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 ABSTRACT 

 

High energy needs and environmental concerns associated with fossil fuels have 

raised the demand for efficient and clean alternatives of power generation. Solar cell 

technology is one of the most promising options of reliable renewable power sources 

despite high costs. Thin film solar cells offer the potential for reduction in the cost per 

kilowatt-hour due to the lower material usage. Nevertheless, most thin film solar cells 

suffer from low efficiency, though advancements in the science of near field radiation 

have led to substantial improvements in their optical efficiency. Many design challenges 

remain to be overcome for the wide-scale commercialization of thin film solar cells. In 

this dissertation, a numerical study is conducted for optical, optoelectrical and scattering 

performance enhancement of subwavelength optical devices (i.e., thin film solar cells and 

light trapping nanoparticles). The proposed design framework of thin film solar cells is 

based on learning based optimization and characterization methods, which utilize 

approximations of time consuming simulations. Additionally, a free form nanoparticle 

design procedure using evolutionary shape optimization is detailed. 

The background of thin film solar cells and a comprehensive literature review of 

the thin film solar cell design approaches are provided in Chapters 2 and 3, respectively. 

The optical enhancement of thin film solar cells using nanoparticles with different shapes 

is studied in Chapter 4. In Chapter 5, an approximate formulation for optoelectrical 

efficiency of thin film solar cells is developed to accelerate the design optimization. The 

learning based design methodology that is introduced in Chapter 5 is further improved in 
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Chapter 6 using a knowledge transfer concept (also known as transfer learning). In this 

chapter, multiple sets of material combinations are optimized and compared with each 

other in terms of their optoelectrical efficiencies. In Chapter 7, nanoparticles are designed 

for maximum scattering, which is desired for enhanced optical performance, using a 

nonparametric evolutionary design method. In Chapter 8, a predictive model for scattering 

of arbitrarily shaped nanoparticles using descriptive geometric features is proposed. 

Overall, this dissertation has led to significant contributions in the field of thin film 

solar cell design. The results show that the computational burden of the thin film solar cell 

design can be overcome significantly without sacrificing accuracy. Furthermore, the 

design methods developed for this dissertation can easily be transferred to other 

engineering areas involving repetitive, time consuming simulations for design 

optimization, such as other photonic design problems and integrated circuit design. 
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g Generation rate, gradient 

𝐺 The coordinates of polygon centroid 

ℎ Planck's constant 

H Magnetic field 

H Hessian 

𝐼1.5𝐴𝑀 Standard terrestrial solar spectrum 
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𝐽 Current density 

𝐽𝑠𝑐 Short circuit current density 

𝑘 Imaginary part of the refractive index, wave vector 

𝐾 Number of transfer cases 

𝑘𝐵 Boltzmann constant 

𝐿 Number of NN layers 

𝑙𝑦 The ratio of the perimeter of the bounding rectangle located along 

x axis to the actual shape perimeter 

𝐿𝐷 Diffusion length 

𝐿𝛿 Side length of a bounding box tilted with an angle 𝛿 

𝑚𝑝𝑞 (𝑝, 𝑞)th central moment 

𝑛 Number of folds, sample size 
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𝑁𝑘 Neighborhood of kth cell 

𝑁𝑝 Number of absorbed photons 

𝑛𝑑 Number of boundary points of a polygon 
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𝑁𝑖 Number of incident photons 

P Dipole moment 

P Poynting vector, periodicity, cartesian coordinates of a boundary 

point, perimeter 
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p Normalized real part of Poynting vector 

ℙ𝑐 Collection probability 

𝑃𝑒,𝑠,𝑎 Power extincted, scattered and absorbed 

𝑃𝑖𝑛 Power of incoming photons 

𝑃𝑚𝑎𝑥   Maximum power point of PV 

𝑝𝑛 Normalized perimeter 

𝑞 Elementary charge 
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r Recombination rate 

𝑟 Radius, Pearson correlation coefficient 

𝑅 Neighborhood size 

𝑅𝑖 Number of neurons in the ith layer of neural networks 

𝑅𝑖
𝑘 Number of neurons in the ith layer of neural networks of the kth 

transfer case 

𝑠 Spacing 

𝑠𝑑 Directional sharpness in the vicinity of 𝑑 direction 

𝑇 Absolute temperature 

𝑡 Thickness, computation time 

𝑉 Volume, the cartesian coordinates of a polygon vertex 

v Vectorized form of Weight matrices 

𝑉𝑜𝑐 Open circuit voltage 

Wi Weight matrix of the ith layer of a NN 
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𝑤𝑘 Weight of the kth transfer case 

x Solar cell geometry, optimization solution 

𝑥, 𝑦, 𝑧 Spatial location 

𝐱𝐋 Lower bound of optimization 

𝐱𝐔 Upper bound of optimization 

𝐱∗ New data point for prediction 

𝐱𝐛 Bare geometry 

𝐱𝐩 Plasmonic geometry 

𝐱𝐫 Random geometry 

XT Inputs of training set for Gaussian process 

𝐱𝐓𝐋 Solution of transfer case 

𝐲∗ Predicted output by GP 

𝐲𝟎 The input vector of NN 

𝐲𝐢 Output of ith layer of NN 

𝑦𝑇 Output of training set of GP 

𝑦𝑡 Target output 

Greek Letters 

𝛼 Absorptivity, polarizability, line step, Bayesian regularization 

parameter 

𝛽 Bayesian regularization parameter 

𝛾 The effective number of parameters, orientation angle 

𝜀 Relative dielectric constant, error 
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𝜀0 Permittivity of vacuum  

𝜀𝑖𝑚 Imaginary part of the dielectric constant 

𝜀𝑚 Dielectric function of host medium 

𝜂𝐴 Absorption efficiency 

𝜂𝑒 External quantum efficiency 

𝜂𝐼 Internal quantum efficiency 

𝜂𝑝𝑞 (𝑝, 𝑞)th scaled moment 

𝜅 Exploration-exploitation tradeoff parameter 

𝜆 Wavelength, eigenvalues of the Hessian matrix 

𝜇 Mobility, mean 

𝜇0  Permeability of vacuum 

𝜇𝑛,𝑝 Mobility of electron and holes 

𝜇𝑟 Mean radius of a polygon 

𝜈 Photon frequency 

𝜑 Similarity function 

𝜙𝑘 kth moment invariant 

𝜙𝑒,1, 𝜙𝑒,4 1st and 4th order elongation 

Ψ Radial coordinates of a polygon vertex 

𝜌 Spearman correlation coefficient, density function 

𝜌𝑑 Directional perimeter in the vicinity of 𝑑 direction 

𝜎 Standard deviation 
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𝜏 Carrier lifetime 

𝜏𝑥,𝑚𝑎𝑥 The ratio of the shape extends on the y axis to the maximum shape 

extend along any direction 

𝜃 Incident angle 

𝜉 Shape factor 

𝜉𝛼 Coverage angle from an observer far from the shape 

𝜉𝑐 Compactness 

𝜉𝑒 Eccentricity 

𝜉𝑟 Rectangularity 

𝜉𝑣 The ratio of the visible vertices of a polygon from an observer to 

the total number of vertices 

Abbreviations 

ANN Artificial neural networks 

DSSC Dye synthesized solar cells 

EF Optical enhancement factor 

EIA U.S. Energy Information Administration 

EQE External quantum efficiency 

FDTD Finite difference time domain 

FF Fill factor 

GA Genetic algorithm 

GPBO Gaussian Process Bayesian Optimization 

IQE Internal quantum efficiency 
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LCOE Levelized cost of electricity 

MSE Mean squared error 

NREL National Renewable Energy Laboratory 

OSC Organic solar cell 

PCE Power conversion efficiency 

PSC Perovskite solar cells 

PSO Particle swarm optimization 

QN Quasi Newton algorithm 

SA Simulated annealing 

SSE Sum of squared error 

TCO Transparent conducting oxide 

TL Transfer learning 
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1. INTRODUCTION 

 

The Sun is the source of all life on Earth. Every single mechanism on this planet 

owes its existence to the light emitted by the Sun. All the energy from the Sun reaches the 

Earth in the form of electromagnetic waves [1]. This is known as electromagnetic 

radiation, which is the most common long distance energy transport mechanism. In fact, 

the Sun is not the only source of electromagnetic radiation. Every object with a positive 

temperature (Kelvin) emits electromagnetic radiation. Humans may sense this radiation as 

heat or light, depending on its wavelength and intensity. Although radiation is negligible 

in some systems from an engineering perspective, its measurement and control are crucial 

for many other applications. For example, the only possible energy transport mode is 

radiation in space applications since a medium is not required for the propagation of 

electromagnetic waves. That is why satellites are designed to utilize thermal radiation for 

temperature regulation, which is powered by an array of solar panels. Industrial furnaces 

and internal combustion engines are other examples in which radiation should be 

accurately modeled. Furthermore, radiation is also crucial in several natural and human-

made events, such as fires, material processing, laser-tissue interaction, biomedical 

devices, remote sensing, and so on. 

One of the most important factors in electromagnetic radiation modeling is the size 

of the object interacting with the light. When the object is large compared to the 

wavelength of the light, the radiation problem can be solved through (semi)-analytical 

approximations, such as geometric optics and ray tracing [1]. When the dimensions of the 
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interacting object is comparable to or smaller than the wavelength of the light, these 

approximations fail to express the interaction mechanisms, and a more in-depth 

electromagnetics theory must be used. At atomic scales, there are also quantum physics 

effects that must be invoked and studied to render an accurate picture. 

Radiation at small length scale objects falls in a category called near field radiation 

problems. Even though this phenomenon has been known for more than a century, the 

engineered realization of near field radiation in practical applications depends on recent 

progress in nanotechnology. Several applications of the near field radiation are listed 

below: 

• Radiative cooling, 

• Thin film solar cells, 

• Near field thermophotovoltaics, 

• Cancer therapy, 

• Thermal control, 

• Thermal imaging. 

Despite the increase in the studies conducted on these subjects in recent years, 

there are still many challenges to be addressed. For instance, the overly complex 

relationship between the radiative properties and the physical properties, such as size, 

geometry and material, requires detailed modeling to understand near field radiation. 

Additionally, realizing small scale devices necessitates precise and inexpensive 

fabrication techniques. Addressing these challenges will make the widespread 

commercialization of the devices utilizing near field radiation more feasible. 
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Solar cell technology is a prominent application of electromagnetic radiation due 

to the ever-increasing sustainable energy demand and efforts to decrease carbon 

emissions. The status quo in global electricity production and thin film solar cells is 

discussed in the next two sections of this chapter. Afterwards, the motivation, objective 

and the organization of the dissertation are laid out in Sections 1.3, 1.4, and 1.5, 

respectively. 

 Current Status of Electricity Production 

The energy demand per capita and the world population have both been increasing 

at an unprecedented rate due to industrialization since the 1800s. Among different sources, 

fossil fuels (e.g., coal, oil and natural gas) are the primary means of energy production 

despite their environmental harms. Fossil fuels are non-renewable energy sources and the 

largest source of greenhouse gas emission [2,3]. Nevertheless, their maturity and low cost 

make them popular in electricity production [4]. The use of fossil fuels in electricity 

production can be decreased if efficient and cheap renewable technologies are developed. 

Energy research has focused on developing new systems and improving the existing 

alternative technologies in terms of cost, efficiency, and lifetime. Wind, solar 

(photovoltaics and solar thermal), geothermal and hydropower are examples of renewable 

energy sources that can be used as alternatives to fossil fuels for a carbon-free economy 

in the future. 

The fraction of electricity produced by photovoltaics (PV) in total electricity 

production has been increasing since the advent of the first commercial silicon based solar 

cells. It is predicted that PV will be the leading renewable energy source due to the 
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availability of its power source (Sun), decrease in price and improvement in efficiency [5–

7]. The chart of electricity generation in the United States by fuel type is presented in 

Figure 1.1, which is taken from the U.S. Energy Information Administration (EIA) [8]. As 

of 2019, the share of all renewables in the electricity generation is less than 20% and 3% 

of all electricity is generated by solar systems. Solar power is expected to be the leading 

renewable energy source by 2050, with a 17% share in all electricity generation. These 

expectations unequivocally rely on the efforts of solar researchers around the world. 

Thanks to the continued research on solar power, the anticipated market increase can even 

exceed the expectations. 

 

 

 

 
Figure 1.1. Historical and projected electricity generation by fuel. Left: all methods. 

Right: renewable methods. Adapted from [8]. 

 

 

 

 Thin Film Solar Cells 

The history of solar cells begins with the discovery of the photovoltaic effect in 

the early 1900s. The first reported silicon solar cell did not emerge until 1941 and had an 
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efficiency of less than 1% [9]. The efficiency increased rapidly and reached 15% with 

phosphorus and boron doping in the 1970s. As of 2018, the efficiency of crystalline silicon 

solar cells exceeded 25% [10]. Along with the development of silicon solar cells, 

crystalline gallium arsenide has also been demonstrated as an efficient type of solar cell 

with a record efficiency of 27.8%. Despite the excellent efficiencies of crystalline solar 

cells, they suffer from high fabrication costs. On the other hand, thin film solar cells 

(TFSCs) are strong rivals to conventional solar cells due to their lower material and 

fabrication costs and light-weight [11]. TFSCs can provide unique optical properties 

because the photon absorption at near field strongly depends on the thin film geometry. 

A thin film is a material layer smaller than or comparable to the observable light 

wavelength, which is created by random growth and nucleation processes of molecular 

species on a substrate. The physical and chemical properties of such materials depend on 

the deposition parameters and the film thickness [7]. Together, these parameters provide 

tunable properties for various applications. For solar cell applications, thin film solar cells 

are attractive because low material costs per-watt of energy conversion can be achieved. 

Other attractive features of TFSCs are the tailorable radiative properties for unique 

applications (e.g., flexible or colored solar cells for windows, curved surfaces) due to the 

diversity in the choice of shapes, sizes and substrates [7,12]. However, TFSCs suffer from 

low average efficiencies compared to conventional solar cells, and this issue needs to be 

addressed for wide-scale commercialization. 

TFSCs require a rigorous design procedure in order to reach high efficiencies with 

low cost and high stability. The strong yet complicated dependence of TFSCs’ 
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performance on the structural and material design necessitates careful optimization 

routines to reach the desired objectives. However, the design process of TFSC is not 

straightforward due to the lack of proper and comprehensive modeling tools. The existing 

tools are also generally computationally intense. More details on the physical background 

and design approaches to TFSC and supplementary structures will be given in the 

remainder of this thesis in Chapters 2 and 3. 

 Motivation of the Dissertation 

The design of TFSCs and light trapping structures has been a subject of research 

since the invention of solar cells. The early design of these structures mostly relied on 

purely experimental approaches. The improvements in the computational resources have 

made computational modeling techniques feasible to be used in TFSC design and 

optimization. The most common approaches to the TFSC design, as well as examples from 

the literature, are summarized in Table 1.1. The details of these methods and the discussion 

of examples can be found in Chapter 3. 

Learning based methods have also been used in TFSC design, but they are not as 

common as the methods summarized in Table 1.1. Recent studies have applied learning 

based techniques in material design [165], [166]. The use of machine learning methods in 

TFSC design problems is a relatively new concept where most of the examples have been 

proposed in the last few years [166], [172], [173]. Nevertheless, these methods have been 

demonstrated to be useful by the researchers in the field of optical devices [174]–[182]. 

Although these studies do not directly target photovoltaic devices, they provide evidence 

for the potential of learning based methods in TFSC design problems. 
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Table 1.1. Different methods used in TFSC design and examples from literature referred 

to in this dissertation. 

Method References 

Exhaustive search [73], [89] – [101] 

Direct search  [64], [103] – [105] 

Gradient methods [108] – [113] 

Heuristic methods [119] – [143] 

 

 

 

Overall, an improved design optimization framework can accelerate the 

commercialization of inexpensive and high efficiency thin film solar cells. Despite the 

substantial literature on the numerical optimization of solar cells, the potential of learning 

based and evolutionary methods have not been thoroughly assessed. This dissertation 

investigates the usage of learning based techniques and evolutionary methods to achieve 

a time-efficient and highly accurate design. This dissertation also studies the effects of 

structural and geometric properties of thin film solar cells and light trapping particles on 

their radiative responses.  

 Objective of the Dissertation 

The main objective of this dissertation is to propose time efficient and accurate 

approaches for modeling, design and optimization of thin film solar cells and 

subwavelength structures for higher light-to-electricity conversion efficiencies. In this 

dissertation, the following technical questions are addressed: 

1) How to reduce the computational cost of the conventional optimization methods 

used in TFSC design? 

2) What is the effect of nanoparticle shape on the optical efficiency of TFSC? 
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3) How to approximate the optoelectrical efficiency of TFSC so optimization can be 

done faster? 

4) How to incorporate the knowledge from previous design problems into the 

current design? 

5) How to design free form (nonparametric) shapes? 

6) How to characterize the radiative properties of nanoparticles based on their 

shapes? 

 Organization of the Dissertation 

The rest of the dissertation is organized as follows: In Chapter 2, the background 

of solar energy harvesting, specifically thin film solar cells and light trapping mechanisms, 

are explained. Chapter 3 provides a detailed review of design and optimization approaches 

in TFSC design with the mathematical background of related algorithms. Chapter 4 details 

a data driven optimization procedure for two case studies of absorption enhancement in 

thin film organic solar cells. In the first case (Section 4.1), the geometrical features of a 

three-layer cell with spherical nanoparticles are optimized. In the second case (Section 

4.2), a five-layer cell with elliptical nanoparticles is optimized for maximum absorption 

enhancement. In Chapter 5, an approximate optoelectrical efficiency metric is proposed 

and validated with the experiments in the literature. This metric is used as the objective 

function in the geometrical optimization of a five-layer planar cell. Chapter 6 is devoted 

to improving the design procedure in Chapter 5 by introducing the knowledge transfer 

concept. In Chapter 7, a nonparametric light trapping design approach based on topology 

optimization is used for the maximum light scattering, which is the underlying mechanism 
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of light trapping. Chapter 8 details a data driven characterization methodology for the 

radiative properties of nanoparticles based on their geometric features. Conclusions and 

suggestions for future work are outlined in Chapter 9. 

The question 1 in Section 1.4 is addressed in Chapters 4, 5 and 6. Chapter 4 also 

aims to answer the question 2. In Chapter 5, the question 3 is addressed. Chapter 6 aims 

to answer question 4. Chapter 7 addresses the question 5. Finally, Chapter 8 addresses the 

question 6. 
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2. THIN FILM SOLAR CELLS 

 

This chapter is devoted to the theory, applications, and modeling guidelines of the 

thin film solar cells. First, the different categories of solar cells from conventional to 

emerging types are reviewed. And a brief overview of the current state of the solar cell 

research is presented. In Section 2.2, the performance metrics of solar cells are presented. 

Next, the subwavelength light trapping methods for absorption enhancement are reviewed 

and underlying physical mechanisms are discussed. In Section 2.5, the optical modeling 

of TFSC is explained with an emphasis on computational methods. Finally, the chapter is 

summarized and the relevance of solar cell metrics to the present study is discussed in the 

last section. 

 Classification of Solar Cells 

The solar cells are mainly categorized according to the device structure and 

absorber material. Device structure refers to wafer based and thin film technologies where 

the same material can be used in a different solar cell type, such as silicon. Although thin 

film solar cells have been studied along with conventional solar cells, novel and somewhat 

unusual materials have also been utilized as the absorber layer in TFSCs, particularly in 

emerging types. This trend has accelerated smart material composition techniques, e.g. 

based on machine learning. This classification is presented in Figure 2.1. 
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Figure 2.1. Classification of solar cells based on technology and primary material [12]. 

 

 

 

The earliest examples of thin film solar cells were proposed as early as the 1950s 

and became a potential alternative to conventional silicon solar cells over the years. 

Amorphous silicon (a-Si) solar cells provide low manufacturing costs compared to silicon 

but suffer from low efficiency. CdTe, CIGS and CZTS offer relatively high efficiencies 

(~23%), while there are several drawbacks to be addressed before commercializing, such 

as toxicity of cadmium and rarity of telluride (i.e., high material cost). 

The novel, or emerging, materials have been a subject of semiconductor research 

in the last decades in order to find a reliable and efficient alternative to silicon. One of the 

most attractive features of these novel materials is that they provide tunable physical 

properties because of nanostructured characteristics. The solar cells with novel materials 

(i.e. dye sensitized, perovskite, organic, quantum dot)  have only been suggested in thin 
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film format due to the advantages of thin film technology. The main disadvantage of these 

materials is the immaturity of their technology and the low efficiency compared to 

conventional solar cells. On the other hand, given the research and development efforts, 

their efficiency is expected to increase rapidly in the next decades. 

One of the earliest examples of the emerging solar cells is the dye-synthesized 

solar cell (DSSC) [13,14]. In general, DSSC comprises a semiconductor film, a 

synthesizer adsorbed onto the semiconductor surface, an electrode stacked between a 

transparent conductive oxide (TCO) and a cathode [14]. DSSC is fundamentally different 

from the solid state solar cell devices in terms of carrier transfer because of using liquid 

electrodes [12]. DSSC provides the advantage of low cost, compatibility with printing 

methods and flexibility, whereas their long-term stability, low absorptivity, high 

recombination rates are the challenges to be addressed. 

Perovskite solar cells (PSC) were first considered to be a capable synthesizer of a 

DSSC [15,16] until it was realized that perovskite is sufficient itself to absorb light and 

generate carriers [17]. Perovskite is a material with a general formula of ABX3 where A 

is the organic or inorganic monovalent cation, B is the bivalent cation and X is the halide 

atom. The most common molecule used in photovoltaic applications is organic metal 

halides methylammonium lead iodide (CH3NH3PbI3) [18]. There are also attempts to 

develop lead-free perovskite solar cells, using tin (Sn) and bismuth (Bi) based molecules 

to eliminate potential harm due to lead. The power conversion efficiency of PSC has 

increased from ~15% in 2013 to ~25% in 2020 [10] and is expected to reach theoretical 

limits with further optical and electrical enhancements [19–21]. Furthermore, PSCs offer 
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more straightforward processing than silicon solar cells, and have lower cost than quantum 

dot solar cells. Nevertheless, long-term stability and toxicity due to lead are the issues to 

be solved before commercialization. 

Another class of emerging solar cells is organic solar cells (OSC). Research on 

organic solar cells (OSC) has a three decade history, with the first mature examples studied 

and presented in the 1990s [22,23]. Interest in these devices has led to a record energy 

conversion efficiency of 17% as of 2020 [10], exceeding that of DSSC (12%). Although 

the power conversion efficiency of OSCs is lower than their inorganic counterparts, they 

provide low cost, ease of manufacturing, mechanical flexibility and environmental 

friendliness [24,25]. Organic molecules are known to have high spectral (radiative) 

absorptivity; however, their narrow absorption band results in poor carrier generation rate. 

The formal definition of generation rate is provided in Chapter 5. Bulk heterojunction 

(BHJ) OSC devices, which consist of a blend of the donor and acceptor components, 

provide improved optical-electrical conversion efficiency compared to the bilayer devices 

consisting of a stack of p- and n-type semiconductors by providing a large interfacial area 

between donor and acceptor [26]. The blend mostly consists of a conjugated polymer 

donor and a fullerene derivative acceptor. P3HT:PCBM is one of the most commonly used 

blends in the active layer of the solar cell due to commercial availability and guaranteed 

stability [27]. 

The widely accepted chart for record efficiencies by National Renewable Energy 

Laboratory (NREL) is presented in Figure 2.2. 
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Figure 2.2. Record solar cell efficiencies chart. Adapted from [10]. 

 

 

 

 Basics of Solar Cells and Performance Metrics 

A solar cell is a device that converts the energy of photons to the electricity by the 

photovoltaic effect. The following steps must occur sequentially for a solar cell to work: 

1. Absorption of photons in a suitable material, 

2. Creation of charge carriers by breaking bonds between atoms, 

3. Separation of oppositely charged free carriers (electron-hole pair), 

4. Collection of photo-generated charge carriers through electrical contacts and 

their passage through an external circuit to create an electric current. 

A photon with energy higher than the bandgap (𝐸𝑔) of the semiconductor can be absorbed. 

Once absorbed, the photon can excite an electron and creates a positive charge, i.e., hole. 

Then the electron and hole start moving to the opposite directions based on drift and 
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diffusion mechanisms. The electrons move toward the n-type semiconductor, and the 

holes move toward the p-type semiconductor. These movements create an electrical 

potential difference, so they make charge unneutrally. However, if the electron does not 

travel fast enough, the recombination of electron and hole can occur. If the electrodes of 

the cells are connected to an external circuit, electricity will be generated. The fundamental 

mechanisms in this process are illustrated in Figure 2.3. 

 

 

 

 
(a) 

 
(b) 

 

Figure 2.3. Fundamental physical events in a solar cell. (a) carrier generation upon 

photon absorption, (b) transfer of the carriers for the current generation. 

 

 

 

In general, a solar cell consists of a semiconductor absorber, an antireflective 

coating and a back-metal contact. It is also quite common to use electron and hole transport 

layers (ETL and HTL) as interlayers for better carrier transport as well as refractive index 

smoothing  [28,29]. Common materials for the antireflective coating are indium tin oxide 
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(ITO), silicon nitride (Si3N4), fluorine doped tin oxide (FTO), silicon carbide (SiC) and 

silicon dioxide (SiO2). Metals, such as silver (Ag), gold (Au) and aluminum (Al), are used 

as the back contact due to their high conductivity and reflectivity. The most common 

choices for ETL and HTL layers are metal oxides, such as titanium dioxide (TiO2), zinc 

oxide (ZnO), molybdenum trioxide (MoO3), organic compounds, such as Spiro-

OMeTAD, PEDOT:PSS. 

The absorber is the main component of a solar cell where the photovoltaic effect occurs. 

Ideally, the absorber material of an efficient solar cell should be a direct bandgap 

semiconductor with a bandgap of (~1.5eV) with a high solar optical absorption (~105/cm), 

high quantum efficiency of excited carriers, long diffusion length, low recombination 

velocity, and should be able to form an excellent electronic junction with suitably 

compatible materials [7]. The solar cell classification in Figure 2.1 is proposed based on 

the absorber materials. 

Solar cell performance is highly related to the material properties, environment 

conditions (temperature, incoming light) and loss mechanisms in the solar cell. Losses 

take place at various steps during electricity generation. For example, the incoming 

photons might be reflected or transmitted through the solar cell, which are the optical 

losses associated with the solar cells. Furthermore, the absorbed photon may not create an 

electron hole pair, or the created electron hole pairs can recombine before the electron 

reaches the electric circuit. These loss mechanisms are summarized in Figure 2.4. The 

solar cell performance related to these losses is explained in the next sections. 



 

17 

 

 

(a) 

 

(b) 

Figure 2.4. Main loss mechanisms in a solar cell. (a) optical losses: reflection and 

transmission, (b) electrical losses: recombination of the carriers. 

 

 

 

2.2.1. Absorption Efficiency 

Light travels as an electromagnetic wave in the vacuum, with a phase velocity, 

known as the speed of light (𝑐0 = 299,792,458m s⁄ ). The quantum of an electromagnetic 

wave is called a photon, which can be described as an energy packet. A photon has no rest 

mass yet has photon energy of ℎ𝜈, where ℎ is Planck’s constant and 𝜈 is photon frequency. 

The interaction of a photon with the matter has been one of the most widely studied 

research areas in the last century due to many different applications, such as solar cells, 

light emitting diodes and optical communication. 

