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ABSTRACT

Nowadays, algorithms analyze user data and affect the decision-making process for millions of

people on matters like employment, insurance and loan rates, and even criminal justice. However,

these algorithms that serve critical roles in many industries have their own biases that can result

in discrimination and unfair decision-making. Explainable Artificial Intelligence (XAI) systems

can be a solution to predictable and accountable AI by explaining AI decision-making processes

for end users and therefore increase user awareness and prevent bias and discrimination. The

broad spectrum of research on XAI, including designing interpretable models, explainable user

interfaces, and human-subject studies of XAI systems are sought in different disciplines such as

machine learning, human-computer interactions (HCI), and visual analytics. The mismatch in

objectives for the scholars to define, design, and evaluate the concept of XAI may slow down the

overall advances of end-to-end XAI systems. My research aims to converge knowledge behind

design and evaluation of XAI systems between multiple disciplines to further support key benefits

of algorithmic transparency and interpretability. To this end, I propose a comprehensive design and

evaluation framework for XAI systems with step-by-step guidelines to pair different design goals

with their evaluation methods for iterative system design cycles in multidisciplinary teams.

This dissertation presents a comprehensive XAI design and evaluation framework to provide

guidance for different design goals and evaluation approaches in XAI systems. After a thorough

review of XAI research in the fields of machine learning, visualization, and HCI, I present a cate-

gorization of XAI design goals and evaluation methods and show a mapping between design goals

for different XAI user groups and their evaluation methods. From my findings, I present a design

and evaluation framework for XAI systems (Objective 1) to address the relation between different

system design needs. The framework provides recommendations for different goals and ready-

to-use tables of evaluation methods for XAI systems. The importance of this framework is in

providing guidance for researchers on different aspects of XAI system design in multidisciplinary

team efforts. Then, I demonstrate and validate the proposed framework (Objective 2) through one

ii



end-to-end XAI system case study and two examples by analysis of previous XAI systems in terms

of our framework.

I present two contributions to my XAI design and evaluation framework to improve evaluation

methods for XAI system. First, I investigate temporal patterns of user trust and reliance in XAI

systems (Objective 3). My study results show that model explanations not only affected user final

trust but also shape how user trust evolves over time; indicating the importance of of user behavior

for evaluating XAI systems. Lastly, I propose an open-sourced human-attention evaluation baseline

for direct evaluation of saliency map explanations (Objective 4). I demonstrate my human-attention

benchmark’s utility for quantitative evaluation of model explanations by comparing it with single-

layer feature masks baseline. My experiments also show the advantage of my evaluation baseline

by revealing different user biases in the subjective rating evaluation of model saliency explanations.
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1. INTRODUCTION*

Impressive applications of Artificial Intelligence (AI) and data mining have become prevalent

in our time. Tech giants like Google, Facebook, and Amazon have collected and analyzed enough

personal data through smartphones, personal assistant devices, and social media that can model

individuals better than other people. Recent negative interference of social media bots in political

elections [4] were yet another sign of how susceptible our lives are to the power of artificial intelli-

gence and big data [5]. In these circumstances, despite tech giants and the thirst for more advanced

systems, others suggest holding off on fully unleashing AI for critical applications until they can

be better understood by those who will rely on them. The demand for predictable and accountable

AI grows as tasks with higher sensitivity and social impact are more commonly entrusted to AI

services. Hence, algorithm transparency is an essential factor in holding organizations responsible

and accountable for their products, services, and communication of information.

Explainable Artificial Intelligence (XAI) systems are a possible solution towards accountable

AI, making it possible by explaining AI decision-making processes and logic for end users [6].

Specifically, explainable algorithms can enable control and oversight in case of adverse or un-

wanted effects, such as biased decision-making or social discrimination. An XAI system can be

defined as a self-explanatory intelligent system that describes the reasoning behind its decisions

and predictions. The AI explanations could benefit users in many ways such as enabling appropri-

ate trust and reliance as well as enabling ethical and fairness analysis of machine learning models

and their decision-making process.

While the increasing impact of advanced black-box machine learning systems in the big-data

era has attracted much attention from different communities, interpretability of intelligent systems

has also been studied in numerous contexts [7, 8]. The study of personalized agents, recommen-

dation systems, and critical decision-making tasks (e.g., medical analysis and powergrid control)

* Parts of the material in this chapter are reprint or adapted from [3]. Mohseni et al. “A Multidisciplinary
Survey and Framework for Design and Evaluation of Explainable AI Systems” accepted for publication at accepted
for publication in ACM Transactions on Interactive Intelligent Systems. Reproduced with permission.
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Explainable AI System UserData

Figure 1.1: XAI system components and interactions. The user interacts with the explainable
interface to send queries to the interpretable algorithm and receive model output and explanations.
The interpretable model interacts with the data to generate explanations for user queries. Reprinted
from Mohseni et al. [3].

has added to the importance of machine-learning explanation and AI transparency for end-users.

For instance, as a step towards this goal, the legal right to explanations has been established in the

European Union General Data Protection Regulation (GDPR) commission. While the current state

of regulations is mainly focused on user data protection and privacy, it is expected to cover more

algorithmic transparency and explanations requirements from AI systems [9].

Addressing such a broad array of definitions and expectations for XAI requires multidisci-

plinary research efforts, as existing communities have different requirements and often have dras-

tically different priorities and areas of specialization. For instance, research in the domain of

machine learning seeks to design new interpretable models and explain black-box models with ad-

hoc explainers. Along the same line but with different approaches, researchers in visual analytics

design and study tools and methods for data and domain experts to visualize complex black-box

models and study interactions to manipulate machine learning models. In contrast, research in

human-computer interaction (HCI) focuses on end-user needs such as user trust and understanding

of machine generated explanations. Psychology research also studies the fundamentals of human

understanding, interpretability, and the structure of explanations.

1.1 Problem Statement

An XAI system includes multiple components which directly affect the system design process,

see Figure 1.1. There exist diverse sets of design goals, evaluation methods, and research back-
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ground for each of the XAI components. For example, numerical analytic methods are employed

in machine learning fields to evaluate computational interpretability, while human interpretability

and human-subjects evaluations are more commonly the primary goals in HCI and visualization

communities. In this regard, although there seems to be a mismatch in specific objectives for

designing and evaluating explainability and interpretability, a convergence in goals is beneficial

for achieving the full potential of XAI. Additionally, looking at the broad spectrum of research

on XAI, even though different aspects of XAI research are following the general goals of AI in-

terpretability, it is evident that scholars from different disciplines have different goals in mind.

However, to the best of my knowledge, there exists no multidisciplinary XAI system framework

to unify the efforts from multiple disciplines in building XAI systems. A multidisciplinary frame-

work for end-to-end XAI system design and evaluation can identify the relation between diverse

design goals to enhance system design process. Further, a unified framework can reveal potential

design and evaluation gaps between XAI system requirements and final outcomes. For example,

the importance of a unified XAI framework is very higher in multidisciplinary teams focused on

critical applications of XAI aiming to leverage psychology-grounded theories (i.e., design require-

ments) for designing interpretable machine learning techniques and presenting with explanation

interfaces (i.e., system outcomes).

1.2 Contributions

My main research contribution is proposing a multidisciplinary design and evaluation frame-

work for XAI systems, followed by a case study and a series of evaluation studies to demonstrate,

validate, and improve the proposed framework. The following briefly introduces my four contri-

butions (C1-C4) in this dissertation.

1.2.1 C1: A Design and Evaluation Framework for Explainable AI Systems

I propose a multidisciplinary framework to share knowledge and experiences of XAI design

and evaluation methods across multiple fields. I first present a categorization and mapping of

XAI design goals and evaluation methods with a thorough review of related literature (over 200

3



papers) across the fields of machine learning, visualization, and HCI. From the findings, I develop a

framework with step-by-step design guidelines paired with evaluation methods to close the iterative

design and evaluation loops in multidisciplinary teams. The impetus for this framework is the

desire to organize and relate the diverse set of existing design guidelines and evaluation methods

in a unified model. The framework is intended to give guidance on what evaluation measures are

appropriate to use at which design stage of the XAI system design. Further, I provide summarized

ready-to-use tables of evaluation metrics for different goals in XAI system design steps.

1.2.2 C2: Case Study and Examples for XAI Framework

I present a case study of a collaborative design and development effort for an XAI system

to showcase a practical example of using the framework. In the scenario of this case study, a

multidisciplinary team of researchers designed a XAI system for fake news detection for non-

expert (not AI experts or news analysts) daily newsreaders. I review system design steps and

evaluation outcomes for the effects of interpretable fake news detector on users’ overall experience

and performance in detecting fake news. Also, specific to the domain of fake news detection, I

aim to examine whether model explanations can help users to avoid overtrusting the fake news

detector when explanations are nonsensical to users. Study results revealed the challenges rising

from the inherent difference between models’ feature learning (word-level features in this case)

and human understanding of news and information. Overall, I observed that users’ interaction

with the AI and XAI assistants affected their performance, mental model, and trust. However,

model explanations in these studies did not improve task performance or increase user trust and

mental model. Quantitative results and qualitative participants’ feedback indicate that explanations

helped users’ to build an appropriate mental model of intelligent assistants and adjust their trust

accordingly given the limitations of the models.

In addition to the XAI system design case study, I analyze two existing XAI systems to demon-

strate the descriptive functionality of the framework to describe design process workflow (between-

layers) and design and evaluation choices (within each layer). In the first example, I analyze

Nourani et al.’s [1] paper in which authors present an XAI system to support AI novice users
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tasked with activity recognition in a series of videos. For the second example, I review and ana-

lyze Hamidi-Haines et al.’s [2] paper that authors present the “interactive naming” interface that

allows the end-user to explore and manually cluster model activation maps to create meaningful

groups of “visual concepts”. Both analyses are aiming to find insights from their work and intended

to suggest future design iterations. I conducted interviews with the first author of these papers for

reviewing their design step and main considerations during the process including interactions be-

tween machine learning designers and interface designers in the team.

1.2.3 C3: User Trust Dynamics in Explainable AI

I contribute to the proposed framework by elaborating on XAI evaluation methods with a study

to demonstrate the importance of dynamics of user behavior with XAI systems. Studying dynamics

of user trust is particularly important to understand temporal patterns of user behavior and improve

system design and evaluations accordingly. The recurring measurements of user trust in complex

systems (e.g., AI-based systems) is invaluable to understand the dynamics of user behavior and

complement the limitations of static measurements. I investigate the effects of interpretability

on user behavior and trust and their evolution over time in a human-XAI collaborative setup for

fake news detection. Specifically, I study the role of explanations in human-AI collaboration by

studying dynamics of user trust in the fake news detection case study.

My analysis of results show model explanations affect on how user trust morphs over time dur-

ing their interactions with the XAI intelligent agent. This was in addition to the case study findings

that indicated users working with the same intelligent system can perceive the system competence

differently depending on how the model and its decision making is explained. Recurring measure-

ments of user reliance revealed whether model explanations are persuasive (resulting in an increase

of user overtrust) or implausible (resulting in a decrease of user trust) to the user. However, my

findings suggest the dynamics of self-reported subjective performance measures were not aligned

with the objective behavioral measures. This could be an indicator of possible lead or lag in re-

flections of trust between my two measurements of trust. This latency between users’ exposure

to the system, adapting their behavior, and coming to their conclusions have also been reported in
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previous research, see [10].

1.2.4 C4: A Human-Attention Benchmark

Lastly, I contribute to the proposed framework by proposing a human-attention baseline to

quantitatively evaluate model saliency explanations. A limitation of human subject studies to eval-

uation machine learning explanations is that user feedback tend to be more costly, imprecise, and

subjective to the task. My publicly available human-grounded benchmark enables fast, replicable,

and objective execution of evaluation experiments for saliency explanations. To foster the interest

of the machine learning community, I demonstrate the benchmark’s utility for quantitative evalu-

ation of model explanations and compare it with the single-layer feature mask ground-truth and

human judgment rating evaluations.

In a series of experiments, I study the relationships and trade-offs between two different human-

grounded evaluation approaches (i.e., binary annotation mask and human subjective feedback) to

present the efficiency of the proposed human-attention baseline. The study results indicated the

significant difference between threshold-agnostic evaluation with a human-attention baseline as

compared to previous methods with binary ground-truth mask. My experiments also revealed user

biases in their subjective rating when exposed to different visual appearance and error types of

saliency explanations. I conclude that human-attention baseline is the most accurate ground-truth

for direct evaluation (i.e. feature- level) of model saliency explanations when compared to binary

segmentation mask and human subjective review.

https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark
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2. BACKGROUND *

I review the XAI research background, terminologies, and literature related to XAI systems

from a broad and multidisciplinary perspective. Then, I present design techniques, evaluation

measures, and XAI-related surveys from three fields of HCI, visual analytics, and machine learn-

ing. The review of literature in this chapter is relatively light and intended to provide the necessary

context for XAI framework in Chapter 3. I leave the in-depth review and categorization of XAI

design and evaluation techniques to Chapter 3 as a part of the proposed framework. In the end,

I present my survey methodology used for in-depth literature review and identification of XAI

design goals and evaluation methods.

2.1 AI and Explanations

Nowadays, algorithms analyze user data and affect decision-making processes for millions

of people on matters like employment, insurance rates, loan rates, and even criminal justice [11].

However, these algorithms that serve critical roles in many industries have their own disadvantages

that can result in discrimination [12, 13], and unfair decision-making [5]. For instance, recently,

news feed and targeted advertising algorithms in social media have attracted much attention for

aggravating the lack of information diversity in social media [14]. A significant part of the trouble

could be because algorithmic decision-making systems—unlike recommender systems—do not

allow their users to choose between the recommended items, but instead, present the most relevant

content or option themselves. To address this, Heer [15] suggests the use of shared representations

of tasks that are augmented with both machine learning models and user knowledge to reduce the

negative effects of immature AI autonomous systems. They present case studies of interactive

systems that integrate proactive computational support into interactive systems. Bellotti and Ed-

wards [16] argue that intelligent context-aware systems should not act on our behalf. They suggest

* Parts of the material in this chapter are reprint or adapted from [3]. Mohseni et al. “A Multidisciplinary
Survey and Framework for Design and Evaluation of Explainable AI Systems” accepted for publication at accepted
for publication in ACM Transactions on Interactive Intelligent Systems. Reproduced with permission.
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user control over the system as a principle to support the accountability of a system and its users.

Transparency can provide essential information for decision-making that is hidden to the end-users

and causes blind faith [17]. The key benefits of algorithmic transparency and interpretability in-

clude: user awareness [18]; bias and discrimination detection [19, 13]; interpretable behavior of

intelligent systems [20]; and accountability for users [21]. Furthermore, considering the growing

body of examples of discrimination and other legal aspects of algorithmic decision making, re-

searchers are demanding and investigating transparency and accountability of AI under the law to

mitigate adverse effects of algorithmic decision making [22, 23, 24].

2.1.1 Auditing Inexplicable AI

Researchers audit algorithms to study bias and discrimination in algorithmic decision mak-

ing [25] and study the users’ awareness of the effects of these algorithms [26]. Auditing of algo-

rithms is a mechanism for investigating algorithms’ functionality to detect bias and other unwanted

algorithm behaviors without the need to know about its specific design details. Auditing methods

focus on problematic effects on the results of algorithmic decision-making systems. To audit an

algorithm, researchers feed new inputs to the algorithm and review system output and behavior.

Researchers generate new data and user accounts with the help of scripts, bots [12], and crowd-

sourcing [27] to emulate real data and real users in the auditing process. For bias detection among

multiple algorithms, cross-platform auditing can detect if an algorithm behaves differently from

another algorithm. A recent example of cross-platform auditing is a work by Eslami et al. [28],

in which they analyzed user reviews in three hotel booking websites to study user awareness of

bias in online rating algorithms. These examples demonstrate that auditing is a valuable yet time-

intensive process that could not be scaled easily to large numbers of algorithms. This calls for new

research for more effective solutions toward algorithmic transparency.

2.1.2 Explainable AI

Along with the methods mentioned above for supporting transparency, machine learning ex-

planations have also become a common approach to achieve transparency in many applications
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such as social media, e-commerce, and data-driven management of human workers [29, 30, 31].

The XAI system, as illustrated in Figure 1.1, is able to generate explanations and describe the rea-

soning behind machine-learning decisions and predictions. Machine-learning explanations enable

users to understand how the data is processed. They aim to bring awareness to possible bias and

system malfunctions. For example, to measure user perception of justice in intelligent decision

making, Binns et al. [32] studied explanations in systems for everyday tasks such as determin-

ing car insurance rates and loan application approvals. Their results highlight the importance of

machine learning explanations in users’ comprehension and trust in algorithmic decision-making

systems. In a similar work studying knowledge of social media algorithms, Radar et al. [33] ran a

crowdsourced study to see how different types of explanations affect users’ beliefs on news feed al-

gorithmic transparency in a social media platform. In their study, they measured users’ awareness,

correctness, and accountability to evaluate algorithmic transparency. They found that all explana-

tions caused users to become more aware of the system’s behavior. Stumpf et al. [34] designed

experiments to investigate meaningful explanations and interactions to hold users accountable by

machine learning algorithms. They show explanations as a potential method for supporting richer

human-computer collaboration to share intelligence.

The recent advancements and trends for explainable AI research demand a wide range of goals

for algorithmic transparency which calls for research across varied application areas. To this end,

my review encourages a cross-discipline perspective of intelligibility and transparency goals.

2.1.3 Explainable AI Terminology

To familiarize the readers with common XAI concepts and terminologies that are repeatedly

referenced in this review, the following four subsections summarize high-level characterizations

of XAI explanations. Many related surveys (e.g., [35, 36]) and reports (e.g., [37, 38]) also pro-

vide useful compilations of terminology and concepts in comprehensive reports. For instance,

Abdul et al. [39] present a citation graph from diverse domains related to explanations, including

intelligible intelligent systems, context-aware systems, and software learnability. Later, Arrieta et

al. [40] present a thorough review of XAI concepts and taxonomies and arrives at the concept of
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Responsible AI as a manifold of multiple AI principles including model fairness, explainability,

and privacy. Similarly, the concept of Safe AI has been reviewed by Amodei et al. [41], which is

an interest in safety-critical intelligent applications such as autonomous vehicles [42]. Table 2.1

presents descriptions for 14 common terms related to this survey’s topic and organizes their re-

lation to Intelligible Systems and Transparent AI topics. I consider Transparent AI systems as

the AI-based class of Intelligible Systems. Therefore, properties and goals previously established

for Intelligible Systems are ideally transferable to Transparent AI systems. However, challenges

and limitations for achieving transparency in complex machine learning algorithms raise issues

(e.g., ensuring the fairness of an algorithm) that were not necessarily problematic in intelligible

rule-based systems but now require closer attention from research communities.

