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removes much of the complexity. This matter is of interest for further work.”
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White box radial basis function classifiers with component

selection for clinical prediction models

Vanya Van Bellea,b,1 , Paulo Lisboab

a Department of Electrical Engineering / iMinds Future Health Department, KU Leuven, Kasteelpark
Arenberg 10 / 2446, 3001 Leuven, Belgium

b Department of Mathematics and Statistics, Liverpool John Moores University, Byrom Street, Liverpool
L3 5UX, UK

Abstract

Objective: To propose a new flexible and sparse classifier that results in interpretable de-
cision support systems.
Methods : Support vector machines (SVM) for classification are very powerful methods to
obtain classifiers for complex problems. Although the performance of these methods is
consistently high and non-linearities and interactions between variables can be handled ef-
ficiently when using non-linear kernels such as the radial basis function (RBF) kernel, their
use in domains where interpretability is an issue is hampered by their lack of transparency.
Many feature selection algorithms have been developed to allow for some interpretation but
the impact of the different input variables on the prediction still remains unclear. Alterna-
tive models using additive kernels are restricted to main effects, reducing their usefulness
in many applications. This paper proposes a new approach to expand the RBF kernel
into interpretable and visualizable components, including main and two-way interaction
effects. In order to obtain a sparse model representation, an iterative l1-regularized para-
metric model using the interpretable components as inputs is proposed.
Results : Results on toy problems illustrate the ability of the method to select the correct
contributions and an improved performance over standard RBF classifiers in the presence
of irrelevant input variables. For a 10-dimensional x-or problem, an SVM using the stan-
dard RBF kernel obtains an area under the receiver operating characteristic curve (AUC)
of 0.947, whereas the proposed method achieves an AUC of 0.997. The latter addition-
ally identifies the relevant components. In a second 10-dimensional artificial problem, the
underlying class probability follows a logistic regression model. An SVM with the RBF
kernel results in an AUC of 0.975, as apposed to 0.994 for the presented method. The
proposed method is applied to two benchmark datasets: the Pima Indian diabetes and the
Wisconsin breast cancer dataset. The AUC is in both cases comparable to those of the
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standard method (0.826 versus 0.826 and 0.990 versus 0.996) and those reported in the
literature. The selected components are consistent with different approaches reported in
other work. However, this method is able to visualize the effect of each of the components,
allowing for interpretation of the learned logic by experts in the application domain.
Conclusions : This work proposes a new method to obtain flexible and sparse risk predic-
tion models. The proposed method performs as well as a support vector machine using
the standard RBF kernel, but has the additional advantage that the resulting model can
be interpreted by experts in the application domain.

Keywords:
Interpretable support vector machines, radial basis functions, white box methods, feature
selection, clinical decision support

1. Introduction

Machine learning methods [1–3] are increasingly used to classify data. They are specif-
ically powerful in higher dimensions and when the effects of the variables are assumed to
be non-linear or interacting with each other. A disadvantage of these methods is their
inherent black-box nature and as such the resulting models do not reveal any information
on the contribution of each specific input variable on the predicted outcome. In many ap-
plications, such as medical and financial decision making, interpretability of the prediction
model is considered more important than best performance. The use of standard machine
learning methods in practice is therefore hampered in these domains.

Interpretability of prediction models can have different meanings. In this work we will
concentrate on two parts of interpretable models. Firstly, unnecessary variables should
be discarded in the final model. Secondly, the impact of the value of the different input
variables on the prediction should be clear. Both of these requirements have been studied
in the literature, but weaknesses in the proposed approaches still remain and methods
simultaneously tackling both aspects are rare. Different feature selection methods for
support vector machines (SVM) and in extension for least-squares support vector machines
have been proposed. Three main approaches can be identified. A first approach filters
irrelevant inputs out before building the classifier on the selected set. One possibility is
to rank inputs according to some criterion, e.g. Fisher’s criterion, Pearson correlation or
mutual information criteria [4, 5]. More advanced approaches such as relief and focus have
been proposed in [6–8]. Although filter approaches are very efficient w.r.t. computation,
this approach might not be optimal [9, 10]. A second approach involves wrappers that use
the performance of a specific classifier to rank subsets of variables. The least informative
input (or set of inputs) is removed in an iterative procedure until convergence. One example
is the recursive feature elimination SVM [11], that iteratively eliminates the input with
the lowest difference in the margin when calculating the kernel matrix without this input.
Similar approaches using different ranking functions were proposed in [12, 13]. More recent
work has focused on the embedding of feature selection within the classifier. Many of these
approaches solve the feature selection task by replacing the 2-norm in standard SVMs by
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a 0-norm, a 1-norm or approximations and combinations of these [14–18]. A drawback of
these approaches is that feature selection is performed in the primal model formulation,
restricting its use to linear models. Several methods are reported to deal with feature
selection in the dual formulation. However, these methods most often result in sparsity in
the features determined in feature space and not in the input space. Since the resulting
features can not be interpreted in function of the input variables, these methods are not
suitable for applications where interpretability is an issue. Only some approaches study
the combination of feature selection in input space while optimizing the dual problem
formulation as (a relaxation of) mixed integer programming problems [19, 20]. Maldonado
[21] proposed to learn an anisotropic kernel, where the bandwidth w.r.t. the different
inputs was varied and inputs with a large bandwidth are subsequently eliminated.

