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Abstract—Cloud services are prominent within the private, public and commercial domains. Many of these services are expected to be
always on and have a critical nature; therefore, security and resilience are increasingly important aspects. In order to remain resilient, a
cloud needs to possess the ability to react not only to known threats, but also to new challenges that target cloud infrastructures. In this
paper we introduce and discuss an online cloud anomaly detection approach, comprising dedicated detection components of our cloud
resilience architecture. More specifically, we exhibit the applicability of novelty detection under the one-class support Vector Machine
(SVM) formulation at the hypervisor level, through the utilisation of features gathered at the system and network levels of a cloud node.
We demonstrate that our scheme can reach a high detection accuracy of over 90% whilst detecting various types of malware and DoS
attacks. Furthermore, we evaluate the merits of considering not only system-level data, but also network-level data depending on the
attack type. Finally, the paper shows that our approach to detection using dedicated monitoring components per VM is particularly
applicable to cloud scenarios and leads to a flexible detection system capable of detecting new malware strains with no prior knowledge
of their functionality or their underlying instructions.
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1 INTRODUCTION

C LOUD datacenters are beginning to be used for a range
of always-on services across private, public and com-

mercial domains. These need to be secure and resilient in
the face of challenges that include cyber attacks as well
as component failures and mis-configurations. However,
clouds have characteristics and intrinsic internal operational
structures that impair the use of traditional detection sys-
tems. In particular, the range of beneficial properties offered
by the cloud, such as service transparency and elasticity,
introduce a number of vulnerabilities which are the outcome
of its underlying virtualised nature. Moreover, an indirect
problem lies with the cloud’s external dependency on IP
networks, where their resilience and security has been ex-
tensively studied, but nevertheless remains an issue [1].

The approach taken in this paper relies on the principles
and guidelines provided by an existing resilience frame-
work [2]. The underlying assumption is that in the near fu-
ture, cloud infrastructures will be increasingly subjected to
novel attacks and other anomalies, for which conventional
signature based detection systems will be insufficiently
equipped and therefore ineffective. Moreover, the major-
ity of current signature-based schemes employ resource-
intensive deep packet inspection (DPI) that relies heavily
on payload information where in many cases this payload
can be encrypted, thus extra decryption cost is incurred.
Our proposed scheme goes beyond these limitations since
its operation does not depend on a-priori attack signatures
and it does not consider payload information, but rather
depends on per-flow meta-statistics as derived from packet
header and volumetric information (i.e. counts of packets,
bytes, etc.). Nonetheless, we argue that our scheme can
synergistically operate with signature-based approaches on
an online basis in scenarios were decryption is feasible and

cost-effective. Overall, it is our goal to develop detection
techniques that are specifically targeted at the cloud and
integrate with the infrastructure itself in order to, not only
detect, but also provide resilience through remediation.

At the infrastructure level we consider: the elements
that make up a cloud datacentre, i.e. cloud nodes, which
are hardware servers that run a hypervisor in order to
host a number of Virtual Machines (VMs); and network
infrastructure elements that provide the connectivity within
the cloud and connectivity to external service users. A cloud
service is provided through one or more interconnected
VMs that offer access to the outside world. Cloud services
can be divided into three categories based on the amount
of control retained by the cloud providers. Software as a
Service (SaaS) retains the most control and allows customers
to access software functionality on demand, but little else.
Platform as a Service (PaaS) provides customers with a
choice of execution environment, development tools, etc.,
but not the ability to administer their own Operating Sys-
tem (OS). Infrastructure as a Service (IaaS) relinquishes the
most control by providing customers with the ability to
install and administer their own choice of OS and install
and run anything on the provided virtualised hardware; as
such, IaaS clouds present the most challenges in terms of
maintaining a properly functioning system. Such a system
would ideally be free from malware and from vulnerabilities
that could lead to an attack. It is for this reason that we focus
on this type of cloud since security measures applicable to
IaaS clouds will also be relevant for other cloud types.

In order to increase the resilience of cloud infrastructures
we have already defined a resilience architecture in our
previous works [3], [4] that comprises anomaly detection,
remediation and also coordination elements. However, this
paper discusses two particular components within this ar-
chitecture that deal with anomaly detection at the system
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and network level.
The elements presented here form the basis in which

different detection techniques can be hosted and further
allow the identification and attribution of anomalies. In
this paper we discuss the detection of anomalies using
a novelty detection approach that employs the one-class
Support Vector Machine (SVM) algorithm and demonstrate
the effectiveness of detection under different anomaly types.
More specifically, we evaluate our approach using malware
and Denial of Service (DoS) attacks as emulated within a
controlled experimental testbed. The malware samples used
are Kelihos and multiple variants of Zeus. We have selected
these particular malware samples and their variants since
they have been identified as posing recent and evolving
threats for a range of Windows OS flavors that have already
compromised more than 3.6 million machines worldwide
between 2010 and 2014; mainly due to their varying and
sophisticated evasion techniques, as well as their stealthy
propagation1. Our contributions are as follows:

• Experiments carried out in this work are done so in
the context of an overall cloud resilience architec-
ture under the implementation of one-class Support
Vector Machines (SVMs). The resulting experimental
findings show that anomalies can be effectively de-
tected online, with minimal time cost for reasonably
realistic data samples per Virtual Machine (VM),
using the one-class SVM approach, with an overall
accuracy of greater than 90% in most cases.

• Our work is the first to explicitly address the aspect
of malware detection in pragmatic cloud-oriented
scenarios as performed by cloud providers, such as
VM live-migration.

• We provide an online novelty detection implementa-
tion that allows the adaptive SVM-specific parameter
estimation for providing better detection accuracy
benefits.

• This work assesses the VM-based feature selec-
tion spectrum (i.e. system, network-based or joint
datasets) with respect to the detection performance
benefits on two distinct network-wise attacks (mal-
ware and DDoS) under novelty detection.

The remainder of this paper is structured as follows: in
Section 2 the relevant background is introduced as well as
our cloud resilience architecture, into which the detection
components we evaluate in this paper are to be placed.
Section 3 is dedicated to describing the data and the method-
ology used in this work. In Section 4 we provide infor-
mation on our particular evaluation approach setup and a
description of the malware samples we have used. Section 5
provides the results of the experimentation conducted in
this work. Finally, Section 6 summarizes and concludes this
paper.

