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1. INTRODUCTION 

Management of foreign reserves has been a constant concern for central banks 

(Nugee, 2000). In the wake of the rapid accumulation of reserves that has taken 

place since the start of the Asian crisis in the late 1990s, the challenge has 

become even more acute. According to International Monetary Fund, the 

amount of global foreign reserves grew from around 2 trillion US dollars in 

1999 to more than 10 trillion dollars by the end of 2012, while during the same 

period, international monetary relations underwent fundamental changes. In a 

time of the global financial crisis, interest rates of main reserve assets are 

approaching zero, resulting in a low yield environment for central banks’ 

investment of their foreign reserves. On the domestic front, central banks 

typically sterilise the accumulation of foreign reserves by issuing domestic debt. 

The difference between the returns on investment of external assets and the cost 

of issuing domestic debt represents the social cost of holding reserves, which 

increases with interest spreads and the size of reserve holdings. If the interest 

rate on reserve assets is lower than the domestic interest rate, holding reserves 

incurs quasi-fiscal costs (Dominguez et al., 2012). In an environment of low 

international yield and with rising levels of reserves, this social cost could be 

substantial (Walther, 2012).  

To compound the situation, the value of the dollar fluctuated widely during the 

period, with a largely downward trend, so eroding the purchasing power of 

nations’ reserve stocks. The euro, once a promising contender to the dollar 

(Chinn and Frankel, 2006, 2008), had to fight for its survival in the shadow of 

the eurozone crisis. The crisis also plunged the world economy into its worst 
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recession since the GreatDepression. In the circumstances, sound and prudent 

management of foreign reserves has become all the more critical, especially for 

large reserve holders such as China (Ryan, 2009).  

Reserve management involves determination of two essential aspects, i.e. the 

desired amount and the form of reserve assets a country should hold (Roger, 

1993). For larger reserve holders, recent research indicates that the appropriate 

reserve composition is more critical than the reserve level (Beck and Weber, 

2011). Following this insight, the current study concentrates on how to derive 

the optimalcurrency composition for China while taking the reserve level as 

exogenously given. As the world’s largest reserve holder, China reportedly 

holds as much as 70% of its total reserves in US dollars. This exposes China to 

great currency risk.  Consequently, it is desirable and necessary for China to 

hedge against the currency exposure by diversifying the currencies 

denominating the reserve assets.   

Existing literature of reserve management offers two conventional approaches to 

analysing currency composition, i.e. the mean-variance approach and the 

transactions approach (Roger, 1993). In the mean-variance approach, the central 

bank is treated as an investor who is concerned only about the risk and returns 

on investment of reserves, and the returns are measured in terms of a basket of 

currencies or commodities. The analyst has to find the currency share (weight) 

that can maximise the value of the investment portfolio for any given level of 

risk. The transaction approach argues that the central bank should seek to 

optimise the currency composition of the net foreign assets rather than of gross 
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foreign reserves, which can be achieved by manipulating the structure of gross 

assets, gross liabilities or both (Dooley, 1986). While this means that the 

currency composition can be optimised on the side of either assets or liabilities, 

Dooley suggests that more considerations should be given to transaction cost on 

the assets side and to mean-variance on the liabilities side.  In a subsequent 

empirical investigation, Dooley et al. (1989) identify some key determinants of 

the transaction considerations, such as a currency’s usage in international trade 

and financial transactions, the exchange rate regime, and country size. 

While it certainly makes sense to optimise reserves on the assets side while 

taking into account the known foreign exchange liabilities, as suggested by the 

transactions approach, it is difficult for academic researchers to have access to 

detailed data on central banks’ foreign assets and liabilities, which makes 

meaningful research in this approach virtually impossible. In contrast, the mean-

variance analysis can be conducted using data in the public domain and 

computationally it is rather tractable. This may partly explain the ready 

application of the mean-variance approach to analysing optimal currency 

composition of reserves (Ben-Bassat, 1980; Rikkonen, 1989; Dellas and Yoo, 

1991; Murray et al., 1991; Petursson, 1995; Levy and Levy, 1998; and 

Papaioannou et al., 2006).  

However, the mean-variance approach has its weaknesses as a tool for analysing 

wealth diversification. The essence of the approach assumes that investors 

maximise the expected returns for a given level of risk. Asset returns are fat-

tailed, and variance is not sufficient as a measure of risk if investor preferences 
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are not mean-variance or returns are not normally distributed (Bouye, et al., 

2000). Furthermore, it is well known that financial risks are often correlated in a 

non-Gaussian way (Clemen and Reilly, 1999; Embrechts et al., 1999; Ane and 

Kharoubi, 2003).  

Recent research has highlighted in particular the inadequacy of this approach to 

take account of influences of asymmetries in individual distributions and in 

dependence, occurrence of extreme events and the complexity in the dependence 

structure of asset returns as documented in papers such as Ait-Sahalia and 

Brandt (2001), Longin and Solnik (2001), Ang and Chen (2002), Bae et al. 

(2003), Hong et al. (2007) and Ammann and Suss (2009). These effects can 

fundamentally affect portfolio performance and the corresponding investment 

decision. Campbell et al. (2001) show that the portfolio efficient frontier is 

altered by the non-normal marginal distribution.  

It turns out that the fundamental difficulties with the mean-variance approach, 

i.e. the Gaussian assumption and the joint distribution modelling, can be treated 

as a copula problem. A copula is a function that links univariate marginals to 

their multivariate distribution. Since the seminal work of Embrechts et al. 

(1999), copulas have found increasing applications in financial research. In the 

field of portfolio management, copulas have also been applied to modelling 

multivariate distributions in problems of portfolio optimization (Hennessy and 

Lapan, 2002; Thorp and Milunovich, 2005; Hong et al., 2007; Natale, 2008; 

Christoffersen and Langlois, 2011; Garcia and Tsafack, 2011).  
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Patton (2006) applies the copula function to highlight construction of foreign 

currency portfolios. Hurd et al. (2007) provide a copula-based study of the 

bilateral exchange rate between the euro-sterling and the dollar-sterling 

exchange rates. Dias and Embrechts (2010) model exchange rate dependence 

dynamics at different time horizons in a time-varying setting. Wang et al. (2010) 

estimate risk of foreign exchange portfolio using models including the copula 

framework. Kitamura (2011) applies the copula approach to investigate the 

impact of order flow on foreign exchange market.  

Despite the fact that the copula literature is large and growing, the great part of 

the research involves only bivariate modelling and construction of higher 

dimensional copulas is rather limited (Genest et al., 2009). To extend bivariate 

copulas to higher dimensions, Joe (1997), Bedford and Cooke (2001, 2002), and 

Kurowicka and Cooke (2006) have proposed the pair-copula decomposition 

approach. Aas et al. (2009) illustrate how multivariate data with complex 

patterns of dependence in the tails can be modelled using a cascade of pair-

copulas acting on two variables at a time and show that the pair-copula approach 

is a flexible and intuitive way of extending bivariate copulas to higher 

dimensions. 

This study contributes to the reserve management literature by applying the 

copular approach that models asymmetric, fat-tail, and multiple dependence to 

the currency composition of foreign reserves in the context of China.  The pair-

copula construction method is applied for modelling the dependence structure 

among international currencies. Specializing in modelling multivariate cases, the 
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pair-copulas are based on a decomposition of higher-dimensional copula 

densities into bivariate ones, of which some are conditional and unconditional 

functions of modelled variables (Aas and Berg, 2011).  

In conventional extension of a bivariate Archimedean copula to a multivariate 

case, the dependence parameters will not increase with the number of variables, 

hence one would end up with an over-simplified dependence structure.As 

suggested in Demarta and McNeil (2005) the group t copula does not suffer 

from this inability to increase parameters, it does lack the ability of an 

Archimedean copula to model asymmetric dependence. This is particularly 

problematic for currency returns since their modelling requires flexibility in both 

the high dimensional situation s and in complex dependence features such as 

asymmetries. The pair copula construction method overcomes this problem by 

composing multiple variables through layers of bivariate copulas, each with its 

own different dependence parameters. As such, the pair copula construction 

represents an efficient technique that allows the construction of flexible and 

accessible multivariate copula extensions for optimal portfolio formation and 

quantitative risk management.  

Based on their importance in China’s trade and financial transactions, twelve 

currencies are chosen in this research as the possible candidates for the optimal 

currency composition of China’s foreign exchange reserves. With this selection, 

we form the optimal portfolio based on the pair copula construction, the 

performance of which is then compared with the outcome obtained under a 

Gaussian copula approach. Using the performance measure of expected 
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economic value of switching to the vine copula, the pair copula method shows 

clear advantages. The dominance of the copula method is also manifested under 

ad hoc weight constraints to reflect some common transaction motives, i.e. the 

international trade needs and foreign financing needs. Taking into account 

asymmetry, fat-tail and complex dependence, the pair copular approach suggests 

that China should hold a smaller proportion of US dollars than conventionally 

thought, around 40% of the total reserves for 2001-2009, the period under 

examination. The remainder of the article is arranged as follows. Section 2 

discusses the methodology of how to build asymmetry marginals and the fat-

tailed dependence structure. In addition, we specify a utility function that 

incorporates disappointment aversion as in Gul (1991), Ang et al. (2005) and 

Hong et al. (2007), which enables the portfolio optimization on non-Gaussian 

distribution. Data analysis and model results are presented in section 3, and we 

conclude in section 4.  
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2. METHODOLOGY 

a. Distribution building 

Two steps are involved in building the multivariate distribution using copulas. 

