression on images, looking for pat-

terns in a translationally invariant fashion. Normal images contain two spatial dimensions

and a third which stores the intensity of different colors of light (usually three for RGB

images). LIMs behave similarly, albeit with many more spectral channels. However, a key

general advantage of LIMs is that, neglecting noise and foregrounds, the spectral informa-

tion can be converted directly into a line-of-sight distance. CNNs typically convolve images

in two dimensions, but we can modify this approach to use 3D convolutions and easily make

use of the added tomographic information. This one change allows us to make use of the

standard framework of CNNs for three-dimensional LIMs.

After testing a number of CNN architectures we choose a residual learning framework

first proposed in [182] for our network architecture. Each layer in these networks (commonly

abbreviated as ResNets) learns the residual mapping with reference to its inputs instead

of directly learning the underlying mapping. This has been shown to improve the training

of deep networks with negligible memory or speed tradeoffs. The form of Resnet that we
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used is a modification of the 50-layer network from [182]. We first changed the reduced the

size of the initial convolution to prevent losing small scale structure too quickly, added an

extra residual block in each layer to increase the learning ability of the network without

significantly increasing the memory requirement and removed the fourth and fifth layers of

the network. Furthermore we modified the end of the network to match our required output.

As mentioned previously, we have also modified the architecture to use three-dimensional

convolutions.

This architecture was not designed for this specific problem so we do not believe that

it is truly the most optimal possible CNN. A detailed architecture optimization is beyond

the scope of this work, but as ResNets are very common in recent cosmological applications

of CNNs we expect the relative results shown here to be representative. For example, we

would expect the decrease in accuracy of prediction when considering noise/foregrounds

beyond the fiducial case to hold for more general network designs.

3.2.1 Network Architecture

Here we summarize the modified [182] network we use for this work. A basic tenet

of machine learning is that bigger networks allow one to learn more (i.e. learn a more

complicated model or learn a less complicated model better). However, there are exceptions

to this rule. Adding more layers to a network can lead to degradations of the data flowing

through the network and the gradients needed for back propagation, decreasing the accuracy

of a CNN. To get around this, one can make use of a Resnet. At the heart of the Resnet is

the residual block. A residual block consists of multiple convolutional layers and a shortcut
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Figure 3.3: Basic residual block structures used. The teal blocks are used to denote con-
volutional layers. Both blocks use a bottleneck design of a 1x1x1 convolution followed by
a 3x3x3 convolution and ending with a 1x1x1 convolution of varying filter size. They also
include a shortcut which directly adds the input data to the output of the three convolutions
in the bottleneck. See text in Section 3.2.1 for more details.
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that connects the input directly to the output. Adding a shortcut helps prevent degradation

of network performance because it allows the residual block to function as a small change

on top of an identity mapping between input and output. This means no residual block

should give worse results then a previous layer of the network, an issue which large networks

without residual blocks face.

After most convolutions, we make use of batch normalization (BN) before applying the

leaky rectified linear unit (LReLU) activation function [183]. BN helps prevent vanishing

and exploding gradients by normalizing the output of a convolution for a given batch of

data [184]. Zero padding is used throughout to obtain the required output dimensionality.

Multiple convolutions are grouped together to form residual blocks. Our residual blocks

make use of a bottleneck design. The bottleneck replaces two 3x3x3 convolutions with

three layers of two 1x1x1 and one 3x3x3 convolutions. The 1x1x1 convolutions in the

bottleneck are responsible for reducing and increasing dimensionality. Bottleneck designs

are used to decrease computational time while retaining network performance.

In our network we use two different types of residual blocks which can be seen in Figure

3.3. Both blocks depend on two parameters: filters-in (FI) and filters-out (FO). FI and FO

are the number of filters the convolutions use at at the beginning and the number of filters

the output should have, respectively. The first residual block on the left, R1(FI,FO), takes

input of any size and number of channels. It then uses a 1x1x1 convolution to change the

number of filters to FI and is followed by BN and a LReLU. Next we use a 3x3x3 convolution

with FI channels followed by another BN and a LReLU. The third convolution is a 1x1x1

convolution that changes the number of filters to FO and is followed by BN. We then make
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use of the shortcut and take the original input and add it directly to the output of the

third convolution. We employ an ‘identity shortcut’, named so as we do not modify the

input data when using it in the shortcut. A final LReLU is applied before sending the data

to the next layer. The second residual block is similar, but it changes the dimensionality

of the data midway through. The second convolution in this block uses a stride of 2x2x2

(denoted by /2 in the diagram) to lower the dimensionality. As we changed the shape of the

data midway through the block, the shortcut is no longer an identity shortcut. We apply

a 1x1x1 convolution with stride 2x2x2 and FO filters to the shortcut to ensure it matches

the output of the rest of the block.

We define an R1xN block as N R1 blocks in a row as seen in Figure 3.4. With our

residual blocks in place, we can now build our full network. Figure 3.5 displays the full

network that accepts a 64x64x10 LIM and outputs 49 values of the luminosity function.

The network starts with a 3x3x3 convolution with 64 filters and a stride of 2x2x2 to reduce

the dimensionality by 2. As usual, we follow the convolution layer with BN and a LReLU.

We then follow up with a 3D max pool with kernel 3x3x3 and stride of 2x2x2. A max pool

layer takes the maximum value within the kernel as output as opposed to a convolution

which is effectively the weighted average of the input. This pool reduces the dimensionality

of the data by 2 because of the 2x2x2 stride. After the pool, we apply three R1 blocks. We

then apply an R2 block followed by four R1 blocks. The R2 block reduces dimensionality

while the R1 blocks increase the depth of the network. Following the final set of R1 blocks,

the data is in the form of a 2x2x1 map with 2048 filters. On these objects we apply a 3D

global average pool which takes the maximum value of the 2x2x1 data for each channel and
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layer name output size layer features

conv1 32x32x5 3x3x3, 64 stride 2

conv2 x 16x16x3

3x3x3 max pool stride 2⎛⎝ 1x1x1, 128
3x3x3, 128
1x1x1, 256

⎞⎠ x 3

conv3 x 8x8x2

⎛⎝ 1x1x1, 256
3x3x3, 256
1x1x1, 512

⎞⎠ x 5

global pool 2048 7x7x7, global avg pool 3D

fc1 1000 1000 fully connected

fc2 49 49 fully connected

Table 3.3: Architecture for our Resnet. Building blocks, as seen in Figures 3.3 and 3.4,
are shown in parentheses with the number of blocks stacked. Dimensionality reduction is
performed by conv2 1 and conv3 1 by using a stride of 2 for the max pooling or convolution
layers. The total number of training parameters in the network is ∼ 2.7× 106.

returns a single value for each channel3 giving 1-dimensional data. Second to last, we use a

fully connected layer with 1000 neurons which is followed with BN and a LReLU. Finally,

we end with a fully connected layer of 49 neurons with a linear activation function. Each

one of these neurons represents the value of the luminosity function at a specific luminosity.

This architecture can be seen in Table 3.2.1.

3.2.2 Implementation

We have made a custom implementation of our Resnet in Keras using the TensorFlow

backend [185, 186]. We use the default α = 0.3 for our LReLU’s. To help with overfitting

we apply a dropout rate of 50% to the second to last layer [187,188]. We obtained our best

result when using the Adam optimizer [189]. We used a mean-squared-error loss function

for training.

3channels for CNNs refer to the number of convolutional filters applied at the last convolutional layer
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Figure 3.4: A series of N R1 blocks is defined as an R1xN block. This structure appears
multiple times in our Resnet. The purple blocks are used to denote R1 blocks.

As neural networks work better when data contained within them is similar in magni-

tude (this includes the input and the data passed between layers), we apply a log modulus

function to the values in the intensity map given by

T̂ = sign(T) log10 (|T|+ 1) , (3.6)

where T is the intensity of a given voxel in brightness temperature units. The sign and

absolute value of T allow us to handle voxels with negative intensity which can come about

due to the added white noise. After transforming the size of the LIM and the intensities

within each voxel, we feed the new LIMs into the CNN. The output of our network was

chosen to be

L(L) = log10 (LΦ) (3.7)

at 49 values of L, where Φ = dn
dL is the number density of CO hosting galaxies with luminosity
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Figure 3.5: A diagram of our full network. A 64x64x10 intensity map is converted to 49
different luminosity function values through the use of many convolution layers, two pooling
layers and two fully connected layers. Here, the teal blocks represent convolutional layers,
the purple represent R1 blocks, the red show pooling layers, the yellow show R2 blocks and
green show fully connected layers.
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between L and L + dL. Returning log10 (LΦ) gives an output that only spans an order of

magnitude. It should be noted that the CNN itself does not know that it is measuring a

luminosity function at specific values, only that it is returning 49 ordered numbers. We

consider luminosity bins logarithmically spaced between 103.5 and 107 L⊙.

For training and testing our model we start with 5796 ‘Random Li’ LIMs, generated

as described in Sec. 3.1. The LIMs were split into training and validation data with 80%

of the maps being used for training and 20% used as validation to test our results. Sep-

arating the training and validation data at this point means the network cannot benefit

from simply learning the underlying peak-patch halo catalogues. As noise and foregrounds

may be modeled imperfectly in a real observation, we made the conservative choice to use

‘Random Noise’ and ‘Random Foreground’ contamination models. At each step, one of

the training signal maps is combined with noise and foregrounds generated with random

parameter values. This allows us to turn our few thousand signal maps into order a million

training realizations. We also make sure to train on noiseless LIMs 10% of the time and

foregroundless LIMs 50% of the time to make sure the trained CNN learns to interpret clean

LIMs. While training the network it was learned that training on LIMs without foreground

only 10% of the time led to significant biases when testing on maps without foregrounds

after training.