Another approach that is often used to enable interpretation of SVMs are rule extrac-
tion methods [22, 23]. However, the approach of these methods is quite different from the
one presented in this manuscript. The learned rules give an explanation of the model but
they are not equal to the model. The rules only mimic the original model and are thus an
approximation of the learned logic of the SVM. Decision rules are a binary approximation
to the smooth response function. Our method makes the response function explicit in its
variable specific components and for pairwise interactions. Additionally, there is no mech-
anism controlling the difference in performance between the original model and the learned
rules. The intention of this work is to provide flexible methods that are interpretable by
design, and contain an explicit control mechanism on the performance.

In order to allow for an explanation of the model’s prediction, models are often restricted
to be additive [24, 25]. Thanks to the additive structure, the contribution of each input
variable to the prediction is clear. However, several classification problems can not be
solved using a sum of main effects. The use of ANOVA models [26], extending the additive
structure to incorporate a number of predefined interaction terms, offers a solution to
this problem. In its general form, the ANOVA decomposition is composed as the sum of
the main effects and all possible combinations of inputs. For most practical applications
demanding an interpretable prediction model, reducing this decomposition to main and
two-way interaction effects is sufficient [27, 28]. An additional advantage of this approach
is the possibility to visualize the effects and thus enable validation of the resulting models
by experts in the application domain. ANOVA models for component selection where
proposed in [29–31]. The kernel approach taken by Gunn and Kandola [32] for regression
problems is most strongly related to the work presented here for classification. They
replace the kernel by means of a weighted sum of kernels. The problem is then solved
by iteratively solving two convex optimization problems: (i) solve the problem in the
Lagrange multipliers, fixing the weights in the sum of kernels; and (ii) solve the problem
in the weights, fixing the Lagrange multipliers. Their approach is restricted to kernels
without hyperparameters to reduce computational load.

The goal of this work is to combine component selection with SVMs using the radial
basis function (RBF) kernel in order to obtain flexible but interpretable models. We
propose to replace the RBF kernel by a truncated version, containing only main and
two-way interaction effects. Using this kernel, a standard SVM is solved. In a second
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step, the different contributions to the prediction of the SVM classifier are calculated and
used as input variables for a linear and iteratively reweighted l1-regularized SVM. The
result is a white box RBF classifier with component selection. In this work, we explicitly
choose to restrict the components to main and two-way interaction effects to facilitate the
visualization of the effect of the different components on the prediction. In most clinical
research, main effects are considered and when assumed necessary, interactions are added
[27, 28].

The remainder of the paper is organized as follows. Section 2 starts with introducing
the notations used throughout the paper and summarizes support vector machines for
classification. In Section 2.2 we illustrate how the RBF kernel can be represented as a sum
of kernels evaluated on subsets of the input variables. Section 2.3 proposes a method to
obtain sparse results. Section 2.4 indicates how the results can be interpreted in clinical
practice. Section 3 discusses the model selection aspects of this work. Our approach is
illustrated on toy problems and real life classification problems in Section 4. Section 5
summarizes some final conclusions.

2. A white box RBF classifier

In this Section, we propose a novel approach to obtain sparse and interpretable classi-
fiers that are able to select relevant (non-)linear and interaction effects. The standard RBF
kernel is truncated to only include main and two-way interaction effects. These effects are
then combined in a sparse way by solving an iteratively reweighted l1-regularized SVM in
primal space.

2.1. Support vector classifier

Let D = {(xi, yi)}Ni=1 be a set of observations, with xi ∈ Rd the input variables of
observation i and yi ∈ {−1, 1} the corresponding class label. The standard SVM for
classification [1] is then formulated as

min
w,b,ε

1

2
wTw + γ

N∑
i=1

εi

subject to

{
yi
(
wTϕ(xi) + b

)
≥ 1− εi, ∀ i = 1, . . . , N

εi ≥ 0, ∀ i = 1, . . . , N .

(1)

In this notation, ϕ(·) represents a feature map, mapping the input variables into a (possibly
infinite) feature space; w ∈ Rdϕ is a coefficients vector and γ is a strict positive regulariza-
tion parameter making the trade-off between smoothness and correct classification of the
training data. When solving this problem in primal space, the feature map needs to be
specified explicitly and a prediction for a new point x? is obtained from

ŷ = sign(wTϕ(x?) + b) .
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Defining the Lagrangian of problem (1), and deriving the Karush-Kuhn-Tucker conditions
yields the dual problem formulation

min
α

1

2

N∑
i,j=1

yiyjϕ(xi)
Tϕ(xj)αiαj −

N∑
i=1

αi

subject to


N∑
i=1

αiyi = 0

0 ≤ αi ≤ γ, ∀ i = 1, . . . , N .

(2)

An advantage of this approach is that the feature map ϕ(x) does not need to be constructed
explicitly. Any continuous function K(x, x?) for any points x and x? satisfying Mercer’s
condition [33] can be expressed as an inner product

K(x, x?) = ϕ(x)Tϕ(x?) .

The classifier then becomes

ŷ = sign

(
N∑
i=1

αiyiK(xi, x?) + b

)
.

In many applications, the RBF is chosen as the kernel since it is able to model non-
linearities and interactions between variables automatically and is bounded. A drawback
of using a non-additive kernel like the RBF is that the resulting classifier is a black-box
model, not revealing any information on the way the predictions are obtained. In the
next Section, it is shown how the RBF kernel can be approximated to obtain a white box
classifier.

