Chemical Research in To<u>xi</u>

Article

Mechanism-based QSAR modeling of skin sensitization

John C Dearden, Mark Hewitt, David W. Roberts, Steven Enoch, Philip Rowe, Katarzyna Przybylak, Daniel Vaughan-Williams, Megan Smith, Girinath G. Pillai, and Alan R. Katritzky *Chem. Res. Toxicol.*, Just Accepted Manuscript • DOI: 10.1021/acs.chemrestox.5b00197 • Publication Date (Web): 18 Sep 2015 Downloaded from http://pubs.acs.org on September 21, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Chemical Research in Toxicology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	
2	Mechanism-based QSAR modeling of skin sensitization
3	Byline: QSAR study of skin sensitization
4	Authors: John C. Dearden, ^{*,†} Mark Hewitt, [‡] David W. Roberts, [†] Steven J. Enoch, [†]
5 6	Philip H. Rowe, [†] Katarzyna R. Przybylak, [†] G. Daniel Vaughan-Williams, [†] Megan L. Smith [†] Girinath G. Pillai ^{§,⊥} and Alan R. Katritzky [§]
7	Similin, Girmath G. Finna, and Fian K. Katrizky
,	[†] Cahaal of Dhanmaay, & Diamalaaylay Saianaaa, Liyannaal Jahn Maayaa Uniyaysity
8 9	Byrom Street, Liverpool L3 3AF, UK
10	[‡] School of Pharmacy, University of Wolverhampton, Wulfruna Street, Wolverhampton
11	WV1 1LY, UK
12	[§] Department of Chemistry, University of Florida, Gainsville, FL 32611-7200, USA
13	[⊥] Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
14	Contact details
15 16	John Dearden: Tel. +44-151-231-2066; Fax +44-151-231-2071; E-mail: <u>j.c.dearden@ljmu.ac.uk</u>
17	Mark Hewitt: E-mail: M.Hewitt@wlv.ac.uk
18	David Roberts: E-mail: <u>d.w.roberts@ljmu.ac.uk</u>
19	Steven Enoch: E-mail: <u>s.j.enoch@ljmu.ac.uk</u>
20	Philip Rowe: E-mail: <u>p.h.rowe@ljmu.ac.uk</u>
21	Katarzyna Przybylak: E-mail: <u>k.r.przybylak@ljmu.ac.uk</u>
22	Daniel Vaughan-Williams: danielvaughanwilliams@gmail.com
23	Megan Smith: E-mail: megan.smith@student.reading.ac.uk
24	Girinath Pillai: giribio@mail.com
25	Alan Katritzky: deceased
26	

1	Mechanism-based QSAR modeling of skin sensitization
2	J.C. Dearden ¹ , M. Hewitt ² , D.W. Roberts ¹ , S.J. Enoch ¹ , P.H. Rowe ¹ , K.R. Przybylak ¹ ,
3	G.D. Vaughan-Williams ¹ , M.L. Smith ¹ , G. G. Pillai ^{3,4} and A.R. Katritzky ³
4	¹ School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University,
5	Byrom Street, Liverpool L3 3AF, UK; ² School of Pharmacy, University of
6	Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; ³ Department of
7	Chemistry, University of Florida, Gainsville, FL 32611-7200, USA; ⁴ Institute of
8	Chemistry, University of Tartu, 50411 Tartu, Estonia
9	Dedication
10	
11	Professor Alan Katritzky passed away on 10 February 2014. We dedicate this paper to his
12	memory.
13 14	Abstraat
14	Abstract
15	Many chemicals can induce skin sensitization, and there is a pressing need for non-animal
16	methods to give a quantitative indication of potency. Using two large published data-sets of
17	skin sensitizers, we have allocated each sensitizing chemical to one of ten mechanistic
18	categories, and then developed good QSAR models for the seven categories with a sufficient
19	number of chemicals to allow modeling. Both internal and external validation checks showed
20	that each model had good predictivity.
21	

S	
ა	
4	
5	
5	
6	
7	
<u>'</u>	
8	
9	
40	
10	
11	
40	
12	
13	
11	
14	
15	
16	
10	
17	
18	
10	
19	
20	
20	
21	
22	
~~	
23	
24	
ີ	
25	
26	
27	
21	
28	
20	
29	
30	
21	
51	
32	
33	
55	
34	
35	
00	
36	
37	
01	
38	
39	
40	
40	
41	
10	
42	
43	
44	
4 -	
45	
46	
-0	
47	
48	
40	
49	
50	
- A	
วไ	
52	
E 2	
ეკ	
54	
55	
00	
56	
57	
51	
58	
50	
53	
60	

2 Introduction

1

Skin sensitization (allergic contact dermatitis) is a common problem arising from the contact
of certain chemicals with the skin. Once sensitized, an individual remains so for life, and it is
therefore important to know whether or not a chemical possesses skin sensitization potential
before skin contact is made.

In order for skin sensitization to be induced, a chemical must first penetrate into the viable 7 epidermis and bind to skin proteins/peptides to form an immunogenic complex.¹ The binding 8 is almost always covalent, with the chemical (hapten) acting as an electrophile and the 9 protein as nucleophile; a few haptens operate *via* a free radical mechanism.² The 10 immunogenic complex is taken up by dendritic cells, which convert the complex into a form 11 that can be recognized by T-cells, causing their stimulation and proliferation, and the 12 formation of so-called memory T-cells; this is the induction process.³ Upon re-exposure, the 13 memory T-cells release cytotoxic mediators that cause local tissue inflammation. 14

A number of methods are available for the determination of skin sensitization potential; the 15 current method of choice, and the one initially required for regulatory purposes⁴ is the 16 LLNA,^{5,6} which yields a quantitative endpoint. Much work has also been done on *in silico* 17 prediction of skin sensitization potential, in order to reduce animal usage and save time; this 18 has become more important with the advent of the recent REACH legislation,^{7,8} which 19 requires assessment of toxicity for all chemicals produced in or imported into the European 20 Union at levels above 1 tonne per annum, but which also requires animal testing to be carried 21 out only as a last resort.⁹ 22

Despite the LLNA's having a quantitative endpoint, most *in silico* prediction studies of skin
 sensitization to date have been categorical (i.e. sensitizer/non-sensitizer),¹⁰ as have most other

4

ACS Paragon Plus Environment

Chemical Research in Toxicology

attempts to use biological assays. A small number have used classical QSAR regression to
model the LLNA endpoints of, for example, Schiff base electrophiles (aldehydes and
ketones),¹¹ Michael acceptors,¹² S_NAr electrophiles,¹³ and diverse organic chemicals.¹⁴
Roberts and Patlewicz¹⁵ have reviewed the subject.
In order to develop good QSAR models, all chemicals used in the training set should exert
their effect by the same mechanism. Since it is often difficult to determine mechanisms of
action, the default position has been to use chemicals of the same class (e.g. benzoic acids,¹⁶

8 nitrobenzenes¹⁷) in the expectation that they have a common mechanism. However, with the

9 emphasis in recent years on mechanistically based QSAR modeling, and with current

10 knowledge of mechanisms involved in skin sensitization, 18 we decided to try to use this

approach to model the relatively large data-sets of Gerberick et al.¹⁹ and Kern et al.,²⁰

12 comprising 211 chemicals and 108 chemicals respectively.

13 Methods

14 Skin sensitization data

The Gerberick et al.¹⁹ and Kern et al.²⁰ data-sets contain a total of 85 non-sensitizers, which of course cannot be included in MLR modeling. In addition, two chemicals (cinnamic aldehyde and 2-amino-6-chloro-4-nitrophenol) were duplicated in the data-sets. In the case of cinnamic aldehyde, for one duplicate there was some difference between the EC3 value of 1.4 reported by Gerberick et al.¹⁹ and the value of 2.05 reported in the original publication:²¹ in addition, the original publication²¹ reported that the value of 2.05 was an average, indicating that a range of values had been obtained. Because of the doubt about the true EC3 value, we selected the other duplicate, with an EC3 value of 3.0. In the case of 2-amino-6-chloro-4-nitrophenol we rejected one EC3 value (2.2), as it was obtained from an erratic dose-response curve. One chemical (*bis*-3,4-epoxycyclohexyl-ethyl-phenyl-methylsilane) contained

silicon and several were ionic chemicals, which could not be handled by our software. Isopropyl myristate was removed because it was listed as a false positive,¹⁹ and methyl hexadecene sulfonate was deleted because the molecular structure and CAS numbers given in Gerberick et al.¹⁹ are incorrect. These deletions left a total of 204 skin sensitizers for modeling.

6 The LLNA involves the topical exposure of the ear dorsum of CBA female mice to 25 μ L of 7 at least three different concentrations of test chemical, daily for three days. After a further 8 two days an injection is given of 250 μ L of phosphate-buffered saline containing 20 μ Ci of 9 tritiated thymidine. Five hours later the animals are sacrificed, the draining auricular lymph 10 nodes are excised, and the incorporation of tritiated thymidine measured. From these results, 11 the EC3 value is calculated.

It should be noted that EC3 values are reported as g/100 ml. Four potency ranges are used, as follows: EC3 \geq 10 to \leq 100, weak; EC3 \geq 1 to <10, moderate; EC3 \geq 0.1 to <1, strong: EC3 <0.1, extreme.¹⁹ Use of weight concentrations can give rise to a classification problem. Strictly, concentrations and dosages should be given in molar units (e.g. mmol. L^{-1} , µmol.kg⁻¹), for comparison, because effects are initiated by the number of molecules present, and not by how much they weigh.²² Hence we have used SSP, defined as $SSP = \log (MW/10EC3)$, in our modeling. The importance of this is demonstrated by two chemicals from our data-set, formaldehyde (MW 30.03) and 3-methylisoeugenol (MW 178.23). They have almost identical skin sensitization potencies (1.692 and 1.695) based on their molar concentrations, yet their EC3 values are quite different (0.61% and 3.6%), meaning that formaldehyde is classified as a strong sensitizer, whilst 3-methylisoeugenol is classified as a moderate sensitizer.

-	Using our in-house expertise, ¹⁸ now incorporated into the Toxtree software, ²³ together with
	additional expert knowledge (DWR and SJE), we classified the chemicals into their
3	mechanistic categories. The chemicals are listed in Table 1. We have retained the chemical
2	names used by Gerberick et al. ¹⁹ and Kern et al. ²⁰ for ease of cross-reference, and have
ļ	included CAS numbers for all of the 204 chemicals save for four chemicals whose CAS
(numbers we were unable to find.
-	Table 1 here
8	B QSAR modeling
(It is widely acknowledged that for a QSAR model to be predictive, external test chemicals
10	should be similar to one or more chemicals in the training set used to build the model. ²⁴⁻²⁶
11	There are a number of methods used to achieve this, ²⁷ although the topic is still open and has
12	not been completely solved. ²⁸ Perhaps the most widely practised approach is that using a
13	clustering technique on the whole data set in order to select test set chemicals that are similar
14	to one or more chemicals in the remaining chemicals (i.e. the training set).
1	
10	It has also been pointed $out^{24,29}$ that external test set chemicals should, strictly speaking, be
17	completely independent of the training set. However, the clustering technique does not
18	comply with that requirement, ^{22,29} since the selection of test chemicals that are very similar to
19	chemicals in the training set means that they carry the same structural information. ³⁰
20	
2:	In addition, for relatively small data sets such as ours, removal of even a small number of test
22	set chemicals results in loss of a significant amount of information. ³¹ This is of even more
23	concern when the data set comprises chemicals of a range of chemical classes, as is the case

with our skin sensitizers (see Table 1). It is thus likely that the use of leave-many-out and
 bootstrap techniques²⁴ would also be inappropriate.