The descriptions presented in Table 2.1 are meant to be an introduction to these terms, though

exact definitions and interpretations can depend on usage context and research discipline. Conse-

quently, researchers from different disciplines often use these terms interchangeably, disregarding

differences in meaning [35]. Perhaps the two generic terms of black-box model and transparent

model are in the center of XAI terminology ambiguity. The black-box term refers to complex

machine learning models that are not human-interpretable [43] as opposed to transparent models

which are simple enough to be human-interpretable [40]. I find it more accurate and consistent to

separate the transparency of an XAI system (as described in Figure 1.1) from the interpretability

of its internal machine learning models. Specifically, Table 2.1 shows that Transparent AI could be

achieved by either interpretable AI or Explainable AI approaches. Other examples of terminology

ambiguity include the terms interpretability and explainability that are often used as synonyms in

the field of machine learning. For example, the phrase “interpretable machine learning technique”

can refer to techniques for generating ad-hoc explanations for non-interpretable models such as

Deep Neural Network (DNN) [44]. Another example is the occasional case of using the terms

transparent system and explainable system interchangeably in HCI research [45], while others

clarify that explainability is not equivalent to transparency because it does not require knowing the

flow of the bits in the AI decision-making process [22].
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Table 2.1: Table of common terminologies related to Intelligible Systems and Transparent AI.
Higher-level main concepts are shown in gray, while related terms for the main concepts are listed
below and categorized as a desired outcome, property, or practical approach. Explainable AI is
one particular practical approach for intelligible systems to enable improve transparency. Note
that definitions and interpretations can vary across the literature, and this table is meant to serve as
a quick reference. Reprinted from Mohseni et al. [3].

Concept Category Description

Intelligible System Main Concept
A system that is understandable and predictable for its users
though transparency and explanations [39, 16, 36].

Understandability
(Intelligibility)

Intelligible systems support user understanding
of system’s underlying functions [40, 46].

Predictability

Desired
Properties Intelligibility supports building a mental model of the system

that enables user to predict system behavior [36].

Trustworthiness Enabling positive user attitude toward the system that
emerges from knowledge, experience, and emotion [47, 48].

Reliability Supporting user trust to rely and follow
systems advice for higher performance [47, 48].

Safety

Desired
Outcomes

Improving safety by reducing user unintended
misuse due to misperception and unawareness [42].

Transparent AI Main Concept
An AI-based system that provides information
about its decision-making processes [43, 37].

Interpretable AI Inherently human-interpretable models due to
their low complexity of machine learning models [44].

Explainable AI

Practical
Approaches Supporting user understanding of complex models

by providing explanations for predictions [49].

Interpretability The ability to support user understanding and comprehension
of the model decision making process and predictions [43, 40].

Exaplainability

Desired
Properties The ability to explain underlying model and its reasoning

with accurate and user comprehensible explanations [43, 40].

Accountable AI Allowing for auditing and documentation to hold organizations
accountable for their AI-based products and services [50, 22].

Fair AI

Desired
Outcomes Enabling ethical and fairness analysis of models

and data used in decision-making processes [50, 40].
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2.2 Human Factors in Explainable AI

Research goals for XAI systems in the field of HCI are to improve the end-user experience,

reliance, and ultimately task performance with the help of intelligent systems. The main targeted

user group in HCI research are AI novices who use AI products in daily life but have no (or very

little) expertise in machine learning systems. These include end-users of intelligent applications

like personalized agents (e.g., home assistant devices), social media, and e-commerce websites. In

most smart systems, machine learning algorithms serve as internal functions and APIs in a more

extensive application. In these cases, XAI systems are expected to respond directly to their end-

users with a human-understandable explanation of their predictions or suggestions. In this regard,

creating an abstract and yet accurate representation of complicated machine learning explanations

for novice end-users is a challenge for XAI explanation design.

User studies for human subject experiments are common methods in evaluating XAI systems.

This line of research explores different XAI designs and studies the effects of different machine

learning explanation types and complexity on end-users. In the rest of this section, I review HCI

papers studying different aspects of XAI systems with end-users.

2.2.1 Explanations and User Trust

Trust is an essential factor in human-AI collaboration to maximize task performance. Users

justified trust could boost the collaboration by avoiding erroneous model predictions. Measuring

user trust in AI-based systems is a particularly sensitive task due to complex interactions between

various human factors. Previous research studied how the variety of these factors such as user pre-

knowledge [51], the system’s stated performance [52], user perception of system performance [53],

the expectation of AI performance [54], and user experience with interfaces [55] could affect

user trust. Further, Eiband et al. [56] present a study in which placebic explanations (randomly

generated explanations) in a food recommendation system improved user trust in the intelligent

agent compared to the no-explanation baseline.

In studying the effects of model explanations in user trust, multiple studies show that trans-
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parency helps users to see the strength and weaknesses of the intelligent agent and adjust their

trust accordingly. For example, Nourani et al. [53] show users perceive a significantly lower level

of accuracy when seeing model explanations that do not align with their reasoning. When com-

paring the effects of model performance and transparency on trust, studies in different domains

have shown the model’s performance is more effective on user reliance compared to its explana-

tions. For instance, Wang et al. [57] study shows that the effect of transparency on adjusting user

trust is less than the effect of the agent’s success rate in a human-robot collaboration setup. They

observed a moderate correlation between the robot’s success rate and user trust on the robot. How-

ever, when comparing effects of robot ability and explanations on human-robot interactions, they

did not observe significant effect from transparency on users’ trust and compliance on high-ability

robot. On the importance of user pre-knowledge and biases, Yin et al. [52] show that the effects of

system stated performance on users’ trust is significantly higher than the effects of user observed

performance during the study. However, it still remains unclear whether user trust (with the help

of transparency) could improve human-AI collaboration in complex tasks and scenarios.

2.2.2 Explanations and User Mental Model

Multiple studies on transparent AI explore design choices for building accurate mental model

of algorithms and adjust end-users’ reliance on AI systems. For instance, Kocielnik et al. [54]

investigate accuracy indicator, example-based explanations, and user control as design choices to

improve human-AI collaboration. Their findings indicate that users’ perception of control had a

significant positive effect on user trust. In the evaluation of XAI interfaces, Poursabzi et al. [58]

present a comprehensive evaluation study for users’ mental model (via user prediction task) and

trust (via user agreement with AI) in interpretable models. Their results indicate the positive effect

of interpretability on participants’ mental model, however, they did not observe improvement on

user trust. On the other hand, Papenmeier et al. [59] present a case study in which users could

potentially lose trust in AI when exposed to low fidelity explanations. This is an indicator of

the effects of transparency on user mental model and appropriate reliance of users on algorithms.

Another example is the effect of AI system’s updates on users’ mental model. Bansal et al. [60]
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present a case in which updates to increase AI’s predictive performance may infact, hurt human-

AI collaborative performance. Their study on an AI-advised decision-making setup shows that a

better user mental model improves overall team performance, however, this break when users see

behavioral changes after AI system updates.

2.2.3 Explanations and Task Performance

Studying task performance in human-AI collaboration is an essential topic as more intelligent

systems are integrated in our day to day interactions. Since every intelligent system has its own

limitations, a successful partnership could be built with users developing insights into intelligent

system’s strengths and weaknesses. In a recent paper, Ray et al. [61] run human subject studies to

examine the effects of different types of explanations on user satisfaction and performance. Their

results indicate a positive correlation between user satisfaction and task performance. Also, they

found that correct explanations at the time of model failure help were the most effective to improve

task performance. This indicates that the complex nature of machine learning algorithms requires

users to build a mental model of the intelligent system. On studying users’ mental model, Bansal

et al. [62] measured attributes of AI systems that help users to build a better mental model and

hence boost human-AI team performance. In a low-dimensional setup, they show positive effects

of parsimony and non-stochasticity of AI error boundaries on the human mental model. However,

their findings are based on low dimensional task may not be generalizable on more complex tasks

such as image and text classification. For instance, Lai and Tan [63] run a series of studies to study

model explanation types on deception detection task. Their results show that model explanations

do not have a significant effect on end-users task performance.

2.3 Visual Analytics to Enable Transparency

Visual analytics and data visualization fields study methods and tools for expert users, including

data scientists and domain experts who use machine learning for analysis, decision-making, or

research in different domains. Additionally, in recent years, there has been an increase in visual

analytics tools for machine learning experts who design and tune machine learning algorithms for
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different domains and applications. In the following, I divide the review of visual analytics tools

to enable interpreting machine learning models in two parts for data experts and machine learning

experts.

2.3.1 Visual Analytics for Data Scientists

Data experts often use interactive data analysis tools, recommender systems, or visual analyt-

ics systems that combine interactive interfaces and algorithms. Examples of visual analytics exists

in different applications such as cybersecurity [64, 65], medical [66, 67], text analysis [68, 69],

and satellite image analysis [70]. Data experts can benefit from machine explanations to inspect

uncertainty and investigate algorithms prediction accountability. For example, machine-learning

explanations help data experts to find problems with training-bias in supervised machine learning

models. Therefore, the main challenge for data-analysis and decision-support systems is to in-

crease model transparency and user awareness with visualization and interaction techniques [71].

Visual analytics approaches can help data experts tune machine learning parameters for their spe-

cific data in an interactive visual fashion. Visualizing details and explanations of machine learning

output may result in a better understanding of the machine algorithms’ behavior [68]. Lastly, vi-

sual analytic systems have been used to aid fair data-driven decision making by quantifying and

visualizing different notions of fairness for diagnosis and bias mitigation [72].

Similar to evaluations with AI novices, evaluating analytics tools for data knowledgeable users

and domain experts often involves human subjects. However, many interpretable analytics tools

are designed for data and machine learning experts. Visual analytics expert evaluations enter when

controlled experiments fail due to high cognitive tasks [73]. In practice, it can be challenging

to gain access or take the time of large numbers of experts for evaluation, which often makes it

difficult to evaluate with controlled studies.

2.3.2 Visual Analytics for Machine Learning Experts

Machine learning researchers and engineers use visual analytics tools to visualize model ar-

chitecture and training process to verify model performance and robustness [74, 75]. A line of
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visual analytics tools present interactive visualization of model internals. For example, Kahng

et al. [76] present a tool for visualizing instance-level and subset-level of neuron activation that

is designed for machine learning engineers. In another work, Wang et al. [77] presented DNN

Genealogy, an interactive visualization tool that offers a visual summary of DNN representations.

Similarly, Hohman et al. [78] present an interactive system that scalably summarizes and visualizes

what features a DNN model has learned and how those features interact in instance predictions.

Their visual analytic system presents activation aggregation to discover important neurons and

neuron-influence aggregation to identify interactions between important neurons. LSTMVis [79]

and RNNVis [80] are also tools to interpret Recurrent Neural Network (RNN) models for natural

language processing tasks.

Another critical role of visual analytics for machine learning experts is to visualize model

training processes [81]. An example of a visual analytics tool for diagnosing the training process of

a deep generative model is DGMTracker [74], which helps experts understand the training process

by visually representing training dynamics. An evaluation of DGMTracker was conducted in two

case studies with experts to validate the efficiency of these tools in supporting understanding of the

training process and diagnosing a failed training process.

2.4 Interpretabilty for Machine Learning Algorithms

Machine learning experts are scientists and engineers who design interpretable machine learn-

ing algorithms, as well as other machine learning algorithms. Here, I first briefly review different

types of interpretability techniques and then go over evaluation techniques for model explanations

in more extend.

Interpretation methods to explain predictions of DNNs and other black-box models could gen-

erally be grouped into four categories [82]. The first category is the back-propagation based meth-

ods, which calculate the gradient or variants of gradients of a model prediction in terms of the

model input [83]. The features in the input with large gradient values would have more signifi-

cant contribution to the model prediction. The second category is perturbation based methods in

which the key idea is to perturb the input sample and the features with more contributions once
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perturbed would cause higher changes in the model prediction [84, 85]. Another approach is the

local approximation of deep models to explain each prediction. Although the whole model be-

havior is highly intricate, the local behavior around an input instance could be approximated and

well explained. Local model behavior for an input instance could be either approximated using

a linear model (such as sparse linear model [86]), or an interpretable non-linear model (such as

if-then rules [87]), depending on the property and the need for explanations. The last category

is decomposition-based methods [88]. Note that the former three categories are mainly based on

heuristics or approximations and thus generate explanations that might not be faithful to the origi-

nal model. In contrast, decomposition techniques could be more faithful in reflecting the decision

making process of the original deep model. In a recent paper, Du et al. [89] present a technique for

recurrent neural networks to decompose predictions into additive contribution of each input word

by modeling the information flow process from the input text to the model output.

Model explanations can be evaluated with computational methods rather than human-subject

reviews to validate the explanations’ trustworthiness. Computational evaluation methods are com-

mon in the field of machine learning and focus on measuring the correctness and completeness of

the explanations in terms of mirroring what the model has learned. In the following subsections,

I review two evaluation approaches for measuring trustworthiness of model explanations with and

without ground-truth and inspecting fidelity of the interpretability technique with computational

methods.

2.4.1 Explanations Trustworthiness

I review two approaches for evaluation of model explanations with and without ground truth.

The two groups show a trade-off in objectivity of the evaluation methods.

An objective way to quantify the correctness of model explanation is to examine it against a

ground truth baseline. Ground truth is often defined by human annotation of representative fea-

tures (i.e., feature masks) and provide a baseline for quantitative evaluation of explanations quality.

Examples include annotations of the target class (e.g., objects in image, sentences in text) to cre-

ate “binary mask” in natural datasets [90], and synthesized datasets [91], that represent specific
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features associated with the target class. Different similarity metrics, such as Intersection over

Union (IoU) (also called Jaccard index) and mean Average Precision (mAP), are used to quantify

the quality of model saliency explanations or bounding boxes compared to the ground truth. For

instance, Li et al. [92] used IoU, between the model saliency map from a Convolutional Neural

Network (CNN) and the ground truth binary mask from the validation set, to measure their quality

as a weakly-supervised semantic segmentation task. In another work, Du et al. [93] calculate the

mAP between the bounding boxes of an objects’ saliency mask and the ground truth bounding

boxes to evaluate their interpretability technique as an object localization task. Similarly, in the

text domain, direct comparison of model attention explanations with human annotated sentences,

e.g., evidence supporting the target label [94], provides an explanation quality score [95]. How-

ever, the relationship between the evaluation of machine learning explanations and the auxiliary

tasks, such as binary object localization and semantic segmentation, is not clear yet.

Another common approach for evaluating machine learning explanations is the direct review

of model explanations with end-users for their subjective feedback. Multiple papers have reported

measurements of users’ understanding of explanations as a proxy for human interpretability of ex-

planations [96, 58]. Others have measured user-reported trust as a proxy for explanation goodness.

For example, Papenmeier et al. [59] studied the effects of explanation meaningfulness and ad-hoc

explainer fidelity on user reliance. Both studies show that model accuracy and explanation fidelity

impact users’ trust in the model and conclude that providing nonsensical explanations (i.e., those

that do not align with users’ expectations) may harm users’ reported trust and observed reliance

on the system. With a crowdsourced evaluation approach, Schmidt and Biessmann [97] present

quantitative measures for system interpretability and human trust. They propose that analyzing

user interaction time can serve as a proxy for users’ understanding of the explanation and level

of trust. They recommend that model explanations need to enhance the information transfer rate

to users, help users establish an intuitive understanding of system performance and perform well

independent from the user task. Taking a different perspective, Schneider et al. [98] inspected the

effects of deceptive model explanations in a user study. Their findings indicate that explanations
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that are unfaithful to the black-box model can fool users in accepting wrong predictions. Following

a similar goal, Lakkaragu et al. [99] present an approach to generate misleading explanations and

a case study with law and criminal justice domain experts. Their study results found that mislead-

ing explanations were able to significantly increase users’ trust. Conclusively, various research

efforts have shown the limitations of human judgment for robust evaluation of machine learning

explanations.

2.4.2 Fidelity of the Interpretability Techniques

Research shows different approaches to examine the fidelity of interpretability techniques to

the black-box model. A basic method to evaluate the ad-hoc explainer’s fidelity is to examine it

in comparison to an inherently interpretable model. For example, Ribeiro et al. [86] compared ex-

planations generated by their ad-hoc explainer to explanations from an interpretable model. They

created gold-standard explanations directly from the interpretable models (sparse logistic regres-

sion and decision trees) and used these for comparisons in their study. A downside of this approach

is that the evaluation is limited to generating a gold standard by an interpretable model. In some

cases, comparing a new explanation technique with existing state-of-the-art explanation techniques

is a way to verify explanation quality [100, 101, 102]. For instance, Ross et al. [103] designed a

comprehensive set of empirical evaluations and compared their explanations’ consistency, features,

and computational cost with the LIME technique [86].

To present a comprehensive evaluation setup, Samek et al. [104] and Hooker et al. [105] pro-

posed a framework and benchmark for evaluating different aspects of saliency explanations for

image data that quantify the importance of pixels with respect to the classifier prediction. They

compared multiple saliency explanation technique for image data (e.g., sensitivity-based [106], de-

convolution [107], and back-propagation [108]) and investigated the correlation between saliency

map quality and network performance on different image datasets under input perturbation. On

the contrary, Kindermans et al. [109] show interpretability techniques have inconsistencies on sim-

ple image transformations, hence their saliency maps can be misleading. They define an input

invariance property for reliability of explanations from saliency methods. To extend a similar idea,
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Adebayo et al. [110] propose three tests as sanity checks to measure correctness and completeness

of interpretability techniques for tasks that are sensitive to either data or model.

2.5 Related Surveys and Guidelines

In recent years, there have been surveys and position papers suggesting research directions

and highlighting challenges in interpretable machine learning research [111, 43, 112]. Although

my literature review is limited to computer science literature, here I summarize several of the most

relevant peer-reviewed surveys related to the topic of XAI across active disciplines including Social

Science. While all surveys, models, and guidelines in this section add value to the XAI research, to

the best of my knowledge, there is no existing comprehensive survey and framework for evaluation

methods of explainable machine learning systems.

2.5.1 Social Science Surveys

Research in the social sciences is particularly important for XAI systems to understand how

people generate, communicate, and understand explanations by taking into account each others’

thinking, cognitive biases, and social expectations in the process of explaining. Hoffman, Mueller,

and Klein reviewed the key concepts of explanations for intelligent systems in a series of essays

to identify how people formulate and accept explanations, ways to generate self-explanations, and

identified purposes and patterns for causal reasoning [113, 114, 115]. They lastly focus on DNNs

to examine their theoretical and empirical findings on a machine learning algorithm [116]. In other

work, they presented a conceptual model of the process of explaining in the XAI context [48]. Their

framework includes specific steps and measures for the goodness of explanations, user satisfaction

and understanding of explanations, users’ trust and reliance on XAI systems, effects of curiosity

on the search for explanations, and human-XAI system performance.

Miller [117] suggests a close collaboration between machine learning researchers in the space

of XAI with social science would further refine the explainability of AI for people. He discusses

how understanding and replicating how people generate, select, and present explanations could

improve human-XAI interactions. For instance, Miller reviews how people generate and select
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explanations that are involved with cognitive biases and social expectations. Other papers review-

ing social science aspects of XAI systems include studies on the role of algorithmic transparency

and explanation in lawful AI [22] and of fair and accountable algorithmic decision-making pro-

cesses [50].