Light absorption is modeled by the electromagnetic theory. However, the modeling 

can be simplified under some circumstances. For example, when the dimensions of the 

structure are significantly larger than the operating wavelength, geometric optics 
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assumptions hold, and ray tracing formulations can be utilized. However, when the 

dimensions of the structures are comparable to or smaller than the wavelength, Maxwell’s 

electromagnetic equations explain the dynamics more accurately. Maxwell’s 

electromagnetic equations are a set of partial differential equations which comprise four 

individual laws of Gauss, Gauss magnetism, Faraday and Ampere [30]. Together, they 

explain the dynamics of electromagnetic wave propagation. These equations govern the 

behavior of electric and magnetic fields under various effects, such as electrical current or 

external electric field. In the case of solar cells, they explain the radiative (optical) 

behavior. Specifically, Faraday’s and Ampere’s laws are solved for nonmagnetic 

materials: 

 

𝜕𝐄

𝜕𝑡
=

1

𝜀0𝜀
 ∇ × 𝐇, 

𝜕𝐇

𝜕𝑡
= −

1

𝜇0
 ∇ × 𝐄, 

(2.1) 

where 𝐇 and 𝐄 are the magnetic and electric fields, respectively, 𝜀 is the relative dielectric 

constant, 𝜀0 is the permittivity of vacuum and 𝜇0 is the permeability of vacuum. 

The spectral absorptivity of a solar cell, which is the amount of power absorbed under unit 

illumination, is calculated from the electric field within the solution domain: 

 
𝛼(𝐱) = ∫ −

𝜋

𝜆
|𝐄|2𝜀𝑖𝑚(𝜆)d𝑉

 

𝑉

, 
(2.2) 

where 𝜀𝑖𝑚 is the imaginary part of the dielectric constant, 𝜆 is wavelength and 𝑉 is the 

volume of the absorber. The number of photons absorbed in a solar cell is an essential 

optical performance metric which is calculated as a function of the absorptivity as follows: 
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 𝑁𝑝(𝐱) =  ℎ𝑐 ∫ 𝜆 𝛼(𝐱, 𝜆) 𝐼(𝜆)𝑑𝜆
∞

−∞

, (2.3) 

where ℎ is the Planck’s constant, 𝑐 is the speed of light, 𝛼(𝐱, 𝜆) is the spectral absorptivity 

and 𝐼(𝜆) is the standard terrestrial irradiance spectrum. 𝐱 is the solar cell geometry. The 

above integration is done over wavelengths shorter than bandgap wavelength, 𝜆 < ℎ𝑐 𝐸𝐺⁄ . 

Then the absorption efficiency can be defined as the ratio of the number of absorbed 

photons to the number of photons incident on the solar cell: 

 𝜂𝐴 =
𝑁𝑝

𝑁𝑖
 =

1
ℎ𝑐 ∫ 𝜆 𝛼(𝑥, 𝜆) 𝐼(𝜆)𝑑𝜆

1
ℎ𝑐 ∫ 𝜆 𝐼(𝜆)𝑑𝜆

. (2.4) 

2.2.2. Recombination in Thin Film Solar Cells 

When an absorbed photon creates an electron-hole pair inside a semiconductor, a 

non-equilibrium state is obtained. Recombination occurs when the electron excited to the 

conduction band relaxes back to its thermal equilibrium to the valence band without 

completing the external circuit for electricity generation. Recombination is one of the main 

loss mechanisms in solar cells [31]. Recombination can occur inside the semiconductor, 

which is called bulk recombination, or at the surface or interfaces of the semiconductor, 

which is called surface recombination. There are three different types of bulk 

recombination: radiative, non-radiative and trap-assisted recombination. In radiative (or 

band-to-band) recombination, an electron from the conduction band combines with a hole 

in the valence band and emits a photon at band-gap energy. This is the primary 

recombination mechanism in the direct band-gap semiconductors, such as GaAs, but often 

negligible in the indirect semiconductors. Non-radiative recombination, a.k.a Auger 
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recombination, is very similar to radiative recombination, but instead of emitting the 

energy, an electron in the conduction band receives the energy. Auger recombination is 

significant in doped regions. Trap-assisted recombination, which is also called Shockley-

Read-Hall (SRH) recombination, is the dominant recombination mechanism in the indirect 

band-gap semiconductors. SRH recombination occurs mostly due to defect levels in a 

semiconductor. High recombination rates are observed at the surface and interfaces of 

solar cells since defects are mainly found at the interfaces (surface recombination). Special 

techniques, such as passivation, can eliminate surface recombination. 

Transport of charges from the absorber to the junctions is governed by drift 

diffusion equations [32–34]: 

 

𝐉𝐧 = 𝑞𝜇𝑛𝑛𝐄 + 𝑞𝐷𝑛∇𝑛, 

𝐉𝐩 = 𝑞𝜇𝑝𝑝𝐄 + 𝑞𝐷𝑝∇𝑝, 
(2.5) 

where 𝑛 and 𝑝 are densities of electron and hole, respectively. 𝐉𝐧,𝐩 is the current density 

in A m2⁄ , 𝜇𝑛,𝑝 is the mobility and 𝐷𝑛,𝑝 is the individual diffusivities of 𝑛 and 𝑝, 

respectively. 𝑞 is the elementary charge. Solving drift-diffusion equations requires 

Poisson’s equation (electrostatic potential) and current continuity equations: 

 

−∇ ∙ (−𝜀𝐄) = 𝑞(𝑝 − 𝑛), 

∇ ∙ 𝐉𝐧 = 𝑞(𝐠 − 𝐫), 

∇ ∙ 𝐉𝐩 = −𝑞(𝐠 − 𝐫), 

(2.6) 
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where 𝐠 and 𝐫 are the carrier generation and recombination rates, respectively. The 

recombination rate is estimated using different recombination mechanisms, mentioned 

previously. Drift diffusion equations are generally solved using computational methods. 

The generated carrier due to absorption in the absorber layer can only travel a distance, 

i.e., diffusion length, which depends on the diffusion coefficient and carrier lifetime: 

 𝐿𝐷 = √𝐷𝜏, (2.7) 

where 𝐷 (𝜇𝑘𝐵𝑇 𝑞⁄ ) is the diffusivity, 𝜇 is the mobility, 𝑘𝐵 is the Boltzmann constant, 𝑇 is 

the absolute temperature and 𝜏 is the carrier lifetime, which is defined as the average time 

a carrier travels before recombination. 𝐿𝐷 is the length that a carrier can travel before 

recombination. Thus, the design of a solar cell should consider 𝐿𝐷 as a design parameter. 

Although absorption increases with the thickness of the solar cell, charge collection no 

longer increases due to recombination. Therefore, recombination limits photocurrent and 

short circuit current, even if the absorption efficiency is high. Although electrical 

modeling through drift diffusion modeling provides exact performance information, 

approximate electrical modeling affixed to the optical modeling can advise overall 

performance. 

2.2.3. External Quantum Efficiency 

An efficient solar cell must provide desirable optical and electrical properties for 

overall performance. One of the performance metrics quantifying joint optical and 

electrical efficiency is the external quantum efficiency (EQE). EQE is defined as the ratio 
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of the number of generated electrons (𝑁𝑒) to the number of incident photons on the solar 

cell (𝑁𝑖): 

 𝜂𝑒 =
𝑁𝑒

𝑁𝑖
=

𝑁𝑝

𝑁𝑖

𝑁𝑒

𝑁𝑝
= 𝜂𝐴 𝜂𝐼 , (2.8) 

where 𝜂𝐴 is the absorption efficiency from equation (2.4). 𝜂𝐼 is called the internal quantum 

efficiency (IQE), which measures the electron generation from the absorbed photons. IQE 

and EQE are mostly measured experimentally in order to calculate short circuit current 

density [35]. There are numerous examples of experimental measurements of IQE and 

EQE for solar cells. For example, Thouti et al.[36] measured IQE of a textured silicon 

solar cell to estimate the effective diffusion length due to the resonance effect of silver 

nanoparticles. There have also been attempts at obtaining analytical expressions for the 

quantity. Ferrero et al. [37] proposed a method to calculate EQE of photodiodes based on 

Beer’s law for absorption and Shockley–Read–Hall recombination. The structure is 

divided into front, space-charge (depletion), and rear regions and treated differently 

regarding recombination. Dibb et al. [38] approximated the collection model as a step 

function, which is unity in the depletion region and zero elsewhere. In these two theoretical 

models, the exact knowledge of the dimensions of the depletion zone and p and n layers 

are required. In [39,40], Xue et al. developed a probabilistic EQE model preserving the 

dependence of charge collection probability to the absorber thickness and diffusion length, 

but without knowledge of the depletion zone. 
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2.2.4. Power Conversion Efficiency 

The ultimate solar cell efficiency is calculated by the power conversion efficiency 

(PCE). The historical efficiency development presented in Figure 2.2 is given in terms of 

PCE, defined as follows: 

 

 𝑃𝐶𝐸 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

𝐹𝐹 × 𝐽𝑠𝑐 × 𝑉𝑜𝑐

𝑃𝑖𝑛
, (2.9) 

where 𝑃𝑚𝑎𝑥 is the maximum power point which corresponds to the maximum 

(Current × Voltage) value (indicated with mp in Figure 2.5) and 𝑃𝑖𝑛 is the power of 

incoming photons. 𝐽𝑠𝑐 is the short circuit current density, 𝑉𝑜𝑐 is the open-circuit voltage. 

Fill factor, 𝐹𝐹, is the ratio of the maximum power to the theoretical maximum 

(𝑃𝑚𝑎𝑥 𝐽𝑠𝑐𝑉𝑜𝑐⁄ ). 𝐹𝐹 can be visualized as the ratio of areas of the inner rectangle to the outer 

rectangle in Figure 2.5.  
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Figure 2.5. J-V (Current-voltage) characteristics of a solar cell. 
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The optical and electrical losses explained in the previous sections play an essential role 

in these parameters. Optical performance directly affects 𝐽𝑠𝑐. Furthermore, recombination 

has been shown to affect 𝑉𝑜𝑐 [41–43] and 𝐹𝐹 [44–46] in equation, thus it limits the overall 

solar cell efficiency. 

2.2.5. Other Performance Metrics 

In addition to the mentioned metrics in this section, other parameters can be used 

to quantify solar cell performance. Some of these metrics are listed below with a brief 

explanation: 

• Levelized cost of electricity (LCOE) quantifies the effects of the investment 

expenditures, annual total cost, operating costs, operational lifetime compared to the 

electricity production in its lifetime. 

• Energy yield compares the solar cell performance in its actual location compared to 

the standard test conditions, i.e., at an irradiance of 1,000 W m2⁄  and a module 

temperature of 25℃. 

• Reliability and stability of a solar cell are related to the degradation containing 

corrosion, delamination, breakage, cracking cells, and so on. These phenomena are 

caused by environmental factors such as temperature, humidity, irradiation, 

mechanical shock. Possible figures of merit under this category are 𝑇80 (20% PCE 

decay from initial PCE) and 𝜂1000 (PCE after 1000 h) [47] 
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 Light Trapping Techniques in Thin Film Solar Cells 

Light trapping is the general term used to describe mechanisms that manipulate the 

light to focus at a particular location. In solar cells, this mechanism is used to enhance the 

optical thickness of the absorber while keeping physical thickness unchanged. Despite the 

differences in the carrier generation and transfer in TFSC, they all require light trapping 

structures due to their poor absorption coefficients, especially near the band edge [48]. 

The earliest methods for light trapping aimed to increase the optical path length of the 

light by a flat or textured back reflector, periodic [49], and random surface gratings (Figure 

2.6). 

 

Figure 2.6. Light trapping mechanisms in conventional (thick) cells by increasing the 

optical path length [50]. 

 

 

 

In addition to the conventional methods such as using a back reflector and 

antireflecting coating, light trapping in TFSCs can be achieved by tailoring the optical 

properties of the materials utilizing light-material interaction. For example, textured back 

reflectors can be used, thus converting them into a diffraction grating (see Figure 2.7c). 

The diffraction gratings couple reflected light in the absorber [51,52], thus significantly 

increase the absorption of long wavelength photons. 
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(a) (b) (c)  

Figure 2.7. Light trapping mechanisms by plasmonics due to (a) multiple scattering, (b) 

localized surface plasmon resonances and (c) coupling of light to surface plasmon 

polaritons [53]. Adapted from [169]. 

 

 

 

Another technique for light trapping is the utilization of plasmonic effects in the 

solar cell. Plasmonics is an emerging area in material research which deals with the 

interaction of free electrons of metal with the electromagnetic waves. Plasmonic structures 

offer a unique physical mechanism to increase the optical thickness of the light absorbing 

media. For example, surface plasmons can be used for forward scattering, as shown in 

Figure 2.7a. When a small metal particle is placed close to the interface of two dielectrics, 

the light will more likely scatter into the material with larger permittivity. This 

phenomenon enables light to pass through the semiconductor several times if there is also 

a metal back reflector, thus enhances the optical thickness of the solar cell. Another 

mechanism to utilize plasmonic effects is that metallic nanoparticles embedded in 

semiconductors behave like an antenna where near field effects enhance the light 

absorption (Figure 2.7b). However, generated carriers can be accumulated near metallic 

particles; therefore, these particles are mostly coated with dielectric layers for avoiding 

recombination. 
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The interaction of light with metal surface results in a phenomenon called local 

surface plasmon resonance, which is the source of the optical enhancement. The metal 

nanoparticles create a strong near field enhancement mediated with the resonance 

scattering. When designed carefully, this scattering can be much larger than the absorption 

inside the nanoparticles, which contribute significantly to the solar cell performance. 

Furthermore, as the dielectric coating of the nanoparticles prevents the contact of metal 

and semiconductor, we can safely assume that metal nanoparticles do not cause additional 

recombination. 

 Light Scattering by Nanoparticles 

The unique optical properties of small particles have been a subject of extensive 

research since the late 19th century. If utilized and engineered properly, these properties 

can lead to the design of materials with desirable optical wideband or narrowband 

responses. In 1871, a study by Lord Rayleigh established a relationship between the 

scattering cross section of particles with size much smaller than the wavelength and light 

frequency and particle polarization [54]. Later, Gustav Mie provided a rigorous solution 

for optical scattering by spherical homogeneous particles of arbitrary size and material 

properties in a homogeneous medium on the basis of Maxwell’s electromagnetic theory 

[1,55,56]. Following those preliminary studies, the continuing interest in light scattering 

in the last century has provided guidelines for many engineering design applications based 

on theoretical studies and appropriate numerical and computational methods. These 

applications include cellular imaging [57], cancer therapy [58], optical antennas [54], light 

emitting diodes [59] in addition to the TFSCs [60]. 
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Proper light scattering can lead to an important phenomenon called light trapping [61], 

which is absorption enhancement in a medium without increasing the physical thickness 

of the absorber. Recently, surface texturing [62], diffraction grating [63], and random 

nanoparticles [64] have been demonstrated to facilitate light trapping in thin absorbers. 

Light scattering using nano scale designs has especially gained attention vis-à-vis 

plasmonic effects. The science of plasmonics deals with the interaction of free electrons 

of metal with the electromagnetic waves yielding charge oscillations [65]. The local 

electric field is strengthened due to the oscillations known as localized surface plasmons 

when excited by the incident light at a particular resonance frequency [66]. The plasmonic 

enhancement also translates to higher scattering, which is a function of the electric field. 

2.4.1. Effect of Particle Shape on Light Scattering  

The optical response of isolated nanoparticles to radiation is a highly complex 

function of the physical properties such as particle size, shape and material, as well as the 

characteristics of incident light (e.g., wavelength, polarization, angle, etc.). The radiative 

response profile can be characterized by multiple metrics, including the response strength, 

bandgap, stop band, bandwidth, resonance/peak frequency, number, location and range of 

peaks, etc. These characteristics are intertwined and adjustable via the choice of geometry 

and material. The tunability of the radiative spectrum makes the geometry design an 

attractive method for unique devices that utilize nanoparticles [67–69]. In some simplified 

cases, e.g., when the particle size is significantly smaller than the wavelength, the quasi 

static assumption holds, and the impact of the particle shape can be approximated via 

various shape factors [54,70,71]. For larger sized particles, Mie theory provides an 
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analytical solution to Maxwell’s equations. However, the solution obtained thereby is 

limited to spherical shapes [56], with a few limited extensions for nonspherical shapes 

[72,73].  

Nonspherical shapes are more polarizable along specific directions compared to a 

sphere, and light coupling strength and resonance frequencies vary for different particle 

shapes [70,74]. In the literature, there are various studies concerning the dependence of 

the radiative spectrum of common nonspherical shapes, such as triangles, cylinders, 

spheroids, and cuboids [75–80] as well as more exotic forms such as bipyramids [81], star 

and flower shapes [82], bowl and dumbbell shapes [83]. In [80], the optical spectra of 

different geometries, such as spheres, cubes, tetrahedra, and pyramids, were studied and 

distinct characteristics in the scattering and absorption responses due to the shape and size 

effects were characterized. In [79], it was shown that scattering spectra of cuboid shapes 

with rounded corners depend on the amount of rounding and can be manipulated by 

geometric changes. In [74], the peak absorption of a nanoparticle was found to be 

increasing with a higher number of sharp edges of the particle. Yet, one should note that 

a desired optical performance is not guaranteed with this indicator since the peak 

wavelength and the bandwidth are also important contributing factors. In another study 

focusing on the shape related variations in the optical spectra, Lombardi et al. [81] 

demonstrated that the electric field is localized around the sharp edges of the elongated 

nanostructures. In all these studies, the effect of the geometry on the optical properties was 

emphasized through known shapes, such as spheroids and polyhedrons. Nevertheless, the 
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possibilities are not limited to the basic shapes, and further improvements in the optical 

properties can be realizable by undiscovered geometries through rigorous design. 

2.4.2. Theory of Light Scattering 

The energy loss during the light-material interaction is called extinction and occurs 

due to absorption and scattering: 

 𝑃𝑒 = 𝑃𝑠 + 𝑃𝑎, (2.10) 

where 𝑃𝑒, 𝑃𝑠 and 𝑃𝑎 are the power extincted, scattered and absorbed, respectively. Dividing 

𝑃𝑒, 𝑃𝑠 and 𝑃𝑎 by the irradiance, 𝐼𝑜, extinction (𝐶𝑒), scattering (𝐶𝑠) and absorption (𝐶𝑎) cross 

sections are obtained: 

 𝐶𝑒 = 𝐶𝑠 + 𝐶𝑎. (2.11) 

These cross sections are not necessarily the physical cross sections, but rather wavelength 

dependent metrics that can be much larger than the physical values. This enhancement is 

sometimes quantified by the efficiency term defined as the ratio of the optical cross 

sections in equation (2.11) to the physical cross section: 

 𝑄𝑗 =
𝐶𝑗

𝐴𝑝
, (2.12) 

where 𝑗 is the index for extinction, scattering or absorption. Light material interaction is 

explained by the electromagnetic theory and Maxwell’s equations. Under certain 

circumstances, the solution can be greatly simplified and explicit, e.g., when the particle 

size is significantly smaller than the light wavelength, thus electrostatic approximations 

hold. Further assumptions for an explicit solution usually involve symmetry in particle 

shapes, e.g., Mie’s theory provides analytical solutions for sphere-like particles. The 
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optical cross sections can be calculated by solving Maxwell’s equations using different 

methods. These methods are explained next, along with the underlying physical 

assumptions. 

2.4.3. Quasi Static Approximation 

When the particle size is much smaller than the wavelength of the light, 

electrostatic approximations hold. This phenomenon is also known as Rayleigh scattering. 

In such cases, the induced dipole moment is expressed as the particle polarizability times 

the imposed electric field, 𝐏 = 𝛼𝐄 where particle polarizability is expressed as follows: 

 𝛼 = (1 + 𝜉)𝜀0𝑉 
𝜀 − 𝜀𝑚

𝜀 + 𝜉𝜀𝑚
, (2.13) 

where 𝑉 is the particle volume and 𝜀0, 𝜀𝑚 and 𝜀 are dielectric functions of vacuum, host 

medium and particle, respectively. 𝜉 is the shape factor which represents the dependence 

of the polarizability to the particle shape. For sphere, 𝜉 = 2 and equation (2.13) reduces 

to the Clasius-Mossotti relation [42]. The extinction and scattering cross sections are 

calculated from: 

 𝐶𝑒 = 𝑘 Im(𝛼), (2.14) 

 𝐶𝑠 =
𝑘4

6𝜋
 |𝛼|2, (2.15) 

where 𝑘 = 2𝜋√𝜀0 𝜆⁄  is the wave vector and Im(∙) and |∙| give the imaginary part and 

norm of a complex number, respectively. 

Despite the infinitesimal particle assumption, there are several approaches to 

correct the quasi-static approximation for particles of larger size, such as Modified Long 
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Wavelength Approximation, where the contributions of radiative damping and 

depolarization are also considered [84]. Although the quasi-static approximation does not 

hold as the scattering regime moves out of Rayleigh and particle shape deviates from a 

sphere, it provides insight on the effects of the particle shape, volume and surrounding 

medium on optical properties of particles. 

2.4.4. Mie Theory 

Gustav Mie obtained the analytical solution for optical scattering by spherical 

homogeneous particles with arbitrary size and material properties in a homogeneous 

medium based on Maxwell’s equations [1,55,56]. Specifically, the cross sections can be 

estimated as a series form: 

 𝐶𝑒 =
2𝜋

𝑘2
∑(2𝑛 + 1)Re(𝑎𝑛 + 𝑏𝑛)

∞ 

𝑛=1

, (2.16) 

 𝐶𝑠 =
2𝜋

𝑘2
∑(2𝑛 + 1)(|𝑎𝑛|

2 + |𝑏𝑛|
2)

∞ 

𝑛=1

, (2.17) 

where 𝑎𝑛 and 𝑏𝑛 are Mie coefficients [1,55,56]. Mie theorem was originally established 

for spheres. However, the solution was later adapted to nonspherical shapes such as 

ellipsoids and a few corner case generalizations. More complex shapes can be analyzed 

using computational methods such as the finite difference time domain (FDTD) algorithm. 

 Computational Methods for Optical Modeling of Thin Film Solar Cells 

Except for a few simple cases mentioned previously, Maxwell’s equations are 

solved using computational tools, such as Finite Difference Time Domain (FDTD), Finite 
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Element Method (FEM) and Fourier Modal Method (FMM). FDTD is one of the most 

widely used Maxwell’s equation solvers due to its accuracy and simplicity. 

As a comparison of FDTD method with an analytical problem, the well known Mie 

scattering problem is simulated with FDTD and compared with the theoretical values. In 

Figure 2.8, the scattering and absorption cross sections for a sphere of 50 nm radius are 

presented, and the results from FDTD and Mie theory are compared. 

2.5.1. Finite Difference Time Domain Method 

FDTD is one of the widely used methods to model electromagnetic field 

components in a solar cell due to its simplicity and accuracy [30,85–88]. FDTD solves 

Maxwell’s equations on a discrete spatial and temporal grid, which is called Yee’s cell 

(Figure 2.9), named after Kane Yee, who developed the FDTD method. Yee’s cell 

involves electric and magnetic field vectors along edges and perpendicular to the faces, 

respectively. The solution for electromagnetic equations is then obtained iteratively. The 

electric and magnetic fields on the solution domain are calculated by solving 

electromagnetic equations iteratively. The power crossing a plane, 𝑆 is then calculated by: 

 𝑃 =
1

2
∫Re(𝐄 × 𝐇) ∙ d𝑆

 

𝑆

 (2.18) 

where 𝐄 and 𝐇 are electric and magnetic fields computed from FDTD simulations. 
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Figure 2.8. Comparison of scattering cross sections obtained from FDTD simulations 

and Mie theory for a 50 nm silver sphere. 

 

 

 

 

Figure 2.9. Yee cell and placement of electric and magnetic field vectors. 

 

 

 

 Conclusion 

In this chapter, the background of solar cells is provided, and commonly used 

performance criteria and performance enhancement techniques are discussed. The 
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guidelines of TFSC design rely on these factors. For comprehensive performance analysis, 

optical and electrical modeling of TFSC is required. However, optical modeling alone, 

together with approximations, can provide valuable information on the solar cell operation 

without adding the computational cost of electrical simulations. Additionally, the 

environmental aspects of solar cell operation (e.g., reliability and stability) and higher 

level performance metrics (e.g., LCOE and energy yield) are not in the scope of the present 

study. 
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3. DESIGN OPTIMIZATION OF THIN FILM SOLAR CELLS USING NUMERICAL 

OPTIMIZATION 

 

In this chapter, optimization methods with different complexity and computational 

cost are explained, and examples in TFSC design are discussed. First, the general 

optimization problem is formulated and explained. In Figure 3.1, a classification of 

numerical optimization methods is presented, and specific techniques are listed under the 

corresponding class. The ones used in TFSC design problems are detailed in Sections 3.2- 

3.7 with a review of the examples from literature. In Section 3.8, the TFSC design 

approaches are summarized and discussed. 

 Optimization Problem 

Optimization is a branch of mathematics aiming to find the best value that an 

objective function 𝑓(𝐱) can take among the feasible values. Generally, an optimization 

problem is expressed as a minimization problem, and the algorithms are developed for 

minimization. Maximization can be considered as the minimization of −𝑓(𝐱). The 

objective of minimization problems is also referred to as the cost function 𝐶(𝐱). 

 

min
𝐱

𝑓(𝐱), 

𝑔(𝐱) ≤ 0, 
ℎ(𝐱) = 0, 

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈 , 

(3.1) 

where 𝑔(𝐱) and ℎ(𝐱) are the inequality and equality constraints. 𝑥𝐿 and 𝑥𝑈 are the lower 

and upper bounds, which are generally imposed by the problem. The feasible set of 

solutions is the set of all possible values satisfying the problem constraints and bounds. 
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Figure 3.1. Classification of numerical optimization techniques. 
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 Exhaustive Search 

3.2.1. Exhaustive Search Theory 

Exhaustive, or Brute force, search refers to enumerating all possible permutations 

of the design variables and evaluating outputs. Continuous variables can also be 

discretized to several intervals depending on the computational cost and desired accuracy. 

The advantage of the exhaustive search is that it is guaranteed to find the global optimum. 

However, the computational cost of calculating every possible input vector can be quite 

cumbersome. Although the design of several variables can be viable, the size of the input 

space exponentially grows as the number of variables increases. For example, if we 

discretize the input space by 5, 3 variables result in 125 different cases where 10 variables 

result in 9,765,625 different configurations. 

3.2.2. Exhaustive Search in TFSC Design 

Even though the exhaustive search has certain disadvantages, it has been widely 

used by researchers due to its ease of implementation and guarantee of finding optima. 

Jovanov et al. [73] designed periodically textured interfaces for amorphous silicon solar 

cells. The authors obtained the maps of short circuit current and optical losses with respect 

to the height and period of the interfacial textures. In [89], lumpy silver nanoparticles are 

designed for an ultra-thin lead halide perovskite solar cell for maximum absorption in 

order to decrease the use of toxic lead in perovskites. It was shown that the perovskite 

thickness could be reduced from 300 to 50 nm when nanoparticles are properly designed 

without sacrificing absorption. Agarvwal and Nair [90] studied the loss mechanisms in 
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perovskite solar cells and conducted a thickness optimization. Deparis et al. [91] designed 

pyramidal corrugated interfaces between a-Si and F-doped SnO2 transparent conductive 

oxide layer for improved absorption performance. Another study on interface corrugation 

is conducted by Dewan and Knipp [92]. In their study, integrated diffraction gratings were 

optimized for maximum short circuit current and quantum efficiency. Ferry et al. [93] 

demonstrated the spatial correlations for light trapping nanopatterns and mapped 

corresponding external quantum efficiencies. Wiesendanger et al. [94,95] studied the 

optimization of randomly and periodically textured thin film solar cells for improved short 

circuit current. Tsai et al. [96] presented a methodology to optimize the optoelectrical 

performance of thin film organic solar cells. In [97], various light trapping techniques are 

investigated for c-Si and a-Si thin absorbers for maximum possible short circuit current. 