We trained with batch sizes of 40 LIMs, set by the GPU capacity, and the somewhat

arbitrary choice of 150 batches to an epoch for 200 epochs. We employed 4 Nvidia K80

GPUs with 24 GB each. The training history of the final CNN is shown in Figure 3.6. We

find that the network does most of its learning within a few epochs. Learning then slows
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Figure 3.6: Training and validation loss after each epoch. The validation loss being less
than the training loss is a result of the dropout in the second to last layer of the network.

down dramatically, but the decreasing trend in the loss remains until about 100 epochs.

Note that the validation loss can be less than the training loss because of the dropout

applied to the second to last fully connected layer of the network. This is because during

training the Resnet only has 50% of the neurons in the second to last layer working at a

time, but during validation or post-training testing 100% of the neurons are functioning.

The Resnet is not as effective without all of its neurons functioning so the loss is often less

for validation tests than during training.
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3.3 Results

We refer to the trained network as our Resnet. As a sanity check, we tested it on

‘Random Li/Noise/Foreground’ LIMs which had been rotated by integer multiples of 90◦.

Our resnet should be rotationally invariant (at least for 90◦ rotations about an axis parallel

to the line of sight of the LIMs), so it should perform similarly on the rotated maps. After

100 trials, both rotated and unrotated maps had the same average loss and same average

variance of the loss within < 1%.

Example outputs of our Resnet can be seen in Figure 3.7. We show three cases chosen

by hand to illustrate different regimes. In the first, the Resnet accurately predicts the

luminosity function for a LIM generated from parameters similar to the ‘Fiducial Li’. The

next shows a case where the Resnet performs similarly well for a LIM with a very different

luminosity function. Finally, we show a case where the Resnet fails to accurately reproduce

the true luminosity function. By inspection, we find that the Resnet tends to perform worst

when the underlying luminosity function has a low number of bright sources compared to

the ‘Fiducial Li’ model.
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Figure 3.7: Three luminosity function predictions from the Resnet and the accompanying true underlying luminosity function.
The left figure shows a map with underlying luminosity function that is similar to ‘Fiducial Li’, the middle and right figures
show the same for models which differ significantly from the fiducial case, the Resnet performs well in the middle case and
poorly in the right case. The three maps were manually chosen from the validation set.

57



CHAPTER 3. LIM WITH NEURAL NETWORKS

When training, we know the true luminosity function of a simulated map, so we can use

a loss function to assess the network’s performance. However, in a real analysis we would

hope to test our trained network on a single data set where the true values are unknown.

In order to estimate how much we could trust the network in this situation, we examine

the fractional difference

δLΦ =
LΦprediction(L)− LΦtrue(L)

LΦtrue(L)
. (3.8)

as a function of luminosity between the predicted and true quantities. With a large ensemble

of test realizations, we can generate a confidence interval around the true value, which

approximates the error bar we would place on a true measurement. For our figure of merit,

we will quote the 95% confidence interval on δLΦ.

Now that we have a trained Resnet, we can study how it performs under different

conditions. We focus on three main scenarios:

1. The case the Resnet was designed to handle best: a ‘Fiducial Li’ luminosity function

with varying noise and foreground amplitudes. This models the situation where our

fiducial model is close to the truth.

2. A variety of ‘Random Li’ mocks. Though the Resnet was trained on models in this

space, the nature of our priors means that less time is spent on training models that

differ significantly from fiducial.

3. Models and contaminants outside of the space of training data. This accounts for
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the possibility that the signal on the sky contains aspects not accounted for in the

synthetic data.

For each test, we examined a number of maps equal to the number of validation maps used

(5796× 0.2 ≈ 1159 maps). It should be reiterated that all of the dark matter catalogs used

in this testing step were taken from the set left out of the training data. Refer to Table

3.1.3 for a reminder of what effects are included in each test set.

3.3.1 Tests on trained data

In order to assess the performance of our Resnet we can compare to forecasts using

analytic methods. For the simulated COMAP data we are using here, we can compare

our forecased constraints on the luminosity function to those from [55]. Their work, which

forecast constraints on the underlying luminosity function of a LIM using a joint power

spectrum and voxel intensity distribution analysis (PS/VID analysis hereafter), used what

we are calling ‘Fiducial Li’ and ‘Fiducial Noise’ models with no foregrounds.

The comparison is shown in Figure 3.8. The contour for the Resnet shows the 95%

confidence interval about the median of the relative errors over the entire set of LIMs

tested while the [55] 95% confidence interval comes from their MCMC analysis. The red

crosses show the luminosity bins we used for our Resnet. Though we are comparing two

forecasts using the same models, the forecasts are not exactly equivalent. The PS/VID

forecasts found errors on the parameters of the [54] model, then propagate those errors

to the luminosity function. The PS/VID analysis was also able to use the full frequency
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spectrum of the COMAP data, while our preliminary tests here had to sacrifice much of

this information for memory reasons.

With these caveats in mind, the CNN and analytic forecasts appear to perform compa-

rably well, with the Resnet confidence interval actually being smaller at low luminosities.

The Resnet does worst at the highest luminosities, where any given box is expected to have

very few sources. We trained on a range of Li model parameters so the Resnet was not

specifically trained for the fiducial case we show in Figure 3.8. The Resnet generally has

a precise prediction, but is biased. For low luminosities it generally over predicts while

for higher luminosities it under predicts. Within these over and under predictions, it still

generally contains 0 relative error within the 95% confidence intervals and is not very bi-

ased. We leave a full comparison between these methods, where the PS/VID MCMC is

run on our type of non-parametric model and we have enough computing resources to train

on the full COMAP cube, to future work. Even this rough comparison though is enough

to suggest that, in the best case scenario, a CNN can perform similarly to or better than

analytic analyses. As this is the test case that most resembles past work, we will compare

all of our upcoming tests to the confidence interval obtained here.

Next we examine how our forecasts vary with different noise and foreground levels.

Figure 3.9 shows the accuracy of the trained Resnet on ‘Fiducial Li’ LIMs with varying

amounts of contamination. As the noise level of the maps is increased, the quality of the

prediction decreases as expected. When foregrounds are added, the Resnet becomes biased

towards under predictions. All of the forecasts still begin to fail drastically at the highest

luminosities where we start to run out of bright emitters.

60



CHAPTER 3. LIM WITH NEURAL NETWORKS

Figure 3.8: Comparison of 95% confidence intervals between our Resnet run on ‘Fiducial
Li’/‘Fiducial Noise’/‘No Foregrounds’ test data and the results of [55]. Top: 95% confidence
intervals placed directly on top of a ‘Fiducial Li’ luminosity function. Bottom: Same
95% confidence intervals on the relative error of the two forecasts. Red crosses show the
luminosities used to train Resnet.
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Figure 3.9: Relative 95% confidence intervals for test data with no noise/foregrounds (orange), fiducial noise with no foregrounds
(red), and random noise/foregrounds (blue). All LIMs used the ‘Fiducial Li’ signal model. Scenario descriptions are in Table
3.1.3. The red interval shows the same case from Figure 3.8.
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Now that we know our Resnet can generally handle contamination, we want to see how

it performs with different signal models. Figure 3.10 shows the 95% confidence intervals

for the Resnet results when tested on ‘Random Li’ test LIMs, with same noise scenarios as

Figure 3.9.
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Figure 3.10: Same as Figure 3.9, but instead of testing on ‘Fiducial Li’ LIMs it is tested on ‘Random Li’ models. The red
contour from the previous two figures is shown here as a comparison. Red crosses show the luminosities that we trained the
Resnet on.
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Due to the diversity of the Random Li LIMs and luminosity functions, these tests are

less constraining than the ones in Figure 3.9. However, the scenarios here do not exhibit

the over and under prediction biases that the Fiducial Li LIMs tests did. In the ‘Random

Li’ test set, we expect to periodically encounter cases such as the right panel of Figure 3.7,

where the Resnet perfoms poorly. These outliers reduce the performance of the Resnet,

particularly at high luminosity. This suggests that, while the CNN may give biased results

on our best-fit model, it is less likely to very large over or under predictions that may

happen in situations where the true data might deviate significantly from expectations.

3.3.2 Tests on untrained data

So far the Resnet was tested on LIMs made from models within the space of the training

data. However, any real observation has a chance of including unexpected effects which are

not modeled in advance. It is generally believed that supervised machine learning, as used in

this work, lends itself best to interpolation rather than extrapolation. Therefore, to see how

robust the the trained Resnet is, we must test it on scenarios not included in the training

data. Each of the tests below use ‘Random Noise’ and ‘Random Foreground’ models.

First, we consider maps with an altogether different model for the underlying luminosity

function, specifically that of [179]. The ‘Padmanabhan’ model uses a double power law to

relate halo masses to LCO, as opposed to the ‘Fiducial Li’ which uses power-law scalings

on top of the [177, 178] star formation rates. Although both models generally produce

similar expected luminosity functions, the detailed shapes are somewhat different with the

Padmanabhan model expecting more bright sources. We tested on only fiducial parameters
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of the ‘Padmanabhan’ model.

Next we consider an extra noise source, specifically the ‘Geometric Noise’ model de-

scribed in Section 3.1.3. This is added in addition to the existing ‘Random Noise’ model,

and is meant to represent the extra noise around the edges of a survey due to decreased

observing time.