1. The Kelihos malware was first detected in 2010 and has since been
developed into new variants that perform a range of attacks such as
phishing and spamming [5]. Zeus was first detected in 2010 [6], but
since then there has been a plethora of new variants that even recently
(July 2014) compromised millions of machines and gave rise to a botnet
that could steal sensitive banking information [7].

2 BACKGROUND & RELATED WORK

The intrinsic properties of virtualised infrastructures (such
as elasticity, dynamic resource allocation, service co-hosting
and migration) make clouds attractive as service platforms.
Though, at the same time they create a new set of security
challenges. These have to be understood in order to better
protect such systems and make them more secure. A num-
ber of studies have addressed aspects of cloud security from
different viewpoints (e.g. the network, hypervisor, guest VM
and Operating System (OS)) under various approaches de-
rived either from traditional rule-based Intrusion Detection
Systems (IDSs) or statistical anomaly detection models. This
paper presents a cloud security solution derived from a
sub-domain of anomaly detection, viz. novelty detection. In
this section we firstly review the challenges arising from
the virtualisation embedded within cloud technologies and
further discuss background and related work with respect to
anomaly detection in cloud environments. We also present
the architectural context, within which the research pre-
sented in this paper is carried out.

2.1 Virtualisation & Cloud Technologies
In [3], [8], [9] the specific security threats and challenges
introduced into clouds through the use of core virtualisation
technologies are discussed. Despite the end-user benefits
gained by virtualisation it also comes with a range of
threats that include: exploits to security holes on virtual
machines (e.g. rootkit attacks on virtual machines [10]);
mutated cloud-specific Internet-based attacks that aim to
compromise cloud networks (e.g. malware [11], [3]; and
DDoS attacks on cloud services [11]). According to [12]
blackhat hackers have already identified the potential of the
cloud since the instantiation, maintenance and continued
operation of botnets seems to be much more effective under
a cloud paradigm.

In parallel, co-residence as a security concern has been
explored in [10] and is the result of VMs belonging to
different customers being hosted on the same cloud node.
It was revealed that the outcome of co-residence is to en-
able shared memory attacks that, at their most benign, are
capable of leaking sensitive information, and at their most
destructive are capable of taking control of the entire node.
Moreover, the aspect of VM migration is also a possible
enabler of malicious side effects in cases where infected VMs
are migrated around the cloud to a number of nodes. The
cause of migration could be as a result of the provider’s
load balancing policy, but as an unwanted side-effect the
result is to place malware in contact with a larger number
of potential targets throughout the cloud infrastructure.

Additionally, automation is becoming an increasingly
integral part of computer system configuration through the
use of dedicated tools (e.g. Ansible2) or simply by creat-
ing new VMs from clones or snapshots. This results in a
collection of servers, all with the same functionality, being
configured in precisely the same way. Hence, vulnerabilities
and threats are being repeatedly instantiated across large
portions of the cloud and malware can more easily propa-
gate and exploit said vulnerabilities.

2. Ansible configuration management software: http://www.ansible.
com/home
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2.2 Malware & Detection Methods
One of the biggest challenges within the development of
resilient and secure cloud-oriented mechanisms is related to
the adequate identification and detection of malware. This is
due to the fact that, in the majority of cases, malware is the
first point of initiation for large-scale Distributed Denial of
Service (DDoS) attacks, phishing and email spamming [3],
[8], mainly through the deployment of botware.

Current methods of detecting attacks on cloud infras-
tructures or the VMs resident within them do not suf-
ficiently address cloud specific issues. Despite the huge
efforts employed in past studies regarding the behaviour
of certain types of malware in the Internet [13], [14], so far
little has been done to tackle malware presence in clouds. In
particular, the studies in [15], [16] aimed to adjust the perfor-
mance of traditional Intrusion Detection Systems (IDS) un-
der signature-based techniques that employ Deep Packet In-
spection (DPI) on network packets. Moreover, work in [17],
[18] studied system-related features on monitored VMs by
employing Virtual Machine Introspection (VMI) methods in
order to detect threats on a given VM’s Operating System
(OS).

Nevertheless, despite the important lessons learned from
these studies they do not develop an overall online detection
strategy that considers real-time measurement samples from
each VM. Further, these approaches are purely signature-
based, and as such are not in a position to provide a robust
scheme for any future threats posed by novel malware
strains due to their simplistic rule-based nature.

Each solution to detection is performed in an isolated
manner and neglects to consider the unique topology of
the cloud, which is at its heart a network of intercon-
nected nodes, each with their own isolated execution en-
vironments. If a detection system is to perform effectively
within a cloud it is required to possess the capability of
communicating detected faults and challenges across the
whole infrastructure, especially if it is to perform as part of
a larger, autonomous and self-organising, cloud resilience
system.

2.3 Anomaly Detection in Clouds
Anomaly detection has been an active research area for a
number of years. Numerous techniques for different scenar-
ios and application domains have been developed. Chan-
dola et al. show in their survey [19] the prediction, detection
and forecasting accuracy of anomaly detection in a number
of disciplines, whereas the work in [20] thoroughly surveys
the use of several anomaly detection schemes in the context
of IP backbone networks. Within this paper the focus is on
anomaly detection in the cloud.

A number of anomaly detection techniques [21], [22],
[23], [24], [25], [26] aim to proactively and reactively detect
cloud-specific threats, but due to their complex statistical
measures they mostly lack scalability and often require
prior knowledge, thus making them unsuitable for online
detection in cloud infrastructures.

The work by Wang et al. [27] produced the EbAT system
that allowed the online analysis of multiple metrics obtained
from system-level components (e.g. CPU utilization on rack
servers, memory utilization, read/write counts of the OS,

etc.). The proposed system showed potential in the areas of
detection accuracy and monitoring scalability, however it’s
evaluation did not adequately emphasise pragmatic cloud
scenarios.

In [28] an anomaly detection technique to detect intru-
sions at different layers of the cloud was proposed. How-
ever, the technique appears to lack the flexibility required
by dynamic cloud environments. It is also not sufficiently
demonstrated how such techniques can be operationally
applied. In [29] the authors propose a multi-level approach,
which provides fast detection of anomalies discovered in the
system logs of each guest OS. One of its disadvantageous is
the apparent lack of scalability since it requires increasingly
more resources under high system workload. Further, it is
designed to classify text based log data, which may not
manifest the effects of malware.