Hou et al. [98] designed a two-dimensional spiral grating for thin film silicon solar cells 

for maximum absorption. Design based on the parametric search is also worth mentioning. 

In several studies, TFSC design has also been performed by changing one variable at a 

time to maximize solar cell performance [99–101]. 

These studies share a common feature: the design vector is not more than a few 

dimensions. Exhaustive search methods become computationally unwise, and advanced 

design optimization techniques should be considered for higher degrees of optimization 

problems. 
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 Direct Search 

3.3.1. Direct Search Theory 

Direct search is the generic name for the methods searching optimum without 

gradient information, such as random walk and pattern search. One should note that 

advanced random search methods, i.e., genetic algorithms, simulated annealing, and ant 

colony algorithms, are classified as heuristic methods as their search techniques are more 

sophisticated than those in this section. 

A random walk is a direct search method where the next iteration is selected 

randomly [102]. The next point is kept if the current function value is better (smaller in a 

minimization problem, larger otherwise) and discarded otherwise. Random walk methods 

do not presume a probability distribution and do not select the next iteration according to 

previous knowledge, resulting in getting trapped in local optima or long computation 

times.  

3.3.2. Direct Search in TFSC Design 

Although not as often as the heuristics, direct search methods have been used in 

TFSC design problems by several researchers. In [103], Lin and Povinelli designed an 

aperiodic nanowire solar cell using a random walk strategy starting from a periodic 

structure. The authors could obtain absorption enhancement compared to the thin film and 

optimized periodic nanowires. Van Lare and Polman [64] followed a similar random 

search approach to optimize the light trapping structure of an a-Si solar cell. They 

optimized random arrays of Mie scatterers for increased power spectral density. Sheng et 
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al. [104,105] designed various interface textures for silicon solar cells and compared their 

absorption enhancements. The authors optimized Fourier series shaped textures using a 

nonlinear, constrained optimization algorithm by linear approximation (COBYLA), which 

could provide light trapping beyond the Lambertian limit. 

 Gradient Based Algorithms 

3.4.1. Gradient Based Algorithms Theory 

Gradient based optimization algorithms utilize the convexity of the objective 

function through first (and second) derivatives. One of the first examples of these 

algorithms, gradient descent, was proposed by Cauchy as early as the 1800s [106]. 

Another method for gradient based optimization is Newton’s method, which is deduced 

from Taylor expansion of the function to be minimized. Gradient descent and Newton’s 

methods are first and second order methods due to the degrees of derivatives in their 

formulations, respectively. 

 

Steepest descent: 

Newton’s method: 

𝐱𝐤+𝟏 = 𝐱𝐤 + Δ𝐱, 

Δ𝐱 = −𝛼𝐠, 

Δ𝐱 = −H−1𝐠, 

(3.2) 

where 𝛼 is the line step, which is determined iteratively, g and H are the gradient and the 

Hessian of the objective function, respectively. Newton’s method takes only a single 

iteration to find the optimum of a perfectly convex function. Nonlinear functions are 

approximated convex near the vicinity of the current iteration, and the solution is updated 

every iteration. Generally, the Hessian is either unavailable (black box) or very costly to 



 

42 

 

compute; therefore, Hessian is calculated through approximation techniques, such as 

Broyden-Fletcher-Goldfarb-Shanno algorithm in Quasi-Newton methods (QN) [107]. 

3.4.2. Gradient Based Algorithms in TFSC Design 

Gradient based methods are not often used in TFSC design optimization since the 

objectives in TFSC calculations are usually black boxes that do not have explicit gradients. 

Nevertheless, gradient based methods have been found successful by several researchers. 

For example, Yu et al. [108] implemented a gradient based topology optimization (SIMP) 

to design efficient light trapping structures and compared it with the genetic algorithm. 

They concluded that SIMP provides a comparatively efficient solution with a relatively 

small computational cost. In [109], Baloch et al. performed a full device optimization of 

a multilayer solar cell for maximum power conversion efficiency via several optimization 

algorithms available in the Matlab toolbox. The authors stated that gradient based 

algorithms could provide computational efficiency without sacrificing accuracy since their 

objective was smooth. Razei et al. [110] utilized a sequential nonlinear programming 

algorithm to optimize an AZO/i-ZnO/CdS/CIGS/Mo solar cell for minimum reflectance. 

Although gradient based algorithms operate faster than other methods, their performance 

mostly relies on the objective function shape and the initial point. One approach to 

overcome this burden is multi start where several optimizations are performed starting 

from different initial points, but this can overturn the computational advantage of gradient 

based methods. Another approach is to hybridize global optimizers with gradient based 

methods to combine the global search ability of heuristics and computational efficiency 

and local search ability of the gradient based techniques. In [111–113], a simulated 
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annealing and BFGS quasi Newton hybrid algorithm was used to optimize nanostructured 

amorphous silicon solar cells for maximum absorption enhancement compared to the bare 

silicon. The hybrid algorithm is shown to outperform the individual optimizers. 

 Heuristic Algorithms 

3.5.1. Heuristic Algorithms Theory 

Heuristic algorithms are advanced randomized search methods depending on the 

function value instead of gradient and Hessian of the objective. Well known examples of 

this class are the genetic, or evolutionary algorithms, particle swarm optimization, and 

simulated annealing. 

The genetic algorithm [114] mimics the biological evolution that the individuals 

that are less fit to the environment are eliminated. The early studies of genetic algorithms 

in the 1970s were able to solve complex problems [115,116]. When the evolution concept 

is translated to optimization, the objective function is expressed as a “fitness”, and design 

vectors with less fitness are eliminated. The individuals in the population (sets of 

solutions) go through processes such as crossover to maintain the diversity and increase 

the likelihood of survival. The search begins with generating an initial random population 

and calculating their fitness (cost) values. Then individuals with the smallest fitness values 

are selected as elites and survive to form the next generation. Additional individuals are 

created by mutation and crossover operations on the parents (previous population). Each 

individual is represented as a binary “chromosome” consisting of “genes.” The flowchart 

of a simple genetic algorithm is presented in Figure 3.2. 
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Figure 3.2. Flowchart of genetic algorithm. 

 

 

 

Simulated annealing (SA) is a random search algorithm inspired by the annealing 

process of metals involving controlled cooling from high temperatures to reduce their 

defects. It was proposed by Kirkpatrick et al. [117] in the 1980s and has been used in 

various engineering optimization problems effectively. The method can select a worse 

candidate solution according to a probability calculated by the Metropolis criterion for a 

global search. 

 𝑝𝑘 = 1 + exp (
𝑓(𝐱𝑐𝑎𝑛𝑑) − 𝑓(𝐱𝐤))

𝑐𝑇𝑘
) (3.3) 

 The algorithm flow is summarized in Figure 3.3. 
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Figure 3.3. Flowchart of simulated annealing. 

 

 

 

Particle swarm optimization (PSO) is another heuristic search algorithm to solve 

nonlinear problems introduced by Kennedy et al. [118]. The idea behind PSO is to 

simulate the social foraging behavior of some animals such as birds and fish. In general, 

the particles (sets of solutions) are moved around in the design space according to rules 

developed by their and overall swarm’s best positions. The exploitation and exploration 

are maintained by the memory of the swarm and individual particles, respectively. 

3.5.2. Heuristic Algorithms in TFSC Design 

Genetic, or evolutionary, algorithms have been the most popular design approach 

in the last decade. Lin and Phillips [119] designed rectangular and arbitrarily shaped 
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gratings using a genetic algorithm for maximum quantum efficiency. In [120–122], the 

genetic algorithm is used to understand the energy coupling between metal nanoparticles 

and design photovoltaic cells with high absorptivity. As a result, they could achieve almost 

50% improvement compared to the planar cell. In another study, Lin et al. [123] designed 

a lithographically fabricable random binary mask using a genetic algorithm. Each bit is 

assigned 0 or 1 according to occupying material in the quasi-random grating design.  

Similarly, Wang et al. [124] designed the binary surface grating of an ultra-thin 

organic solar cell using a genetic algorithm. Compared to the planar design, 2400% 

absorption enhancement was obtained with the optimized structure, which is above three 

times the Yablanovitch limit. In a recent study, Gouvêa et al. [125] utilized a similar free 

geometry optimization approach for light trapping structures of a silicon solar cell using 

an evolutionary algorithm. In [126], Bittkau et al. studied the losses in a perovskite/c-Si 

tandem solar cells and designed an interlayer stack between subcells forming a Bragg 

reflector. The layer thicknesses were optimized for minimum losses, which resulted in an 

increase in short circuit current compared to optimized and arbitrary cells without 

interlayer. Muller et al. [127] demonstrated a comparison of quasi-random and 

periodically inverted pyramidal textures optimized by the genetic algorithm in terms of 

short circuit current of c-Si solar cells. In this design, realistic pseudo-random structures 

performed better than the periodic structures. 

In addition to the conventional genetic algorithm, different evolutionary 

algorithms have also been implemented in TFSC design problems. In [128], a modified 

evolutionary algorithm, average uniform algorithm (AUA), is used along with the genetic 
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algorithm to optimize ten layers of antireflective coating stack for minimum reflectance. 

AUA was shown to achieve a similar efficiency with a faster convergence rate compared 

to the genetic algorithm. Differential evolution has also been used in several TFSC design 

studies. For instance, Zhao et al. [129–131] demonstrated its use in designing a-Si TFSC 

with various light trapping and antireflective coating materials for maximum optical 

performance. Additionally, Solano et al. [132] conducted a design optimization study for 

tandem solar cells made of a-Si:H alloys using a differential evolution algorithm. The aim 

is to maximize absorption efficiency while current is matched enforced by Kirchhoff’s 

law. The differential evolution algorithm was also used by Zhou et al. [133] to design two 

level hierarchical particles for maximum possible short circuit current. 

Genetic algorithms are especially preferred when there are multiple objectives. For 

example, in [134,135], Aiello et al. introduced the reduced volume of silver as the 

secondary objective to TFSC design problem in order to minimize material cost. For this 

purpose, they implemented a multiobjective optimizer, parallel self-adaptive low-high 

evaluation-evolutionary algorithm (PSALHE-EA). 

Several researchers have also performed TFSC design optimization using 

simulated annealing algorithm. Kirsch and Mitran [136] developed a three dimensional 

optoelectronic model for organic solar cells using rigorous coupled wave analysis and 

designed a patterned thin film solar cell. With the proposed methodology, the designed 

solar cell could achieve a 15% improvement in the power conversion efficiency compared 

to planar cells. Jäger et al. [137] used the simulated annealing algorithm to optimize the 

coefficients of Perlin noise, which is used to generate the surface texture between silicon 
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absorber and transparent conductive oxide. Moreover, Hajimirza and Howell [138–140] 

explored the capabilities of simulated annealing in inverse design and analysis of TFSC 

to design surface textures and uncertainty modeling in fabrication. 

Recently, particle swarm optimization has been utilized by several researchers to 

design TFSC. Arinze et al. [141] designed a PbS colloidal quantum dot solar cell for 

maximum possible photocurrent with different transparency. They showed that 

transparent and different colored devices could be realized, suitable for aesthetic purposes. 

Ferhati et al. [142,143] demonstrated particle swarm optimization on the design of silicon 

solar cells for maximizing absorption and minimizing reflection. 

 Learning Based Optimization Algorithms 

3.6.1. Learning Based Optimization Theory 

Learning based (response surface, surrogate based) algorithms have started to 

become popular with the rise of machine learning as an alternative to black box 

optimization with reduced cost [144–146]. These are data driven approaches where the 

state of undiscovered regions in the design space are predicted with the previous 

information. The main idea behind surrogates is to define an approximate function value, 

𝑦̂ and to select function parameters so that the error between the real and approximate 

function values, 𝜀 is minimum. 

 𝑦 = 𝑦̂ + 𝜀. (3.4) 

The key elements of surrogate based modeling are listed as follows [147]: 
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1.  Design of (computer) experiments (DOE) is the procedure of planning where 

and how to perform computer experiments. Sampling can be performed at once at 

the beginning (static, one-shot) or step-by-step according to a predefined rule 

(adaptive, sequential) [148]. Static methods are computationally feasible and 

representative at the low dimensional input spaces. However, over and 

undersampling is possible to occur, which may result in poor performance. 

Adaptive sampling optimizes the search by starting with an initial sample and 

updating the set of points based on the desired exploration-exploitation criterion 

[149–152]. Exploitation aims to cover highly nonlinear or important subspaces, 

while exploration targets undersampled regions [153]. 

2. Model fitting: Once the training method is selected, the training process starts to 

minimize training error. Training error can be calculated in various ways, such as 

mean square error, mean absolute error and Bayesian acquisition functions. There 

are various models for approximating functions, such as Gaussian process [154], 

artificial neural networks [155,156], support vector machines [157], extreme 

gradient boosting [158] and so on. More details of different predictors are provided 

in Sections 3.6.1.1-3.6.1.5. 

3. Model validation: One of the critical points in the training is to monitor out-

sample, i.e., validation error, to predict future performance and avoid overfitting. 

Furthermore, the size of hyperparameters can be found using validation error. 

There are several validation methods available in the literature, such as split-

sample, cross-validation and bootstrapping. In the split-sample method, all data is 
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split into two separate sets for training and validation. Although this method is 

widely used, the training is likely to be biased based on the data. This bias can be 

eliminated by multiple training where the validation set is changed every time. 

This method is called cross-validation (CV). In CV, the data set is divided into n 

folds, and (n−1) of them are used for training, while the rest is used for validation. 

At the end of the training, 𝑛 training and validation error values are obtained, 

which can be used to determine the quality of the fit. In this study, cross-validation 

is used with n = 4. Bootstrapping (e.g., resampling) can be used when the number 

of data is extremely limited, in which the already available data is sampled multiple 

times to increase the number of data. Bootstrapping can be a suitable option when 

the data is experimental. 

3.6.1.1. Neural Networks 

Artificial neural networks (ANN) are one of the regression methods with 

significantly generalizable learning capabilities [159–161]. The advances in computation 

and parallel processing in training large ANNs have led to the very popular domain of 

deep learning. Figure 3.4 shows a general two-layer neural network for multiple inputs 

and a single output. Mathematical operations used for presenting input-output relations 

are also summarized in the figure at the corresponding positions. “+” sign and “f ” stand 

for the summation of corresponding (input × weight) pairs and transfer function, 

respectively. There is a variety of transfer functions to be used in NN given the problem 

nature and output space, such as linear (lin(𝑥) = 𝑥), logarithmic sigmoid (logsig(𝑥) =

(1 + exp(−𝑥))−1) and tangent sigmoid (tansig(𝑥) = tanh(𝑥)). 
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Figure 3.4. A two-layer NN architecture with multiple inputs and a single output. 

Adapted from [169]. 

 

 

 

The output of the NN model is 

 𝑓𝑁𝑁(𝐱) = 𝐲𝐋 

𝐲𝐢 = 𝑓𝑖(Wi𝐲𝐢−𝟏), ∀1 ≤ 𝑖 ≤ 𝐿, 
(3.5) 

where 𝐲𝐢 is the output vector and 𝑊𝑖 is the coefficient matrix of the ith layer, and 𝐿 is the 

number of layers. 𝐲𝟎 is the input vector normalized to within the [−1 1] range. The inputs 

are normalized through the transformation (𝑧1̅ = 2(𝑧1 − 𝑧1,𝑚𝑖𝑛) (𝑧1,𝑚𝑎𝑥 − 𝑧1,𝑚𝑖𝑛)⁄ − 1), 
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which eliminates bias among inputs. Wi is found as a result of NN training by minimizing 

the training cost function, 𝐶(𝐯): 

 𝐶(𝐯) = 𝛽 𝐸𝐞 + 𝛼 𝐸𝐯, (3.6) 

where 𝐸𝐞 and 𝐸𝐯 are the sum of squared error (SSE) and sum of squared weights (SSW) 

respectively and calculated as follows: 

 𝐸𝐞 = 𝐞𝐓𝐞 = (𝑓𝑁𝑁(𝐱) − 𝐲)𝑇(𝑓𝑁𝑁(𝐱) − 𝐲), 

𝐸𝐯 = 𝐯𝐓𝐯, 
(3.7) 

where 𝐯 is the weight vector. 𝐸𝐯 is a penalty term to avoid large coefficients, which results 

in overfitting. 𝛼 and 𝛽 are Bayesian regularization parameters set iteratively.  

 𝛼 =
𝛾

𝐸𝐯
, 

𝛽 =
𝐸𝐞

𝑁 − 𝛾
, 

(3.8) 

where 𝛾 is defined as the effective number of parameters and calculated as: 

 

𝛾 = ∑
𝜆𝑖

𝛼 + 𝜆𝑖
,

𝑁𝐯

𝑖=1

 (3.9) 

where 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue of the Hessian of the sum of the squared error matrix, 𝐸𝐯. 

NN training is done using the Levenberg-Marquardt (LM) method with Gauss-Newton 

approximation for Hessian of 𝐶(𝐯). In this method, Jacobian of 𝐞 is sufficient to calculate 

gradient and Hessian, which reduces the computational cost by computing only the 1st 

derivative of 𝐞. The backpropagation sensitivity concept enables this procedure. The 

details of the training algorithm can be found in [156,162]. 
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3.6.1.2. Gaussian Process 

Gaussian Process (GP) is a regression tool in which the prior knowledge of a data set 

is used to make new predictions [154]. The joint distribution of the observations and test 

values under prior is expressed via the joint normal distribution with zero mean and 

covariance. 

 [
𝐲𝐓

𝑦∗
] ~ 𝒩 (0, [

𝐾(XT, XT) + 𝜎2𝐼 𝐾(XT, 𝐱∗)

𝐾(𝐱∗, XT) 𝐾(𝐱∗, 𝐱∗)
]), (3.10) 

where XT and 𝐲𝐓 are the input and output sets for training (i.e., calculated previously). 𝐱∗ 

is the new data point to predict the output (𝑦∗). 𝐾 is the covariance matrix consisting of 

kernel functions, 𝑘𝑖,𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗). Some of the examples for kernel functions are squared 

exponential and Matern 5/2 [154]. 

Consequently, the conditional distribution of 𝑦∗ given 𝐲 is: 

 𝒫(𝑦∗|XT, 𝐲𝐓, 𝐱∗)~𝒩(μy , σ𝑦
2). (3.11) 

Then, the mean of the prediction, μy and its variance σ𝑦
2  are calculated from: 

μy = 𝐾(𝐱∗, X)[𝐾(X, X)]−1𝐲𝐓, 

σ𝑦
2 = 𝐾(𝐱∗, 𝐱∗) − 𝐾(𝐱∗, X)[𝐾(X, X)]−1𝐾(X, 𝐱∗). 

(3.12) 

3.6.1.3. Regression Trees 

Decision trees are partition based prediction methods based on several decision 

rules [163]. A similar logic is used in classification trees (labeled outputs) and regression 

trees (continuous outputs). The advantages of the trees include easy visualization and 

inherent feature importance. On the other hand, trees are sensitive to small changes in the 
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data, and introduce bias, which can be a limiting factor. A sample tree is presented in 

Figure 3.5. 

 

 

 

 
Figure 3.5. Decision tree representation. 

 

 

 

3.6.1.4. Extreme Gradient Boosting (XGBoost) 

XGBoost is one of the most recent machine learning methods, developed by Chen 

et al. in 2016 [158]. XGBoost is an ensemble of decision trees utilizing gradient boosting 

[164]. Boosting is a sequential technique that combines weak learners to improve 

accuracy. Yet, XGBoost is a more improved form of boosted trees, utilizing an advanced 

regularization approach, which stands out among similar models. Another strength of 

XGBoost compared to the other boosting algorithms, such as gradient boosting machine, 

is the easy implementation of cross validation. 
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3.6.1.5. Linear Regression 

The linear models model the output as the linear combination of the inputs. 

Although a linear model can fail to express the nonlinearity, it can help establish the 

general trends in a problem. The predicted output of a linear model is: 

𝑦̂ = 𝑚0 + 𝑚1𝑥1 + ⋯, 
𝑦̂ = M𝐱, 

(3.13) 

where 𝑀 = [𝑚0, 𝑚1, … ]𝑇 is the coefficient vector. 

3.6.2. Learning Based algorithms in TFSC Design 

The use of machine learning methods in TFSC design problems is a relatively new 

concept where most of the examples have been proposed in the last few years. Mlinar 

discussed the application of machine learning techniques in solar energy previously [165]. 

Yosipof et al. [166] developed a data mining framework to design full metal oxide solar 

cells. In [167] a regression tree based optimization method is used for designing a 

multilayer a-Si solar cell, and its computational cost is compared with conventional 

heuristic optimization methods. In [168–171], artificial neural networks are used to 

express surrogate of absorptivity as a function of solar cell geometry and light properties, 

and numerical design is performed using this surrogate by the author. A similar approach 

is implemented in [172] by Hamedi et al. for predicting absorptivity of a nanowire solar 

cell design. The authors demonstrated the effectiveness of neural networks in predicting 

optical response and compared multilayer perceptrons and radial basis function method. 

Moreover, the application of Bayesian optimization in designing quasi-random solar cells 

is demonstrated in [173]. 
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On the other hand, learning based methods have gained more extensive attention 

from the researchers in optical devices [174–182]. For example, in several studies [174–

177], neural networks have been used to design nanostructures with the desired 

transmission spectrum. Liu et al. [174] proposed a tandem neural network structure to 

design a nanophotonic structure. Yu et al. [175] designed a plasmonic refractive index 

sensor with improved performance. Zhang et al. [176] conducted a performance 

optimization study for the plasmonic waveguide-coupled with cavities structure. In [177], 

graphene based photonic metamaterials are designed using adaptive batch normalization 

in the artificial neural network. Inampudi and Mosallaei [178] designed free form periodic 

metagratings for desired diffraction efficiency distribution. Asano and Noda [179] used 

deep learning to design two dimensional photonic crystal nanocavities with optimized Q 

factors. Reinforcement learning has been used in photonic design in a recent study by 

Sajedian et al. [183]. Peurifoy et al. [180] used neural networks to predict spectral 

scattering by layered spherical nanoparticles. In [181], deep neural networks are used to 

assist the differential evolution method in the photonics design problem. Jiang et al. [182] 

proposed a topology optimization framework based on generative adversarial networks 

for designing complex metasurfaces for desired optical performances. Although these 

studies do not directly target photovoltaic devices, since the modeling techniques and 

objectives are quite similar, it would not be surprising to expect more learning based 

applications in TFSC design in the near future. 
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 Transfer Learning 

Machine learning algorithms resemble human learning by collecting data for the 

task in hand and establishing reasonable connections between inputs and outputs. 

However, conventional machine learning methods start learning from scratch for every 

new task, unlike the way the human brain functions. The ability of the human brain to 

transfer knowledge among tasks can lend itself to smarter machine learning algorithms. 

This is officially known as transfer learning, which has proven to be a promising concept 

in data science.  

Transfer learning has received the attention of data scientists as a methodology for 

taking advantage of available training data/models from related tasks and applying them 

to the problem in hand [184]. The technique has been useful in many engineering 

applications where learning tasks can take various forms, including classification, 

regression and statistical inference. Example of classification tasks that has benefited from 

transfer learning include image [185,186], web document [187,188], brain-computer 

interface [189,190], music [191] and emotion [192] classification. Regression transfer has 

received less attention compared to transfer classification [193]. However, there are few 

studies on regression transfer, some examples of which are configurable software 

performance prediction [194], shape model matching in medical applications [195] and 

visual tracking [196]. 

Despite the applications mentioned earlier, transfer learning in optimization 

problems has not been evaluated thoroughly except for a few fields. There are reports of 

transfer learning in automatic hyperparameter tuning problems [197–200] to increase 
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training speed and improve prediction accuracy. Transfer learning is also suitable for the 

iterative nature of the engineering design, where surrogate based optimization is utilized 

due to the complexity of the objective function. Li et al. [201] proposed a transfer learning 

based design space exploration method for microprocessor design. Min et al. [202] 

investigated the use of transfer learning in aircraft design problems and demonstrated the 

effectiveness of the proposed algorithms. Gupta et al. [184] reviewed the recent progress 

in transfer learning in optimization problems and categorized them as sequential, 

multitasking and multiform transfer optimizations. Recently, transfer learning has also 

been implemented in TFSC design problems by the author [203,204]. 

 Conclusion 

In this chapter, a review of thin film solar cell design is summarized. A 

comprehensive chart for the classification of numerical optimization methods is provided. 

The commonly used optimization algorithms are explained, and the examples from the 

literature are discussed. For an effective design process, the optimization method should 

be selected according to the nature of the problem. For TFSC problems, an algorithm that 

can handle high computational demand is required. In the rest of this dissertation, the 

learning based methods with heuristic techniques are employed for TFSC performance 

enhancement. 
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4. OPTICAL ENHANCEMENT OF THIN FILM SOLAR CELLS* 

 

The optical efficiency of a solar cell can be enhanced by utilizing near field effects 

of nanoparticles embedded in the absorber layer, as explained in Section 2.3. In general, 

the size, shape and location of the nanoparticles play an important role in absorption 

enhancement [205,206], and poor designs can cause even decreased absorption 

[99,100,207]. The improvement in the absorbed power due to the presence of 

nanoparticles can be quantified by the absorption enhancement factor (EF). This quantity 

is defined as the ratio of the number of photons absorbed by the active layer of the 

plasmonic photovoltaic cell to the absorbed photons without plasmonic contribution (i.e., 

bare thin film). The calculation of the number of photons is detailed in Section 2.2.1.In 

mathematical terms:  

𝐸𝐹 = (∫𝜆𝛼𝑝(𝜆)𝐼1.5𝐴𝑀(𝜆)𝑑𝜆) (∫𝜆𝛼𝑏(𝜆)𝐼1.5𝐴𝑀(𝜆)𝑑𝜆)
−1

, (4.1) 

where 𝛼𝑝 and 𝛼𝑏 are the portion of absorbed optical power by absorber layer of the solar 

cell with nanoparticles (plasmonic) and without nanoparticles (bare), 𝐼1.5𝐴𝑀 (𝜆) is the AM 

 

*Reprinted with permission from “Extremely Efficient Design of Organic Thin Film Solar Cells via 

Learning-Based Optimization” by M. Kaya and S. Hajimirza, 2017. Energies, 10(12), 1981, Copyright 2017 

by MDPI. 
*Reprinted with permission from “Surrogate based modeling and optimization of plasmonic thin film 

organic solar cells” by M. Kaya and S. Hajimirza, 2018. International Journal of Heat and Mass Transfer, 

118, 1128-1142, Copyright 2017 by Elsevier Ltd. 
*Reprinted with permission from “Application of artificial neural network for accelerated optimization of 

ultra thin organic solar cells” by M. Kaya and S. Hajimirza, 2018. Journal of Solar Energy, 165, 159-166, 

Copyright 2018 by Elsevier Ltd. 
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1.5 standard terrestrial solar spectrum [208] and integration is done over the wavelength 

range of interest. 

EF can be used for the optical design optimization of organic solar cells (OSC). 

