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INTRODUCTION 

Dinosaur footprints are found in the Glen Rose 
Formation and other Lower Cretaceous stratigraphic 
units over much of central Texas (Pittman, 1989; 
Rogers, 2002; Farlow et al., 2006). Dinosaur tracks 
were discovered in the rocky bed of the Paluxy River, 
near the town of Glen Rose, Texas, early in the 20th 
Century (Jasinski, 2008; Farlow et al., 2012b). Ellis W. 
Shuler of Southern Methodist University did pioneering 
studies on the dinosaur tracks (Shuler 1917, 1935, 
1937), and Langston (1974) summarized much of the 
early literature.  

What really put the dinosaur footprints of the 
Paluxy River on the map, though, were the herculean 
efforts that Roland T. Bird of the American Museum of 
Natural History made to secure trackway slabs for 
display at that institution and at the Texas Memorial 
Museum in Austin (Bird, 1985; Jasinski, 2008). In 1970 
Dinosaur Valley State Park was created to protect the 
dinosaur footprints. 

This guidebook briefly summarizes earlier 
work, and also serves as an interim report of research of 
our group still in progress, concerned with identifying 
the makers of the Paluxy River footprints, and 
determining what those animals were up to as they 
made their tracks. We will offer some comparisons of 

the dinosaur tracks of the Glen Rose Formation with 
those from other ichnofaunas around the world. The last 
quarter-century has seen an explosive increase in the 
technical literature dealing with dinosaur footprints, and 
we cannot possibly cite all of the relevant studies. For 
the sake of brevity we will emphasize publications from 
the present century, and summary papers and books, as 
much as possible. Even with this restriction, however, 
the literature is so vast that the literature-cited “tail” of 
this report starts to wag the “dog” of the text. 

GEOGRAPHIC AND STRATIGRAPHIC 
OCCURRENCE OF TRACKSITES 

As the Paluxy River flows eastward across 
Somervell County, Texas toward its eventual junction 
with the larger Brazos River, it makes a northerly and 
then a southerly loop west of the town of Glen Rose 
(Fig. 1A). Much of the northern loop is within the 
boundaries of Dinosaur Valley State Park. The river has 
cut into rocks of the Trinity Group, and the main track 
occurrences are in the lower member of the Glen Rose 
Formation (Fig. 1B; within the town of Glen Rose itself, 
well away from the river, there is an interesting dinosaur 
tracksite much higher in the section [Blair et al., 2012a, 
b]).  
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The stratigraphy and sedimentology of the 
local section has been described in considerable detail 
(Dattilo et al., 2014 and references therein), and so will 
receive only brief treatment here, emphasizing the 
dinosaur trace fossils. Dinosaur footprints have been 
found at three levels over a roughly 6-meter interval in 
the lower member of the Glen Rose Formation, 
separated by beds containing a diverse benthic marine 

paleobiota (Feldman et al., 2011; Dattilo et al., 2014; 
Martin et al., 2015). The track-bearing intervals are 
designated the Main Tracklayer, the Taylor Tracklayer, 
and the Diplocraterion bed. The units in the Paluxy 
River section are not perfectly flat, but gently undulate 
up and down along the length of the river (Fig. 1C). 

Fieldwork on the Paluxy’s tracksites is not 
without challenges. During rainy weather the tracksites 

FIGURE 1. Location and stratigraphic occurrence of major Paluxy River dinosaur tracksites and other significant sites 
(Dattilo et al., 2014); A, the river flows from right to left as shown here. Individual horizons exposed in the river bed coded 
by color. B, the Glen Rose Formation stratigraphic section in the Glen Rose region. The tracklayers in and around Dinosaur 
Valley State Park are in the lower member of the formation; C, correlation of the footprint-bearing and other layers; dinosaur 
tracks occur in the Main Tracklayer, the Taylor Tracklayer, and the Diplocraterion bed. 
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may be underwater for days or weeks on end, and at 
times the river flow may be so deep and fast as to be 
dangerous. Measuring and photographing footprints 
underwater can be tricky. During the summer, if water 
levels are high enough to cover the tracks, as 
temperatures warm in the afternoon, breezes begin to 
blow, creating ripples on the water through which the 
footprints are difficult to see. During dry spells the river 
may break up into a series of isolated pools. Wading 
around the prints at such times will kick up sediment 
that takes several minutes to settle out, and the rock 
surfaces underwater are very slippery. At those times 
when the river is almost or completely dry, air 
temperatures may shoot above the century (Fahrenheit) 
mark. Snakes are common in the river, and some of 
them are venomous, but this merely adds to the fun. 
 
DISTINCTIVE FEATURES OF PALUXY RIVER 
TRACKSITES 
 
 Main Tracklayer (Figs. 2, 3A-G)—This unit 
is a 10-30 cm thick, homogeneous, sandy dolomitic 
wackestone (Dattilo et al., 2014). The surface of the unit 
is thickly dotted with small, U-shaped Arenicolites 
burrows, presumably made by benthic crustaceans or 
polychaetes (Figs. 2H, 3E, 5B, F, 6). R. T. Bird’s 
trackway quarry was in this unit (Figs. 2A-E), and all of 
the unambiguous sauropod trackways occur in the Main 
Tracklayer (Figs. 2-4). Particularly impressive tracksites 
(Fig. 1A) occur in a stretch of river between the Main 
Tracksite and a rough road crossing to the south of 
Bird’s quarry site (most of which is shown in Fig. 2A), 
at the Blue Hole, the Blue Hole Ballroom, and at the 
mouth of Denio Branch. However, many of these sites 
are often underwater or covered by coarse river 
sediment, and the Denio site is being actively eroded by 
the river. 
 Dinosaur footprints in the Main Tracklayer are 
often quite deep (up to c. 25-30 cm), and some tracks 
pass through the layer to the underlying Bluff Dale 
Sand. The trackmakers had themselves to have been 
carrying most or all of their body weight, without being 
buoyed up by water, in order to make such deep 
footprints.  