2.5.2 Human Computer Interactions Surveys

Many HCI surveys discuss the limitations and challenges in AI transparency [118] and inter-

active machine learning [119]. Others suggest a set of theoretical and design principles to support

intelligibility of intelligent system and accountability of human users (e.g., [120, 16]). In a recent

survey, Abdul et al. [39] presented a thorough literature analysis to find XAI-related topics and

relationships among these topics. They used visualization of keywords, topic models, and citation

networks to present a holistic view of research efforts in a wide range of XAI related domains; from

privacy and fairness to intelligent agents and context-aware systems. In another work, Wang et

al. [49] explored theoretical underpinnings of human decision-making and proposed a conceptual

framework for building human-centered decision-theory-driven XAI systems. Their framework

helps to choose better explanations to present, backed by reasoning theories, and human cognitive

biases. Focused on XAI interface design, Eiband et al. [45] present a stage-based participatory

process for integration of transparency in existing intelligent systems using explanations. Another

design framework is XAID from Zhu et al. [121], which presents a human-centered approach for

facilitating game designers to co-create with machine learning techniques. Their study investigates

the usability of XAI algorithms in terms of how well they support game designers.

2.5.3 Visual Analytics Surveys

XAI-related surveys in the visualization domain follow visual analytics goals such as un-

derstanding and interacting with machine learning systems in different visual analytics applica-

tions [122, 123]. Choo and Liu [124] reviewed challenges and opportunities for Visual Analytics

for explainable deep learning design. In a recent paper, Hohman et al. [125] provide an excel-

lent review and categorization of visual analytics tools for deep learning applications. They cover
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various data and visualization techniques that are being used in deep visual analytics applications.

Also, Spinner et al. [126] proposed a XAI pipeline which maps the XAI process to an iterative

workflow in three stages: model understanding, diagnosis, and refinement. To operationalize their

framework, they designed explAIner, a visual analytics system for interactive and interpretable

machine learning that instantiates all steps of their pipeline.

2.5.4 Machine Learning Surveys

Du et al. [82] present a survey and categorization of interpretability methods for black-box

models. They review explanation techniques for DNNs in four groups of (1) back-propagation

based methods (2) perturbation based methods (3) local approximation of deep models and (4)

decomposition-based methods. Looking at a broader spectrum, Guidotti et al. [127] present a

comprehensive review and categorization of machine learning interpretability techniques by their

explanation method and type of black box system. Also, Montavon et al. [128] focus on inter-

pretability techniques for DNN models. On CNN models, Zhang et al. [129] reviews research on

interpretability techniques in six directions including visualization of CNN representations, diag-

nosing techniques for CNNs, approaches for transforming CNN representations into interpretable

graphs, building explainable models, and semantic-level learning based on model interpretability.

In another work, Gilpin et al. [130] reviews interpretability techniques in machine learning algo-

rithms and categorizes evaluation approaches to bridge the gap between machine learning and HCI

communities.
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3. XAI DESIGN AND EVALUATION FRAMEWORK*

3.1 Introduction

One if the contributions of my research is to organize findings and share knowledge between

disciplines to further enhance the XAI research. Reviewing the broad spectrum of XAI research

indicates that scholars from different disciplines pursue different objectives and aspects of XAI

systems to achieve the general goals of accomplishing explainability of AI. The diverse objectives

between disciplines results in different design goals and evaluation measures for machine learning

models and interface design (see Figure 1.1) of the XAI system. Therefore, a holistic and more

actionable vantage will require consideration of interests from the different research communities

(as identified from the literature review in Section 2.5) to help promote interdisciplinary progress

in the XAI research.

This section presents my categorization of XAI system goals and evaluation measures (Sec-

tion 3.1.2) drawn from my systematic review of literature in the fields of machine learning, HCI,

and data visualization. The categorization is concluded by a design and evaluation framework

(Section 3.1.3) to present the relationship between the goals and measure in a multidisciplinary

XAI system design process. The framework presents step-by-step guidance for iterative design

and evaluation loops in multidisciplinary teams with summarized ready-to-use evaluation methods

for different goals for each design step.

3.1.1 Survey Method

I conducted a survey of the existing research literature to capture and organize the breadth

of designs and goals for XAI evaluation. I used a structured and iterative methodology to find

XAI-relevant research and categorize the evaluation methods presented in research articles (sum-

marized in Figure 3.1). In an iterative paper selection process, I started by selecting existing work

* Parts of the material in this chapter are reprint or adapted from [3]. Mohseni et al. “A Multidisciplinary
Survey and Framework for Design and Evaluation of Explainable AI Systems” accepted for publication at accepted
for publication in ACM Transactions on Interactive Intelligent Systems. Reproduced with permission.

23



Multidisciplinary paper 
selection with upward and 
downward literature 
investigation using Google 
Scholar search.

Paper selection from 
related conference and 
journals to balance 
different attributes in 
the reference table. 

Creating a reference 
table with 10 research 
attributes to maintain 
literature investigation 
breadth and depth.

Figure 3.1: A diagram summarizing my iterative and multi-pass literature selection and review
process to achieve desired literature investigation breadth and depth. I started with 40 papers to
create the reference table. Then I added 80 papers by upward and downward literature investigation
to improve review breath and depth. Finally, I added another 80 papers from related conferences
proceedings and journals to balance the reference table. Reprinted from Mohseni et al. [3].

from top computer science conferences and journals across the fields of HCI, visualization, and

machine learning. However, since XAI is a quite fast growing topic, I also wanted to include arXiv

preprints and useful discussions in workshop papers. I started with 40 papers related to XAI topics

across three research fields including but not limited to research on interpretable machine learning

techniques, deep learning visualization, interactive model visualization, machine explanations in

intelligent agents and context-aware systems, explainable user interfaces, explanatory debugging,

and algorithmic transparency and fairness.

Then I used selective coding to identify 10 main research attributes in those papers. The main

attributes I identified include: research discipline (social science, HCI, visualization, or machine

learning), paper type (interface design, algorithm design, or evaluation paper), application domain

(machine learning interpretability, algorithmic fairness, recommendation systems, transparency of

intelligent systems, intelligent interactive systems and agents, explainable intelligent systems and

agents, human explanations, or human trust), machine learning model (e.g., deep learning, decision

trees, SVM), data modality (image, text, tabular data), explanation type (e.g., graphical, textual,

data visualization), design goal (e.g., model debugging, user reliance, bias mitigation), evaluation

type (e.g., qualitative, computational, quantitative with human-subjects), targeted user (AI novices,

data experts, AI experts), and evaluation measure (e.g., user trust, task performance, user mental

model).
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In the second round of collecting XAI literature, I conducted an upward and downward litera-

ture investigation using the Google Scholar search engine to add 80 more papers to the reference

table. I narrowed down the search by XAI related topics and keywords including but not limited to:

interpretability, explainability, intelligibility, transparency, algorithmic decision-making, fairness,

trust, mental model, and debugging in machine learning and intelligent systems. With this infor-

mation, I performed axial coding to organize the literature and started discussions on my proposed

design and evaluation categorization.

Finally, to maintain reasonable literature coverage and balance the number of papers for each of

the categories of design goals and evaluation measures, I added another 80 papers to the reference

table. The conferences from which I selected XAI related paper were including but not limited

to: CHI, IUI, HCOMP, SIGDIAL, UbiComp, CHI EA, AIES, VIS, ICWSM, IJCAI, KDD, AAAI,

CVPR, and NeurIPS conferences. The journals included: Trends in cognitive science, Transactions

on Cognitive and Developmental Systems, Cognition Journal, Transactions on Interactive Intelli-

gent Systems, International Journal of Human-Computer Studies, Transactions on Visualization

and Computer Graphics, and Transactions on Neural Networks and Learning Systems journals.

Following a review of over 200 papers, my categorization of XAI design goals and evaluation

methods is supported by references from papers preforming design or evaluation of XAI systems.

The reference table is available online to the research community to provide further insight beyond

the discussions in this document. Table 3.1 shows a digest of my surveyed papers that contains

40 papers with both design and evaluation of XAI system. Later in the Sections 3.2, 3.3, and 3.4,

I provide a series of tables to organize different evaluation methods from research papers with

example references for each.

3.1.2 Categorization of XAI Design Goals and Evaluation Methods

While an ideal XAI system should be able to answer all user queries and meet all XAI concept

goals [6], individual research efforts focus on designing and studying XAI systems with respect to

specific interpretability goals and specific users. Evaluating the explanations can demonstrate and

https://github.com/SinaMohseni/Awesome-XAI-Evaluation
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Figure 3.2: A summary of my categorization of XAI design and evaluation measures between user
groups. Note that although there is overlap of XAI goals from different user groups, they require
different design methods and elements for their target users. Reprinted from Mohseni et al. [3].

verify the effectiveness of the explainable systems for their initial goals.

After careful review and analysis of XAI goals and their evaluation methods in the literature, I

recognized the following two attributes to be most significant for my purposes of interdisciplinary

organization of XAI design and evaluation methods:

• Design Goals. The first attribute in my categorization is the design goal for interpretable

algorithms and explainable interfaces in XAI research. I obtained XAI design goals from

multiple research disciplines: machine learning, data visualization, and HCI. To better un-

derstand the differences between various goals for XAI, I categorized types of users of XAI

systems into three groups: AI novices (i.e., general AI product end-user), data experts (ex-

perts in data analytics and domain experts), and AI experts (machine learning model design-

ers).

• Evaluation Measures. I review evaluation methods and discuss measures used to evalu-

ate machine learning explanations. The evaluation measures include user mental model,

user trust and reliance, explanation usefulness and satisfaction, human-machine task perfor-
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mance, and computational measures. The detailed review will emphasize more on evaluation

measures of XAI as I found that this category is relatively less explored.

Figure 3.2 presents the pairing between XAI design goals and their evaluation measures for

each user group. The overlap between XAI user groups shows similarities in the design and eval-

uation methods between different targeted user groups. To help summarize my characterization

along with example literature, Table 3.1 presents a cross-reference table of XAI evaluation litera-

ture to emphasize the importance of design goals, evaluation measures, and user types. I review

details design goals (eight XAI goals divided into their three user groups) and evaluation measures

and methods (six main measures and their methods) at each framework layer in their appropriate

design or evaluation step in Sections 3.2, 3.3, and 3.4.

3.1.3 A Nested Model for Design and Evaluation of XAI Systems

The variety of different XAI design goals and evaluation methods from our review (Sec-

tion 3.1.2) suggests the need for diverse sets of techniques to build end-to-end XAI systems.

However, it is generally insufficient to take design practices and evaluation methods separately.

A holistic and more actionable vantage will require consideration of dependencies between design

goals and evaluation methods and will inform when to choose between them during the design

cycles. Previously, various models and guidelines for the design and evaluation of AI-infused in-

teractive user interfaces [156, 157] and visual analytics systems [158] have been proposed to help

designers through the design process. However, challenges in generating useful machine learning

explanations and presenting them through an appropriate interface that aligns with target outcomes

call for a multidisciplinary workflow framework.

Thus, based on our analysis of prior work, I propose a design and evaluation framework for

XAI systems. The impetus for this framework is the desire to organize and relate the diverse set of

existing design guidelines and evaluation methods in a unified model. The framework is intended

to give guidance on what evaluation measures are appropriate to use at which design stage of the

XAI system design. Figure 3.3 summarizes the framework as a nested model for end-to-end XAI
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Table 3.1: Tabular summary of our XAI design goals and evaluation measures dimensions. The
table includes 40 papers that represent a subset of the surveyed literature organized by the two
dimensions. Reprinted from Mohseni et al. [3].
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Herlocker et al. 2000 [131] u u u u

Kulesza et al. 2012 [132] u u u u

Lim et al. 2009 [20] u u u

Stumpf et al. 2018 [133] u u u u

Bilgic et al. 2005[134] u u u

Bunt et al. 2012 [135] u u

Gedikli et al. 2014 [136] u u

Kulesza et al. 2013 [137] u u u u

Lim et al. 2009 [138] u u u u u u

Lage et al. 2019 [96] u u u

Schmid et al. 2016 [139] u u

Berkovsky et al. 2017 [140] u u u

Glass et al. 2008 [141] u u u

Haynes et al. 2009 [142] u u u

Holliday et al. 2016 [143] u u u u

Nothdurft et al. 2014 [144] u u u u

Pu and Chen et al. 2006 [145] u u u

Bussone et al. 2015 [146] u u u

Groce et al. 2014 [147] u u u

Myers et al. 2006 [148] u u u

Binns et al. 2018 [32] u u u

Lee et al. 2019 [149] u u u u

Rader et al. 2018 [33] u u u u

Datta et al. 2015 [12] u u

Kulesza et al. 2015 [150] u u u u u

Kulesza et al. 2010 [151] u u u u u

Krause et al. 2016 [67] u u u

Krause et al. 2017 [152] u u u

Liu et al. 2014 [68] u u

Ribeiro et al. 2016 [86] u u u u u

Ribeiro et al. 2018 [87] u u u u u

Ross et al. 2017 [153] u u

Adebayo et al. 2018 [110] u u

Samek et al. 2017 [104] u u

Zeiler et al. 2014 [107] u u u

Lakkaraju et al. 2016 [154] u u

Kahng et al. 2018 [76] u u u

Liu et al. 2018 [74] u u u

Liu 2017 et al. 2009 [155] u u u

Ming et al. 2017 [80] u u u
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system design and evaluation. The formulation of the model as layers relates to the core design

goals and evaluation interests from the different research communities (as identified from the liter-

ature review) to help promote interdisciplinary progress in XAI research. The model is structured

to support system design steps by starting from the outer layer (XAI System Goals), then address-

ing end-user needs in the middle layer (Explainable Interface), and finally focusing on underlying

interpretable algorithms in the innermost layer (Interpretable Algorithms). The nested model is

organized with a Design Pole focusing on design goals and choices, and an Evaluation Pole pre-

senting appropriate evaluation methods and measures for each layer. Our framework suggests

iterative cycles of design and evaluation to cover both algorithmic and human-related aspects of

XAI systems. In this section, I elaborate on details of the nested framework and provide guidelines

on using it for multidisciplinary XAI system design.

System design frameworks and models are intended to guide designers and developers to cre-

ate interactive systems. However, frameworks can be more operational than a fixed road map for

system design. I adapt Beaudouin-Lafon’s [159] three dimensions of interaction models to XAI

system design and evaluation process and present three goals for the XAI framework. First, Gener-

ative Function to help designers shape design thinking through guidelines. A multi-step framework

would have between-steps guidelines to enhance multi-disciplinary team work and within-steps

guidelines to providing design actions and evaluation measures at each step. Next is Descriptive

Function to analyze and demonstrate an existing XAI system for post-hoc analysis. Such analysis

of XAI design process helps in finding new insights and enhances communication. Lastly, the

Evaluative Function helps to assess other design alternatives in the design process. The evaluation

function provides recommendations for diagnosing XAI systems and identifying the next design

iterations.

To showcase a practical example of using the framework, I also include a case study of a col-

laborative design and development effort for an XAI system. In the scenario of the case study,

a multidisciplinary team of researchers designed a XAI system for fake news detection for non-

expert (not AI experts or news analysts) daily newsreaders. The design team planned to add a
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Figure 3.3: XAI design and evaluation framework. My proposed nested model for design and eval-
uation of explainable machine learning systems. The outer layer demonstrates system-level design
goals which are paired with evaluation of high-level XAI outcomes. The middle layer shows ex-
plainable user interface and visualization design step paired with appropriate user understandabil-
ity and satisfaction evaluation measures. The innermost layer presents design and evaluation of
trustworthy interpretable machine learning algorithms. Reprinted from Mohseni et al. [3].

XAI Assistant feature to a news reading and sharing website to perform fake news detection. The

system design consisted of a news reading interface equipped with the XAI news assistant (news

assistant) to help the user identify fake news while reviewing news stories and articles. The pre-

sented case is summary of an ongoing research done over a one-year period by a team of eight

university researchers with HCI, Visualization, and AI backgrounds. The details of design steps in

this case study with comprehensive results and analysis will be reviewed in Section 4.2. During

the following subsections, each framework guideline is followed by an example of its application

in our case study.
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3.2 Layer 1: System Design

As team members in a multidisciplinary team have different roles and priorities in building a

XAI system, I suggest beginning the system design cycle from the XAI System Goal layer (the outer

layer of Figure 3.3) to characterize design goal and system expectations. Specifically, this step

involves identifying the purpose for explanation and choosing what to explain for the targeted end-

user and dedicated application. The iterative refinements between XAI goal (top pole) and system

outcome evaluation (bottom pole) present how the paired evaluation measures help to improve

system design. Before reviewing the guidelines in the first layer of XAI framework, I categorize

XAI goals for different users and review what can be explained from machine learning model in

the next two subsections.

3.2.1 XAI Design Goals

Research efforts have explored many goals for XAI systems. Doshi-Velez and Kim [112]

reviewed multiple high-level priorities for XAI systems with examples including safety, ethics,

user reliance, and scientific understanding. Later, Arrieta et al. [40] presented a thorough review

of XAI opportunities in different application domains. Accordingly, different design choices such

as explanation type, scope, and level of detail will be affected by the application domain, design

goal, and user type. For example, while machine learning experts might prefer highly-detailed

visualizations of deep models to help them optimize and diagnose algorithms, end-users of daily-

used AI products do not expect fully detailed explanations for every query from a personalized

agent. Therefore, XAI systems are expected to provide the right type of explanations for the right

group of users, meaning it will be most efficient to design an XAI system according to the user’s

needs and levels of expertise.

To this end, I distinguish XAI design goals based on the designated end-user and evaluation

subjects, which I categorize into three general groups of AI experts, data experts, and AI novices.

I emphasize that this separation of groups is presented primarily for organizational convenience,

as goals are not mutually exclusive across groups, and specific priorities are case dependent for
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any particular project. The XAI design goals also extend to the broader goal of Responsible AI

by improving transparency and explainability of intelligent systems. Note that although there are

overlaps in the methods used to achieve these goals, the research objectives and design approaches

are substantially different among distinct research fields and their user groups. For instance, even

though leveraging interpretable models to reduce machine learning model bias is a research goal

for AI experts, bias mitigation is also a design goal for AI novices to avoid adverse effects of algo-

rithmic decision-making in their respective domain settings. However, interpretability techniques

for AI experts and bias mitigation tools for AI novice require different design methods and ele-

ments. In the following subsections, I review eight design goals for XAI systems organized by

their user groups.

3.2.1.1 XAI Goals for AI Novices

AI novices refer to end-users who use AI products in daily life but have no (or very little)

expertise on machine learning systems. These include end-users of intelligent applications like

personalized agents (e.g., home assistant devices), social media, and e-commerce websites. In

most smart systems, machine learning algorithms serve as internal functions and APIs to enable

specific features embedded in intelligent and context-aware interfaces. Previous research shows

intuitive interface and interaction design can enhance users’ experience with the system through

improving end-users’ comprehension and reliance on the intelligent systems [160]. In this regard,

creating human-understandable and yet accurate representations of complicated machine learning

explanations for novice end-users is a challenging design trade-off in XAI systems. Note that

although there are overlaps among goals for AI Novices and AI experts who build interpretable

algorithms, each user group requires a different set of design methods and objectives that are being

studied in different research communities.