The work in [24] provided a novel prototype that en-
abled an online spatio-temporal anomaly detection scheme
in a cloud scenario. Thus, the authors were able to ini-
tially formulate and further implement a wavelet-based
multi-scale anomaly detection system. The system relies on
measured cloud performance metrics (e.g. CPU utilization,
memory) gathered by multiple components (e.g. hardware,
software, system) within the examined institution-wide
cloud environment. The resulting experimental outcomes
were quite promising since the proposed approach reached
a 93.3% of sensitivity on detecting anomalous events with
only just a 6.1% of the reported events to be false alarms.

The only study that has some similarities to what we
propose in this paper is the approach by Pannu et al. in [30].
In particular, the authors in [30] instrumented an online
adaptive anomaly detection (AAD) framework that was able
to detect failures through the analysis of execution and run-
time metrics using the traditional two-class Support Vector
Machine (SVM) algorithm. Under a real experimentation,
over a 362-node cloud computing environment in a univer-
sity campus, the produced results were extremely promising
since they exhibited the efficiency of the proposed scheme,
which reached an overall of over 87% of anomaly detection
sensitivity. However, the main issue raised by this study
was that the formulation of the two-class SVM algorithm
suffered from the data imbalance problem [31], which af-
fected the training phase, and consequently led to several
mis-classifications of newly tested anomalies. Moreover, in
contrast with our work the proposed approach did not
explicitly address the aspect of early attack detection, but
rather was mainly aimed at various faults in the cloud
infrastructure.

Therefore, apart from providing an online anomaly de-
tection approach, our work is also aimed at confronting an
algorithmic constraint that is inherited in most of the tradi-
tional two-class on n-class Machine-Learning based tech-
niques (e.g. two-class SVMs, Artificial Neural Networks,
Bayesian Classifiers) when applied to cloud environments
(e.g. [30], [32]); data imbalance. As indicated in [31], [33]
a dataset is imbalanced if the classification labels are not
approximately equally represented. In simple terms, the
imbalanced nature of training datasets3 invoke high clas-

3. Having a tremendously large training dataset for DDoS attacks
versus a comparatively small one for malware instances, for example
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Fig. 1. A high level overview of the D2R2 + DR network resilience
framework [2]

sification errors and problematic labelling of the training in-
stances that naturally engage high rates of misclassification
throughout the testing phase of n-class classifiers (e.g. tra-
ditional SVMs). Hence, in this work we are inspired by the
findings in [31], where one-class SVMs perform much better
than two-class SVMs, as well as Artificial Neural Networks
(ANNs), in the context of classifying DSL-level faults. Here
we employ them explicitly for the detection of anomalous
events in cloud environments, in particular those resulting
from the execution of malware. One further reason to use
one-class SVMs in the context of our research is the lack
of dependence on prior knowledge regarding a particular
cause for anomalous behaviour and the ability to detect new
types of anomalous events as “novelties”. As a result, it is
possible to detect anomalies that are not well understood
(i.e. no prior models) under the concept of novelty detection
since they were not experienced throughout the training
phase of a one-class SVM4.

2.4 Cloud Resilience Architecture

The research introduced in this paper is part of a larger
international research initiative on network and system
resilience. It is based on the D2R2 + DR network re-
silience framework [2]. This framework comprises two
nested modes of operation. An inner real-time control
loop comprising Defending the system, Detecting faults and
anomalies, Remediating against them, and finally Recovering
from any detected faults. And an outer loop that Diagnoses
weaknesses in the current configuration and Refinines the
overall system and resilience strategy. Whilst the inner
control loop aims at protection in real-time, the outer control
loop is conducted over a longer period of time (see Figure 1).

In order to realise the D2R2 + DR strategy, network
and system specific resilience architectures have been de-
veloped with the aim of providing interoperable resilience
infrastructures that host the components necessary to en-
able various resilience methods and techniques. In [4] we
introduced a cloud resilience architecture that specifies the
components through which detection and remediation in

4. For example, in our work we train the classifier to label feature
vectors that strictly represent normal behaviour. Thus, malware in-
stances, which consequently change the statistical properties of newly
tested feature vectors, are labelled as “novelties” because they represent
deviations from the normal operation of the cloud.

the cloud is realised. The resilience system is distributed
and self-organising, and is composed of individual software
instances, known as Cloud Resilience Managers (CRMs).
Each CRM is composed of four software components, or
engines, which are shown in Figure 25.

The software components within each CRM are: the
System Analysis Engine (SAE), the Network Analysis En-
gine (NAE), the System Resilience Engine (SRE) and the
Coordination and Organisation Engine (COE). The CRM
on each node performs local anomaly detection based on
features gathered from its node’s VMs and its local network
view, where those features are handled by the SAE and NAE
components respectively. The SRE component is in charge
of remediation and recovery actions based on the output
from the analysis engines (i.e. the NAE and SAE), which
is conveyed to it by the COE. Finally, the COE component
coordinates and disseminates information between other
instances and the components within its own node. It is
the COE that is ultimately in charge of the maintenance of
the connections between its CRM peers and embodies the
self-organising aspect of the overall system.

In addition to node level resilience, the detection system
is capable of gathering and analysing data at the network
component level through the deployment of network CRMs
as shown by C in Figure 2. Network level CRMs operate in
exactly the same manner as the CRMs deployed within the
cloud, but are able to observe network traffic from a unique
vantage point not available to the inner network. For exam-
ple, a CRM deployed on an ingress/egress router (i.e. D in
the figure) is able to observe traffic before it is firewalled,
enabling it to communicate valuable information back into
the cloud. An ingress/egress CRM is also able to analyse
the traffic from multiple nodes, allowing the presence of
a botnet to be detected, communicated to each internal
CRM, and thwarted by the SREs on each node. However,
the research presented in this paper is concerned with the
online detection component within the System Analysis
Engine (SAE) and Network Analysis Engine (NAE), hence
further details about the overall resilience architecture can
be found in [4], [3], [8].

Based on features gathered from each individual VM, the
SAE and NAE are designed to enforce algorithms that are
capable of building models for normal VM operation. These
are then used to pinpoint anomalous events. In our imple-
mentation, features are extracted from the virtual memory
of each VM (e.g. process memory usage) as well as from the
network interface of each VM and are combined to form a
feature vector for each measurement interval. Under normal
operation (i.e. with no malware injected)6 all of the feature
vectors are combined into a training dataset for the one-class
SVM formulation. Conversely, under detection conditions
each newly monitored and post-processed feature vector
is tested against the training data in order to determine
whether it is anomalous or normal. The following section

5. Element A in Figure 2 represents a single hardware node in the
cloud, while B represents the CRM, along with its associated software
engines.