However, there are some intriguing prints that 
suggest that their makers were floating or swimming. 
One of these is a set of two parallel slash marks in the 
rock at the west bank portion of the Main Tracksite 
(Fig. 3E, F). These are claw marks only, and decrease 
dramatically in depth from one end to the other. 
Footprints attributed to swimming (or possibly 
swimming) bipedal dinosaurs have been described from 
a number of tracksites around the world (Whyte and 
Romano, 2001; Farlow and Galton, 2003; Moreno et al., 
2004; Milner et al., 2006a, b; Ezquerra et al., 2007; 
Xing et al. 2011b, 2013a; Fujita et al., 2012; Romilio et 
al., 2013; Lockley and Tempel, 2014; Lockley et al., 
2014b), and some of these are very similar to the prints 
described here. A second interesting set of traces 
consists of a discontinuous series of arcuate slash marks 
at one end of part of the Main Tracksite (Fig. 3A, G), 
also possibly made by a swimming animal.   

If the Main Tracklayer contains footprints of 
both floating and walking dinosaurs, then water depth 
fluctuated (by a few meters?) over the interval during 
which it recorded footprints. Small but densely 
populated U-shaped burrows (Arenicolites) on the top 
surface of the Main Tracklayer also indicate a 
subaqueous environment, as these likely belong to 
suspension feeders. These burrows must have preceded 
the dinosaurs, though, as they are compressed within or 
otherwise deformed by the tracks. 

Another interesting feature of the Main 
Tracklayer is a common mode of preservation of 
tridactyl prints in which the toe marks penetrate the rock 
further forward beneath the surface of the rock layer 
than at the surface, forming “toe tunnels” (Fig. 3D), 
suggesting a rather plastic consistency of the sediment 
at the time the tracks were made; Farlow has found it 
entertaining to watch little fishes swimming in and out 
of such tunnels, but he is of course very easily amused. 
Footprints of this kind may indicate something about the 
kinematics of the foot-substrate interaction of mud-
slogging bipedal dinosaurs (cf. Platt and Meyer, 1991; 
Avanzini et al., 2012; Huerta et al., 2012; Falkingham 
and Gatesy, 2014). In some tridactyl footprints from the 
Main Tracklayer there was backflow of sediment into 
footprints, and even complete collapse of footprints,  

FIGURE 2 (next page). Distinctive features of the Paluxy River Main Tracklayer; A, View of the Main Tracksite area (left: 
GPS 32.25324,	
  -97.81883), the Bird Site (middle: 32.25260, -97.81869), and the East Bank (Ozark) Site (32.25221, -97.81856), 
with R. T. Bird’s Rye Chart (Farlow et al., 1989) and other trackway maps superimposed (modified from Farlow et al., 2012). 
Individual sauropod trackways labeled S0 – S9. Much of the track-bearing bed in the river channel has been destroyed by 
erosion since 1940; B – E, R. T. Bird’s sauropod-theropod “chase sequence”; B, 1940 Bird photograph of the two trackways; C, 
location of Bird’s quarry along the west bank of the river; D, digital reconstruction of the two trackways in plan view created 
from Bird’s photographs (Falkingham et al., 2014); E, digital model of a portion of the two trackways, created by LiDAR 
scanning of the American Museum slab (bottom, below seam) and the Texas Memorial Museum slab (above seam). The final 
sauropod manus print in the American Museum slab (f) is a fabrication; the actual manus is seen immediately above the seam in 
the Texas Memorial Museum slab; F, G, photomosaic and interpretive map of the Blue Hole Ballroom (32.24777, -97.81913). 
Note prints of a large sauropod (Ls) moving diagonally from left to right as illustrated here, and a small sauropod (Ss) moving 
diagonally from right to left; H, large theropod footprint showing distinct claw marks. Note numerous Arenicolites burrows. 
Paleontologist Dr. Barbara Mattel is about 30 cm tall. 
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after the footprint was lifted from the substrate. Very 
commonly, but not always, there is a linear gash at the 
rock surface indicating where the mud squeezed 
together after a toe was withdrawn from the sediment. 
The surface expression of roofed over and collapsed 
footprints can give the misleading impression of toe 
marks that are short, broad, and blunt, which has led to 
misidentification of theropod footprints as those of 
ornithopods. 

Taylor Tracklayer (Figs. 3H-J, 5G-M)—This 
grainstone is about 6 meters stratigraphically above the 
Main Tracklayer. It crops out in the river bed at and 
above the upstream end of Dinosaur Valley State Park, 
and again downstream of the Main Tracklayer 
exposures, beyond the park boundaries (fig. 1A). In 
places it consists of a series of very thin beds. 
Mudcracks and/or microripples are present, but the huge 
Arenicolites aggregations so typical of the Main 
Tracklayer are absent. 

The Taylor layer contains numerous trails of 
elongate tracks with metatarsal impressions, many of 
which are largely infilled with a bluish-grey secondary 
sediment, which oxidizes to rusty-brown upon exposure 
(Kuban, 1989a, b).  The infillings reduce the 
topographic relief of these tracks (Fig. 3H-J), sometimes 
leaving indistinct oblong depressions, which under 
some viewing conditions can resemble human tracks 
(Fig. 3I), an illusion often mistaken as real by 
creationists.  However, when well cleaned, and 
especially clean and wet, the contrasting color and 
texture of the infilling material clearly demarcates the 
original track shapes and tridactyl digit patterns (Fig. 
3H, J, 5K, L). Cores taken at the margin of the infillings 
show that the original tracks were several cm deep 
before the infilling episode.  Some of the well oxidized 
infillings have become harder than the surrounding 

rock, causing the limestone to erode around them, 
creating “raised” relief (Fig. 5K).   

As with the Main Tracklayer, tridactyl 
footprints of bipedal dinosaurs are most common, and 
possibly include ornithopod (Fig. 3J) as well as the 
usual theropod footprints. Sauropod footprints are at 
best rare. Tridactyl footprints sometimes occur in very 
long trackways (e.g. Fig. 5H), and relatively small 
tridactyl prints (Fig. 5I, J) are prominent at some sites. 

Diplocraterion Bed (Fig. 3K, L, 5N)—
Immediately above the Taylor Trackway is one of the 
most fascinating units of the local section, a resistant 
packstone dominated by large, U-shaped Diplocraterion 
burrows (Martin et al., 2015). Like the smaller 
Arenicolites of the Main Tracklayer, the Diplocraterion 
traces were probably made by benthic worms or 
crustaceans (Martin, 2013; Martin et al., 2015), but 
whether by larger individuals of the same species as the 
Arenicolites-maker, or a different form, is unknown. 
Only one dinosaur trackway is presently known from 
this unit, a series of morphologically nondescript 
tridactyls at the McFall Ledge Site (Figs. 1, 5N). 
 