Using the clustering technique for selection of test chemicals. Gramatica et al.³² found that the four descriptors used to develop a good 93-chemical training set QSAR for K_{oc} prediction $(R^2 = 0.82, s = 0.539)$ also yielded a good QSAR on the whole 643-chemical data set $(R^2 =$ 0.79, s = 0.547). However, this was not the case with our small data sets. For example, for the Michael acceptor chemicals, a 6-descriptor QSAR developed using the 36-chemical training set had $R^2 = 0.866$, s = 0.344. When the same 6 descriptors were used to develop a OSAR for all 45 Michael acceptor chemicals, the result was poor ($R^2 = 0.636$, s = 0.570). This confirms the view of Roy et al.³¹ that removal of test set chemicals from a small data set results in loss of information, and thus changes the applicability domain of the model. Partly for this reason, Hawkins³³ recommended that external validation should not be carried out on data sets much below 50 chemicals, whilst Tropsha²⁷ recommended a minimum of 30-40 chemicals and Gramatica³⁴ recommended a minimum of 25 chemicals. From Table 1 it can be seen that our data sets range in size from 11 to 45 chemicals, and thus are at least verging on the size where external validation may be expected not to perform well. It may be noted also that because of the diversity of our data sets, a greater number of descriptors are required to give good models.²⁶

The above paragraph indicates that because of the smallness and chemical diversity of our data sets, we could not expect to obtain good predictive models based on descriptors selected during development of the training sets. We therefore decided to use for the training sets the descriptors selected for the corresponding QSARs developed for the full data sets. We recognise that this means that the training set QSARs are not fully independent of the test set

ACS Paragon Plus Environment

5	Chemical Research in Toxicology		
1	chemicals, but we believe that this is no less valid than the widely used clustering approach		
2	for the selection of test set chemicals, which also involves some loss of independence of test		
3	set chemicals. Our approach also means that the applicability domains of the full data sets are		
4	preserved to some extent at least, and thus overcomes the concerns of Hawkins ³³ and		
5	Gramatica ³⁴ in that respect. We stress, however, that this approach should be used only for		
6	small, very diverse data sets, but in such cases we believe that it fits with the dictum of Albert		
7	Einstein: Everything should be made as simple as possible, but not simpler.		
8			
9	There were too few chemicals acting by S_N1 , pro- S_N2 and S_NAr mechanisms (2, 2, and 4		
10	chemicals respectively) to allow us to develop QSARs in these categories. Hence 196		
11	chemicals constituted our pool of chemicals used for modeling.		
12			
13	Various methods can be employed for the splitting of a data-set into training and test sets,		
14	from random selection to activity sampling, clustering techniques, self-organising maps and		
15	formal statistical experimental design. ²⁴ Random selection is intuitively unappealing, and		
16	"could result in a subsequent application of the model out of its applicability domain,		
17	resulting in erroneous conclusions on the model's performance". ³⁴ In addition it does not		
18	provide any rationale for selection. ³⁵ However, it was found to yield similar predictive		
19	power to methods based on clustering. ³⁵ Activity sampling (e.g. ordering the chemicals		
20	according to their activity, then taking every <i>n</i> -th chemical for the test set) ensures a good		
21	coverage of activity, but does not necessarily take account of chemical diversity, and thus		
22	again risks subsequent application outside the applicability domain. The other techniques can		
23	be complex, ²⁷ and can give conflicting results. ³⁵ Tropsha et al. ²⁴ have stated that "the		
24	underlying goal is to ensure that both the training and test sets separately span the whole		
25	descriptor space occupied by the entire data set and the chemical domains in the two sets are		
	9 ACS Paragon Plus Environment		

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
∠ I 00
22
23
24
25
26
20
27
28
29
30
30
31
32
33
34
25
30
36
37
38
30
10
40
41
42
43
11
45
40
46
47
48
10
49
50
51
52
53
50
04
55
56
57
52
50
59
60

1	not too dissimilar". Chirico and Gramatica ²⁸ have commented that "the topic (of external
2	validation) is still open, and the problem in QSAR modelling has not yet been completely
3	solved, though many techniques have been proposed to validate models". The above
4	approaches have been designed for large or relatively large data sets, and we did not have that
5	luxury. In fact, the external validation of small heterogeneous data sets has not been
6	addressed before. Martin et al. ³⁵ have pointed out that rational design of test sets should
7	ensure that "the compounds in the training and test sets should be close to each other".
8	However, as stated earlier, selection of test chemicals that are very similar to chemicals in a
9	training set means that they carry the same structural information, ³⁰ which would lead to
10	over-estimation of the predictivity of the model. We therefore used a manual sampling
11	approach that ensured a good range of activities and chemical domains in the test sets, whilst
12	never selecting the chemicals with the highest and lowest activities in the whole data sets ³⁶ to
13	avoid the risk of extrapolation of the training set models. Care was taken that the test set
14	chemicals covered approximately the same chemical and biological space as the training set
15	chemicals in each category, and were not too close to or too far from the line of best fit in the
16	relevant whole data set model.

17

18

19 It is likely that with small, heterogeneous data sets there is no entirely satisfactory way to 20 demonstrate true prediction capability using QSAR modeling. We believe that the simple 21 method that we have adopted, whilst not perfect, is acceptable, and that the alternatives are 22 open to at least as much criticism as the one that we have used. We recognize that our 23 approach could be controversial, but we believe that it is a useful and pragmatic method for 24 QSAR prediction using small, diverse data sets. We do not recommend it for use with large 25 and/or homogeneous data sets. A reviewer has commented that the Q² (leave-one-out) value

ACS Paragon Plus Environment

Chemical Research in Toxicology

of each training set could be more valuable than the test set values. In fact, as can be seen from Table 2, all of our training set Q^2 values are above the recommended lower limit of 0.5^{37} and are no more than the recommended³⁸ 0.3 below the corresponding R² value, with the exception of the Schiff base model, instead of which we recommend the combined Schiff base and pro-Schiff base model, which has good statistics ($R^2 = 0.836$, $O^2 = 0.736$). A total of about 1600 descriptors were generated from CODESSA,³⁹ MOE⁴⁰ and winMolconn⁴¹ software. These were pruned, by removal of descriptors with the same values for all chemicals and by removal of descriptors with high pair-wise collinearity, to about 880 descriptors. Statistical analysis was carried out using the simple wrapper method of step-wise MLR^{42} in Minitab v17 software⁴³ on the chemicals in each mechanistic category. Modeling was first performed on the total number of chemicals in each category. Then approximately 20% of the chemicals in each category were removed to serve as a test set, and each model was re-developed on the remaining (training set) chemicals, using the same descriptors as were obtained for the model developed with the total number of chemicals in the category. The predicted skin sensitization potencies of test set chemicals were calculated from the QSARs developed for the corresponding training set chemicals. The number in brackets after each coefficient in a QSAR is the standard error on the coefficient. For a descriptor to be valid, the standard error on its coefficient should be significantly lower than the value of the coefficient itself. This is also reflected in the p value

for each descriptor, a measure of the probability that the descriptor is there by chance; for a

descriptor to be valid in a QSAR, its p value should generally be < 0.05 (that is, less than a

23 5% risk that it is present by chance).

2		
3		
4		
5		
6		
7		
'n		
ი ი		
9 1	~	
1	2	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
2	<u>ק</u>	
2 2	⊿	
~ つ	4 5	
2 2	0 6	
2	0	
2	1	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
ર	R	
2 2	a	
J ⊿	0 0	
4 1	∪ ₄	
4	ו ר	
4	2	
4	ۍ م	
4	4	
4	5	
4	6	
4	7	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	'n	
5	0 0	
с С	3	
ο	υ	

1	The statistics given with each QSAR are: R^2 (indicating the proportion of the variation of
2	skin sensitization potency (SSP) modeled by the QSAR); R^2_{adj} , which allows comparison
3	between QSARs with different numbers of descriptors; Q^2 , an internal measure of
4	predictivity, obtained using the leave-one-out procedure in Minitab; s; and F (the Fisher
5	statistic, an indication of the fit of the regression equation to the training set data).
6	
7	We also carried out 20 Y-randomizations of the SSP values within each mechanism in order
8	to check the robustness of the QSARs generated. For each mechanism, all R ² values obtained
9	using randomized SSP values were significantly lower than the values obtained with non-
10	randomized SSP values.
11	
12	For the test set results, the correlation between observed and predicted SSP values should
13	have an intercept close to zero and a slope close to unity. However, it has been pointed out
14	that correlation alone is not an adequate criterion for agreement between predicted and
15	observed values of biological endpoints. ²⁴ To establish agreement it is necessary to exclude
16	three potential problems: (i) random disagreement, (ii) biased disagreement with one set of
17	values being systematically greater than (or less than) the other, and (iii) gradient problems
18	(the points on a graph of predicted versus observed values adhering to a line with a gradient
19	other than +1.0). Tropsha et al. ²⁴ have recommended a multi-step procedure for assessing
20	how well those criteria are met.
21	

However, there is a simpler alternative, the ICC, that serves just as well and has been
available for many years.⁴⁴ There are various ways in which the ICC can be calculated but in
some of its forms it will produce a value close to +1.0 only if the data adhere tightly to all
three of the criteria set out above. It can therefore act as a single unified indicator of

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 57	
22 22	
00 57	
57 58	
59	
60	

1	agreement between predicted and observed values. In the event that the ICC value was low,
2	the exact nature of the problem could be diagnosed by plotting the discrepancies between the
3	values against the average of the two (Bland-Altman plot) as advised by Machin, Campbell
4	and Walters. ⁴⁵ We have used the ICC to assess how well our test set data meet the above
5	criteria. Weir ⁴⁶ has pointed out that the ICC is conceptually akin to R ² from regression, so it
6	is reasonable to assume that a value that is considered good for R^2 (say, 0.9), can also be
7	considered good for the ICC.
8	
9	ICC values were calculated using the Reliability Analysis procedure in SPSS v20.47 The
10	statistical model was set to Two-Way Mixed and the ICC type was set to Absolute
11	Agreement. The ICC values reported are for those for Single Measures.
12	
13	It is also important that there should be no high pair-wise correlations between the various
14	descriptors incorporated into a QSAR, otherwise the statistics could be flawed. ²³ Using a cut-
15	off point of $r = 0.9$, ⁴⁸ we found no such high correlations between any of the descriptors used
16	in each QSAR.
17	
18	Results and discussion
19	
20	The QSARs that we developed for each mechanistic category, as well as that for all 204
21	chemicals together, are given in Table 2.
22	
23	Table 2 here
24	

1	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
ວ ວ	
54	
55	
56	
57	
58	
59	
60	