Finally, we noted previously that the worst outliers in our ‘Random Li’ sample came

from maps with very few bright sources. To examine this behavior, we consider a hand-

curated sample of ‘Random Li’ LIMs that contain fewer than 500 sources above L = 106L⊙.

The [54] best fit parameters lead to more than 1000 sources in this luminosity range, so

these maps deviate sinificantly from the fiducial case. This test considers the possibility

that, while the true signal is within the range of the test data, it by chance specifically

comes from a regime where the network performs badly.

The confidence intervals for our Resnet on these new scenarios can be seen in Figure

3.11. We see that the ’Padmanabhan’ tests lead to biased results for luminosities below

5×105L⊙, but it does keep the relative error within the range [−1, 1]. This bias is expected

as the Pandmanabhan LIMs and luminosity functions are different than Li ones. The Resnet

was trained on only Li ones so it was not ready for data produced in a new way. Both the

’Less Bright Sources’ and ’Geometric Noise’ lead to a loss of prediciton versus the fiducial

case. Geometric noise was something entirely new to the Resnet, so the constraints are

sensibly much worse than any other test we consider.
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Figure 3.11: Confidence intervals for test data with effects not included in the training data, including the ‘Padmanabhan’ signal
model (green), the hand-chosen ‘Less Bright Sources’ mocks (orange), and the extra ‘Geometric Noise’ contamination (blue).
As before, the red contour from previous plots is shown here as a comparison.
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Scenario 104 L⊙ 105 L⊙ 106 L⊙

‘Fiducial Li’ signal
No Noise/Foregrounds 1.4 0.54 3.2

‘Fiducial Noise’ 1.0 1.1 4.0
‘Random Noise/Foregrounds’ 3.3 3.7 5.6

‘Random Li’ signals
No Noise/Foregrounds 2.6 2.7 9.3

‘Fiducial Noise’ 2.3 2.2 17
‘Random Noise/Foregrounds’ 4.8 4.7 32

Untrained effects
‘Padmanabhan’ signal 2.8 2.8 4.3
‘Less Bright Sources’ 4.7 4.8 27
‘Geometric Noise’ 7.6 11 120

Other Ihle et al. 5.6 3.4 2.7

Table 3.4: Accuracy of the Resnet on different scenarios relative to the accuracy of the
‘Fiducial Li’/‘Fiducial Noise’/‘No Foregrounds’ case. Accuracy is measured as the difference
between the maximum and minimum values of the 95% confidence interval at the given
luminosities. All quoted values are relative to the accuracy of the fiducial scenario at
L = 104 L⊙.

Aside from the ‘Geometric Noise’, the ’Less Bright Sources’ test yeilds similiar con-

straints to our Random Li with Random noise and foregrounds test. Figure 3.12 zooms in

on the high-luminosity confidence intervals for the Less Bright Sources’, and ‘Random Li’

tests. The shapes are extremely similar. This implies that the LIMs with less bright sources

are driving the large size of the 95% confidence interval for the Random Li with Random

noise and foregrounds test.

We can use the width of the 95% confidence interval in different bins to compare between

the different cases. Table 3.3.2 compares these values to that of the ‘Fiducial Li’/‘Fiducial

Noise’ scenario at L = 104 L⊙. This allows us to summarize the performance of our Resnet

across different scenarios and luminosities. For comparison, we also include the width of

the [55] PS/VID confidence intervals. These values should not be taken solely by themselves

as they do not contain any information about the biases the Resnet has for these different

tests.
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Figure 3.12: Zoomed in comparison of 95% confidence intervals for scenarios that fail in a
similar fashion. The ‘Less Bright Sources’ (orange) and ‘Random Li’ (blue) cases all yield
similar confidence intervals. As before, the red contour from previous plots is shown here
as a comparison.
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3.4 Discussion

From the above results we can now get a sense of how we expect this type of machine

learning analysis to perform under different conditions. The results for the ‘Fiducial Li’

model indicate that, if all of the contributions to the signal and noise can be well modeled,

a CNN can be a useful analysis tool. However, the other results give reason for caution. It

is not easy to be sure a priori whether a map does or does not contain unmodeled effects,

so there is not obvious way to tell which confidence interval one should assume around a

learned luminosity function. Therefore, while we have demonstrated the utility of CNNs

for this type of measurement, it remains an open question whether this technique can be

safely used on real data.

There are a number of ways our Resnet could be improved for a full analysis. In

this work, we made the simple choice to model the luminosity function as a series of 49

uncorrelated numbers. However, true luminosity functions tend to vary smoothly, with few

sharp features. Future work could make use of, e.g., a spline model which would retain

the non-parametric nature of our forecasts while taking advantage of the smooth nature of

the luminosity function. There also exists a significant amount of space for improving on

our network architecture. Only minor modifications were done to an existing network with

only a small amount of effort going into the specific architecture modifications to obtain

the results we did.

We used only a modest amount of computing power for this work. More resources would

also enable more training of the network or larger networks. In addition, we did not make
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a full study of the effects of different architectures. With more computing power we could

explore the parameter space of different models to find an optimized model. This work

motivates future study of what types of networks are best for studying three-dimensional

intensity mapping data.

Interestingly, we see that the Resnet generally performs better at the lowest luminosi-

ties. This may be due to the underlying range of possible LIMs that we trained it on. In

Figure 3.1 we see that the 95% confidence band starts growing in size above a luminosity of

105L⊙ as well. This decrease in performance is found in the Random Li tests that use the

diverse luminosity functions, but not in the fiducial Li and Pandmanabhan tests. Possible

training differences could help alleviate this issue, but we leave for future work a study of

the effects of these “prior” choices on the final results.

We see above that, when allowing for the non-parametric nature of our model and the

loss of line-of-sight information, our network performs comparably to the PS/VID analytic

forecasts. This is another area worthy of additional consideration. Statistics like the power

spectrum and VID of a map require human recognition of patterns in data and connection

to the underlying physics. In complicated, highly correlated data sets like we see in LIMs it

may be possible for a CNN to recognize additional patterns beyond what we can represent in

analytic statistics. Combined with the fact that our Resnet does best with models near the

center of the training range, this perhaps motivates a combined approach. One can imagine

using the confidence intervals from a PS/VID analysis to set the range of training data for

a network like ours, then seeing if the trained network can improve on those constraints.

This would have the benefit of allowing the CNN to tease out extra patterns while avoiding
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some (but not all) of the pitfalls we describe here.

We also need not restrict the methods described here to luminosity function measure-

ments. LIMs contain information about a wide variety of physics on scales ranging from star

forming regions to the large-scale structure. One could easily imagine training a network

like ours to measure cosmological parameters instead of luminosity functions. There has

also been extensive study in the literature on what can be learned from cross-correlations

between intensity maps and other tracers e.g. [133, 134, 190–193], which could be studied

using our methods by feeding both data sets at once into a CNN.

Another use-case of the results shown here could be for foreground removal. Though

the foreground contamination added to our maps is relatively minor, the network was able

to handle it without much loss of accuracy. Even for maps with more severe contamination,

one could apply conventional foreground cleaning to both the real and simulated data and

use the network to help account for any residual emission. This could be particularly useful

for cases where the foreground cleaning removes part of the signal in the process [109].

We considered only continuum foreground here, but our same approach may also be useful

for separating out interloper emission lines at different redshifts, an effect which is not

important for the CO(1-0) maps we consider here but will be very important for maps of

several other lines e.g. [137,194].
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3.5 Conclusion

In this work we have presented the first application of a CNN to determine the under-

lying luminosity function of line intensity maps. We considered the example case of CO

intensity maps observed by the currently-active COMAP survey. Under ideal conditions,

our Resnet was found to have comparable to better precision in predicting the luminos-

ity function as conventional techniques, but had a small bias. This work suggests that,

used properly, machine learning could be a valuable tool in extracting astrophysical and

cosmological information from intensity mapping data.

However, we also went on to explore some of the weaknesses of these techniques. We

have shown that the accuracy degrades significantly under various conditions that the net-

work was either not trained or insufficiently trained on. This crucial step has relevance not

just to intensity mapping, but to all attempts to use machine learning for cosmological data

analysis, and is often missing from past work in the literature. Though the great potential

of neural networks is obvious, this work makes it clear that extreme care must be taken

when applying them in this context, as small missing effects can drastically bias the output

of neural networks.

Machine learning-based data analysis in cosmology is a field in its infancy. The proof-

of-concept work we present here illustrates both the opportunities and challenges present

in the application of these methods. With proper care, CNNs like our Resnet may play a

valuable role in understanding the next generation of experimental data.
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Chapter 4

Investigating new signatures of

dark matter annihilation and

scattering in the cosmic microwave

background

The anisotropy of the cosmic microwave background (CMB) is a powerful tool for

studying the nongravitational properties of dark matter (DM) [195]. In particular, DM

interactions with particles of the Standard Model (SM) may leave detectable imprints in the

CMB sky that deviate from the predictions of the concordance ΛCDM model, in which cold

DM (CDM) is modeled as a nonrelativistic, collisionless fluid. If DM particles elastically

scatter with baryons, the DM and baryon fluids exchange momentum, which suppresses
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structure at small scales [56–61]. In case of DM annihilation (or decay), the resulting energy

injection affects the era of cosmic recombination and increases the ionization fraction in the

post-recombination universe, thereby increasing the optical depth for CMB photons and

modifying the visibility function [13,62–83].