TRACKS AND TRACKMAKERS 
 

Sauropods (Figs. 2, 3A, B, 4)—These are, of 
course, what caught R. T. Bird’s attention (Bird 1985 
and references therein), and made the Paluxy River 
tracksites famous. Sauropod trackways are abundant in 
the Main Tracklayer, although even in that unit there are 
many more trackways of tridactyl dinosaurs.  

Well-preserved manus prints have a double-U 
or horseshoe shape (Fig. 4F), and are deepest around the 
medial, anterior, and lateral rim, and shallowest at the 
center of the back part of the print. Bird made the  

FIGURE 3 (next page). Distinctive features of the Paluxy River exposures. A – G, additional features of the Main 
Tracklayer. A, photomosaic of the portion of the Main Tracksite containing sauropod trackway S0 (Fig. 2, panel A) with 1-
meter grid; south toward the top. A set of interesting arcuate traces (panel G) are seen at the top end of the image; B, digital 
model of the west bank portion of the Main Tracksite, with north toward the top of the image. The footprints shown in panels 
D – F are located toward the bottom of the model as shown here. Note unusual trackway of a northbound sauropod (animal 
[S-1], Fig. 2A); C, tridactyl footprint emerging from beneath overlying beds at the west bank portion of the Main Tracksite; 
D, digital model of a negative copy (cast) of a large tridactyl print (scale faintly visible at bottom of image) from near the 
south end of the west bank portion of the Main Tracksite. The toe marks punch deeply forward as tunnels into the rock; E, F, 
possible print of a swimming dinosaur (?) at the south end of the west bank portion of the Main Tracksite; E, the print in situ, 
shown as two parallel slashes in the rock to the right of the scale. Also note numerous Arenicolites traces (small dots in the 
rock surface); F, negative copy (cast) of the track and associated features. Note the triangular shadows associated with the 
slash marks, indicating that the trackmaker’s toes poked deep into the substrate before being pulled progressively more 
shallowly backward; G, digital model of discontinuous arcuate traces near the south edge of a portion of the Main Tracksite 
(near sauropod trackway S0 at the top of panel A). Meter stick provides scale; H – I, sequences of elongate footprints of 
bipedal dinosaurs, Taylor Tracklayer, Taylor Site (32.23842, -97.82181); H, particularly nice trackway; inset is overhead 
view of one of the prints; I, photomosaic of the classic “man track” trackway of creationists (Kuban 1989a, b) at a time when 
the color distinctions marking the toes were not distinct (cf. Fig. 5L for the same trackway viewed under ideal conditions); J, 
possible ornithopod trackway from the Taylor Site (inset is overhead view of single footprint); K – L, Diplocraterion traces, 
Diplocraterion bed. K, traces in surface view upstream (32.24237,	
  -97.82119) from the Low T/Riverbend Cliff Site; L, 
vertical section through burrow at the Buckeye Branch Site (32.24433,	
  -97.80690). 
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reasonable suggestion that digits II-
IV of the forefoot were bound together by soft tissue, 
and offset from digits I and V. There is no suggestion of 
a claw mark on digit I. Commonly, however, manus 
prints were distorted during emplacement of the 
hindfoot. Sometimes the sediment squashed the manus 
print from the rear, causing it to be little more than a 
semicircular mark or depression (Figs. 4B, C), and 
sometimes the pes overprinted and obliterated the 
manus print (Figs. 4A, B). 

The hindfoot print is larger (as much as a meter 
or more in length) than the forefoot print, and is roughly 
triangular in shape. In well-preserved pes prints, there 
are three or four laterally-directed claw marks, and a 
nubbin mark corresponding to digit V (cf. Tschopp et 
al., 2015). Pes prints are deepest on the inner side of the 
print, particularly near the base of the mark for digit I 
and at the heel of the print (Fig. 4F), and pes prints are 
always as deep as, or deeper than, manus prints. There 
are often conspicuous displacement rims (pressure 

ridges) around the edge of pes prints (Figs. 4A, C, 5F). 
The outer edge of the pes print defines the outer edge of 
Paluxy sauropod trackways, and usually the inner edge 
of pes prints does not intersect the trackway midline 
(Figs. 2E, G, 4A, B, D, E). 
 R. T. Bird had hoped to describe his sauropod 
footprints under the name Brontopodus, but did not live 
to do so, and so Farlow et al. (1989) named these trace 
fossils Brontopodus birdi in his honor. Being a railroad 
enthusiast, Farlow (1992) characterized Brontopodus 
trackways as wide-gauge, in contrast with some other 
sauropod trace fossils (e.g. Breviparopus) that were 
dubbed narrow-gauge, but noted that the difference was 
more degree than kind. The distinction was further 
developed by Lockley et al. (1994), who suggested that 
narrow-gauge and wide-gauge sauropod trackways 
differ in relative size of manus and pes prints as well as 
in relative trackway width. Wilson and Carrano (1999) 
proposed that wide-gauge sauropod trackways could be 
interpreted as having been made by titanosaurs and their  

FIGURE 4. Sauropod trackways; A, 
pes-only footprints of a large sauropod 
with conspicuous pressure ridges (Fig. 
2F, G), and numerous associated 
tridactyl prints, Blue Hole Ballroom; B, 
three sauropod trackways (moving 
away from the viewer), East Bank 
(Ozark) Site. The trackway on the right 
is pes-only; C, Left manus-pes set, Bird 
Site (1 meter of tape is exposed). The 
manus is rather poorly preserved; D, E, 
portion of the trackway of a small 
sauropod, Blue Hole Ballroom (Fig. 2F, 
G); D, the trackway in situ; E, digital 
model of a negative copy (cast) of part 
of the trackway, with an associated 
tridactyl print. Note distinct claw or 
nail marks along the front and lateral 
margins of the pes prints; F, digital 
model showing depth distribution of 
very well-preserved right manus-pes set 
from the American Museum slab. The 
manus print is deepest along its front 
and its medial and lateral margins. The 
pes is deepest along its inner margin, 
and is as deep or deeper than the manus 
print. 