1	Explanations of the descriptors are given in Table 3. We recognize that in some cases the
2	explanations are sparse, but descriptor software is frequently short on detail. Table 3 also
3	includes the ranges of SSPs and descriptor values in each mechanistic category, as an
4	indication of the applicability domains of each category. The SSPs cover a very wide range of
5	potency ranging from weak to strong or extreme, save for the oxidation potential category, in
6	which the range is from weak to moderate (EC3 values from 89% to 5%).
7	
8	Table 3 here
9	
10	For each category with adequate numbers of chemicals, with two exceptions, we were able to
11	formulate good QSARs with good internal and external validation. The first exception is the
12	Schiff base category, for which we could obtain a QSAR that, whilst acceptable, was not
13	good enough for our purposes, namely to provide QSAR models that can offer good
14	prediction. However, by combining the Schiff base chemicals with the five in the pro-Schiff
15	base category we were able to develop a QSAR with good internal and external predictive
16	ability. The second exception is the acyl transfer category, for which a good model could not
17	be developed using all 23 acyl transfer chemicals, owing to one chemical, C11 azlactone,
18	being a pronounced outlier. Several azlactones, with alkyl chains ranging from C4 to C19,
19	have been tested in the LLNA (see Table 1), and they appear to fall into two groups,
20	separated by an activity cliff. ⁴⁹ Shorter chain-length azlactones (C4 to C9) are quite potent,
21	with EC3 values between 1% and 3%, whereas longer-chain homologs (C15 to C19) are
22	much weaker, with EC3 values of about 20%. This presumably reflects a change in the rate-
23	determining step (possibly mass transfer) becoming rate-limiting for azlactones with high
24	hydrophobicity. ⁵⁰ Our model is able to make this distinction, but it appears that the C11
25	homolog, structurally between these two sub-sets, and which should belong to the low-

15 of 45	Chemical Research in Toxicology
1	potency sub-set, is treated by our model as belonging to the high-potency sub-set. When the
2	C11 azlactone was removed, a good QSAR model was obtained (Table 2, equations 17 and
3	18). The statistical quality of all the models can be seen from Table 4.
4	Table 4 here
5	
6	It would, of course, have been possible to increase R^2 and s values for most of the models by
7	increasing the number of descriptors incorporated. However, as we have pointed out
8	elsewhere, ²² "the principle of Occam's razor (principle of parsimony) applies here: 'One
9	should not increase beyond what is necessary the number of entities required to explain
10	anything'. We suggest that five or six descriptors are generally the maximum that one should
11	generally use in a QSAR/QSPR, partly because it is difficult to comprehend the mechanistic
12	significance of large numbers of descriptors". We were surprised but very pleased that the
13	two categories with the smallest number of chemicals (acyl transfer and oxidation potential)
14	could nevertheless allow the development of good QSARs. In fact the latter category yielded
15	the best QSAR of all.
16	
17	The observed SSPs for all 195 skin sensitizers used in our modeling were correlated with the
18	cumulative SSP values calculated from each appropriate local mechanistic domain QSAR,
19	and as expected a very good correlation was found:
20	
21	SSP (observed) = 0.000 + 1.000 SSP (predicted) (22)
22	n = 195 $R^2 = 0.884$ $Q^2 = 0.882$ ICC = 0.939 $s = 0.296$ F = 1471
23	A graphical representation of these results is shown in Figure 1.
24	Figure 1 here
	15
	15

1	
2	All test sets yielded very good predictions, fortuitously with all R ² values higher than those of
3	the full and training set QSARs.
4	The correlation between observed and predicted SSP values for all 37 test set chemicals was
5	found to be:
6	
7	SSP (obsd) = -0.070 + 1.002 SSP (pred) (23)
8	
9	$n = 37$ $R^2 = 0.947$ $Q^2 = 0.940$ ICC = 0.971 $s = 0.209$ $F = 627.3$
10	
11	The overall ICC of 0.971 for all test set results indicates that the test set results for all
12	mechanisms were valid. This can also be seen from Figure 2.
13	
14	Figure 2 here
15	The QSAR derived for the complete dataset of 204 active chemicals, covering all the reaction
16	mechanistic categories, is very much inferior to any of the QSARs for the individual
17	mechanistic categories (Table 2), and the descriptors found to model the potency best are
18	different for each mechanistic category, as can be seen from Table 3. These findings
19	reinforce the argument that for skin sensitization, modeling reaction mechanistic
20	domains/categories has more realistic prospects of success than attempting a global model.
21	The model obtained for Schiff base chemicals was not very good (n = 35, $R^2 = 0.837$, $Q^2 =$
22	0.644, $s = 0.259$, $F = 19.9$). However, inclusion of the five pro-Schiff base chemicals
23	improved the model considerably (n = 40, R^2 =0.850, Q^2 =0.781, s = 0.233, F = 25.9).
24	It has been found that domanding on the machine machanism of the matrix hinding star them.
24	It has been found that depending on the reaction mechanism of the protein-binding step, there $50-52$ m s
25	are different relationships between model reactivity parameters and potency. ^{30,32} This is
	Δ

ACS Paragon Plus Environment

Page 17 of 45

Chemical Research in Toxicology

1
2
2
3
4
5
6
7
2 2
0
9
10
11
12
13
1/
45
15
16
17
18
19
20
20 21
Z I
22
23
24
25
26
20
21
28
29
30
31
32
22
33
34
35
36
37
38
30
40
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
52
53
54
55
56
57
58
50
09
60

1	argued to be because, depending on the reaction mechanism, relative reactivities towards the
2	several nucleophilic protein sites will differ. Thus, for example, the Schiff category chemicals
3	probably sensitize via reaction with amino groups of proteins, whereas the Michael acceptor
4	category chemicals probably sensitize via reaction with protein thiol groups. Even where
5	compounds from two different mechanistic categories sensitize via reaction with the same
6	type of protein nucleophile, the proportionality between the <i>in cutaneo</i> reactivity and
7	reactivity determined in a model cannot be assumed to be the same. This should apply
8	irrespective of whether the model reactivity is based on experimental data with model
9	nucleophiles, on classical linear free energy relationship indices based on Hammett and Taft
10	sunstituent constants, on quantum mechanical indices such as activation energy, ⁵³ or on
11	combinations of less transparent descriptors such as those used here. Furthermore, for some
12	reaction mechanistic categories (Schiff base, 11,50 S _N 2 and acyl transfer ⁵⁰), potency has been
13	found to be dependent not only on reactivity but also on hydrophobicity, whilst for others
14	(Michael acceptors, 12 S _N Ar electrophiles 13) reactivity parameters alone can give good models
15	for potency. as been argued that depending on the reaction mechanism of the protein-
16	binding step, there are different relationships between model reactivity parameters and
17	potency. ⁵⁰⁻⁵² This is argued to be because, depending on the reaction mechanism, relative
18	reactivities towards the several nucleophilic protein sites will differ. Thus for example, the
19	Schiff base category chemicals probably sensitize via reaction with amino groups of proteins,
20	whereas the Michael acceptor category chemicals probably sensitize via reaction with protein
21	thiol groups. Even where compounds from two different mechanistic categories sensitize via
22	reaction with the same type of protein nucleophile, the proportionality between the <i>in cutaneo</i>
23	reactivity and reactivity determined in a model cannot be assumed to be the same. This
24	should apply irrespective of whether the model reactivity is based on experimental data with
25	model nucleophiles, on classical linear free energy relationship indices based on Hammett

17 ACS Paragon Plus Environment

2	
3	
4	
5	
e a	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
27	
20	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
20	
31	
38	
39	
40	
41	
42	
<u>م</u> 2	
11	
44	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
~~	

1	and Taft substituent constants, on quantum mechanical indices such as activation energy, ⁵³ or
2	on combinations of less transparent descriptors such as those used here. Furthermore, for
3	some reaction mechanistic categories (Schiff base, 11,50 S _N 2 and acyl transfer ⁵⁰), potency has
4	been found to be dependent not only on reactivity but also on hydrophobicity, while for
5	others (Michael acceptors, ¹² S _N Ar electrophiles ¹³) reactivity parameters alone give good
6	models for potency. It has already been mentioned that many descriptors are difficult to
7	interpret. Those selected for the Michael addition category suggest that reactivity and surface
8	area, and perhaps especially hydrophobic surface area, enhance skin sensitization potency.
9	For pro-Michael addition several descriptors represent hydrogen bonding, although there
10	does not appear to be a consistent pattern; for example, SssNH has a positive coefficient,
11	whereas that for vsurf_HB7 is negative.
12	
13	From equation 8 it can be seen that for Schiff base chemicals, polarity and molecular
14	flexibility increase potency. There are also some specific atom effects (S7 and S10), although,

15 as the nature of those atoms is not known, no interpretation of those effects can be made. The

16 situation is somewhat clearer for the combined Schiff base and pro-Schiff base model

17 (equation 11), with hydrogen bonding (represented by HS6, E_sol and possibly DPSA1)

18 being important for potency, together with molecular shape (dx2 and Kier FI).

19

S_N2 chemicals appear to require hydrophobicity (SsCH₃, eaC2C3a) for potency, although
descriptors representing both negative and positive surface area also have positive
coefficients. Electron-donating ability (MNDO_HOMO) decreases potency, which is to be
expected since Michael reactivity is dependent on the electron deficiency of the double or
triple bond.

Chemical Research in Toxicology

2
2
3
4
5
6
7
1
8
9
10
14
11
12
13
14
15
10
16
17
18
19
20
20
21
22
23
21
24
25
26
27
20
20
29
30
31
32
32
33
34
35
36
00
37
38
39
40
-⊤∪ //4
41
42
43
44
15
43
46
47
48
40
50
51
52
53
50
04
55
56
57
59
00
59
60

1	Acyl transfer appears to be highly dependent on hydrogen bonding, as all four descriptors are
2	E-state values for different hydrogen atoms. Finally, oxidation potential appears possibly to
3	be dependent on molecular shape as well as the location of interacting atoms or groups, as
4	contact distances are important (vsurf_DD12, vsurf_DD23).
5	It should be noted that whilst hydrophobicity (represented in many QSAR studies as log P,
6	the logarithm of the octanol-water partition coefficient) is not specifically selected as a
7	descriptor in any of our models, it is a composite descriptor with components of polarity,
8	polarizability, hydrogen bonding and molecular size, ⁵⁴ so our models are not incompatible
9	with previous studies ^{11, 50} that found hydrophobicity to be important.
10	
11	Based on the above perspective, we have shown that quantitative predictive models for
12	sensitization potency can be derived by: (i) assigning chemicals to reaction mechanistic
13	domains; (ii) determining appropriate reactivity parameters and (if necessary) hydrophobicity
14	within a mechanistic domain; (iii) deriving regression-based quantitative mechanistic models
15	and using these to estimate the potency for untested chemicals. This chemistry-based
16	approach can already enable potency to be predicted for many chemicals. ⁵¹ The findings
17	presented here strongly reinforce the argument that assignment of chemicals to their reaction
18	mechanistic domains (categories) is an essential step before attempting to predict potency by
19	in chemico or in silico approaches.
20	
21	All the QSARs reported here satisfy all or almost all of the OECD Principles for the

22 Validation of (Q)SARs.⁵⁵ The work described here offers one solution to the vital need,

emphasized by Basketter et al.,⁵⁶ for information on the potency of identified skin sensitizers

24 in order to permit risk assessment.