DM annihilation and scattering with baryons are typically studied separately. Using a

generic parametrization of the interaction can produce robust constraints, and the results

of annihilation and scattering analyses can be individually applied to a broad class of DM

models. For instance, in the case of asymmetric DM [196], there are scattering processes

but no annihilation at times relevant for the CMB. Focusing on a single interaction channel

is also particularly useful for comparing the CMB limits to limits from other DM searches,

such as annihilation limits from indirect detection studies with gamma rays [197–201] and

scattering limits from direct detection via nuclear and electronic recoil [202–213].

While indirect and direct detection experiments are designed to search for only anni-

hilation and only scattering processes, respectively, the CMB is sensitive to both effects

simultaneously. Previous studies [214] have shown that the next-generation CMB experi-

ments will be able to distinguish between signals of a velocity-independent elastic scattering

and of s-wave annihilation, given they are confidently detected in future data. However, it is

not clear how those conclusions extrapolate onto a more general case of velocity-dependent

interactions; furthermore, in the case of a marginal detection of a DM signal, signals from

the two effects may be degenerate with each other and a joint likelihood analysis is necessary

in order to avoid biasing measurements of DM parameters (the cross sections in particular).
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In this chapter we investigate the combined effects of DM scattering and annihilation

on the CMB anisotropy. Our goal is two fold. Using existing limits, we identify parts of

the DM parameter space in which one can study the effects of annihilation and scattering

separately. These correspond to regions where one effect largely dominates the CMB signal

over the other. In the remaining part of the parameter space, we identify new signatures of

DM in the CMB power spectra that can greatly differ from what arises in a naive analysis

that separates the interactions and studies them independently. In these regions, both

effects help drive and improve current CMB constraints.

We consider scattering and annihilation cross sections with power-law dependencies

on v, the relative velocity between interacting particles. We focus in particular on s-wave

annihilation, because it has the greatest impact on the CMB and is the least dependent

on the details of the structure formation process [80–82]. We determine that annihilation

tends to drive the CMB constraint under many scattering scenarios, especially for scattering

cross sections that scale with large nonnegative powers of v, but also for v−2 scattering; the

reverse situation occurs for v−4 scattering.

Models of DM interactions with light mediators can produce scattering cross sections

that scale inversely with v, though only for even powers of v. Thus, there is a gap between

v−2 and v−4 in which we could generically expect models to produce competing effects from

scattering and s-wave annihilation in the CMB. We circumvent this issue by considering

special situations in the context of photon-mediated models, described in Appendix A.1.

For the first scenario, we consider dipole DM, which may have electromagnetic inter-
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actions through both an electric and a magnetic dipole moment. The strengths of these

interactions are independent and can separately control the relative amount of scattering

and s-wave annihilation. In the second scenario, we study the case of millicharge DM, in

which scattering processes nominally drive the CMB constraint. If, however, only a sub-

percent of DM is interacting, this component can tightly couple to the baryon fluid to the

point that a stronger coupling no longer impacts the scattering signal [61, 215–217] (i.e.,

the effect of scattering saturates), while annihilation does not have this limitation. Using

Planck 2015 temperature, polarization, and lensing anisotropies measurements, we analyze

these scenarios to study what effect the interplay of scattering and s-wave annihilation has

on forming limits on the models.

The chapter is organized as follows. In Sec. 4.1 we review the impact of DM-baryon

scattering and DM annihilation on the CMB power spectra. In Sec. 4.2 we investigate the

circumstances under which one of these processes is more important than the other and

under which they both contribute in driving current CMB constraints. We use photon-

mediated models to explore the combined effect of scattering and annihilation. In Sec. 4.3,

we analyze these models to obtain improved CMB constraints. We conclude in Sec. 4.4.

This chapter is based heavily on work in preparation with coauthors Kimberly Boddy,

Vivian Poulin and Vera Gluscevic.
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4.1 Modified CMB physics

In this section, we describe the impact of DM interactions on the CMB. We discuss

DM scattering with baryons in Sec. 4.1.1 and DM annihilation in Sec. 4.1.2.

We model the interacting DM χ as a cold, nonrelativisitic fluid that features both scat-

tering and annihilation, unless otherwise stated. Furthermore, we allow for the possibility

that this interacting species of DM is only a subcomponent, representing a fraction

fχ ≡ Ωχ

ΩDM
(4.1)

of the total DM density ΩDM = Ωχ + ΩCDM, while the remaining component is standard

CDM.

4.1.1 Dark matter scattering

We first consider the scenario in which DM elastically scatters with ordinary particles.

In particular, we focus on scattering with baryons (i.e., protons, electrons, and helium

nuclei) and denote the type of baryon involved in the interaction with a subscript t. We

ignore interactions with photons. The momentum-transfer cross section1 has the assumed

form σMT = σSv
nS , where v is the relative velocity between scattering particles and nS is

an integer determined by a particular DM model. Each type of baryon may scatter with a

different σS,t, though we assume the same value of nS for convenience.

1The relevant quantity for early-universe cosmology is the momentum-transfer cross section, σMT =∫
dΩ(1− cos θ) dσ

dΩ
. For brevity, however, we refer to σMT simply as the scattering cross section throughout

this paper.
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We incorporate the effect of DM scattering in the early Universe by modifying the

standard Boltzmann equations [218]. In the synchronous gauge, the evolution equations for

the density fluctuations, δb and δχ, and velocity divergences, θb and θχ, for baryons and

DM, respectively, are

δ̇b = −θb −
ḣ

2
, δ̇χ = −θχ − ḣ

2
,

θ̇b = − ȧ

a
θb + c2bk

2δb +Rγ(θγ − θb) +
ρχ
ρb

Rχ(θχ − θb) ,

θ̇χ = − ȧ

a
θχ + c2χk

2δχ +Rχ(θb − θχ) , (4.2)

where the dot notation indicates a derivative with respect to conformal time, h is the trace

of the scalar metric perturbation, a is the scale factor, k is the wave number for a particular

Fourier mode, ρχ and ρb are the energy densities of the DM and baryons, and cχ and cb

are their sound speeds. If χ represents an interacting subcomponent of the total DM, we

have ρDM = ρχ + ρCDM, and the Boltzmann equations for CDM remain unchanged from

the standard case.

The factor Rγ is the coefficient of the rate of momentum transfer between the photon

and baryon fluids due to Thomson scattering. There is a similar factor for DM-baryon

scattering, whose form depends on the velocity dependence of the cross section:

Rχ =
∑
t

aρtNnSσS,t
mχ +mt

(
Tb

mt
+

Tχ

mχ

)(1+nS)/2

, (4.3)

where NnS ≡ 2(5+nS)/2Γ(3 + nS/2)/(3
√
π) is a numerical factor and mt is the mass of

species t. We treat all baryonic particles as pointlike; accounting for the nuclear form factor
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of helium produces a negligible correction [59].

DM scattering also couples the baryon and DM temperatures, given by

Ṫb =− 2
ȧ

a
Tb +

2µb

me
Rγ (Tγ − Tb) +

∑
t

2
ρχ
ρt

R′
χ,t (Tχ − Tb)

Ṫχ =− 2
ȧ

a
Tχ +

∑
t

2R′
χ,t (Tb − Tχ) , (4.4)

where µb ≈ mp(nH + 4nHe)/(nH + nHe + ne) is the mean molecular weight of baryons; me

and mp are the masses of the electron and proton, respectively; ne, nH, and nHe are the

number densities of electrons, hydrogen, and helium, respectively; and Tγ is the photon

temperature. The coefficient of the rate of heat transfer is

R′
χ,t =

mχ

mχ +mt
Rχ,t . (4.5)

Thus far, we have assumed nS ≥ 0. For negative values of nS , the relative bulk motion

of the DM and baryon fluids must be accounted for in the Boltzmann equations, introducing

nonlinearities [57,61]. In the case of nS < 0 and fχ = 1, we modify Eq. (4.3) to be [57]

Rχ =
∑
t

aρtNnSσS,t
mχ +mt

(
Tb

mt
+

Tχ

mχ
+

V 2
RMS

3

)(1+nS)/2

. (4.6)

When dealing with nS < 0 and fχ < 1, we follow Ref. [61], which further modifies Eqs. (4.3)

and (4.4). We refer the reader to Ref. [61] for more details.

The dominant effect of DM scattering on the CMB power spectra is the suppression of
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power at small scales, as shown by the orange curves in Fig. 4.2. The interaction induces a

drag force between the DM and baryon fluids, which reduces the growth of perturbations and

the associated metric potentials that affect the CMB photons. Moreover, the suppression

is greater for the smaller density-perturbation modes, because they enter the cosmological

horizon earlier and are subject to damping for a longer period of time. There is, however,

an increase of power at large scales for the odd acoustic peaks due to a modification of

the Sachs-Wolfe and early integrated Sachs-Wolfe terms from baryon loading [56]. The

secondary effect of DM-baryon interactions is the reduction of the baryon-photon plasma

sound speed, which reduces the frequency of the acoustic oscillations and shifts the peaks

to smaller angular scales.

4.1.2 Dark matter annihilation

We now consider the case in which DM annihilates into SM particles. We refer to the

total velocity-averaged annihilation cross section times velocity ⟨σAv⟩ = σAv
nA simply as

the s-wave (nA = 0), p-wave (nA = 2), d-wave (nA = 4), etc. annihilation cross section.

After velocity averaging, v here refers to the one-dimensional velocity dispersion of DM,

with v2 = 3Tχ/mχ.