The first is to build the single variable distribution for each return series and the 

second is to build the dependence by copula for joining the separate return 

distributions together.  

A copula function 𝐶(𝑢1, 𝑢2) can be defined in the following way: Let 𝐻(𝑥, 𝑦) be 

the joint distribution with margins 𝑋~𝐹(𝑥), 𝑌~𝐺(𝑦) , and use “probability 

integral transforms” to denote 𝑈1 = 𝐹(𝑋), 𝑈2 = 𝐹(𝑌). Hence we have equation 

1: 

                                       𝐻(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) 

                                                    = 𝑃(𝐹(𝑋) ≤ 𝐹(𝑥), 𝐺(𝑌) ≤ 𝐺(𝑦)) 

                                                    = 𝑃(𝑈1 ≤ 𝐹(𝑥), 𝑈2 ≤ 𝐺(𝑦)) 

                                                    = 𝐶(𝑢1, 𝑢2)                                           (1) 

According to Sklar’s (1959) theorem, if the margin density functions (d.f.s) and 

the joint d.f. are continuous, the copula 𝐶 will be unique. The joint distribution 

building is simply the reverse of this process. We select models for the single 

return distribution and the copula for dependence.  

Distribution of each return series  
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For univariate return series, Hansen’s skewed Student-t distribution is 

considered as an option for modelling the residuals from some conditional mean 

and conditional variance models. This is to reflect the asymmetry features of 

each currency’s returns. The density function of the skewed Student-t 

distribution is defined by: 

      𝑑(𝑧; 𝜂, 𝜆) = {
𝑏𝑐(1 +

1

𝜂−2
(

𝑏𝑧+𝑎

1−𝜆
)2)−[(𝜂+1)/2]  𝑖𝑓 𝑧 < −𝑎/𝑏

𝑏𝑐(1 +
1

𝜂−2
(

𝑏𝑧+𝑎

1+𝜆
)2)−[(𝜂+1)/2]  𝑖𝑓 𝑧 ≥ −𝑎/𝑏

               (2) 

where 

      𝑎 ≡ 4𝜆𝑐
𝜂−2

𝜂−1
, 𝑏2 ≡ 1 + 3𝜆2 − 𝑎2, 𝑐 ≡

Γ(
𝜂+1

2
)

√𝜋(𝜂−2)Γ(
𝜂

2
)
                           (3) 

and 𝜂  and 𝜆  denote the degree-of-freedom parameter and the asymmetry 

parameter of the distribution. We write 𝑍~𝑆𝑇 (𝜂, 𝜆), if a random variable 𝑍 has 

the density 𝑑(𝑧; 𝜂, 𝜆). Similarly 𝑍~𝑇(𝜆) denotes a random variable following a 

standardised t distribution and 𝑍~𝑁 means that it follows a standardised normal 

distribution. The Student t distribution and Gaussian distribution are also 

deployed to model the residuals. 

The conditional mean model of ARMA (u, v) is employed with (u, v) ranging 

from 0 up to 3 lags. For modelling the conditional volatility, GARCH (p, q) and 

APARCH (p, q) are used with (p, q) ranging from 0 to 3 are to fit the currency 

data. 



11 

 

The Akaike information criterion (AIC) is used to determine the lag length, the 

choice between the GARCH and APARCH volatility model, and the type of 

residual distribution for the best fit. We have 12 currencies for 9 years’ horizon 

and this method provides a wide range to find the best fit model for each 

individual currency return. Specifically, we have: 

                               𝑟𝑡 = 𝑐0 + ∑ 𝑎𝑟i𝑟𝑡−i
u
i=1 + ∑ 𝑚𝑎j𝜀𝑡−j

v
j=1 + 𝜀𝑡,                 (4) 

                                   𝜀𝑡 = 𝜎𝑡𝑧𝑡,                                                              (5) 

                   𝜎𝑡
2 = 𝜔0 + ∑ 𝛼i𝜀t−i

2p
i=1 + ∑ 𝛽j𝜎𝑡−j

δq
j=1 ,                                     (6) 

𝜎𝑡
δ = 𝜔0 + ∑ 𝛼i(|𝜀t−i| − γi𝜀t−i)

δp
i=1 + ∑ 𝛽j𝜎𝑡−j

δq
j=1 ,                          (7) 

                                 𝑧𝑡~𝑆𝑇(𝜂𝑡, 𝜆𝑡)                                                        (8) 

𝑧𝑡~𝑇(𝜆𝑡)                                                              (9) 

𝑧𝑡~𝑁                                                                 (10) 

where equation (6) is the GARCH specification, (7) is the  APARCH model, and 

equations (8), (9) and (10) are three types of residual distribution, i.e. the 

Skewed t, t and Gaussian distribution, respectively. 

After the initial estimation, we save the standard residual terms, 𝑧𝑡, which are to 

be plugged into the copula model in the next step for estimating parameters of 

the dependence structure. 
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Pair-copula construction for dependence structure  

A brief introduction to the pair copula construction à la Bedford and Cooke 

(2002) is presented here. Consider a random vector 𝑋 = (𝑋1, … , 𝑋𝑛) with a joint 

density function of 𝑓(𝑥1, … , 𝑥𝑛). The pair copula decomposition is a result of 

the combined application of conditional density equation and the density form of 

Sklar’s theorem, as in the following: 

                                   𝑓(𝑎, 𝑏) = 𝑓(𝑎|𝑏) ∙ 𝑓(𝑏)                                       (11) 

                                   𝑓(𝑎, 𝑏) = 𝑐(𝐹(𝑎), 𝐹(𝑏)) ∙ 𝑓(𝑎) ∙ 𝑓(𝑏)                 (12) 

By applying the conditional density equation, the joint density function 

𝑓(𝑥1, … , 𝑥𝑛) can be expressed as: 

𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝑛) ∙ 𝑓(𝑥𝑛−1|𝑥𝑛) ∙ 𝑓(𝑥𝑛−2|𝑥𝑛−1, 𝑥𝑛) ⋯ 𝑓(𝑥1|𝑥2, … , 𝑥𝑛) 

                                                                                                                   (13) 

The order of the variables is changeable. By applying the density form of Sklar’s 

theorem, each factor on the right-hand side of the above equation can be 

decomposed into a product of several conditional pair-copulas and an 

unconditional marginal density function as shown below: 

                  𝑓(𝑥1|𝑥2, 𝑥3) =
𝑐13|2[𝐹(𝑥1|𝑥2),𝐹(𝑥3|𝑥2)]∙𝑓(𝑥1|𝑥2)∙𝑓(𝑥3|𝑥2)

𝑓(𝑥3|𝑥2)
                     

                                       = 𝑐13|2[𝐹(𝑥1|𝑥2), 𝐹(𝑥3|𝑥2)] ∙ 𝑓(𝑥1|𝑥2)              (14) 
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where 𝑓(𝑥1|𝑥2) can be further decomposed using the same method, so: 

𝑓(𝑥1|𝑥2, 𝑥3) = 𝑐13|2[𝐹(𝑥1|𝑥2), 𝐹(𝑥3|𝑥2)] ∙ 𝑐12[𝐹(𝑥1), 𝐹(𝑥2)] ∙ 𝑓(𝑥1)     (15) 

[Insert Fig. 1 around here] 

The choices of the pair variables of the copulas are also changeable. These 

various types are organised by the “vines” structure. Typical examples are the 

“C-vine” (canonical vine) and the “D-vine” (Kurowicka and Cooke, 2006). The 

main difference between them is that the C-vine places more emphasis on a 

pivotal variable as a root to connect other variables, whereas the D-vine states 

parallel relationship among variables. Fig. 1 demonstrates the comparison 

between the two structures in a 5-variables case. The n-dimensional density 

functions of the D-vine and C-vine decomposition are given by equations (16) 

and (17), respectively: 

∏ 𝑓(𝑥𝑘)

𝑛

𝑘=1

∏ ∏ 𝑐𝑖,𝑖+𝑗|𝑖+1,…,𝑖+𝑗−1{𝐹(𝑥𝑖|𝑥𝑖+1, … , 𝑥𝑖+𝑗−1), 𝐹(𝑥𝑖+𝑗|𝑥𝑖+1, … , 𝑥𝑖+𝑗−1)}

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

                                                                                                                     (16) 

∏ 𝑓(𝑥𝑘)

𝑛

𝑘=1

∏ ∏ 𝑐𝑗,𝑗+𝑖|1,…,𝑗−1{𝐹(𝑥𝑗|𝑥1, … , 𝑥𝑗−1), 𝐹(𝑥𝑗+𝑖|𝑥1, … , 𝑥𝑖+𝑗−1)}

𝑛−𝑗

𝑖=1

𝑛−1

𝑗=1

 

                                                                                                                  (17) 

The likelihood function can be calculated using the same formulae as above, 

after the sample for 𝑥𝑘  is decided, i.e. the standardised residuals from the 

GARCH estimation and the type of pair-copulas are determined.  
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In total, we have 12 currencies as candidates for the optimal currency portfolio. 