OSC is one of the most promising emerging solar cell types due to the ease of fabrication, 

inexpensive power generation and mechanical flexibility [24–26]. The power conversion 

efficiency of organic solar cells reached up to 17% as of 2020 [10]. However, due to the 

narrow absorption band of organic semiconductors, optical enhancement is needed for 

wide-scale commercialization. 

EF is calculated for a photovoltaic cell structure in Figure 4.2 for 𝑡1 = 33 nm, 𝑡2 =

20 nm, 𝑟 = 5 nm, 𝑠 = 11.5 nm, and for different P, for validation of computational 

methods in the present study (FDTD). EF values in the present study computed using 

FDTD are compared with the Finite Element Method (FEM) simulations by Shen et al. 

[99] in Figure 4.1. The present result agrees well with the literature values. 

 

 

 

 
Figure 4.1. Comparison of the results of Finite Element Method (FEM) [99] and FDTD 

for a plasmonic OSC of 𝑡1 = 33 nm, 𝑡2 = 20 nm, 𝑟 = 5 nm, 𝑠 = 11.5 nm with respect 

to periodicity 𝑃. Adapted from [169]. 
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In this chapter, two OSC design problems are considered. In the first problem 

(Section 4.1), Ag nanospheres are placed inside a poly(3-hexylthiophene):(6,6)-phenyl-

C61-butyric-acid-methyl ester (P3HT:PCBM) layer. The absorber layer is stacked by poly 

(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) and an Al back 

reflector layer. In the second problem (Section 4.2), P3HT:PCBM active layer with 

elliptical shape nanostructures is coated with antireflective indium tin oxide (ITO) and 

aluminum is selected as the back reflector. Two interlayers are also placed near the 

absorber layer. In each problem, the details of the surrogate model and optimization are 

presented, the results are presented and discussed, and the computational cost is compared 

to the conventional methods. 

 Thin Film Organic Solar Cells with Spherical Nanoparticles 

A standard configuration of an OSC with silver nanospheres is demonstrated in 

Figure 4.2. The 3D view of the proposed OSC and the simplified 2D view are presented 

in Figure 4.2a and b, respectively. The problem is reduced from 3D to 2D based on the 

premises of the study by Moreno et al. [209]. In all the simulations of the present study, a 

plane wave source is propagated from top to bottom at a specified wavelength 𝜆 and at 

incident angle 𝜃. Bloch and perfectly matched layer (PML) boundary conditions are 

imposed for x and z coordinates, respectively. Real and imaginary parts of the materials 

used in the simulations are in Appendix B. 
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(a) (b) 

Figure 4.2. (a) 3D view of the OSC, (b) 2D Schematic of OSC with finite difference time 

domain (FDTD) solution domain. Adapted from [169]. 

 

 

 

4.1.1. Surrogate Model 

The goal of this is to obtain an NN based surrogate model that approximates the 

absorptivity of the textured cell, 𝛼𝑝(𝜆) in equation (4.1), which is a function of geometry, 

wavelength and incident angle: 

 𝛼̂𝑝(𝜆) = 𝑓𝑁𝑁(𝑡1, 𝑡2, 𝑟, 𝑠, 𝑃, 𝜃, 𝜆). (4.2) 

Note that the absorbed power inside the bare solar cell can also be expressed using the 

same function 𝑓𝑎𝑏𝑠 by setting 𝑟 = 0, 𝑠 = 0, 𝑃 = 1 (with a mesh size of 1): 

 𝛼̂𝑏(𝜆) = 𝑓𝑁𝑁(𝑡1, 𝑡2, 0,0,1, 𝜃, 𝜆). (4.3) 

The training and validation data sets are obtained based on input values generated 

randomly between the lower and upper bounds of optimization. Furthermore, the 

wavelength is sampled between 300-900 nm and the angle of incidence is sampled 

between 0-89 degrees. 
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A 7 − 𝑅1 − 1 NN is then trained to learn the absorptivity model 𝑓
𝑁𝑁

 using the 

training data. The network has one hidden layer with 5 ≤ 𝑅1 ≤ 50 nodes. tansig(∙) 

transfer function is used in both layers. 6,000 data are generated, and the validation error 

is monitored using the cross validation method with 4 folds. The number of neurons in the 

hidden layer is determined based on these errors. In this study, 𝑅1 is determined as 30, 

which provides a good balance between simplicity and accuracy according to the results 

in Figure 4.3. 

 

 

 

 
Figure 4.3. Normalized mean sum of squared error (SSE) with respect to the number of 

neurons in the hidden layer (R1). Adapted from [168]. 

 

 

 

4.1.2. Optimization Problem 

The objective of the present optimization problem is to maximize EF by modifying 

the cell geometry. One of the reasons for choosing EF as the objective function is that the 
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algorithm tends to minimize the active layer thickness when the aim is to maximize EF. 

Thus, the possibility of recombination is also decreased, although photocurrent is not 

considered as the objective. The present optimization problem can be formulated as: 

max
𝐱

 𝐸𝐹(𝐱), 

Subject to: 𝑟 < 𝑡1 2⁄ , 
𝑠 < 𝑡1 − 2𝑟, 
𝑟 < 𝑃 2⁄ , 

𝐱𝐋 < 𝐱 < 𝐱𝐔, 

(4.4) 

where 𝐱 is the geometry vector with Ag nanoparticles and 𝐱𝐛 is the bare geometry without 

the nanoparticles, i.e., 𝐱𝐛 = [𝑡1, 0, 0, 1, 𝑡2]
𝑇 and the lower and upper limits for the 

geometry vector are 𝐱𝑳 = [10 , 0 , 5 , 5, 5]𝑇 and 𝐱𝑼 = [100 , 50 ,50 , 200, 100 ]𝑇. The 

bounds are the same as the bounds of training and validation sets except the lower bound 

of 𝑠. 𝑠𝐿 = 5 𝑛𝑚 in order to avoid short circuit possibility due to the Ag–Al contact. 𝐸𝐹(𝐱) 

is then calculated as the ratio of the integrals in the numerator and denominator of equation 

(4.1) by using the trapezoidal method by evaluating the output of the surrogate model 

𝑓
𝑁𝑁

(𝐱, 𝜆, 𝜃) and 𝑓
𝑁𝑁

(𝐱𝐛, 𝜆, 𝜃) for each wavelength increment (1 nm). The cost function in 

the optimization problem, however, is set to the inverse of 𝐸𝐹, and penalty terms are added 

[107] in order to obtain an unconstrained minimization problem. 

4.1.3. Results and Discussion 

The optimized geometry obtained by the NN based optimization procedure with 

QN and SA methods is presented in Table 4.1 for two different initial guesses. NN-SA-

QN refers to the hybrid optimization algorithm in which QN is used after the SA algorithm 

to find the global optimum in the vicinity. 
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Table 4.1. Optimized geometry of plasmonic OSC and corresponding enhancement 

factor (EF) values. Adapted from [168]. 

Method [𝑡1, 𝑟, 𝑠, 𝑃, 𝑡2]
𝑇
𝑖𝑛𝑖𝑡. [𝑡1, 𝑟, 𝑠, 𝑃, 𝑡2]

𝑇
𝑜𝑝𝑡 EF 

NN–QN [50 , 20 , 5 , 100 , 50]𝑇 [46 , 20 , 5 , 99 , 50]𝑇 1.26 

NN–SA [50 , 20 , 5 , 100 , 50]𝑇 [24 , 9 , 6 , 51 , 87 ]𝑇 2.21 

NN–SA–QN [50 , 20 , 5 , 100 , 50]𝑇 [24 , 9 , 6 , 51 , 87 ]𝑇 2.21 

NN–QN [40 , 11 , 15 , 80 , 20]𝑇 [33, 10 , 16 , 82 , 14]𝑇 1.25 

NN–SA [40 , 11 , 15 , 80 , 20]𝑇 [26 , 10 , 6 , 51 , 87 ]𝑇 2.14 

NN–SA–QN [40 , 11 , 15 , 80 , 20]𝑇 [24 , 9 , 6 , 51 , 89 ]𝑇 2.22 

 

 

 

Note that the SA algorithm performs better for finding the global optimum and is less 

likely to get trapped in local optima, unlike QN. Figure 4.4 compares the optimized 

plasmonic, the bare, and a random design. The random design is the initial point of the 

optimization. The electric fields near the nanoparticle are also presented at various 

wavelengths. In Figure 4.5, the variation of EF during iterations is presented for these 

three algorithms and for two different initial guesses. 

 

4.1.4. Computational Cost 

A sample set of 6,000 points is used to construct the NN and the average duration 

for a single simulation (at a single wavelength) is 5 minutes. If a full fidelity optimization 

was desired, the calculation of EF would take 72 simulations where each plasmonic and 

bare geometry is simulated between 300-650 nm spectrum (solar cell absorption becomes 

negligible beyond 650 nm). Therefore, 6,000 simulations correspond to ~83 𝐸𝐹 

calculations, which is a significantly small number for a general optimization study. 
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Figure 4.4. Spectral absorptivity of plasmonic, bare and randomly designed solar cells 

with 𝐱𝐩 = [24 , 9 , 6 , 51 , 89 ]𝑇, 𝐱𝐛 = [24 , 0 , 0 , 1 , 89 ]𝑇 and 𝐱𝐫 =

[40 , 11 , 15 , 80 , 20]𝑇. 
 

  

(a) (b) 

Figure 4.5. Evolution of EF during iterations of SA, QN and hybrid SA–QN for the 

initial guess (a) [50 , 20 , 5 , 100 , 50]𝑇; (b) [40 , 11 , 15 , 80 , 20]𝑇. Adapted from [168]. 
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 Thin Film Organic Solar Cells with Elliptical Nanoparticles and Interlayers 

The structure of the solar cell used in the present study is shown in Figure 4.6. In 

this design, the organic bulk heterojunction blend P3HT:PCBM is preferred in the 

absorber layer, aluminum is selected as the back reflector, and OSC is coated with 

antireflective indium tin oxide (ITO). Electron and hole transport layers, ZnO and MoO3, 

are also included in the design to be optimized [210,211]. 

 

 

 

 

Figure 4.6. OSC device with design parameters specified. Adapted from [170]. 

 

 

 

The nanostructures are located near MoO3 because the absorption enhancement in 

a solar cell is found more significant when plasmonic nanostructures are placed away from 
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the interface where light enters (back zone) [100]. Ag particles have elliptical shapes. A 

2D surface texture is aimed to be modeled with two diameters for the elliptical 

nanotextures. However, the same design can easily be extended to 3D by only adding more 

input variables, namely ellipsoid diameter and spacing variables in the z direction. 

Distance between nanostructures and ZnO layer is taken as a design variable instead of 

the overall thickness of P3HT:PCBM, in order to avoid a possible short circuit (𝑡3 > 0). 

4.2.1. Surrogate Model 

NN model is trained where the generalization error is quantified using the cross-

validation technique. This time, the number of data used in training is increased by 1000 

during incremental training. In Figure 4.7, the mean sum of squared error change with the 

number of neurons in the hidden layer and the number of total training data is presented 

for training and validation. Figure 4.7 shows that training error is independent of the 

number of training data but is a function of the NN model itself. On the other hand, the 

validation error is decreased to a certain level as the training set covers the input space 

better and converges. 

From the results shown in Figure 4.7, 3000 to 4000 data points can be concluded 

as sufficient, with 4000 being preferable. However, all four different training scenarios 

(number of training data) will be considered in the optimization; therefore, 80 different 

NN models are saved to be used in the next step. 

 



 

69 

 

 

 

Figure 4.7. Mean sum of squared error (SSE) of training (top) and validation (bottom) 

sets with respect to the number of neurons in the hidden layer (R1). Adapted from [170]. 

 

 

 

4.2.2. Optimization Problem 

The aim of the present study is to optimize the organic solar cell structure to obtain 

the maximum absorption enhancement factor (EF) possible. EF is calculated as a function 
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of OSC geometry using the surrogate function 𝑓
𝑁𝑁

≈ 𝑓
𝑎𝑏𝑠

 for the absorptivity. The present 

optimization problem can thus be formulated as: 

 max
𝐱

 𝐸𝐹(𝐱), 

Subject to: 𝐱𝐋 < 𝐱 < 𝐱𝐔, 

(4.5) 

 

where 𝐱𝐩 = [𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑑1, 𝑑2, 𝑠]
𝑇 is the geometry vector with Ag nanostructures 

and 𝐱𝐛 = [𝑡1, 𝑡3, 𝑡5]
𝑇 is the bare geometry without the nanostructures and interlayers. The 

lower and upper limits for the geometry vector are: 𝐱𝐋 = [10,5,20,5,20,10,10,1]𝑇 and 

𝐱𝐔 = [100,50,100,20,120,50,50,100]𝑇, which are the same as the boundaries of ranges 

from which training and validation data are generated. 

4.2.3. Results and Discussion 

The optimization results are presented in two successive steps: first, the results of 

the preliminary optimization (surrogate based) are presented, and then the results of direct 

optimization within the narrowed bounds are shown. Preliminary optimization is 

performed using 20 different NNs for every number of training data points. As a result, 80 

different NN models are obtained and used in optimization. Even though 4000 data is 

found the best representative model (smallest validation error) among others in the 

previous section, optimization is repeated with the corresponding NN models for 

completeness. The maximized EF values as a result of the optimization, are presented in 

Figure 4.8. 
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Figure 4.8. Maximized absorption Enhancement Factor as a result of NN based 

optimization. Adapted from [170]. 

 

 

 

Figure 4.8 shows that the uncertainty between different NN models decreases as 

the number of training data is increased. The maximum EF converges to 2.91, with a 

standard deviation of 0.09 for 4000 data points. The median of EF values is also 2.91. For 

3000 data points, the median EF is also 2.91 with a mean value of 2.93 and a standard 

deviation of 0.09. It can be concluded from Figure 4.8 that although the NN with 4000 

data is found to be better than the NN with 3000 points regarding the generalization 

performance, they converged to the same maximum objective value. The optimal values 

of the design variables are shown in Figure 4.9 separately. 
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Figure 4.9. Optimal values of design variables. Each point represents the result of a 

single optimization. Adapted from [170]. 
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The first conclusion drawn from Figure 4.9 is that the maximum enhancement is 

obtained when the absorber layer thickness is the smallest (𝑡3,𝑚𝑖𝑛 + 𝑑2,𝑚𝑖𝑛 = 30 𝑛𝑚). This 

is justified by the fact that the optical absorption is very small in the bare structure when 

the absorber is thin. However, this also indicates that even if the absorber is ultra-thin, 

almost 3 times more photons can be absorbed when the plasmonic particles are used. 

Furthermore, the optimal thickness of ITO converges to 𝑡1 = 87 𝑛𝑚. On the other hand, 

some of the variables, such as ZnO and MoO3 converge to the upper bound of 

optimization, which implies that the corresponding bounds should be shifted upwards. 

Additionally, the optimal values for Al and spacing between nanostructures do not 

converge to a consistent value as the number of training data points increases. This can be 

due to two reasons: (1) the input has a negligible impact on the output; thus, the optimal 

value can vary a lot; (2) the input has a strong effect on the output, and NN fails to 

represent this effect. 

In order to investigate these effects on the OSC design, we conducted a subsequent 

optimization study using high fidelity simulations instead of their surrogates within 

narrowed optimization bounds. The bounds are narrowed down to the values in Table 4.2, 

based on results from surrogate based optimization. The optimal input vector 𝐱𝐨𝐩𝐭 is also 

tabulated. Evolution of EF during iterations is plotted in Figure 4.10. 
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Table 4.2. Updated optimization bounds and optimization results. Adapted from [170]. 

 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑑1 𝑑2 𝑠 

𝐱𝐋𝐁 87 20 20 15 20 10 10 20 

𝐱𝐔𝐁 87 70 20 50 120 20 10 80 

𝐱𝐨𝐩𝐭 87 37 20 28 107 15 10 25 

 

 

Figure 4.10. Evolution of enhancement factor during iterations of direct optimization. 

Adapted from [170]. 

 

 

 

The optimized geometry resulted in a 325% absorption enhancement in a 30 nm 

P3HT:PCBM with 10/15 nm-dia Ag nanostructures. The resulting absorptivity profiles for 

optimized plasmonic and bare structures are presented in Figure 4.11. According to the 

direct and surrogate based optimization results, optimized design variables (except MoO3) 

are found in the feasible range suggested by surrogate based optimization. For example, 

optimized ZnO thickness is very close to the corresponding mean value (40 𝑛𝑚) found in 

surrogate based optimization. Even though optimized spacing and Al thicknesses are not 

as well predicted as ZnO, their optimized values are also within the same range found by 

surrogate based optimization. 
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Figure 4.11. Spectral absorptivity of plasmonic, bare and randomly designed solar cells 

with (𝐱𝐩 = [87,37,20,28,107,15,10,25]𝑇 ) 

 

 

 

4.2.4. Computational Cost 

A summary of the computational requirements of the operations is listed in Table 

4.3. The computational cost of the surrogate based optimization method can be quantified 

based on the total CPU clock time which is needed to complete (1) an FDTD simulation 

of a geometry at a particular wavelength, (2) NN training time using an average number 

of neurons (R1 = 16) with CV, (3) complete SA search using NN surrogate function. 
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Table 4.3. Computation times of corresponding operations. Adapted from [170]. 

FDTD Simulation for α(x, λ) 𝒕𝒇𝒅𝒕𝒅 ~180 sec. 

NN training with CV (500 iterations) 𝒕𝑵𝑵 ~160 sec. 

SA algorithm (500 iterations) 𝒕𝑺𝑨 ~20 sec. 

 

 

 

The number of data points used in this study is 4,000. The time required to collect 

this data is equivalent to the time needed to run 55 direct EF simulations (when wavelength 

step for integration is 10 nm). To construct the information in Figure 4.7, 𝑇𝑁𝑁 =

4 × 15 × 𝑡𝑁𝑁 = 9,600 seconds are necessary for 4 different numbers of data points, and 

15 different numbers of neurons. Optimizations took 𝑇𝑆𝐴 = 4 × 20 × 𝑡𝑆𝐴 = 1,600 

seconds. Therefore, in addition to the time devoted to generating training data, 𝑇 = 𝑇𝑁𝑁 +

𝑇𝑆𝐴 = 11,200 seconds were necessary to complete surrogate based optimization. This is 

equivalent to 0.8 direct EF simulations. Therefore, in general all actions of model fitting 

and training take negligibly less amount of time than data collection. Adding the 

computational cost of direct optimization shown in Figure 4.10, 106 full simulations could 

be performed in the given time. For an 8-dimensional design space, 106 simulations is 

very unlikely to get us close to the optimal vector using a method like SA. Furthermore, 

surrogate based approach provides more flexibility for other variations of optimization, 

e.g. when bounds are changed for some variables. Utilizing more powerful sampling 

methods can accelerate this procedure even further. 

 Conclusion 

In this chapter, two plasmonic thin film solar cells are optimized for maximum 

optical enhancement. The optimization procedure resulted in more than 200% and 300% 
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enhancement in absorption, respectively. The required computational power is reduced 

compared to the expectations. Two approaches of surrogate based optimization are used 

in this chapter. First, a single NN model is obtained through training and used for 

optimization. In the second approach, NN models used in a way to construct an ensemble, 

and a secondary high fidelity optimization is performed based on the narrowed 

optimization bounds. 
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5. DESIGN OPTIMIZATION OF THIN FILM SOLAR CELLS FOR MAXIMUM 

OPTOELECTRICAL EFFICIENCY† 

 

The optoelectrical efficiency of a solar cell can be quantified by external quantum 

efficiency (EQE). As discussed in Section 2.2.3, EQE measures the fraction of incoming 

photons that are converted to electricity. Therefore, the absorption and recombination 

losses should be considered simultaneously while calculating EQE. 

In this chapter, an approximate formulation for EQE is developed and used for a 

thin film solar design study. An amorphous silicon thin film solar cell with ITO, SiO2, 

Al2O3 and Al layers is considered in this chapter. First, the details of the approximate EQE 

formulation are presented in Section 5.1. In Section 5.2, the schematic of the solar cell is 

presented, and the material selection is explained. Section 5.3 and 5.4 presents the details 

of the optimization procedure. The results are presented and discussed in Section 5.5 and 

computational cost comparison is presented in Section 5.6. In the last section, the key 

results of this chapter are summarized. 

 External Quantum Efficiency Formulation for Planar Thin Film Solar Cells 

EQE is highly correlated with the short circuit current. As explained in Section 

2.2.4, the short circuit current is the current when no voltage is applied to the solar cell. 

 

† Reprinted with permission from “Rapid Optimization of External Quantum Efficiency of Thin Film Solar 

Cells Using Surrogate Modeling of Absorptivity” by M. Kaya and S. Hajimirza, 2018. Nature Scientific 

Reports, 8, 8170, Copyright 2018 by Springer Nature. 
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EQE has two components: internal quantum efficiency (IQE) and absorption efficiency 

(𝜂𝐴). IQE can be calculated from: 

 𝜂𝐼(𝜆) =
𝑁𝑒

𝑁𝑝
=

𝐽𝑠𝑐 𝑞⁄

𝑁𝑝
=

1

𝑁𝑝

1

𝑞
[𝑞∭𝑛𝑝(𝑥, 𝑦, 𝑧, 𝜆) ℙ𝑐(𝑥, 𝑦, 𝑧) d𝑥d𝑦d𝑧], 

𝜂𝐼 = ∫𝜂𝐼(𝜆) d𝜆 

(5.1) 

where 𝐽𝑠𝑐 is the short circuit photocurrent density, 𝑞 is the elementary charge, 𝑛𝑝 is the 

carrier generation rate (𝐠 in equation (2.6)), ℙ𝑐 is the collection probability defined as the 

probability that a carrier generated due to absorption contributes to the photocurrent. The 

carrier generation rate is equal to the number of absorbed photons, assuming every 

absorbed photon creates an electron-hole pair. Similar to Section 2.2.1, the spatial and 

spectral generation rate is calculated as: 

𝑛𝑝(𝑥, 𝑦, 𝑧, 𝜆) = ℎ𝑐 [𝜆 𝛼(𝑥, 𝑦, 𝑧, 𝜆)𝐼(𝜆)]. (5.2) 

There are various analytical and computational methods to calculate ℙ𝑐. In this work, a 

probabilistic model of EQE similar in principle to those of Xue et al. [39,40], which 

preserves the dependence of collection probability to the absorber thickness and diffusion 

length. The essence of the model is as follows: In general, in a p-n junction solar cell, ℙ𝑐 

is unity in the depletion region and decreases exponentially as the distance from depletion 

region increases [37,38]. Only the vertical position inside the absorber is taken into 

consideration, assuming ℙ𝑐(𝑥, 𝑦, 𝑧) ≡ ℙ𝑐(𝑧). Assuming surface recombination is 

negligible compared to bulk recombination, ℙ𝑐 can be approximated as: 

 ℙc(𝑧) = exp(−
|𝑧 − 𝑡𝐴 2⁄ |

𝐿𝐷
), (5.3) 
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where 𝑡𝐴 is the absorber thickness and 𝐿𝐷 is the diffusion length of the semiconductor. 

The relation above is represented in Figure 5.1. 

 

 

 

 
Figure 5.1. Variation of the collection probability in the absorber layer. 

 

 

 

𝐿𝐷 is a critical material property for an effective carrier collection (equation (2.7)). 

When 𝐿𝐷 is much longer than the absorber thickness, all the generated carriers contribute 

the photocurrent, and IQE is equal to 1. Therefore, EQE solely depends on the absorption 

efficiency. However, this is generally not the case for most of the emerging technologies. 

For example, 𝐿𝐷 is ~100 nm for amorphous silicon [212] which restricts the absorber 

thickness to the same order. On the other hand, determination of 𝐿𝐷 of organic materials 

is not as straightforward due to bulk heterojunction (BHJ) structure of organic 

semiconductors. Although the individual values of  𝐿𝐷 are known for donor and acceptor 

materials, it is complicated to calculate it for a heterojunction blend. Most of the organic 

materials have very short diffusion lengths (< 10 𝑛𝑚), which significantly limits the 

possibility of sufficient light absorption. Therefore, bulk heterojunction blend solar cells 

were proposed in order to limit the distance of all the locations to the donor-acceptor 
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interface to the diffusion length. Therefore, theoretical collection probability is 100% 

[213–215]. However, this is never the case in practical solar cells due to the microstructure 

or other internal effects which are out of the scope of the present study. In BHJ organic 

solar cells, it is better to use the term collection length (𝐿𝑐) which is defined as the distance 

that an exciton can travel before reaching to the other layer. An empirical collection length 

can be found using the measurements in the literature [216–218]. The empirical collection 

length of the organic materials can be approximated around 𝐿𝑐,𝑒𝑚𝑝~100 𝑛𝑚. 

In the case of planar solar cells, the charge generation can be assumed uniform in 

the z-direction. In this case, equation (5.1) simplifies to: 

 𝜂𝑒 =
𝑁𝑝

𝑁𝑖

2𝐿𝐷

𝑡𝐴
(1 − 𝑒−𝑡𝐴 2𝐿𝐷⁄ ). (5.4) 

Note that EQE has two components: an optical component (𝜂𝐴), which has a complicated 

tie to all geometry parameters and material choices and can only be determined via solving 

Maxwell’s equations. The second component (𝜂𝐼) is IQE and is only a function of the 

absorber height and the diffusion length in this simplified model. Generally, the 

expectation is that thicker silicon results in higher absorption, increasing recombination, 

resulting in lower electric factor. The trade-off between these two components is the key 

to optimal design. This trade-off is shown for a random fixation of all geometry parameters 

but varying absorber thickness in Figure 5.2. 
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Figure 5.2. The variation of 𝜂𝐴 and 𝜂𝐼 with respect to the absorber layer thickness. The 

absorber is a-Si. Adapted from [171]. 

 

 

 

The proposed EQE model is validated with experimental results in the literature 

[60]. The authors measured EQE of an Ag/ZnO:Al/a-Si/ITO solar cell and calculated 

absorbed power in the a-Si layer using FDTD method. The same absorption profile is used 

to calculate EQE using equation (5.4) for 𝑡𝐴 = 100 𝑛𝑚 and 𝐿𝐷 = 100 𝑛𝑚. The 

comparison of experiments and present calculations based on absorptivity is given in  

Figure 5.3. Note that the model matches closely with the experiments for most of the 

relevant spectrum. 
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Figure 5.3. Comparison of measured and calculated 𝐸𝑄𝐸 and simulated absorptivity 

profile for Ag/ZnO:Al/a-Si/ITO solar cell [60]. Adapted from [171]. 

 

 

 

 Schematic of the Planar Solar Cell 

The thin film solar cell structure in Figure 5.4 is considered in the present study. 

The amorphous silicon (a-Si) active layer is stacked between the aluminum back reflector 

and antireflective indium tin oxide (ITO) layers. The oxides Al2O3 and SiO2, formed 

during manufacturing, could help to improve solar cell performance by balancing the 

refractive indices between a-Si and the front/back layers [138,167]. Therefore, they are 

also included in the optimization. 
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Figure 5.4. Thin film multilayer solar cell structure. Adapted from [171]. 