1	
2	Conclusions
3	
4	Using in-house expertise, we have allocated 204 skin-sensitizing chemicals to their respective
5	mechanistic categories, and then developed good QSAR models, with good predictive ability,
6	for chemicals in seven out of ten categories. Only one chemical had to be omitted as an
7	outlier, and an explanation is provided for that omission. Data on too few chemicals were
8	available to allow QSAR modeling for three categories, namely S_N1 , pro- S_N2 and S_NAr . The
9	QSARs reported here can be used, either on their own or as part of a weight-of-evidence
10	approach, in risk assessments of skin sensitization.
11	
12	Notes
13	The authors declare no competing financial interests.
14	Funding
15	GGP is grateful to the graduate school "Functional Materials and Technologies", University
16	of Tartu for funding from the European Social Fund under project 1.2.0401.09-0079
17	
18	Abbreviations
19	Ac, acyl transfer; CAS, Chemical Abstracts Service; EC3, the concentration (g/100 ml) that
20	induces a threefold increase in local lymph node proliferative activity relative to controls; F ,
21	coefficient of variance (Fisher statistic); ICC, intraclass correlation coefficient; LLNA,
22	murine local lymph node assay; MA, Michael addition; MLR, multiple linear regression;
23	MW, molecular weight (relative molecular mass); OxPot, oxidation potential; p-MA, pro-
24	Michael addition; OECD, Organisation for Economic Cooperation and Development; p value,

ACS Paragon Plus Environment

Chemical Research in Toxicology

3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
50	
52	
53	
54	
55	
56	
57	
58	
59	

60

1	probability that a descriptor is there by chance; p-SB, pro-Schiff base; p-S _N 2, pro-bimolecular
2	aliphatic nucleophilic substitution; Q ² ; cross-validated coefficient of variation (leave-one-out
3	procedure); QSAR, quantitative structure-activity relationship; r, correlation coefficient; R ² ,
4	coefficient of variation; R ² _{adj} , coefficient of variation adjusted for degrees of freedom;
5	REACH, Registration, Evaluation, Authorisation and restriction of Chemicals; s, standard
6	error of estimate; SB, Schiff base; S_N1 , unimolecular aliphatic nucleophilic substitution; S_N2 ,
7	bimolecular aliphatic nucleophilic substitution; S _N Ar, bimolecular aromatic nucleophilic
8	substitution; SSP, skin sensitization potency.
9	
Ū.	
10	References
11	1. Patlewicz, G., Roberts, D.W., and Uriarte, E. (2008) A comparison of reactivity
12	schemes for the prediction (of) skin sensitization potential. Chem. Res. Toxicol. 21,
13	521-541.
14	2. Nilsson, AM., Bergström, M.A., Luthman, K., Nilsson, J.L.G., and Karlberg, AT.
15	(2005) A conjugated diene identified as a prohapten: contact allergenic activity and
16	chemical reactivity of proposed epoxide metabolites. Chem. Res. Toxicol. 18, 308-316.
17	3. Roberts, D.W., and Aptula, A.O. (2008) Determinants of skin sensitisation potential. J.
18	Appl. Toxicol. 28, 377-387.
19	4. Basketter, D.A., McFadden, J.F., Gerberick, F., Cockshott, A., and Kimber, I. (2009)
20	Nothing is perfect, not even the local lymph node assay: a commentary and the
21	implications for REACH. Contact Derm. 60, 65-69.
22	5. Dearman, R.J., Basketter, D.A., and Kimber, I. (1999) Local lymph node assay: use in
23	hazard and risk assessment. J. Appl. Toxicol. 19, 299-306.
24	6. Bergström, M.A., Luthman, K., Nilsson, J.L.G., and Karlberg, AT. (2006)
25	Conjugated dienes as prohaptens in contact allergy: in vivo and in vitro studies of

21

ACS Paragon Plus Environment

2 3 4	1	structure-activity relationships, sensitizing capacity, and metabolic activation. Chem.
4 5 6	2	Res. Toxicol. 19, 760-769.
7 8	3	7. Chaudhry, Q., Piclin, N., Cotterill, J., Pintore, M., Price, N.R., Chrétien, J.R., and
9 10	4	Roncaglioni, A. (2010) Global QSAR models of skin sensitisers for regulatory
11 12	5	purposes. Chem. Central J. 4 (Suppl. 1), Article S5.
13 14	6	8. Schaafsma, G., Hertsenberg, A.J., and Marquart, J. (2011) Risk assessment of local
15 16	7	dermal effects and skin sensitisation under the EU chemicals regulation REACH: a
17 18 19	8	proposal for a qualitative, exposure scenario specific, approach. Regul. Toxicol.
20 21	9	Pharmacol. 60, 308-317.
22 23	10	9. REACH Regulation: European Parliament: Regulation (EC) N° 1907/2006 of the
24 25	11	European Parliament and of the Council of 18 December 2006 concerning the
26 27	12	Registration Evaluation Authorization and Restriction of Chemicals (REACH):
28 29	12	available at http://aur
30 31	13	avanable at <u>http://eur-</u>
32 33	14	lex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:1:2006:396:0001:0849:en:pdf
34 35	15	10. Patlewicz, G., Aptula, A.O., Roberts, D.W., and Uriarte, E. (2008) A minireview of
36 37	16	available skin sensitization (Q)SARs/expert systems. QSAR Comb. Sci. 27, 60-76.
38 39	17	11. Roberts, D.W, Aptula, A.O, and Patlewicz, G. (2006) Mechanistic applicability
40 41	18	domains for non-animal based toxicological endpoints. QSAR analysis of the Schiff
42 43	19	base applicability domain for skin sensitization. Chem. Res. Toxicol. 19, 1228-1233.
44 45	20	12. Roberts, D.W., and Natsch, A. (2009) High throughput kinetic profiling approach for
46 47 48	21	covalent binding to peptides: application to skin sensitization potency of Michael
40 49 50	22	acceptor electrophiles. Chem. Res. Toxicol. 22, 592-603.
51 52	23	13. Roberts, D.W., and Aptula, A.O. (2014) Electrophilic reactivity and skin sensitization
53 54	24	notency of S. Ar electrophiles <i>Chem Res. Toricol</i> 27 240-246
55 56	24	powney of S_N^{\prime} if electrophiles. Chem. Res. Toxicol. 27, 240-240.
57 58		
50		

0		
2 3	1	14. Nandy, A., Kar, S., and Roy, K. (2013) Development and validation of regression-
4 5 6	2	based QSAR models for quantification of contributions of molecular fragments to
7 8	3	skin sensitization potency of diverse organic chemicals. SAR QSAR Environ. Res. 24,
9 10	4	1009-1013.
11 12	5	15. Roberts, D.W., and Patlewicz, G. (2009) Chemistry based nonanimal predictive
13 14	6	modeling for skin sensitization. In: Ecotoxicology Modeling (ed. Devillers, J.),
15 16 17	7	Springer, Dordrecht, pp. 61-83.
17 18 19	8	16. Zhao, Y.H., Ji, G.D., Cronin, M.T.D., and Dearden, J.C. (1998) QSAR study of the
20 21	9	toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp. Sci. Tot.
22 23	10	Environ. 216, 205-215.
24 25	11	17. Dearden, J.C., Cronin, M.T.D., Schultz, T.W., and Lin, D.T. (1995) QSAR study of
26 27 28	12	the toxicity of nitrobenzenes to Tetrahymena pyriformis. Quant. StructAct. Relat. 14,
20 29 30	13	427-432.
31 32	14	18. Enoch, S.J., Madden, J.C., and Cronin, M.T.D. (2008) Identification of mechanisms
33 34	15	of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR
35 36	16	QSAR Environ. Res. 19, 555-578.
37 38 20	17	19. Gerberick, G.F., Ryan, C.A., Kern, P.S., Schlatter, H., Dearman, R.J., Kimber, I.,
39 40 41	18	Patlewicz, G.Y., and Basketter, D.A. (2005) Compilation of historical local lymph
42 43	19	node data for evaluation of skin sensitization alternative methods. <i>Dermatitis</i> 16, 157-
44 45	20	202
46 47	21	20 Kern P.S. Gerberick G.F. Rvan C.A. Kimber I. Antula A. and Basketer D.A.
48 49		(2010) Local lymph node data for the evaluation of skin sensitization alternatives: a
50 51 52	22	second compilation Dermatitis 21, 8-32
52 53 54	25	second compliation. Dermanus 21, 6-52.
55 56		
57		
58		
59		

1	21. Patlewicz, G.Y., Wright, Z.M., Basketter, D.A., Pease, C.K., Lepoittevin, JP., and
2	Giménez Arnau, E. (2002) Structure-activity relationships for selected fragrance
3	allergens. Contact Derm. 47, 219-226.
4	22. Dearden, J.C., Cronin, M.T.D., and Kaiser, K.L.E. (2009) How not to develop a
5	quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR
6	QSAR Environ. Res. 20, 241-266.
7	23. Toxtree software; available at <u>http://toxtree.sourceforge.net</u> .
8	24. Tropsha, A., Gramatica, P., and Gombar, V.K. (2003) The importance of being
9	earnest: validation is the absolute essential for successful application and
10	interpretation of QSPR models. QSAR Comb. Sci. 22, 69-77.
11	25. He, L., and Jurs, P.C. (2005) Assessing the reliability of a QSAR model's predictions.
12	J. Mol. Graph. Model. 23, 503-523.
13	26. Weaver, S., and Gleeson, M.P. (2008) The importance of the domain of applicability
14	in QSAR modeling. J. Mol. Graph. Model. 26, 1315-1326.
15	27. Tropsha, A. (2010) Best practices for QSAR model development, validation, and
16	exploitation. Mol. Inf. 29, 476-488.
17	28. Chirico, N., and Gramatica, P. (2012) Real external predictivity of QSAR models.
18	Part 2. New intercomparable thresholds for different validation criteria and the need
19	for scatter plot inspection. J. Chem. Inf. Model. 52, 2044-2058.
20	29. Consonni, V., Ballabio, D., and Todeschini, R. (2010) Evaluation of model predictive
21	ability by external validation techniques. J. Chemometrics 24, 194-201.
22	30. Gramatica, P., Cassani, S., Roy, P.P., Kovarich, S., Yap, C.W., and Papa, E. (2012)
23	QSAR modeling is not "push a button and find a correlation": a case study of toxicity
24	of (benzo-)triazoles on algae. Mol. Inf. 31, 817-835.