2.2. Truncated radial basis functions

Several additive kernels, such as the polynomial and clinical kernel [34], can be used
to enable interpretability. However, in practice not all problems can be solved by main
effects. ANOVA kernels offer a solution to this problem [26], but prior knowledge is needed
in order to define which terms should be included in the ANOVA decomposition.

In this work, we propose to expand the RBF kernel and to truncate its contributions to
main and two-way interaction effects as follows. The RBF kernel is defined as KRBF(x, z) =

exp
(
− ||x−z||

2
2

σ2

)
, with x and z ∈ Rd. Using the Taylor expansion of the exponential function

exp(x) =
∑∞

n=0
xn

n!
, the RBF kernel can be written as

KRBF(x, z) =
∞∑
n=0

(−1)n(||x− z||22)n

n!σ2n
.

Using the multinomial theorem

(x1 + x2 + · · ·+ xd)n =
∑

k1+···+kd=n

(
n

k1, . . . , kd

) ∏
1≤p≤d

(xp)kp ,
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with xp the pth variable of x, this becomes

KRBF(x, z) =
∞∑
n=0

(−1)n

n!σ2n


d∑
p=1

(xp − zp)2n +
∑∑d

l=1 kl = n
kl 6= n

(
n

k1, . . . , kd

) ∏
1≤p≤d

(xp − zp)2kp


=

∞∑
n=0

(−1)n

n!σ2n

d∑
p=1

(xp − zp)2n

+
∞∑
n=0

(−1)n

n!σ2n

∑
kp + kq = n
kp, kq 6= n

(
n

kp, kq

)
(xp − zp)2kp(xq − zq)2kq (3)

+
∞∑
n=0

(−1)n

n!σ2n

∑∑d
l=1 kl = n
kl 6= n

kl + km 6= n

(
n

k1, . . . , kd

) ∏
1≤p≤d

(xp − zp)2kp .

The first term in (3) represents the contributions of single input variables (main effects),
the second term represents all two-way interaction effects and the last term represents
all interaction effects with more than two variables involved. In order for the results to
be interpretable and explainable, we will focus on the first two terms since these can
be visualized. For most applications where interpretability is an issue it suffices to take
two-way interactions into account. Using equation (3), the RBF kernel evaluated on a
2-dimensional test point xp,q = [xp, xq]T and an rbf center zp,q = [zp, zq]T can be expressed
as

KRBF(xp,q, zp,q) =
∞∑
n=0

(−1)n

n!σ2n

[
(xp − zp)2n + (xq − zq)2n

]
(4)

+
∞∑
n=0

(−1)n

n!σ2n

∑
kp + kq = n
kp, kq 6= n

(
n

kp, kq

)
(xp − zp)2kp(xq − zq)2kq

= exp
(
− (xp − zp)2/σ2

)
+ exp

(
− (xq − zq)2/σ2

)
+
∞∑
n=0

(−1)n

n!σ2n

∑
kp + kq = n
kp, kq 6= n

(
n

kp, kq

)
(xp − zp)2kp(xq − zq)2kq ,

and contains the main effects of both input variables and their interaction effect. The
truncated RBF kernel is then defined as the summation of RBF kernels evaluated for
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every pair of coordinates p and q:

Ktr
RBF(x, z) =

2

d(d− 1)

d∑
p=1

d∑
q>p

KRBF(xp,q, zp,q) .

Replacing the RBF kernel with its truncated version, the prediction of the classifier for
a new point x? is obtained from

ŷ = sign

(
N∑
i=1

αiyiK
tr
RBF(xi, x?) + b

)

= sign

(
2

d(d− 1)

N∑
i=1

αiyi

(
d∑
p=1

d∑
q>p

KRBF(xp,qi , xp,q? )

)
+ b

)

= sign

(
2

d(d− 1)

d∑
p=1

d∑
q>p

N∑
i=1

αiyiKRBF(xp,qi , xp,q? ) + b

)

= sign

(
d∑
p=1

d∑
q>p

ŷp,q + b

)
.

2.3. Parsimonious RBF classifiers

In order to achieve a sparse model representation, including only a subset of main
and interaction effects, the following approach is proposed. First, the different terms ŷp,q

are split into main and two-way interaction effects. Second, they are used as inputs in
a parametric model with sparsity constraints on the coefficients, such that only some of
them will be different from zero. The exact methodology is explained below.

The partial contributions ŷp,q are weighted sums of RBF kernels that are evaluated
in 2-dimensional vectors, i.e. each RBF kernel is evaluated for a specific pair of covariate
dimensions. As such, the partial contribution ŷp,q contains the main effects of both variables
and an interaction effect. In order to be able to select all of these effects separately, ŷp,q is
extracted in three components: (i) ŷp which is built upon the first term in equation (4),
(ii) ŷq which is built upon the second term in equation (4), and (iii) a contribution of the
interaction expressed as ŷp,q − ŷp − ŷq. Note that this extraction can not be made on the
level of the kernel due to the necessity of the kernel in the SVM classifier to be positive
semidefinite.