 

 

 

 Optimization Problem 

The aim of the present study is to maximize EQE given in equation (5.4) by 

modifying the solar cell geometry vector, 𝐱: 

 

max
𝐱

𝜂𝑒(𝐱), 

𝐱𝐋 < 𝐱 < 𝐱𝐔 

(5.5) 

Similar to the surrogate modeling of the absorption enhancement factor in the previous 

section, the surrogate EQE becomes: 

 𝜂̂𝑒 =
𝑁̂𝑝

𝑁𝑖

2𝐿𝐷

𝑡𝐴
(1 − 𝑒−𝑡𝐴 2𝐿𝐷⁄ ), (5.6) 

where 𝑁̂𝑝 is calculated with the surrogate absorptivity. 
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 𝑁̂𝑝(𝐱) =
1

ℎ𝑐
∫𝜆 𝛼̂(𝐱, 𝜆) 𝐼(𝜆)𝑑𝜆. (5.7) 

 Surrogate Model 

A total of 1000 points are uniformly sampled from the input space, and the 

corresponding output values (absorptivity) are obtained from FDTD simulations. Lower 

and upper bounds are imposed on the input vector in order to restrict our focus to a 

reasonably limited range. These bounds are shown in Table 5.1. 

NN architecture is 6-𝑅1-1 where 𝑅1 is the number of neurons in the hidden layer 

and is determined based on minimum validation error principle: Cross validation is used 

during training, and mean training and validation errors are calculated as the average of 

𝑛 = 4 folds. Optimal  𝑅1 is where the validation error does not improve despite increasing 

𝑅1. The results for the NN training are presented in Figure 5.5. The optimal 𝑅1 is 

determined as 7 in this case (see Figure 5.5a). The final coefficient matrices are then 

obtained by training the NN with this configuration over the entire available data. The 

variation of Sum Square Error (SSE) during the final training is presented in Figure 5.5b. 

The trained model is then used as the surrogate for FDTD simulations in optimization, the 

results of which will be demonstrated in the next section. 

 

 

 

Table 5.1. Upper (UB) and lower (LB) bounds for the multilayer solar cell. Adapted 

from [171]. 

Parameters 𝑡𝐼𝑇𝑂 𝑡𝑆𝑖𝑂2
 𝑡𝑎𝑆𝑖 𝑡𝐴𝑙2𝑂3

 𝑡𝐴𝑙 𝜆 

UB (nm) 20 5 20 5 20 300 

LB (nm) 80 20 200 20 120 750 
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(a) (b)
 

Figure 5.5. Neural network training. (a) Normalized mean sum of squared error (SSE) 

with respect to number of neurons in hidden layer (𝑅1), (b) Evolution of SSE cost 

function during final NN training. Adapted from [171]. 

 

 

 

 Results and Discussion 

The trained NN surrogate model is used instead of original FDTD simulations for 

designing the optimal structure. The search is done using two randomly selected starting 

points of 𝐱𝒊,𝟏 = [50,12,110,12,70]𝑇 and 𝐱𝐢,𝟐 = [20,10,70,10,60]𝑇. Every search includes 

a SA optimization followed by a local QN optimization starting at the optimal point of 

SA. Final optimization results are presented in Table 5.2 and compared with the previous 

study [167]. The reference [167] used a regression tree based optimizer and SA on direct 

FDTD simulations to find the optimal solution. However, since the objective function in 

[167] is slightly different than the present objective function, a deviation between the 

results of these two studies is expected. The present study achieved a marginally higher 

EQE than that in [167]. The evolution of EQE during the iterations for the results presented 

in Table 5.2 is shown in Figure 5.6. 
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Table 5.2. Results of optimization. Adapted from [171]. 

Solution 𝑡𝐼𝑇𝑂 𝑡𝑆𝑖𝑂2
 𝑡𝑎𝑆𝑖 𝑡𝐴𝑙2𝑂3

 𝑡𝐴𝑙 𝜂𝑒 (NN) 𝜂𝑒 (FDTD) 

1.NN-SA-QN 29 19 65 20 101 0.356 0.370 

2.NN-SA-QN 29 20 65 20 98 0.356 0.369 

Reference [167] 30 16 62 20 50 0.350 0.361 

 

 

Figure 5.6. Evolution of surrogate EQE during optimizations with initial guesses (a) 𝐱𝟏, 

(b) 𝐱𝟐. Adapted from [171]. 

 

 

 

The absorptivity and EQE spectrum of the initial solution 𝐱1 and the one obtained 

by optimization starting from 𝐱𝑖,1 are shown in Figure 5.7. Note that the majority of 

improvement is due to a wider absorption spectrum in the case of the optimal solution, 

especially at wavelengths shorter than 450 nm. The optimal solution has more than 25% 

improvement in efficiency, is more broadband, and has larger optical absorption despite a 

thinner silicon layer. The optimal solution also has 50% more EQE compared to optimal 

thickness bare silicon (~50nm [167]). 

The (surrogate) spectral absorptivity of optimized geometry is also compared with 

the results from FDTD for the same geometry in Figure 5.8. Note that the profiles are in a 
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good agreement in most of the spectrum except 𝜆 = 500 − 600 nm which is the reason 

of the discrepancy between EQE values obtained by NN and FDTD. 

 

 

 

 
Figure 5.7. Absorptivity and EQE of initial (𝐱𝐢,𝟏) and optimized geometries in Table 5.2. 

Adapted from [171]. 

 

 
Figure 5.8. Absorptivity of optimized geometry obtained by NN and FDTD. Adapted 

from [171]. 
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 Computational Cost 

Each SA algorithm is iterated 400 times, and the consequent QN takes several extra 

iterations. NN based SA-QN takes 30 seconds to find an optimal solution, which is 

negligible compared to the amount of time spent at finding the true EQE value for a given 

geometry using FDTD (~600 seconds). The overall number of computations is equivalent 

to only 20 full-spectrum FDTD calculations, which is impressively smaller than 

approximately 100 iterations in regression tree based search and 200-400 iterations in SA 

on direct FDTD calculations used in the reference study [167]. Therefore, the overall 

computation time is reduced by a factor of 5-20 using the proposed surrogate based 

optimization. 

 Conclusion 

In this chapter, the optical absorptivity of a thin film multilayered a-Si solar cell is 

modeled accurately with NNs and efficiently approximated as a function of cell geometry 

and wavelength. Using this framework and the approximate external quantum efficiency 

of the cell as a function of absorptivity and electrical recombination factor, a multilayer 

thin film solar cell structure consisting of ITO front coating and metallic back reflectors 

and oxide layers is optimized for maximum efficiency. Our required computation time for 

an entire model fitting and optimization was 5 to 20 times faster than the optimization 

times of the best previous results, therefore proving the value of surrogate modeling. The 

final design suggests that a 50% improvement in the external quantum efficiency of silicon 

is achievable by designing simple multilayer front-back ITO/metallic and oxide coatings. 
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6. TRANSFER OPTIMIZATION OF THIN FILM SOLAR CELLS FOR MAXIMUM 

OPTOLECTRIC EFFICIENCY‡ 

 

In this study, a new method for design optimization is proposed based on transfer 

learning. The proposed framework improves the accuracy and efficiency of surrogate 

based optimization. When design specifications change, the objective function changes 

too. Therefore, there is a need for a new surrogate model. However, the concept of transfer 

learning can be used to refit the new surrogate more efficiently. In other words, insights 

from previous experiences can be used in learning and optimizing the new function.  

In this chapter, two surrogate based transfer optimization methods are proposed 

for thin film solar cell design. The first one uses the neural network surrogates, and the 

second uses the Gaussian process surrogates. At least one optimization is assumed to have 

taken place (base case). The aim is to repeat optimization for a structure with different 

material combinations (transfer cases). The rest of this chapter is organized as follows: In 

Section 6.1, the optimization problem is presented with the details of the solar cell 

structure, material choices and the optimization problem formulation. In Section 6.2, the 

transfer learning concept is introduced. Section 6.3 and 6.4 are devoted to the neural 

network and Gaussian process based methods, respectively. In each section, the specific 

 

‡ Reprinted with permission from “Using a Novel Transfer Learning Method for Designing Thin Film Solar 

Cells with Enhanced Quantum Efficiencies” by M. Kaya and S. Hajimirza, 2019. Nature Scientific Reports, 

9, 5034, Copyright 2019 by Springer Nature. 
‡ Reprinted with permission from “Using Bayesian Optimization with Knowledge Transfer for High 

Computational Cost Design: A Case Study in Photovoltaics” by M. Kaya and S. Hajimirza, 2019. 

Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and 

Information in Engineering Conference, Copyright 2019 by ASME. 
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details of the methodology are explained, and the results are presented and discussed. 

Finally, this chapter is concluded in Section 6.5. 

 Multilayer Thin Film Solar Cell Optimization 

The solar cell design optimized in this chapter is very similar to the one in Figure 

5.4. The solar cell structure is presented in Figure 6.1 in a more general sense indicating 

the functions of the individual layers. 

In the previous sections, the importance of solar cell geometry is emphasized. In 

addition to the dimensions, the choice of materials used in the solar cell layers can 

dramatically affect the optical and electrical properties. On the other hand, when the 

material choices are included as a design variable, the optimization problem becomes 

mixed-integer programming, which is known to be computationally costly. Furthermore, 

for the present problem where the optimizations are done one by one, the optimization 

study should be repeated (𝑚1 × 𝑚2 × …× 𝑚𝑑) times for all possible material 

combinations where 𝑑 is the input space dimension and 𝑚𝑗 (1 ≤ 𝑗 ≤ 𝑑) is the number of 

choices for the 𝑗th input. In this case, knowledge transfer between different material 

combination tasks is worthwhile, as similar geometries with different material 

combinations can have similar optoelectrical responses. In general, the initial assumption 

is that source and target domains are similar [201]. Sometimes, the false similarity 

assumption can cause negative transfer and hurt the learning [219]. Therefore the 

similarity assumption must be monitored and evaluated carefully. 
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Figure 6.1. Multilayer solar cell. 

 

 

 

Once an optimization study is carried out for a base case, the transfer optimization can be 

used to optimize a solar cell structure with the same geometry but different materials. For 

example, once we optimize an ITO/ZnO/P3HT:PCBM/MoO3/Al solar cell structure as a 

base case, less effort should be necessary to optimize a five layer solar cell consisting of 

different materials. For this purpose, a base case and transfer cases are selected as follows: 

 
𝐱𝐁 = [𝑡𝐼𝑇𝑂, 𝑡𝑍𝑛𝑂, 𝑡𝑃3𝐻𝑇:𝑃𝐶𝐵𝑀, 𝑡𝑀𝑜𝑂3

, 𝑡𝐴𝑙]
𝑇

 

𝐱𝐓𝐋−𝟏 = [𝑡𝐼𝑇𝑂, 𝑡𝑆𝑖𝑂2
, 𝑡𝑎𝑆𝑖, 𝑡𝐴𝑙2𝑂3

, 𝑡𝐴𝑙]
𝑇
 

𝐱𝐓𝐋−𝟐 = [𝑡𝑆𝑖3𝑁4
, 𝑡𝑃𝐸𝐷𝑂𝑇:𝑃𝑆𝑆, 𝑡𝑃𝐶𝑃𝐷𝑇𝐵𝑇:𝑃𝐶𝐵𝑀, 𝑡𝐴𝑙2𝑂3

, 𝑡𝐴𝑙]
𝑇
 

(6.1) 

 

These materials are widely used in thin film solar cells. TL-1 case is optimized in chapter 

5 without transfer optimization. TL-2 is optimized for the first time. The optimization 

problem solved in this study is given as the same as the previous chapter: 
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 max
𝐱

𝜂(𝐱), 

𝐱𝐋 < 𝐱 < 𝐱𝐔. 

(6.2) 

 

 Transfer Learning 

The transfer learning method consists of a base surrogate model and a transfer 

learning framework to share the gained knowledge. The response of the surrogate model 

can be expressed as: 

 𝐹(𝐱) = 𝐲𝐭 + 𝜀, (6.3) 

where 𝐲
𝐭
∈ 𝒴 is the target output, 𝐹(𝐱) is the objective function approximation at 𝐱 ∈ 𝒳 

and 𝜀 is the error between the target and the predicted outputs. 𝐹 is obtained by an iterative 

training procedure similar to the previous sections. As a result of the training, coefficients 

of the predefined metamodel (e.g., hyperparameters of neural networks and Gaussian 

process) are obtained. 

Depending on the similarity between the input-output spaces, the knowledge can 

be transferred from one domain (source) to another (target). This transfer can be achieved 

in many ways depending on the metamodel. Knowledge transfer using Gaussian 

Processes, for instance, can be achieved by learning a joint probability distribution and 

defining a common response surface [184]. Knowledge transfer in neural networks was 

previously recommended via shared layers [220]. NN and GP surrogates are used in the 

first and the second parts of this chapter, respectively. 
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 Transfer Optimization of Thin Film Solar Cells Using Neural Networks 

6.3.1. Methodology 

Neural networks are one of the most ideal tools for surrogate model building in 

complex tasks particularly for knowledge transfer, due to excellent prediction 

performance and the ability to handle high dimensional and highly nonlinear data [159]. 

The knowledge in neural networks can be transferred via borrowing hidden layers. One 

hidden layer of the previously trained network is borrowed as an intermediate layer. The 

dimensions of the new hidden layer then become 𝑅1
0 × 𝑅1

1
 where superscripts 0 and 1 refer 

to the base case and the first transfer learning sequence. Therefore the input space is 

transformed into another space through the previous knowledge. This method is shown in 

Figure 6.2. The dimensions of the input and output spaces can be the same or different. In 

the case of different dimensions, knowledge is transferred between the matching features, 

and the rest is treated as usual. Thus, the method reduces to a dimensionality reduction 

approach, and the accuracy of the new predictions is expected to be improved due to the 

similarity between the subspaces in the two different input spaces. 
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Figure 6.2. Schematic of neural network with transfer learning for a single output. 

Adapted from [203]. 

 

 

 

The output of a two layer feed forward neural network is calculated from: 

 𝑦 = 𝐹0(𝐱) = 𝑓2
0(𝑊2

0𝑓1
0(𝑊1

0𝐱)), (6.4) 

where 𝑊1
0
 and 𝑊2

0
 are the coefficient matrices of the base case NN found from iterative 

training. 𝑓
𝑗
(∙) is the functional operation at the 𝑗th layer, such as sigmoid and linear 

function. The knowledge transfer is then accomplished by transferring the hidden layer of 

the base case to the new case, expressed as: 

 𝑦 = 𝐹1(𝐱) = 𝑓2
1 (𝑊2

1𝑓1
1(𝑊1

1𝑓1
0(𝑊1

0𝐱))), (6.5) 
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where 𝑊1
0
 is transferred from the base case. Training of the new case is done to find 𝑊1

1
 

and 𝑊2
1
. When another case is to be optimized in the same manner, the same procedure 

can be repeated, or the trained layer of the new case can be transferred. One drawback of 

the proposed method is the increase in the number of coefficients of the neural network if 

𝑅1
0 > 𝑅0

1
 the new number of coefficients to train increases from 𝑅1

1
(𝑅0

1 + 1) to 

𝑅1
1
(𝑅1

0 + 1), which may result in overfitting [221]. 

The surrogate based optimization procedure starts with the DOE [147]. Then, the 

outputs of the forward problem are evaluated at the sampled points using the simulation 

tool. The input/output pairs constitute the training set, which is then fed to the NN trainer.  

For optimization, simulated annealing [117] is used to optimize the surrogate objective 

function. The details of these methods can be found in chapter 3. 

The performance of a predictive model can be quantified, considering the 

validation set. The most common performance metric is the mean squared error defined 

as: 

 𝑀𝑆𝐸 =
1

𝑁𝑗
∑𝜀𝑖

2

𝑁𝑗

𝑖=1

, (6.6) 

where N is the number of data, 𝑗 = 𝑇, 𝑉 for training and validation sets, respectively. 𝜀𝑖 is 

the error between real and approximate output for 𝑖th instance. 

As shown in Figure 6.2, the base case is optimized by using traditional surrogate 

based optimization methods. Then the hidden layer of the trained model is transferred to 

other cases. 
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6.3.2. Results and Discussion 

6.3.2.1. Base Case 

The training of the base case is done using 1,000 data points with 750 of them used 

as the training set and the rest for validation. The number of neurons in the hidden layer 

is determined based on the principle of minimum validation error as follows: The in-

sample and out-sample errors are recorded as the number of neurons in the hidden layer is 

increased. The network configuration providing the minimum out-sample error is selected 

for the optimization. This procedure is repeated 10 times to eliminate the possibility of the 

training algorithm being trapped in local optima. Optimization is also repeated 10 times 

using all NN models obtained. This results in 10 possible optimal points. These points are 

run through the high-fidelity (FDTD) model, and the highest function value is selected 

accordingly. The number of neurons in the hidden layer for the base case is selected as 12 

based on the results in Figure 6.3a. Then the optimization is done using the NN models 

with 12 neurons using all the generated models. Full-fidelity optimization is also done 

using the software in order to validate the results (See Table 6.1). The optimized values 

are in good agreement with a maximum 5% error. The evolution of EQE during surrogate 

based optimization iterations is presented in Figure 6.3b. Note that the best reported EQE 

in Table 6.1 is obtained using simulations, so discrepancies between this value and that of 

Figure 6.3b are expected. 
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Figure 6.3. (a) Variation of mean squared error for training and validation data sets with 

respect to the number of neurons in the hidden layer of NN for base case, (b) Evolution 

of EQE during optimization for the base case. Adapted from [203]. 
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6.3.2.2. Transfer Cases 

In order to demonstrate the proposed approach, two material sets different from 

the base case are considered for transfer optimization. These sets are represented by 

vectors 𝐱𝐓𝐋−𝟏 and 𝐱𝐓𝐋−𝟐. First, the same steps as in the base case are followed without the 

transfer learning framework as a comparison. In these cases, 1000 data points are used 

with 4 folds for cross validation. Then training is repeated for the transfer learning cases 

using equation (6.5) with 500 new data points. The prediction performances using transfer 

learning are presented and compared with the traditional method in Figure 6.4a and b. 

Figure 6.4 shows the effectiveness of the transfer learning method. The smallest 

out-sample MSE of no TL case in TL-1 is more than 3 times larger than the largest out-

sample MSE w/ TL case even though the number of data is half of the no TL case. 

Furthermore, although the improvement in TL-2 case is not as significant as in TL-1, using 

the transfer layer reduces the error to almost half of the TL-2 (no TL). The reason for this 

less significant improvement is that the validation error of TL-2 case without the transfer 

layer is similar to that of the base case. On the other hand, the validation error of TL-1 (no 

TL) case is ~5 times larger than that of the base case. As shown in Figure 6.4b, the most 

significant improvement in validation error is obtained when 3 neurons are used where the 

largest deviation between errors of TL-2 and base cases is observed. Therefore the relation 

between the deviation between errors of transfer and base cases suggests that the more 

accurate the base case is, the more the validation error is reduced. Furthermore, if the base 

case is less accurate than the transfer cases, prediction performance can worsen. This is 

known as the negative transfer, which is an undesirable phenomenon in transfer learning. 
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(a) 

 
(b) 

 

Figure 6.4. Results for (a) TL-1 (ITO-SiO2-aSi-Al2O3-Al) and (b) TL-2 (Si3N4-

PEDOT:PSS-PCPDTBT:PCBM-Al2O3-Al) without transfer layer (no TL, dashed lines) 

using 1000 data and with transfer layer (w/TL, solid lines) using 500 data. Adapted from 

[203]. 
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The effect of the negative transfer on prediction accuracy is illustrated in Figure 

6.5 by switching the base and TL-1 cases where the hidden layer of TL-1 (ITO-SiO2-aSi-

Al2O3-Al) is transferred to the base case (ITO-ZnO-P3HT:PCBM-MoO3-Al). As seen 

from Figure 6.5, the training MSE does not change as expected; however, the validation 

error significantly increases since the transferred layer is adopted from a less accurate 

model. Therefore, the similarity between the cases should be known for improvement. 

In TL-1 case, 12 and 9 neurons are selected for no TL and w/ TL, respectively, for 

optimization. The results are compared with the previous optimization studies for the same 

5-layer a-Si solar cell in chapter 5 and reference [167]. Similarly, in TL-2 case, 15 and 12 

neurons are selected for no TL and w/TL, respectively for optimization. 

The results obtained using transfer learning are in good agreement with the direct 

optimization results for both cases. The optimized geometry in TL-1 case is also very close 

to the results from chapter 5. In the other study [167], a regression tree based optimizer is 

used as well as simulated annealing on direct FDTD simulations to find the optimal 

solution. However, since the objective function in this study is slightly different from the 

present objective function, a deviation between the results of these two studies is expected. 

The present study achieved a marginally higher EQE than the previous findings [167]. The 

optimization results are presented in Table 6.1, and evolutions of EQE are shown in Figure 

6.6 and Figure 6.7. 
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Figure 6.5. Negative Transfer: Comparison of MSE of no TL Base case (dashed) and w/ 

TL from TL-1 (solid). Adapted from [203]. 

 

 

 

Table 6.1. Optimization results for Base, TL-1 and TL-2 cases. Adapted from [203]. 

Case Name 𝑁𝑠𝑖𝑚𝑠 
[-] 

𝑡𝐴𝑅𝐶 
[nm] 

𝑡𝐼𝐿1 
[nm] 

𝑡𝐴 
[nm] 

𝑡𝐼𝐿2 
[nm] 

𝑡𝑀 
[nm] 

𝐸𝑄𝐸 

[-] 

Base – NN based 1,000 76 19 79 12 100 0.370 

Base - Direct 6,900 77 20 80 10 95 0.371 

TL-1 – NN based – w/TL 500 31 20 65 20 102 0.371 

TL-1 – NN based – no TL 1,000 29 19 65 20 101 0.370 

TL-1 – Direct 9,200 30 19 65 20 103 0.372 

TL-1 – Reference [167] 4,600 30 16 62 20 50 0.361 

TL-2 – NN based – w/TL 500 40 5 98 5 95 0.355 

TL-2 – NN based – no TL 1,000 38 7 95 5 100 0.352 

TL-2 – Direct 5,520 42 5 100 5 97 0.360 
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Figure 6.6. Evolution of EQE during optimization for (a) TL-1, w/out TL, (b) TL-1 w/ 

TL. Adapted from [203]. 

 

 

 

Figure 6.7. Evolution of EQE during optimization for (a) TL-2, w/out TL, (b) TL-2 w/ 

TL. Adapted from [203]. 

 

 

 

Results show that equivalent EQEs can be obtained from an amorphous silicon and 

an organic P3HT:PCBM solar cell. EQE of PCPDTBT:PCBM solar cell is lower than the 

others because the longer wavelengths where PCPDTBT:PCBM can absorb more than a-
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Si and P3HT:PCBM are ignored in EQE calculation. EQE is calculated between  𝜆 =

300 − 750 nm for all cases for consistency. 

 Transfer Optimization of Thin Film Solar Cells Using Gaussian Process and 

Bayesian Optimization 

The knowledge transfer in Gaussian process can be achieved using several ways. 

One solution to transfer knowledge from experiences to the current task is to assume a 

joint probabilistic model and use a product covariance function [184,222]. Another 

approach is to assume a common response surface [197,222]: 

 𝑦̃ =
𝑦 − 𝜇𝑐𝑜𝑚𝑚𝑜𝑛

𝜎𝑐𝑜𝑚𝑚𝑜𝑛
 (6.7) 

6.4.1. Similarity Metric 

The common response surface approach can be generalized between different 

design spaces by considering rank correlations between data, such as Spearman rank 

correlation coefficient. At each transfer, we can rank the previous tasks according to their 

correlations with the new one, and transfer can be made between more similar tasks. For 

example, the following weighted average can be used to obtain a common mean and a 

standard deviation: 

 
𝜇𝑐𝑜𝑚𝑚𝑜𝑛 =

∑ 𝑤𝑘𝑁𝑘𝜇𝑘
𝐾
𝑘=1

∑ 𝑤𝑘𝑁𝑘
𝐾
𝑘=1

, 

𝜎𝑐𝑜𝑚𝑚𝑜𝑛
2 =

∑ (𝑤𝑘𝑁𝑘)
2𝜎𝑘

2𝐾
𝑘=1

∑ (𝑤𝑘𝑁𝑘)2
𝐾
𝑘=1

, 

(6.8) 
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where 𝑤𝑘 is the weight which is a function of similarity among the current task and the 

task knowledge is transferred from. This similarity can be calculated by the deviation of 

the responses of the current task (𝑦) and the 𝑘𝑡ℎ previous task (𝑦𝑘) to the same input set 

(𝑋𝑖𝑛𝑖𝑡). The similarity 𝜑(𝑦, 𝑦𝑘) can be calculated as (1 − 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛): 

𝜑(𝑦, 𝑦𝑘) = 1 −
1

𝐶
√

1

𝑛
∑(𝑦𝑖 − 𝑦𝑘,𝑖)

2
𝑛

𝑖=1

 (6.9) 

where 𝑛 is the size of the initial sample. 𝐶 is the normalization constant, representing the 

maximum possible deviation. In the extreme case, 𝑦 = 0 and 𝑦𝑘 = 1 (or vice-versa), 

which translates to a deviation of 1, thus 𝐶 = 1. However, 𝐶 can be selected according to 

the desired allowable deviation. Additionally, it is safer to transfer knowledge from the 

tasks with high similarity by establishing a threshold to prevent the initial sample from 

being misleading. Therefore, the weight can be calculated using the similarity metric and 

a predefined threshold: 

𝑤𝑘 = {
𝜑(𝑦, 𝑦𝑘)      𝜑(𝑦, 𝑦𝑘) > 0.5

0,                  𝜑(𝑦, 𝑦𝑘) < 0.5
 (6.10) 

6.4.2. Gaussian Quadrature Integration 

The use of Gaussian Process is not limited to optimization problems but can be 

helpful in many areas where uncertainty information is needed. For example, the 

computation of the integral in equation (2.3) requires evaluating the function many times 

for only one optimization iteration. This method is similar to sigma-points methods [223] 

and relies on evaluating the objective function only where most contributions are made. 
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As the uncertainty of the predictions can be obtained in GP predictions, evaluating 

functions only at high uncertainties will result in an exploration based numerical 

integration framework. The GP based integration procedure is explained in Table 6.2. 

 

 

 

Table 6.2. GP based numerical integration. Adapted from [204]. 

Evaluate 𝐼 = ∫ 𝑦(𝑥)
𝑥2

𝑥1
𝑑𝑥 

Input: 

𝑛: initial number of sampling points, 

𝛿: convergence criterion,  

𝑁𝑖𝑡𝑒𝑟,𝑚𝑎𝑥: maximum allowed iterations. 

1. Sample 𝑛 initial points: 𝐱𝟏:𝒏
𝟎 ~𝒰(𝑥1, 𝑥2). 

2. Evaluate the initial points: 𝑦0 = 𝑦(𝐱0) 
3. Fit a 𝒢𝒫(𝐱𝟎, 𝑦0) 

4. Set 𝐱 = 𝐱𝟎, 𝑦 = 𝑦0, 𝑡 = 0 

Until terminate do: 

5. Calculate the numerical integral using trapezoidal rule: 𝐼𝑡 = 𝑡𝑟𝑎𝑝𝑧(𝐱, 𝐲) 

6. Find 𝑘 s.t. 𝑥𝑛𝑒𝑤 = argmax
χ

|𝐼𝑝𝑟𝑒𝑑 − 𝐼𝑡| where  

𝐼𝑝𝑟𝑒𝑑 = 𝑡𝑟𝑎𝑝𝑧([𝐱; 𝜒], [𝐲; 𝜇𝑦(𝜒)]) 𝜇𝑦 (𝐱
𝐭𝐞𝐬𝐭 ), 𝜎𝑦

2 (𝐱𝐭𝐞𝐬𝐭)~𝒢𝒫(𝜒| 𝐱, 𝑦) 

7. Sample the new point: 𝑥𝑛𝑒𝑤 = 𝜒 and calculate 𝑦𝑛𝑒𝑤 = 𝑦(𝜒) 

8. Set 𝐱 = [𝐱, 𝑥𝑛𝑒𝑤]𝑻 and 𝐲 = [𝐲, 𝑦𝑛𝑒𝑤]𝑻 

9. 𝑡 = 𝑡 + 1 

10. Terminate if 
(𝐼𝑡−𝐼𝑡−1)

𝐼𝑡−1
< 𝛿 or 𝑡 > 𝑁𝑖𝑡𝑒𝑟,𝑚𝑎𝑥. Else go to step 5. 