The sample time period spans for 9 years. To determine the best fit type of 

copula for each pair of variables on the vine nodes, we offer a range of 31 

copulas which is wide enough to capture the complex dependence between the 

12 currencies. For different layers of pair copula, we use 10 different copulas 

specifically the Gaussian, Student t, Clayton, Gumbel, Frank, Joe, Clayton-

Gumbel, Joe-Gumbel, Joe-Clayton, and Joe-Frank copulas. Of these 10 copulas, 

7 have their variants that are rotated 180 degrees, 90 degrees, and 270 degrees, 

making a total of 31 copulas. The copulas without variants are the Gaussian, 

Student-t and Frank. This setting allows the Archimedean copulas to capture any 

asymmetric dependence between upper and lower tails, and enables the rotated 

copulas to capture similar features in the second and third quarters of the 

dependence. This will be further illustrated later when analysing the currency 

returns data. The estimation is carried out by maximizing the pseudo-likelihood. 

The algorithms are based on modification of Aas et al. (2009) and the package 

‘CDVine’ in R.1 

The distribution building is finalised by combining the univariate returns and the 

copula dependence model. Monte Carlo simulations are conducted to generate 

each distribution containing 500,000 observations. 2  In generating the return 

distribution, GARCH forecasts for the portfolio management period, assumed in 

                                                 

1 The algorithm that the authors compiled can be obtained upon request. 

2 1-million-sample-distribution is tried at some time points, showing no significant differences. 
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this study to be 1 year until next adjustment of compositions, are required and 

the average of these forecasts is incorporated in the return distribution.  

To compare with the pair-copula model, a Gaussian copula model is also 

estimated using the same dataset from univariate currency returns.  The 

estimation is straightforward, for only the covariance parameters are involved. It 

is found that the Gaussian copula cannot capture the asymmetric and complex 

dependence features in the data.  

b. The investor’s preference 

In our study, the portfolio optimization problem can be summarised as 

maximization of appropriate expected utility while the utility function is based 

on the distributions from the above models:  

                                                max
𝑤

𝐸(𝑈(𝑊))                                          (18) 

                                                 𝑊 = 1 + 𝑤′𝑅                                             (19) 

where 𝑤  is a vector representing the weights of currencies, 𝑅  a vector of 

currency returns, and 𝑊 is the wealth value of the portfolio. 

The commonly used utility function is that of the power Constant Relative Risk 

Aversion (CRRA). Although this specification has preferences for higher 

moments, but the weights on them are rather small. Following Gul (1991), Ang 

et al. (2005) and Hong et al. (2007), we use the Disappointment Aversion (DA) 

preference for our optimization objective, on the ground that the commonly used 
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CRRA utility function is a local mean-variance preference. The DA utility is 

defined by the following equation: 

                   𝐷𝐴(𝑊) =
1

𝐾
(∫ 𝑢(𝑊)𝑑𝐹(𝑊)

𝜇𝑤

−∞
+ 𝐴 ∫ 𝑢(𝑊)𝑑𝐹(𝑊)

∞

𝜇𝑤
)        (20) 

where 𝑢(∙) is the felicity function in the form of CRRA utility:  

                              𝑢(𝑊) = {
(1 − 𝛾)−1 ∙ (𝑊)1−𝛾  𝑖𝑓 𝛾 ≠ 1

ln(𝑊)  𝑖𝑓 𝛾 = 1
,                     (21) 

 𝜇𝑤 is the certainty equivalent according to the CRRA power utility; 𝐹(∙) is the 

cumulative distribution function of the wealth; and 𝐾 is a constant scalar given 

by:  

                                    𝐾 = 𝑃(𝑊 < 𝜇𝑤) + 𝐴𝑃(𝑊 > 𝜇𝑤).                         (22) 

The DA preference is a transformation based on the chosen 𝑢(∙), or the CRRA 

power utility function in this case, in which the risk aversion parameter (𝑅𝐴 ) 

stands for the risk preference of the representative investor. The transformation 

puts different weights upon utility above and below the reference point, 𝜇𝑤 . 

Usually parameter 𝐴 is set to be smaller than 1 so that the utility below average 

(the loss) gives larger impacts than the utility above the average (the profit). For 

example, if 𝐴  is set to be 0.5, then the lower part of the utility is given twice the 

weight given to the upper part utility. This emphasis on the loss rather than 

profit is in accordance with the management nature of the central banks, whose 

primary goal is to avoid negative shocks to foreign assets rather than to increase 
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wealth. Parameter 𝐴  stands for the asymmetry preference of the representative 

investor. Therefore the optimization problem becomes: 

                                                 max
𝑤

𝐷𝐴(𝑊)                                             (23) 

                                                 𝑊 = 1 + 𝑤′𝑅                                             (24) 

In our analysis, we set up three levels of DA parameter, 𝐴, to be 0.25, 0.45 and 

0.65, and four levels of relative risk aversion coefficient in the CRRA power 

utility function 𝑅𝐴 , to be 3, 7, 10 and 20.  Similar range of risk aversion are 

used in Campbell and Viceira (1999), Ait-Sahalia and Brandt (2001) and Patton 

(2004).  
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3. DATA DESCRIPTION AND RESULTS 

ANALYSIS 

a. Data description and the investment strategy 

Unlike when calculating securities returns, to compute returns of each currency 

we need two types of datasets, i.e. the interest rate of the currency-issuing 

country and the exchange rate of the foreign currency to the currency of the 

home country, which is China in our case. To concentrate on the currency effect, 

we assume that international reserves are solely invested in government bonds. 

To comprehend the effects of diversification, a sufficient number of currency 

assets are to be included in a foreign currency portfolio. We select 12 currencies 

for the central bank of China. Therefore, we need 12 corresponding interest rates 

of these countries and 12 foreign exchange rates to the Chinese yuan. The 

horizon of the data sample is from 1 January 1999 to 31 December 2009 and the 

data are in daily frequency. 

The interest rate dataset consists of 8 interbank rates and 4 money market rates. 

Of the 8 interbank rates, 7 are from the London market, i.e. the London 

Interbank Offered Rate (LIBOR) and the remaining one is the interbank rate for 

the country to which the home currency belongs, in this case Singapore Sibor. 

All 8 interbank rates are from Thomson Reuters DataStream. Due to data 

availability, the other four rates are money market rates from the IMF 

International Financial Statistics. Table 1 presents a summary of the interest 

rates. 

[Insert Table 1 around here] 
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As to the exchange rates, 8 of the total 12 are from Thomson Reuters 

DataStream. Historic data on exchange rates of the Korean won and Russian 

rouble against the Chinese yuan are from a foreign exchange service company.3 

Table 2 gives a summary of the data sources. 

[Insert Table 2 around here] 

Currency returns are derived by combining the interest rate and exchange rate 

returns: 

                                                   𝑟𝑖,𝑡 = 𝑠𝑖,𝑡 + 𝑏𝑖,𝑡                                         (25) 

where 𝑏𝑖,𝑡 is the interest rate of currency 𝑖 and 𝑠𝑖,𝑡 is the exchange rate return of 

currency 𝑖 against the Chinese yuan. 

For tractability, we assume that it is desirable for reserve managers to adopt a 

buy-and-hold investment strategy with yearly rebalancing. We take previous 

three years’ daily returns as the base for estimating coefficients on model 

parameters and use one-year-ahead values from the conditional mean and 

volatility models as the corresponding expected values. Economic values are 

used as the performance measure, following Ang et al. (2005) and Hong et al. 

(2007). This measure is based on portfolio distributions, and indicates how 

                                                 

3 OANDA Corporation. www.oanda.com. 
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much certainty equivalent wealth is needed for the worse model to have the 

same amount of utility as the better distribution model.  

b. Empirical analysis of univariate currency returns 

Descriptive analyses of the 12 currency returns during the sample period are 

carried out. Table 3 displays the results for the whole sample from 1999 to 

2009. 4  The features of autocorrelation, heteroskedasticity and non-normal 

distributions are common among all currency returns. All currencies have big 

skewness and/or excess kurtosis. Normality of their returns is rejected by the 

Jarque-Bera tests. The prevalent non-normal distribution prompts us to add t 

distribution and skewed t distribution to modelling the residuals. With respect to 

the autocorrelation in conditional mean and volatility clustering, the Ljung-Box 

tests on raw data and squared returns are performed with 5 and 10 lag lengths. 