20



Early- and Mid-Cretaceous Archosaur Localities of North-Central Texas, SVP 2015 Meeting Field Trip Guidebook 

 

FIGURE 5. Tridactyl footprints. Meter stick (or portions thereof) provides scale in most images; A – F, footprints in the Main 
Tracklayer; A, well-preserved theropod prints near the south end of the Blue Hole Ballroom (Fig. 2F, G); B, large theropod 
footprint, Blue Hole. Note the many dot-like indentations in the rock surface (Arenicolites traces), a characteristic feature of 
the Main Tracklayer; C, digital model of negative copy of four well-preserved theropod prints, Opossum Branch Site; D – E, 
elongate tracks, Blue Hole Ballroom. Note suggestion of three toe marks at the ends of the prints, and the lack of any 
suggestion of a digit I mark; F, large theropod print associated with sauropod pes print, Bird Site; G – M, footprints in the 
Taylor Tracklayer; G, positive copy of single footprint of large theropod, part of the long trackway illustrated in panel H; H,  
digital model of the McFall Ledge site (32.23733,	
  -97.82449), showing a long trackway of a large theropod; I, sequence of 
footprints of a small bipedal dinosaur, Dattilo Station 754 (32.24230, -97.82122); J, individual small (length 25 cm) tridactyl 
print, Low T/Riverbend Cliff Site (32.23990,	
  -97.82023); K - L, color-delimited tridactyls, Taylor Site; L, footprint from the 
classic “man track” sequence under ideal viewing conditions, showing tridactyl nature (Fig. 3H); inset shows portion of the 
trackway; M, very large elongate print with metatarsal (mt) and digit I (I) impressions, Low T/Riverbend Cliff; inset shows 
oblique view of the same print and another nearby large tridactyl; N, digital model of medium-sized tridactyl dinosaur 
trackway, Diplocraterion bed, McFall Ledge site. The animal marches diagonally from lower right to upper left across the 
image. A rectangular gap marks where a single footprint was removed from the trackway by a person unknown. 
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close relatives. Trackway gauge continues to be 
reported in descriptions of sauropod ichnites, albeit with 
modifications, reservations, and recognition that the 
differences between narrow- and wide-gauge trackways 
are not hard and fast (Dalla Vecchia et al., 2000; 
Lockley and Meyer, 2000; Lockley et al., 2002a, b, 
2004, 2006b, 2008, 2014e; Marty et al., 2003, 2006; 
2010, 2013; Romano and Whyte, 2003; Meijide Fuentes 
et al., 2004; Moreno and Benton, 2005; Pascual Arribas 
et al., 2005; Wright, 2005; Le Lœuff et al., 2006; Zhang 
et al., 2006; Mezga et al., 2007; Romano et al., 2007; 
Bessedik et al., 2008; González Riga and Calvo, 2009; 
Moratalla, 2009; Pieńkowski et al., 2009; Santisteban et 
al., 2009; Santos et al., 2009, 2015; Xing et al., 2010, 
2011a, 2013c, 2014a, 2015a, b, d, e, 2016; Castanera et 
al., 2011, 2012; Diedrich, 2011; Kim and Lockley, 
2012; Masrour et al., 2013; Schumacher and Lockley, 
2014; Fernández-Baldor et al., 2015; González Riga et 
al., 2015; Mesa and Perea, 2015; Pérez-Lorente, 2015; 
Tschopp et al., 2015); de Valais et al. 2015; Xing 2015c, 
f). 
 Identifying the kind(s) of sauropod responsible 
for Paluxy River Brontopodus has turned out to be more 
challenging than first thought. The trackmaker was 
initially—and without any great enthusiasm--interpreted 
as Pleurocoelus (Langston, 1974; Gallup, 1989; Farlow 
et al., 1989; Pittman, 1989; Farlow, 1992). Over the 
following years, a greater diversity of sauropod 
candidates for the Paluxy trackmaker turned up. 
Sauroposeidon was described by Wedel et al. (2000a, 
b), and then the Texan formerly known as Pleurocoelus 
was given the splendid name Paluxysaurus (Rose, 
2007), only to have that name turn out (bummer!) to be 
a likely junior synonym of Sauroposeidon (D’Emic and 
Foreman, 2012; D’Emic, 2013). By latest tabulation, 
there may be as many as three distinct sauropod taxa in 
the Trinity Group and correlative units in the region, 
with the genera Astrophocaudia and Cedarosaurus as 
well as Sauroposeidon (D’Emic, 2013). So which of 
these skeletal taxa (if any) was the Brontopodus-maker, 
or whether more than one of them was responsible for 
such trackways in the Glen Rose Formation, remains to 
be determined (if it can be). However, it is worth noting 
that the pes of Cedarosaurus (Gallup, 1989, D’Emic, 
2013) seems to match the morphology of the Paluxy 
River sauropod hindfoot prints. The phalangeal skeleton 
of Sauroposeidon and Astrophocaudia is unknown. 
 The Paluxy River sauropod footprints may 
have implications for interpreting some distinctive 
sauropod trace fossils from other sites. R. T. Bird (1985 
and references therein) saw a sauropod trackway from 
the Glen Rose Formation on the Mayan Ranch in South 
Texas that consisted mainly of manus prints. He 
concluded that the trackmaker had been half-floating, 
pulling itself along by its forefeet, its hindquarters 
supported by the water. Lockley and Rice (1990) 