2		
2 3	1	31. Roy, K., Mitra, I., Kar, S., Ojha, P.K., Das, R.N., and Kabir, H. (2012). Comparative
4 5 6	2	studies on some metrics for external validation of QSPR models. J. Chem. Inf. Model.
7 8	3	<i>52</i> , 396-408.
9 10	4	32. Gramatica, P., Giani, E., and Papa, E. (2007) Statistical external validation and
11 12	5	consensus modeling: a QSPR case study for Koc prediction. J. Mol. Graph. Model. 25,
13 14 15	6	755-766.
16 17	7	33. Hawkins, D.M. (2004) The problem of overfitting. J. Chem. Inf. Comput. Sci. 44, 1-
18 19	8	12.
20 21 22	9	34. Gramatica, P. (2007) Principles of QSAR models validation: internal and external.
22 23 24	10	QSAR Comb. Sci. 26, 694-701.
25 26	11	35. Martin, T.M., Harten, P., Young, D.M., Muratove, E.N., Golbraikh, A., Zhu, H., and
27 28	12	Tropsha, A. (2012) Does rational selection of training and test sets improve the
29 30 21	13	outcome of QSAR modeling? J. Chem. Inf. Model. 52, 2570-2578.
31 32 33	14	36. Golbraikh, A., Shen, M., Xiao, Z., Xiao, YD., Lee, KH., and Tropsha, A. (2003)
34 35	15	Rational selection of training and test sets for the development of validated QSAR
36 37	16	models. J. ComputAided Molec. Des. 17, 241-253.
38 39	17	37. Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T.D., McDowell, R.M., and
40 41 42	18	Gramatica, P. (2003) Methods for reliability and uncertainty assessment and for
43 44	19	applicability evaluations of classification- and regression-based QSARs. Environ.
45 46	20	Health Perspect. 111, 1361-1375.
47 48	21	38. Walker, J.D., Dearden, J.C., Schultz, T.W., Jaworska, J., and Comber, M.H.I. (2003)
49 50 51	22	QSARs for new practitioners. In: Pollution Prevention, Toxicity Screening, Risk
52 53	23	Assessment, and Web Applications (ed. Walker, J.D.), SETAC Press, Pensacola, FL,
54 55	24	pp. 3-18.
56 57 58 59	25	39. CODESSA software ; available at <u>http://www.semichem.com.</u>

1	40. MOE software; available at <u>www.chemcomp.com</u> .
2	41. winMolconn software; available at http://www.molconn.com.
3	42. Goodarzi, M., Dejaegher, B., and Vander Heyden, Y. (2012) Feature selection
4	methods in QSAR studies. J. AOAC Int. 95, 636-650.
5	43. Minitab software; available at <u>www.minitab.com</u> .
6	44. Fisher, R.A. (1963) Statistical Methods for Research Workers, Oliver and Boyd,
7	Edinburgh.
8	45. Machin, D., Campbell, M.J., and Walters, S.J. (2007) Medical Statistics, Wiley,
9	Chichester.
10	46. Weir, J.P. (2005) Quantifying test-retest reliability using the intraclass correlation
11	coefficient and the SEM. J. Strength Cond. Res. 19, 231-240.
12	47. SPSS software; available at <u>http://www.ibm.com</u> .
13	48. Chauhan, J.S., Dhanda, S.K., Singla, D., Open Source Drug Discovery Consortium,
14	Agarwal, S.M., and Raghava, G.P.S. (2014) QSAR-based models for designing
15	quinazoline/imidazothiazoles/pyrazolopyrimidines based inhibitors against wild and
16	mutant EGFR. PLoS One 9 (7): e101079.
17	49. Stumpfe D., and Bajorath, J. Exploring activity cliffs in medicinal chemistry. J. Med.
18	Chem. 55, 2932-2942.
19	50. Roberts, D.W, Aptula, A.O, and Patlewicz, G. (2007) Electrophilic chemistry related
20	to skin sensitization. Reaction mechanistic applicability domain classification for a
21	published data set of 106 chemicals tested in the mouse local lymph node assay.
22	Chem. Res. Toxicol. 20, 44-60.
23	51. Roberts, D.W., and Patlewicz, G.Y. (2014) Integrated testing and assessment
24	approaches for skin sensitization: a commentary. J. Appl. Toxicol. 34, 436-440.
25	52. Roberts D.W. (2013) Allergic contact dermatitis: is the reactive chemistry of skin

ACS Paragon Plus Environment

2		
3	1	sensitizers the whole story? A response. Contact Derm. 68, 244-249.
4 5	2	53. Enoch, S.J., and Roberts, D.W. (2013) Predicting skin sensitization potency for
0 7 8	3	Michael acceptors in the LLNA using quantum mechanics calculations. Chem. Res.
9 10	4	<i>Toxicol.</i> 26, 767-774.
11 12	5	54. Abraham, M.H., Chadha, H.S., Whitney, G.S., and Mitchell, R.C. (1994) Hydrogen
13 14 15	6	bonding. 32. An analysis of water-octanol and water-alkane partitioning and the $\Delta \log$
16 17	7	P parameter of Seiler. J. Pharm. Sci., 83, 1085-1100.
18 19	8	55. OECD Principles for the Validation of (Q)SARs; available at
20 21	9	www.oecd.org/dataoecd/33/37/37849783.pdf.
22 23 24	10	56. Basketter, D., Alépée, N., Casati, S., Crozier, J., Eigler, D., Griem, P., Hubesch, B.,
25 26	11	de Knecht, J., Landsiedel, R., Louekari, K., Manou, I., Maxwell, G., Mehling, A.,
27 28	12	Netzeva, N., Petry, T., and Rossi, L.H. (2013) Skin sensitisation - Moving forward
29 30	13	with non-animal testing strategies for regulatory purposes in the EU. Regul. Toxicol.
31 32 33	14	Pharmacol. 67, 531-535.
34 35 36 37	15	
37 38 39	16	
40 41 42 43	17	
43 44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59		

2 Table 1. Chemicals used in this study, their potencies and mechanisms of action

Name	CAS No.	MW	EC3	Class	SSP	Mechanism
4'-Hydroxychalcone	2657-25-2	224.26	0.002	Extreme	4.050	MA
<i>p</i> -Benzoquinone ^a	106-51-4	108.10	0.0099	Extreme	3.038	MA
2',3',4'-Trihydroxychalcone	1482-74-2	256.25	0.11	Strong	2.367	MA
Methyl 2-octynoate	111-12-6	154.21	0.45	Strong	1.535	MA
2',4'-Dihydroxychalcone	1776-30-3	240.26	0.56	Strong	1.632	MA
Isopropyl isoeugenol	2953-00-7	206.29	0.6	Strong	1.536	MA
β-Phenylcinnamaldehyde	1210-39-5	208.26	0.6	Strong	1.540	MA
Isoeugenol ^a	97-54-1	164.20	1.2	Moderate	1.136	MA
2-Hydroxyethyl acrylate ^a	818-61-1	116.12	1.4	Moderate	0.919	MA
3-Methyl-4-phenyl-1,2,5-thiadiazole-1,1-dioxide (MPT)	3775-21-1	208.24	1.4	Moderate	1.172	MA
6-Methylisoeugenol	13041-12-8	178.23	1.6	Moderate	1.047	MA
Vinyl pyridine	100-43-6	105.14	1.6	Moderate	0.818	MA
5,5-Dimethyl-3-methylene-dihydro-2(3H)-furanone	29043-97-8	126.16	1.8	Moderate	0.846	MA
trans-Anethol ^a	104-46-1	148.21	2.3	Moderate	0.809	MA
trans-2-Decenal	3913-71-1	154.25	2.5	Moderate	0.790	MA
Methyl 2-nonynoate	111-80-8	168.24	2.5	Moderate	0.828	MA
3,4-Dinitrophenol	577-71-9	184.10	2.6	Moderate	0.850	MA
Cinnamic aldehyde	104-55-2	132.16	3	Moderate	0.644	MA
2,4-Hexadienal	142-83-6	96.13	3.5	Moderate	0.439	MA
3-Methylisoeugenol ^a	186743-29-3	178.23	3.6	Moderate	0.695	MA
Benzylidene acetone (4-phenyl-3-buten-2-one)	122-57-6	146.19	3.7	Moderate	0.597	MA
2,4-Heptadienal ^a	5910-85-0	110.16	4	Moderate	0.440	MA
Tropolone	533-75-5	122.12	4.3	Moderate	0.453	MA
5-Methyl-2-phenyl-2-hexenal	21834-92-4	188.27	4.4	Moderate	0.631	MA

2							
3							
4							
5	α-Methylcinnamaldehyde	101-39-3	146.19	4.5	Moderate	0.512	MA
0 7	trans-2-Hexenal	6728-26-3	98.15	5.5	Moderate	0.252	MA
8	Diethyl maleate	141-05-9	172.18	5.8	Moderate	0.473	MA
9	1,1,3-Trimethyl-2-formylcyclohexa-2,1-diene (safranal)	116-26-7	150.22	7.5	Moderate	0.302	MA
10	Perillaldehyde	2111-75-3	150.22	8.1	Moderate	0.268	MA
11	1-(<i>p</i> -Methoxyphenol)-1-penten-3-one ^a	104-27-8	190.24	9.3	Moderate	0.311	MA
12	Linalool aldehyde	Not known ^b	168.24	9.5	Moderate	0.248	MA
14	2-Ethylhexyl acrylate	103-11-7	184.28	10	Weak	0.265	MA
15	α-Amylcinnamaldehyde	122-40-7	202.30	11	Weak	0.265	MA
16	α-Butylcinnamaldehyde	7492-44-6	188.27	11	Weak	0.233	MA
17	Hexyl cinnamaldehyde	101-86-0	216.32	11	Weak	0.294	MA
18	Butyl acrylate	141-32-2	128.17	11	Weak	0.066	MA
20	R-Carvone ^a	6485-40-1	150.22	12.9	Weak	0.066	MA
21	Benzyl cinnamate	103-41-3	238.29	18.4	Weak	0.112	MA
22	Methyl acrylate ^a	96-33-3	86.09	20	Weak	-0.366	MA
23	Cinnamic alcohol	104-54-1	134.18	21	Weak	-0.195	MA
24 25	α -iso-Methylionone	127-51-5	206.33	21.8	Weak	-0.024	MA
26	Ethyl acrylate	140-88-5	100.12	28	Weak	-0.447	MA
27	Ethylene glycol dimethacrylate	97-90-5	198.22	28	Weak	-0.150	MA
28	2,2-bis-[4-(2-Hydroxy-3-methacryloxypropoxy)phenyl]-propane	1565-94-2	512.65	45	Weak	0.057	MA
29	Methyl methacrylate	80-62-6	100.12	90	Weak	-0.954	MA
3U 31	Bandrowski's base	20048-27-5	318.38	0.04	Extreme	2.901	p-MA
32	3,4-Diaminonitrobenzene	99-56-9	153.14	0.05	Extreme	2.486	p-MA
33	4-((2-Hydroxyethyl)amino)-3-nitrophenol	65235-31-6	198.18	0.07	Extreme	2.452	p-MA
34	1,4-Dihydroquinone	123-31-9	110.11	0.11	Strong	2.000	p-MA
35	1,4-Phenylenediamine	106-50-3	108.14	0.16	Strong	1.830	p-MA
30 37	2,5-Diaminotoluene	95-70-5	122.08	0.2	Strong	1.786	p-MA
38	4-Amino-3-nitrophenol	610-81-1	154.12	0.2	Strong	1.887	p-MA
39	Lauryl gallate (dodecyl gallate) ^a	1166-52-5	338.44	0.3	Strong	2.052	p-MA
40	2-Aminophenol	95-55-6	109.13	0.4	Strong	1.436	p-MA
41	1				U		I