The main impact of DM annihilation is the modification of the evolution of the free-

electron fraction xe and the temperature of the intergalactic medium (IGM) TIGM. The

byproducts of annihilation do not directly ionize the IGM; instead, byproducts such as

electrons inverse-Compton scatter on photons until they cool to keV energy to rapidly

deposit their energy in the IGM by ionization and excitation [67]. More importantly, the
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upscattered photons then Compton scatter and photoionize the IGM, and it is this process

that is responsible for the bulk of the energy injected into the IGM.

The effect of DM annihilation is manifest in the CMB power spectra through changes

in the free-electron fraction. The free-electron fraction enters in the line-of-sight solution of

the CMB photon Boltzmann hierarchy [219] through the Thompson optical depth

τdepth(z) ≡
∫ z

0
nH(z)xe(z)σTh

dt

dz′
dz′ , (4.7)

where t is the look back time. At early times, a higher free-electron fraction delays the

decoupling of photons from baryons, thus increasing the time of recombination. As a result,

the size of the sound horizon is larger, shifting the CMB acoustic peaks to lower multipoles

ℓ, and higher multipoles are subject to diffusion damping for longer.

During the Dark Ages, increasing the free-electron fraction (and therefore the thomson

scattering rate of CMB photons) removes power at large ℓ due to an increase optical depth

after recombination while increasing power of the polarization anisotropy for ℓ < 200. These

effects are illustrated in Fig. 4.2.

The impact of s-wave annihilation on the CMB can be characterized by the single

parameter [74]

pann ≡ F600f
2
χ

⟨σAv⟩
mχ

, (4.8)

where F600 is the fraction of the injected annihilation energy absorbed into the IGM at

redshift z = 600, which depends on the DM mass and the annihilation channel. The fraction
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F is redshift-dependent, but since the CMB power spectra have the greatest sensitivity to

s-wave annihilation at z ∼ 600 [220], evaluating at that redshift yields an approximate

constraint on ⟨σAv⟩. Note that contrary to standard definition, we include fχ in the above

expression to account for the possibility of a subcomponent of annihilating DM.

The case of nA ̸= 0 is more complicated. It is possible to apply an s-wave limit on

pann to other annihilation scenarios by using a non-s-wave form of ⟨σAv⟩ in Eq. (4.8). A

stronger velocity dependence (larger nA) suppresses the energy injection rate and results

in much weaker constraints. Through the velocity dispersion v ∼
√
Tχ/mχ, the constraints

depend on the thermal history of DM. Moreover, they are sensitive to the details of structure

formation, while the s-wave constraints are not [80–82]. Therefore, we focus our discussion

on s-wave annihilation for the remainder of this paper.

4.2 Scattering and annihilation signals in the CMB

We have discussed how DM scattering and annihilation individually influence the CMB,

leaving distinct features in the power spectra. We are now interested in their combined im-

pact. In Sec. 4.2.1, we determine the conditions under which both interactions are expected

to play an important role for the CMB, based on existing limits from Planck. We then focus

on two photon-mediated DM models (summarized in Appendix A.1) in Secs. 4.2.2 and 4.2.3

to demonstrate the combined effect of scattering and annihilation on the power spectra.
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As in Sec. 4.1, we assume DM scattering and annihilation cross sections have the form

σMT = σSv
nS , ⟨σAv⟩ = σAv

nA , (4.9)

where v is the relative velocity between the incoming interacting particles (DM particle and

baryon for scattering and two DM particles for annihilation) and nS and nA are the integer

power-law scalings of v for scattering and annihilation, respectively. Such cross sections are

easily obtained in various simplified models of DM (e.g., see Ref. [221] in the context of

collider searches) and in DM effective theories that can in principle match onto more UV

complete theories (e.g., see Refs. [222–225] in the context of direct detection and Ref [59]

in the context of the CMB). For reasons discussed in Sec. 4.1.2, we consider only s-wave

annihilation (nA = 0).

4.2.1 Previous limits from Planck

The forms of the scattering and annihilation cross sections depend on the particular

DM model. We would like, however, to make an assessment of the importance of scattering

versus annihilation in the CMB in a model-independent fashion. Once we know the target

regime in which both scattering and annihilation should drive the CMB bound, we can

analyze specific models in detail.

The simplest way of determining this target regime is to consider the current limits

on the annihilation and scattering cross sections, for fχ = 1. The upper limit on s-wave

annihilation from Planck 2015 temperature, polarization, and lensing data is pann < 3.4×
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10−28 cm3/GeV/s at 95% confidence [10], with a corresponding bound on σA through

Eq. (4.8).2 Analyses of DM-proton scattering place 95% upper limits on σS for nS ∈

{−4,−2, 0, 2, 4} using the same Planck data [59,61].3

In Fig. 4.1 we plot the ratio of the limits, F600σA/σS , as a function of mχ for various

values of nS . Since the limits of σS vary significantly between different nS , we scale the

ratios by a factor of C, indicated in the legend, to accommodate them all in one plot.

The form of the cross sections σA and σS is determined by a particular model of DM.

For simple cases in which there is a single (relevant) interaction term in the Lagrangian, the

scattering and annihilation cross sections are related through crossing symmetry [226] and

thus have the same dependence on any coupling constants. Therefore, the ratio pann/Rχ ∝

σA/σS is independent of coupling strength, reducing the number of free parameters to

consider, and the requirement of fixing either pann or Rχ to its maximum limit is trivially

satisfied.

For any given model, one can compute the equivalent F600σA/σS ×C and check where

it lies on Fig. 4.1. If it is well above the line corresponding to the value of ns in the model,

the signal will be dominated by the effect of annihilation. Otherwise, it will be dominated

by the effect of scattering. As a simple example of how to interpret Fig. 4.1, let us consider

the interaction between DM and protons to be

Lint =
g

Λ2
χ̄γµγ5χ p̄γµγ

5p , (4.10)

2The more recent Planck 2018 data yield a similar constraint of pann < 3.3× 10−28 cm3/GeV/s [13].
3There are also limits for nS = 6 in Ref. [59], but only for DM masses ≥ 1 GeV.
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Figure 4.1: Boundaries for various value of nS that demarcate the regions of expected
annihilation and scattering domination for CMB constraints as a function of DM mass
mχ. All boundaries are obtained using Planck 2015 limits. For a given model and set of
parameters, if the value of σAF600/σS at a particularmχ is well above (below) the boundary,
the CMB constraints are driven by annihilation (scattering). For consistency, parameters
must be chosen such that σA (σS) matches current CMB bounds, provided in the main
text, in the annihilation (scattering) region. The different boundaries have been scaled by
a factor of C only to fit them within the same plot, as indicated in the legend.

86



CHAPTER 4. INTERACTING DM SIGNATURES ON THE CMB

where g is the coupling and Λ is the scale of the effective theory. For simplicity, we assume

DM scatters with and annihilates into protons only and mχ > mp. In the nonrelativistic

limit, the scattering cross section is independent of velocity (nS = 0) and the annihilation

cross section is s-wave (nA = 0) such that

σS =
3g2µ2

χp

πΛ4
, σA =

g2m2
p

4πΛ4

√
1−

m2
p

m2
χ

, (4.11)

where µχp is the reduced mass of DM and the proton. In the limit mχ ≫ mp, we have

σA/σS = 1/12. Accounting for the scaling factor C in Fig. 4.1 and taking fχ ,F600 ∼ 1, we

see that this model lies well above the nS = 0 boundary, indicating annihilation drives the

CMB bound and scattering is unimportant. It is also possible to get some rough generic

expectations based on Fig. 4.1. Given the value of the pre-factors C, it is reasonable to

expect annihilation to dominate if nS ≥ −2, while scattering dominates for nS = −4. While

this assertion is certainly model-dependent, we do not necessarily expect extremely large

differences between σA and σS to be generic in the simplest of models.

Additionally we are interested in identifying what cross section parametrizations lead

to DM scattering and annihilation having comparable impact on the CMB power spectra.

In order to investigate situations in which the effects of scattering and annihilation can be

equally important, we focus on the two scenarios that, from previous analysis, come the

closest: nS = −2 and nS = −4. We note that nS = −3 would be an ideal case study, but a

velocity scaling with odd powers is not straightforwardly produced in simple DM models.
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Figure 4.2: Residual CMB TT (left) and EE (right) power spectra for dipole DM with
D = 10−15.3 e cm and M = 10−18.7 e cm. The residuals ∆Cl = (Cl,χ − Cl,ΛCDM ) are for
mχ = 1MeV and taken with respect to a ΛCDM cosmology, using the Planck 2018 TT,
TE, EE + lensing best fit parameters [13]. The purple annihilation curve corresponds to only
the s-wave annihilation from the magnetic dipole interaction, while the brown scattering
curve shows only the scattering effects from the electric dipole interaction. The blue curve
shows scattering effects from both the magnetic and electric dipole interactions and the
annihilation effects from the magnetic dipole interaction (we neglect the p-wave annihilation
due to the electric dipole).

4.2.2 Both effects from multiple couplings

The most straightforward way to obtain σA and σS that lie near one of the boundaries

in Fig. 4.1 is to introduce more freedom in the DM model than the example we show at

the end of Sec. 4.2.1. Specifically, we can vary σA and σS independently through different

interaction terms.