Before these components are used as inputs for a parametric model, they are stan-
dardized as usual. Let ỹp be the normalized version of ŷp with zero mean and a standard
deviation of 1 and ỹp,q the normalized version of ŷp,q − ŷp − ŷq and denote these as the
partial contributions or components of the predictor. These partial contributions are then
used as inputs for a linear and iteratively reweighted l1-regularized SVM classifier [17]
with non-negative coefficients, such that only some of the components will be selected.
The model is then formulated as:
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min
β,b∗,ε∗

d∑
p=1

χpβp +
d∑
p=1

d∑
q>p

χp,qβp,q + γ∗
N∑
i=1

ε∗i

subject to
yi

(
d∑
p=1

βpỹp +
d∑
p=1

∑
q>p

βp,qỹp,q + b∗

)
≥ 1− ε∗i , ∀ i = 1, . . . , N

ε∗i ≥ 0, ∀ i = 1, . . . , N
βp ≥ 0, ∀ p = 1, . . . , d
βp,q ≥ 0, ∀ p = 1, . . . , d; q = p+ 1, . . . , d ,

(5)

where χp equals 1 in the first iteration and is defined as

χp =
1

ε+ cβp
, (6)

in the next iterations. Here, ε is a small, predefined constant (e.g. 0.005) and c a parameter
to control the sparsity of the solution [35]. The value of χp is chosen such that components
with a small (large) coefficient receive a large (small) weight. As such, small coefficients
will be further penalized and will shrink to zero in subsequent iterations. Larger coefficients
will receive less impact on the cost function and the corresponding components will be used
in the final model. Method (5) is iterated until the average of the absolute value of the
difference between the β-vectors in two iterations is less then 10−8. The 1-norm penalty
was first introduced by [36] as the Least Absolute Shrinkage and Selection Operator in
the context of linear regression. In equation (5) the coefficients are restricted to be non-
negative since all the components are assumed to positively correlate with the outcome.
This is similar to the non-negative garrote estimator [29, 37], which was originally proposed
to shrink the estimates from least-squares regression.

The procedure to obtain an interpretable and sparse classifier is summarized in Al-
gorithm 1. A description on how the different parameters are tuned in our experiments
follows in Section 3. The results can be further improved by iterating until the selected set
of components remains unchanged. In practical applications, this is achieved after two to
four iterations.

2.4. Clinical interpretation of the results

In this Section, we indicate how the proposed method will enable clinical interpretation
of the resulting models. In a clinical setting, prognostic indices are often used to indicate
the severity of an illness. An example is found in the body mass index, where a high body
mass index indicates higher risks for diabetes and cardiovascular diseases. Additionally,
cut-offs are used to make formal diagnosis. In the case of the body mass index, the cut-off
is set to 30 in order to diagnose obesity. For a standard SVM approach, the prognostic
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Algorithm 1 Procedure to obtain a sparse white box RBF classifier.

1: Determine the optimal tuning parameters γ and σ for the truncated RBF kernel in (2).
2: Given the optimal value of γ and σ, solve equation (2) to obtain α.
3: Given α, estimate the partial contributions ỹp and ỹp,q.
4: Given the partial contributions, determine the optimal value of γ∗ in equation (5) with

a fixed value of c = 1.
5: Given γ∗, determine the optimal value of c in equation (5).
6: Given c and γ∗, solve equation (5) to obtain the sparse model representation.
7: Obtain the prediction as

ŷ = sign

(
d∑
p=1

βpỹp +
d∑
p=1

d∑
q≥p

βp,qỹp,q + b∗

)
.

index is defined as
∑N

i=1 αiyiK(xi, x?). Since it is unknown how each input contributes to
this weighted kernel sum, interpretation of the decision process is not possible. For the
proposed method, the prognostic index becomes

∑d
p=1 β

pỹp +
∑d

p=1

∑d
q≥p β

p,qỹp,q, which is
a (sparse) linear combination of contributions that are allocated to specific inputs. In order
to visualize these contributions, figures can be made representing βpỹp for main effects and
βp,qỹp,q for interaction effects, where the components with β = 0 are dropped. In each of
these figures, a higher contribution will indicate that the corresponding input value will
target the prediction towards the positive class and a lower contribution to the negative
class. The bias term b∗ serves as cut-off. When presenting the weight (kg) and height (m)
of a person together with the outcome of obesity, the presented method would select one
component, being the interaction between weight and height. ỹweight,height will be related
to the function f(weight, height) = weight

height2
. The b∗ will be the value best dividing obese

from non-obese persons using βweight,heightỹweight,height as prognostic index.
As will be further discussed in Section 4.3, it is possible that the presented method se-

lects different components with slight modifications on the dataset. In those circumstances,
the method indicates that different models are able to achieve the same performance using
different inputs. When this occurs in a clinical application, a discussion between model
developer and end user should be initiated and the clinically most relevant model should
be selected. Two models that perform equally good from a statistical point of view might
be very different from a clinical perspective, and one of them might even be impractical or
not logical. The goal of this work is exactly to enable the detection of clinically irrelevant
models with a good performance. This approach is also able to identify problems with the
data, which would not become apparent when using black-box models.

3. Tuning of the parameters

The performance of the proposed approach depends on the value of several parameters.
In addition to the tuning of the parameters involved in standard SVMs, other parameters
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need to be set to an appropriate value and the optimal value of some of them are related. In
the experiments, the parameters were tuned according to the following scheme (see Figure
1).

Tuning of the bandwidth of the (truncated) RBF and the regularization parameter γ
in equation (2) is performed by means of coupled simulated annealing [38]. The parameter
values were randomly initialized, where σ was scaled with

√
d. The procedure started

from 10 different initializations. The parameter combination leading to the best 10-fold
cross-validation area under the receiver operating characteristic curve (AUC) was selected.
Once γ and σ are tuned, the Lagrange parameters α and b can be defined and the partial
contributions can be calculated.