Chemical Research in Toxicology

2-Methyl-5-hydroxyethylaminophenol	55302-96-0	167.21	0.4	Strong	1.621	p-MA
2-Nitro- <i>p</i> -phenylenediamine ^a	5307-14-2	153.14	0.4	Strong	1.583	p-MA
1,3-Phenylenediamine ^a	108-45-2	108.14	0.49	Strong	1.344	p-MA
R-Carvoxime	55658-55-4	165.23	0.6	Strong	1.440	p-MA
Hydroxytyrosol	10897-60-1	154.16	0.6	Strong	1.410	p-MA
1,2-Dibromo-2,4-dicyanobutane	35691-65-7	265.94	0.9	Strong	1.471	p-MA
l-Naphthol	90-15-3	144.17	1.3	Moderate	1.045	p-MA
1-Amino-3-methylphenol	2835-99-6	123.15	1.45	Moderate	0.929	p-MA
2-(4-Amino-2-nitrophenylamino)-ethanol	2871-01-4	197.19	2.2	Moderate	0.952	p-MA
3-Aminophenol	591-27-5	109.13	3.2	Moderate	0.533	p-MA
5-Amino-2-methylphenol ^a	2835-95-2	123.15	3.4	Moderate	0.559	p-MA
3-Bromomethyl-5,5-dimethyl-dihydro-2(3H)-furanone	154750-20-6	207.07	3.6	Moderate	0.760	p-MA
2-Methoxy-4-methyl-phenol	93-51-6	138.17	5.8	Moderate	0.377	p-MA
Anisyl alcohol	105-13-5	138.17	5.9	Moderate	0.370	p-MA
Dihydroeugenol	2785-87-7	166.22	6.8	Moderate	0.388	p-MA
2-Amino-6-chloro-4-nitrophenol ^a	6358-09-4	188.57	6.85	Moderate	0.440	p-M/
1-Amino-2-nitro-4-bis(2-hydroxyethyl)-amino-benzene	29705-39-3	241.24	8.2	Moderate	0.469	p-MA
Eugenol	97-53-0	164.20	13	Weak	0.101	p-MA
5-Methyleugenol	186743-25-9	178.23	13	Weak	0.137	p-MA
6-Methyleugenol	186743-24-8	178.23	17	Weak	0.021	p-MA
4-Allylanisole	140-67-0	148.21	18	Weak	-0.084	p-MA
2,2'-Azobisphenol ^a	2050-14-8	214.20	27.9	Weak	-0.115	p-MA
3-Methyleugenol	186743-26-0	178.23	32	Weak	-0.254	p-MA
Glutaraldehyde	111-30-8	100.12	0.1	Strong	2.001	SB
Chloroatranol	57074-21-2	186.59	0.4	Strong	1.669	SB
Atranol ^a	526-37-4	152.15	0.6	Strong	1.404	SB
Formaldehyde	50-00-0	30.03	0.61	Strong	0.692	SB
1-Phenyl-1,2-propanedione	579-07-7	148.16	1.3	Moderate	1.057	SB
Glyoxal	107-22-2	58.04	1.4	Moderate	0.618	SB
Methyl pyruvate ^a	600-22-6	102.09	2.4	Moderate	0.629	SB

1 2 2							
3							
5	Phenylacetaldehyde	122-78-1	120.15	3.0	Moderate	0.603	SB
6 7	α-Methylphenylacetaldehyde	93-53-8	134.18	6.3	Moderate	0.328	SB
8	Undec-10-enal	112-45-8	168.28	6.8	Moderate	0.394	SB
9	1-(2',3',4',5'-Tetramethylphenyl)butane-1,3-dione	167998-73-4	218.30	8.3	Moderate	0.420	SB
10	1-(2',5'-Diethylphenyl)butane-1,3-dione	167998-76-7	218.30	9.6	Moderate	0.357	SB
11	Camphorquinone	465-29-2	166.22	10	Weak	0.221	SB
12 13	2-Methylundecanal	110-41-8	184.32	10	Weak	0.266	SB
14	2,3-Butanedione ^a	431-03-8	86.09	11	Weak	-0.106	SB
15	1-Phenyloctane-1,3-dione	55846-68-1	218.30	11	Weak	0.298	SB
16	Farnesal	502-67-0	220.36	12	Weak	0.264	SB
17	Citral	5392-40-5	152.44	13	Weak	0.069	SB
10 19	1-(2',5'-Dimethylphenyl)butane-1,3-dione	56290-55-2	190.24	13	Weak	0.165	SB
20	4-Methylhydrocinnamic aldehyde	5406-12-2	148.21	14	Weak	0.025	SB
21	α -Methyl-1,3-benzodioxole-5-propionaldehyde ^a	1205-17-0	192.21	16.4	Weak	0.069	SB
22	3 and 4-(4-Hydroxy-4-methylpentyl)-3-cyclohexene-1-						
23	carboxaldehyde	31906-04-4	210.32	17	Weak	0.092	SB
24 25	4- <i>tert</i> -Butyl-α-ethylhydrocinnamal	80-54-6	204.31	19	Weak	0.032	SB
26	N,N-Dibutylaniline ^{ac}	613-29-6	205.30	19.6	Weak	0.020	SB
27	4,4,4-Trifluoro-1-phenylbutane-1,3-dione	326-06-7	216.16	20	Weak	0.034	SB
28	4,4'-Dibromobenzil ^{ac}	35578-47-3	368.02	20.5	Weak	0.254	SB
29	Cyclamen aldehyde ^{ad}	103-95-7	190.29	22	Weak	-0.063	SB
30 31	cis-6-Nonenal	2277-19-2	140.23	23	Weak	-0.215	SB
32	5-Methyl-2,3-hexanedione	13706-86-0	128.17	26	Weak	-0.307	SB
33	2,2,6,6-Tetramethyl-heptane-3,5-dione	1118-71-4	184.28	27	Weak	-0.166	SB
34	1-Phenyl-2-methylbutane-1,3-dione	6668-24-2	176.22	29	Weak	-0.216	SB
35	3-Ethoxy-1-(2',3',4',5'-tetramethylphenyl)propane-1,3-dione	170928-69-5	248.32	33	Weak	-0.124	SB
36	Hydroxycitronellal	107-75-5	172.27	33	Weak	-0.282	SB
38	2-(4-tert-Amylcyclohexyl)acetaldehyde ^a	620159-84-4	196.33	37	Weak	-0.275	SB
39	Diethyl acetaldehyde	97-96-1	100.16	76	Weak	-0.880	SB
40 41	3-Dimethylaminopropylamine	109-55-7	102.18	2.2	Moderate	0.667	p-SB

Ethylenediamine	107-15-3	60.10	2.2	Moderate	0.436	p-SB
Diethylenetriamine ^{ad}	111-40-0	103.17	5.8	Moderate	0.250	p-SB
3-Methyl-1-phenylpyrazolone	89-25-8	174.20	8.5	Moderate	0.312	p-SB
Geraniol	106-24-1	154.25	26	Weak	-0.227	p-SB
1-Chloromethylpyrene	1086-00-6	250.73	0.005	Extreme	3.700	$S_N 2$
5-Chloro 2 methyl 4 isothiazolin-3-one	26172-55-4	149.60	0.009	Extreme	3.221	$S_N 2$
1-Methyl-3-nitro-1-nitrosoguanidine	70-25-7	147.09	0.03	Extreme	2.690	$S_N 2$
N-Methyl-N-nitrosourea	684-93-5	103.08	0.05	Extreme	2.314	$S_N 2$
4-Nitrobenzyl bromide ^a	100-11-8	216.03	0.05	Extreme	2.636	$S_N 2$
β-Propiolactone	57-57-8	72.06	0.15	Strong	1.682	$S_N 2$
Dimethyl sulfate ^a	77-78-1	126.13	0.19	Strong	1.822	$S_N 2$
Benzyl bromide	100-39-0	171.04	0.2	Strong	1.932	$S_N 2$
Methyl dodecane sulfonate	2374-65-4	264.42	0.39	Strong	1.831	$S_N 2$
Iodopropynyl butylcarbamate	55406-53-6	281.09	0.9	Strong	1.495	$S_N 2$
N-ethyl-N-nitrosourea	759-73-9	117.11	1.1	Moderate	1.027	$S_N 2$
Bisphenol A-diglycidyl ether	1675-54-3	340.42	1.5	Moderate	1.356	$S_N 2$
2-Methyl-2H-isothiazol-3-one ^a	2682-20-4	115.15	1.9	Moderate	0.783	$S_N 2$
1,2-Benzisothiazolin-3-one	2634-33-5	151.18	2.3	Moderate	0.818	$S_N 2$
1-Bromohexadecane	112-82-3	305.34	2.3	Moderate	1.123	$S_N 2$
Benzyl salicylate	118-58-1	228.25	2.9	Moderate	0.896	$S_N 2$
Diethyl sulfate	64-67-5	154.18	3.3	Moderate	0.670	$S_N 2$
2-Bromotetradecanoic acid ^a	10520-81-7	307.27	3.4	Moderate	0.956	$S_N 2$
1-Bromoheptadecane	3508-00-7	319.37	4.8	Moderate	0.823	$S_N 2$
1-Bromopentadecane	629-72-1	291.32	5.1	Moderate	0.757	$S_N 2$
Tetramethylthiuram disulfide	137-26-8	240.42	5.2	Moderate	0.665	$S_N 2$
1-Bromoeicosane	4276-49-7	361.45	6.1	Moderate	0.773	$S_N 2$
2-Bromoethylbenzene	103-63-9	185.10	6.2	Moderate	0.475	$S_N 2$
12-Bromo-1-dodecanol ^a	3344-77-2	265.24	6.9	Moderate	0.585	$S_N 2$
Methyl methanesulfonate	66-27-3	110.13	8.1	Moderate	0.133	$S_N 2$
1-Bromodocosane	6938-66-5	389.51	8.3	Moderate	0.671	$S_N 2$

1	
2	
3 4	
5	
6	
7 8	
9	
10	
11	
13	
14	
15 16	
17	
18	
19 20	
21	
22	
23 24	
25	
26	
27	
29	
30	
31	
33	
34 25	
35 36	
37	
38	
39 40	
41	
42 ⊿२	
43 44	
45	
46 ⊿7	
47	
10	