To show what independent couplings for annihilation and scattering can lead to, we

consider a model with an electric and magnetic dipole or dipole DM, described in Ap-

pendix A.1.1. The electric dipole gives a n=−2 velocity dependent scattering with baryons

while the magnetic dipole gives the s-wave annihilation channel. The potential complication

lies in the fact that the electric dipole also opens up a p-wave annihilation channel, while the

magnetic dipole yields additional velocity independent scattering with baryons. However,
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because the DM particles are non-relativistic, p-wave annihilation and velocity independent

scattering are strongly suppressed compared to other effects at redshifts of interest4. The

presence of both an electric dipole D and a magnetic dipole M allows us to independently

vary the scattering and annihilation rates, because the scattering and annihilation rates

only depend on D and M respectively.

We can apply the notation introduced in Eq. (4.9) to the cross sections in Sec. A.1.1

for dipole DM to see what interaction should dominate. We get nS = −2, nA = 0,

σS = 2αD2 (4.12)

and

σA =
α

2
M2

[
2 +

(
mt

mχ

)2
]√

1−
(
mt

mχ

)2

. (4.13)

We can then take the ratio of σA and σS to see if baryon scattering or annihilation constraints

should dominate. The ratio we get for dipole DM is

σA
σS

≈ 1

4

(
M
D

)2

, (4.14)

formχ > mt. By comparing this to Eqs. (4.9), we see that dipole DM should be annihilation

dominated for comparable values of M and D.

In Figure 4.2 we show the effects of baryon scattering and annihilation on the CMB when

fixing either log10 (D/e cm) = −15.3, log10 (M/e cm) = −18.7, or both simultaneously. This

4Strictly speaking, at z ≲ 50 structure formation might lead to non-negligible p-wave annihilation in
halos. We neglect these effects for simplicity here as they would not change much the results and add a layer
of astrophysical uncertainties. See e.g. Refs. [80–82].
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point in parameter space was chosen because the amplitude of both effects are comparable

and is on the boundary of the 95% exclusion region we find in Sec. 4.3.1. Most other points

in parameter space have one effect clearly dominating over the other. We compare the case

where both effects are present to the case where only one of the two effects is present.

When both interactions are included simultaneously, the effects are mostly additive:

they do not cancel each other, rather they help improve the constraining power of the

CMB.

Overall, the signals at large multipole (ℓ > 100) tend to resemble the osscilatory features

of scattering, but with extra damping due to the annihilation On the other hand, the low-

multipole part is closer to that of annihilation as it dominates for low multipole. This is

especially visible in the polarization, where the increase in the height of the reionization

bump, a bump in the polarization power spectrum for l < 10 that is due to scatterings that

take place during reionization, is typical of the effect of DM annihilation.

There are however some noticeable differences compared to what is obtained when in-

cluding solely either effect. In both temperature and polarization, the effective Silk damping

scale is much larger as it is affected both by the delayed recombination and the effect of

DM-baryon scattering, resulting in a strong reduction of power at all multipoles. It is also

striking to see that oscillations in the residuals when only one effect is activated are exactly

out of phase. This is because annihilation leads to an overall shift of the spectrum (due to

delayed recombination), while the scattering mostly affects the Doppler-term. Hence, the

combined effects lead to a different amplitude between maximas and minimas, compared to
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Figure 4.3: Similar to Fig. 4.2, but for millicharge DM instead of dipole DM and with
fractional electric charge ϵ = 10−4.7, comprising a fraction fχ = 10−2.9 of all DM. The
purple curve shows the residual for a cosmology with only DM annihilation, brown shows
only DM-baryon scattering, and solid blue shows both interactions.

activating only one of the effect.

4.2.3 Both effects from scattering saturation

For the case of nS = −4, we explore an interesting effect that allows annihilation to

become important for an otherwise scattering dominated model. The discussion in Sec. 4.2.1

incorporates assumptions and previous constraints that are valid only for fχ ∼ 1. At

face value, lowering fχ should only make scattering more important, since annihilation

effects are proportional to f2
χ, while scattering effects are proportional to fχ. However, at

a small enough fχ, the maximally allowed rate Rmax
χ does not continue increasing as 1/fχ.

Instead, the effect of scattering saturates once the DM and baryon fluids become tightly

coupled and more interactions do not further influence the density and velocity perturbation

equations. A sufficiently small fraction of tightly-coupled DM is indistinguishable (in a

finite-precision CMB instrument) from a small, additional component of baryons [61,215–

217, 227]. Therefore, the effect of scattering eventually saturates, the effect of annihilation
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does not. Thus, for a situation in which scattering nominally dominates, we can explore

the transition as scattering saturates and annihilation effects become important.

As a concrete example of baryon scattering saturation we consider the specific model

of millicharge DM, described in Appendix A.1.2, in which DM is imbued with a small

electric charge ϵe and ϵ ≪ 1. Millicharge DM has s-wave annihilation and a cross-section

for scattering with charged particles that scales as v−4. To check if millicharge DM is

generically scattering dominated we follow Sec. 4.2.2 by applying the notation introduced

in Eq. (4.9) to the cross sections in Sec. A.1.2. From this we get nS = −4, nA = 0 and

σS ≈ 2πα2ϵ2

µ2
χt

log

(
9T 3

t

4πα3nt

)
(4.15)

σA =
πα2ϵ2

4m2
χ

√
1−

(
mf

mχ

)2
(
2 +

m2
f

m2
χ

)
, (4.16)

where we have neglected an additional ϵ dependence of the logarithm in Eq. (4.15) which

leads to percent level difference in the scattering cross-section.

We can then take the ratio of σA and σS to see if baryon scattering or annihilation

constraints should dominate. The ratio we get for MDM is

σA
σS

≈ 1

8

µ2
χt

m2
χ

1

log
(

9T 3
t

4πα3nt

) . (4.17)

The logarithmic term will be roughly constant during the time of interest and will have a
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value around 50 [228], so for mχ > 1 MeV we have

σA
σS

≈ 2.5

(
1MeV

mχ

)2

× 10−3 . (4.18)

Comparing this to Fig. 4.1 we see that millicharge DM is indeed scattering dominated for

masses of interest here.

In Fig. 4.3 we show the effects of baryon scattering and annihilation on the CMB tem-

perature and polarization anisotropies, with ϵ = 10−4.7 and fχ = 10−2.9. As before, the

point in parameter space was chosen such that the amplitude of both interactions are com-

parable and is on the boundary of the 95% exclusion region we find in Sec. 4.3.2. The

annihilation curve has the same features as those observed in Fig. 4.2, while the scattering

curve is different due to the baryon scattering saturation. This is due to the baryon scatter-

ing saturation changing how the DM effects the CMB and results in a different spectra than

what was discussed in Sec. 4.1.1. In this case it also acts as if there were more baryons that

effected the CMB. As was the case with dipole DM in Figure 4.2, simultaneously including

scattering and annihilation leads to additive effects, which can increase the constraining

power of the CMB. The overall behavior is similar to previous case, with scattering domi-

nating at small angular scales and annihilation taking over on large angular scales. Because

of the different velocity dependence of the scattering between dipole and millicharge DM,

there are however some noticeable differences at high-ℓ and we refer to Ref. [214] for a

discussion about the ability to disentangle these features.
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4.3 Looking for electromagnetic signals of Dark Matter in

CMB data

We now analyze the dipole and millicharge DM scenarios discussed in the previous

section. Unless noted otherwise, we compute the effects of DM annihilation using the

ExoClass branch of the Boltzmann code Class [83,229], which incorporates results from

Ref. [230] to compute F600.
5 For DM scattering, we incorporate the modified version of

Class presented in Ref. [61].

We constrain the DM models with Planck 20156 temperature, polarization, and lensing

power spectra using the nuisance-marginalized joint TT, TE, EE (i.e., “lite”) likelihood

within the Planck Likelihood Code v2.0 (Clik/Plik) [233,234].

We explore the cosmological parameter space using the MontePython-v37 [235,236]

software package with a Markov chain Monte Carlo (MCMC) sampler. The MCMC sam-

pler implemented in MontePython-v3 uses the Metropolis-Hastings algorithm, and chain

convergence is evaluated using the Gelman-Rubin convergence criterion R− 1 < 0.05 [237].

In addition to the six standard ΛCDM parameters (baryon density Ωbh
2, total CDM density

ΩCDMh2, Hubble parameter h, reionization optical depth τreio, amplitude of scalar pertur-

bations As, and scalar spectral index ns), we also vary new DM parameters associated with

each model, as described in the subsequent subsections. In both cases, we perform analysis

5A more recent version of the Monte Carlo code used in Ref. [230] has now been released [231], but would
not affect the conclusions of this work, as the time dependence of the energy deposition and other new subtle
effects leaves negligible signatures in the CMB [74,82].

6While this analysis was being finalized, the Planck 2018 data became public [232] but is not yet available
in MontePython-v3. We anticipate that bounds derived here can be improved by a factor of roughly 20%,
similar to the improvement in the limit on pann between 2015 to 2018 data [13].

7https://github.com/brinckmann/montepython_public
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runs at fixed DM mass with values mχ = 1 MeV, 10 MeV, 100 MeV, and 1 GeV.

4.3.1 Dipole dark matter

We fix the fraction fχ of dipole dark matter to be 100% of the dark matter and allow

the electric dipole coupling strength D and the magnetic dipole coupling strength M to

vary as free parameters, along with the standard six ΛCDM parameters, with broad log-

flat priors. The scattering cross section scales with an inverse power of relative velocity,

so we must incorporate corrections arising from the relative bulk velocity. Moreover, the

scattering limit from Planck for fχ = 1 places DM in a regime in which the assumptions

in Ref. [57] are valid (see Ref. [61] for details), so we use the treatment shown in Eq. (4.6)

(thereby neglecting any modifications to the temperature evolution in Eq. (4.4)).