The main design goals for AI novice end-users of XAI system can be itemized as the following:

G1: Algorithmic Transparency: An immediate goal for a XAI system – in comparison to an

inexplicable intelligent system – is to help end-users understand how the intelligent system works.
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Machine learning explanations improve users’ mental model of the underlying intelligent algo-

rithms by providing comprehensible transparency for the complex intelligent algorithms [118].

Further, transparency of a XAI system can improve user experience through better user under-

standing of model output [46], thus improving user interactions with the system [150].

G2: User Trust and Reliance: XAI system can improve end-users trust in the intelligent algo-

rithm by providing explanations. A XAI system lets users assess system reliability and calibrate

their perception of system accuracy. As a result, users’ trust in the algorithm leads to their re-

liance on the system. Example applications where XAI aims to improve user reliance through its

transparent design include recommendation systems [140], autonomous systems [161], and critical

decision making systems [146] .

G3: Bias Mitigation: Unfair and biased algorithmic decision-making is a critical side effect of

intelligent systems. Bias in machine learning has many sources, including biased training data

and feature learning that could result in discrimination in algorithmic decision-making [162]. Ma-

chine learning explanations can help end-users to inspect if the intelligent systems are biased in

their decision-making. Examples of cases in which XAI is used for bias mitigation and fairness

assessment are criminal risk assessment [149, 32] and loan and insurance rate prediction [163]. It

is worth mentioning that there is overlap between the biased decision-making mitigation goal for

AI novices and the goal of dataset bias for AI experts (Section 3.2.1.2), which results in shared

implementation techniques. However, the two distinct user groups require their own sets of XAI

design goals and processes.

G4: Privacy Awareness: Another goal in designing XAI systems is to provide a means for end-

users to assess their data privacy. Machine learning explanations can disclose to end-users what

user data is being used in algorithmic decision-making. Examples of AI application examples in

which privacy awareness is primarily important include personalized advertisements using users’
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online advertisement [12] and personalized news feed in social media [33, 26].

Aside from major XAI goals, interactive visualization tools have also been developed to help

AI novices to learn machine learning concepts and models by interacting with simplified data and

model representations. Examples of these educative tools include TensorFlow PlayGround [164]

for teaching elementary neural networks concepts and Adversarial Playground [165] for learning

concept of adversarial examples in DNNs. These minor goals cover XAI system objectives that

have limited extent compared to main goals.

3.2.1.2 XAI Goals for Data Experts

Data experts include data scientists and domain experts who use machine learning for analysis,

decision-making, or research. Visual analysis tools can support interpretable machine learning in

many ways, such as visualizing the network architecture of a trained model and training process

of machine learning models. Researchers have implemented various visualization designs and

interaction techniques to understand better and improve machine learning models.

Data experts analyze data in specialized forms and domains, such as cybersecurity [64, 65],

medicine [66, 67], text [68, 69], and satellite image analysis [70]. These users might be experts of

certain domain areas or experts in general areas of data science, but in my framework, I consider

users in the data experts category to generally lack expertise in the technical specifics of the ma-

chine learning algorithms. Instead, this group of users often utilize intelligent data analysis tools

or visual analytics systems to obtain insights from the data. Notice that there are overlaps between

XAI goals in different disciplines and visual analytics tools designed by Data Experts could be

used by both model designers and data analysts. However, design needs and approaches for these

XAI systems may be different across research communities. The main design goals for data ex-

perts users of a XAI system are as follows:

G5: Model Visualization and Inspection: Similar to AI novices, data experts also benefit from

machine learning interpretability to inspect model uncertainty and trustworthiness [71]. For in-
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stance, machine-learning explanations help data experts to visualize models [78] and inspect for

problems like bias [72]. Another important aspect of model visualization and inspection for do-

main experts is to identify and analyze failure cases of machine learning models and systems [166].

Therefore, the main challenge for data-analysis and decision-support systems is to improve model

transparency via visualization and interaction techniques for domain experts [167].

G6: Model Tuning and Selection: Visual analytics approaches can help data experts to tune

machine learning parameters for their specific data in an interactive visual fashion [68]. The inter-

pretability element in XAI visual analytic systems increase data experts’ ability to compare multi-

ple models [168] and select the right model for the targeted data. As an example, Du et al. [169]

present EventAction, an event sequence recommendation approach that allows the users to interac-

tively select records that share their desired attribute values. In the case of tuning DNN networks,

visual analytics tools enhance designers’ ability to modify networks [75], improve training [74],

and to compare different networks [170].

3.2.1.3 XAI Goals for AI Experts

In my categorization, AI experts are machine learning scientists and engineers who design

machine learning algorithms and interpretability techniques for XAI systems. Machine learning

interpretability techniques either provide model interpretation or instance explanations. Examples

of model interpretation techniques include inherently interpretable models [171], deep model sim-

plification [172], and visualization of model internals [173]. Instance explanations techniques,

however, present feature importance for individual instances such as saliency map in image data

and attention in textual data [174]. AI engineers also benefit from visualization and visual analytics

tools to interactively inspect model internal variables [74] to detect architecture and training flaws

or monitor and control the training process [76], which indicates possible overlaps among design

goals. I list main design goals for AI Experts into two following items:

G7: Model Interpretability: Model interpretability is often a primary XAI Goal for AI ex-
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perts. Model interpretability allows getting new insights into how deep models learn patterns

from data [175]. In this regard, various interpretability techniques for different domains have been

proposed to satisfy the need for explanation. For example, Yosinski et al. [173] created an interac-

tive toolbox to explore CNN’s activation layers in real-time that gives an intuition about “how the

CNN works” to the user.

G8: Model and Training Debugging: AI researchers use interpretability techniques in different

ways to improve model architecture and training process. For example, Zeiler and Fergus [107]

present a use case of which visualization of filters and feature maps in CNN leads to revising train-

ing hyper-parameters and, therefore, model performance improvement. In another work, Ribeiro

et al. [86] used model instance explanations and human review of explanations to improve model

performance through feature engineering.

Other than main XAI goals for AI experts, machine learning explanations are used for other

purposes including detecting dataset bias [176], adversarial example detection [177], and model

failure prediction [178]. Also, visual saliency maps and attention mechanisms have been used

as weakly supervised object localization [106], multiple object recognition [179], and knowledge

transfer [180] techniques.

3.2.2 What to Explain

When users face a complex intelligent system, they may demand different types of explana-

tory information and each explanation type may require its own design. Here I review the two

main categories of machine learning explanations (Global and Local Explanations) followed by

six common types of explanations used in XAI system designs.

• Global and Local Explanations One way to classify explanations is by their interpretation

scale. For instance, an explanation could be as thorough as describing the entire machine

learning model. Alternatively, it could only partially explain the model, or it could be limited

36



to explaining an individual input instance. Global explanation (or model explanation) is

an explanation type that describes how the overall machine learning model works. Model

visualization [68, 155] and decision rules [154] are examples of explanations falling in this

category. In other cases, interpretable approximations of complex models serve as the model

explanation. Tree regularization [172] is a recent example of regularized complex model to

learn tree-like decision boundaries. Model complexity and explanation design are the main

factors used to choose between different types of global explanations.

In contrast, local explanations (or instance explanations) aim to explain the relationship be-

tween specific input-output pairs or the reasoning behind the results for an individual user

query. This type of explanation is thought to be less overwhelming for novices, and it can be

suited for investigating edge cases for the model or debugging data. Local explanations often

make use of saliency methods [181, 107] or local approximation of the main model [86, 87].

Saliency methods (also as known as attribution maps or sensitivity maps) use different ap-

proaches (e.g., perturbation-based methods, gradient-based methods) to show what features

in the input strongly influence the model’s prediction. Local approximation of the model,

on the other hand, trains an interpretable model (learned from the main model) to locally

represent the complex model’s behavior.

• How Explanations demonstrate a holistic representation of the machine learning algorithm

to explain how the model works. For visual representations, model graphs [154] and de-

cision boundaries [182] are common design examples for How explanations. However, re-

search shows users may also be able to develop a mental model of the algorithm based on a

collection of explanations from multiple individual instances [183].

• Why Explanations describe why a prediction is made for a particular input. Such ex-

planations aim to communicate what features in the input data [86] or what logic in the

model [87, 154] has led to a given prediction by the algorithm. This type of explanation can

have either model agnostic [86, 102] or model dependent [184] solutions.
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• Why-not Explanations help users to understand the reasons why a specific output was not in

the output of the system [185]. Why-not explanations (also called contrastive explanations)

characterize the reasons for differences between a model prediction and the user’s expected

outcome. Feature importance (or feature attribution) is commonly used as an interpretability

technique for Why and Why-not explanations.

• What-If Explanations involve demonstration of how different algorithmic and data changes

affect model output given new inputs [186], manipulation of inputs [138], or changing model

parameters [54]. Different what-if scenarios may be automatically recommended by the

system or can be chosen for exploration through interactive user control. Domains with high-

dimensional data (e.g., image and text) and complex machine learning models (e.g., DNNs)

have fewer parameters for users to directly tune and examine trained model compared to

simpler data (e.g., low-dimensional tabular data) and models.

• How-to Explanations spell out hypothetical adjustments to the input or model that would

result in a different output [138, 187], such as a user-specified output of interest. Techniques

to generate How-to (or counterfactual) explanations are ad-hoc and model-agnostic consid-

ering that model structure and internal values are not a part of the explanation [188]. Such

methods can work interactively with the user’s curiosity and partial conception of the system

to allow an evolving mental model of the system through iterative testing.

• What-else Explanations present users with similar instances of input that generate the same

or similar outputs from the model. Also called explanation by example, what-else explana-

tions pick samples from the model’s training dataset that are similar to the original input in

the model representation space [189]. Although very popular and easy to achieve, research

shows example-based explanations could be misleading when training datasets lack uniform

distribution of the data [190].
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3.2.3 XAI Design Guidelines

I organize the following guidelines for the XAI goal layer. At the beginning of the system

design process, the team will need to specify explainability requirements for each framework layer

based on the evaluation metrics. The explainability requirements are intended to satisfy the main

system goals defined by user (or customer) needs, and sometimes regulations, laws, and safety

standards. Later, the evaluation step in each design cycle will have the team revisit the initial XAI

system requirements. The sufficiency of the evaluation results in comparison to the initial design

requirements serves as a key indicator of whether to stop or continue design iteration. However,

since many subjective measures are used in the process, it is important to choose an appropriate

evaluation baseline to track progress during design cycles.

3.2.3.1 Guideline 1: Determine XAI System Goals

Identifying and establishing clear goals and expectations from XAI system is the first step

in the design process. XAI Design goals could be driven by many motivations like improving

user experience on an existing system, advancing scientific findings [67, 191], or adhering to new

regulations [192]. In Section 3.2.1 I reviewed eight main goals (G1-G8) for XAI systems. Also,

ordering the priority of goals in cases with multiple design goals can be beneficial in the next steps

of the process (see Guideline 2). Given the fact that different XAI user types and applications

are interested in various design goals, it is important to establish these goals early in the design

process to identify and align with appropriate design principles. A pitfall in this stage is to pick

XAI goals without considering the end-user group, algorithmic limitations, and user preferences

in the context of the application. Overshooting XAI goals could hurt evaluation results moving

forward in the design process.
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Application in Case Study: In the first step of our case study with a news curation ap-

plication, the team started with identifying the main goals and expectations for the XAI

news assistant. The design focused on novice end-users without any particular expertise.

The XAI design goal was to improve user reliance and mental model of news predic-

tions through explainable design. The team hypothesized that end-users would trust and

rely on the fake news detection assistant, given that the new XAI is capable of provid-

ing explanations for each news story. Also, the team hoped that users would be able to

use the explanations to learn model weaknesses and strengths to provide feedback to the

developer team.

3.2.3.2 Guideline 2: Decide What to Explain

The second step in the XAI system design is to identify “what to explain” to the user in order to

achieve the initial XAI goals (see Guideline 1) of the system. I reviewed multiple machine learn-

ing interpretability techniques and explanation types in Section 3.2.2 which can provide different

types of information to the user. Although theory-driven design frameworks discuss explanation

mechanisms driven by human reasoning semantics [187], user-centered methods to identify useful

explanations such as online surveys, interviews, and user observations (e.g., [193, 146]) to under-

stand when and what needs to be explained for the users to understand better and trust intelligent

systems. Preliminary experiments are valuable in the early steps of the design cycle to identify and

narrow down explanation options for the user in order to satisfy design goals. A typical approach

for evaluating the effectiveness and usefulness of explanation choice in user-centric experiments is

to compare the user’s mental model of the system with and without explanation components. On

this subject, Lim and Dey [20] conducted experiments to discover what type of information users

are interested in different real-world context-aware application scenarios. Stumpf et al. [133] also

performed end-user interviews to identify user perceptions and expectations from an interpretable

interface as well as finding main decision points where users may need explanations. In another

work, Haynes et al. [142] provide a review and studies incorporating different explanations (oper-
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ational, ontological, mechanistic, and design rationale explanations) in intelligent systems. Simi-

larly, visualization design involves expert interviews and focus groups in the design path to identify

design goals [158].

The design process in this step involves algorithmic implementation constraints like “what can

be explained” to the user. For example, model explanation of a DNN is not feasible and compre-

hensible due to the large number of variables in the graph. Additionally, research shows instance

explanations from a DNN lack completeness and may fail to present salient features in cases [110].

Such constraints and decision points shall be solved through focused groups, brainstorming, and

interviews between model designers and interface designers in the team. Therefore, a design pitfall

for explanation choices is not to take limitations of interpretability techniques into account.

Application in Case Study: In our scenario, efficient news curation required fake news

detection with the help of our XAI assistant. In the analysis of what the system should

explain, the design team decided to identify candidate useful and impactful explanation

options. I started with reviewing machine learning research on false information (e.g.,

rumor, hoax, fake news, clickbait) detection as well as HCI research on news feeds and

news search systems to identify key attributes for news veracity checking [194]. Given

the non-expert target end-users, explanatory information needed to limit technical de-

tails. Next, the user interface designers and machine learning designers in the team

discussed candidate explanation choices and algorithmic constraints in interpretability

techniques. That is, some options for what to explain may not be entirely possible given

the interpretability of existing models, and the team needed to consider whether alterna-

tive learning techniques could provide better explanations or if the design team would

need to figure out meaningful ways to explain the information that was available from

the model.
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3.2.4 XAI Outcomes Evaluation

Model explanations are designed to answer different interpretability goals, and hence different

measures are needed to verify explanation validity for the intended purpose. For example, exper-

imental design with human-subject studies is a common approach to perform evaluations with AI

novice end-users. Various controlled in-lab and online crowdsourced studies have been used for

XAI evaluation. Also, case studies aim to collect domain expert users’ feedback while performing

high-level cognitive tasks with analytics tools.

In this section, I review the main measures to evaluation XAI systems’ outcome as presented

in Table 3.1. I also provide summarized and ready-to-use XAI evaluation measures and methods

extracted from the literature in Tables 3.2 and 3.3.

3.2.4.1 User Trust and Reliance

User trust in an intelligent system is an affective and cognitive factor that influences positive or

negative perceptions of a system [195, 47]. Initial user trust and the development of trust over time

have been studied and presented with different terms such as swift trust [196], default trust [197]

and suspicious trust [198]. Prior knowledge and beliefs are important in shaping the initial state

of trust; however, trust and confidence can update in response to exploring and challenging the

system with edge cases [199]. Therefore, the user may have different feelings of trust and mistrust

during different stages of experience with any given system.

Researchers define and measure trust in different ways. User knowledge, technical compe-

tence, familiarity, confidence, beliefs, faith, emotions, and personal attachments are common terms

used to analyze and investigate trust [195, 201]. For these outcomes, user trust and reliance can

be measured by explicitly asking about user opinions during and after working with a system,

which can be done through interviews and questionnaires. Related to this, Ming et al. [52] studied

the importance of model accuracy on user trust. Their findings show that user trust in a system

was affected by both the system’s stated accuracy and users’ perceived accuracy over time. Ad-
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Table 3.2: Evaluation measures and methods used in measuring user trust in XAI studies.

Trust Measures Evaluation Methods

Subjective Measures
Self-explanation and Interview ([200, 146])

Likert-scale Questionnaire ([200, 140, 53, 146])

Objective Measures
User Perceived System Competence ([52, 145, 53])

User Compliance with System ([56])

User Perceived Understandability ([52, 144])

ditionally, trust assessment scales could be specific to the systems application context and XAI

design purposes. Similarly, Nourani et al. [53] explored how explanation inclusion and level of

meaningfulness would affect the user’s perception of accuracy. Their controlled experiment re-

sults show that whether explanations are human-meaningful can significantly affect perception of

system accuracy independent of the actual accuracy observed from system usage. For example,

multiple scales would assess user opinion on systems reliability, predictability, and safety sepa-

rately. An example of a detailed trust measurement setup is presentation in the paper by Cahour

and Forzy [200], which measures user trust with multiple trust scales (constructs of trust), video

recording, and self-confrontation interviews to evaluate three modes of system presentation. Also,

to better understand factors that influence trust in adaptive agents, Glass et al. [141] studied which

types of questions users would like to be able to ask an adaptive assistant. Others have looked

at changes to user awareness over time by displaying system confidence and uncertainty of the

machine learning outputs in applications with different degrees of criticality [202, 203].

Multiple efforts have studied the impact of XAI on developing justified trust in users in different

domains. For instance, Pu and Chen [145] proposed an organizational framework for generating

explanations. They measured perceived competence and intention to return as measures for user

trust. Another example compared user trust with explanations for different goals like transparency

and justification explanation [144]. They considered perceived understandability to measure user

trust and show that transparent explanations can help reduce the negative effects of trust loss in
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unexpected situations.

Evaluating user trust in real-world applications, Berkovsky et al. [140] evaluated trust with

various recommendation interfaces and content selection strategies. They evaluated user reliance

on a movie recommender system with six distinct constructs of trust. Also on recommender al-

gorithms, Eiband et al. [56] repeats the Langer et al.’s experiment [204] on the role of “placebic”

explanations (i.e., explanations that convey no information) in mindlessness of user behavior. They

studied if providing placebic explanations would increase user reliance on the recommender sys-

tem. Their results suggest that future work on explanations for intelligent systems may consider

using placebic explanations as a baseline for comparison with machine learning generated expla-

nations. Also concerned with expert trust, Bussone et al. [146] measured trust by Likert-scale and

think-alouds. They found explanations of facts that lead to higher user trust and reliance in a clin-

ical decision-support system. Table 3.2 summarizes a list of subjective and objective evaluation

methods to measure user trust in the machine learning system and explanations.

Many studies evaluate user trust as a static property. However, it is essential to take user’s

experience and learning over time into account. Collecting repeated measures over time can help

in understanding and analyzing the trend of users’ developing trust with the progression of expe-

rience. For instance, in their study, Holliday et al. [143] evaluated trust and reliance in multiple

stages of working with an explainable text-mining system. They showed the level of user trust in

the system varied over time as the user gained more experience and familiarity with the system.