To select which components are relevant, c and γ∗ need to be tuned. However, the
optimal values of these parameters are related. A high value of γ∗ inhibits a sparse solution,
whatever the value of c. Tuning both parameters simultaneously would necessitate the use
of a risk measure capturing the trade-off between sparsity and performance. Since it is not
clear in advance which trade-off is realistic, this choice is left open for discussion. In the
experiments, the value of γ∗ was tuned by means of 5-fold cross-validation, with c = 1.
The grid over which γ∗ was varied was defined as an exponential grid on [0.01, 1000]. The
AUC was used as model selection criterion. Using the tuned value of γ∗, the value of c
was varied, and the 5-fold cross-validation AUC was reported. To reduce computational
load, the range of values over which c is varied was restricted to values for which the
resulting coefficients vector β yielded 1 to 3d non-zero elements. The optimal value of c
was defined as the lowest value yielding an AUC on 5-fold cross validation that did not
lead to a significant reduction in AUC (p>0.05) according to the test of DeLong [39]. In
order to be able to compare the results over folds, a logistic regression model was trained
in all training folds and applied to the test fold, in order to convert the uncalibrated latent
variables to calibrated probabilities [40].

4. Results

This Section illustrates the use of the presented method on artificial and real-life data.
In the artificial experiments, a training and test set were created. The tuning (as explained
above) was performed on the training set and the performance is reported on the test set.
In both real-life applications, the available data was 10 times randomly split into a training
(two thirds of the total data) and validation set (the remainder of the total data). The
mean performance on the test data is reported. The components that are selected more
than 5 times are then used to train the final model on the complete data set. The results
are then visualized for clinical interpretation.

Toy problems illustrate the ability of the model to detect the relevant components,
whilst being as performant as standard SVMs. Two datasets from the UCI machine learn-
ing depository [41] are used to compare our results with results from other methods de-
scribed in the literature. In all the experiments γ and γ∗ were scaled with N

N+
and N

N−
,

where N∗ indicates the number of observations in class ∗, for elements belonging to the
positive and negative class respectively. The method was iterated until the set of selected
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components did no longer change or the maximal number of iterations (here 10) was ex-
ceeded. In each iteration the components selected in the previous iteration were taken into
account in addition to the main effects of the variables involved in a selected interaction
effect. The reported confidence intervals where calculated by means of the bias corrected
and accelerated percentile method using 1000 bootstrap samples. The AUC, accuracy (acc)
and balanced error rate (ber) are reported, together with a 95% confidence interval (95%
CI) or standard deviation (std).

4.1. Artificial example 1: the x-or problem

In this first experiment, the x-or problem is considered in three different settings: 2-
dimensional, 4-dimensional and 10-dimensional. In all three settings, only the first two
variables are relevant. All variables are independently drawn from a uniform distribution
and are in the range [0, 1]. The observations belong to the first class if x1 ≤ 0.5 and
x2 > 0.5 or x1 > 0.5 and x2 ≤ 0.5 and to the second class otherwise. The proposed method
(l1-svm-rbftr) selects a single component in all three cases: the interaction between the first
and second input variable (see Figure 2). Table 1 compares the results of the presented
method with two standard SVMs using an RBF kernel: one using all variables, and one
using those variables that were selected by our method. Note that when our method selects
a single interaction effect, the use of the standard RBF kernel involves using that effect
together with both main effects. Since our method is able to build a classifier only using
a selected set of variables, the performance does not drop when increasing the number
of irrelevant features. The standard SVM classifier suffers from overfitting when more
irrelevant features are included. The performance increases again when restricting the
used feature set to the ones selected by our method.

4.2. Artificial example 2

In this second experiment, a classification problem with an underlying logistic regression
function is used to illustrate the ability of the model to select the correct relevant variables.
A dataset with 10 variables is created by means of a multivariate Gaussian distribution.
The variables are uncorrelated except for the first three variables, whose correlation matrix
is  1 0.8 0.2

0.8 1 0.1
0.2 0.1 1

 .

The probability of an observation to belong to the positive class is modeled by

P (class 1|x1, . . . , x10) =
exp(5x1 + 5x3 + 10x1x6)

1 + exp(5x1 + 5x3 + 10x1x6)
.

The method detects a main effect for x3 and an interaction effect for x1 and x6. The main
effect of x1 is not selected. This is due to the fact that the split in main and interaction
effects, without specification of the form of these effects, is not unique in an additive model.
Additionally, the effect size of x1 is smaller than the effect sizes for both other relevant
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components, and might not be reflected in the AUC. Figure 3 illustrates the selected effects.
Table 2 compares the results with the standard approach using all features and the selected
subset (x1, x3, x6). The performance of all methods are comparable but l1-svm-rbftr offers
a way to interpret the results.

4.3. Stability analysis

In a last artificial example, the stability of the selected components and obtained per-
formance is tested. The setting is the same as in the previous example, but the underlying
model is now defined as

P (class 1|x1, . . . , x10) =
exp(5x2 + 10x1x3)

1 + exp(5x2 + 10x1x3)
.

The dataset is split into a training and test set. Ten different initializations of the pa-
rameters γ and σ and different splits into folds are used to investigate the stability of the
method. Variation in the parameters γ∗ and c will be less since they are evaluated on a
fixed grid. Their optimal value will vary by their dependence on the split in folds of the
training set. The results are summarized in Table 3. In six out of ten initializations, the
selected components are x2 and x1x3. In the remaining four initializations, the correct
components are selected but a subset of {x1,x3,x2x3} is also selected. Due to correlations
between variables and the non-unique split between main and interaction effects in an
additive model, the method is not always able to select the components we expect. The
method can therefore be stabilized by repeated subsampling of the training data. A final
model can then be built on the complete training set, only including those components
that are selected in the majority of the subsamples.