In our analysis, we include both the electric dipole v−2 scattering and the magnetic

dipole v0 scattering. For the regime we are interested in and for fχ = 100% we get that the

magnetic dipole scattering has no impact on the CMB, while the electric dipole scattering

constraint dominates.

In Fig. 4.4, we show the exclusion regions in the M vs D plane. The exclusion regions or

contours are the inverted 95% marginalized posterior probability distributions and exclude

the shaded regions at the 95% confidence level using Planck 2015 data and are marginalized

over the ΛCDM parameters. For small D, the annihilation constraints dominate and exclude

large values of M, resulting in the flat, horizontal segments of the exclusion contours. At

large D, the scattering constraints from the electric dipole interaction dominate, rendering
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the vertical exclusion contour, independent of M.

As in Sec. 4.3.2, we show the estimated annihilation and scattering constraints. Annihi-

lation predictions come from combining Eqs. (4.8) and (A.21) and values of F600 extracted

from Ref. [230] for the model of interest. Scattering was estimated with Eqs. (4.3) and

(A.20). In Fig. 4.4 we find that the scattering predictions were generally correct while the

annihilation predictions were off by about a factor of three. This discrepancy may be due to

the more complete treatment of annihilation in ExoClass compared to our basic electron

only annihilation at z = 600 in our analytic prediction.

We find an interesting transition regime for which the constraints are stronger when

including the scattering and annihilation effects together. This region is the smoothed

out corner between the scattering and annihilation dominated regions for each mass. The

reason for why combination of annihilation and scattering in the case of dipole DM improves

the limit over individual-effect analyses can be understood when examining the signals in

Fig. 4.2. Both scattering and annihilation reduce power so when the shift in the acoustic

peaks due to scattering is small, both effects can look similiar and add together.

We can compare our results to previous work on dipole DM in [238], which consid-

ered multiple constraints. When concerned with the CMB, they only focused on baryon

scattering and did not consider DM annihilation. For masses below 500 MeV, the best

constraint on dipole DM was from the mass of the W boson. Such a constraint placed

limits on the dipole moments such that
(
D2 +M2

)1/2 ≤ 3× 10−16e cm and is independent

of the DM mass in this mass range. At one GeV the main constraint used to come from
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Figure 4.4: Exclusion contours for various masses of dipole dark matter as a function of the
dipole coupling strengths. The shaded exclusion contours are the inverted 95% marginalized
posterior probability distributions and exclude the shaded regions at the 95% confidence
level using Planck 2015 data. Flat horizontal boundaries are due to annihilation constraints
while the vertical boundaries are due to baryon scattering constraints. The dashed lines are
the limits from DM annihilation alone, from Eqs. (4.8) and (A.21) and the dotted lines are
the limits from DM-b scattering alone, from Eqs. (4.3) and (A.20).
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X-ray Quantum Calorimeter (XQC) detector [239]. Although designed to probe the soft

x-ray background, XQC can detect energy transfer by dark particles down to 1 GeV. At 1

GeV it can detect dipole couplings such that
(
D2 +M2

)1/2 ≤ 6× 10−15e cm.

In the case of our 1, 10 and 100 MeV runs, we find our (CMB) limit on D to be an order

of magnitude less constraining than the previous (W boson mass) limit. This is due to the

W boson mass constraints being stronger than the CMB constraints, which we match. For

one GeV the CMB scattering constraints are about a factor of 30 weaker for D than XQC

constraints. The inclusion of the impact of annihilation on the CMB leads to improved

constraints on the magnetic dipole M, which had not been done before. At one GeV the

constraint is improved by an order of magnitude and at smaller masses the improvement is

over two orders of magnitude.

4.3.2 Millicharge dark matter

We perform a similiar analysis to millicharge DM as we did for dipole DM in Sec. 4.3.1.

Here we allow the fraction of millicharge DM fχ and fractional electric charge ϵ to vary as free

parameters. We use log-normal priors over the ranges ϵ ∈ [10−10, 10−4] and fχ ∈ [10−4, 1].

These two parameters are used in addition to the six base ΛCDM parameters.

As with dipole DM, the scattering cross section has a negative value for nS . On top of

the negative nS , we consider small values of fχ which requires the use of the modifications

to the scattering rate and temperature evolution Eqs. (4.3) and (4.4) from Ref. [61].

In Fig. 4.5 we show the 95% exclusion regions of fχ versus ϵ, with mχ = 1 MeV and

98



CHAPTER 4. INTERACTING DM SIGNATURES ON THE CMB

for runs with only scattering (brown), only annihilation (purple), and both scattering and

annihilation (blue). As expected, for small ϵ and large fraction fχ, the scattering constraint

dominates. On the other hand, increasing ϵ causes scattering to saturate and the posterior

to flatten in ϵ for fractions log10 fχ ≲ −2.7. For log10 ϵ > −4.7, the effect of DM annihilation

becomes important in constraining the model.

For small ϵ, the boundary of the exclusion region has the form fχ ∝ ϵ−2. We expect

this behavior, because the relevant cosmological observable that is constrained for DM

scattering is the coefficient of the momentum-transfer rate, which scales as Rχ ∝ fχϵ
2 as

can be seen through the combination of Eqs. (4.3) and (A.25). The heat transfer rate can

be a relevant and cons trainable quantity, but for negative values of nS , DM does not couple

to baryons at early times and the heat transfer is negligible on the CMB. As ϵ increases,

DM scattering begins to saturate and the annihilation constraint becomes prominent. In

this regime, after combining Eqs. (4.8) and (A.26), the constraint takes the form fχ ∝ ϵ−1

when the annihilation parameter is set to its constrained upper limit.

In the case of millicharge, considering the effects of scattering and annihilation together

produces the same result as a combination of the two: the region of the parameter space

excluded from joint analyses of the two effects is a simple combination of the regions ex-

cluded by individual analyses, as seen in Fig. 4.5. This could be understood when examining

Fig. 4.3: annihilation produces suppression of power in the CMB temperature, while scat-

tering also produces a shift of the acoustic peaks towards smaller scales. Since the shift

has a significant amplitude in the millicharge case, resulting oscillatory features seen in the

residual signal are of large amplitude; they are sufficiently distinct from the suppression
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produced by DM annihilation, and therefore the two processes have orthogonal effects on

the CMB. For this reason, the combined limit is not substantially stronger than a combi-

nation of limits from individual effects. In the case of dipole DM, the two effects were of

comparable size, and this lead to a stronger combined limit.

We can compare the exclusion contour of 1 MeV DM for scattering only to the similiar

result from [61]. In their Fig. 8 we see the exclusion region for DM with v−4 DM-proton

scattering. Our work differs because in their work, DM scatters on only protons while in

our work, DM scatter on protons, electrons and helium nuclei, and that rather than use

a specific model for their DM, they use σMT,f = σ0v
−4. After accounting for the different

x and y axis of Fig. 4.3 and Fig. 8 of [61], we see that both contour boundaries line up

and that our results agree with theirs. The maximum value of ϵ considered in this work

corresponds to a larger maximum value of σ0 than what was considered in [61], but for

ϵ ≲ 3× 10−7 our work matches theirs.

In Fig. 4.6 we show the 95% exclusion regions for all four DM masses under consider-

ation. Each of the four cases display the same general trend as in Fig. 4.5. We show an

estimated annihilation constraint, obtained by combining Eqs. (4.8) and (A.26) and values

of F600 extracted from Ref. [230] for the model of interest. These predictions match the

contours at large ϵ, where the annihilation constraint dominates. Furthermore, we show the

estimated scattering constraint, found with Eqs. (4.3) and (A.25), matches the contour for

low ϵ.

For all four masses in Fig. 4.6, we see the effects of baryon scattering saturation which
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Figure 4.5: Shaded excluded regions for the fraction of millicharge DM fχ as a function
of the fraction electric charge ϵ for a DM mass of mχ = 1 MeV. Excluded regions are
the inverted 95% marginalized posterior distribution. We show the contours from analyzing
Planck 2015 temperature, polarization, and lensing data for the cases of only DM scattering
(brown), only DM annihilation (purple), and both effects combined (blue).
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Figure 4.6: Excluded regions for the fraction of millicharge DM fχ as a function of the
fraction electric charge ϵ for DMmasses of 1 MeV (blue), 10 MeV (orange), 100 MeV (green),
and 1 GeV (red). Shaded excluded regions are the inverted 95% marginalized posterior
distribution. We show the 95% CL contours from analyzing Planck 2015 temperature,
polarization, and lensing data. The dashed lines are the limits from DM annihilation alone,
from Eqs. (4.8) and (A.26) and the dotted lines are the limits from DM-b scattering alone,
from Eqs. (4.3) and (A.25).
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manifests different for the different masses. In the case of one GeV this leads to a plateau

in the constraints with respect to ϵ between the predicted scattering and annihilation con-

straints. The lower masses of 10 and 100 MeV show their saturation by first reaching a

maximum constraint on fχ as ϵ increases. As ϵ increases further the constraint weakens

until the annihilation constraint becomes relevant. For one MeV, the saturation displays a

more complicated feature. There are multiple joints where the constraint on fχ gets weaker

with ϵ only to strengthen again as ϵ increases further. We checked that these features are

not a numerical artifact but leave a detailed investigation for future work. As with the

higher masses, the saturation affects end when annihilation constraints become relevant.