proposed an alternative hypothesis: that manus-only and 
manus-dominated sauropod trackways are artifacts of 
undertrack formation. Walking sauropods are 
interpreted as having carried a greater concentration of 
weight per unit surface area on the sole of the manus 
than on the pes, such that deformation of sediment 
layers beneath that on which the dinosaurs trod was 
effected only by impression of the manus. Most (Vila et 
al., 2005; Lockley 2014c, e; Falkingham et al., 2011, 
2012), but not all (Ishigaki and Matsumoto, 2009) 
workers have supported the undertrack hypothesis, and 
for most sauropod manus-dominated trackways the 
present authors also find it compelling. 
 But perhaps not for sauropod trackways from 
the Glen Rose Formation. In sauropod trackways from 
the Paluxy River and elsewhere in Texas that preserve 
both manus and pes prints, hindfoot prints are always as 
deeply impressed, or more deeply impressed, than 
manus prints (Fig. 4F), an observation inconsistent with 
differential autopodial pressure as the sole explanation 
for manus-dominated trackways (Farlow et al., 2012a). 
Conceivably such trackways were in fact made by 
wading or punting sauropods (Wilson and Fisher, 2003; 
Henderson, 2004). 
 Bipedal dinosaurs—Even in the Main 
Tracklayer, but especially in the Taylor Tracklayer, 
tridactyl footprints of bipedal dinosaurs numerically 
dominate the Paluxy River ichnofauna (Figs. 2F, G, 5, 
6). Well-preserved large (c. 45-55 cm long) tridactyls 
(Fig. 5A-C, F-H, 6) have long, narrow toe marks, often 
with indications of sharp claw tips (Fig. 2H). The digit 
III impression sometimes shows a slight sigmoidal 
curvature along its length (Fig. 6). These footprints 
sometimes preserve indications of digital pads, but not 
often. Compared with skeletal taxa, these trackmakers 
would have been comparable in size to large allosaurs 
and medium-sized tyrannosaurs (Fig. 7C). 
 In addition to the large tridactyls, there seems 
to be a second concentration of smaller footprints (c. 25-
40 cm long) that is particularly evident in the Taylor 
Tracklayer (fig. 5I, J) and the Diplocraterion bed (Fig. 
5N). If their makers were theropods, they would have 
been roughly the size of Dilophosaurus, Aucasaurus, 
Allosaurus, and large ornithomimids (Fig. 7C). 
 For trackmakers from the Glen Rose Formation 
and other Early Cretaceous formations from Texas more 
generally, there seems to be a trimodal distribution of 
trackmaker sizes, with peaks at roughly 25, 35-40, and 
45-50 cm (Fig. 7D). Intriguingly, for a worldwide 
sample of trackways attributed to theropods, a footprint 
length of 30 cm is the most common size class, at least 
for putative theropod trackways of Cretaceous age, with 
the suggestion of a much smaller secondary mode at 
footprint lengths of about 50 cm. So the Paluxy River 
bipedal dinosaur footprint assemblage, if dominated by 
theropods, seems roughly consistent with what is seen 
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elsewhere. 
 Skeletal data (Farlow et al., 2006, 2012a, 2014; 
cf. Fanti et al., 2013) show a clear difference between 
theropods and bipedal or potentially bipedal 
ornithischians in relative width of digits (Fig. 7A), with 
theropods having relatively skinnier toes, especially at 
large sizes. The large Paluxy tridactyls are clearly 
theropod-like in this feature, and are longer than broad, 
which is usually interpreted as a theropod feature in 
tridactyl footprints. A good candidate for the maker of 
the big tridactyls is the allosaur Acrocanthosaurus 
(Langston, 1974; Pittman, 1989; Currie and Carpenter, 
2000; Farlow, 2001).  

The smaller Paluxy tridactyls are also longer 
than broad, and sometimes preserve digital pad 
impressions. They have a theropod-like appearance, but 
the morphological differences between the feet and 
footprints of theropods and ornithopods become blurred 
at smaller sizes (Castanera et al., 2013a, b; Escaso et al., 
2014; Farlow et al., 2014). Consequently, although we 
suspect that most or all of these prints were also made 
by theropods, we cannot be certain of this. 
 A striking feature of some tridactyl trackways 
in both the Main Tracklayer and the Taylor Tracklayer 
is the presence of an elongate depression behind the 

digital portion of the footprint (Kuban, 1989a; Figs. 3H, 
5D, E, L, M). Such elongate prints have been reported 
from numerous other dinosaur tracksites around the 
world (Leonardi, 1979; Calvo, 1991; Kvale et al., 2001; 
Dalla Vecchia et al., 2002; Lockley et al., 2003, 2006a, 
2013, 2014a, b, d; Milner et al., 2006a; Rodríguez-de la 
Rosa et al., 2004; Conti et al., 2005; Gand et al., 2007; 
Nicosia et al., 2007; Petti et al., 2008a; Rubilar-Rogers 
et al., 2008; Gierliński et al., 2009; Ishigaki et al., 2009; 
Ishigaki, 2010; Li et al., 2010; Xing et al., 2011c, 
2014e, 2015c, g; Boutakiout et al., 2012; Moreno et al., 
2012; Lockwood et al., 2014; McCrea et al., 2014b; 
Citton et al., 2015; Pérez-Lorente, 2015). Some of these 
prints may be slip or skid marks, but most of them 
(including those from the Paluxy River) record the 
impression of the metatarsal region of the foot in the 
substrate. Footprints with metatarsal impressions could 
be made when the trackmaker was sitting, of course, but 
many trackways composed of such elongate prints show 
forward locomotion of the animal, and—very 
strangely—the step length of the dinosaur seems not 
much to have been affected by this unusual mode of 
progression. Whether the creation of such “elongate”, 
“metatarsal”, or “semiplantigrade” footprints reflects 
deliberate foraging behavior on the part of crouching 
animals (Kuban, 1989a), or merely an adjustment to 
substrate conditions (e.g., Pérez-Lorente, 2015), is 
uncertain. 
 In any case, registry of the metatarsal region in 
some Paluxy River footprints provides additional clues 
to the trackmakers (Farlow et al., 2013). In those 
ornithischians that retain a digit I, this toe is generally 
longer, relative to the length of digit III, than in 
theropods (Fig. 7B). Consequently the presence of a 
very short digit I impression in a large tridactyl footprint 
from the Taylor Tracklayer (Fig. 5M) supports the 
interpretation that the trackmaker was a big theropod; 
similar footprints have been reported elsewhere (e.g. 
Nicosia et al., 2007). In contrast, the absence of a digit I 
impression in some of the elongate footprints from both 
the Main and Taylor Tracklayers (Fig. 5D, E) suggests 
that the maker of such prints was a form that had lost 
this toe, perhaps an ornithomimosaur (cf. Lockley et al., 
2006a; Petti et al. 2008a). Hunt (2003) described a 
probable theropod foot skeleton from the Early 
Cretaceous Trinity Group of Arkansas, the exact 
affinities of which are uncertain, but whose erstwhile 
owner might be a candidate for the maker of many of 
the Paluxy elongate tracks that lack a digit I impression. 
More speculatively, we might consider a bipedal 
ornithischian with a foot like that of the dryosaurid 
Eousdryosaurus (Ecaso et al., 2014), although bigger—
should such a dinosaur ever turn up.  
 Some of the elongate tracks made by smaller 
dinosaurs from the Taylor Tracklayer do show a hallux 
impression, however, and so there may have been more 