6. Normal operation was determined based on the knowledge that
our VMs were not infected or attacked within our controlled ex-
perimental testbed. This process is also quite common within large
organizations as revealed by discussions with cloud providers and
collaborators under the IU-ATC project [34].
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Fig. 2. An overview of the detection system architecture

is dedicated to describing the steps involved in our method-
ology in order to conduct the above operations in an online
mode.

3 METHODOLOGY

The cloud testbed used in this work is based on KVM
hypervisors under Linux (which in turn use Qemu for
hardware emulation). The testbed comprises two compute
nodes, one of which also acts as the storage server for VM
images, and a separate controller server. The management
software is Virtual Machine Manager (sometimes referred
to as virt-manager), which interfaces with libvirt daemons
on the compute nodes. Cloud orchestration software (such
as OpenStack) is not deemed necessary for our particular
experiments since we are concerned solely with direct data
acquisition from VMs and not the interaction of the de-
tection system with management software. However, the
tools used in this work are compatible with any cloud
orchestration software that uses either Xen or KVM as a
hypervisor and the approach we take here could therefore
be applied to such an environment. In general, our testbed is
capable of many of the functions associated with cloud com-
puting such as flexible provisioning of VMs, cloning and
snapshotting VM images, and offline and online7 migration.

3.1 Data Collection & Feature Extraction

The data collection and analysis tools installed on each
compute node in the described testbed include libVMI8

and Volatility9 for real-time Virtual Machine Introspection
(VMI), tcpdump10 and CAIDA’s CoralReef11 for packet
capturing and network flow summarisation. Overall, the
data acquisition, feature extraction and anomaly detection
performed by both the SAE and NAE components of our re-
silience architecture are achieved through custom software
that operates on VMs in real-time at the hypervisor level of
the cloud node.

Based on the monitoring and measurement tools de-
scribed above, the collection of training data into a training

7. Also referred to as cold and live migration respectively.
8. libVMI: https://code.google.com/p/vmitools/
9. Volatility framework: https://code.google.com/p/volatility/
10. tcpdump/libpcap: http://www.tcpdump.org/
11. CoralReef software suite:
http://www.caida.org/tools/measurement/coralreef/

dataset is achieved through the monitoring of a VM that
has been created from a known-to-be-clean disk image. Each
VM snapshot that is collected is stored in a single file that
represents the normal behaviour of that VM image. At 8 sec-
ond intervals the Volatility tool is invoked with our custom
plugin that crawls VM memory for every resident process
structure. From each process we extract the following raw
features per process:

• memory usage (i.e. actual size of the process in
memory)

• peak memory usage (i.e. the requested memory allo-
cation)

• number of threads
• number of handles (resources the process has open,

e.g. files)

As mentioned, the raw features are per process, which is
not useful if we are to consider each sample, or snapshot,
as a single feature vector. Therefore a subsequent step
is dedicated to building statistical meta-features such as
the mean, variance and standard deviation of each feature
across all processes. This results in a final feature vector for
the snapshot of the form x = (x1, x2, . . . , xn−1, xn), where
n = 12 due to the three groups of four meta-features. At this
stage, the snapshot feature vector is either appended to a file
that represents the training dataset for normal operation, or
is classified through online anomaly detection.

At the network level the NAE gathers data through
tcpdump, which separates packets into 8 second time bins.
Features are then extracted using the CAIDA CoralReef
suite of tools, which provides the capability to generate
statistics per uni-directional TCP and UDP flow. The raw
features include:

• packets per address pair
• bytes per address pair
• flows per address pair

The raw features are then used to produce meta-features
in a similar manner to the functionality of the SAE. The
resulting feature vector therefore has dimension n = 9
and, in experiments where the NAE and SAE feature sets
are combined into one, the resulting feature vector has
dimensionality n = 21.
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3.2 One-Class SVM
The core of our online detection methodology within the
SAE and NAE lies with the implementation of the super-
vised one-class SVM algorithm, which is an extension of
traditional two-class SVM, and was proposed by Scholkopf
et al. in [35]. In practise, the one-class SVM formulation
handles cases using unlabelled data (i.e. novelty detection),
the main goal of which is to produce a decision function
that is able to return a class vector y given an input
matrix x based on the distribution of a training dataset.
The class y is a binary class where one outcome is the
known class, which in our case is the normal VM behaviour,
and the other is the novel class, which represents any
testing instances that are unknown to the classifier. If we let
x = (x1, x2, . . . , xn−1, xn) represent a feature vector, which
contains all of the VM-related features described earlier
(section 3.1), then the decision function f(x) takes the form:

f(x) =

N∑
i=1

αik(x, xi)− ρ (1)

However, in order to achieve f(x) and attain the αi
multipier over the kernel function k(x, xi) it is firstly re-
quired to solve the optimisation problem in Equation 2
using Lagrange multipliers, as follows:

min
w,ξi,ρ

1
2‖w‖

2 + 1
νn

∑n
i=1 ξn − ρ

subject to:
(w · φ(xi)) ≥ ρ− ξi for all i = 1, . . . , n

ξi ≥ 0 for all i = 1, . . . , n

(2)

The parameter ν is extremely critical and characterises
the solution by setting an upper bound on the fraction
of outliers, and a lower bound on the number of support
vectors. Increasing ν results in a wider soft margin, meaning
there is a higher probability that the training data will
fall outside the normal frontier, thus identifying legitimate
VM behaviour as anomalous in our case. With reference to
Equation 1, the function k(x, xi) denotes the kernel function
and can be chosen to suit a particular problem. In our
implementation we employed the Radial Basis Function
(RBF) kernel function, which is defined as:

k(x, xi) = exp(−γ‖x− xi‖2) (3)

The kernel parameter γ is sometimes expressed as 1/σ2 and
a reduction in σ results in an decrease in the smoothness of
the frontier between normal data and outliers. It is therefore
possible to produce a decision function which approximates
a nearest neighbour classifier by increasing the value of
γ. As we explain next, both γ and ν parameters are quite
critical and require some tuning in order to avoid missclas-
sifications of abnormal behaviour to normal and vice versa.