Dodecyl methane sulfonate	51323-71-8	264.42	8.8	Moderate	0.478	$S_N 2$
1-Chlorohexadecane	4860-03-1	260.89	9.1	Moderate	0.457	$S_N 2$
1-Bromotetradecane	112-71-0	277.29	9.2	Moderate	0.479	$S_N 2$
1-Bromohexane	111-25-1	165.07	10	Weak	0.218	$S_N 2$
1-Bromotridecane	765-09-3	263.26	10	Weak	0.420	$S_N 2$
1-Iodododecane	4292-19-7	296.24	13	Weak	0.358	$S_N 2$
1-Iodotetradecane ^a	19218-94-1	324.29	14	Weak	0.365	$S_N 2$
1-Bromooctadecane ^a	112-89-0	333.40	15	Weak	0.347	$S_N 2$
1-Chlorooctadecane	3386-33-2	288.95	16	Weak	0.257	$S_N 2$
Benzyl benzoate	120-51-4	212.25	17	Weak	0.096	$S_N 2$
1-Bromododecane ^a	143-15-7	249.24	18	Weak	0.141	$S_N 2$
12-Bromododecanoic acid	73367-80-3	279.22	18	Weak	0.191	$S_N 2$
1-Iodohexadecane	544-77-4	352.35	19	Weak	0.268	$S_N 2$
1-Bromoundecane	693-67-4	235.21	20	Weak	0.070	$S_N 2$
1-Chlorotetradecane	2425-54-9	232.84	20	Weak	0.066	$S_N 2$
7-Bromotetradecane	74036-97-8	277.29	21	Weak	0.121	$S_N 2$
1-Iodononane ^a	4282-42-2	254.16	24	Weak	0.025	$S_N 2$
Oleyl methane sulfonate	35709-09-2	346.57	25	Weak	0.142	$S_N 2$
Butyl glycidyl ether	2426-08-6	130.19	31	Weak	-0.377	$S_N 2$
Benzo[a]pyrene	50-32-8	252.32	0.0009	Extreme	4.448	$p-S_N2$
7,12-Dimethylbenz[α]anthracene	57-97-6	256.35	0.006	Extreme	3.631	$p-S_N2$
4-Ethoxymethylene-2-phenyl-2-oxazolin-5-one	15646-46-5	217.22	0.003	Extreme	3.860	Ac
Tetrachlorosalicylanilide ^a	1154-59-2	351.02	0.04	Extreme	2.943	Ac
Fluorescein-5-isothiocyanate	3326-32-7	389.38	0.14	Strong	2.444	Ac
2-Methyl -4H,3,1-benzoxazin-4-one	525-76-8	161.16	0.7	Strong	1.362	Ac
C6 Azlactone	176665-02-4	197.28	1.3	Moderate	1.181	Ac
2-Mercaptobenzothiazole	149-30-4	167.24	1.7	Moderate	0.993	Ac
C4 Azlactone	176664-99-6	169.22	1.8	Moderate	0.973	Ac
Nonanoyl chloride	764-85-2	176.69	1.8	Moderate	0.992	Ac
Methyl 2-sulfonhenyl octadecanoate	Not known ^b	<i>A5A</i> 67	2	Moderate	1 3 5 7	10

Isononanoyl chloride ^a	57077-36-8	176.69	2.7	Moderate	0.816	Ac
3,5,5-Trimethylhexanoyl chloride	36727-29-4	176.69	2.7	Moderate	0.816	Ac
C9 Azlactone	176665-04-6	239.36	2.8	Moderate	0.932	Ac
3-Propylidenephthalide	17369-59-4	174.20	3.7	Moderate	0.673	Ac
3,4-Dihydrocoumarin	119-84-6	148.16	5.6	Moderate	0.423	Ac
Palmitoyl chloride ^a	112-67-4	274.88	8.8	Moderate	0.495	Ac
1,2,4-Benzenetricarboxylic anhydride	552-30-7	192.13	9.2	Moderate	0.320	Ac
C11 Azlactone	176665-06-8	267.41	16	Weak	0.223	Ac
C15 Azlactone	176665-09-1	323.52	18	Weak	0.255	Ac
C17 Azlactone	176665-11-5	351.58	19	Weak	0.267	Ac
Phenyl benzoate	93-99-2	198.22	20	Weak	-0.004	Ac
Imidazolidinylurea	39236-46-9	388.30	24	Weak	0.209	Ac
C19 Azlactone ^a	Not known ^b	379.63	26	Weak	0.164	Ac
Penicillin G	61-33-6	334.39	30	Weak	0.047	Ac
5-Chlorosalicylanilide	4638-48-6	247.68	5	Moderate	0.695	OxPot
α-Phellandrene	99-83-2	136.23	5.4	Moderate	0.402	OxPot
β-Phellandrene ^a	555-10-2	136.23	5.6	Moderate	0.386	OxPot
(5R)-5-Isopropenyl-2-methyl-1-methylene-2-cyclohexene	Not known ^b	148.25	7.3	Moderate	0.308	OxPot
2-(Hexadecyloxy)ethanol	2136-71-2	286.50	8.8	Moderate	0.513	OxPot
α-Terpinene	99-86-5	136.24	8.9	Moderate	0.185	OxPot
Acetyl cedrene	32388-55-9	246.39	13.9	Weak	0.249	OxPot
Abietic acid	514-10-3	302.46	15	Weak	0.305	OxPot
Linalool	78-70-6	154.25	30	Weak	-0.289	OxPot
R(+) Limonene	5989-27-5	136.24	69	Weak	-0.705	OxPot
Aniline ^a	62-53-3	93.13	89	Weak	-0.980	OxPot
Chlorothalonil	1897-45-6	265.91	0.004	Extreme	3.823	S _N Ar
1-Chloro-2,4-dinitrobenzene	97-00-7	202.55	0.05	Extreme	2.608	S _N Ar
2,4,6-Trichloro-1,3,5-triazine	108-77-0	184.41	0.09	Extreme	2.312	S _N Ar
Pentachlorophenol	87-86-5	266.34	20	Weak	0.124	S _N Ar
Clotrimazole	23593-75-1	344.85	4.8	Moderate	0.856	$S_N 1$

1 2		
3 4		
5 6	4	d,l-Citronellol 106-22-9 156.27 43.5 Weak -0.445 S _N 1
7	1 2	These chemicals were used as test set chemicals. Those marked were used only in the SB test set, and those marked were used only in the $SB + p-SB$ test set
8 9	3	^b For compounds with unknown CAS numbers, the SMILES strings are: linalool aldehyde, C=CC(C)(O)CCC=C(C)C=O; methyl 2-sulfophenyl
10	4	octadecanoate, CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
11	5	CCCCCCCCCCCCCCCC1=NC(C)(C)C(=O)O1; (5R)-5-isopropenyl-2-methyl-1-methylene-2-cyclohexene,
12	6	CC(=C)[C@@H]1CC=C(C)C(=C)C1
13 14	/	
15		
16		
17 18		
19		
20		
21		
22 23		
24		
25		
26 27		
28		
29		
30		
31 32		
33		
34		
35 36		
37		
38		
39		
40 41		
42		25
43		
44 45		
45 46		ACS Paragon Plus Environment
47		
48		

1 2 3 4				
5 6	1			
7 8	2	Table	2. Mod	lels dev
9 10	3			
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	4 5 7 8 9 10 11 12 13 14 15 16	Mech. All MA	Mode Full Full Train	1 Eqn. 1 2
25 26 27 28 29 20	17 18 19 20	MA	Test	4
31 32 33 34 35	21 22 23 24 25	p-MA	Full	5
36 37 38	26 27 28	p-MA	Train	6
39 40 41 42 43 44 45 46 47 48	29	p-MA	Test	7

Table 2. Models developed in this work for skin sensitization

Mech.	Mode	l Eqn.	No. of chemicals	Equation	R ² (R ² _{adj})	Q ²	8	F	p values
All	Full	1	204	SSP = - 1.164(0.282) + 1.759(0.450) FASA- + 0.174(0.028) eaC2C3a + 0.807(0.155) vsurf_CW2 + 0.012(0.0026) vsurf_D8 - 0.767 (0.202) Hmin - 0.190(0.057) SHCsatu	0.496 (0.480	0.459)	0.689	32.4	<0.001
MA	Full	2	45	SSP = 16.7(2.52) - 0.101(0.020) S4 - 0.760(0.174) HS17 + 0.112(0.015) SlogP_VSA4 + 0.775(0.195) vsurf_CW2 - 8.39(1.14) Max. BC1 - 43.4(7.37) Rel. PMI	0.856 (0.834	0.793)	0.358	37.8	<0.001
MA	Train	3	36	SSP = 16.6(3.77) - 0.094(0.029) S4 - 0.743(0.201) HS17 + 0.113(0.017) SlogP_VSA4 + 0.673(0.257) vsurf_CW2 - 8.26(1.78) Max. BC1 - 42.2(9.9) Rel. PMI	0.825 (0.789	0.692)	0.398	22.9	≤0.015
MA	Test	4	9	SSP (obsd) = -0.113 + 1.12 SSP (pred) (ICC = 0.977)	0.965	0.937	0.191	195.9	
p-MA	Full	5	32	SSP = -0.360(0.369) + 1.400(0.194) S24 - 0.319(0.046) e1C3O2 + 0.279(0.085) SssNH - 0.337(0.051) vsurf_HB7 + 0.467(0.108) Av. IC2	a0.858 (0.831	0.790)	0.349	31.4	≤0.003
p-MA	Train	6	26	$SSP = -0.139(0.454) + 1.348(0.249) S24 + 0.254(0.097) SssNH -0.318(0.057) e1C3O2a - 0.359(0.098) vsurf_HB7 + 0.401(0.131) Av_IC2.$	0.848 (0.810	0.768)	0.380	22.3	≪0.01
p-MA	Test	7	6	SSP (obsd) = 0.039 + 0.958 SSP (pred) (ICC = 0.951)	0.887	0.758	0.305	31.5	
				36					

2 3 4 5 6 7	1 2								
8 9 10 11 12 12	3 4 5 6 7 8	SB	Full	8	35	SSP = - 6.99(1.47) + 0.090(0.020) S7 + 0.035(0.014) S10 - 3.107(0.717) GCUT_PEOE_1+ 1.880(0.496) vsurf_Wp7 + 2.657(0.702) Av. S12 + 3.101(1.084) Av. BO + 0.177(0.026) Kier FI	0.837 0.644 (0.795)	0.259	19.9 ≤0.02
13 14 15 16 17 18	8 9 10 11 12 13	SB	Train	9	28	SSP = -7.54(1.75) + 0.0853(0.0236) S7 + 0.042(0.016) S10 -2.704(0.869) GCUT_PEOE_1 + 1.294(0.852) vsurf_Wp7 +2.798(0.829) Av. SI2 + 3.573(1.250) Av. BO + 0.193(0.031) Kier FI	0.838 0.524 (0.781)	0.272	14.8 ≤0.15
19 20	14 15	SB	Test	10	7	SSP (obsd) = 0.060 + 1.02 SSP (pred)	0.904 0.857	0.194	47.0
21 22 23 24 25 26	15 16 17 18 19 20	SB + p-SB	Full	11	40	SSP = 19.22(2.95) + 0.380(0.086) HS6 - 0.238(0.058) dx2 - 0.0813(0.0107) E_sol + 0.0958(0.0173) Kier FI - 0.00153(0.00047) DPSA1 - 4.542(0.670) Av. valency - 5.885(1.066) relative no. O atoms	0.850 0.781 (0.817)	0.233	25.9 ≤0.005
27 28 29 30 31 32	21 22 23 24 25	SB + p-SB	Train	12	33	SSP = 19.09(3.36) + 0.344(0.107) HS6 - 0.226(0.069) dx2 - 0.070(0.016) E_sol + 0.103(0.021) Kier FI - 0.00163(0.00053) DPSA1 - 4.490(0.760) Av. valency - 5.960(1.230) relative no. O atoms	0.836 0.736 (0.790)	0.251	18.2 ≤0.005
33 34 35	26 27 28	SB + p-SB	Test	13	7	SSP (obsd) = -0.143 + 1.27 SSP (pred) (ICC = 0.936)	0.935 0.838	0.162	71.4
36 37 38 39 40 41	29 30 31 32	S _N 2	Full	14	45	$SSP = -9.468(1.304) + 0.109(0.034) S14 + 0.151(0.050) SsCH_3 + 4.004(0.717) xvp9 + 0.150(0.037) eaC2C3a + 8.780(0.864) FASA- + 3.496(0.589) PEOE_VSA_FPOS - 0.473(0.094) MNDO_HOMO$	0.852 0.796 (0.823)	0.381	30.3 ≤0.005
42 43 44						37			
40 46 47 48						ACS Paragon Plus Environment			