4.4. The Pima Indians Diabetes dataset

This dataset contains information on eight continuously measured variables for 768
females, aged 21 or more, of Pima Indian heritage. The goal is to predict whether these
women have diabetes. Observations with a zero value for plasma glucose, body mass index
or blood pressure (n=44) were assumed to be missing values and were removed from the
dataset. The proposed method was performed on ten randomizations between training (two
thirds of the data) and test set (one third of the data). The results are compared with a
standard SVM using an RBF kernel with all inputs and the selected subset of inputs in
Table 4. The proposed method is competitive with a standard SVM using an RBF kernel,
but offers an interpretable model representation. Plasma glucose and body mass index
are selected in all ten randomizations. Age is selected in 9 out of ten randomizations. In
four cases, other variables are selected as well. Given these results, we trained a model on
all the data, restricting the components to the ones that were selected in more than five
randomization: the main effects of plasma glucose, body mass index and age. To make
use of all available data, all data were used for this purpose. No performance measure
of this final model is therefore reported. The model could be externally validated when
new data is available. The estimated effects of the selected components are illustrated in
Figure 4. The results show that it is possible to discriminate healthy persons from patients
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with diabetes based on three inputs. It is seen that an increasing plasma glucose value
corresponds to a higher contribution to the prognostic index and will influence the decision
towards the positive class (diabetes). An increasing BMI has the same effect, up to 30 after
which the effect plateaus. The increase after 40 will have a large variability due to the low
number of patients it is based on. An increasing age also contributes to a higher prognostic
index and thus targets to decision towards diabetes. After the age of 50, the effect drops.
These results are consistent with the literature.

To validate the feature selection process, the results are compared with different results
reported in the literature. Table 5 shows that the selected features were also identified as
important features by different other types of feature selection and/or ranking methods.
The obtained performance is comparable with the literature. Plasma glucose, body mass
index and age are selected in respectively 8, 6 and 11 out of the 11 methods we compare
with. Five of these methods use all three variables selected by the proposed method. We
therefore conclude that the presented method is able to achieve a performance compara-
ble to that of other methods reported in the literature, while restricting the number of
necessary variables. The selected variables are among those that are used by most other
methods found in the literature.

Figure 5 illustrates the sparsity performance (AUC) trade-off made by means of the
value of c in equation (6) for the first randomization between training and test set. Using
three components is as performing as using 19 components. The same pattern is seen
in the other randomizations. Figure 6 visualizes the decision boundary. The conclusions
correspond with those extracted from Figure 4.

4.5. The Wisconsin Breast Cancer dataset (original)

This dataset contains information on 699 women of whom 683 had complete information
on all 9 variables. The variables in this dataset are computed from a digitized image of a
fine needle aspirate of a breast mass. They describe characteristics of the cell nuclei present
in the image and are all integers ranging from 1 to 10. Due to their ordinal nature, all
variables were considered to be continuous. We used 10 randomizations between training
(two thirds of the data) and the test set (one third of the data). In 7 cases, uniform
shape and bare nuclei were selected; one case selected uniform shape and chromatin; 1
case selected bare nuclei and chromatin; one case selected uniform size and bare nuclei.
Based on these results, a final model containing uniform shape and bare nuclei was trained
on the complete data set. To make use of all available data, all data were used for this
purpose. No performance measure of this final model is therefore reported. The model
could be externally validated when new data is available.

The results are summarized in Table 6. The results are comparable but the presented
method has the advantage of interpretability and sparsity in the number of components.
The estimated effects are illustrated in Figure 7. It is seen that an increase in the uniformity
of the cell shape or in the bare nuclei level correspond with a higher contribution to the
prognostic index and will influence the decision towards the positive class (cancer). These
results are consistent with the literature. The decision surface (see Figure 8) illustrates the
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same and additionally shows that the estimated boundary separates both classes nearly
perfectly.

To validate the feature selection process, the results are compared with different results
reported in the literature. Table 7 shows that the selected features are among those selected
by other feature selection methods. The performance is comparable to what is reported in
the literature. Uniformity of cell shape and bare nuclei are selected in respectively 5 and 6
out of the 7 methods we compare with. Four of these methods use both variables selected
by the proposed method. However, all methods from the literature use more variables
than the proposed method. We therefore conclude that the presented method is able to
achieve a performance comparable to that of other methods reported in the literature, while
restricting the number of necessary variables. The selected variables are among those that
are used by most other methods found in the literature.

5. Conclusions

This work proposed a novel approach to enable the use of support vector machines
with RBF kernels in domains where interpretability of the resulting classifiers is an issue.
An expansion of the RBF kernel in components that are visualizable allows validation of
the estimated effects of the input variables by experts in the domain of the application.
It was shown how the extracted components could be shrunk to obtain a sparse model
representation. Results on toy and artificial problems illustrate the ability of the model
to select relevant main and two-way interaction effects. Comparison of the results on two
benchmark datasets illustrates that the proposed method is competitive with other clas-
sifiers, but has the advantage of being interpretable. While the proposed methodology is
focused on linear and bivariate interactions, it can in principle be extended to more com-
plex effects. This would be non-trivial to interpret, although the methodology for sparse
modeling does extend to the consideration of third or higher-order terms, this would add
considerable complexity to the method. Nevertheless it is possible to do this in principle
and it may be that noise in the data removes much of the complexity. This matter is of
interest for further work.