While dipole DM has a clear region where the constraints are improved when considering

both effects, it is not clear if millicharge DM has one as well. In Fig. 4.3, annihilation

produces suppression of power in the CMB temperature, while scattering also produces a

shift of the acoustic peaks towards smaller scales. Since the shift has a significant amplitude

in the millicharge case, resulting oscillatory features seen in the residual signal are of large

amplitude; they are sufficiently distinct from the suppression produced by DM annihilation,

and therefore the two processes have orthogonal effects on the CMB. It is easy to separate

out the individual effects, so there is no degeneracy between the two which. This lack of

degeneracy results in the combined limit that is not stronger than the individual limits.s

Finally, we note that millicharge DM has drawn recent attention in effort to explain

the anomalously large 21 cm absorption signal [227, 228, 240, 241] in the Experiment to

Detect the Global Epoch of Reionization Signature (EDGES) [242]. In order not to violate

CMB constraints [60, 61, 243], the fraction of millicharge DM must be fχ ≲ 0.4% such
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that scattering saturates and Planck loses sensitivity [61]. Here, we include annihilation

in our CMB analysis and thus Planck continues to have constraining power at lower fχ;

however, we find that it does not impact the target parameter space to explain the EDGES

signal [227]. Instead, the far more relevant annihilation process is from DM freezeout,

constrained (for the appropriate range of DM masses) by the number of relativistic degrees

of freedom Neff during big bang nucleosynthesis [227,228,240,241].

4.4 Discussion/Conclusions

This work explores, for the first time, the combined effects of DM scattering and anni-

hilation on the CMB anisotropy. We identified regions of parameter space where a single

effect dominates over the other effects, justifying a posteriori the approach followed in the

literature to focus on a single type of interaction at a time. We additionally identify regions

where both effects contribute equally and lead to new electromagnetic signatures of DM

in the CMB power spectra. By considering both scattering and annihilation cross sections

with power-law dependencies on the relative velocities between interacting species, we were

able to determine generically in what scenarios scattering would dominate over annihilation

and vice versa.

We then explored caveats to our general predictions that can exist in specific models.

The first caveat we investigated was independent couplings for the scattering and annihi-

lation cross sections, which naturally arise for dipole DM. The electric dipole leads to a

ns = −2 baryon scattering and the magnetic dipole leads to an s-wave annihilation. Dipole
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DM was predicted and shown to be annihilation dominated. By independently varying

the electric and magnetic couplings, we found when each interaction dominates over the

other and if there was a region of parameter space where their combined effects lead to new

signatures. We found that the transition regime between different effects dominating to be

very sharp. Only in small, fine-tuned regions of parameter space did the two effects become

comparable which lead to a strengthening of the constraint on the dipole couplings..

The second caveat we explored was baryon scattering saturation. Millicharge DM, a

model with ns = −4, was predicted and shown to be scattering dominated for fχ = 1.

Naively lowering the fraction of DM that is interacting should make scattering stronger rel-

ative to annihilation, however, we demonstrated with a decreasing fraction fχ and increasing

coupling strength ϵ, the impact on the CMB power spectra can saturate. Importantly, we

showed that with the addition of annihilation, the saturation effect was broken at large

enough ϵ. Although the inclusion of annihilation effects broke the saturation effect, the

existence of both types of DM interactions did not lead to new signatures on the CMB as

the new constraint at high ϵ becomes purely an annihilation effect. Only for small regions

of parameter space do we both effects as comparable which leads to very little improvement

in the constraint. The two effects are non-degenerate and separable. We investigated mil-

licharge DM with a small fχ as it has been invoked to explain EDGES [242], however, we

find that including annihilation does not impact the target parameter space to explain the

signal [227].

For both models we examined, we observed that the transition between the scattering-

dominated and annihilation-dominated regions were very abrupt. We also found that,
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scattering and annihilation have very distinct impacts on the CMB and do not correlate

nor anti-correlate. We hence prove that treating the individual effects of each interaction

independently is generally as good as comparing the impact of both interactions at once.

Only in small regions around the transition does a non-combined analysis break down. In

the small region where both effects matter, the resultant power spectra has features that

do not map directly onto the effect of a single interaction.

Despite a wealth of activity, the true nature of DM is still undetermined, with cold DM

only providing a parametric description. Many suggested models include electromagnetic

interaction in the form of self-annihilation and scattering. In this work we have demon-

strated that in most of the parameter space, as far as the CMB anisotropy is concerned,

scattering and annihilation can be studied separately since one effect usually dominates

over the other. However, there exists interesting loopholes for which new signatures emerge

which could be missed in analysis focusing on a single effect. To continue to explore physics

beyond cold DM, this paper provides an important check for all interacting DM models.
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A.1 Benchmark models of dark matter

We describe the photon-mediated DM models we use as concrete examples in this paper.

A.1.1 Dipole dark matter

For a Dirac spin-1/2 DM particle χ with mass mχ, the Lagrangian for electric and

magnetic dipole interactions is

Lint = − i

2
χ̄σµν (M+ γ5D)χFµν , (A.19)

where M and D are the magnetic and electric dipole moments, Fµν is the electromagnetic

field strength and σµν = i
2 [γµ, γν ]. Dipole DM interacts with SM fermions f (with electric

charge Ze) through the photon.
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The scattering cross section between dipole DM and f is [238]

σMT = α

(
2D2

v2
+M2

[
3−

mf (mf + 4mχ)

(mf +mχ)
2

])
, (A.20)

where mf is the mass of the fermion and α is the fine structure constant. We see that the

electric dipole scattering cross section has a v−2 dependence, while the magnetic scattering

cross section is independent of relative velocity. Since we are working in a nonrelativistic

regime in which v ≪ 1, we expect the electric dipole scattering cross section to dominate,

for comparable values of D and M.

Annihilation into SM particles occurs through both the electric and magnetic dipole

interaction. However, the electric dipole interaction leads to p-wave annihilation, which

is subdominant to the s-wave annihilation of the magnetic dipole interaction for v ≪ 1.

While we incorporate both electric and magnetic dipole scattering in our analyses, we do

not include p-wave annihilation. The s-wave annihilation cross section into f is [244]

⟨σAv⟩ =
αZ2M2

2

[
2 +

(
mf

mχ

)2
]√

1−
(
mf

mχ

)2

. (A.21)

There is also scattering with and annihilation into photon. Again, we neglect these

processes, since they scale with an additional factor of D2 or M2, and we assume D,M ≪

1 e cm.

Using the notation in Eq. (4.9), the ratio of the annihilation and scattering cross-section
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coefficients is

σA
σS

=
M2

4D2

[
2 +

(
mf

mχ

)2
]√

1−
(
mf

mχ

)2

. (A.22)

A.1.2 Millicharge dark matter

Let us consider a spin-1/2 DM particle χ with mass mχ. We assume this DM particle

is millicharged: it has electromagnetic interactions with charge ϵe, where e is the standard

electric charge and ϵ < 1 is a free parameter. Incorporating this new particle in the SM

Lagrangian, we have

L = LSM + χ̄
(
i /D −mχ

)
χ , (A.23)

where /D is the usual covariant derivative from QED. The resulting interaction term between

millicharge DM and the photon is

Lint = ϵeχ̄γµAµχ , (A.24)

where γµ are Dirac gamma matrices and Aµ is the vector field of the photon. The millicharge

DM thus has all the same electromagnetic interactions as the electron, but with a coupling

strength reduced by a factor of ϵ.

The scattering cross section between millicharge DM and a SM fermion f (with electric

charge Ze) is given by

σMT,f =
2πZ2α2ϵ2

µ2
χfv

4
ξf (A.25)

where α is the fine-structure constant and µχf is the reduced mass. The quantity ξf is
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due to Debye screening, which regulates the forward divergence of the differential cross

section. We use the expression from previous calculations, ξf = ln(9T 3
b /4πϵ

2α3nf ), where

Tb is the baryon fluid temperature, α is the fine structure constant, and ne is the number

density of electrons f [245]. However, this expression has been recently corrected to properly

account for the plasma mass of the photon, yielding ξf = ln(Tbmbmχv/παne(mb + mχ)),

where mb is the mass of the baryons with which the DM is scattering [246]. Work in [246]

suggest that the newer form of the Debye logarithm results in a momentum transfer rate

at recombination that is smaller by up to a factor of 3.

The annihilation cross section χχ̄ → ff̄ is

⟨σAv⟩ =
πα2ϵ2

4m2
χ

√
1−

(
mf

mχ

)2
(
2 +

m2
f

m2
χ

)
. (A.26)

Additionally, there is scattering with and annihilation into photons. The cross sections,

however, with charged fermions scale as α2ϵ2, whereas cross sections with photons scale as

α2ϵ4. Assuming ϵ ≪ 1, cross sections involving photons are subdominant and thus ignored,

consistent with ignoring scattering with photons in the Boltzmann equations in Sec. 4.1.1.
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[148] A. C. Rodŕıguez, T. Kacprzak, A. Lucchi, A. Amara, R. Sgier, J. Fluri, T. Hofmann,

and A. Réfrégier, “Fast cosmic web simulations with generative adversarial networks,”

Computational Astrophysics and Cosmology, vol. 5, no. 1, p. 4, Nov 2018.

[149] P. Berger and G. Stein, “A volumetric deep Convolutional Neural Network for simu-

lation of mock dark matter halo catalogues,” MNRAS, vol. 482, no. 3, pp. 2861–2871,

Jan 2019.

[150] S. He, Y. Li, Y. Feng, S. Ho, S. Ravanbakhsh, W. Chen, and B. Póczos, “Learning to
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