3.3 SAE & NAE One-Class SVM Tuning
Prior to the training process, the SAE & NAE engines auto-
matically transform the initial gathered dataset by scaling
them towards a Gaussian distribution. This is due to a
requirement of the RBF kernel that the data be centred
on zero and have unit variance. Thus the tuning process
embedded in the SAE and NAE removes the mean from
each feature and divides the feature vector by the standard

deviation. The training process subsequently involves pass-
ing the scaled training dataset as an input to the one-class
SVM algorithm, which produces a decision function that is
able to classify new feature vectors.

In general, the training process is determined by four
factors: the size and content of the training dataset and the
two parameters ν and γ. The training dataset size is de-
termined by the length of time over which VM monitoring
is conducted, after which it is possible to select subsets of
the available data resulting in a refinement of training data
and a reduction in dataset size if required. Dataset content is
determined by the behaviour of the processes in the VM and
is not accurately controllable, hence the only influence that
can be imposed on the data is by varying the applications
and the loads on each of them. In contrast, the parameters
ν and γ can be finely controlled and are chosen at training
time to alter the accuracy of the classifier with respect to the
available training data.

The choice of algorithm parameters is not obvious a priori
and a small change of ν or γ either way can result in a
less accurate detector. However, by choosing the parameters
based on how accurately the classifier classifies its own
training dataset it is possible to optimise the detector for
a particular server profile.

The process of parameter selection is conducted in an in-
cremental manner by selecting the lowest reasonable values
for ν and γ and incrementing the values of first ν and then γ
in a pair of nested loops12. The increment for γ need not be
as fine as ν because, within our experimentation, we have
found it to have much less influence on the accuracy of the
detector. At each step the training data is reclassified using
the new values of ν and γ and the False Positive Rate (FPR)
is calculated for the pair of parameter values according to
the formula in Equation 4. This search allows us to select the
values that produce a minimum FPR.

Overall, by conducting this iterative process we have
found that once a minimum is reached there may be some
parameter pairs that yield the same minimum, after which
the FPR will rise again for all subsequent pairs of values.
This is to be expected due to the fact that increasing both
parameters past a certain point results in a frontier that fits
too tightly to close neighbours in the training data and does
not generalise well. Thus, a compromise needs to be reached
between fitting the training data loosely with low values
of the algorithm parameters, and being too restrictive with
high values. Hence, with empirical experience of search
times it is possible to stop the procedure long before the end
of the exhaustive search and therefore reach an optimised
set of parameters in reasonable time13.

3.4 SAE & NAE Online Detection Process
As described in the previous subsections, the one-class
SVM classifier within our SAE and NAE implementations
is trained to identify anomalies by training it on a dataset

12. Since it is impossible for ν to be equal to 0 we begin the search
with a value of 0.0001 and also increment in intervals of 0.0001. Since
γ can be any non negative real number we begin at 0 and increment in
intervals of 0.01

13. Within our experimentation we found that this iterative process
takes no more than 10 seconds on an average machine and need only
be carried out once per training dataset
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of normal VM behaviour. This is embodied in a dataset
comprising features obtained during normal operation and
is used to generate a decision function that is capable of
classifying novel samples (i.e. anomalous behaviour). Once
trained, the classifier operates on feature vectors in an online
capacity in order to produce a classification in real-time.
The evaluation of the classifier within the SAE is conducted
experimentally through the following procedure:

• A clean VM is created from a known-to-be-clean disk
image

• The VM is monitored for a period of 10 minutes in
what we refer to as the “normal phase”

• Malware is injected and a further 10 minutes of mon-
itoring follows in what we refer to as the “anomalous
phase”

The output of the detector component is a vector y with
an n dimension equal to the m dimension of the input
matrix, which in the case of online detection yields a single
value of y ∈ {−1, 1} for each snapshot vector x. This
means it is possible to infer the success of the detector from
its output relative to the phase in which the output was
produced.

3.5 Classification Performance Metrics

The detection performance of the classifier can be assessed
by determining the difference between the class it produces
for a given input and the class it should produce. For
example, if a sample of data contains no anomalies due
to a malware strain, and the classifier produces an output
of 1 for that data point, it is a correct classification. In
order to quantify the classification performance we consult
a confusion matrix that describes all possible outcomes of a
prediction and has the form:

TN1

1

FN

−1

FP−1 TP

Predicted
Class

Actual Class

In our experiments a “positive” outcome is one in which
the detector detects an anomaly, i.e. produces a class of
−1. From this we can conclude that a True Positive (TP) is
possible when the classifier produces a −1 during malware
execution, otherwise it is treated as a False Positive (FP).
Similarly, negative results occur when the detector detects
normal operation. As such, if malware is not executing, an
output of 1 is a True Negative (TN), otherwise it is treated
as a False Negative (FN). From the confusion matrix it is
possible to derive a number of performance metrics which
are shown in Equation 4 below.

FPR =
FP

FP + TN

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F score = 2×
(
Precision×Recall
Precision+Recall

)
G mean =

√
Precision×Recall

(4)

Accuracy is the degree to which the detector classifies
any newly tested data samples correctly whereas precision
is a measure of how many of the positive classifications
are correct, i.e. the probability that a detected anomaly has
been correctly classified. The recall metric is a measure of
the detector’s ability to correctly identify an anomaly, i.e.
the probability that an anomalous sample will be correctly
detected. The final two metrics are the harmonic mean (F
score) and geometric mean (G mean), which provide a more
rounded measure of the performance of a particular detector
by accounting for all of the outcomes to some degree.

4 EXPERIMENTAL SCENARIOS & MALWARE DE-
SCRIPTION

4.1 Malware Analysis on Static VMs

An initial concern of any cloud provider should be the
aspect of VM screening; the process of profiling the system
and network features of a running VM and subsequently
confirming that it is not infected with malware. Thus, our
first experiment as illustrated via Figure 3 utilised the
testbed configuration described earlier and aimed to eval-
uate our screening process by injecting malware and also
emulating a DDoS attack (as described in section 5.6) on
a given VM. The VM in our experimentation hosts a sim-
ple web server that provides an HTTP service to multiple
client requests. The experiment lasted for 20 minutes, with
malware injection (using Kelihos and Zeus malware strains
serparately) on the 10th minute. In order to generate some
realistic background traffic we developed some custom
scripts on other hosts within the same LAN that enabled the
random generation of HTTP requests to the target server14.
The choice of HTTP for traffic generation is typical of many
cloud servers that host web servers or related REST based
applications. In addition, these types of server are among
the most targeted by malware due to them being very public
facing, and therefore require the most monitoring.