The LM ARCH test of Engle (1982) is also carried out. All 12 currencies have at 

least one test indicating autocorrelation or heteroskedastcity. This finding 

motivates us to apply the ARMA-GARCH/APARCH model. 

In order to prove the consistence of the merits of our copula method, the 

empirical analysis covers 9 years from 2001 to 2009. To illustrate the empirical 

                                                 

4 In order to prove the consistency of the merits of our copula method, individual tests covering 2001 

to 2009 are carried out. These empirical features in univariate returns as well as in dependence 

structure are universally presented in all years. Details on individual years can be obtained from the 

authors upon request. 



21 

 

motivations for applying the copula model and its effects after application, year 

2005 is used as an example. These empirical features in univariate returns as 

well as in dependence structure are universally presented in all other years. 

Details on other years can be obtained from the authors upon request. 

[Insert Table 3 around here] 

 

The parameters for modelling each currency returns are presented in Table 4. 

The best model is determined by selecting the minimal AIC. The first two rows 

show the best fit type of conditional mean and conditional variance models. 

APARCH models explain asymmetries in some skewed currencies. The 

selection of residuals distribution type is also as expected from the descriptive 

statistics. Euro and pound sterling are fitted with normal distribution whereas the 

US dollar and the New Zealand dollar with high skewness are fitted with 

skewed Student-t distribution. Other currencies with high excess kurtosis are 

accounted for by t distributions. Most of the parameters are found to be 

significant, as indicated with bold typeface. 

 [Insert Table 4 around here] 

Table 5 reveals the effectiveness of ARMA-GARCH/APARCH models in 

removing the time-dynamics in currency returns. The Ljung-Box and LM 

ARCH tests show all currency returns’ residuals are now white noise. 

Kolmogorov-Smirnov tests are performed to compare residuals with their fitted 
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distribution. The result shows that no currency can reject its best fit distribution. 

These results provide solid foundations for copula modelling. 

 [Insert Table 5 around here] 

c. Analysis of dependence 

Descriptive analyses of the dependence are also carried out. Table 6 reports the 

results for 2005 as an example. The lower triangular lists three dependence 

measures, i.e. the upper tail dependence, lower tail dependence and Kendall’s 

tau. For example, in the 7th row and 2nd column of the table, the three numbers 

0.6148, 0.3734 and 0.3630 indicate that the relation between the 7th currency 

AUD and the 2nd currency euro has a Kendall’s tau of 0.3630, and its upper tail 

is greater than the lower tail. This implies that it has a fat-tail with tail 

dependence greater than zero. It also suggests the existence of asymmetric 

dependence, which indicates that extreme losses occur less often than do 

extreme earnings. The upper triangular of Table 6, further illustrates dependence 

between two variables. The empirical meta contour graphs are fitted in their 

corresponding positions. For example, the dependence between AUD and the 

euro, in the 2nd row and 7th column, is shown to be clearly asymmetric.  

[Insert Table 6 around here] 

Our vine copula structure allows a wide selection of copula functions. The 

flexibility of the approach manifests in two aspects. First, it can capture fat-tails 

and asymmetric dependence. Such dependence is complex, especially in high 

dimensional situations. As revealed in Table 6, many currency pairs have greater 
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than zero tail dependence and uneven upper and lower tails. Conventional 

assumption of Gaussian and elliptical copulas are unable to capture these 

features, which may significantly affect portfolio optimization.  See Figs. 2 and 

3 for further illustration. 

[Insert Figs. 2 and 3 around here] 

Fig. 2 contains four graphs depicting the relation between the CHF and CAD in 

2005. The scatter plot in the upper left, and the chi-plot in the upper right using 

the method of Fisher and Switzer (1985) are for the whole sample; the chi-plot 

in the lower left is for both variables increasing together above their averages 

(the upper tail dependence), and the one in the lower right is for their decreasing 

together (the lower tail dependence). The horizontal axis of a chi-plot is the 

distance between the data point (x, y) and the centre of the dataset, whereas the 

vertical axis is a correlation coefficient on dichotomised values of the two 

variables. 

From the first chi-plot we can see that since the right half of this graph describes 

data moving in the same direction (rising or falling at the same time) and the left 

half describes data moving in different directions (one rises/falls, while the other 

falls/rises), the fact that dependence on the right is greater than that on the left 

means these two currencies are more correlated when increasing or decreasing 

simultaneously. Further, on reading the points towards the right of the plot (the 

furthest distance from the centre) the tail dependence is found to be above zero. 

This shows the fat-tail. Comparison between the second and third chi-plots 

shows that the upper tail has greater dependence than the lower tail, since the 
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higher correlation points are from the upper tail in the lower left graph, rather 

than the lower tail in the lower right graph, and this reveals asymmetry. 

Fig. 3 shows that the relation described in Fig. 2 can be captured exactly by a D-

vine structure. The figure includes three meta-contour plots. The first is the 

empirical contour, the second is taken from the estimated best fit copula in the 

D-vine structure, whereas the third is a comparison with the Gaussian copula if 

no selection is permitted. It can be seen that the Clayton-Gumbel copula in the 

second plot better captures the essence of the empirical dependence. 

To facilitate the demonstration of this point, Fig. 4 gives the same scatter plot 

and chi-plots as in Fig. 2 for the whole sample again from 1999 to 2009 for the 

purpose of showing such feature is universal. From the whole sample case in Fig. 

4, it is also discovered from the chi-plots that the dependence is actually 

distributed unevenly. The non-zero dependence in the upper and lower ends 

means fat-tails, and the different patterns in the lower half two chi-plots indicate 

dependence asymmetry. Such features are typical and universal in all the 

individual years. 

[Insert Fig. 4 around here] 

The second aspect of our copula model’s flexibility lies in the rotated copulas 

included in the fitting range, especially those Archimedean copulas being 

rotated 90 and 270 degrees. This makes it possible for our approach to capture 

dependence between variables that are correlated when moving in different 

directions. In the vine structures only part of the nodes are fed with the original 
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residuals data. Many nodes need to be changed according to the conditional 

distribution functions. As such, there is a good chance that the dependence 

between changed variables is fit best by a rotated copula. Fig. 5 shows a meta-

contour of the second copula in the sixth tier in the D-vine structure for the 

dependence of currency returns in 2005. It can be seen that the correlation in the 

upper left corner is greater than in the lower right corner. This best fit copula is a 

270 degree rotated Clayton copula. 

In Fig.6 similar discovery of rotated copulas capturing the relationship of 

currencies moving in different directions is shown again using the whole sample 

from 1999 to 2009. It is a plot of meta-contour of the second copula in the 

eighth tier in the D-vine structure, with the best fit copula to be a 90 degree 

rotated BB8 copula. 

[Insert Fig. 5 and Fig. 6 around here] 

To formally test the overall fit of the pair copula models, we conduct the Vuong 

ratio test (Vuong, 1989) by comparing the C-vine and D-vine copulas with a 

Gaussian copula and by comparing between the two vine structures. The Vuong 

test is a likelihood-ratio based test often used for comparing different non-nested 

models. 

Table 7 presents the Vuong test statistics and p-values for three sets of 

comparisons. The test results are interpreted in terms of the p-values. If the p-

value of a test is smaller than 5%, we prefer the first model at the 5% 

significance level. If it is greater than 95%, the second model is preferred. Thus 
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we can see from the tests that both C-vine and D-vine copulas are to be 

preferred over the Gaussian copula. The flexibility provided by the vine-

structures and inspected individually in above examples are highly effective in 

the overall 12-dimensional joint dependence in the sample years. However, the 

comparison between the C- and D-vines, is less conclusive. A winner can be 

selected if we raise the significance level from 5% to 10%. Below the 10% 

significance level, the D-vine is preferred for 2002 and 2008, whereas ethe C-

vine is desired only for 2005. For all other the years the difference is hardly 

significant. The fact that the D-vine has a slight edge over the C-vine is probably 

due to the fact that in the first tiers of C-and D-vines, the latter contains more 

highly correlated pairs. 

[Insert Table 7 around here] 

d. Influences of risk aversion and disappointment aversion  

Tables 8 and 9 show seven statistics that describe the optimal portfolio under 

different constructions. In addition to conventional measures such as portfolio 

mean, standard deviation, and the Sharpe ratio, we also look for skewness, 

kurtosis, VaR (value at risk) and CVaR (the conditional value at risk). Table 8 

provides an overview of copula model estimates when the risk aversion variable 

(RA) takes different values; the disappointment avoidance variable, 𝐴, is set for 

2005 at 𝐴 = 0.25 , which is the least of the three commonly adopted 

disappointment avoidance values.  