The proposed approach has the advantage that it yields an interpretable model without
restricting the effect of the inputs to linear and/or main effects. In contrast to rule extrac-
tion methods, or other methods creating explanations of decision boundaries, this method
is interpretable by design and as such does not result in an approximation of a black-box
model. As for other parametric approaches, the results will not be satisfactory when the
underlying structure is not realistic. However, this method has the advantage of being
highly flexible. In addition, two-way interaction effects can be selected in an automated
way. A disadvantage of the method w.r.t. black-box models is that the computational load
and time largely increases with the number of inputs. It is therefore proposed to use the
method with up to 20 inputs. Alternatively, the code could be parallelized to speed up
computations.

The visualization of the resulting models enable to illustrate the model to experts in the
application domains, such that the model can be validated in relation to expert knowledge
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in addition to performance on unseen data. Stability analysis and the results of the sparsity
mechanism can be used for interaction with these experts in order to select the model with
the highest acceptation grade in the application domain. Thanks to the properties of this
method, decision support developers and clinical practitioners will be able to interact.
This type of interaction is indispensable for clinical decision support systems to be used in
clinical practice.
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Table 1: Comparison of the proposed method with standard SVMs using an RBF kernel on the x-or
problems in three different settings. For every dataset, only the first two input variables contribute to the
class labels.

method auc (95% CI) acc (95% CI) ber (95% CI)
2-dimensional problem

svm-rbf (all) 1.000 (0.999-1.000) 0.996 (0.972-1.000) 0.004 (0.000-0.024)
svm-rbf (subset) 1.000 (0.999-1.000) 0.996 (0.980-1.000) 0.004 (0.000-0.028)
l1-svm-rbftr 1.000 (0.999-1.000) 0.996 (0.980-1.000) 0.004 (0.000-0.018)

4-dimensional problem
svm-rbf (all) 0.995 (0.989-0.998) 0.956 (0.919-0.972) 0.046 (0.022-0.073)

svm-rbf (subset) 1.000 (0.999-1.000) 0.996 (0.980-1.000) 0.004 (0.000-0.028)
l1-svm-rbftr 1.000 (1.000-1.000) 0.996 (0.976-1.000) 0.004 (0.000-0.027)

10-dimensional problem
svm-rbf (all) 0.947 (0.917-0.966) 0.852 (0.800-0.888) 0.147 (0.109-0.196)

svm-rbf (subset) 1.000 (0.998-1.000) 0.992 (0.972-0.996) 0.007 (0.000-0.027)
l1-svm-rbftr 0.997 (0.990-0.999) 0.976 (0.944-0.988) 0.027 (0.007-0.040)
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Table 2: Comparison of the test set performance (artificial example 2) of the presented method with a
standard SVM using an RBF kernel on the whole set of variables and the selected subset.

method auc (95% CI) acc (95% CI) ber (95% CI)
svm-rbf (all) 0.975 (0.954-0.987) 0.908 (0.860-0.936) 0.084 (0.062-0.135)

svm-rbf (subset) 0.995 (0.984-0.998) 0.956 (0.920-0.976) 0.040 (0.025-0.082)
l1-svm-rbftr 0.994 (0.983-0.998) 0.940 (0.900-0.960) 0.054 (0.037-0.099)
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Table 3: Comparison of the test set performance in the stability analysis of the presented method with a
standard SVM using an RBF kernel on the whole set of variables and the selected subset.

method auc (std) acc (std) ber (std)
svm-rbf (all) 0.954 (0.004) 0.862 (0.009) 0.143 (0.008)

svm-rbf (subset) 0.982 (0.000) 0.944 (0.000) 0.058 (0.000)
l1-svm-rbftr 0.975 (0.004) 0.921 (0.014) 0.078 (0.013)
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Table 4: Comparison of the test set performance (mean and std) for the Pima Indians Diabetes dataset
of the presented method with a standard SVM using an RBF kernel on the whole set of variables and the
selected subset. The results illustrate that the presented method (l1-svm-rnftr) is competitive with the
standard SVM with the additional advantage of being interpretable.

method auc acc ber
svm-rbf (all) 0.826 (0.014) 0.759 (0.019) 0.280 (0.019)

svm-rbf (subset) 0.826 (0.020) 0.762 (0.021) 0.271 (0.026)
l1-svm-rbftr 0.826 (0.022) 0.767 (0.020) 0.269 (0.022)
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Table 5: Comparison of the feature selection results on the Pima Indian Diabetes problem with results from
the literature. For ranking methods, we indicated the set of variables with an equal number of variables
as detected by the proposed method (l1-svm-rbftr).
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Wang and Wang (2009) [42] [42] 0.75a X X X
sud [43] [42] 0.68a X X X
relief-f [44] [42] 0.66a X X X
k-means [45] [42] 0.75a X X X
mhcc [46] [46] NAb X X X X X X
Zhou and Dillon (1991) [47] [46] NAb X X X X X X X
Hwang and Rim (2002) [48] [46] NAb X X X X
Mojammado and Gharehpetian (2009)[49] [46] NAb X X X
decision tree (C4.5) [50] [51] 0.86c X X X X X
genetic algorithm [52] [51] 0.88c X X X X
fast corr.-based filtering [53] [53] 0.78c X X X X
l1-svm-rbftr 0.77 X X X
a Numbers are approximately since they were reported in a picture in the original work.