The experiment duration was chosen based on empirical
experience of the behaviour of our chosen malware strains.
Since detection is conducted in real-time it is necessary

14. These scripts were based on the implementation of iperf clients
and they included random bursty and “lightweight” requests with
varying content and flow size.
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Fig. 3. Visualization for the experimental setup for static malware
analysis.
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Fig. 4. Visualization for the experimental setup for malware analysis
under VM migration.

Fig. 5. Time taken to train the classifier vs. training dataset size Fig. 6. Time taken to output a class vs. training dataset size

to have the experiment run uninterrupted. This places a
constraint on the format of the experiment whereby the
malware needs to be detectable for the duration of the
anomalous period, with the only valid outcomes being
TPs and FNs during this time. Through experimentation
it was observed that the Zeus samples we obtained have
a tendency to cease execution beyond 15 minutes; we do
not, therefore, need to continue the experiment beyond this
boundary. Moreover, we have found that 10 minutes of
malware execution is more than sufficient to characterise the
detection performance of the detector under the parameters
of our experimentation.

4.2 Malware Analysis During Live-Migration
Cloud providers are also heavily concerned with the secu-
rity implications associated with the scenario of VM/service
migration from one physical host to another. Thus, in this
work we have explicitly targeted live migration for experi-
mentation, since the greatest majority of commercial cloud
management software (e.g. VMWare VSphere15) employ
this functionality by default. Therefore, the objectives of
our second experiment were: to firstly determine whether
the malware resident on an infected VM would remain
operational post-migration; secondly, we aimed to address
the actual detection of the malware from data gathered at
the hypervisor level of the nodes that hosted the VM.

15. VMWare VSphere: http://www.vmware.com/uk/products/
vsphere

When investigating the effects of migration each ex-
perimental run had a total duration of 20 minutes. The
experiment was divided into two scenarios: one in which
the malware was active during the migration, and one in
which the malware was injected after migration. In the first
scenario the malware was injected on the 10th minute, with
migration occuring after injection on the 15th minute. The
second scenario involved migration on the 5th minute and
injection of the malware on the 10th minute, as before. As
Fig. 4 demonstrates, the testbed for the migration scenario
consists of four physical machines, where one machine acts
as the management entity (in charge of regulating the mi-
gration activities between Host A and Host B), one provides
the HTTP client connections, and the other two host the
infected VM. Throughout the experiment the HTTP sessions
remained active despite the migration of the VM, which is
precisely the behaviour expected of webservers in the cloud.

4.3 Malware Samples

This work could have not be evaluated without the ability
to generate anomalies within a testing environment. It was
therefore essential to utilise appropriate samples of genuine
malware in our experiments16. As already mentioned ( see
Section 1), both malware strains have been reported to

16. The specific samples of malware used under experimen-
tal conditions are: Trojan.Kelihos-5, Trojan.Zbot-1433, Trojan.Zbot-
1023, Trojan.Zbot-18 and Trojan.Zbot-385, which were obtained from
offensivecomputing.net
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exhibit sophisticated evasive and propagation properties
and they have compromised million of Windows OS-based
machines since 2010 until recently, hence we consider their
selection and analysis as timely and at the same time neces-
sary.

In particular, the Kelihos malware spawns many child
processes and subsequently exits from its main process. This
is likely an obfuscation method to avoid detection, but has
the effect of skewing system level features resulting in an ob-
vious anomaly. The main purposes of these child processes
are to monitor user activity and contact a Command and
Control server (C&C) in order to join a botnet. At the same
time, the Zeus malware and its variants, exhibit obfuscation
techniques that tamper with security software installed on
a given host. Its first action is to inject itself into one of
the main system processes and to subsequently disable anti-
virus and security center applications. This behaviour leads
to any attempt to detect it from within the OS futile and
makes detection systems that exist outside the execution
environment of the malware (such as the method used in
this work) particularly applicable.

The choice of Windows as the subject of experimentation
is largely due to the fact that a range of IaaS clouds do
demonstrate a higher need for Windows-based VMs as men-
tioned by cloud operators within the IU-ATC project [34]. In
addition, most of the malware available in binary form have
been compiled as Windows executables, thus we chose a
compatible target on which to unleash them.

5 RESULTS

The experiments we present in this section test the detection
aspects of the System and Network Analysis Engines (SAE
and NAE respectively). Given the fact that both engines
perform online anomaly detection under the one-class SVM
formulation we initially present our results related to the
computational cost of the online training and testing of the
algorithm, since they affects the overall response of the real-
time detection process. We subsequently present our assess-
ment on detecting the Kelihos and Zeus malware strains as
well as the DDoS attacks. In addition, we further present a
comparison between the detection accuracy obtained when
using a joint dataset (i.e. composed of both system and
network features) with a featureset that strictly considers
network-based features.

The experiments that focus on the SAE functionality
involve the detection of Kelihos and Zeus under static anal-
ysis and live-migration using a 12 dimensional system-level
dataset. NAE performance is tested under static analysis
against DoS using a 9 dimensional network-level dataset
and against Zeus using the 9 dimensional network dataset
and a 21 dimensional joint-level dataset (i.e. system and
network).

5.1 Training and Classification Cost Analysis

Figure 5 illustrates the required time for training the one-
class SVM classifier on various sizes of training datasets.
For the sake of completeness we have experimented with a
range of sizes having, as a maximum, a large dataset consist-
ing up to 80000 rows. This was in order to demonstrate the

extremely small impact that training and classification have
in our actual experimental conditions. The dataset used in
the experiments was around 200 samples, which resulted in
a training time of between 2 and 10ms, which is not possible
to measure reliably using our tools. Hence, the dataset was
extrapolated up to 80000 entries in order to produce an
observable trend.

Considering feature extraction takes in the order of sec-
onds to complete17, the time taken to train the classifier is
negligible, especially since it is only required to take place
once during the lifetime of the classifier. In scenarios where
the role of a server changes significantly and frequently the
classifier would need to be retrained in order to produce a
model of normal behaviour that sufficiently characterises
the new normal behaviour patterns. Though, in our ex-
perience, in such cases it is more usual to replace a VM
with the new version by swapping one for the other, rather
than altering it in place. This allows the new image to be
profiled and a more complete model of the new normal to
be established before deployment.

Classification could also potentially hold up the process
of obtaining a class for a particular vector and, like training,
is dependent on dataset size. However, as Figure 6 shows,
the time taken to produce a class is also negligible with
respect to the time taken to obtain the feature vector itself,
despite the fact that classification is carried out on every
sample vector.