3										
4 5	1									
6	2									
7	3									
8 9	4	$S_N 2$	Train	15	36	$SSP = -9.689 + 0.109(0.039) S14 + 0.149(0.058) SsCH_3$	0.837 0.773	0.419	20.6	≤0.02
10	5					+ 4.233(0.854) xvp9 + 0.142(0.042) eaC2C3a	(0.797)			
11	6					+ 9.084(1.155) FASA- + 3.699(0.694) PEOE_VSA_FPOS				
12	7					– 0.477(0.123) MNDO_HOMO				
13 14	8	ຊ່າ	Test	16	0	SSD(abad) = -0.022 + 0.990 SSD(prod)	0.051 0.027	0.204	1247	<0.001
15	9 10	$S_{\rm N}2$	Test	10	9	$SSP(00Sd) = -0.023 \pm 0.889 SSP(pred)$	0.931 0.927	0.204	134.7	<0.001
16	11	Ac	Full	17	22	SSP = 0 873(0 088) - 0 616 (0 152) HS14 +2 644(0 225) HS16	0 921 0 886	0 304	49.5	< 0.001
17	12			1,		-3.059(0.289) HS17 + 0.633 (0.122) HS29	0.021 0.000	0.20	.,	01001
18 10	13	Ac	Train	18	18	SSP = 0.879(0.110) - 0.578(0.210) HS14 + 2.645(0.262) HS16	0.899 0.863	0.342	28.8	≤0.015
20	14					- 3.079(0.371) HS17 + 0.629(0.142) HS29	(0.867)			
21	15		_							
22	16	Ac	Test	19	4	SSP (obsd) = -0.079 + 0.966 SSP (pred) (ICC = 0.995)	0.999 0.992	0.042	2672.7	
23	1/	OvDat	E111	20	11	SSR = 0.265(0.072) = 0.170(0.017) yourf DD12	0.030 0.856	0 156	52 8	<0.001
25	10	OXI 01	run	20	11	$+ 0.0957(0.072) = 0.179(0.017)$ vsurf_DD12	(0.912)	0.150	32.0	<0.001
26	20					+ 0.0957(0.0200) V3011_DD25	(0.912)			
27	21									
28	22	OxPot	Train	21	9	$SSP = 0.363(0.066) - 0.156(0.017) \text{ vsurf}_DD12$	0.931 0.865	0.130	40.4	< 0.001
30	23					+ 0.081(0.018) vsurf_DD23	(0.908)			
31	24	~ -	_							
32	25	OxPot	Test		2	No QSAR with only 2 test chemicals $(ICC = 0.945)$				
33 34	26									
35										
36										
37										
38 39										
40										
41										
42						38				
43 44										
45										
46						ACS Paragon Plus Environment				
47 48										
+0										

2
2
3
4
5
6
7
8
q
10
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
30 00
39
40
41
42
43
44
45
46
40 47
47
48
49
50
51
52
53
54
55
55
56
57

1 Table 3. Descriptors and SSPs used in the QSAR models, and their ranges

2 All 204 active sensitizers

- 3 SSP (-0.980 to 4.050)
- FASA-: MOE; Fractional accessible surface area of all atoms with negative partial charge
 (0.067 to 0.703)
- 6 eaC2C3a: winMolconn; Bond-type electrotopological state index for single bond between
 7 unsubstituted carbon and carbon with three aromatic neighbours (0 to 18.723)
- 8 vsurf_CW2: MOE; Capacity factor (Shape, volume, surface area descriptor) (1.160 to 3.211)
- 9 vsurf_D8: MOE; Hydrophobic volume (0 to 112.88)
- 10 Hmin: CODESSA; Minimum number of hydrogen bond donors and acceptors (0 to 1.514)
- SHCsatu: winMolconn: Number of hydrogen atoms on sp3 carbons bonded to sp2 carbons (0
 to 4.407)
- 13

15

24

34

14 Michael addition

- 16 SSP (-0.954 to 4.050)
- 17 S4: winMolconn; Atom level E-State for atom 4 (-3.617 to 10.190)
- 18 HS17: winMolconn; Hydrogen atom level HE-state for hydrogen atom 17 (0 to 2.690)
- 19 SlogP_VSA4: MOE; Sum of van der Waals surface areas such that contribution to log P is in
- 20 range 0.1-0.15 (0 to 30.233)
- vsurf_CW2: MOE; Capacity factor (Shape, volume, surface area descriptor) (1.352 to 2.836)
- 22 Max. BC1: CODESSA; Maximum bonding contribution of one (1.84 to 2.14)
- 23 Rel. PMI: CODESSA; Relative principal moment of inertia (0 to 0.05)

25 **Pro-Michael addition**

- 26 27 SSP (-0.115 to 2.901)
- 28 S24: winMolconn; Atom level E-state index for atom 24 (0 to 1.817)
- 29 e1C3O2a: winMolconn; Bond-type E-state for single bond between ether oxygen and
- 30 substituted aromatic carbon (0 to 3.311)
- 31 SssNH: winMolconn; Atom type E-state index for >NH nitrogen (0 to 2.952)
 - 32 vsurf_HB7: MOE; H-bond donor capacity (-3.125 to 3.375)
 - Av. IC2 : CODESSA; Average information content (_2), a structural descriptor (1.02 to 2.19)

35 Schiff base

- 36 37 SSP (-0.880 to 2.001)
- 38 S7: winMolconn; Atom level E-state for atom 7 (-0.526 to 11.481)
 - 39 S10: winMolconn; Atom level E-state for atom 10 (-2.017 to 10.595)
- 40 GCUT PEOE 1: MOE; The GCUT descriptors are calculated from the eigenvalues of a
- 41 modified graph distance adjacency matrix. Each *ij* entry of the adjacency matrix takes the
- 42 value $1/sqr(d_{ij})$ where d_{ij} is the (modified) graph distance between atoms *i* and *j*. The diagonal
- 43 takes the value of the PEOE partial charges. The resulting eigenvalues are sorted and the
 - 44 smallest, 1/3-ile, 2/3-ile and largest eigenvalues are reported (-0.468 to -0.187)
- 45 vsurf_Wp7: MOE; Polar volume (Shape, volume, surface area descriptors) (0 to 0.50)
- 46 Av. SI2: CODESSA; Average structural information_2, a structural descriptor (0.35 to 0.92)
- 47 Av. BO: CODESSA; Average bond order (0.96 to 1.13)
- 57 48 Kier FI: CODESSA; Kier flexibility index (1.25 to 13.94) 58

1		
2		
3	1	
4	2	
5	2	
6	5	
7	4	
8	5	
9	6	
10	7	Schiff base + pro-Schiff base
11	8	
12	9	SSP (-0.880 to 2.001)
13	10	HS6: winMolconn: Hydrogen atom level HE-state for hydrogen atom 6 (0 to 1.391)
14	11	dx2: winMolconn: 2 nd Order connectivity index difference between a molecule and its
15	12	unbranched isomer (0 to 2 588)
16	12	E sol: MOE: Solvation energy (20.623 to 4.438)
17	14	E_{501} MOE, Solvation energy (-20.025 to -4.456) Vior EL: CODESSA : Vior flowibility index (1.25 to 16.57)
18	14	NET FI. CODESSA, KIEI HEXIOIIITY IIIdex $(1.25 \text{ to } 10.57)$
19	15	DPSAT: CODESSA; Difference in positive and negative partial surface areas (-100.41 to
20	16	563.06)
21	17	Av. valency: CODESSA; Average valency (3.63 to 4.47)
22	18	Rel. no. O atoms: CODESSA; Relative number of oxygen atoms (0 to 0.50)
23	19	
24	20	S _N 2
25	21	
26	22	SSP (-0.377 to 3.700)
27	23	S14 [•] winMolconn [•] Atom level E-state for atom 14 (-3 234 to 11 013)
28	24	Si H, winiferenti, Friend Peter D state for atom $1 + (5.25 + 6011.015)$ Si CH ₂ : winMoleonn: E-state for =CH ₂ carbon atoms (0 to 7 701)
29	24	yun0: winMoleonn: 0th order valence noth molecular connectivity (0 to 0 506)
30	25	acC2C2 a win Malaanna Dand trop E state for single hand hetween unsubstituted earbon and
31	26	eaC2C5a. winworconn, Bond-type E-state for single bond between unsubstituted carbon and
32	27	carbon with three aromatic neighbours (0 to 12.937)
33	28	FASA-: MOE; Fractional accessible surface area of all atoms with negative partial charge
34	29	(0.103 to 0.673)
35	30	PEOE_VSA_FPOS: MOE; Fractional positive van der Waals surface area (0.265 to 0.775)
30	31	MNDO_HOMO: MOE; Energy of the highest occupied molecular orbital calculated using
37	32	the MNDO Hamiltonian [MOPAC] (-12.102 to -8.237)
38	33	
39	34	Acyl transfer
40	35	
41	36	SSP (0.075 to 3.860)
42	37	S14: Winmoleonn: Hydrogen atom level HE-state for hydrogen atom 14 (0 to 2 749)
40	20	US16: Winmeleonn: Hydrogen atom level HE state for hydrogen atom 16 (0 to 2.74))
45	20	IS10. Winnolcom, Hydrogen atom level HE-state for hydrogen atom 10 (0 to 2.711)
46	39	HS1/: winmoleonn; Hydrogen atom level HE-state for hydrogen atom 1/ (0 to 1.514)
47	40	HS29: Winmolconn; Hydrogen atom level HE-state for hydrogen atom 29 (0 to 2.898)
48	41	
49	42	Oxidation potential
50	43	
51	44	SSP (-0.980 to 0.695)
52	45	vsurf_DD12 : MOE; Contact distances of vsurf_DDmin (3 descriptors) (0.500 to 7.697)
53	46	vsurf DD23 : MOE; Contact distances of vsurf DDmin (3 descriptors) (0.500 to 6.819)
54	47	
55		
56		
57		
58		
59		

1 Table 4. Comparison of statistical quality of full data-set QSARs

•

Category	All	MA	рМА	SB	SB+pSB	S _N 2	Acyl	OxPot
Equation	1	2	5	8	11	14	17	20
n	204	45	32	35	40	45	22	11
Descriptors	6	6	5	7	7	7	4	2
R^2	0.496	0.856	0.858	0.837	0.850	0.852	0.921	0.930
R ² _{adj}	0.480	0.834	0.831	0.795	0.817	0.823	0.902	0.912
Q^2	0.459	0.793	0.790	0.644	0.781	0.796	0.886	0.856
S	0.689	0.358	0.349	0.259	0.233	0.381	0.304	0.156
F	32.4	37.8	31.3	19.9	25.9	30.3	49.5	52.8