 

 

 

6.4.3. Optimization Procedure 

Bayesian optimization [224] is a global optimization method that searches for the 

optimum point of a function by using a surrogate, i.e., Gaussian Process. The most 

important feature of this method is to use the exploration and exploitation of the design 

space. Therefore a suitable surrogate must provide accurate point estimates as well as 



 

107 

 

uncertainty in the new predictions. Surrogate functions can be selected from a wide range 

of possibilities, and Gaussian Process is one of the most widely used methods in the 

Bayesian optimization framework. Bayesian optimization targets an acquisition function 

instead of the original objective. There is a variety of acquisition functions such as the 

probability of improvement, entropy search, upper confidence bound (𝑈𝐶𝐵) and the 

expected improvement (𝐸𝐼). Specifically, 𝑈𝐶𝐵 is calculated as follows: 

 𝑈𝐶𝐵(𝐱) = 𝜇𝑦(𝐱) + 𝜅 𝜎𝑦(𝐱) (6.11) 

where 𝜇𝑦(𝐱) and 𝜎𝑦(𝐱) are the mean and standard deviation of prediction at input 𝐱 

determined by using Gaussian Process regression. 𝜅 is the exploration-exploitation 

tradeoff parameter. In this study, 𝜅 is taken 2. 

As mentioned earlier, at least one optimization is assumed to be already performed 

(task 0). When we move to a new task, the similarity of the tasks is first evaluated on a 

small representative batch of data using equation (6.9). This initial batch is selected as the 

first 𝑛 iterations of task 0 so that we make the comparison without spending extra 

computation. Moreover, this initial batch can also be used for constructing the first GP 

model. Then the first point which maximizes the objective function is found, and the GP 

is updated. The cycle of sampling, evaluation, and objective function maximization 

continues until convergence. In GP models, Matern 5/2 kernel is preferred. In this study, 

the infinite-metric GP optimization (IMGPO) algorithm developed by Kawaguchi et al. 

[225] is used. 

The materials used in different layers of the solar cells in different tasks are presented in 

equation (6.1). 



 

108 

 

6.4.4. Results and Discussion 

In this section, the optimization results are presented. The similarity metrics among 

the tasks are shown in Figure 6.8. The similarity is quantified by the metric in equation 

(6.9). Furthermore, Pearson (𝑟) and Spearman (𝜌) correlation coefficients are calculated 

as reference. These coefficients are commonly used to determine correlations among 

different data sets. As can be seen from the plots and numerical values of 𝑟 and 𝜌, there 

are strong correlations among almost all of the tasks. However, a strong linear relation can 

be a weak estimator of similarity as it only shows the increase/decrease with the same 

change in the inputs. Therefore, the similarity metric is formulated to determine the effect 

of deviation between the tasks. The numerical values translate to the weights when 

calculating the mean and standard deviation of the common surface. 

The results of the optimizations are shown in Table 6.3. Optimal geometry vectors 

from Bayesian optimization with and without transfer learning are presented. Furthermore, 

the spectral absorptivity profiles of the optimized designs are presented in Figure 6.9. Note 

that the black lines are the results of the direct optimizations presented as references. The 

results of the optimizations show that the final absorptivity profiles are consistent with the 

direct optimization results. 

In all of the cases, direct optimizations were carried out using a heuristic 

optimization method, i.e., simulated annealing without approximation methods. 

Furthermore, it can be seen in Figure 6.9 that GPBO could reach the final absorption 

profiles close to the ground truth. After GPBO optimizations were performed without 

transfer learning, the information in Task 0 is transferred to Task 1 and information in 
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Tasks 0 and 1 are transferred to Task 2. The evolution of EQE values during optimizations 

are also presented in Figure 6.10. One of the conclusions from these results is that transfer 

learning reduces the time of optimization by leading the predictions for the function value 

improvements to better subspaces in the design space. 

 

 

 

 
Figure 6.8. Comparison of the responses of the tasks given the same input set with the 

similarity metric (𝜑), pearson (𝑟) and spearman (𝜌) correlation coefficients. Adapted 

from [204]. 

 

 

Table 6.3. Results of optimizations. Adapted from [204]. 

Task 𝒕𝑨𝑹𝑪
∗  𝒕𝑰𝑳𝟏

∗  𝒕𝑨
∗  𝒕𝑰𝑳𝟐

∗  𝒕𝑴
∗  𝑬𝑸𝑬∗ 

0 no TL 82 15 78 12 108 0.367 

1 no TL 26 17 64 26 99 0.368 

1 w/ TL 28 20 66 22 102 0.371 

2 no TL 40 8 92 8 110 0.355 

2 w/ TL 38 12 96 5 100 0.357 
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Figure 6.9.Top: Absorptivity profiles of the 0th task (base) for optimized geometries 

using direct optimization and GPBO. Middle and Bottom: Absorptivity profiles of the 

1st task (Middle), 2nd task (Bottom) for optimized geometries using direct optimization 

and GPBO without (no TL) and with transfer learning (w/ TL). Adapted from [204]. 
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(a) 

 
(b) 

 
(c) 

 

Figure 6.10. Evolution of the EQE during optimization of (a) Task 0 without TL. (b) 

Task 1 without and with TL. (c) Task 2 without and with TL. Adapted from [204]. 

 

 

 

The similarity of these cases is mostly originated from the spectral behavior of the 

absorber materials. Although the materials used in this study are not chemically similar, 

they share some common characteristics. For example, all three materials show peak 

absorptivity in the visible region. Furthermore, P3HT:PCBM of Task 0 and amorphous 

silicon of Task 1 have similar band gaps so that the absorption approaches zero at similar 

wavelengths. These similarities can be observed in the similarity metric. 
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 Conclusion 

In this chapter, two transfer learning based design optimization methods are 

presented. The proposed method is applied to a case study where a multilayer thin film 

solar cell is to be optimized for the best EQE. The first method utilizes neural network 

surrogates, where knowledge is transferred via hidden layers of NNs. The second method 

uses Bayesian optimization using Gaussian Processes. Knowledge transfer was modeled 

through a common response surface where mean and standard deviations from the 

previous optimizations are used to increase the accuracy of the Gaussian Process 

predictions and, consequently, the speed of the optimization. 

The NN based transfer optimization is more time efficient than the GPBO due to 

their differences in handling the wavelength. Since NN uses wavelength as one of the 

inputs, integral operations do not require many simulations. However, GPBO utilizes a 

sequential approach for sampling since the surrogate is updated after every optimization 

iteration, increasing the number of simulations compared to NN. 
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7. SHAPE OPTIMIZATION OF NANOPARTICLES FOR MAXIMUM SCATTERING 

 

The design procedure always relies on intuition from the user because of the 

parametrization requirement. In contrast to most of the design approaches in the literature, 

topology optimization can provide intuition-free and nonparametric design platforms in 

which no prior assumptions are made about the shape of the structure. Topology 

optimization is a framework for exploring material distribution in a domain for a given 

design objective. The concept was first proposed for structural mechanics problems 

[226,227], such as bridge and truss designs. It has also been used within different 

disciplines in the last decades, such as fluid dynamics and microelectromechanical 

systems. Topology optimization has also been used in photonics problems for desired 

optical properties [124,228–230]. 

Nonetheless, in none of these mentioned studies, the physical mechanism leading to the 

optical enhancements was targeted directly. In this chapter, a theoretical framework for 

designing complex plasmonic nanoparticles yielding maximum scattering is presented 

using topology optimization. Silver is used as the particle material throughout this study 

due to its high scattering and low loss (parasitic absorption) compared to other common 

metals [70]. The rest of this chapter is organized as follows: first, the problem is described, 

and computational modeling is detailed in Section 7.1. Then, in Sections 7.2 and 7.3, the 

optimization procedure and post processing steps are explained. In Section 7.4, the results 

are presented and discussed. The key results of this chapter are summarized in the last 

section. 
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 Physical Model Description 

The study aims to find the optimal shape of a nanoparticle within a given domain 

𝒟 resulting in maximum scattering. The study objective and the schematics of the problem 

are presented in Figure 7.1. The gray region in Figure 7.1a is the solution domain where 

the incident light is absorbed and scattered. Two and three dimensional views of a 

hypothetical nanoparticle are illustrated in Figure 7.1b and c, respectively. Particle shape 

is defined by a density function, 𝜌(𝐱) (Figure 7.1b) which represents discretized elements 

corresponding to a design variable with possible values of 0 or 1. When the element value 

is 1, there is solid, and when the value is 0, there is void: 

 

𝜌(𝐱) = {
1, 𝐱 ∈ 𝒟𝑠𝑜𝑙𝑖𝑑

0, 𝐱 ∈ 𝒟𝑣𝑜𝑖𝑑
 

∀𝐱 ∈ 𝒟 = 𝒟𝑠𝑜𝑙𝑖𝑑 ∪ 𝒟𝑣𝑜𝑖𝑑,  

(7.1) 

where 𝐱 is the position in the solution domain 𝒟, and 𝒟𝑠𝑜𝑙𝑖𝑑 and 𝒟𝑣𝑜𝑖𝑑 represent the solid 

and void regions, respectively. The size of the discrete elements is selected as Δ𝑑 = 𝑑 20⁄ . 

Total power absorbed and scattered are calculated via power monitors of FDTD 

software placed inside and outside the light source. Total-field scattered-field (TFSF) light 

source is originated in the x-direction, which is the plane wave light source specialized for 

the simulations of the scattering objects. All boundaries are modeled as perfectly matched 

layers (PML). The locations of the absorption and scattering monitors are indicated in 

Figure 7.1 b.  
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Figure 7.1. (a) Problem illustration and physical mechanisms involved, (b) schematic of 

a hypothetical geometry, monitor locations and the light source. 𝜌(𝐱) is the density 

function and Δ𝑑 is the size of the discrete element, (c) three dimensional representation 

of the arbitrary geometry with computational mesh used in the study, (d) known shapes: 

sphere, cube, and prisms of hexagon and hexagram. The cubic domain with black edges 

is 𝑑 × 𝑑 × 𝑑, 𝑑 = 100nm in the present study. 

 

 

 

The size of the computational mesh is selected as 𝑑 100⁄  in the x and y directions, 

and 𝑑 20⁄  in the z direction, respectively (Figure 7.1c). Mesh size in the x-y plane is kept 

smaller in order to capture changes in the density function. The mesh size strongly affects 

the reliability of the results. The spatial mesh is commonly recommended to be between 

𝜆 20⁄  and 𝜆 10⁄  for dielectric materials, where 𝜆 is the operating wavelength [231–233]. 

Furthermore, since the wavelength is shorter inside metal particles due to large refractive 

indices, smaller mesh sizes are preferred. The mesh size in the present study corresponds 
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to 𝜆 60⁄  and 𝜆 300⁄ , for the shortest wavelength in this study, 𝜆 = 300 nm. Figure 7.2 

shows the variation of the 𝐶𝑠 with different mesh sizes. The effects of 𝑑𝑥 and 𝑑𝑦 are 

presented in Figure 7.2 a and the effect of 𝑑𝑧 is shown in Figure 7.2b. 𝑑𝑥 = 𝑑𝑦 = 1 nm 

and 𝑑𝑧 = 5 nm are used throughout the study. The differences in 𝐶𝑠 between the mesh 

used and the finest mesh are less than 6%. The percentage values of the results compared 

to the finest mesh are indicated in the figure. 

Figure 7.1 d indicates a possible set of three-dimensional nanoparticles used for 

comparison in this study. Each particle is selected to fit in the same domain as the designed 

particles. These structures are chosen since they are commonly used and well-defined with 

distinct geometric characteristics. For example, the cube is more polarizable than the 

sphere due to its sharp corners. On the other hand, as the number of corners of a convex 

shape increases, it approaches a sphere, such as a hexagon. Due to possessing sharper 

edges, star-like geometries are also more polarizable compared to compact shapes. 

 

 

 

 
(a) 

 
(b) 

Figure 7.2. The variation in the 𝐶𝑠 values of the optimized shapes from P1 and P2 at 𝜆 = 

300 nm with respect to the (a) x and y meshes, (b) z mesh 
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 Optimization  

In the present problem, the aim is to maximize the scattering cross section in a 

given domain. The restriction on the geometry is given by the constraint: 𝑥𝑚𝑎𝑥 = 𝑑 and 

𝑥𝑚𝑖𝑛 = 0, enforcing the structure to be designed in a box with a side length 𝑑. In general, 

every maximization problem can be written as an equivalent minimization problem as: 

 max
𝜌(𝐱)

𝑓(𝐱) ≡ min
𝜌(𝐱)

{−𝑓(𝐱)} (7.2) 

The problem objective can be stated at a single wavelength or multiple wavelengths: 

P1. Single 𝝀: 𝑓(𝐱) = 𝐶𝑠(𝜌(𝐱), 𝜆)   (7.3) 

P2. Multiple 𝝀: 𝑓(𝐱) = ∑𝐶𝑠(𝜌(𝐱), 𝜆𝑖)

𝑁𝜆

𝑖=1

   (7.4) 

The number of wavelengths 𝑁𝜆 at which the optimization is performed can vary based on 

the problem requirements and computational resources. If a broadband enhancement is 

desired, a large 𝑁𝜆 must be selected. Additionally, the objective function can be chosen 

differently, such as a weighted sum, in order to highlight some portion of the spectrum. 

Topology optimization can offer a vast space of possible designs for given 

structural design problems. There are several classes of topology optimization, such as 

density based methods and level set based methods. In density based methods, the domain 

is represented by a density function: 𝜌: 𝒟 → {0,1} given in equation (7.1). Note that 𝜌 can 

be both binary and continuous. In this study, the binary density function is considered. In 

genetic algorithms (GA), sets of solutions (populations) are generated by rules mimicking 

biological evolution such as crossover and mutation, followed by a natural selection-like 
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process for likely survival of the best bits (genomes) of the previous designs. The search 

begins with generating an initial random population and calculating their fitness (cost) 

values. The cost function of the present problem is given as the negative of the objectives 

in equations (7.3) and (7.4). Then individuals with the smallest fitness values are selected 

as elites and survive to form the next generation. Additional individuals are created by 

mutation and cross-over operations on the parents (previous population). GA operates with 

binary strings, which makes topology optimization a natural extension of GA [124]. 

 Filtering 

In order to avoid checkerboard appearance (small voids and solid islands in the 

solution domain), some form of regularization is necessary for density based topology 

optimization, which is called filtering. Filtering can be divided into density based and 

sensitivity based methods. Sigmund [234] proposed several filtering techniques based on 

image morphology operators, avoiding grey transition areas while providing equivalent 

quality with density based filtering methods. Here we used the basic morphology operators 

like “dilate” and “erode” as well as their extensions, “open” and “close” (obtained by 

sequentially applying “dilate” and “erode”, respectively). The basic density filtering [235] 

is also illustrated. Sensitivity filtering is not used in the present study since gradient 

information is not explicitly available. 

The filtering operators are applied to the neighborhood of the individual cells. The 

neighborhood of the 𝑘th cell comprises the cells that have centers equal or closer to the 

center of 𝑘th cell than filter radius 𝑅: 
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 𝑁𝑘 = {𝑖| ‖𝐱𝒊 − 𝐱𝐤 ‖ ≤ 𝑅}, (7.5) 

where 𝐱𝐢 and 𝐱𝐤 are the center coordinates of the cells 𝑖 and 𝑘, respectively. One of the 

most convenient choices is the 4-connected (𝑅 = Δ𝑥) neighborhood, which involves the 

target cell and four adjacent cells. 

The filtering methods used in this study are summarized in Table 7.1. 𝜌𝑖 = 𝜌(𝐱𝐢) 

is the cell value of the density function in equation (7.1). Weight function, 𝑤(𝐱𝑖) in the 

density filter method favors the target cell compared to the adjacent cells for checkerboard 

suppression [235]. 𝑣𝑖 is the volume of the individual cells, which is identical in the present 

study. 𝛽 is a filtering parameter and chosen as a result of an independent optimization. 

 

 

 

Table 7.1. Filtering methods used in the present study. 

Method Expression Notes 

Dilate (d) 𝜌̃𝑑(𝜌𝑖) =
1

𝛽
log(

1

𝑁𝑘
∑ 𝑒𝛽𝜌𝑖

𝑖∈𝑁𝑘

) 

𝛽 = 100 

Erode (e) 𝜌̃𝑒(𝜌𝑖) = 1 −
1

𝛽
log(

1

𝑁𝑘
∑ 𝑒𝛽(1−𝜌𝑖)

𝑖∈𝑁𝑘

) 

𝛽 = 100 

Close (c) 𝜌̃𝑐(𝜌𝑖) = 𝜌̃𝑒(𝜌̃𝑑(𝜌𝑖))  

Open (o) 𝜌̃𝑜(𝜌𝑖) = 𝜌̃𝑑(𝜌̃𝑒(𝜌𝑖))  

Density 

filtering 

(df) 
𝜌̃𝑑𝑓(𝜌𝑖) =

∑ 𝑤(𝐱𝑖)𝑣𝑖𝜌𝑖𝑖∈𝑁𝑘

∑ 𝑤(𝐱𝑖)𝑣𝑖𝑖∈𝑁𝑘

 

𝑤(𝐱𝐢)

= {
4, 𝑖 = 𝑘 (𝑐𝑒𝑛𝑡𝑒𝑟)

2, 𝑖 ≠ 𝑘 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡)
 

 



 

120 

 

Furthermore, a simple yet effective technique is utilized for removing checkerboard 

patterns following the filters. According to this technique, solid boundary cells surrounded 

by voids are emptied; or void interior cells surrounded by solids are filled: 

Boundary cells: 𝜌𝑘 = 0        if 𝜌𝑘 = 1 and ∀𝜌𝑖 = 0, 𝑖 ∈ 𝑁𝑘(𝑖 ≠ 𝑘) 

           Interior cells: 𝜌𝑘 = 1        if 𝜌𝑘 = 0 and ∀𝜌𝑖 = 1, 𝑖 ∈ 𝑁𝑘(𝑖 ≠ 𝑘) 
(7.6) 

 

The equation above maintains the unique geometric features on the edges of the domain 

while filling the small interior voids. This way, unrealistic features are avoided. 

 Results and Discussion 

The results are presented for both single wavelength (P1 =  600 nm) and multi-

wavelength (P2 = {300 nm, 500 nm, 700 nm}) cases. Wavelengths of the case P2 are 

selected from the visible spectrum. Although 𝑁𝜆 is selected arbitrarily for the present 

study, it can be enforced by the problem or computational resources. The geometry of the 

structures is taken as 2-D (Figure 7.1 b), and simulations are performed in 3-D (Figure 7.1 

c). 1/8 of the geometry is optimized, and the rest of the domain is extended, assuming 

symmetry, adopting a strategy similar to those of [124,230]. The geometry is restricted to 

be designed in a 𝑑 = 100 nm domain. In GA, the population size is 100 and cross-over 

fraction is 0.8. The size of discrete elements is selected as 𝑑 20⁄  (can also be smaller or 

larger based on the fabrication constraints and other conditions). One should choose this 

size carefully since a smaller size increases the computational cost while a larger size may 

fail to represent all geometric features. Figure 7.3 shows the topologies of the resulting 

structures. The optimized (1/8 of the all) regions are indicated here with red triangles. The 

final cost functions are presented and compared to those of sphere, hexagonal prism and 
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cube in Table 7.2. The final objective function of P1 is 5 – 35 times larger than those 

calculated for benchmark shapes. It is 2 – 10 times larger for P2, compared to the 

benchmark cases computed at multiple wavelengths. 

 

 

 

  
 

Figure 7.3. Optimized particle shape results from (a) P1, (b) P2. (black: solid, white: 

void). 

 

Table 7.2. Optimized objective functions in nm2 (equations (7.3) and (7.4)) compared to 

cube, sphere, hexagon, and hexagram prisms. 

 Optimized Cube Sphere Hexagon Hexagram 

P1: Single-wavelength 

(600 𝑛𝑚) 
132,025 28,650 3,790 6,353 8,150 

P2: Multi-wavelength 

(300, 500, 700 𝑛𝑚) 
194,984 90,579 20,337 30,715 85,680 

 

 

 

As demonstrated in Figure 7.3, the optimal design shapes have checkerboard appearances 

in some areas. As a post-processing step, different filtering methods are applied to the 

optimized shapes. In Table 7.3, the resulting shapes from the filtering study are listed with 

the objective values for P1 and P2. Note that the checkerboard control (CB) technique 

(equation (7.6)) is implemented as a separate filter (original w/CB control) or following 

the initial filters (d, e, c, o w/CB). When the checkerboard (CB) control is off (columns 1 

(a) (b) 
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and 3 in Table 7.3), the “close” method can be considered as the most successful for P1 in 

terms of fidelity to the original shape; since the highest cross section is obtained among 

those filtered. Nevertheless, the scattering cross sections are significantly smaller than the 

optimization result. Furthermore, the checkerboard appearance still exists in the filtered 

shapes, especially in the domain boundaries.  

The CB control eliminates the checkerboard appearance significantly. The highest 

objective values are obtained in the “open” technique despite the relatively low objectives 

it yields when CB is off. Moreover, the objective of “open w/CB” P1 is slightly higher 

than the original P1 result, which shows that GA converged to a point near the global 

optimum. Using a local search following GA can resolve the immature optimization and 

result in finding the global optimum. Yet, one should note that the optimized objective 

value in P1 is only 1.5% smaller than the “open w/CB” P1 result, which can be regarded 

as a successful optimization.  

In the case of P2, “open w/CB” provides a relatively higher objective value than 

other filtered structures and the geometry is more realizable. On the other hand, the 

original result of P2 is 1.6 times larger than that of P2 “open w/CB” unlike the previous 

case. One explanation can be that the optimal point of the multi-wavelength problem is an 

isolated instant; therefore, the objective function drops in the vicinity of the optimum. As 

a result, the “open w/CB” filter is concluded as the most useful filter. We refer to the 

output of “open w/CB” as the “filtered” result in the rest of the paper. Figure 7.4 compares 

the objective functions of the filtered geometries, the original results and the benchmark 

shapes. 
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Table 7.3. Objective function values (equations (7.3) and (7.4)) of the original shape and 

the filtered shapes in nm2 using different methods. d: dilate, e: erode, c: close, o: open, 

df: density filtering with and without checkerboard control. 

 P1 (𝑪𝒔,𝝀=𝟔𝟎𝟎𝒏𝒎) P2 (∑ 𝑪𝒔,𝝀𝝀=300,500,700𝑛𝑚 ) 

 No CB control w/ CB control No CB control w/ CB control 

original 

 
132,025 

 
89,263 

 
194,984 

 
77,411 

d 

 
37,504 

 
34,420 

 
118,495 

 
112,078 

e 

 
40,674 

 
440 

 
13,764 

 
24,014 

c 

 
61,322 

 
44,637 

 
113,047 

 
26,764 

o 

 
26,490 

 
134,439 

 
85,970 

 
120,304 

df 

 
478 

 
2,800 

 
13,165 

 
11,182 
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(a) 

 
(b) 

 

Figure 7.4. Comparison of the objective function values of filtered optimum (method: 

open w/CB), unfiltered optimum and benchmark shapes. (a) P1, (b) P2. 

 

 

 

A noteworthy result from Table 7.3 is that when CB is off, the highest objective 

function is obtained with the “dilate” filter, where the filtered geometry looks more like a 

cube than the original optimized shape. Although, as shown in Table 7.2, the objective 

value of the cube is not very high, objective values of “dilate no/CB and w/CB P2” are 

almost 1.2 times more than that of the cube despite their similar shapes. Another 

interesting result is that despite the visible similarity between the resulting shapes by 

“original w/CB” and “df w/CB” of both P1 and P2, objective values of “original w/CB” 

are around 30 and 7 times larger than that of “df w/CB” of P1 and P2, respectively. These 

results reinforce our initial claim that the optical response of nanoparticles changes 

considerably, even with the presence of tiny differences among particles. 

The optimized 𝐶𝑠 profiles are presented in Figure 7.5a and Figure 7.6a for P1 and 

P2, respectively, and compared to those of benchmark shapes. In general, topology 

optimization is successful at maximizing 𝐶𝑠 at the wavelength of interest. 𝐶𝑠 is higher than 
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those of benchmark shapes at the wavelengths where optimization is performed (indicated 

by stars). Since the original and filtered shapes of P1 resulted in similar objective values, 

the corresponding spectral scattering cross sections are also quite similar. On the other 

hand, the scattering spectra of P2 blueshift after filtering. The peak scattering by the 

filtered shape occurs at 600 nm while occurring at around 680nm before filtering. One 

way to avoid this amount of change in the scattering profile is to implement the filtering 

method after each optimization step. Nevertheless, the objective function is still 

considerably larger than all the reference shapes; thus, one can say that the purpose of this 

problem is fulfilled.  

Even though the comparison of common shapes is out of the scope of the present 

study, a brief discussion about their optical properties is included for completeness. Cube 

and sphere result in the largest and the smallest objective function values among the 

benchmark cases, which is expected for several reasons: The cube has several corners and 

has a larger volume to surface ratio. Also, the sphere is a compact shape with no advantage 

of sharp edges. An alternative objective function is the scattering efficiency obtained by 

the ratio of the scattering cross section to the physical one when the amount of material is 

also an important consideration. With this objective function, the hexagram is expected to 

yield the highest objective value among the benchmark shapes due to its small area. It will 

be a valid argument to expect different shapes as a result of this optimization. 
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(a) 

 
(b) 

Figure 7.5. 𝐶𝑠 and 𝐶𝑎 from the optimized geometries P1 compared with the profiles of 

benchmark shapes obtained from FDTD simulations. 

 

 

 

 

 
(a) 

 
(b) 

Figure 7.6. 𝐶𝑠 and 𝐶𝑎 from the optimized geometries P2, compared with the profiles of 

benchmark shapes obtained from FDTD simulations. 

 

 

 

Furthermore, though not included in the present study as an explicit objective, 

absorption cross sections of the optimized structures are presented in Figure 7.5 b and 

Figure 7.6 b for P1 and P2, respectively. Absorption cross sections can be an important 

metric in some applications. In others, it can be regarded as a loss. It can also be included 
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in the objective as a secondary cost function or a constraint. For this analysis, the host 

medium (absorber) is important; therefore, it can be analyzed for different applications 

separately. 

The impact of the particle shape on the optical properties for small particles is 

established by equation (2.13) by the shape factor 𝜉 in polarizability. The size range in the 

present study is much larger than a single dipole; therefore, higher-order resonances occur. 

Additionally, targeting different objective functions resulted in scattering spectra having 

peaks at desired wavelengths. P1 has a single peak centered at 600 nm, while several other 

resonances are located at shorter wavelengths. With its two distinct peaks, P2 behaves as 

a superposition of two different particles. In P1 and P2, absorption occurs at short 

wavelengths due to the nonzero imaginary refractive index of silver. On the other hand, at 

the longer wavelengths, neither absorption nor scattering is observed. The reason why the 

scattering spectra of P1 and P2 have certain characteristics can be perceived by the electric 

fields in the solution domain in the solution domain in Figure 7.7 and Figure 7.8. 