27 

 

Table 9 is a comparison under three values of 𝐴 when R𝐴 = 20 for the same 

year of 2005. Generally speaking, for 2005, the average daily returns of the 

optimal portfolios across the models are all positive. The distinction between the 

three models of Gaussian copula, D-vine and C-vine methods is clear in terms of 

skewness and kurtosis. For the rest of the measures, the differences are not as 

apparent, which lends the support for our use of DA preference.  With the DA 

utility function, the portfolio optimization can take into consideration the higher 

moments like skewness and kurtosis, which is the distinction between vine and 

Gaussian models. 

[Insert Tables 8 and 9 around here] 

In Table 8, one can see the effects of a change in risk aversion in any of the 

three models, especially in terms of the conventional risk measure, i.e. standard 

deviations. As the degree of risk aversion of the central bank increases, the 

portfolio with highest DA influence has less standard deviations and lower 

average returns. Table 9 shows the influence of the disappointment aversion 

effects. The smaller the value taken by 𝐴, the less tolerance of a negatively 

skewed distribution, implying that the possibility of negative extreme events is 

more stringently excluded. As expected, in all copula models skewness increases 

with the value of 𝐴. In what follows, we shall choose a pair of 𝑅𝐴 and 𝐴 whose 

values are assumed to be the most likely representation of the central bank’s 

preference. Given that the central bank is a very conservative institution in 

managing investment of its foreign reserves, we set 𝐴 to take the smallest value 
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from the range, i.e. 0.25, while 𝑅𝐴 equals to 20, the largest out of the four values 

to represent the behaviour of China's central bank.5  

e. Expected Economic value of switching from mean-

variance to pair-copula method 

The notion of expected economic values can be traced back to Ang et al. (2005) 

and Hong et al. (2007). It calculates the certainty equivalent wealth gains based 

on the better fitted distribution model as compared to the coarser model. In this 

study, we use expected economic value to represent how much is earned by the 

pair-copula model compared to the mean-variance model. In so doing, we 

assume DA utility for the Chinese central bank and take into account the 

asymmetries, fat-tails and dependence complexities in the returns distribution. 

Hence, this performance measure is built on a comprehensive base that 

incorporates the conservative property of the central bank and the advantages 

offered by copula modelling.  

Let us denote the certainty equivalent wealth of a mean-variance model as 

𝑊𝑛𝑜𝑟and the certainty equivalent wealth of the D-vine model as 𝑊𝑐𝑜𝑝𝑢. The 

certainty equivalent wealth is a scalar which will give the same amount of DA 

utility if the distribution of the wealth is plugged into the utility function. The 

notion of the expected economic values is that if the D-vine distribution is 

                                                 

5 Results of other values of 𝐴 and 𝑅𝐴 can be obtained upon request. 
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believed to be true, how much percentage of returns that the investor needs 

giving up in order to have the same DA utility as can be obtained from the 

traditional mean-variance method. This can also be regarded as the economic 

value of switching from a mean-variance to a pair-copula model. Denoting this 

amount as 𝐶𝐸, it can be solved through the following equations: 

𝐷𝐴(𝑊𝑛𝑜𝑟) =
1

𝐾
(∫ 𝑈(𝑤∗)𝑝(𝑅𝑐𝑜𝑝𝑢) 𝑑𝑅𝑐𝑜𝑝𝑢

𝑈(𝑤∗)<𝐸(U(𝑤∗))

+ 𝐴 ∫ 𝑈(𝑤∗)𝑝(𝑅𝑐𝑜𝑝𝑢) 𝑑𝑅𝑐𝑜𝑝𝑢

U(𝑤∗)>𝐸(U(𝑤∗))

) 

                                                                                                                     (26) 

where  

                                        𝑤∗ = 1 + 𝑅𝑐𝑜𝑝𝑢 − 𝐶𝐸                                        (27) 

Table 10 displays the expected economic value of switching from mean-

variance to the D-vine model when the disappointment avoidance parameter is 

taken to be 0.25 with five different risk aversion preferences. Across all risk 

preferences, Table 10 records that the annualised gain ranges from 0.563 basis 

points to 15.5%and the average is 0.962%. The annualised gains are calculated 

from the result from daily data assuming that there are 250 working days in a 

year. When the central bank of China takes the most conservative stance so that 

RA = 20 , the average annual gain is even higher, at 1.05% for the period from 

2001 to 2009. It should be noted that the increases in economic value are 

calculated based on the simulated returns rather than the out-of-sample data. 

Hence the economic values are expected, not realised. 
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[Insert Table 10 around here] 

f. Comparison with foreign debt and trade constraints 

In this sub-section, we analyse influences of two ad hoc weight constraints on 

the choice of currency portfolio. These two sets of constraints are in 

correspondence to the currency shares of China’s external debt and shares of 

bilateral trade between China and a particular partner in China’s total foreign 

trade. We have shown that the pair-copula method is beneficial, but the gains are 

obtained when no constraints are imposed on currency weights.  

Taking foreign trade and debt into consideration will make our model resemble 

the reality more closely. One major function of a country’s foreign reserves is to 

fulfil the payment needs of international trade and debt. These two constraints of 

minimal weights are set up following Papaioannou et al. (2006). Further 

application of this set up can be found in Wu (2007). 

Table 11 presents trade shares of Chinese partners according to the IMF’s 

Direction of Trade. We take 50% of these shares as the minimal weight in the 

optimal currency structure for China’s foreign reserves. For example, in China’s 

total international trade in 2009, trade with the US accounts for 13.55% of 

China’s total trade in value terms and so we assume that in China’s currency 

structure of foreign reserves, at least 6.775% should be kept in the USD. 

The second constraint involves China’s international financial activity. The 

currency shares of China’s external debt are obtained from the Global 

Development Finance Database of the World Bank, and are listed in Table 12. A 
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threshold of 50% of these currency shares are taken for the minimal weight of 

the corresponding currency in China’s currency composition of foreign reserves.  

 Table 13 shows annual gains of the expected economic value with foreign debt 

and international trade constraints. The average annualised expected economic 

value under the debt constraints is 4.12% and under the trade constraints it is 

13.4%. These are greater than that in the case without weight constraints. 

 [Insert Tables 11, 12 and 13 around here] 

 

g. Optimal currency composition for China’s reserves 

  We report estimates of the optimal currency composition for China’s foreign 

reserves in Tables 14 and 15. The estimation is based on the generally preferred 

D-vine copula construction for the sample period of 2001 to 2009. Results in 

Table 14 are those obtained under the trade constraints, while outcome in Table 

15 are derived with the external debt constraints. Across the sample years, we 

see a clear pattern of currency distributions, i.e. the US dollar, euro and Japanese 

yen are the three main currencies that consistently dominate the currency 

structure of China’s reserves. Of these first tier currencies, the US dollar 

maintains the leading position despite occasionally being challenged in the early 

2000s by the Japanese yen (in 2001) and the euro (in 2003). However, although 

the dollar’s primary standing is solid, its edge over other currencies is not as 

great as conventionally thought.  Generally, in China’s case, the optimal 

proportion for the dollar in the reserves is around 40-45%. The big-three 
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currencies are followed by a large group of second-tier currencies. This research 

has derived optimal shares for each of these currencies in China’s reserves. They 

provide ample rooms for China to diversify its reserve holdings into non-dollar 

assets.  

Table 16 shows the optimal currency composition for China if the Gaussian 

copula model with international trade constraints is used. The results are 

generally similar to those of the previous exercises, in that if we attend to both 

the trade and debt constraints in the copula model we derive an average 

proportion of 41.75% for the USD, whereas the conventional estimate of 

China’s USD reserves is above 60%. However in comparison with theD-vine 

copula results (in Table 14), allocations under the Gaussian copula show heavier 

concentration on several currencies. This means that the Gaussian copula 

approach may have squeezed the space for efficient currency diversification.  

[Insert Tables 14, 15 and 16 around here] 
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4. CONCLUSIONS 

An appropriate currency structure is an essential aspect of sound management of 

foreign reserves. In this paper, we set up a flexible framework based on pair-

copula construction. This approach allows us to model critical features of 

currency returns, including the asymmetry, fat-tails and complex dependence 

structure. In the context of China, we apply the copula model to analyse how 

these features affect the currency returns and to derive an optimal currency 

structure for China’s reserves management. 

Each currency return is first modelled using a variety of ARMA-GARCH filters 

with different residual distributions to best suit dynamics in univariate returns 

series. The dependency structure to connect each currency returns are then 

modelled by pair-copula construction with two different vine structures. Based 

on the established distribution we use the preference under the disappointment 

aversion effect as the optimizing objective to obtain the optimal currency 

composition. Our comparison shows that the mean-variance method cannot 

reflect the skewness whereas the pair-copula method can capture the features of 

higher moments such as skewness and kurtosis. Our further comparison shows 

the expected economic value of switching to the pair-copula models from the 

mean-variance framework. Considering the enormous amount of the 

international reserves held by emerging economies such as China, the central 

bank in our model can achieve sizable gains.  