I note that although my literature review did not find a direct measurement of trust to be com-

monly prioritized in analysis tools for data and machine learning experts, users’ reliance on tools

and the tendency to continue using tools are often considered as a part of the evaluation pipeline

during interviews and case studies. In other words, my summarization is not meant to claim that

data experts do not consider trust, but rather I did not find it to be a core outcome explicitly mea-

sured in the literature for this user group.
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3.2.4.2 Human-AI Task Performance

A key goal of XAI is to help end-users to be more successful in their tasks involving machine

learning systems [120]. Thus, human-AI task performance is a measure relevant to all three groups

of user types. For example, Lim et al. [138] measured user performance in terms of test accuracy

and task completion time to evaluate the impact of different types of explanations. They showed

machine explanations to have a significant impact on users’ accuracy in determining the way the

machine learning system works. They use a generic test interface that can be applied to various

types of sensor-based context-aware systems, such as weather prediction.

Also, explanations can assist users in adjusting the intelligent system to their needs. Kulesza

et al. [132] study of explanations for a music recommender agent found a positive effect of expla-

nations on users’ satisfaction with the agent’s output, as well as on users’ confidence in the system

and their overall experience.

Another use case for machine learning explanations is to help users judge the correctness of

system output [147, 152, 34]. Explanations also assist users in debugging interactive machine

learning programs for their needs [150, 151]. In a study of end-users interacting with an email

classifier system, Kulesza et al. [150] measured users’ mental model accuracy and classifier perfor-

mance to show that explanatory debugging benefits both user and machine performance. Similarly,

Ribeiro et al. [86] found users could detect and remove wrong explanations in text classification,

resulting in training better classifiers by rewiring the algorithms and changing its logic. To support

these goals, Myers et al. [148] designed a framework that users can ask why and why not questions

and expect explanations from the intelligent interfaces. Table 3.3 summarizes a list of evaluation

methods to measure task performance in human-AI collaboration and model tuning scenarios.

Visual analytics tools also help domain experts to better perform their tasks by providing model

interpretations. Visualizing model structure, details, and uncertainty in machine outputs can allow

domain experts to diagnose models and adjust parameters to their specific data for better analysis.

Visual analytics research has explored the need for model interpretation in text [205, 206, 69] and

multimedia [207, 208] analysis tasks. This body of work demonstrates the importance of integrat-
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Table 3.3: Evaluation measures and methods used in measuring human-machine task performance
in XAI studies.

Performance Measures Evaluation Methods

User Performance
Task Performance ([151, 138, 76, 147])
Task Throughput([151, 138, 154])
Model Failure Prediction ([147, 152, 34])

Model Performance
Model Accuracy ([86, 150, 34, 155, 75])
Model Tuning and Selection ([68])

ing user feedback to improve model results. An example of a visual analytics tool for text analysis

is TopicPanaroma [68], which models a textual corpus as a topic graph and incorporates metric

learning and feature selection to allow users to modify the graph interactively. In their evaluation

procedure, they ran case studies with two domain experts: a public relations manager used the tool

to find a set of tech-related patterns in news media, and a professor analyzed the impact of news

media on the public during a health crisis. In analysis of streaming data, automated approaches

are error-prone and require expert users to review model details and uncertainty for better decision

making [209, 65]. For example, Goodall et al. [64] presented Situ, a visual analytics system for

discovering suspicious behavior in cyber network data. The goal was to make anomaly detection

results understandable for analysts, so they performed multiple case studies with cybersecurity

experts to evaluate how the system could help users to improve their task performance. Ahn and

Lin [72] present a framework and visual analytic design to aid fair data-driven decision making.

They proposed FairSight, a visual analytic system to achieve different notions of fairness in ranking

decisions through visualizing, measuring, diagnosing, and mitigating biases.

Other than domain experts using visual analytics tools, machine learning experts also use visual

analytics to find shortcomings in the model architecture or training flaws in deep neural networks

to improve the classification and prediction performance [155, 75]. For instance, Kahng et al. [76]

designed a system to visualize instance-level and subset-level of neuron activation in a long-term

investigation and development with machine learning engineers. In their case studies, they in-

terviewed three Facebook engineers and data scientists who used the tool and reported the key
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observations. Similarly, Hohman et al. [78] present an interactive system that scalably summarizes

and visualizes what features a DNN model has learned and how those features interact in instance

predictions. Their visual analytic system presents activation aggregation to discover important

neurons and neuron-influence aggregation to identify interactions between important neurons. In

the case of recurrent neural networks (RNN), LSTMVis [79] and RNNVis [80] are tools to inter-

pret RNN models for natural language processing tasks. In a recent example, Wang et al. [77]

presented DNN Genealogy, an interactive visualization tool that offers a visual summary of DNN

representations.

Another critical role of visual analytics for machine learning experts is to visualize model

training processes [81]. An example of a visual analytics tool for diagnosing the training process

of a deep generative model is DGMTracker [74], which helps experts understand the training

process by visually representing training dynamics. An evaluation of DGMTracker was conducted

in two case studies with experts to validate efficiency of the tool in supporting understanding of

the training process and diagnosing a failed training process.

3.2.5 XAI Evaluation Guidelines

Evaluation of XAI system outcomes is the final step in the evaluation process. Figure 3.3 shows

how the final system outcome evaluation is paired with the initial design goals in the outer layer of

my framework.

3.2.5.1 Guideline 3: Evaluate System Outcomes

The main goal of this stage is to quantitatively and qualitatively assess the effectiveness of

the XAI system for the initially established system-level XAI goals. Clearly, evaluation of final

system outcomes could be influenced by the design of the explainable user interface (intermedi-

ate layer) and the design of interpretable algorithms (innermost layer). For example, evaluating a

newborn interpretable machine learning algorithm’s output using human subjects through a weak

in-lab or crowdsourced user study may not be meaningful or productive for XAI system outcomes

if core computational changes are still in progress and could ultimately change the entire model
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interpretability and explanation format later. Also, changes in the targeted user could affect eval-

uation results at this stage. For example, a system designed for novices may not satisfy the needs

of an expert user and hence would not improve performance as expected. Evaluation measures in

this layer depend on the design goals, application domain, and targeted users. Example evaluation

measures for final system outcomes include user trust [145] and reliance on the system [140],

human-machine task performance [62], user awareness [203], and user understanding of their

personal data [33]. An effective process for evaluation of high-level XAI outcomes is to break

down the evaluation goal into multiple well-defined measures and metrics. This way, the team can

perform evaluation studies on different steps using valid methods in controlled setup. For exam-

ple, in the evaluation of XAI systems for trustworthiness, several factors of human trust could be

measured during and after a period of user experience with the XAI system. In addition, com-

putational measures (Section 3.4.3.1) are used to examine the fidelity of interpretability methods

and trustworthiness of the model with objective metrics. A possible pitfall in evaluation of the

XAI system outcomes is performing the evaluation without considering the model trustworthiness

and explanations’ correctness from the interpretable model layer (see Guideline 7) and explanation

understandability and usefulness from the user interface layer (see Guideline 5).
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Application in Case Study: In our case study with news review and curation, we needed

to evaluate our XAI news assistant with non-expert users who would gather news sto-

ries while flagging fake news articles. In the evaluation step, the team ran multiple

large-scale human-subject studies with novice participants recruited through Amazon

Mechanical Turk to work with our news reading system. Note that both the explainable

interface and interpretable algorithm passed multiple design and testing iterations before

this evaluation step. Major decisions for this evaluation was how to structure the dura-

tion and complexity of the user task while appropriately testing the system’s full range

of functionality. The task was designed with questions built in to help collect subjective

data in addition to the objective user performance data. Multiple evaluation measures

were chosen for system outcomes, including: subjective user trust in the news assistant,

user agreement rate with the news assistant, veracity of user-shared news stories, and

user accuracy in guessing the news assistant output. Both qualitative and quantitative

analysis of user feedback and interaction data were valuable to the evaluation of system

outcomes. The results and analysis from these evaluations helped the team to understand

the effectiveness of the XAI elements (in both the algorithm and the interface) for the

initial system goals.

3.3 Layer 2: Interface Design

The middle layer of my framework is concerned with designing and evaluating an explainable

interface or visualization for the user to interact with XAI system. Interface design for explanations

consists of presenting model explanations from interpretable algorithms to end-users in terms of

their explanation format and interaction design. The importance of this layer is to satisfy design

requirements and needs to be determined in the XAI system design layer (see Guideline 2). Hence,

the iterative movement between Design pole and Evaluation pole in this layer presents design

refinement in pursuit a desired goal state. An elegant translation of machine generated explanations

(e.g., verbal, numeric, or visual explanation) needs carefully designed human-understandable and
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satisfying explanations in the user interface. In the following I review multiple types of explanation

formats for integrating XAI elements into the user interface.

3.3.1 How to Explain

In all types of machine learning explanations, the goal is to reveal new information about the

underlying system. In this survey, I mainly focus on human-understandable explanations, though

I note that research on interpretable machine learning has also studied other purposes such as

knowledge transfer, object localization, and error detection [175, 177].

Explanations can be designed using a variety of formats for different user groups [167]. Visual

explanations use visual elements to describe the reasoning behind the machine learning models.

Attention maps and visual saliency in the form of saliency heatmaps [107, 106] are examples

of visual explanations that are widely used in machine learning literature. Verbal explanations

describe the machine’s model or reasoning with words, phrases, or natural language. Verbal expla-

nations are popular in applications like question-answering explanations and decision lists [154].

This form of explanation has also been implemented in recommendation systems [140, 131] and

robotics [210]. Explainable interfaces commonly make use of multiple modalities (e.g., visual,

verbal, and numerical elements) for explanations to support user understanding [148]. Analytic

explanation is another approach to view and explore the data and the machine learning models

representations [125]. Analytic explanations commonly rely on numerical metrics and data visu-

alizations. Visual analytics tools also allow researchers to review model structures, relations, and

their parameters in complex deep models. Heatmap visualizations [79], graphs and networks [64],

and hierarchical (decision trees) visualizations are commonly used to visualize analytic explana-

tions for interpretable algorithms. Recently, Hohman et al. [211] implemented a combination of

visualization and verbalization to communicate or summarize key aspects of a model.

From a different perspective, Chromik et al. [212] extends the idea of “dark patterns” from

interactive user interface design [213] into machine learning explanations. They review possible

ways that phrasing of explanations and their implementation in the interface could deceive users

for the benefit of other parties. They review negative effects such as lack of user attention to
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explanations, formation of an incorrect mental model, and even algorithmic anxiety [214] could

be among the consequences of such deceptive presentations and interactions of machine learning

explanations.

3.3.2 User Interactions with XAI

Another important consideration in designing the XAI interface is if and how to leverage user

interactions to better support system understandability. The benefits of interactive system design

have been previously explored in the topic of interactive machine learning [119, 157] for novice

end-users. AI and data experts also benefit from interactive visual tools to improve model and

task performance [123]. Here, I discuss multiple examples of interaction design that support user

understanding of the underlying black-box model.

Focusing on interactive design for AI-based systems for AI novices, Amershi et al. [119] re-

viewed multiple case studies that demonstrate the effectiveness of interactivity with a tight coupling

between the algorithm and the user. They emphasize how interactive machine learning processes

allow the users to instantly examine the impact of their actions and adapt their next queries to im-

prove outcomes. Such interactions allow users to test various inputs and learn about the model by

creating What-If explanations [49]. Particularly, user-led cyles of trial and error help novices to

understand how the machine learning model works and how to steer the model to improve results.

In the context of XAI, Jongejan and Holbrook [186] present a study in which users draw im-

ages and see whether an image recognition algorithm can correctly recognize the intended sketch.

Their system and study allows for interactive trial-and-error to explore how the algorithm works.

In addition, their system provides example-based explanations in cases where the algorithm fails

to correctly classify drawings. Another approach is to allow users to control or tune algorithmic

parameters to achieve better results. For example, Kocielnik et al. [54] present a study in which

users were able to freely control detection sensitivity in an AI assistant. Their results showed a

significant effect on user perception of control and acceptance.

Visual analytics tools also support model understanding for expert users through interaction

with algorithms. Examples including allowing data scientists and model experts to interactively
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explore model representations [78], analyze model training processes [74], and detect learning

biases [215]. Also, embedded interaction techniques can support the exploration of very large

deep learning networks. For instance, Hohman et al. [78] present multiple interactive features to

select and filter of neurons and zoom and pan in feature representations to support AI experts in

interpreting and reviewing trained models.

3.3.3 Interface Design Guidelines

The guidelines in this layer are helping to execute design requirements that are determined in

the XAI system design layer (see Guideline 2). After reviewing multiple types of explanation for-

mats and interaction designs for integrating XAI elements into the user interface in Section 3.3.1, I

review the internal steps of this layer in the following guideline. The iterative movement between

Design pole and Evaluation pole in this layer presents design refinement to achieve explainable

interface.

3.3.3.1 Guideline 4: Decide How to Explain

Identifying candidate explanation formats for the targeted system and user group is the first step

to deliver machine learning explanations to end-users. The design process can account for different

levels of complexity, length, presentation state (e.g., permanent or on-demand), and interactivity

options depending on the application and user type. The explanations format in the interface is

particularly important to improve user understanding of underlying algorithms. Studies show that

while detailed and complex interactive representations may aim to communicate the explanations

to the expert users, AI-novice users of XAI system prefer more simplified explanation and repre-

sentation interfaces [96]. User satisfaction of interface design is also another critical factor in user

engagement of the interface components [160]. Additionally, interaction design for explainable

interfaces can allow a user to communicate with the system to adjust explanations and could better

support user inspection of the system [151].

Research of intelligent interface design presents multiple design methods such as wirefram-

ing and low-fidelity prototyping (e.g., [193, 146]) that could also be adapted to the explainable
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interface design. Also, existing design guidelines and best-practice knowledge for AI-infused in-

terfaces (e.g., [157]) and visualizations (e.g., [216]) could be used in this stage to leverage similar

systems for explainable interface design. Aside from model explanations, providing prediction

uncertainty also has been identified as an important factor for both general end-users and data ex-

pert users [71]. For example, Kay et al. [203] presented the full design cycle for an uncertainty

visualization interface in a bus arrival time application. Their design process included survey-

ing to identify usage requirements, developing alternative layouts, running user testing, and final

evaluation of user understanding of machine learning output.

Application in Case Study: To determine how to explain news classification results to

non-expert end users, the user interface design team started the process by reviewing the

initial system goals and explanation types. The team then continued with multiple in-

terface sketches that matched the intended application and user tasks. During the initial

design steps, the team tried to keep a balance between interface complexity and expla-

nation usefulness by choosing among available explanation types from our interpretable

machine learning algorithms. Next, mock-ups from the top three designs were imple-

mented for testing with a small number of participants. Each mock-up had a different

arrangement of data, user task flow, and explanation format for the news assistant inter-

face. Our human-subject experiments in this stage were based on user observations and

post-usage interviews to collect qualitative feedback regarding participant understanding

and subjective satisfaction of explanation components and interface arrangements. Inter-

views resulted in the selection of the most comprehensible and conclusive design among

the available options to continue with (see Guidelines 5).

3.3.4 Explainability Evaluation

Following the evaluation measures for XAI system’s outcomes in Section 3.2.4 In this section,

I review the main measures to evaluation XAI systems’ outcome as presented in Table 3.1. I also

provide summarized and ready-to-use XAI evaluation measures and methods extracted from the
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Table 3.4: User satisfaction measures and study methods used in measuring user satisfaction and
usefulness of explanations in XAI studies.

Satisfaction Measures Evaluation Methods

User Satisfaction
Interview and Self-report ([20, 136, 138, 135])

Likert-scale Questionnaire ([218, 96, 20, 136, 138])

Expert Case Study ([76, 79, 69, 219, 155])

Explanation Usefulness
Engagement with Explanations ([218])

Task Duration and Cognitive Load ([138, 96, 136])

literature for explanations usefulness and satisfaction (Tables 3.4) and user mental model (3.3).

3.3.4.1 Explanation Usefulness and Satisfaction

End-user satisfaction and usefulness of machine explanation are also of importance when eval-

uating explanations in intelligent systems [134]. Researchers use different subjective measures for

understandability, usefulness, and sufficiency of details to assess explanatory value for users [117].

Although there are implicit methods to measure user satisfaction [217], a considerable part of the

literature follows qualitative evaluation of satisfaction in explanations, such as questionnaires and

interviews. For example, Gedikli et al. [136] evaluated ten different explanation types with user

ratings of explanation satisfaction and transparency. Their results showed a strong relationship

between user satisfaction and perceived transparency. Similarly, Lim et al. [138] explore explana-

tion usefulness and efficiency in their interpretable context-aware system by presenting different

types of explanations such as “why”, “why not” and “what if” explanations and measuring users

response time.

Another line of research studies whether intelligible systems are always appreciated by the

users or it is a conditional fact. An early work from Lim and Dey [20] studied user understand-

ing and satisfaction of different explanation types in four real-world context-aware applications.

Their findings show that, when considering scenarios involved with criticality, users want more
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information explaining the decision making process and experience higher levels of satisfaction

after receiving these explanations. Similarly, Bunt et al. [135] considered whether explanations

are always necessary for users in every intelligent system. Their results show that, in some cases,

the cost of viewing explanations in diary entries like Amazon and YouTube recommendations

could outweigh their benefits. To study the impact of explanation complexity on users’ compre-

hension, Lage et al. [96] studied how explanation length and complexity affect users’ response

time, accuracy, and subjective satisfaction. They also observed that increasing explanation com-

plexity resulted in lowered subjective user satisfaction. In a recent study, Coppers et al. [218]

also show that adding intelligibility does not necessarily improve user experience in a study with

expert translators. Their experiment suggests that an intelligible system is preferred by experts

when the additional explanations are not part of the translators readily available knowledge. In

another work, Curran et al. [220] measured users’ understanding and preference of explanations

in an image recognition task by ranking and coding user transcripts. They provide three types of

instance explanations for participants and show that although all explanations were coming from

the same model, participants had different levels of trust in explanations’ correctness, according to

explanations clarity and understandability.

Table 3.4 summarizes the study methods used to measure user satisfaction and usefulness of

machine learning explanations. Note that the primary goal of XAI system evaluations for domain

and AI experts is through direct evaluation of user satisfaction of explanation design during the

design cycle. For example, case studies and participatory design are common approaches for

directly including expert users as part of the system design and evaluation processes.

3.3.4.2 Mental Model

Following cognitive psychology theories, a mental model is a representation of how a user

understands a system. Researchers in HCI study users’ mental models to determine their under-

standing of intelligent systems in various applications. For example, Costanza et al. [221] studied

how users understand a smart grid system, and Kay et al. [203] studied how users understand and

adapt to uncertainty in machine learning prediction of bus arrival times.

55



Table 3.5: Evaluation measures and methods used in studying user mental models in XAI systems

Mental Model Measures Evaluation Methods

User Understanding of Model
Interview ([221]) and Self-explanation ([222, 223, 32])
Likert-scale Questionnaire ([183, 224, 20, 137, 225, 154])

Model Output Prediction User Prediction of Model Output ([203, 86, 87])
Model Failure Prediction User Prediction of Model Failure ([62, 226])

In the context of XAI, explanations help users to create a mental model of how the AI works.