FIGURE 6. The Glen Rose bandstand footprint (Shuler, 
1935), the type of Eubrontes (?) glenrosensis. A, Shuler’s 
photograph of the print, from Adams et al. (2010); B, 
negative copy (cast) of the print; C, digital depth-coded 
image of the print (Adams et al., 2010). 
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than one kind of trackmaker responsible for the elongate 
prints. The same may be true for the smaller Paluxy 
bipedal dinosaurs more generally; they may have 
included adults of relatively small-bodied species, but 
also smaller, immature individuals of the large theropod 
species. 
 Trackways with elongate footprints from the 
Taylor Tracklayer have become (in)famous as having 
been interpreted as made by giant humans that 
supposedly coexisted with dinosaurs (Hastings, 1987; 
Kuban, 1989a, b; Farlow et al., 2012b). One of the more 
renowned such trackways (Figs. 3I, 5L) consists of 
footprints that sometimes have a humanoid appearance 
(Fig. 3I), but even these show shallow but definite 
indications of a tridactyl configuration at the front end 
of the footprint, and under the best viewing conditions 
color differences (due to differences between the 
material that filled in the tracks vs. the surrounding 
rock) display three distinct toe marks (Fig. 5L). Just as 
the Paluxy River sauropod footprints were first 
identified by locals as elephant tracks (Farlow et al., 
1989), and typical tridactyl dinosaur footprints from 
around the world are commonly first interpreted as bird 
prints (cf. Shuler, 1917), the Paluxy River “man track” 
story seems to have begun as a case of folk natural 
history, but one that metastasized. 
 Weirdness of the elongate tracks 
notwithstanding, the bipedal trackmakers of the Paluxy 
River and other sites in the Glen Rose Formation seem 
to have been very similar to other bipedal dinosaurs in 
their typical locomotion. The stride length of Glen Rose 
bipeds, relative to footprint length, is very similar to that 
of trackways attributed to theropods from the entire 
Mesozoic of the whole world (Fig. 7F). There is a “main 
sequence” of trackways in which stride length increases 
with increasing trackmaker size, but starts to level off 

among the biggest trackmakers. This presumably 
defines the normal stride length: footprint length 
relationship of dinosaurs going about their business in 
no particular hurry. Above the main sequence are 
scattered points that presumably correspond to running 
dinosaurs, with the maximum stride length seen among 
animals with a footprint length of about 40 cm. 
 Long trackways provide especially useful 
information about trackmaker locomotion (Dalla 
Vecchia et al., 2001; Mossman et al., 2003; Day et al., 
2004; Huh et al., 2006; Kim and Huh, 2010; Wings et 
al., 2012; Xing et al., 2015c). The long theropod 
trackway from the McFall Ledge site (Fig. 5H) shows 
an interesting pattern of step (pace) lengths (Fig. 7G): 
the animal generally took longer paces when stepping 
off from its left as opposed to its right foot. Disparity in 
pace lengths initiated with the left as opposed to the 
right foot is also seen in the longest tridactyl dinosaur 
trackway known from the Paluxy River (extending for 
more than 150 steps, making it one of the longest 
dinosaur trackways in North America), which also 
occurs in the Taylor Tracklayer. Dinosaur trackways 
with unequal step lengths have been reported from other 
ichnofaunas (e.g. Ishigaki and Matsumoto, 2009; 
Ishigaki and Lockley, 2010; Foster, 2015; McCrea et al., 
2015). The usual interpretation for such trackways is the 
trackmaker had been injured and was limping, but 
McCrea et al. (2015) hypothesized that many such cases 
may have more to do with animal psychology than 
pathology, being examples of the more general 
phenomenon of laterality in tetrapods. 
 Most Paluxy River bipedal trackmakers walked 
with their footprints angling slightly inward with respect 
to their direction of travel (negative rotation; Fig. 7H). 
 A bewildering assortment of ichnotaxonomic 
names has been applied to tridactyl dinosaur footprints  