To analyse the Chinese case, we mimic China’s currency shares of external 

payments by imposing ad hoc weight restrictions according to China’s foreign 
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trade and debt relations. Evidence shows that the pair-copula model with the D-

vine structure has advantages over other methods. In this approach, the US 

dollar consistently takes the largest share in China’s reserve currency 

composition. However, incorporation of the features of asymmetry, fat tails and 

complex dependence structure would allow more rooms for other currencies to 

be chosen for currency diversification of China’s reserves. It is therefore 

desirable and feasible for China to adopt the copula approach the currency 

composition of its reserves and diversification is important for countering 

dependence complexities to manage currency composition of its huge and 

growing reserves.  
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TABLE 1  

Summary of Interest Rates 

 

 

 

 

 

 

Source: Authors’ compilation 

 

Interest Rates Data  

Country US EURO JAPAN UK SWITZERLAND CANADA AUSTRALIA SINGAPORE 

Type Interbank rates (12 Month) 

Market LIBOR SIBOR 

Frequency Daily Daily Daily Daily Daily Daily Daily Daily 

Source Thomson Reuters DataStream 

Mnemnic Code BBUSD12 BBEUR1Y BBJPY12 BBGBP12 BBCHF12 BBCAD12 BBAUD12 SNGIB1Y 

Interest Rates Data  

Country NEWZEALAND SOUTH KOREA RUSSIA THAILAND 

Type Money Market Rate 

Frequency Daily Daily Daily Daily 

Source IMF International Financial Statistics 
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TABLE 2  

Exchange Rate Data 

Foreign Exchange Rate Data  

Currency USD EURO JPY GBP CHF CAD 

Type WM/Reuters Mid Price 

Frequency Daily 

Source Thomson Reuters DataStream 

Mnemnic Code CHIYUA$ CHEURSP CHJPYSP CHIYUAN CHCHFSP CHCADSP 

 

Foreign Exchange Rate Data Specification 

Currency AUD SGD NZD THB KRW RUB 

Type WM/Reuters Mid Price Mid Price 

Frequency Daily 

Source Thomson Reuters DataStream OANDA 

Mnemnic Code CHAUDSP CHSGDSP CHNZDSP CHTHBSP   

Source: Authors’ compilation 
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TABLE 3  

Descriptive Statistics for Currency Returns (Whole Sample) 

 

 USD EURO JPY GBP CHF CAD AUD SND NZD KRW RUB THB 

Skewness -8.889 0.245 -0.116 -0.007 0.176 -0.163 -0.428 -0.014 -0.355 0.133 -2.339 -0.469 

Excess 

Kurtosis 
270.580 2.927 4.982 4.942 2.022 4.274 8.116 3.281 2.795 12.797 38.808 70.490 

Jarque-Bera 8.790E+06 1052.600 2973.900 2919.100 503.660 2196.400 7961.700 1286.600 993.710 19585.000 1.827E+05 5.941E+05 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

LM ARCH 0.030 41.791 36.542 38.095 14.852 206.530 291.630 31.107 155.030 83.285 119.700 306.770 

p-value 0.970 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ljung-Box 5 11.106 3.577 15.555 15.276 16.610 11.834 18.869 15.490 3.170 179.684 79.632 175.617 

p-value 0.049 0.612 0.008 0.009 0.005 0.037 0.002 0.008 0.674 0.000 0.000 0.000 

LB 10 33.744 23.590 22.798 26.513 21.893 38.255 38.029 24.541 9.490 235.190 101.496 264.868 

p-value 0.000 0.009 0.012 0.003 0.016 0.000 0.000 0.006 0.486 0.000 0.000 0.000 

LB Square5 0.169 144.383 125.566 442.611 52.145 1119.980 967.616 110.909 541.421 531.598 380.376 562.222 

p-value 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

LB Square10 0.385 246.545 185.378 861.929 85.085 2192.640 2004.390 226.359 931.561 1165.690 491.188 797.854 

p-value 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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TABLE 4  

Univariate Returns Model Estimation (2005) 

 

  USD EURO JPY GBP CHF CAD AUD SND NZD KRW RUB THB 

mean type Arma (3, 3)  Arma (3, 2)  Arma (3, 1) Arma (3, 3)  Arma (2, 1) Arma (3, 1)  Arma (2, 2) Arma (2, 3) Arma (3, 3)  Arma (3, 2) Arma (3, 1)  Arma (3, 3) 

variance 

type 

Aparch (1, 

1) 

Garch (1, 

1) 

Garch (1, 

1) 

Garch (1, 

1) 

Garch (1, 

1) 

Garch (1, 

1) 

 Aparch (1, 

1) 

 Garch (1, 

1) 

Garch (1, 

1) 

 Garch (1, 

1) 

Aparch (1, 

1) 

Aparch (1, 

1) 

Distribution sstd norm std norm std Std std std sstd std std std 

Mu 1.101E-07 5.080E-04 -2.470E-06 8.790E-04 -4.490E-06 7.090E-06 -2.390E-05 2.750E-04 1.740E-04 1.370E-04 5.610E-07 9.160E-06 

p-value 4.536E-01 3.124E-01 5.979E-02 1.682E-01 9.860E-01 2.160E-06 2.000E-16 1.611E-01 1.247E-01 1.657E-01 NA 7.469E-01 

ar1 3.920E-01 -6.730E-01 8.940E-01 -9.580E-01 -1.960E-01 9.290E-01 4.840E-02 -1.000E+00 -4.530E-01 -2.720E-01 9.620E-01 2.030E-01 

p-value 2.000E-16 3.920E-04 2.000E-16 3.630E-05 4.770E-01 2.000E-16 2.000E-16 NA 1.660E-06 5.620E-02 NA 1.003E-02 

ar2 2.720E-01 -6.740E-01 1.080E-01 -6.960E-01 -4.080E-03 8.830E-02 9.510E-01 -5.120E-01 3.160E-01 5.580E-01 7.940E-03 -2.190E-01 

p-value 2.000E-16 6.450E-07 1.343E-02 4.660E-05 9.240E-01 3.960E-02 2.000E-16 1.970E-04 6.800E-04 2.180E-05 6.163E-01 3.620E-06 

ar3 3.400E-01 -4.810E-02 -2.210E-03 -6.850E-01   -3.900E-02     7.700E-01 2.170E-01 1.760E-02 6.890E-01 

p-value 2.000E-16 1.910E-01 9.522E-01 8.970E-04   2.322E-01     2.000E-16 2.790E-04 NA 2.000E-16 

ma1 -4.950E-01 6.840E-01 
-

1.000E+00 
1.000E+00 8.980E-02 

-

1.000E+00 
-9.090E-02 9.390E-01 4.320E-01 -5.110E-02 -9.820E-01 -1.390E-01 

p-value 2.000E-16 2.560E-04 2.000E-16 1.090E-04 7.450E-01 2.000E-16 2.000E-16 NA 5.770E-07 7.102E-01 NA 7.174E-02 

ma2 -1.890E-01 6.870E-01   7.340E-01     -9.410E-01 4.620E-01 -3.380E-01 -6.780E-01   2.660E-01 

p-value 2.000E-16 1.450E-07   6.560E-05     2.000E-16 9.600E-04 3.810E-05 1.880E-12   5.400E-08 

ma3 -1.890E-01     6.490E-01       -4.200E-02 -8.200E-01     -7.070E-01 

p-value 2.000E-16     5.820E-04       2.027E-01 2.000E-16     2.000E-16 

Omega 3.360E-05 7.380E-07 7.300E-07 9.050E-07 1.090E-06 5.950E-07 8.140E-07 1.900E-07 7.440E-07 6.510E-07 5.680E-09 1.290E-04 

p-value 2.430E-03 1.840E-01 1.236E-01 7.026E-02 2.120E-01 1.724E-01 1.840E-01 1.395E-01 1.276E-01 2.664E-01 1.000E+00 3.896E-02 

alpha1 2.500E-01 1.350E-02 5.000E-02 4.320E-02 3.540E-03 2.810E-02 1.830E-02 3.620E-02 1.620E-02 1.410E-01 1.000E+00 3.220E-01 

p-value 1.030E-07 1.169E-01 4.850E-03 5.818E-03 6.680E-01 2.120E-02 3.230E-01 1.358E-02 2.051E-02 1.487E-03 1.760E-02 3.170E-03 
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gamma1 8.880E-02           3.310E-01       1.070E-01 1.200E-01 

p-value 5.160E-01           1.680E-05       3.909E-01 3.207E-01 

beta1 8.140E-01 9.660E-01 9.310E-01 9.260E-01 9.760E-01 9.540E-01 9.610E-01 9.380E-01 9.710E-01 8.710E-01 8.860E-01 6.380E-01 

p-value 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 2.000E-16 9.730E-09 