Machine learning explanation is a way to help the user in building a more accurate mental model.

Studying users’ mental models of XAI systems can help verify explanation effectiveness in describ-

ing an algorithm’s decision-making process. Table 3.5 summarizes different evaluation methods

used to measure user mental model of machine learning models.

Psychology research in human-AI interactions has also explored structure, types, and functions

of explanations to find essential ingredients of ideal explanation for better user understanding and

more accurate mental models [227, 228]. For instance, Lombrozo [183] studied how different

types of explanations can help structure conceptual representation. In order to find out how an

intelligent system should explain its behavior for non-experts, research on machine learning expla-

nations has studied how users interpret intelligent agents [222, 223] and algorithms [224] to find

out what users expect from machine explanations. Related to this, Lim and Dey [20] elicit types

of explanations that users might expect in four real-world applications. They specifically study

what types of explanations users demand in different scenarios such as system recommendation,

critical events, and unexpected system behavior. In measuring user mental model through model

failure prediction, Bansal et al. [62] designed a game in which participants receive monetary in-

centives based on their final performance score. Although experiments were done on a simple

three-dimensional task, their results indicate a decrease in users’ ability to predict model failure as

data and model get more complicated.

A useful way of studying user comprehension of intelligent systems is to directly ask the user

about the intelligent system’s decision-making process. Analyzing user interviews, think-alouds,
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and self-explanations provides valuable information about the users’ thought processes and mental

models [151]. On studying user comprehension, Kulesza et al. [137] studied the impact of explana-

tion soundness and completeness on fidelity of end-users mental model in a music recommendation

interface. Their results found that explanation completeness (broadness) had a more significant ef-

fect on user understanding of the agent compared to explanation soundness. In another example,

Binns et al. [32] studied the relation between machine explanations and users’ perception of jus-

tice in algorithmic decision-making with different sets of explanation styles. User attention and

expectations may also be considered during the interpretable interface design cycles for intelligent

systems [133].

Interest in developing and evaluating human-understandable explanations has also led to inter-

pretable models and ad-hoc explainers to measure mental models. For example, Ribeiro et al. [86]

evaluated users’ understanding of the machine learning algorithm with visual explanations. They

showed how explanations mitigate human overestimation of the accuracy of an image classifier and

help users choose a better classifier based on the explanations. In a follow-up work, they compared

the global explanations of a classifier model with the instance explanations of the same model

and found global explanations were more effective solutions for finding the model weaknesses

[87]. In another paper, Kim et al. [225] conducted a crowdsourced study to evaluate feature-based

explanation understandability for end-users. Addressing understanding of model representations,

Lakkaraju et al. [154] presented interpretable decision sets, an interpretable classification model,

and measured users’ mental models with different metrics such as user accuracy on predicting

machine output and length of users’ self-explanations.

3.3.5 Interface Evaluation Guidelines

3.3.5.1 Guideline 5: Evaluate Explanation Usefulness

This mid-layer evaluation step can be used along with various measures to help assess user

understanding of the XAI underlying intelligent algorithms. A series of user-centered evaluations

of explainable interface with multiple goals and granularity levels could be performed to measure:
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1. User understanding of explanation.

2. User satisfaction of explanation.

3. User mental model of the intelligent system.

Evaluations in the middle layer are particularly important due to the impact on XAI system out-

comes (outer layer) and being affected by interpretable model outputs (inner-most layer). Specifi-

cally, evaluation measures in this stage can inform how well users understand the interpretable sys-

tem, however, the design validity at this step also may be reflected by higher-level XAI outcomes

(i.e., outer-layer evaluation) such as user trust and task performance. Note that user understanding

of an XAI system could be limited to parts of the system rather than the entire system; similarly,

understanding may be limited to a subspace of scenarios rather than all possible scenarios.

The three evaluation measures introduced for this step could be used on multiple iterative cy-

cles to improve overall explainable interface design. For example, Saket et al. [229] studies users

understanding of visualization encoding and effectiveness of interactive graphical encoding for

end-user. On the other hand, user satisfaction of explanation type and format depends on factors

such as targeted application criticality and user-preferred cognitive load [112]. Evaluating user

mental model is also an effective way to measure usefulness of explainable interfaces. Tables 3.5

and 3.4 present a list of measures for evaluating explainable interfaces in this step. The choice of

baseline is another important factor in evaluating explainable interfaces. Typically, a combination

of qualitative and quantitative analysis are used to measure effects of explanation components (in

comparison to non-explainable system) or to compare multiple explanations types. However, the

choice of placebic explanations has been proposed as the evaluation baseline for more accurate

measurement of explanation content [56]. In the case of expert review, evaluation of a domain

expert’s mental model commonly involves comparison with the AI expert’s mental model and

description of “how the model works”. Section 3.5.3 reviews common choices of ground-truth

baselines in XAI evaluation studies. With all approaches, updates in explanation components of

the interface require assessment of their impact on user experience and understandability. How-
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ever, the metrics and depth of evaluation vary during the evaluation cycles as the team narrows

down specific needs. Finally, a possible evaluation pitfall for explainable interfaces is going after

broad measures of XAI outcomes (See Guideline 3) rather than focusing on a narrower scope of

explanation components and interactions.

Application in Case Study: In our case study, interface designers started evaluation of

candidate explanation components by a series of small studies with a repeated-measures

design so that the same study participant could experience different explanation designs

in one session. Next, we analyzed quantitative and qualitative data collected from the

end-users to choose candidate designs and routes to further improve the interface for ex-

plainable components. Discussions with the machine learning team also helped to find

sources of limitations in the interpretability technique that could possibly affect user sat-

isfaction. After the initial cycles of revision, we collected a round of external and internal

expert reviews to update the study methodology and data collection details according to

project progress.

3.4 Layer 3: Algorithm Design

The innermost layer of my framework involves designing interpretable algorithms that are

able to generate explanations for the users. The last design step in my XAI system framework

is the choice of interpretability technique (design pole) to generate the outlined explanation types.

However, evaluating the generated explanation (evaluation pole) is the first evaluation step before

human-subject evaluations in the explainable interface.

Ideally, the interpretability techniques should generate explanations in accordance with the

requirements in the explainable interface design step (see Guideline 4); however, the choice of

interpretability technique depends on domain and carries implementation limitations. For example,

while shallow models are desired for their high interpretability, these models typically do not

perform well in cases of complex and high dimensional data like image and text. On the other

hand, highly accurate predictions in black-box models (e.g., deep neural networks and random
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forest models) require post-processing and ad-hoc algorithms to generate explanations. The ad-hoc

approach also has limitations on both choice of explanation type and need for completeness [110]

and fidelity [86] validation compared to the original model. This shows not only machine learning

designers should consider the trade-off between model interpretability and performance but also

should consider the fidelity of the ad-hoc explainer to black-box model.

3.4.1 Interpretability Techniques

The human interpretability of a machine learning model is inversely proportional to the model’s

size and complexity. Complex models (e.g., deep neural networks) with high performance and ro-

bustness in real-world applications are not interpretable by human users due to their large variable

space. Linear regression models or decision trees offer better interpretability but have limited per-

formance on high-dimensional data, whereas a random forest model (ensemble of hundreds of

decision trees) can have much higher performance but is less understandable. This trade-off be-

tween model interpretability and performance led researchers to design ad-hoc methods to explain

any black-box machine learning algorithm such as deep neural networks. Ad-hoc explainers (e.g.,

[86, 102]) are independent algorithms that can describe model predictions by explaining “why” a

certain decision has been made instead of describing the whole model. However, there are limita-

tions in explaining black-box models with ad-hoc explainers, such as the uncertainty of the fidelity

of the explainer itself. I briefly reviewed different techniques and their limitations in generating

explanations from black box models in Section 2.4. For example, similar to the black-box model

itself, the explanations could too complex or nonsensical to understand for end-users. In the next

section, I’ll review considerations to choose the right interpretability technique for the XAI system.

3.4.2 Model Design Guidelines

The interpretable model layer includes a design pole (top) and an evaluation pole (bottom) to

improve the interpretability technique during the iterative design steps. We suggest the following

design guideline for this layer:
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3.4.2.1 Guideline 6: Design Interpretability Technique

Designing interpretable decision-making algorithms starts with the choice of machine learning

model. Shallow machine learning models (e.g., linear models and decision trees) have intrinsic

interpretability due to low number of variables and model simplicity. For more complex models

(e.g., random forest and DNN), ad-hoc explainer technique (see Section 2.4) are needed to generate

explanations. However, the choice of machine learning model (i.e., shallow vs. deep) is bounded

by model’s performance on data domain. Secondly, ad-hoc explainer techniques have certain lim-

itations in their explanation type. The importance of choosing the right combination of model and

explainer is in their impact on providing useful (See Guideline 4) and trustworthy explanations for

end-users.

Machine learning research has proposed various ad-hoc explainers to generate “Why” explana-

tions (e.g., feature attribution [225, 102]), “How” explanations (e.g., rules list [171, 230]), “What

else” explanation (e.g., similar training instance [182, 190]), and “What if” (e.g., sensitivity analy-

sis [107]) explanation types. However, despite substantial research in interpretable machine learn-

ing techniques, a core issue in model explanations is the difference between machine learning

model’s decision-making logic and human sense-making as the receiver [231, 232].

Application in Case Study: In our fake news detection case study, the explainable inter-

face design team had previously discussed candidate explanation choices with the ma-

chine learning design team (see Guidelines 2 and 4). Therefore, a final review of model-

generated explanations and an assessment of implementation limitations were performed

in this step. For example, removing noise-like features from saliency maps, normaliz-

ing attributions scores, and resolving contradicting explanations between an ensemble of

models were primary implementation bottlenecks that were resolved in this step. Specif-

ically, as a decision point for trade-offs between clarity and faithfulness of explanations,

the team decided on using heuristic filters to eliminate features with a very low attribution

score for the sake of presentation simplicity.
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3.4.3 Interpretable Algorithm Evaluation

Following the review of background in evaluation measures for fidelity of explainer in Sec-

tion 2.4.2 and truthfulness of explanations in Section 2.4.1, in this section, I provide summarized

and ready-to-use computational methods (as opposed to used study based methods) for evaluating

interpretability techniques (Tables 3.6).

3.4.3.1 Computational Methods

Computational measures are common in the field of machine learning to evaluate interpretabil-

ity techniques’ correctness and completeness in terms of explaining what the model has learned.

Herman [111] notes that reliance on human evaluation of explanations may lead to persuasive

explanations rather than transparent systems due to user preference for simplified explanations.

Therefore, this provides an argument that explanations’ fidelity to the black-box model should

be evaluated by computational methods instead of by human-subject studies. Fidelity of an ad-

hoc explainer refers to the correctness of the ad-hoc technique in generating the true explanations

(e.g., correctness of a saliency map) for model predictions. This leads to a series of computational

methods to evaluate correctness of generated explanations, consistency of explanation results, and

fidelity of ad-hoc interpretability techniques to the original black-box model [233].

However, in many cases, machine learning researchers often consider model consistency, com-

putational interpretability, and self-interpretation of results as evidence for explanation correct-

ness [175, 234, 235]. For example, Zeiler and Fergus [107] discuss fidelity of the visualization for

CNN network by its validity in finding model weaknesses resulted in improved prediction results.

In another case, Yosinski et al. [173] created an interactive tool to explore the CNN’s activation

layers in real-time to provide an intuition about “how the CNN works” to the user. On the other

hand, intrinsic interpretable machine learning models (e.g., linear regression and decision trees)

are considered as white-box models and do not need additional interpretability techniques.

In some cases, comparing a new explanation technique with existing state-of-the-art expla-
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Table 3.6: Evaluation measures and methods used for evaluating fidelity of interpretability tech-
niques and reliability of trained models. This set of evaluation methods is used by machine learn-
ing and data experts to eighter evaluate the correctness of interpretability methods or evaluate the
training quality trained models beyond standard performance metrics.

Computational Measures Evaluation Methods

Explainer Fidelity
Simulated Experiments ([87, 86])

Sanity Check ([175, 234, 235, 173, 109, 153]

Comparative Evaluation ([104, 103])

Model Trustworthiness
Debugging Model and Training ( [107])

Human-Grounded Evaluation ([236, 102, 97, 174])

nation techniques is a way to verify explanation quality [100, 101, 102]. For instance, Ross et

al. [103] designed a comprehensive set of empirical evaluations and compared their explanations’

consistency, features, and computational cost with the LIME technique [86]. In a comprehensive

setup, Samek et al. [104] proposed a framework for evaluating saliency explanations for image

data that quantify the importance of pixels with respect to the classifier prediction. They compared

three different saliency explanation technique for image data (sensitivity-based [106], deconvolu-

tion [107], and layer-wise relevance propagation [108]) and investigated the correlation between

saliency map quality and network performance on different image datasets under input perturba-

tion. On the contrary, Kindermans et al. [109] show interpretability techniques have inconsistencies

on simple image transformations, hence their saliency maps can be misleading. They define an in-

put invariance property for reliability of explanations from saliency methods. To extend a similar

idea, Adebayo et al. [110] propose three tests to measure adequacy of interpretability techniques

for tasks that are sensitive to either data or model.

Other evaluation methods include assessing explanation’s fidelity in comparison to inherently

interpretable models. For example, Ribeiro et al. [86] compared explanations generated by their

ad-hoc explainer to explanations from an interpretable model. They created gold-standard expla-

nations directly from the interpretable models (sparse logistic regression and decision trees) and
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used these for comparisons in their study. A downside of this approach is that the evaluation is

limited to generating a gold standard by an interpretable model. User-simulated evaluation is an-

other method to perform computational evaluations of machine-generated explanations. Ribeiro et

al. [86] simulated user trust in explanations and models by defining “untrustworthy” explanations

and models. They tested a hypothesis on how real users would prefer more reliable explanations

and choose better models. The authors later repeated similar user-simulation evaluations in the

Anchors explanation approach [87] to report simulated users’ precision and coverage in finding the

better classifier by only looking at explanations.

A different approach in quantifying explanations quality with human intuition has been taken

by Schmidt and Biessmann [97] by defining an explanation quality metric based on user task

completion time and agreement of predictions. Another example is the work of Lundberg and

Lee [102], who compared the SHAP ad-hoc explainer model with LIME and DeepLIFT [101]

based on the assumption that good model explanations should be consistent with the explanations

from humans who understand the model. Lertvittayakumjorn and Toni [237] also present three user

tasks to evaluate local explanation techniques for text classification through revealing model be-

havior to human users, justifying the predictions, and helping humans investigate uncertain predic-

tions. A similar idea has been implemented in [236] by feature-wise comparison of a ground-truth

and model explanation. They provide a user-annotated benchmark to evaluate machine learning

instance explanations. Later, Poerner et al. [84] use this benchmark as human-annotated ground

truth in comparison to small-context (word level) and large-context (sentence level) explanation

evaluation. Human benchmarks can be valuable when considering human meaningfulness of ex-

planations, though the discussion by Das et al. [174] implies that machine learning models (visual

question answering attention models in their case) do not seem to look at the same regions as

humans. They introduce a human-attention dataset [238] (collection of mouse-tracking data) and

evaluate attention maps generated by state-of-the-art models against human.

Interpretability techniques also enable quantitative measures for evaluating model trustworthi-

ness (e.g., model fairness, reliability, and safety) through its explanations. Trustworthiness of a
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model represents a set of domain specific goals such as fairness (by fair feature learning), reliabil-

ity and safety (by robust feature learning). For example, Zhang et al. [176] present a case of using

machine learning explanations to find representation learning flaws caused by potential biases in

the training dataset. Their technique mines the relationships between pairs of attributes accord-

ing to their inference patterns. Further, Kim et al. [225] presented quantitative testing of machine

learning models by their explanations. In their concept activation vectors technique, the model can

be tested for specific concepts (e.g., image patterns) and a vector score shows if the model is biased

toward that concept. They later extended their concept-based global explanation of model repre-

sentation learning for systematic discovery of concepts that are human-meaningful and important

for the model prediction [239]. They use human-subject experiments to evaluate learned concepts.

Table 3.6 summarizes a list of evaluation methods to measure fidelity of interpretability technique

and model trustworthiness with computational techniques.

3.4.4 Model Evaluation Guidelines

I suggest the following evaluation guideline for interpretable algorithm design step.

3.4.4.1 Guideline 7: Evaluate Model Trustworthiness

Evaluating the interpretable machine learning is the first evaluation step in my framework due

to its impact on outer layer evaluation measure. The high significance of this evaluation step stems

from the possibility that any unreliability of interpretability at this inner layer will propagate to all

other outer layers. Such unintended error propagation may lead to problematic outer-layer design

decisions as well as misleading evaluation results. I discuss two main evaluation goals for the

innermost layer:

1. Evaluating model trustworthiness.

2. Evaluating ad-hoc explainer fidelity.

The first evaluation goal aims to utilize interpretability techniques as a debugging tool to ana-

lyze the model’s trustworthiness on learning concepts beyond general performance measures [225].
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Examples of model trustworthiness validation include evaluating model reliability in financial risk

assessment [240], model fairness in social influencing applications [176], and model safety for its

intended functionality [241]. Researchers have also proposed various regularization techniques for

enhancing trustworthy feature learning in machine learning models [103, 242]. Next, the second

evaluation goal targets fidelity of ad-hoc explainer techniques to the black-box model. Research

shows that different ad-hoc interpretability techniques have inconsistencies and can be mislead-

ing [110]. Evaluating explanation trustworthiness can verify explainer fidelity in terms of how

well it represents the black-box model (see Section 3.4.3.1).

Application in Case Study: In our case study, we paid careful attention to qualitative

reviewing of the model explanations after each design iteration. Our initial qualitative

review of model explanations led to dataset cleaning through a heuristic search aimed

at the removal of mislabeled examples and unrelated news articles. An improvement to

model performance was achieved after dataset cleaning. Then, after the first round of

human-subject evaluation of the explainable interface (see Guideline 5), the team identi-

fied negative effects of keyword explanations with low attention scores from end-users.

The team decided on using a lower threshold for visualizing attention maps to reduce

clutter and “noisy explanations” for end users. Finally, after one round of XAI outcome

evaluation (see Guideline 3), analysis of users’ mental models revealed that a dataset

imbalance between the “fake news” and “true news” was causing a bias for the model in

that the model was usually more confident in predicting fake news over true news.

3.5 Discussion

In my review, I discussed multiple XAI design goals and evaluation measures appropriate for

various targeted user types. Table 3.1 presents my categorization of selected existing design and

evaluation methods that organizes literature along three perspectives: design goals, evaluation

methods, and the targeted users of the XAI system. The categorization revealed the necessity of

an interdisciplinary effort for designing and evaluating XAI systems. To address these issues, I
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proposed a design and evaluation framework that connects design goals and evaluation methods

for end-to-end XAI systems design, as presented through a model (Figure 3.3) and guidelines.