FIGURE 7 (next page). Interpreting tridactyl dinosaur footprints. A, relative width of digit III of bipedal or potentially bipedal 
dinosaurs. At small sizes, there is little difference between ornithischians and theropods, but with increasing size ornithopods 
have relatively stout toes, and theropods relatively narrow toes; B, digit I length vs. digit III length. Most theropods have a 
relatively shorter digit I than do most ornithischians, but some members of both groups completely lose digit I (plotted as length 
of zero in this graph); C, comparison of two skeletal proxies of footprint size in theropods. For prints where the proximal end of 
the digit III impression is well-preserved, Farlow (2001) suggested that a skeletal proxy would be half the length of phalanx 1 
plus the combined lengths of phalanges 2-4. Rainforth and Manzella (2007) suggested that a proxy for overall footprint length 
would be the total lengths of all the phalanges of digit III plus the difference in length between metatarsals III and IV. The two 
proxies are graphed to show how one proxy is related to the other in the same specimen; D, size frequency distribution of 
trackways of bipedal (mostly theropod?) dinosaurs from Lower Cretaceous sites in Texas. There seem to be three modes, at 
about 25-30, 35-40, and 45-50 cm footprint length. E, worldwide size-frequency distribution for trackways attributed to non-
avian theropods from all intervals of the Mesozoic; data cases are trackways represented by at least one stride measurement. For 
the Cretaceous, the most common size class (length 30 cm) is close to one of the modes for the Texas size-frequency 
distribution; F, stride length as a function of footprint length in trackways attributed to non-avian theropods. The maximum 
stride length occurs at footprint lengths of about 40 cm; Glen Rose Formation trackways nicely match the pattern for all 
trackways; G, pace lengths along the long trackway from the McFall Ledge Site (Fig. 5H). The dinosaur generally took longer 
paces when stepping off from the left as opposed to the right foot; H, footprint rotation relative to the overall direction of travel 
of Taylor Tracklayer bipedal dinosaur trackways. For each print, rotation is measured by comparing the azimuth of the 
individual print with the average of that azimuth and that of the preceding print (the average indicating the overall direction of 
movement); negative rotation means that the footprint turns inward relative to the animal’s movement direction; I, direction of 
travel of Taylor Horizon dinosaurs. Each data case is either the mean for a trackway, or the value for an isolated print. 
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from around the world (Calvo, 1991; Lockley and 
Meyer, 2000; Thulborn, 2001; Farlow and Galton, 2003; 
Calvo and Mazzetta, 2004; Clark et al., 2004; Day et al., 
2004; Diedrich, 2004, 2011; Gangloff et al., 2004; 
Barco et al., 2005, 2006; Getty, 2005; Huh et al., 2006; 
Li et al., 2006; Lü et al., 2006; Lucas et al., 2006; Gand 
et al., 2007; Lockley et al., 2007, 2008, 2011, 2013; 
2014a, c, e, 2015b, c; Rainforth, 2007; Wings et al., 
2007; Bessedik et al., 2008; Fujita et al., 2008; 
Boutakiout et al., 2009; Sullivan et al., 2009; Belvedere 
et al., 2010; Li et al., 2010; Niedźwiedzki, 2011; Nouri 
et al., 2011; Xing et al., 2011b, c; 2013b, 2014a, b, c, d, 
e, f, h, 2015a, c, e, 2016; Moreau et al., 2012, 2014; 
Wagensommer et al., 2012; Fanti et al., 2013; Cobos et 
al., 2014; Fiorillo et al., 2014; McCrea and Pigeon, 
2014; McCrea et al., 2014a, b; Foster, 2015; Li et al., 
2015; Lallensack et al., 2015; Weems and Bachman, 
2015). Criteria used to discriminate among these 
footprint taxa include relative toe lengths, angles 
between toes, the footprint width/length ratio, the extent 
to which the distal impression of digit III extends 
beyond the distal impressions of digits II and IV, the 
shape of a triangle defined by the tips of the marks of 
digits II-IV, and the configuration of the back of the 
footprint. Ichnotaxa are sometimes distinguished by 
bivariate characters, sometimes by multivariate 
analyses, sometimes by geometric morphometrics, and 
sometimes by the qualitative “gestalt” of the footprints. 
 Shuler (1917, 1935) applied two names to 
tridactyl footprints from the Glen Rose Formation in 
Somervell County. The first (1917) was the tongue-
twisting Eubrontes (?) titanopelopatidus, for which no 
type specimen seems to have been secured. In 1935 
Shuler applied the more euphonious name Eubrontes (?) 
glenrosensis to a splendid Main Tracklayer footprint 
which was installed in a bandstand on the town square 
in Glen Rose (Fig. 6), where it has remained ever since, 
but has regrettably undergone a certain amount of 
degradation (Adams et al., 2010) due to exposure to the 
elements. Langston (1974) suggested that the Paluxy 
large tridactyls might better fit under the moniker 
Irenesauripus, a name originally applied to footprints 
from the Early Cretaceous of British Columbia. 
 Our group has thus far deliberately refrained 
from discussing names for the Glen Rose Formation 
tridactyls, but will eventually offer an opinion on this 
matter. It is probably fair to say, however, that there is a 
diversity of opinion among us as to how meaningful 
such names are. Footprints are three-dimensional 
records of the interaction of a foot with a substrate. 
Apart from the issue of the extent to which the surface 
expression of footprint outlines, or linear measures and 
angles, can capture that complexity, there is the matter 
of whether or to what extent the vagaries of footprint 
emplacement, preservation, and modern erosion (Platt 
and Meyer, 1991; Kvale et al., 2001; Nadon, 2001; 

Gatesy, 2003; Manning, 2004, 2008; Henderson, 2006; 
Graverson et al., 2007; Milàn and Bromley, 2006, 2008; 
Falkingham et al., 2010; Jackson et al., 2009, 2010; 
Avanzini et al., 2012; Huerta et al., 2012; Thulborn, 
2012; Santos et al., 2013; Razzolini et al., 2014; 
Carvalho et al., 2013; Alcalá et al., 2014; Cariou et al., 
2014; Falkingham, 2014; Falkingham and Gatesy, 2014; 
Lockley and Xing, 2015; Pérez-Lorente, 2015) render 
the characters thought to be useful in defining different 
tridactyl footprint morphotypes and ichnotaxa 
unreliable. Even the more optimistic members of our 
group confess to a nagging worry that the 
ichnotaxonomy of tridactyl dinosaur footprints may be, 
to borrow the words of an ancient sage, “futile and 
pursuit of wind” (Ecclesiastes 1:14, Jewish Study 
Bible). 
 
TRACKMAKER BEHAVIOR AND ECOLOGY 
  

Behavior—What were the trackmakers doing? 
For the most part, it seems, nothing particularly 
interesting. In both the Main Tracklayer (Farlow et al., 
2012b) and the Taylor Tracklayer (Fig. 7F), the bipedal 
dinosaurs were moving in roughly the same numbers 
either northward or southward, presumably walking 
along the local shoreline. This pattern provides no 
evidence for group behavior on the part of the 
carnivorous dinosaurs. Interestingly, theropod 
trackways in the Taylor Tracklayer are most commonly 
oriented northeast-southwest, similar to linear trends of 
Diplocraterion burrow tops in the overlying 
Diplocraterion bed (Martin et al., 2015). This 
coinciding of burrow trends and trackways may reflect 
the presence of a northeast-southwest shoreline that 
shifted laterally with a slight rise in relative sea level 
between deposition of Taylor Tracklayer and 
Diplocraterion bed sediments (Martin et al., 2015). 