b NA: not available. The original work reports an error measure.

c The original work does not mention whether this performance is reached on the training or the test set.
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Table 6: Comparison of the test set performance (mean and std) on the Wisconsin Breast Cancer dataset
of the presented method with a standard SVM using an RBF kernel on the whole set of variables and the
selected subset for 10 randomizations of training and test set. The results illustrate that the presented
method is competitive with the standard SVM with the additional advantage of being interpretable.

method auc acc ber
svm-rbf (all) 0.996 (0.001) 0.968 (0.008) 0.037 (0.011)

svm-rbf (subset) 0.990 (0.004) 0.954 (0.014) 0.054 (0.018)
l1-svm-rbftr 0.990 (0.004) 0.956 (0.010) 0.051 (0.013)
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Table 7: Comparison of the feature selection results on the Wisconsin breast cancer dataset with results
from the literature.
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osre [22] [22] 0.95a X X X X
neurorule (set 1) [54] [22] >0.95 X X X X X
neurorule (set 2) [54] [22] >0.95 X X X X
bio-re [55] [22] 0.96 X X X X X
information geometric [56] [56] NAb X X X X
neurolinear [57] [56] 0.95 X X X X X
ensemble based [58] [56] NAb X X X X X
l1-svm-rbftr 0.96 X X
a Performance of the underlying network.

b NA: not available. The original work reports another measure.
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Figure captions

Figure 1 Overview of the tuning of the parameters. In all experiments, the data were
split into a training and test set. In a first phase the different components were
obtained as follows (third column). An SVM with the truncated rbf kernel was used
in combination with 10-fold cross validation (10F-CV) to tune the parameters γ and
σ, as usual. These parameter values were then used to train the model and obtain the
Lagrange parameters α and b. From these, the partial contributions or components
ỹ are calculated. In a second phase (fourth column) the relevant components are
selected. First, the parameter γ∗ from model (5) is tuned by means of 5-fold cross-
validation, keeping c = 1. Second, the value of c is tuned, keeping γ∗ fixed. Third,
the model is trained with the tuned parameter values to obtain the coefficients β and
bias term b∗. In the final step, the performance of the method is calculated on the
test set.

Figure 2 Illustration of the selected effects for the x-or problem. For each setting only
one component was selected (β 6= 0). The figures represent βp,qỹp,q for the selected
interaction effects. No main effects were selected. In each case, it is clearly seen that
the selected component has opposite signs in opposite corners of the 2D grid. This
corresponds to the x-or setting.

Figure 3 Artificial example 2. Selected main and interaction effects. The figures represent
βpỹp and βp,qỹp,q for the selected components. An increase in the third variable
corresponds with an increase in the prognostic index and will target the decision
towards the positive class. When x1 and x6 have the same sign, an increase in the
absolute value one of the values targets the decision towards a positive class. When x1
and x6 have opposite signs, an increase in the absolute value of one these values will
target the decision towards the negative class. This corresponds with the hyperbolic
interaction effect with a positive coefficient of both inputs in the underlying model.

Figure 4 Illustration of the selected features and their effects on the prediction of dia-
betes in the Pima Indian Diabetes dataset. The gray bars indicate the number of
observations in the corresponding variable range. It is seen that an increasing plasma
glucose value corresponds to a higher contribution to the prognostic index and will
influence the decision towards the positive class (diabetes). An increasing BMI has
the same effect, up to 30 after which the effect plateaus. The increase after 40 will
have a large variability due to the low number of patients it is based on. An increas-
ing age also contributes to a higher prognostic index and thus targets to decision
towards diabetes. After the age of 50, the effect drops.

Figure 5 Illustration of the sparsity performance trade-off by means of the value of c in
equation (6). The sparsity is represented by the median number of selected compo-
nents (gray line). The cross-validation performance is represented by means of the
black line. The upper bar indicates the p-value calculated by means of the method
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of DeLong. The model with the highest c−value (corresponding to the model with
the most components) is the reference model. Every model with a smaller c−value
is compared with this reference. A sparser model obtaining a higher AUC than the
current reference model becomes the new reference model (indicated by means of the
triangles at the top). A light gray color indicates no significant differences between
the AUCs of this and the reference model. A medium gray bar indicates a p-value
between 0.01 and 0.05. A dark gray color indicates a p-value less than 0.01. The au-
tomated procedure, selecting the sparsest model where the DeLong p-value is larger
than 0.05, selects 3 input variables. Inspection of this Figure shows that selecting
these variables results in a cross validation performance equal to the one obtained
using 19 components.

Figure 6 Decision boundary for the Pima Indian Diabetes problem. Both classes are
well separated by the hyperplane. The dots and pluses indicate the observations for
healthy patients and patients with diabetes, respectively.

Figure 7 Illustration of the selected features and their effects on the prediction of malig-
nancy in the Wisconsin breast cancer dataset. The gray bars indicate the number
of data points with the corresponding value of the input variable. It is seen that an
increase in the uniformity of the cell shape or in the bare nuclei level correspond with
a higher contribution to the prognostic index and will influence the decision towards
the positive class (cancer).

Figure 8 Decision boundary for the Wisconsin breast cancer dataset. Both classes are
well separated by the hyperplane. In order to improve the visualization, a random
disturbance term is added to the variables, being integers in the dataset. The circles
and pluses indicate the observations for malignant and benign tumors, respectively.
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