In this section, I discuss further considerations for XAI designers to benefit from the body of

knowledge of XAI system design and evaluation. The following recommendations support and

promote different layers of the proposed evaluation model as well.

3.5.1 Pairing Design Goals with Evaluation Methods

It is essential to use appropriate measures for evaluating the effectiveness of design elements.

A common pitfall in choosing evaluation measures in XAI systems is that the same evaluation

measure is sometimes used for multiple design goals. A simple solution to address this issue is

to distinguish between measurements by using multiple scales to capture different attributes in

each evaluation target. For example, the concept of user trust consists of multiple constructs [200]

that could be measured with separate scales in questionnaires and interviews (see Section 3.2.4.1).

User satisfaction measurements could also be designed for various attributes such as understand-

ability of explanations, usefulness of explanations, and sufficiency of details [48] to target specific

explanation qualities (see Section 3.3.4.1).

An efficient way to pair design goals with appropriate evaluation measures is to balance dif-

ferent design methods and evaluation types in iterative cycles of design. Managing the trade-offs

between qualitative and quantitative methods in the design process can allow designers to take

advantage of different approaches, as needed. For example, while focus groups and interviews

provide more detailed and in-depth feedback on the users’ mental model [132], remote measure-

ments are highly valuable due to the scalability of the collected data even though they provide less

detail for drawing conclusions [96]. Thus, one successful approach could be to start with multiple

small-scale prototyping and formative studies collecting qualitative measures at the earlier stages

of the design (e.g., for XAI system goals layer in the framework) and continue with larger-scale

studies and quantitative measures in the later stages (e.g., for interpretable model and interface

evaluations in the framework).
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3.5.2 Role of User Interactions in XAI

Another important consideration in designing XAI systems is how to leverage user interactions

to better support system understandability. The benefits of interactive system design have been

previously explored in the topic of interactive machine learning [119, 157] for novice end-users.

AI and data experts also benefit from interactive visual tools to improve model and task perfor-

mance [123]. In this section, I discuss multiple examples of interaction design that support user

understanding of the underlying black-box model.

Focusing on interactive design for AI-based systems for AI novices, Amershi et al. [119] re-

viewed multiple case studies that demonstrate the effectiveness of interactivity with a tight coupling

between the algorithm and the user. They emphasize how interactive machine learning processes

allow the users to instantly examine the impact of their actions and adapt their next queries to

improve outcomes. Such interactions allow users to test various inputs and learn about the model

by creating What-If explanations [49]. Particularly, user-led cycles of trial and error help novices

to understand how the machine learning model works and how to steer the model to improve re-

sults. In the context of XAI, Jongejan and Holbrook [186] present a study in which users draw

images to see whether an image recognition algorithm can correctly recognize the intended sketch.

Their system and study allows for interactive trial-and-error to explore how the algorithm works.

In addition, their system provides example-based explanations in cases where the algorithm fails

to correctly classify drawings. Another approach is to allow users to control or tune algorithmic

parameters to achieve better results. For example, Kocielnik et al. [54] present a study in which

users were able to freely control detection sensitivity in an AI assistant. Their results showed a

significant effect on user perception of control and acceptance.

Visual analytics tools also support model understanding for expert users through interaction

with algorithms. Examples including allowing data scientists and model experts to interactively

explore model representations [78], analyze model training processes [74], and detect learning

biases [215]. Also, embedded interaction techniques can support the exploration of very large

deep learning networks. For instance, Hohman et al. [78] present multiple interactive features to
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select and filter of neurons and zoom and pan in feature representations to support AI experts in

interpreting and reviewing trained models.

3.5.3 Evaluation Ground Truth

Research on XAI systems study various goals with different measures across multiple domains.

The breadth of XAI research makes it challenging to interpret and transfer findings from one task

and domain to another. Knowing key factors for interpreting implications of evaluation results is

essential to aggregate findings across domains and disciplines. An important factor in understand-

ing XAI evaluation results and comparing results among multiple studies is the choice of ground

truth. In the following, I review common choices of ground truth for both human-subject and

computational evaluation methods.

Human-subject experiments often take the form of controlled studies to examine the effects

of machine learning explanations on a control group in comparison to a baseline group. In these

setups, the choice of the baseline could affect results implications and significance. My review of

papers in the space of XAI evaluation shows the majority of study designs use a no explanation

condition as the baseline condition to measure the effectiveness of model explanations in an ex-

planation group. Examples for the baseline include approaches that remove model explanations

related components and features form the interface in the baseline condition [54, 53]. In other

work, Poursabzi et al. [58] also included a no AI baseline to measure participants’ performance

without the help of model predictions. Another way is to compare the effects of explanation type

or complexity between study conditions without the no explanation baseline. For instance, Lage

et al. [96] present a study to evaluate the effects of explanation complexity on participants’ com-

prehension and performance. They used linear and logistic regression to estimate the effects of

explanation complexity on participants’ normalized response time, response accuracy, and subjec-

tive task difficulty rating.

Though the above mentioned studies are controlled experiments, there may still be unaccounted

human behavioral implications due to differences in the complex process of explaining worthy of

consideration. Langer et al. [204] present an experiment on “placebic” explanations that shows
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people’s mindless behavior when facing explanations for actions. In a simple setup, their study

showed that when asking a request, inclusion of explanations and justifications increased user’s

willingness to comply even if the explanations convey no meaningful information. Recently,

Eiband et al. [56] proposed using placebic explanations instead of a no explanation condition

as the baseline for XAI human subject studies. Therefore, using non-informative or even ran-

domly generated explanations as the baseline condition could potentially counteract a participant’s

positive tendency toward explanations and improve study results.

Considering other approaches, a commonly accepted computational technique for quantita-

tively evaluating instance explanations is to create a ground truth based on the input features that

semantically contribute to the target class. For example, image segmentation maps (annotations of

objects in images) are used to evaluate model generated saliency maps in weakly supervised object

localization tasks [92]. Mohseni et al. [236] proposed a multi-layer Human-Attention baseline for

feature-level evaluation of machine learning explanations. Their Human-Attention baseline pro-

vides a human-grounded feature attribution map with a higher level of granularity compared to

object segmentation maps. Similarly, feature-level annotations have been used as the explanation

ground truth in the text classification domain [243]. Other less accurate means of feature attribution

like bounding box in images datasets have been used for quantitative evaluation of saliency maps.

For instance, Du et al. [93] evaluated saliency maps generated from a CNN model by calculating

pixel-wise IOU (intersection over union) of model-explanation bounding boxes and ground truth

bounding boxes.

3.5.4 System Evaluation Over Time

An important aspect in evaluating complex AI and XAI systems is to take the user learning

into account. Learnability is even more critical when measuring mental models and user trust

in the system. A user learns and gets more familiar with the system over time with continued

interaction with the system. This brings the importance of repeated temporal data capture (in

contrast to static measurements) for XAI evaluations. Holliday et al. [143] present an example

of multiple trust assessments during the user study. They measured user trust at regular intervals
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during the study to capture changes in user trust as the user interacts more with the system. Their

results indicates an XAI system outperformed a non-XAI counterpart in maintaining user trust

over time. Time-based measurements, also referred to as dynamic measurements, allows designers

to monitor explanation usability and effectiveness in various contexts and situations [244, 245].

For instance, Zhang et al. [246] explore the effect of intelligent system explanations in user trust

calibration. In their experiments, they observe significant effect on calibration of trust when model

prediction confidence score was shown to participants. In another example, a study by Nourani

et al.[247] controlled whether users’ early experiences with an explainable activity recognition

system had better or worse model outputs, and the first impressions significantly affected both

task performance and user confidence in understanding how the system works. In a study with a

news review task, Mohseni et al. [248] identified different user profiles for changes in trust over

time (trust dynamics) while working with the assistance of an explainable fake news detector.

Their analysis of results revealed a significant effect of machine learning explanations on user trust

dynamics.

Long-term evaluation of XAI systems can also allow designers to estimate valuable user ex-

perience factors such as over-trust and under-trust on the system. User-perceived system accu-

racy [151] and transparency [224] are examples of long-term measures for explanation usability

that depend on building user trust in the system’s interpretability. As more information is pro-

vided by explanations over time, reasoning and mental strategies may change as users create new

hypotheses about system functionality. Therefore, it is essential to also consider users’ mental

models and trust in extended studies to evaluate all aspects of the XAI system.

Another use case of long-term measurements is to evaluate the effects of intelligent system’s

non-uniform behaviors in real-world scenarios. This means, although in a controlled study setup,

a balanced set of input examples will present the system to the user, in real-world scenarios, users

may face alterations in system performance in long-term interaction with the system. Long-term

measurements will identify user’s unjust trust in the system due to a limited or biased set of inter-

actions with the system. For example, in the context of autonomous vehicles, Kraus et al. [249]
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presented a model of trust calibration and presented studies on trust dynamics in the early phases

of user interaction with the system. Their results indicate the effects of error-free automation in

steady increase of user trust as well as the effects of user a priori information in eliminating the

decrease of trust in case of system malfunction.

3.5.5 Generalization and Extension of the Framework

Our framework is extendable and compatible with existing AI-infused interface design and

interaction design guidelines. For example, Amershi et al. [157] propose 18 design guidelines

for human-AI interaction design. Their guidelines are based on a review of a large number of AI-

related design recommendation sources. They systematically validated guidelines through multiple

rounds of evaluations with 49 design practitioners in 20 AI-infused products. Their design guide-

lines provide further details within the user interface design layer of our framework (Section 3.3.3)

to guide the development of appropriate user interactions with model output and interactions. In

other work, Dudley and Kristensson [156] present a review and characterization of user interface

design principles for interactive machine learning systems. They propose a structural breakdown

of interactive machine learning systems and present six principles to support system design. This

work also benefits our framework by contributing practices of interactive machine learning design

to the XAI system goals layer (Section 3.2) and the user interface design layer (Section 3.3.3) From

the standpoint of evaluation methods, Mueller and Klein [250] discuss how common usability tests

cannot address intelligent tools where software replicates human intelligence. They suggest new

solutions are needed to allow the users to experience an AI-based tool’s strengths and weaknesses.

Likewise, our nested framework highlights the potential for error propagation from the inner lay-

ers (e.g., interpretable algorithms design) to the outer layers (e.g., system outcomes) in the XAI

system evaluation pole. The iterative back-and-forth between layers in the nested model encour-

ages expert review of system outcomes, user-centered evaluation of the explainable interface, and

computational evaluation of machine learning algorithms.
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3.5.6 Overlap Among Design Goals

In our categorization of XAI systems, we chose two main dimensions to organize XAI systems

by their Design Goals and Evaluation Measures in Section 3.1.2. The XAI design goals (G1–

G8) were based on the goals extracted from the surveyed papers, and since the XAI design goals

are primarily derived from their targeted user groups, we note that overlaps among goals do exist

across disciplines. For instance, there is overlap of the goals of G1: Algorithmic Transparency

for novice users in HCI research, G5: Model Visualization for data experts in visual analytics, and

G7: Interpretability Techniques for AI experts in machine learning research. While overlapping,

these similar goals are studied with different objectives across the three research disciplines lead-

ing to diverse sets of design requirements and implementation paths. For example, designing XAI

systems for AI novices requires processes and steps to build human-centered explainable inter-

faces to communicate model explanations to the end-users, whereas designing new interpretability

techniques for AI experts has a different set of computational requirements. Another example of

overlap in XAI goals is between the goal for G6: Model Visualization and Inspection for data ex-

perts and G8: Model Debugging for AI experts, in which different sets of tools and requirements

are used to address different research objectives.

To address the overlap between XAI goal among research disciplines, we used the XAI User

Groups as an auxiliary dimension to organize XAI goals in this cross-disciplinary topic (Sec-

tion 3.2.1) and emphasize the diversity of diverse research objectives. The three user groups were

chosen to organize research objectives and efforts into HCI (for AI novices), visual analytics (for

data experts), and machine learning (for AI experts) research fields. Additionally, as described in

the framework, the three user groups prioritize design objectives in the design process for the XAI

system rather than absolute separation of design goals. For example, the objectives and priorities

in XAI system design for algorithmic bias mitigation for domain experts in a law firm are certainly

different from those of model training and tuning tools for AI experts. However, by following the

multidisciplinary design framework, a design team can translate XAI system goals into design ob-

jectives for explainable interface and machine learning techniques to improve the design process
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in different layers. Therefore, in the above example, the design team can focus on diverse interface

design and interpretability technique objectives to achieve the primary XAI goal of bias mitigation

for the domain experts. Note that the specifics of any particular system will determine the priorities

of different objectives.

3.5.7 Limitations of the Framework

Our framework provides a basis for XAI system design in interdisciplinary teamwork and we

have described our case study example to validate and improve the framework. The presented case

study serves as a practical example of using our framework in a multidisciplinary collaborative XAI

design and development effort. Our use case is the result of a year-long (and ongoing) research

done by a team of eight university researchers with diverse backgrounds. The lessons learned

and pitfalls in our end-to-end implementation case study are incorporated in the presented design

guidelines. However, no framework is perfect or entirely comprehensive. We acknowledge that the

validity and usefulness of a framework are to be proven in practice with further case studies. In our

future work, we plan to run multiple validation case studies to examine practicality and usefulness

of this framework.

Moreover, this framework has a common limitation of many multidisciplinary design frame-

works of being light on specific details at each step. Rather than contributing detailed guidelines

for each framework layer, the framework is intended to pave the path for efficient collaboration

among and within different teams, which is essential for XAI system design given the inherently

interdisciplinary nature of the area. The diversity of design goals and evaluation methods at each

layer can help maintain the balance of attention from the design team to different aspects of XAI

system. This higher level of freedom allows for extendability with other design guidelines (see the

discussion in Section 3.5.5) to integrate with more tailored approaches for specific domains.
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4. CASE STUDY AND EXAMPLES

4.1 Introduction

I present a case study and two XAI system design examples in this section to demonstrate ben-

efits of the proposed XAI framework and present how to use it. The first case study demonstrates

the Generative Function of the framework and provides a step-by-step review of an example XAI

design process. The case study is a one-year long project with a multidisciplinary team of re-

searchers working on a XAI system for fake news detection for non-expert (not AI experts or news

analysts) daily newsreaders. The presentation of my case study reviews detailed design goals at

each step and evaluation methods for system components. In the end, I present comprehensive

results and analysis for the assessment of XAI system outcomes.

The following two XAI system design examples are analysis of two existing XAI system de-

signs for interpretable video analysis [1] and model interpretability analysis [2] tasks. The goal for

these two design examples is to present the XAI framework’s Descriptive Function to describe (for

communication purpose) and analyze (to assess design alternative) in existing XAI systems from

different domains and applications. My review would focus on both design and evaluation steps

and emphasize on the process and pitfalls in the two examples in comparison to the guidelines

from my framework.

4.2 Case Study: Fake News Detection

4.2.1 Introduction

Intelligent algorithms are used in a variety of online applications, from product recommen-

dation and targeted advertisement to loan and insurance rate prediction. However, as AI-based

decision-making is directly affecting people’s lives, the accountability and fairness of advanced AI

algorithms are under question [162]. In recent years, the need for algorithmic transparency is gain-

ing more attention to enable accountable AI-based decision-making systems, and XAI techniques

have been introduced to annex transparency into black-box machine-learning algorithms. Inter-
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pretability can help users to build a mental model of how algorithms work and build appropriate

trust in intelligent systems Rader et al. [33].

In the social media domain, news feed and search algorithms function similar to decision-

making algorithms, as users are exposed to algorithmically selected content. Blindly trusting

algorithmically-curated news could potentially lead to unintentional large-scale propagation of

false and fabricated information with users being exposed to malicious content and its re-sharing

through social media. Human review of news and data mining techniques for fake-news detec-

tion and debunking are commonly being practiced as primary approaches in reducing fake news

in social media. However, reviewing the life cycle of news in social media reveals opportunities

to combat the propagation of fake news within news-feed platforms [194]. For example, AI-based

news review assistant tools can be embedded in news feed platforms and have the potential to

benefit users by providing direct suggestions related to news credibility rather than automatic or-

ganizational news debunking.

In a case study, I demonstrates the Generative Function of the framework that provides step-by-

step guidelines for design and evaluate a XAI system. A team of researchers with machine learning,

data visualization, and HCI backgrounds, design an explainable fake news detection algorithm to

study the effects of algorithmic transparency for news review applications and social media. In a

close collaboration, I investigate whether the interpretability of the fake news detector algorithm

could enhance users overall experience and result in increased credibility of user-shared news.

I also aim to examine whether model explanations can help users to avoid overtrusting the fake

news detector when explanations are nonsensical to users. I formulate our research goals into the

following questions for XAI system outcome:

• RQ1: Do AI and XAI assistants help end-users share more credible news?

• RQ2: How do AI explanations affect users’ mental models of intelligent assistants?

• RQ3: How do AI explanations affect end-user trust and reliance in intelligent assistants?

The following sections, I review design steps for a news reviewing and sharing interface with a
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built-in interpretable fake news detector for end-users and run a series of evaluation experiments.

With this system, I conducted a series of crowdsourced experiments to evaluate potential bene-

fits and limitations of machine learning explanations through our intelligent assistant. The study

results indicate the complexity of the fake news detection problem and the limitations of current

model interpretability techniques for this task. Though the addition of explanations to our system

did not improve user task performance, I observed that explanations helped participants’ to build

appropriate mental models of the intelligent assistants in different conditions and adjust their trust

accordingly for the model logic.

4.2.2 Background

Machine learning algorithms are heavily used in online platforms and social media to analyze

user data for improving user experience and increasing corporate profit. However, the lack of trans-

parency can raise data privacy and model trustworthiness concerns in critical domains, and hence

potentially decreases user trust and confidence in the long run [3]. In this regard, researchers study

the communication of algorithmic processes in various domains such as online advertising [251],

social media feeds [26], and personalized news search engines [252]. In this section, I briefly

review machine learning and human-computer interaction papers related to the explainable news

feed and fake news detection systems.

4.2.2.1 Fake News in Social Media

In this section, I briefly review various techniques to combat fake news in social media from

the perspective of News Life Cycle in Social Media, shown Figure 4.1. Specifically, I want to

emphasize on a research gap in studying the social impact of news feed algorithms on the spread

of fake content and crediting unreliable sources. Different surveys provide comprehensive reviews

of fake news problem characterization [253] and data mining methods [254, 255, 256] for fake

news detection. However, these works mainly focus on machine learning techniques in feature

learning and news classification, and therefore lack to address the importance of user involved

news distribution stage in the news life cycle.
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- Interpretable News Feed 
- Fake News Robust Feed

Distribution of News

- Human Review of News
- Textual Features Analysis
- Detecting Forged Video

Creation of News

- Users Stance Analysis
- Source Credibility Analysis
- Spread Pattern Analysis

Consumption of News

Figure 4.1: A summary of misinformation detection methods at different stages of the news life
in social media. While natural language processing and social media data mining methods are
popular in fake news at creation and consumption stages, there is a limited amount of research
on fake news robust news feed algorithms to mitigate the propagation of fake content. The inner
arrow shows how users’ social data is used to curate personalized news feed.