Fig. 7. Results of detection for Kelihos-5 using end-system features and
a variety of kernel parameters

5.2 SAE Kelihos Detection
As already mentioned and described in Section 4.3, the first
sample of malware used to test the performance of the SAE
component was Kelihos (Trojan.Kelihos-5), which due to its
nature as a trojan can be directly executed on the target VM
without the need to explicitly alter the Windows registry.

Our trained and tuned one-class SVM implementation
was used in an online mode to classify feature vectors

17. 8 seconds in our experiments, however this is without any optimi-
sations and could be reduced significantly through natively compiled
code rather than interpreted scripts.
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as they were collected from the test VM. The classifier
was tuned according to the methods described in Section
3.3 and was trained using a dataset consisting of around
200 samples of normal behaviour gathered during normal
server operation.

The output class produced by the detector for each input
vector was determined to be either correct or incorrect
depending on the state of the malware sample at the time of
feature extraction.

In particular, the timeline for the experiment consisted
of two phases: 10 minutes of normal activity, followed by 10
minutes of malware infection where any positive detection
classifications in the first phase were therefore false posi-
tives, whereas positive results in the second phase were true
positives.

The results of this experiment can be seen in Figure 7
where all bar charts shown in the figure were produced by
calculating the various performance metrics for each set of
the SVM-specific parameters according to the formulae in
Equation 4. In our case, the tuned classifier can be identified
by the kernel parameters nu = 0.018 and gamma = 0.02.
The other sub-optimal parameter pairs were chosen through
empirical experience of the tuning process in order to rep-
resent the surrounding parameter space close to the optimal
pair.

Based on the generated results it is shown that tuning
an SVM classfier according to the method in Section 3.3
results in a more reliable detector for our particular scenario.
In addition, the results show that it is possible to reliably
classify feature vectors as they are produced, which enables
the algorithm to be used in an online capacity to detect
anomalies in a target VM as they occur. Furthermore, the
anomalies produced by Kelihos as a result of its execution
behaviour were detectable using the features collected by
our analysis engine at accuracies nearing 100%.

5.3 SAE Zeus Detection
Experiments using Zeus samples were conducted in the
same manner as those using Kelihos. A Zeus sample was
executed for the last 10 minutes of a 20 minute experiment,
during which results were obtained from the classifier in
real time.

The first experiment using one Zeus sample tested the
ability of the SAE to detect samples other than Kelihos
in order to verify that the method is not limited to one
type of malware. As evidenced by Figure 8 the detector
performs equally well when detecting either Kelihos or Zeus
by reaching overall more than 95% of detection accuracy
throughout all the detection performance metrics.

5.4 Detecting Zeus Variants
The experiments thus far have tested the SAE against two
strains of malware from different malware families. How-
ever we felt it necessary to test against different samples
from the same strain in order to determine whether our ap-
proach is flexible in its classification of anomalous activity.

Figure 9 shows experiments conducted with the same
experimental procedure as the previous two experiments,
but with each using a different sample of Zeus. The excellent
detection results from each show that the method is suitable

not only for detecting multiple strains of malware, but also
variants of the same strain with more than 90% of overall
detection performance for most of the malware strains.

However we have witnessed a poor result that involved
the detection of the Trojan.Zbot-18 strain. We argue that this
is likely due to this particular malware sample’s execution
pattern and not neccesarily a deficiency of the detector. The
Trojan.Zbot-18 sample does not exhibit anomalous activity
when first executed, but rather waits for a period of time
before continuing to operate. As such the detector correctly
detects normal activity even though the experiment has pro-
gressed into the infected, or “anomalous”, phase. This skews
the results so that the detector appears to be performing less
well, when in fact the malware is dormant during a portion
of its lifetime.

5.5 SAE Detection During VM “Live” Migration

Clouds are characterised not only by hardware virtualisa-
tion, but also by the elasticity that virtualisation enables. As
such, and based on discussions with real cloud operators,
we considered it important to test the detection performance
of our proposed technique in scenarios that utilise the elastic
nature of the cloud. One such elasticity measure is VM
“live” migration which allows real-time load balancing,
failover and other resilience techniques to be employed
towards improving server uptime on a physical host, as well
as efficient operation of the services hosted on a given VM.

To test the SAE under scenarios with VM “live” migra-
tion, we deployed our SAE implementation on two com-
pute nodes and configured them to use the same training
dataset and algorithm parameters. The first experiment
consisted of a normal phase lasting 10 minutes followed
by an anomalous phase of a further 10 minutes, with live-
migration scheduled halfway through the anomalous phase.
The second experiment was conducted in a similar manner,
but with migration scheduled halfway through the normal
phase. Figures 10 and 11 exhibit the results for each experi-
ment respectively.

In general, the results show that migration does not
affect the performance of the detector at all due to the fact
that each SAE is configured in exactly the same way, and
thus detects anomalies with the same level of accuracy. The
migration itself has no effect because it pauses the VM and
reinstates it with exactly the same configuration on the new
node; the actual downtime is not noticeable. The VM has
fixed hardware parameters that must be satisfied on the new
node if migration is to succeed, therefore since the migration
occurred without issue the detection is able to continue, also
without issue.

In Figure 11 the pre-migration results are missing values
for precision, f-score and g-mean. This is simply a matter of
divide-by-zero errors, caused by the detector not producing
any true positives or false positives. The metrics cannot be
calculated and are therefore absent from the chart.

No true positives were produced because the detector
was in the normal phase and there were no anomalies
to detect; no false positives were produced because the
detector was performing particularly well. Hence, we can
only determine values for the missing metrics post-migration
when the experiment has entered the anomalous phase and
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Fig. 8. Detection of Zeus-1433 using end-system features with a tuned
classifier

Fig. 9. SAE Detection of various Zeus samples using end-system data
and a tuned classifier

true positives are once again a possibility. The overall results
are the best measure of the performance of the SAE and were
calculated by combining the results of both SAE compo-
nents as if they had been produced by a single detector and,
as is evident from the figure, once again reached accuracy
levels well above 90%.

5.6 NAE Detection of Volumetric Network Attacks
Using a featureset that is capable of encapsulating changes
to the volumetric properties of traffic on the network we
were able to detect Denial of Service (DoS) attacks on the
HTTP service running on a given VM using our NAE
component.