Delta 6.680E-01           2.000E+00       8.360E-01 1.240E+00 

p-value 2.240E-08           1.990E-01       7.850E-07 4.100E-03 

Skew 9.890E-01               8.740E-01       

p-value 2.000E-16               2.000E-16       

Shape 2.680E+00   5.030E+00   5.450E+00 6.040E+00 6.640E+00 6.210E+00 6.780E+00 4.320E+00 2.010E+00 2.870E+00 

p-value 4.440E-16   2.550E-06   4.090E-05 1.450E-05 4.140E-05 7.290E-06 8.640E-05 7.320E-09 2.000E-16 3.690E-14 

 
Notes: (i).The first two rows in the table indicate the type of mean and variance functions for each currency returns and their best fit lag lengths. The third row reports the 

best fit distribution forms for their residuals. Skewed Student-t, Student-t and Gaussian distributions are respectively denoted by ‘sstd’, ‘std’, and ‘norm’. (ii).The rest of the 

table lists coefficient values and their p-values to indicate significance for corresponding models in the first three rows. Significance is highlighted with the bold fonts. 
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TABLE 5  

Statistical Tests for Effectiveness of Univariate Models (2005) 

 
 USD EURO JPY GBP CHF CAD AUD SND NZD KRW RUB THB 

Ljung-Box 10 0.027 3.253 7.919 4.143 6.027 5.697 6.633 4.113 9.764 10.670 0.004 4.908 

p-value 1.000 0.975 0.637 0.941 0.813 0.840 0.760 0.942 0.461 0.384 1.000 0.897 

Ljung-Box 15 0.043 7.915 9.752 6.079 12.138 6.673 17.349 7.794 18.370 12.990 0.004 17.094 

p-value 1.000 0.927 0.835 0.978 0.669 0.966 0.298 0.932 0.244 0.603 1.000 0.313 

LB Square10 0.013 16.025 7.202 4.169 8.473 8.265 12.441 9.547 5.005 11.034 0.004 3.423 

p-value 1.000 0.099 0.706 0.939 0.583 0.603 0.257 0.481 0.891 0.355 1.000 0.970 

LB Square 15 0.020 19.544 9.240 7.160 9.754 11.013 20.304 16.794 18.920 15.732 0.004 4.065 

p-value 1.000 0.190 0.865 0.953 0.835 0.752 0.161 0.331 0.217 0.400 1.000 0.998 

LM ARCH 0.016 18.649 7.214 4.534 8.852 9.762 11.552 11.575 6.107 12.429 0.753 3.870 

p-value 1.000 0.097 0.843 0.972 0.716 0.637 0.482 0.480 0.911 0.412 1.000 0.986 

KS test 0.030 0.028 0.043 0.026 0.042 0.033 0.045 0.037 0.033 0.020 0.046 0.028 

p-value 0.489 0.640 0.137 0.708 0.153 0.426 0.111 0.228 0.362 0.920 0.080 0.572 

 

 
Notes: (i). LB stands for the Ljung-Box test and LB 10 means the Ljung-Box test on raw data with 10 lags. LB Squre15 means the Ljung-Box test on squared terms with a 

lag length of 15. (ii). All tests in the table are presented with both coefficient values and their probability values (p-values) to indicate the hypothesis rejection. None of the 

null hypothesis can be rejected. 
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TABLE 6 
Descriptive Analysis of Dependence (2005) 
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0.0620  

0.0000  
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0.0000  

0.0201  
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0.0000  

0.0088  

0.0168  

0.0168  

0.0521  

0.0995  

0.0995  

0.2497  

0.1681  

0.1681  

0.5488  

0.0057  

0.0057  

0.2227  

0.3456  

0.0874  
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0.0000  
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Notes: The lower triangular lists three dependence measures: the upper and lower tail dependence and Kendall’s tau, respectively. The upper triangular are empirical meta-

contour graphs. 
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TABLE 7  

Vuong Test for Three Pairs of Comparisons 

 

 
2001 2002 2003 2004 2005 2006 2007 2008 2009 

C-Gaussian 5.975 5.811 6.446 5.573 4.283 5.209 5.446 6.252 4.893 

p-value 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

D-Gaussian 5.634 5.964 6.321 5.332 4.528 4.995 6.205 6.253 6.400 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C-D 0.695 0.116 -0.394 0.739 -1.692 0.173 -1.208 -0.101 -1.491 

p-value 0.487 0.908 0.693 0.460 0.091 0.863 0.227 0.920 0.136 

Notes: (i). C-Gaussian means comparison between C-vine copula and Gaussian copula. (ii). The Vuong tests are interpreted by inspecting p-values. If it is smaller than the 

significance level, the former model in the comparing pair is preferred. If larger than one minus the significance level the latter is preferred. No decision can be made if in 

the middle. 
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TABLE 8  

Descriptive Statistics for Different Degrees of Risk Aversion 
when A=0.25 for 2005 

RA=3 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

Gaussian 0.000451 0.005678 0.079404 -0.24963 4.856321 -0.00895 -0.24946 

D-vine 0.000452 0.005992 0.075445 -0.23347 5.728709 -0.0094 -0.26427 

C-vine 0.000449 0.005454 0.082337 -0.38095 14.861 -0.00844 -0.23346 

RA=7 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

Gaussian 0.000434 0.005085 0.085346 -0.10572 4.692941 -0.00785 -0.21691 

D-vine 0.000433 0.005309 0.081606 -0.26512 11.21563 -0.00815 -0.227 

C-vine 0.000439 0.00513 0.08565 -0.46894 23.37002 -0.00783 -0.2161 

RA=10 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

Gaussian 0.00042 0.004794 0.087557 -0.08073 4.685982 -0.00736 -0.20315 

D-vine 0.000424 0.005117 0.082878 -0.22989 14.21159 -0.00781 -0.21689 

C-vine 0.000433 0.005005 0.086599 -0.45262 23.90282 -0.0076 -0.20958 

RA=20 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

Gaussian 0.000307 0.002536 0.12104 -0.06807 5.009664 -0.0038 -0.10557 

D-vine 0.000322 0.003789 0.085092 -0.01971 20.90247 -0.00575 -0.15901 

C-vine 0.000333 0.003756 0.08871 -0.42971 23.38223 -0.00568 -0.15653 
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TABLE 9  

Descriptive Statistics for Different Values of Asymmetry Preference 
Portfolio Descriptive Statistics when RA=20 for 2005 

A=0.25 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

MV 0.000307 0.002536 0.12104 -0.06807 5.009664 -0.0038 -0.10557 

D-vine 0.000322 0.003789 0.085092 -0.01971 20.90247 -0.00575 -0.15901 

C-vine 0.000333 0.003756 0.08871 -0.42971 23.38223 -0.00568 -0.15653 

A=0.45 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

MV 0.000307 0.002538 0.120982 -0.06858 5.007607 -0.00381 -0.10566 

D-vine 0.000322 0.003788 0.085094 -0.01976 20.91866 -0.00575 -0.15898 

C-vine 0.000333 0.003756 0.08871 -0.42983 23.38422 -0.00568 -0.15654 

A=0.65 

Model Mean s.d. Sharpe ratio skewness kurtosis VaR CVaR 

MV 0.000307 0.002534 0.121074 -0.06889 5.011703 -0.0038 -0.10551 

D-vine 0.000322 0.003789 0.085093 -0.01991 20.91404 -0.00575 -0.15899 

C-vine 0.000333 0.003757 0.088708 -0.43131 23.37734 -0.00568 -0.15655 

Notes: (i).A is the disappointment avoidance parameter with its values ranging in [0,1]. With the 

disappointment avoidance utility, the investor treats the earnings above the expectation only as A 

times of the losses below the expectation. The smaller the value of A, the more emphases the 

investor puts on losses below expectation than on earnings above. (ii).RA is the risk aversion 

parameter. The higher the value of RA, the more risk averse the investor is. (iii).s.d. is short for 

standard deviations. The Sharpe ratio is calculated as the ratio between mean and s.d. representing 

return per unit of risk. VaR is short for Value at Risk. CVaR is short for Conditional Value at Risk. 
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TABLE 10  

Expected Economic Value of Switching from Gaussian Copula to D-Vine 

Copula Modelling 

 
Economic value of Gaussian copula to D-vine when A=0.25 

 RA=3 RA=7 RA=10 RA=20 

2001 8.68E-04 6.15E-04 2.04E-02 2.33E-02 

2002 1.86E-04 3.13E-04 4.18E-04 4.63E-04 

2003 5.63E-05 2.70E-04 2.93E-04 8.60E-03 

2004 1.06E-02 6.53E-03 2.04E-03 3.05E-03 

2005 2.53E-04 3.00E-04 4.55E-03 2.14E-02 

2006 3.88E-03 1.11E-02 4.93E-03 7.95E-03 

2007 1.92E-04 0.1515 4.78E-03 7.80E-03 

2008 7.15E-03 2.70E-03 4.78E-03 1.41E-02 

2009 4.75E-03 3.50E-03 4.78E-03 8.28E-03 

 
Notes: (i).The table shows the annualised expected economic value for attending features of 

asymmetries and fat-tails by switching from the Gaussian copula to the D-vine copula modelling. 