In contrast, tracksites which show a 
pronounced single direction of trackmaker travel are 
usually interpreted as showing animals moving together 
(Lingham-Soliar et al., 2003; Barco et al., 2006; 
McCrea et al., 2014; Moreno et al., 2012; García-Ortiz 
and Pérez-Lorente, 2014; Lockley et al., 2015b; but see 
Roach and Brinkman, 2007; Getty et al., 2015). In the 
Main Tracklayer, nearly all of the sauropods were 
traveling to the south (Fig. 2A), in contrast to the 
trackways attributed to theropods. Farlow et al. (2012b) 
therefore hypothesized that (most of?) the sauropods, 
unlike the theropods, were not routine occupants of the 
footprint sites, but rather a herd of animals passing 
through the area at one time. 

The two trackway slabs collected by R. T. Bird 
for the American Museum and the Texas Memorial 
Museum may record a dramatic story. A large theropod 
stepped along the trackway of a large sauropod, 
repeatedly treading upon the big herbivore’s footprints; 
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at one point both trackways bend to the left (Figs. 2B, 
D, E). Bird (1985) thought the meat-eater actually 
attacked the sauropod, but Farlow et al. (2012b) 
hypothesized the predator was only following the 
herbivore—at least over the preserved portions of the 
two trackways. 
 Ecology—The association of footprints of 
sauropods with those of large or small theropods is a 
recurrent theme in dinosaur footprint assemblages 
(Calvo, 1991; Dalla Vecchia et al., 2000, 2001; Lockley 
and Meyer, 2000; Moreno and Pino, 2002; Romano and 
Whyte, 2003; Ahmed et al., 2004; Calvo and Mazzetta, 
2004; Day et al., 2004; Leonardi and dos Santos, 2004; 
Moreno et al., 2004; Hernández Medrano et al., 2005-
2006; Foster and Lockley, 2006; Bessedik et al., 2008; 
Belvedere et al., 2010; Nicosia et al., 2007; Petti et al., 
2008b; Ishigaki et al., 2009; Sacchi et al., 2009; Xing et 
al., 2010, 2013c, 2014a, f, 2015a, c, e, 2016; Diedrich, 
2011; Hornung et al., 2012; Wagensommer et al., 2012; 
Bravo Cuevas, 2013; Cariou et al., 2014; Lockley et al., 
2014b, 2015b; Schumacher and Lockley, 2014; 
González Riga et al,. 2015; Pérez-Lorente, 2015), and 
not terribly surprising, given the common co-occurrence 
of such animals in skeletal assemblages. Perhaps more 
interesting is the fact that the theropod-sauropod 
association is frequently seen in carbonate environments 
(Lockley, 2007). Given the huge size of the Paluxy 
River sauropods and theropods, it is unlikely that their 
habitat was limited to the carbonate mudflats in which 
their tracks were preserved, an inference supported by 
the occurrence of skeletal material of the presumed 
trackmakers in more inland clastic settings, as well as 
the apparently large geographic ranges of these animals 
(Wedel et al., 2000a, b; Rose, 2007; D’Emic et al., 
2012, 2013; D’Emic and Foreman, 2012), and by the 
broader worldwide paleoenvironmental occurrences of 
related forms (Mannion and Upchurch, 2010). 
 The greater abundance of footprints and 
trackways attributed to theropods than of sauropods in 
the Glen Rose Formation, a seemingly unexpected 
situation given the usual relative abundance of large 
herbivores and carnivores (cf. Hatton et al., 2015), is 
also seen in many (Leonardi, 1989; Foster and Lockley, 
2006; Lockley et al., 2015a; Pérez-Lorente, 2015) but 
not all (Weems and Bachman, 2015) other dinosaur 
track assemblages. Leonardi (1989) suggested that this 
reflected greater activity on the part of carnivorous than 
herbivorous dinosaurs, an interpretation endorsed by 
Farlow (2001) by analogy with the movement ecology 
of extant large mammals. Acrocanthosaurus was a huge 
meat-eater, with large adults possibly weighing as much 
as 5000-6000 kg (Henderson and Snively, 2004; Bates 
et al., 2009). Individual theropods that big might have 
had home ranges covering tens of thousands of square 
kilometers (Farlow, 2001), and patrolled long distances 

in a single day, giving them ample opportunity to make 
lots of footprints in suitable environments. 
 Some workers (e.g. Hunt and Lucas, 2007; 
Lockley, 2007 [and references therein]) have proposed 
recognition of tetrapod trace fossil ichnofacies 
analogous to the ichnofacies recognized by ichnologists 
working on traces of benthic invertebrates (cf. Martin, 
2013 [and references therein]). The details of how such 
ichnofacies are to be defined differ, but in both schemes 
one of the ichnofacies was named after Brontopodus. 
Lockley (2007 [and earlier]) associated his Brontopodus 
ichnofacies with platform carbonate situations. Hunt 
and Lucas (2007: Table 2) went further, defining a 
Brontopodus “archetypal tetrapod ichnofacies” 
associated with “coastal plain, clastic or carbonate 
marine shoreline” environments, and characterized by 
footprint assemblages in which the “majority of tracks 
are terrestrial, quadrupedal herbivores with small 
quantity (generally > 10% of terrestrial carnivore 
tracks)”. Lockley’s Brontopodus ichnofacies was 
interpreted by Hunt and Lucas as one of the constituent 
ichnocoenoses within their more inclusive ichnofacies; 
as interpreted by Hunt and Lucas, their Brontopodus 
ichnocoenosis, like Lockley’s ichnofacies of the same 
name, is associated with “carbonate marine shorelines” 
(Hunt and Lucas 2007:66). What made their 
Brontopodus ichnofacies “archetypal” is that it is not 
restricted to a particular time interval, and so ranges 
from the Late Jurassic through the Recent; Brontopodus 
itself, the ichnogenus after which the ichnofacies was 
named, therefore does not have to be present. 
 Which these concepts will catch on, if any, is 
still up in the air. Defining the Brontopodus archetypal 
ichnofacies as being characterized by a “small” number 
of predator trackways, which at the same time constitute 
> 10% of the trackway assemblage, seems rather odd. 
We would have thought that the “> 10%” was a 
typographical error that should have read “< 10%”, 
except that the phrase appears more than once in Hunt 
and Lucas (2007). Be that as it may, if the Brontopodus 
ichnofacies is defined as having substantially fewer 
carnivore than herbivore trackways, this would seem to 
disqualify the Glen Rose Formation of Texas, the type 
formation for Brontopodus, from membership therein. 
Can’t win them all. 
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