The electric fields are localized at the corners of the shapes as expected. The highly 

localized field enhancement for both P1 and P2 at 600 nm explains the scattering 

enhancements in both problems at the same wavelengths. Although the electric fields are 

intense at 500 nm, it translated to the absorption enhancement in P1, where the particle 

behaves like an electromagnetic trap. For P2, electric field magnitudes are large, resulting 

in the second peak of the scattering spectra; yet, it is observed in a spatially small region; 

therefore, the scattering enhancement is not as significant. 
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Furthermore, the forward and backward scattering cross sections are plotted in 

Figure 7.9. Here the forward scattering is the sum of the scattering in the positive 

horizontal direction, and backward scattering is that in the negative horizontal direction. 

Thus, the upper and lower sides of the shapes are also included in the calculations. The 

forward and backward scattering spectra are mostly identical except asymmetry at 600 

nm. This asymmetry occurs at peak wavelength, 600 nm, which can also be observed from 

in Figure 7.7 and Figure 7.8. 

 

 

 

 

 

(a) 
 

(b) 
 

(c) 
 

(d) 

 

Figure 7.7. (a) Filtered optimized geometry from P1. (b-d) Magnitudes of the electric 

field near the particle in part (a) at wavelengths (b) 500 nm, (c) 600 nm, (d) 700 nm. 

 

 

 

 

(a) 
 

(b) 
 

(c) 
 

(d) 

 

Figure 7.8. (a) Filtered optimized geometry from P2. (b-d) Magnitudes of the electric 

field near the particle in part (a) at wavelengths (a) 500 nm, (b) 600 nm, (c) 700 nm. 
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(a) 

 
(b) 

Figure 7.9. Forward and backward 𝐶𝑠 of the optimized (filtered) geometries (a) P1, (b) 

P2. 

 

 

 

The anisotropic shapes can exhibit nonuniform angular characteristics; therefore, 

it is important to quantify the angular variation of the scattered power. The angular 

variation of the scattering can be calculated using the Poynting vector from equation 

(2.18). Defining 𝐩 as the real part of the Poynting vector, the normalized real part of the 

Poynting vector, 𝑝, is calculated as: 

 

𝐩 = Re(𝐄 × 𝐇), 

𝑝 =
|𝐩|

𝐼0
=

1

𝐼0
√𝑝𝑥

2 + 𝑝𝑦
2 + 𝑝𝑧

2 

(7.7) 

The angular scattering is calculated in three main planes: x-y, x-z, and y-z. A circular 

monitor comprising of 360 point monitors equally spaced in the angular direction is 

located at a 1.2𝑑 radius. These point monitors calculate the spatial components of the 

electric and magnetic fields (𝐸𝑥, 𝐸𝑦, 𝐸𝑦, 𝐻𝑥, 𝐻𝑦, 𝐻𝑧). Figure 7.10 shows the placement of 

these monitors with their starting points (0). 
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Figure 7.10. Locations of the circular monitors. 

 

 

 

In Table 7.4, the polar plots of angular scattering on x-y (blue), x-z (red), and y-z (green) 

planes shown in Figure 7.10 are presented. Results of the sphere and cube are also included 

for comparison. Polar plots are presented at the wavelengths that each shape has a primary 

or secondary resonance close to 400nm (sphere), 480nm (cube), 500nm (P2), 600nm (P1 

and P2). 700nm is also included for comparison. At longer wavelengths, the angular 

scattering characteristics become similar even though the numerical values are different. 

It is noteworthy that in P1, despite no distinct resonances, the scattering power is larger 

than those of the sphere and cube. The effect of the shape can be especially seen at the 

scattering on the x-z plane. All shapes except sphere show square-like profiles at the angles 

𝜋/4 and its integer multiples, owing to their sharp edges. At resonance wavelengths, the 

angular profiles become rounder and more uniform along the angular position. At 

wavelengths, where a significant amount of scattering occurs, the polar plots show that 

the anisotropic particles do not lead to a highly directional scattering. When scattered 

power is small, the angular variation is almost arbitrary for P1 and P2. 

𝑥 

𝑦 

𝑧 

1.2𝑑 

0 
0 0 
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Table 7.4. Polar plots of the normalized real part of Poynting vectors from filtered 

optimized P1 and P2, sphere, and cube. Blue, red, and green lines show x-y, x-z, and y-z 

planes, respectively. 
 P1 P2 Sphere Cube 

4
0
0
 n

m
 

    

4
8
0
 n

m
 

    

5
0
0
 n

m
 

    

6
0
0
 n

m
 

    

7
0
0
 n

m
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In Figure 7.11, the average 𝑝 is plotted for these planes with their angular 

deviation. Note that the trends of the average angular scattering are similar to the results 

in Figure 7.5 and Figure 7.6. The smallest angular variation occurs in the x-z plane which 

can also be observed in Table 7.4. 

 

 

 

  

  

 
(a) 

 
(b) 

Figure 7.11. Angular variation of the real part of pointing vector on different principle 

axes with the wavelength. 

 

 

 

 Conclusion 

In this chapter, a theoretical study was conducted to obtain efficient scatterers at 

the nano scale using evolutionary topology optimization. As a result, the objectives of the 
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optimization studies increased 2-35 times compared to common shapes such as cube, 

hexagon, hexagram, and sphere. Spectral scattering cross sections were increased between 

1-10 times. Furthermore, we proposed using filtering methods to reduce the chance of 

undesired structures getting picked up by the search. Density filtering and image 

morphology methods were used with the proposed checkerboard control techniques. 

Among these methods, the “open” method with the checkerboard control (open w/CB) is 

found to be the most effective in reducing undesired geometric features and fidelity to the 

original geometry. Filtering and checkerboard methods can also be included as 

intermediate steps of the optimization; thus, unrealistic features are avoided in the 

simulations. This can also accelerate the overall optimization time since the number of 

possible solutions is reduced. 

Although the enhancement in the scattering performance is promising, the 

manufacturability of the structures should be considered to obtain realizable geometries. 

For example, the discrete element size of topology optimization should be selected 

according to the fabrication capability. Custom optimization constraints can also be 

imposed, such as minimum feature size. Nonetheless, the presented design framework can 

be useful in many applications where tailored optical properties are desired with common 

materials. One of the potential applications of this framework is to design light trapping 

nanoparticles for thin film solar cells by including additional physical considerations, such 

as periodic interactions among the designed particles and surrounding solar cell materials. 
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8. SHAPE DESCRIPTORS TO PREDICT SCATTERING BY NANOPARTICLES 

 

The strong dependence of the nanoparticle radiative response to the particle shape 

makes the geometry design an attractive method for unique devices that utilize 

nanoparticles [67–69]. However, a major hurdle in the study of arbitrary shapes' physical 

responses is the lack of universal (geometry) parameterization. One of the solutions to this 

challenge is topology optimization, as studied in Chapter 7. As commonly used in image 

recognition, geometric predictive features can also collectively characterize a particle of 

arbitrary shape. When taken in as independent variables, they can result in predictive 

models for the radiative response of nanoparticles. Data driven methods can achieve two 

goals: first, the computational burden of the optical modeling is overcome; second, an 

intuitive relationship is established between the geometric features and spectral radiative 

response. 

In this chapter, a data driven approach is used to predict the optical scattering of 

nanoparticles with arbitrary shapes. The geometric shape features are computed using 

image characterization methods adopted from image recognition with a novel approach to 

incorporate the interaction of light. The methodology of the study is summarized in section 

8.1. Then, the arbitrary shape generation methodology is explained in Section 8.2. The 

predictive geometric features for shape characterization are presented, and the dataset is 

described in Sections 8.3 and 8.4, respectively. The results of the training and test sets are 

presented and discussed in Section 8.5. The conclusions of the chapter are presented in the 

last section. 
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 Methodology 

This study aims to establish a relationship between the nanoparticle shape and its 

radiative scattering using data driven prediction methods. The predictive models use 

custom designed geometric features as input. The procedure is summarized in Figure 8.1. 

First, random polygons are generated using a methodology described in the next section. 

Then electromagnetic simulations are performed to find target outputs (scattering cross 

section) for the generated shapes. Meanwhile, the values of geometric features for the 

generated polygons are calculated (Section 8.3). The dataset containing the features (𝑋-

values) and the targets (𝑦-values) is then supplied to regression models for training. 

Finally, the prediction performance is evaluated using a test set that has not been used by 

the regression models during training. 

 

 

 

 

Figure 8.1. Flowchart describing the proposed predictive modeling design pipeline. 
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 Construction of Random Shapes 

The arbitrary shapes are represented by polygons due to their geometric diversity 

and ease of construction. A polygon is a closed shape in 𝑅2 that can be fully characterized 

via its adjacent vertex coordinates. The only condition to identify a valid polygon is that 

the segments connecting adjacent vertices must not intersect (Figure 8.2). The polygon 

generation procedure involves the following steps: 

1. Randomly selecting the number of vertices, 𝑁𝑣, 

2. Dividing the coordinate system to 𝑁𝑣 angular segments (to avoid intersection), 

3. In each segment, randomly selecting a radius and an angular position for each 

vertex. 

Cartesian and radial coordinates of the 𝑖th vertex are represented by 𝑉𝑖 and 𝛹𝑖. All polygons 

in our database are represented with equisized vectors. To do so, we use a different 

mathematical representation, where the polygon boundary is divided into 𝑛𝑑 elements 

(Figure 8.2). 𝑛𝑑 is a user defined value, selected as 360 in this study. Figure 8.2 shows the 

schematic of a polygon. 𝑖 is the index of a vertex and 𝑁𝑣 is the number of vertices in the 

given polygon. 𝑗 is the index of boundary points. The point 𝐺 indicates the centroid of a 

polygon. The centroid location of a polygon is calculated as: 

𝐺 = [
𝑥
𝑦
] =

1

3∑ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)
𝑁𝑣

𝑖=1

[
 
 
 
 
 
∑(𝑥𝑗 + 𝑥𝑗+1)(𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)

𝑛𝑑

𝑗=1

∑(𝑦𝑗 + 𝑦𝑗+1)(𝑥𝑗𝑦𝑗+1 − 𝑥𝑗+1𝑦𝑗)

𝑛𝑑

𝑗=1 ]
 
 
 
 
 

 (8.1) 

where (𝑥̅, 𝑦̅) is the centroid location and 𝑛𝑑 is the number of boundary points. 
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Figure 8.2. Schematic of a polygon. Left: three dimensional polygon-prism with FDTD 

solution setup, right: definition of vertices, boundary points, and the centroid. 

 

 

 

 Predictive Geometric Features 

Arbitrary shapes can be characterized using techniques adapted from object 

recognition and computer vision. In object recognition, shapes are expressed as features 

and classified using models that take features in as inputs. The shape feature extraction 

methods in object recognition and classification mainly differ in whether they use the 

object boundary (boundary based methods) or the interior points of the shapes (region 

based) [236]. Since the polygons in this study have no holes, the boundary based methods 

seem more appropriate. Some of the most widely used approaches for shape representation 

are polygonal approximations, interrelation evaluation, moments, transforms, chain codes 

[237], beam angle statistics (BAS) [238], shape context [239], chord distributions [240], 

and Fourier and wavelet transforms of shape signatures [241,242] and so on [243]. 
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Different moments can be realized, such as invariant moments [244,245], Zernike 

moments [246], and more. One of the approaches to quantifying the geometric features is 

the bounding rectangles [247,248] that can help calculating orientation and elongation 

related features. Additionally, simple descriptors, such as area, perimeter, compactness, 

eccentricity and perimeter-area ratios, can be given as examples [249]. For the detailed 

classification of the shape representation methods and specific examples, interested 

readers are referred to the comprehensive reviews in the literature [236,243,250–252]. 

Most of the shape representation methods mentioned above characterize a shape 

via a distribution, which is simply a vector with a size of boundary points 𝑛𝑑. As the 

distribution based features significantly increase the number of inputs, only the scalar 

geometric descriptors are selected among the mentioned methods. Furthermore, contrary 

to object recognition, the scale of the shapes and their orientation with respect to the light 

direction are essential; therefore, several intuitive features are proposed to capture the 

directional and local properties of shapes. For example, the symmetry of the particles in 

the same and perpendicular direction with the light can be a meaningful descriptor. 

Additionally, the local geometric features in the vicinity of the main axes can be useful.   

Although quite common, feature elimination and extraction steps in data driven methods 

are not performed here to allow the collective effect of several features. 

In summary, we consider the following criteria in our feature engineering: 

1) Shape boundary is sufficient: the shapes in this study are represented by straight 

lines with no holes inside. 

2) Features are scalars: the descriptors expressed as distributions are not considered 

to limit the feature vector size. 
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3) Orientation matters: In the current study, the orientation of shapes is important 

because the light direction is along one direction. A polygon and its certain amount 

rotated version are different shapes. 

4) Scale is important: Size certainly changes scattering response. Scattering of light 

by a polygon-shaped object is different from that of the same polygon but scaled 

up or down in size. Therefore, there must be features characterizing the scale of 

particles. On the other hand, the features with a primary purpose other than the 

scale must be scale-independent. 

8.3.1. Simple Features 

At first glance, an arbitrary polygon can be marked by some simple metrics that 

explain its very general characteristics. The number of vertices (or edges) (𝑁𝑣), the area 

(𝐴), and the perimeter (𝑃) are among the most basic features. Instead of the perimeter, 

normalized perimeter (𝑝𝑛) can also be used to obtain a size-independent feature. 

𝐴 = 0.5∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑁𝑣

𝑖=1

 

𝑝𝑛 =
𝑃

2𝜋𝜇𝑟
=

1

2𝜋𝜇𝑟
 ∑‖𝑉𝑖 − 𝑉𝑖+1‖

𝑁𝑣

𝑖=1

 

(8.2) 

where 𝑉𝑖 = [𝑥𝑖 , 𝑦𝑖]
𝑇 is the coordinate of ith vertex. 𝜇𝑟 is the mean radius of a polygon, 

calculated by the average of the distances between the boundary points to the centroid 

(equation (8.1)). 

𝜇𝑟 =
1

𝑛𝑑
∑𝑑𝑗

𝑛𝑑

𝑗=1

 

𝐝 = [𝑑1, … , 𝑑𝑗 , … , 𝑑𝑛𝑑
]
𝑻
 

𝑑𝑗 = ‖𝑃𝑗 − 𝐺‖ 

(8.3) 

 

Eccentricity is a measure of aspect ratio, where the circle has an eccentricity of 1, and the 

eccentricity of ellipses approach 0. 
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𝜉𝑒 =
𝑐𝑥𝑥 + 𝑐𝑦𝑦 − √(𝑐𝑥𝑥 + 𝑐𝑦𝑦)

2
− 4(𝑐𝑥𝑥𝑐𝑦𝑦 − 𝑐𝑥𝑦

2 )

𝑐𝑥𝑥 + 𝑐𝑦𝑦 + √(𝑐𝑥𝑥 + 𝑐𝑦𝑦)
2
− 4(𝑐𝑥𝑥𝑐𝑦𝑦 − 𝑐𝑥𝑦

2 )

 (8.4) 

where 𝑐𝑥𝑥, 𝑐𝑥𝑦 and 𝑐𝑦𝑦 are the coefficients of the following covariance matrix: 

𝐶 =
1

𝑛𝑑
∑(

𝑥𝑗 − 𝑔𝑥

𝑦𝑗 − 𝑔𝑦
) (

𝑥𝑗 − 𝑔𝑥

𝑦𝑗 − 𝑔𝑦
)
𝑇

𝑛𝑑

𝑗=1

= (
𝑐𝑥𝑥 𝑐𝑥𝑦

𝑐𝑦𝑥 𝑐𝑦𝑦
) 

𝑐𝑥𝑥 =
1

𝑛𝑑
∑ (𝑥𝑗 − 𝑔𝑥)

2𝑛𝑑
𝑗=1 , 𝑐𝑦𝑦 =

1

𝑛𝑑
∑ (𝑦𝑗 − 𝑔𝑦)

2𝑛𝑑
𝑗=1 ,  

𝑐𝑥𝑦 = 𝑐𝑦𝑥 =
1

𝑛𝑑
∑ (𝑥𝑗 − 𝑔𝑥)(𝑦𝑗 − 𝑔𝑦)

𝑛𝑑

𝑗=1
. 

(8.5) 

The expression in equation (8.4) is the ratio of the eigenvalues of the matrix 𝐶. 

Compactness (𝜉𝑐) measures how close an arbitrary shape to a circle, which is considered 

as the most compact form of the closed shapes. The compactness descriptor is defined as 

the ratio of the perimeters of a shape and a sphere with the same area (𝑃2/𝐴 = 4𝜋 for a 

circle). 

𝜉𝑐 =
2√𝜋𝐴

𝑃
 (8.6) 

Similarly, the rectangularity is the comparison of the shape with a rectangle along a 

prespecified direction. The rectangularity of a shape can be determined using the bounding 

box approach (Figure 8.3). In a general sense, the bounding box representation of a 

polygon refers to the side lengths of the bounding rectangle, making an angle 𝛿 with the 

original x axis [248]. The rectangularity feature is calculated using this approach as: 
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𝜉𝑟 =
𝐴

(𝐿𝛿=0,𝑥)(𝐿𝛿=0,𝑦)
 (8.7) 

Other novel features are also proposed to describe a shape. Imagine an observer located 

on the +x axis, far away from the shape centroid. The angle between two straight lines 

drawn from the observer to the topmost and bottommost points of the shape is used as a 

feature called observer angle (𝜉𝛼). Likewise, the observer can see some of the vertices, 

while the rest stays behind the shape with respect to the observer. The ratio of the visible 

vertices to the total number of vertices becomes the visible “vertices to the observer” (𝜉𝑣). 

These features are visualized in Figure 8.4. 

𝜉𝑣 =
# 𝑜𝑓 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

𝑁𝑣
 (8.8) 

 

 

 

 

Figure 8.3. Bounding box representation. 
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Figure 8.4. Coverage angle from an observer far from the shape and the ratio of the 

visible vertices from an observer to the total number of vertices. 

 

 

 

8.3.2. Moment Based Features 

Moment invariants (or image moments) have been one of the earliest approaches 

to shape identification [253,254]. This approach calculates seven moment invariants 

derived from the central moments. Central moments of order (𝑝, 𝑞) integrates the shape 

density over a closed region or along a path enclosing a closed shape. For a digital image, 

(𝑝, 𝑞)-th central moment along the shape boundary is defined as: 

𝑚𝑝𝑞 = ∑ (𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞

(𝑥,𝑦∈𝒞)

 (8.9) 

Then the scaled moment becomes: 

𝜂𝑝𝑞 =
𝑚𝑝𝑞

𝑚00
𝑝+𝑞+1 

 (8.10) 

𝑥 

𝜉𝛼 
Observer 

Visible vertices 

Not-visible vertices 
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One should note that the moments are invariant to translation, rotation, and size, which 

contradicts the guidelines at the beginning of this section; however, as they represent the 

overall properties of a shape, similar to the simple features, moments are not discarded.  

Here only the first three moment invariants are included since the rest are almost zero. The 

first three moment invariants are as follows: 

𝜙1 = 𝜂02 + 𝜂20 

𝜙2 = (𝜂02 − 𝜂20)
2 + 4𝜂11

2  

𝜙3 = (𝜂30 + 𝜂12)
2 + (𝜂03 − 3𝜂21)

2 

(8.11) 

8.3.3. Elongation Related Features 

Elongation of a shape can distinguish if the sphere-like or rod-like particles result 

in more scattering. There are different approaches to calculate elongation. For example, 

moments can also be used to calculate other useful features, such as elongation 

[247,248,255]. 

𝜙𝑒,1 =
√𝜙2

𝜙1
 (8.12) 

Another approach for elongation is obtained using 𝑁-th order central moments, which is 

obtained using bounding box representation (Figure 8.3): 

𝐼𝑁 = ∑ (−𝑥 sin 𝛿 + 𝑦 cos 𝛿)𝑁

(𝑥,𝑦∈𝒞)

 (8.13) 

where 𝛿 is the rotation angle from the bounding box approach. Elongation is then 

expressed as: 
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𝜙𝑒,𝑁 =
max{𝐼𝑁|𝛿 ∈ [0,2𝜋)}

min{𝐼𝑁|𝛿 ∈ [0,2𝜋)}
 (8.14) 

In this study, 4th order central moment (𝜙𝑒,4) is used to calculate elongation (N = 4). In 

addition, the ratio of the bounding rectangle perimeter to the original perimeter is used as 

a feature (𝑙𝑦). 

𝑙𝑦 =
2(𝐿𝛿=0,𝑥 + 𝐿𝛿=0,𝑦)

𝑃
 (8.15) 

To introduce the directionality of the elongation, the extends of the shape along x and y 

axes are compared to the extent of the shape along arbitrary axes. 𝜏𝑥,𝑚𝑎𝑥 and 𝜏𝑦,𝑚𝑎𝑥 

compares the distance between the start and the end of the shape along x and y axes, 

respectively, to the maximum distance in any direction. Similarly, these distances can be 

compared to the average of the distances between the extends of the shape (𝜏𝑥,𝑎𝑣𝑔 and 

𝜏𝑦,𝑎𝑣𝑔). These distances can be easily calculated using the boundary points in Figure 8.2. 

The formal definitions of these features are as follows: 

𝜏𝑥,𝑚𝑎𝑥 =
𝑑(𝜃 = 0) + 𝑑(𝜃 = 𝜋)

max[𝑑(𝜃𝑗) + 𝑑(𝜃𝑗 + 𝜋) | 𝑗 = 1,… , 𝑛𝑑]
 

𝜏𝑦,𝑚𝑎𝑥 =
𝑑(𝜃 = 𝜋/2) + 𝑑(𝜃 = 3𝜋/2)

max[𝑑(𝜃𝑗) + 𝑑(𝜃𝑗 + 𝜋) | 𝑗 = 1,… , 𝑛𝑑]
 

𝜏𝑥,𝑎𝑣𝑔 =
𝑑(𝜃 = 0) + 𝑑(𝜃 = 𝜋)

mean[𝑑(𝜃𝑗) + 𝑑(𝜃𝑗 + 𝜋) | 𝑗 = 1, … , 𝑛𝑑]
 

𝜏𝑦,𝑎𝑣𝑔 =
𝑑(𝜃 = 𝜋/2) + 𝑑(𝜃 = 3𝜋/2)

mean[𝑑(𝜃𝑗) + 𝑑(𝜃𝑗 + 𝜋) | 𝑗 = 1,… , 𝑛𝑑]
 

(8.16) 

where 𝑑𝑗 = 𝑑(𝜃𝑗) is the distance between the jth boundary point and the centroid. 
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8.3.4. Orientation Related Features 

The particle orientation with respect to the light direction matters since the light 

interacts with different sections of the particle differently. To express the orientation of 

the shape, overall and directional features are used. The orientation angle, 𝛾 is the angle 

of the principal axis of the minimum bounding rectangle with the x-axis using the scaled 

moments in equation (8.10) [247]. 𝛾 gives an idea of the general shape. 

𝛾 =
1

2
tan−1 [

2𝜂11

𝜂20 − 𝜂02
] (8.17) 

With a more detailed analysis, local features of the shapes can be identified. For example, 

a directional perimeter term can be developed to obtain local extensions of the shapes in 

the vicinity of specific directions. For this feature to be calculated, at least one of the 

vertices should be within the predefined region. Otherwise, the feature is zero. The 

proposed feature is formulated as follows: 

𝜌+𝑥 = {

1

𝑃
∑𝑃(𝐼1, {𝑉𝑖}, 𝐼2)

 
, −𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 𝜃𝑚𝑎𝑥   AND α𝑖 < 𝛼𝑚𝑎𝑥 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜌+𝑦 = {

1

𝑃
∑𝑃(𝐼1, {𝑉𝑖}, 𝐼2)

 
, 𝜋 2⁄ − 𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 𝜋 2⁄ + 𝜃𝑚𝑎𝑥  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜌−𝑥 = {

1

𝑃
∑𝑃(𝐼1, {𝑉𝑖}, 𝐼2)

 
, 𝜋 − 𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 𝜋 + 𝜃𝑚𝑎𝑥  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜌−𝑦 = {

1

𝑃
∑𝑃(𝐼1, {𝑉𝑖}, 𝐼2)

 
, 3𝜋 2⁄ − 𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 3𝜋 2⁄ + 𝜃𝑚𝑎𝑥  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8.18) 

where 𝑃(𝐼1, {𝑉𝑖}, 𝐼2) is the perimeter of the segment connecting the points 𝐼1 and 𝐼2 where 

at least one vertex is located in between. 𝜃𝑚𝑎𝑥 designates the allowable half angle between 
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points 𝐼1 and 𝐼2 and the principal axes. 𝛼𝑚𝑎𝑥 is the maximum interior angle that a vertex 

can have to be considered elongated. 

8.3.5. Sharpness Related features 

Similar to the directional perimeter, directional sharpness measures the local 

properties of the shape. Sharp edges are identified by vertices with an interior angle 

smaller than a specific value. If a sharp edge is near the four main axes, the vertex’s radial 

position divided by the perimeter is calculated as the directional sharpness along that axis. 

The proposed feature can be formulated as follows: 

𝑠+𝑥 = {

1

𝑃
∑𝑟𝑖

 
, −𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 𝜃𝑚𝑎𝑥   AND α𝑖 < 𝛼𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑠+𝑦 = {

1

𝑃
∑𝑟𝑖

 
, 𝜋 2⁄ − 𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 𝜋 2⁄ + 𝜃𝑚𝑎𝑥 AND α𝑖 < 𝛼𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑠−𝑥 = {

1

𝑃
∑𝑟𝑖

 
, 𝜋 − 𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 𝜋 + 𝜃𝑚𝑎𝑥  AND α𝑖 < 𝛼𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑠−𝑦 = {

1

𝑃
∑𝑟𝑖

 
, 3𝜋 2⁄ − 𝜃𝑚𝑎𝑥 < 𝜃𝑖 < 3𝜋 2⁄ + 𝜃𝑚𝑎𝑥  AND α𝑖 < 𝛼𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8.19) 

where 𝛼𝑖 is the interior angle of the ith vertex. 