The value is calculated as how much earnings can be deducted to lower the D-vine copula model’s 

utility down to the same level as the mean-variance model’s utility. (ii).A is the disappointment 

avoidance parameter with its values ranging in [0,1]. Under the disappointment avoidance utility, 

the investor treats the earnings above the expectation only as A times of the losses below the 

expectation. The smaller the value of A means that the more emphases the investor puts on losses 

below the expectation than earnings. (iii).RA is the risk aversion parameter. The higher the value 

of RA, the more risk averse the investor is. 
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TABLE 11  

Trade Shares of China’s Partners 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 

USD 15.80% 15.67% 14.87% 14.72% 14.92% 14.94% 13.94% 13.06% 13.55% 

EURO 12.26% 11.61% 12.39% 12.24% 12.26% 12.35% 12.79% 12.93% 12.79% 

JPY 17.22% 16.41% 15.69% 14.53% 12.97% 11.78% 10.85% 10.42% 10.37% 

GBP 2.02% 1.83% 1.69% 1.71% 1.72% 1.74% 1.81% 1.78% 1.77% 

CHF 0.47% 0.43% 0.42% 0.45% 0.41% 0.39% 0.44% 0.44% 0.44% 

CAD 1.45% 1.28% 1.18% 1.34% 1.35% 1.32% 1.39% 1.35% 1.34% 

AUD 1.76% 1.68% 1.59% 1.76% 1.91% 1.86% 2.01% 2.29% 2.71% 

SND 2.14% 2.26% 2.27% 2.31% 2.34% 2.32% 2.17% 2.05% 2.17% 

NZD 0.23% 0.23% 0.21% 0.22% 0.19% 0.17% 0.17% 0.17% 0.21% 

KRW 7.04% 7.10% 7.43% 7.79% 7.87% 7.63% 7.36% 7.27% 7.07% 

RUB 2.09% 1.92% 1.85% 1.83% 2.04% 1.89% 2.21% 2.22% 1.75% 

THB 1.41% 1.38% 1.49% 1.50% 1.53% 1.57% 1.59% 1.61% 1.73% 

Source: International Monetary Fund:  Direction of Trade, various issues. 
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TABLE 12  

Currency Shares of China’s External Debt 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 

USD 74.08% 72.45% 71.27% 70.77% 74.69% 76.27% 80.62% 81.68% 83.83% 

EURO 4.74% 5.69% 7.16% 9.02% 8.00% 8.39% 8.07% 6.62% 6.21% 

JPY 14.54% 15.39% 16.73% 15.92% 13.47% 12.02% 8.38% 9.14% 7.86% 

GBP 0.10% 0.11% 0.11% 0.10% 0.09% 0.08% 0.07% 0.04% 0.03% 

CHF 0.10% 0.11% 0.11% 0.10% 0.07% 0.06% 0.04% 0.03% 0.01% 

Source: World Bank: Global Development Finance Database  
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TABLE 13  

Expected Economic Value of Switching from Mean-Variance to D-Vine Copula Modelling 

 

Economic Values Constrained when A=0.25 and RA=20 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Debt Cons 6.33E-03 3.33E-04 2.47E-04 6.10E-03 0.142 1.11E-03 8.38E-03 0.1238 0.083 

Trade Cons 0.552 4.70E-15 1.58E-15 0.0965 0.223 2.68E-03 0.23525 0.09075 1.51E-03 

 

 
Notes: (i).The table shows the annualised expected economic value for attending features of asymmetries and fat-tails by switching from mean-variance to D-vine copula 

Modelling. The value is calculated as how much earnings can be deducted to lower the D-vine copula model’s utility down to the same level as the mean-variance model’s 

utility.(ii).The optimal currency compositions based on which the economic value is obtained are calculated with debt or trade constraints. These constraints are set as 

minimal weights of currencies for China’s debt or transactions with its trading partners, and the weights are taken as 50% of each partner’ share in China’s debt or trade 

relation. 
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TABLE 14 

Currency Composition by D-vine Copula with Trade Constraints 
  2001 2002 2003 2004 2005 2006 2007 2008 2009 

USD 7.97% 38.07% 7.65% 35.45% 12.46% 19.92% 7.46% 50.15% 31.14% 

EURO 6.21% 7.25% 21.10% 9.48% 11.13% 6.48% 6.77% 6.70% 6.80% 

JPY 75.41% 8.29% 7.96% 7.37% 11.48% 5.97% 5.53% 22.78% 24.64% 

GBP 1.39% 8.29% 18.58% 7.29% 5.89% 11.76% 1.30% 1.15% 1.00% 

CHF 0.34% 13.58% 0.49% 0.25% 5.22% 0.33% 0.37% 1.23% 0.75% 

CAD 0.72% 1.30% 0.90% 0.99% 12.03% 9.83% 16.19% 1.24% 2.28% 

AUD 1.01% 1.00% 1.09% 0.98% 5.48% 2.24% 1.67% 2.06% 5.52% 

SND 1.33% 1.45% 1.29% 1.30% 6.20% 28.94% 2.44% 5.41% 2.46% 

NZD 0.22% 2.54% 34.78% 8.91% 4.59% 1.48% 0.64% 0.30% 0.63% 

KRW 3.53% 4.50% 4.03% 5.46% 8.90% 8.22% 3.68% 3.84% 3.55% 

RUB 1.05% 12.96% 1.12% 21.76% 10.90% 4.03% 46.93% 3.20% 1.25% 

THB 0.82% 0.76% 1.02% 0.75% 5.73% 0.79% 7.02% 1.94% 20.00% 
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TABLE 15 

Currency Composition by D-vine Copula with Debt Constraints 
  2001 2002 2003 2004 2005 2006 2007 2008 2009 

USD 46.32% 45.99% 35.77% 35.52% 37.68% 38.48% 40.69% 49.46% 45.86% 

EURO 2.48% 4.97% 19.05% 15.41% 4.21% 4.49% 4.41% 3.94% 7.91% 

JPY 7.40% 7.78% 8.46% 8.08% 6.82% 6.09% 4.29% 14.36% 13.72% 

GBP 0.99% 9.74% 3.41% 0.48% 0.33% 8.23% 0.43% 0.17% 2.58% 

CHF 0.20% 14.75% 0.33% 0.25% 0.12% 0.17% 0.18% 2.08% 5.95% 

CAD 41.11% 0.70% 0.23% 0.24% 27.24% 6.72% 17.37% 4.22% 0.02% 

AUD 0.18% 0.17% 0.31% 0.17% 12.58% 0.93% 0.85% 4.73% 5.05% 

SND 0.30% 0.39% 0.12% 0.13% 0.20% 22.78% 1.02% 7.56% 1.60% 

NZD 0.13% 2.94% 31.51% 38.77% 6.52% 1.25% 0.63% 4.18% 6.27% 

KRW 0.70% 2.49% 0.28% 0.89% 2.81% 7.48% 1.08% 2.82% 1.89% 

RUB 0.07% 9.96% 0.28% 0.05% 0.88% 3.32% 23.53% 4.54% 5.14% 

THB 0.12% 0.12% 0.24% 0.02% 0.60% 0.05% 5.51% 1.94% 4.02% 
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TABLE 16 

Currency Composition by Gaussian Copula with Trade Constraints 
  2001 2002 2003 2004 2005 2006 2007 2008 2009 

USD 32.97% 32.71% 7.67% 7.60% 7.72% 9.12% 7.46% 43.90% 35.22% 

EURO 6.25% 7.17% 21.46% 27.59% 6.34% 6.47% 6.77% 6.51% 6.87% 

JPY 8.75% 8.32% 7.98% 7.47% 6.59% 5.97% 5.52% 21.84% 25.15% 

GBP 1.57% 7.18% 13.51% 1.48% 1.11% 8.22% 1.30% 0.94% 1.01% 

CHF 0.39% 16.89% 0.58% 0.55% 0.31% 0.33% 0.37% 0.29% 0.73% 

CAD 39.95% 1.68% 0.99% 1.11% 26.96% 13.11% 19.56% 0.85% 2.88% 

AUD 1.09% 1.05% 1.38% 1.10% 5.99% 1.61% 1.67% 1.31% 5.98% 

SND 1.42% 1.70% 1.32% 1.36% 1.37% 42.38% 2.45% 1.57% 2.63% 

NZD 0.27% 3.20% 37.85% 43.74% 5.76% 0.78% 0.63% 0.24% 0.54% 

KRW 5.24% 4.91% 4.10% 4.16% 4.32% 6.60% 4.16% 3.69% 3.62% 

RUB 1.23% 14.30% 2.06% 2.87% 32.50% 4.56% 42.60% 1.78% 1.24% 

THB 0.86% 0.88% 1.10% 0.96% 1.02% 0.85% 7.49% 17.07% 14.11% 

 