The experiment consisted of the same VM as in previous
experiments, running an HTTP server and serving clients
with random data. The NAE collected network features in
8 second time bins under a normal period which lasted for
10 minutes. After the normal period the VM was attacked
using the DoS traffic generator Low Orbit Ion Cannon
(LOIC). The anomalies produced by this tool were detected
by the NAE, which used SVM to compare new vectors
with a dataset of normal samples. The output of the NAE
was used to produce evaluation metrics according to the
formulae in Equation 4.

The results in Figure 12 show that our choice of network
features is appropriate and sufficient for detecting network
based DoS attacks, since the accuracies obtained echo those
of the SAE of well above 90%.

Although the SAE was not the subject of this experiment
it is likely that the system metrics obtained by the SAE com-
ponent would be impacted by the attack, if the attack had
any impact on the VM’s services. This would be the case if
the DoS caused the server to spawn more processes/threads
in order to meet demand, therefore skewing these particular
features and their respective meta-features. Unfortunately,
due to time constraints, it was not possible to confirm this.

5.7 Detection Using Joint vs. Network-Only Datasets
The previous experiment using network data involved the
use of a volume-based external attack to test the detector.

Figure 13 shows the results of two experiments to detect
the anomalies produced by Zeus at the network level. As is
evident from the figure the detector is not successful, using
the features that are more suited to detecting DoS attacks
rather than C&C communication. This is embodied in a
result of less than 10% for recall, a measure of how well
the detector can identify anomalies.

Experiments involving the detection of malware have
so far been conducted in each domain separately. It is also
possible, using the same techniques of feature extraction,
to combine the features into a joint feature vector before
analysis; that is, rather than analysing system and network-
level features separately it is possible to combine them using
a joint analysis approach. The experimental parameters of
10 minutes of normal activity followed by 10 minutes of
anomalous activity were carried out as usual. However,
the SAE classifier was trained using a dataset composed of
vectors that were created from both network and system-
level data. The evaluation metrics from Equation 4 were
applied to the output in order to determine the detector’s
reliability under these new experimental conditions.

The results in Figure 13 show that overall detection is no
more effective when system and network data are analysed
together, in fact the performance is almost as poor as if the
system-level data had been left out. The result for recall
was improved to just over 10%, however this is still un-
acceptable. This is due to the fact that the network features
chosen were not sufficient to detect network anomalies on
their own, indicating that a larger number of statistical meta-
features are needed.

Another possibility is the fact that the separate feature-
sets do not correlate sufficiently in order to be used effec-
tively together. In parallel, this outcome also indicates that a
joint dataset may not be useful in general due to the explicit
algorithmic formulation of one-class SVMs. As we show in
our other study in [8], the joint dataset was appropriate for
use with the Empirical Mode Decomposition (EMD) algo-
rithm, which performed well under the same constraints.
This may be due to the formulation of EMD as a signal
processing-based solution, which differs significantly to the
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Fig. 10. Detection of Zeus-1433 with live migration occuring 5 minutes
after the infection

Fig. 11. Detection of Zeus-1433 with live migration occuring 5 minutes
before the infection

Fig. 12. Detection of a DoS attack by a tuned NAE component Fig. 13. Detection of Zeus-1433 using network-only and joint datasets
with tuned classifiers

machine-learning approach of one-class SVM.

6 CONCLUSIONS

In this paper we introduce an online anomaly detection
method that can be applied at the hypervisor level of the
cloud infrastructure. The method is embodied by a resilience
architecture that was initially defined in [4], further explored
in [36], [37] and which comprises the System Analysis
Engine (SAE) and Network Analysis Engine (NAE) com-
ponents. These exist as submodules of the architecture’s
Cloud Resilience Managers (CRMs), which perform detec-
tion at the end-system, and in the network respectively. Our
evaluation focused on detecting anomalies as produced by
a variety of malware strains from the Kelihos and Zeus
samples under the formulation of a novelty detector that
employs the one-class Support Vector Machine (SVM) algo-
rithm. Moreover, in order to empower the generic properties
of our detection approach we also assess the detection of
anomalies by the SAE and NAE during the onset of DoS
attacks.

Overall, this work performs online anomaly detection
under two pragmatic cloud scenarios, based on suggestions
by cloud operators, which emulate “static” detection as
well as detection under the scenario of VM “live” migra-
tion. The results obtained by strictly utilizing system-level
data in our SAE detection, which was supported by an
automatic SVM-specific parameter selection process, have
shown excellent detection for all samples of malware under
a variety of conditions (i.e. static and migration analysis)
with an overall detection accuracy rate of well above 90%.
Hence, we have demonstrated that the extracted features for
classifier training were appropriate for our purposes and
aided towards the detection of the investigated anomalies
under minimal time cost throughout the training and testing
phase. Nonetheless, in order to further the investigation,
this featureset can easily be expanded to include statistics
derived from vCPU usage and a deeper introspection of
process handles, which could be beneficial for the detection
of highly stealthy malware. However, the consideration of
new features would naturally invoke a computational trade-
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off, since deeper introspection will require more system
resources.

The results derived from the experiments based on
network-level detection of DoS attacks have also justified
that the network features used were sufficient for the de-
tection of such challenges, since the detection accuracy rate
also reached well above 90%. However, when attempting
to detect the examined Zeus and Kelihos malware samples
using a strictly network-based featureset the gained results
were inconclusive with low detection accuracy rates and un-
acceptable recall. In parallel, we have also observed minimal
improvement in the evaluation metrics when considering
a joint dataset, which was composed of both end-system
and network level data. Hence, despite experiencing good
results from the detection conducted using system-based
features in the SAE we concluded that is not possible to im-
prove the results obtained from the NAE through the com-
bination of feature sets. Therefore, we demonstrate that by
extending the featureset explicitly under the one-class SVM
formulation would not necessarily lead to higher detection
accuracy rates. However, as we show in our other work us-
ing the Ensemble Empirical Mode Decomposition (E-EMD)
algorithm [8], a joint dataset could lead to good detection
accuracy levels, thus we argue that the effectiveness of a
featureset is strongly related with the exact mathematical
formulation of a given detection algorithm.

In general, the detection approach presented in this
paper is designed to be adaptive and respond to new threats
and challenges online and in real time under minimal
computational cost. Given the promising results presented
through this work, we argue that our novel solution can
overcome the commonly used signature-based intrusion
detection solutions that are currently governing the domain
of cloud security and further benefit cloud datacenter op-
erations where security and resilience are of paramount
importance.
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