8.3.6. Convexity Related Features 

Convexity is a measure of the curvature of the shape. If none of the interior angles 

of the shape is smaller than 𝜋, then the shape is convex; otherwise, it is nonconvex. The 

convexity of a closed shape is measurable using bounding rectangles [248]. In this 

approach, the perimeter of the bounding rectangle is compared to the projected perimeter 
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of a polygon, or city block perimeter. For any shape, equality holds only for convex shapes 

in the following expression: 

𝑃1(𝒮, 𝛿) ≥ 2(𝐿𝛿,𝑥 + 𝐿𝛿,𝑦), (8.20) 

where 𝑃1(𝒮, 𝛿) denotes projected perimeter of a shape, 𝒮 tilted with an angle 𝛿. This 

quantity is equivalent to the expression below: 

𝑃1(𝒮, 𝛿) = ∑ (𝑥𝑖+1 − 𝑥𝑖) + (𝑦𝑖+1 − 𝑦𝑖)

𝑁𝑣−1

𝑖=1

, (8.21) 

where (𝑥𝑖, 𝑦𝑖) is the coordinates of the ith vertex. Using equation (8.20), a convexity 

metric can be formulated as follows: 

𝑐 = min
α∈[0,2𝜋)

2(𝐿𝛿,𝑥 + 𝐿𝛿,𝑦)

P1(𝒮, 𝛿)
. (8.22) 

𝑐 < 1 for concave and 𝑐 = 1 for convex shapes. Directional convexity is calculated by 

dividing the radial position of the shape boundary along an axis to the mean radial position 

near the same axis using Jensen’s inequality. According to this inequality, in an interval, 

ℐ, for a set 𝑥1, 𝑥2, … , 𝑥𝑁: 

𝑓 (∑ 𝑥𝑛

𝑁

𝑛=1
) − ∑ 𝑓(𝑥𝑛)

𝑁

𝑛=1
    {

< 0, if convex
= 0, if collinear
> 0, if concave

 (8.23) 

The relationship above can be translated into a directional convexity feature by focusing 

on the vertex coordinates. Along x direction, the comparison can be made by y coordinates 

and vice versa. An additional change is made to the first term by using the coordinate 

value when the other coordinate (x when y is used) is zero. Selecting an angular region 

±𝜋/4 around each axis, the following expressions are formulated: 
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𝑐+𝑥 =
𝑥0

𝑥
− 1          {−𝜋/4 < 𝜃𝑗 ≤ 𝜋/4 | 𝑗 = 1,… , 𝑛𝑑} 

𝑐+𝑦 =
𝑦0

𝑦
− 1          {𝜋/4 < 𝜃𝑗 ≤ 3𝜋/4 | 𝑗 = 1, … , 𝑛𝑑} 

𝑐−𝑥 =
𝑥0

𝑥
− 1          {3𝜋/4 < 𝜃𝑗 ≤ 5𝜋/4 | 𝑗 = 1,… , 𝑛𝑑} 

𝑐−𝑦 =
𝑦0

𝑦
− 1          {5𝜋/4 < 𝜃𝑗 ≤ 7𝜋/4 | 𝑗 = 1,… , 𝑛𝑑} 

(8.24) 

where 𝑥0 = 𝑥(𝑦 = 0) and 𝑦0 = 𝑦(𝑥 = 0). 𝜃𝑗  is the angular position of the boundary point 

(𝑥𝑗 , 𝑦𝑗) (Figure 8.2). 

8.3.7. Symmetry Related Features 

Symmetry is calculated by comparing the intersected area of the original and 

mirrored (around the desired direction) shapes with the original area. A perfectly 

symmetric shape will have a score of 1; otherwise, it will be 0. Once the vertex coordinates 

of the intersected shape are found, the following expressions: 

𝜎𝑥 =
𝐴𝑖𝑛𝑡,𝑦

𝐴
 

𝜎𝑦 =
𝐴𝑖𝑛𝑡,𝑥

𝐴
 

(8.25) 

where 𝐴𝑖𝑛𝑡,𝑥 and 𝐴𝑖𝑛𝑡,𝑦 are the areas of the intersected shape found by mirroring the shape 

along x and y directions, respectively. 

In Table 8.1, the features explained above are summarized with their group and a 

brief description is provided for each feature. 
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Table 8.1. Summary of the features with their description. 

 Feature Description 
S

im
p

le
 

𝑵𝒗 Number of vertices 
𝒑𝒏 Normalized perimeter 
𝑨 Area 
𝝃𝒆 Eccentricity 
𝝃𝒄 Compactness  
𝝃𝒓 Rectangularity 
𝝃𝜶 Coverage angle from an observer far from the shape 
𝝃𝒗 The ratio of the visible vertices from an observer to 𝑁𝑣 

M
o
m

1
 𝝓𝟏 1st moment invariant 

𝝓𝟐 2nd moment invariant 
𝝓𝟑 3rd moment invariant 

E
lo

n
g
a
ti

o
n

 

𝝓𝒆,𝟏 1st order elongation 
𝝓𝒆,𝟒 4th order elongation 
𝒍𝒚 The ratio of the perimeter of the bounding rectangle along x axis to 𝑃 

𝝉𝒙,𝒎𝒂𝒙 
The ratio of the shape extends on the y axis to the maximum shape 

extend along any direction 

𝝉𝒚,𝒎𝒂𝒙 
The ratio of the shape extends on the x axis to the maximum shape 

extend along any direction 

𝝉𝒙,𝒂𝒗𝒈 
The ratio of the shape extends on the y axis to the average shape 

extend along any direction 

𝝉𝒚,𝒂𝒗𝒈 
The ratio of the shape extends on the x axis to the average shape 

extend along any direction 

O
ri

en
ta

ti
o
n

 𝜸 Orientation angle 
𝝆+𝒙 Directional perimeter in the vicinity of +x direction 
𝝆+𝒚 Directional perimeter in the vicinity of +y direction 
𝝆−𝒙 Directional perimeter in the vicinity of -x direction 
𝝆−𝒚 Directional perimeter in the vicinity of -y direction 

S
h

a
rp

n
es

s 𝒔+𝒙 Directional sharpness in the vicinity of +x direction 

𝒔+𝒚 Directional sharpness in the vicinity of +y direction 

𝒔−𝒙 Directional sharpness in the vicinity of -x direction 

𝒔−𝒚 Directional sharpness in the vicinity of -y direction 

C
o
n

v
ex

it
y
 𝒄 Convexity of the overall shape 

𝒄+𝒙 Directional sharpness in the vicinity of +x direction 
𝒄+𝒚 Directional sharpness in the vicinity of +y direction 
𝒄−𝒙 Directional sharpness in the vicinity of -x direction 
𝒄−𝒚 Directional sharpness in the vicinity of -y direction 

S
y
m

2
 

𝝈𝒙 Symmetry around x direction 

𝝈𝒚 Symmetry around y direction 
1Momentum, 2 Symmetry 
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 Dataset 

A dataset of 8,230 data points is generated, each representing a random polygon 

nanoparticle and computed independent variables (features), as explained previously. The 

dependent variable (i.e., target) is obtained from the computational simulations. We 

decided to use the following normalized transformed quantity as the regression target: 

 Target ≡ log(𝐶𝑠𝑐𝑎𝑡/𝐴) (8.26) 

where 𝐶𝑠𝑐𝑎𝑡 is the scattering cross section and 𝐴 is the physical area. 𝐶𝑠𝑐𝑎𝑡/𝐴 is also known 

as the scattering coefficient. Using the logarithm of the scattering coefficient provides a 

normalized target distribution. The distributions of different target options are provided in 

Figure 8.5. The scatter plots of individual features with respect to the target are presented 

in Figure 8.6. Each feature correlates with the target differently, where in some cases, the 

correlation is very weak. Nevertheless, the cumulative effect of features should not be 

discarded. A summary of the data is provided in Table 8.2. The intercorrelation of the 

features is presented using the absolute values of the Pearson formulation. Additionally, a 

hierarchical clustering approach is used to investigate the relationship between the features 

and presented together with the correlation plot in Figure 8.7. 

 

 

 

 
Figure 8.5. Histograms of different options for the target.

× 10−4  

 

0.0 

7.5  



151 

 

 
Figure 8.6. Scatter plots of target with each feature. 
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Figure 8.6 Continued. 
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Table 8.2. Summary of the dataset. Mean, standard deviation, minimum and maximum 

values of the features and the target. 

 Feature mean std min max 
S

im
p

le
 

𝝀 503.1 127.9 300.0 700.0 
𝑵𝒗 6.48 2.25 3.00 10.00 
𝒑𝒏 1.551 1.314 1.034 36.226 
𝑨 1569.1 1044.2 0.1 6784.3 
𝝃𝒆 0.559 0.224 0.007 0.985 
𝝃𝒄 0.758 0.133 0.093 0.968 
𝝃𝒓 0.505 0.141 0.014 0.870 
𝝃𝜶 18.2 4.2 2.6 27.9 
𝝃𝒗 0.666 0.166 0.200 1.000 

M
o
m

.1
 𝝓𝟏 0.020 0.002 0.008 0.026 

𝝓𝟐 1.25 × 10−4 1.30 × 10−4 4.45 × 10−8 6.62 × 10−4 

𝝓𝟑 1.83 × 10−6 2.20 × 10−6 3.53 × 10−10 2.35 × 10−5 

E
lo

n
g
a
ti

o
n

 

𝝓𝒆,𝟏 0.465 0.261 0.009 0.999 
𝝓𝒆,𝟒 0.284 0.227 1.07 × 10−6 0.954 
𝒍𝒚 0.637 0.148 0.096 0.986 

𝝉𝒙,𝒎𝒂𝒙 0.639 0.234 0.026 1.000 
𝝉𝒚,𝒎𝒂𝒙 0.642 0.226 0.010 1.000 
𝝉𝒙,𝒂𝒗𝒈 0.995 0.331 0.324 4.137 
𝝉𝒚,𝒂𝒗𝒈 1.010 0.362 0.251 4.122 

O
ri

en
ta

ti
o
n

 𝜸 −0.014 0.923 −1.566 1.571 
𝝆+𝒙 0.146 0.097 0.000 0.572 
𝝆+𝒚 0.144 0.103 0.000 0.625 
𝝆−𝒙 0.134 0.102 0.000 0.541 
𝝆−𝒚 0.146 0.100 0.000 0.610 

S
h

a
rp

n
es

s 𝒔+𝒙 0.094 0.103 0.000 0.517 

𝒔+𝒚 0.096 0.104 0.000 0.447 

𝒔−𝒙 0.084 0.101 0.000 0.461 

𝒔−𝒚 0.093 0.102 0.000 0.459 

C
o
n

v
ex

it
y

 𝒄 0.968 0.061 0.655 1.000 
𝒄+𝒙 0.106 0.224 −0.764 2.136 
𝒄+𝒚 0.092 0.243 −0.735 2.669 
𝒄−𝒙 0.082 0.215 −0.585 1.725 
𝒄−𝒚 0.091 0.239 −0.839 1.968 

S
y
m

.2
 

𝝈𝒙 0.678 0.193 0.018 0.984 

𝝈𝒚 0.683 0.195 0.018 0.991 

 Target −1.739 1.640 −11.986 2.618 
1Momentum, 2 Symmetry 
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Figure 8.7. Analysis of the dataset using hierarchical clustering and absolute correlation 

matrix. 
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From Figure 8.7, wavelength 𝜆 is the least correlated feature with the others, as expected. 

The reason wavelength is also included as a feature is to reduce the computational cost of 

prediction. Although a multi-output regression could also be considered with scattering at 

each selected wavelength as one output, this would require more data points, thus 

increasing the cost (discussed in Chapter 6). Using wavelength as input increases input 

size by 1 but decreases the number of outputs from the number of wavelengths in 

consideration to 1. 

The other feature at the outermost leaves of the hierarchy is the orientation angle, 

𝛾. As seen in Figure 8.6, the relationship between 𝛾 and the target has a V-shape, contrary 

to the other features. Although the number of vertices, 𝑁𝑣 is also expected to have a small 

correlation with the rest of the features, it is connected with 3rd moment invariant, 𝜙3, in 

the cluster and has a nonzero, yet small, correlation with a few more features, such as 

convexity, 𝑐, and the ratio of the visible vertices from an observer to the total number of 

vertices, 𝜉𝑣. The convexity, 𝑐 and 1st moment invariant, 𝜙1 are one of the highly correlated 

feature pairs. 

The features belong to one of two main clusters. The first cluster involves the 

orientation, sharpness and convexity related directional features and the ratio of the shape 

extent in x and y directions to the average. The second cluster involves the simple features, 

moment based features and sharpness related features. in other words, the first cluster 

describes the specific regions of the shapes. In contrast, the second cluster explains the 

general characteristics of a shape. 

 



 

156 

 

 Results and Discussion 

8.5.1. Training Results 

The summary of the training results is presented in Table 8.3. The training and 

validation set errors are shown with the coefficients of determination, or R-squared (𝑅2). 

Figure 8.8 shows the scatter plots of the target and predicted outputs for each predictor. 

The linear regression algorithm has the highest error and lowest 𝑅2, as expected since the 

input-output relationship is highly nonlinear. Regression trees show an 𝑅2 larger than 

0.85, yet it is significantly smaller than those of XGBoost and neural networks. One of the 

possible reasons for the poorer performance of regression trees is overfitting. As the tree 

structure gets complex, the generalization capability of the regression trees reduces. 

XGBoost and neural networks perform the best for predicting the output according to the 

validation error. Although the smaller training error of XGBoost compared to neural 

networks suggests overfitting, the inherent regularization of XGBoost results in a small 

validation error. On the other hand, neural networks also perform similarly on the 

validation set and the larger training error is due to the Bayesian regularization scheme 

employed during neural network training. As a result of the training, XGBoost and neural 

networks can be considered the best predictors. 

 

 

Table 8.3. Summary of the performances of fitting methods 

 Training Validation 

Method MSE R2 MSE R2 

Regression Trees 0.00558 0.997 0.355855 0.866 
XGBoost Regression 4.07 × 10−7 1.000 0.127011 0.952 

Neural Networks 0.075895 0.972 0.12748 0.952 
Linear Regression 1.247262 0.539 1.312303 0.506 
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 Training Validation 

(a) 

  

(b) 

  

(c) 

  

(d) 

  
Figure 8.8. Comparison of the target and predicted outputs by (a) Regression Trees, (b) 

XGBoost Regression, (c) Neural Networks, (d) Linear Regression. Left: Training set, 

Right: Validation set. 
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8.5.2. Test Results 

The instances in the test dataset are entirely new to the predictors; thus, the test 

results show the real-world performance of the predictors. The previous section 

demonstrates that XGBoost and neural networks are the best performing predictors and 

used for the test cases in this section. Figure 8.9 shows the comparison of the target and 

the predictions obtained by XGBoost (Figure 8.9a) and neural networks (Figure 8.9b). The 

error rates and 𝑅2 values of these predictors are very close, which is in agreement with the 

training and validation results. 

 

 

 

  

Figure 8.9. Comparison of target and predicted data for the test set. (a) XGBoost, (b) 

neural networks regression. 

 

 

 

In Figure 8.9, comparison of the scattering cross section, 𝐶𝑠 over the wavelength range in 

consideration is shown for three different cases. These examples are kept at a limited 

MSE =  0.2114 

𝑅2 = 0.898 
MSE =  0.1918 

𝑅2 = 0.907 

 

a b 
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number for the sake of brevity. Note that in these plots, the target, log scattering efficiency 

(log 𝐶𝑠/𝐴), is converted to the scattering cross section, 𝐶𝑠, for visualization purpose. 

The discrepancy between the target and the predictions is more visible at the peak 

locations of the scattering. It is expected to see discrepancy at large scattering values 

because data with large output is slightly less than the rest of the data. One possible 

approach to improve the fit at the peak locations is to create a supplementary predictor for 

predicting peak locations and peak values of each case. This approach can work as a 

refinement step of the prediction. 

 Conclusion 

In this study, the optical characteristics of nanoparticles with arbitrary shapes are 

modeled using data driven techniques. The arbitrary shapes, randomly drawn polygons, 

are characterized by the predictive shape descriptors, describing unique features of each 

shape. These features include area, eccentricity, as well as sharpness and convexity related 

features, and more. These predictive shape features are used to estimate the optical 

scattering, log scattering efficiency. Among different techniques, XGBoost and neural 

networks regression perform best in terms of the validation error. The test set also shows 

that the predictors perform well with the completely new (test) cases. 

Although there are discrepancies between the target and the predictions, the 

general trend of the scattering is predicted closely. The peak locations are estimated even 

though the value is not always matched. The fit of the predictive models can be further 

improved by employing an adaptive sampling, where new training points are added from 

the high-error regions. 
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Figure 8.9. Examples of the comparison of the target and predictions from XGBoost and 

neural networks over the wavelength spectrum. 
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9. SUMMARY AND CONCLUSIONS 

 

 Summary of the Dissertations 

In this dissertation, a numerical characterization and optimization framework is 

proposed for thin film solar cell design based on learning based techniques and 

evolutionary nonparametric shape optimization. The design of various solar cell 

configurations with different objective functions is investigated. 

In Chapter 4, a learning based optimization process is conducted for maximum 

optical enhancement. Optical enhancement is defined as the ratio of the number of 

absorbed photons by plasmonic and bare solar cells, respectively. The summary of the key 

findings is listed below. 

• Despite significant electric field enhancement near the band edge, the absorption 

is not significantly high due to of small values of the imaginary part of the 

refractive index. Yet, near edge absorption by plasmonic cells is still much larger 

than the bare. 

• Although not stated explicitly, the enhancement factor favors shorter thicknesses 

for absorber; therefore, efficient electrical transport is expected even though 

electrical simulations are not performed. 

• The comparison of plasmonic and random (initial) design results justifies the 

necessity of numerical optimization. 

•  The electric field intensifies around the sharper edges of nanoparticles. 
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In Chapter 5, a similar optimization procedure to one in Chapter 4 is employed to 

find the maximum external quantum efficiency. The key results of this study are 

summarized below. 

• The approximate external quantum efficiency, developed by the material 

properties (i.e., diffusion length) and the absorptivity, is validated with an 

experimental result from the literature. The proposed method matches the 

experiments closely for p-n junction semiconductors. 

• The optimized design resulted in a better optical and electrical performance 

compared to the randomly selected initial design. 

Chapter 6 improves the optimization methodology in Chapter 5 by introducing the 

knowledge transfer concept to design optimization. The knowledge is transferred among 

similar tasks (i.e., different material combinations). Two different approaches are 

proposed: neural network based transfer optimization and Gaussian process based 

Bayesian transfer optimization. The summary of key findings is listed below. 

• The knowledge transfer is utilized via shared layers in neural networks, and a 

similarity weighted common surface in Gaussian process. 

• The knowledge transfer improves the accuracy of the surrogate neural network. 

• The effect of the negative transfer is discussed using neural networks. 

• The similarity metric provides an easy-to-use way to quantify similarity among the 

tasks. 

• Overall, neural network based transfer optimization is found to be more accurate 

and faster because of using wavelength as an input. 



 

163 

 

In Chapter 7, a free form nanoparticle is designed for the maximum scattering cross 

section. The nonparametric design is performed by a density based topology optimization 

and filtering techniques, such as image morphology methods. The key results of this study 

are listed below: 

• The optimization objectives are 2-35 times higher compared to known shapes, such 

as cube, hexagon, hexagram, and sphere. 

• Spectral cross sections are 1-10 times higher compared to the known shapes. 

• A checkerboard control scheme is proposed in addition to the filtering techniques, 

providing realistic and efficient designs. 

In Chapter 8, the scattering by arbitrarily shaped nanoparticles is modeled using 

predictive methods. The arbitrary shapes, randomly drawn polygons, are characterized by 

the predictive shape features, describing unique features of each shape. These predictive 

shape features are used to estimate the optical scattering using machine learning methods, 

such as neural networks, XGBoost regression and regression trees. The key results of this 

study are listed below: 

• The correlation between the features is illustrated and discussed using hierarchical 

clustering. 

• XGBoost and neural networks regression perform best with a 95% validation error. 

• Testing error is 90%, which shows that the predictive methods generalize well with 

the new data points. 

• The comparison between the predictions and simulations are illustrated for several 

test cases. Although there are discrepancies between the target and the predictions, 
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the general trend of the scattering, i.e., the peak locations and bandwidth, is 

predicted closely. 

 Suggestions for Future Work 

This section details suggestions for possible research directions related to the 

content of this work. 

9.2.1. Experimental Verification of the Numerical Results 

Experimental validation is an integral part of the material design. The optimized 

solar cell structure in this study is suggested to be fabricated for uncertainty analysis. In a 

fabricated sample, various sources of uncertainty exist. For instance, variations in the 

geometry can occur as a result of fabrication uncertainties. Roughness measurements via 

atomic force microscopy (AFM) can be convenient to minimize uncertainty; yet, the 

roughness values should be incorporated in the optimization procedure. Another source of 

uncertainty can be the nanoparticle nucleation and growth since the geometry control of a 

particle remains to be a challenge. This study and other researchers in the literature 

demonstrated the importance of the nanoparticle shape. Therefore, the uncertainties in the 

fabricated nanoparticles should also be considered in the design. Using numerical 

optimization, coupled with fabrication, can yield a robust framework of solar cell design. 

9.2.2. Optoelectrical Modeling and Optimization of Plasmonic Solar Cells 

The proposed EQE model in this study is analytical and based on simplifications, 

such as negligible surface recombination. Additionally, the bulk recombination is not 

distinguished but presented as a single expression. On the other hand, several factors have 
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possible effects on the electrical performance of solar cells, such as doping profile in the 

solar cell and electrical properties of the materials, i.e., mobility. The proposed EQE model 

will be verified using computational methods, i.e., drift-diffusion equations. 

A detailed recombination modeling for nanostructured and plasmonic solar cells 

can yield a comprehensive analysis, and PCE can be targeted directly. Developing an 

approximate model that can capture the effects of nanostructures can also increase the 

computation speed, which remains to be a challenge. 

9.2.3. Scattering Prediction Using Geometric Features Based on Adaptive Sampling 

In Chapters 4 and 7, the importance of nanoparticle shape in radiative applications 

is demonstrated. Chapter 8 is devoted to the prediction of nanoparticle scattering using 

predictive geometric features. This study can be extended to improve the fit using adaptive 

sampling strategies and consider different scenarios in optical problems. The suggestions 

are elaborated below: 

i. Adaptive sampling: A more informed dataset construction procedure can improve 

fit performance with a smaller number of data. One of the possible approaches is 

using the validation error for picking a new training instance. If certain regions are 

not represented compared to the others, the validation error in these regions is 

expected to be large. Adding new data near high error regions can improve the 

predictor’s performance. Once the instances in the validation set with a large error 

are identified, the new data can be added near the larger-validation-error regions 

based on error based probability or above the desired threshold. 
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ii. Different scenarios: The studies in Chapters 7 and Chapter 8 focus on shape-

dependent scattering by considering isolated particles in the vacuum. However, in 

most applications, the effect of nearby nanoparticles is not negligible and 

periodically located particles demonstrate different radiative responses than 

isolated particles. Additionally, the surrounding media affect the optical response 

of particles, such as shifting peak point(s), altering the scattering strength. 

Considering these scenarios can enable more reliable predictions for real world 

applications, such as thin film solar cells. 
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APPENDIX A 

SENSITIVITY ANALYSIS USING NEURAL NETWORKS  

 

One of the useful by-products of a surrogate model is that it provides a way of 

analyzing sensitivity of objective function to different input variables, without having to 

run extensive first order computations. If a surrogate model exists that approximates the 

input-output map function of a system, the sensitivity of an output to each design 

parameter at a particular configuration can be more efficiently computed either through 

explicit derivatives of the surrogate function, or numerical gradient calculations of the 

approximate function. This approach has in particular been studied for NNs. Olden et al. 

[256] and Gevrey et al. [257] reviewed methods of input contribution to the output 

independently in ecological sciences. In [256], several sensitivity analysis methods are 

proposed such as Neural Interpretation Diagram (NID), Garson’s algorithm and 

Sensitivity Analysis, and the authors proposed a randomization test for input-hidden-

output connection weight selection. In [257], Partial Derivatives (PaD) method, Perturb 

method, Weights (Garson’s Algorithm) method, Profile method (Sensitivity Analysis), 

Classic and Improved Stepwise methods were discussed. PaD and Profile methods provide 

information on the order of contribution and mode of action, while the other methods 

classify only the order of contribution. In the present study, we use these two methods and 

Garson’s algorithm for comparison in order to investigate the effects of solar cell geometry 

and source properties on absorbed power by the active layer. These three methods are 
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explained below in detail. For other methods, we refer the interested reader to [256] and 

[257]. 

A.1. Partial Derivative (PaD) Method 

In PaD, partial derivative of output with respect to each input for a set of data is 

calculated. This method provides information on the change in response based on minor 

changes in inputs. Partial derivative of 𝑛th output in the data set 𝑞𝑛 with respect to the input 

vector 𝐩𝐧 for an 𝐿-layer NN based on re-normalized (original) values is: 

 

𝑑𝑛 =
𝛛𝐪𝐧

𝛛𝑝𝑛

= [𝐖𝟏]
𝐓𝑆1, 

𝑆i = (
𝐪𝐦𝐚𝐱 − 𝐪𝐦𝐢𝐧

𝟐
)
𝐋−𝐢+𝟏

𝑠𝑖. 

(A.1) 

where 𝐒𝒊 and 𝐬𝒊 are the Marquardt sensitivity values based on original and normalized 

output values evaluated in Equation (5), respectively. 𝐝𝐧 is calculated for a set of 𝑁𝑑 

points, which is not necessarily the complete training or validation sets. 

The results of PaD method could be interpreted by calculating the mean sum of 

squared derivatives for each input and determination of the relative importance 

accordingly [257]. Mean sum of squared derivatives and percentage MSSD for 𝑗𝑡ℎ input 

are calculated as: 

 MSSDj =
1

ND
∑ 𝑑𝑛

2(j)

ND

n=1

. (A.2) 

 % PMSSDj =
MSSDj

∑ MSSDj
R0
j

× 100. (A.3) 
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A.2. Profile Method 

The profile method is a straightforward yet effective method to determine input 

contribution to the output. The logic behind this method is to change the value of one input 

at a specified step in a specified range successively, while keeping the other inputs 

constant and record the response of NN. In the present study, the entire range of values is 

considered for each parameter, and the value of each parameter is changed with %10 

increments from min to max value. The other parameters are kept at average of their min 

and max values. This method reduces to PaD if the step size is infinitesimal. The 

relationship between input and output is studied by Olden et al. [256] and classified into 

different categories such as Gaussian response curve, Bimodal response curve, flat 

response curve, etc. 

A.3. Garson’s Method 

Garson’s algorithm compares the relative contributions of inputs by calculating the 

weight values connecting each input to the output. The absolute values of the weights are 

considered, therefore the true effect of the input on the output cannot be determined. 

Importance of the 𝑗𝑡ℎ  input (𝐼𝑗) and percent importance (PI) is calculated by: 

 

Ij = ∑
|W1

i,j
W

2

1,j
|

∑ |W1
i,j
W

2

1,j
|

R0
j

R1

i=1

, 

% PIj =
Ij

∑ Ij
Ro

j

× 100. 

(A.4) 
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A.4. Sensitivity Analysis Results 

The relative contribution of each input obtained by PaD method and Garson’s 

algorithm can be seen in   Both methods results are mostly agreeing. We can conclude that 

the least effective input is 𝑡2, and the most sensitivity is with respect to 𝜆, 𝜃, 𝑡1, 𝑟. 

 

Table A.1. Percentage relative contribution of inputs using PaD and Garson’s Methods. 

Input 
% PMSSD 

(PaD) 

Importance Row 

(PaD) 

% PI 

(Garson) 

Importance Row 

(Garson) 

t1 13.3 4 16.4 3 

r 16.0 3 14.4 4 

s 3.2 6 12.2 5 

P 5.2 5 12.1 6 

t2 0.7 7 8.3 7 

θ 29.2 2 20.7 2 

λ 32.4 1 16.0 1 

 

Figure A.1 shows input contributions obtained by the Profile method. The inverse relation 

of output to 𝜃 and the direct proportional relation to 𝑡1 is evident there. The maximum 

output is observed around 𝜆~480nm which is very close to the peak point of the extinction 

coefficient of P3HT:PCBM at 500 nm. Similar to the findings from the other methods, 𝑡2 

and 𝑠 do not have a considerable contribution to the output. However, at certain 𝑟 and 𝑃 

values with other parameters fixed, absorptivity is maximized. 
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Figure A.1. Variation of NN Output with respect to inputs using Profile Method 
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APPENDIX B 

OPTICAL PROPERTIES OF THE MATERIALS 

 

The optical properties, i.e. refractive indices of the materials used in this 

dissertation are presented in this section. These properties are taken from literature 

[99,258–261]. 
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