The first stage is to detect fake content at the news creation step, which traditionally was done

with human review through the expert review or crowdsourcing techniques at the early stages.

Experts review the truthfulness of the news by evidence and determine whether claims are accu-

rate or false (partially or entirely). Fact-checking is a knowledge-based approach usually done by

fact-checking organizations (e.g., Politifact and Snopes) to judge the veracity of news pieces with

external references. However, human review fact-checking methods are time-consuming, expen-

sive, and not scalable for stopping the spread of fake content in social media. Machine learning

solutions to detect false information in the news and social media use various knowledge-based

methods, natural language processing, and social media data mining techniques. One approach,

for instance, is to use linguistic features to analyze writing styles to detect possible false con-

tent [257]. Other style-based approaches, such as recognizing deception-oriented [258] and hyper-

partisan content [259] can be used as a basis for detecting intentionally falsified information. In the

case of clickbait detection algorithms, the inconsistency between headlines and content of the news

has been used for possible fake news detection [260]. Additionally, fact-checking is not limited
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to the correctness of textual content; forged images and videos researchers use computer vision

methods (e.g., [261]) to detect falsified contents. New methods like provenance analysis have also

been utilized for content validation via generating provenance graph of images as the same content

is shared and modified over time [262].

The next stage of news life in social media is the distribution of content via news feed al-

gorithms and search engines. Although the distribution of news can be another practical stage

to combat fake news distribution, due to the interdisciplinary nature of social media, the current

state of machine learning research is short on studying the social impact of news feed algorithms

in the distribution of false content and their vulnerability for being misused. Others also exam-

ined the use of new designs news feed in virtual reality environment as opposed to linear feeds

to reduce the creation of filter bubbles [263]. For example, echo chambers are from social me-

dia vulnerability points that create and propagate false information. Multiple sources of evidence

show personalized algorithms (e.g., news feed, search engines, and personalized advertisement)

can have drastic effects on information diversity and cause the creation of echo chambers in social

media, filter bubbles in search engines, and discrimination in information access. For instance, in

a recent study Geschke et al. [264] presented an agent-based simulation of different information

filtering scenarios can boost social polarization and lessen the interconnections of social media

echo chambers. Researchers also propose using diversity metrics and bias quantification meth-

ods [265, 266] as other ways to study bias and discrimination in recommendation algorithms. For

example, Kulshrestha et al. [267] proposed a framework to quantify bias in ranked search results in

political-related queries on Twitter. Their framework can distinguish bias from news content and

ranking algorithm, and they found evidence of significant effects of both input content and search

algorithms in producing bias.

The final stage of analyzing fake news is to use social media data including user stance [268],

news propagation patterns [269], and news source credibility estimation [270] to detection fake

news. Research on social media data mining show dominant results in detecting fake content and

malicious account, however, utilizing social media data implies standing by until the fake news is
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already exposed to the users. This shows a trade-off between leveraging rich social data for fake

news detection and waiting until a group of users is exposed to fake content. Such social features

can be applied to user groups to evaluate the credibility of specific news pieces by considering the

stance of a group of users for the news topics [271]. Similarly, rumor detection methods aim to

detect a track of posts discussing a specific topic [272]. To increase fake news detection accuracy

and model generalizability, training on multi-source and multi-modal datasets are also studied.

For example, Shu et al. [273] explored the correlation between news publisher bias, user stance,

and user engagement together in their Tri-Relationship fake news detection framework. In their

following work, Shu et al. [274] proposed a training dataset to include news content and social

context along with dynamic information of news. Although most aforementioned data mining

methods do not perform direct fake news detection, these methods can leverage both social and

textual feature to identify suspicious news pieces for human review.

4.2.2.2 Interpretable Fake News Detection

Machine learning solutions to detect false information in the news and social media take diverse

directions like knowledge-based methods, Natural Language Processing (NLP), and social media

data mining techniques. Research shows that NLP methods can learn various features related to

misinformation including linguistic features to analyze writing styles to detect possible misinfor-

mation content [257]. Style-based approaches are also used to recognize deception-oriented [258]

and hyper-partisan content [259] as a basis for detecting intentionally falsified information. Other

techniques, such as training on multi-source, multi-modal, and noisy-labeled datasets are also stud-

ied to increase fake news detection accuracy and model generalizability. For instance, Shu et

al. [273] incorporated multi-source data from news publisher bias, user stance, and user engage-

ment in their fake news detection framework. In another work, Popat et al. [275] used the Google

search engine to directly collect similar instances from the web to leverages external news articles

as a training source.

Interpretation methods to explain predictions of natural language processing models could gen-

erally be grouped into four categories [82]. The first category is the back-propagation based meth-
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ods, which calculate the gradient or variants of gradients of a model prediction in terms of the

model input [83]. Those words in the input with large gradient values would have more significant

contribution to the model prediction. The second category is perturbation based methods in which

the key idea is to perturb the input text and those words having more contributions once perturbed

would cause more dramatic changes in model prediction [84]. Thirdly, local approximation based

methods could be employed to explain model predictions. Although the whole model behavior

is highly intricate, the local behavior around an input instance could be approximated and well

explained. Local model behavior for an input instance either could be approximated using a linear

model (such as sparse linear model [86]), or an interpretable non-linear model (such as if-then

rules [87]), depending on the property and complexity of the complex NLP model at hand. The

last category is decomposition-based methods [88]. For instance, Du et al. [89] present a technique

for recurrent neural networks to decompose predictions into the additive contribution of each input

word by modeling the information flow process from the input text to the model output. Note that

the former three categories are mainly based on heuristics or approximations and thus result in ex-

planations that might not be faithful to the original model. In contrast, this kind of decomposition

could more faithfully reflect the decision-making process of the original DNN model.

Enabling interpretability in fake news detection algorithms could enhance users’ ability to find

model weaknesses resulting in the appropriate user trust level in AI predictions. For example, Shu

et al. [276] present dEFEND framework to discover news sentences and user comments that can

explain model prediction. For instance, XFake detector in [277] uses various NLP news attribu-

tion explanations and a tree-based visualization of their ensemble model to explain the decision

paths for each input news sample. However, since these models only achieve moderate detect per-

formance (i.e., in the range of 80% accuracy) in the binary fake news detection task, it remains

uncertain that how would model explanations effect on end-users trust in these models. To gain

insight into whether news recommendation algorithms should be transparent about their decisions,

Hoeve et al. [252] run a survey and learn that a vast majority of respondents prefer explanations.

However, in a follow up A/B testing, they find participants are not opening (via click count) model
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explanations. This could be due to the low urgency of explanations in news recommendation and/or

their study news test set. In human studies for AI-based news fact-checking, Horne et al. [51] run

an experimental human subject study and find that feature-based explanations in AI assistant sig-

nificantly improve users perception of news bias. However, their measured effect size was much

larger for participants who were frequent newsreaders and those familiar with politics. In another

paper, Nguyen et al. [278] present design and evaluation of a mixed-initiative fact-checking sys-

tem to blend human knowledge with machine learning algorithms. They also conclude that trans-

parency and interactivity significantly affect users’ ability to predict the veracity of given claims.

To continue this line of research, I investigate how different types of model explanations affect the

credibility of news shared by users in social media like scenario. I also measure a wider range

of explicit and implicit user feedback to study interactions among key XAI design goals in the

explaining process.

4.2.3 XAI System Goals

As the first step in the XAI framework, the team followed guidelines from the framework to

(1) decide on the main system goals and (2) identify impactful explanation types, and (3) decide

on appropriate measures for evaluation of system outcomes. We started with identifying candi-

dates for useful and impactful explanations for fake news detection such as keyword attention,

supporting evidence, and source credibility based on machine learning research on misinformation

detection and human-computer interaction research on news feed systems [194]. Also, the design

process in this step involved reviewing algorithmic implementation constraints such as “what can

be explained” to the user.

4.2.3.1 Guideline 1: XAI System Goals and Users

As the first step in design process of the XAI system, the team started with identifying the main

goals and expectations for the XAI news assistant. Our system’s targeted users are the general

public who read daily news and are not AI experts nor news analysts. The XAI design goal was to

improve user reliance and mental model of news predictions through explainable design. The team
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hypothesized that end-users would trust and rely on the fake news detection assistant, given that

the new XAI is capable of providing explanations for each news story. Also, the team hoped that

users would be able to use the explanations to learn model weaknesses and strengths to provide

feedback to the developer team. The system allows us to study the role of interpretable models in

fake news detection as the main project research goal.

4.2.3.2 Guideline 2: What to Explain

In the second step of our XAI system design, the team identified “what to explain” to the user

in order to achieve the initial XAI goals (see Guideline 1) of the system. In our case study, efficient

news curation required fake news detection with the help of our XAI assistant. In the analysis of

what the system should explain, the design team decided to identify candidate useful and impactful

explanation options. I started with reviewing machine learning research on false information (e.g.,

rumor, hoax, fake news, clickbait) detection as well as HCI research on news feeds and news

search systems to identify key attributes for news veracity checking [194]. Given the non-expert

target end-users, explanatory information needed to limit technical details. Next, the user interface

designers and machine learning designers in the team discussed candidate explanation choices and

algorithmic constraints in interpretability techniques. That is, some options for what to explain

may not be entirely possible given the interpretability of existing models, and the team needed to

consider whether alternative learning techniques could provide better explanations or if the design

team would need to figure out meaningful ways to explain the information that was available from

the model.

Give the training set and types of models the team was planning to use in the ensemble ap-

proach, the system was expected to provide why-type explanations for each news veracity predic-

tion. Specifically, the explanations could describe the attribution of different news features for each

news veracity prediction. Therefore, attribution scores for the news headline, the article text, and

article sources is used to explain why the model is arrived to its prediction. More details about

these explanations are presented in the interface and model design sections.
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4.2.3.3 Guideline 3: System Evaluation

Although evaluation of system outcomes is the last step in the XAI design and evaluation cycle,

identifying main evaluation measures early on helps to clarify the evaluation path. I formulate

system evaluation goals into the following questions for XAI system outcome:

• RQ1: Do AI and XAI assistants help end-users share more credible news?

• RQ2: How do AI explanations affect users’ mental models of intelligent assistants?

• RQ3: How do AI explanations affect end-user trust and reliance in intelligent assistants?

Note that both the explainable interface (Section ) and interpretable algorithm (Section ) passed

multiple design and testing iterations before the system outcome evaluation step. Our system eval-

uation step consist of a human-subject study with non-expert participants our fake news detection

system. Major decisions for this evaluation was how to structure the duration and complexity of the

user task while appropriately testing the system’s full range of functionality. Multiple evaluation

measures are chosen for system outcomes, including: (1) subjective user trust in the news assistant,

(2) user agreement rate with the news assistant, (3) veracity of user-shared news stories, and (4)

user accuracy in guessing the news assistant output. Both qualitative and quantitative analysis of

user feedback and interaction data were valuable to the evaluation of system outcomes. The results

and analysis from these evaluations helped the team to understand the effectiveness of the XAI

elements (in both the algorithm and the interface) for the initial system goals, see Section 4.2.6

4.2.4 Explainable Interface Design

The explainable interface design step starts with an interactive news reading interface and con-

tinues with model explanations components (Guideline 4). We also performed preliminary rounds

of user testing for interface complexity and explanations’ understanding (Guideline 5).

4.2.4.1 News Review Interface

We designed an interface for users to review a queue of news stories, share true news for other

users, and report fake news stories. The interface design process started with multiple interface
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sketches that suit the news reviewing task. We aimed to design a simple interface with useful ex-

planations for fake news detection. The team tested mock-up implementations from the top design

choices with a small number of participants. After reviewing feedback from user observations

and interviews, we selected the most comprehensible and conclusive design for the human-subject

experiments.

Figure 4.2-Top shows the baseline interface that enables the participants’ news review task.

The interface shows a news headline for a news story on the top (Figure 4.2-A) followed by a list

of related articles below (Figure 4.2-C). The related articles provide context and article sources for

the news headline, and they can help the user to understand contributing information and factors

for model prediction. The system allows users to open and read the related articles, but for the

sake of user study, it was not required for sharing the news headline. The system was designed to

allow users to review news stories one-by-one and decide if 1) the story is true to be shared with

other users, or 2) it is fake news to be reported, or 3) they want to skip to the next story due to their

unfamiliarity with the topic or lack of confidence (see Figure 4.2-C).

4.2.4.2 Guideline 4: How to Explain

The fake news detection assistant is embedded in the interface which provides the model pre-

diction (with or without explanation) about the news stories’ credibility. Our core design rationale

for the four explanation types was to embed model attribution explanations using visual elements

for each news feature. Figure 4.2-Bottom shows the interface with the XAI assistant. Both the AI

assistant prediction and its explanations are in the form of on-demand recommendations for the

user, which are collapsible on user click. Each visual explanation element was tested during pilot

studies and refined through iterative design.

These explanations describe the attribution of different news features (i.e., news headline, ar-

ticle text, and article source) for each news veracity prediction. These different explanations are

presented to the user with the following visual elements: (1) A heatmap of keyword attribution

score that explains how the XAI assistant learned word-level features in the news headline (Fig-

ure 4.2-D) and its related articles (in the news article page). (2) A single bar chart for each related
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Interface in Baseline condition.

Interface in XAI-all condition.

Figure 4.2: Our news review interface with AI and XAI assistants. Top: Baseline interface without
AI assistant. (A) news headline. (B) user selecting to share, report, or skip the news story. (C) a
list of related news articles for the headline. Bottom: Interface with clickable model prediction
and different feature attribution explanations. (D) a heatmap of word level feature attribution
explanation for news headline. User can see the attribution score values in tooltips when hovering
mouse over the keywords. (E) fake news prediction and confidence. (F) confidence for the headline
and article separately. (G) a bar chart for each article attribution score in comparison to other
related articles. Bar charts show lower values when the articles are less related to the headline or
less significant for model prediction. (H) A donut chart for each news article for source attribution
scores compared to headline (Claim) and article (Text) content.
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article (Figure 4.2-G) explaining each related article’s attribution score in comparison to other ar-

ticles for the model prediction. (3) A pie chart to present attribution score for the articles’ source

in comparison to the articles’ content attribution and news headline attribution. (4) A list of top-3

important sentences for the article is shown when reviewing news articles to explain sentence-level

feature learning of the models.

4.2.4.3 Guideline 5: Interface Evaluation

We used preliminary user testing to evaluate interface components and presentation of expla-

nations. We tried to keep a balance between interface complexity and explanation usefulness by

choosing among available explanation types from our interpretable machine learning algorithms.

Next, mock-ups from the top designs were implemented for testing with a small number of par-

ticipants. Each mock-up had a different arrangement of data, user task flow, and explanation for-

mat for the news assistant interface. Our human-subject experiments in this stage were based on

user observations and post-usage interviews to collect qualitative feedback regarding participant

understanding and subjective satisfaction of explanation components and interface arrangements.

Interviews resulted in the selection of the most comprehensible and conclusive design among the

available options to continue with.

4.2.5 Interpretable Algorithm Design

In this section, I briefly review the training data, fake news detection models, and interpretabil-

ity techniques used in the XAI system as a part of Guideline 6 and to provide context about the

underlying algorithms.

• Fake News Data: Training data for our models come from two sources: a) news story

headlines and labels from Snopes (www.snopes.com) and b) related articles crawled from

Google search results (top 16). The related articles were collected for each Snope news

headline separately and labeled the same as their respective Snopes news story statements

with noisy label assumption for the purpose of model training. The training data includes

4638 news story headlines with an average length of 15 words and 30599 related articles
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with an average length of 1012 words. We used 80% of data for model training, 10% data

for validation, and 10% data for testing. We took news samples and model predictions from

our test set to feed the interface for human-subject studies. Our dataset consists of news,

rumors, and hoax which covers a range of different topics, including politics (725 stories),

business (224 stories), health (192 stories), and crime (141 stories).

4.2.5.1 Guideline 6: Interpretable Models

Following the previous NLP algorithms for fake news detection, the team planned to implement

an ensemble of four classifiers for fake news detection to generate different types of explanations.

Our purpose in choosing the ensemble model approach was to study the effects of different ex-

planation types later in the evaluation experiments. The final prediction score is obtained through

averaged ensemble results with 73.65% detection accuracy.

Our first model is a Bi-LSTM network [279] with an additional self-attention layer to ex-

tract attention scores for instance explanations. This model is trained on news headlines only and

generates attention explanations for its predictions. In our empirical tests, Bi-LSTM network out-

performed similar networks (e.g., RNN, LSTM. RCNN) for our dataset by capturing both forward

and backward states. We also use Word2Vec [280] to embed each word into an embedding vector

before feeding into the network. This trained model achieves 72.00% fake news detection accuracy

on our test set.

The second model performs fake news detection based on both the news story headlines and

the set of related articles for each. The article set representation is constructed using hierarchical

attention at sentence level and article level. We use the hierarchical attention network (HAN) [281]

to help our model focus on the salient sentences and articles at two levels. HAN scores each article

and selects the most important sentences in each article. Each sentence representation of an input

article is generated by taking an average of the word embedding of all the words therein. Our

design allows us to get the attribution score for each article and select the three most important

sentences in each article using attention weighs. For the news story representation, similar to our

first model, we used a Bi-LSTM network. Finally, a weighted sum is performed over all articles to
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build the article representation, which is combined with the news story representation to form the

final vector representation for news story classification. This model achieved 76.04% classification

accuracy on the test set.

For the third model, we use a knowledge distillation approach [282] to approximate a deep

architecture (teacher) with a random forest (student) model. This model takes news stories, related

articles, and article source as the input, and with the mimic learning framework, we can leverage

the performance of a deep model and analyze the attribute importance of news stories, articles,

and their sources for each prediction. We first train a Bi-LSTM teacher model using Glove word

embedding [283] and then train a 60 trees XGBoost [284] student model. The XGBoost student

model provides attribute importance (news story headline, article content, and article source) as

for instance explanations. Our third model achieved 72.08% prediction accuracy in the test set.

For the last model, we use both news headlines and related articles to train a BiLSTM network

with Word2Vec word embedding. We use an attention mechanism to focus on parts of the arti-

cles that are more relevant to the news story. In order to do so, we calculate a weighted average

of the hidden state representation based on the attention score corresponding to all the article to-

kens [285]. Our method then aggregates all the information about the news story, article context,

and attention weights to predict the story’s credibility. Finally, to generate an overall credibility

label for the classification task, the final representation is processed using the final fully connected

layer. The attention mechanism also generates keyword attribution explanations for each article.

4.2.6 System Outcome Evaluation

I designed a controlled human subject studies in order to test the hypothesis regarding the

effectiveness of AI assistance and its explanation in news review task. The following presents my

study design details in terms of study conditions, evaluation measures, and participants’ task.

4.2.6.1 Study Design

I conducted human-subjects studies for controlled comparison of elements of the AI assistant

and its explanations. The study followed a between-subjects design with five different conditions,
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Table 4.1: Study conditions and intelligent assistant components to detect fake news and explain
its prediction.

Study Condition Model Output Model Explanations

Baseline – –

AI Assistant Prediction and Confidence –

XAI Assistants
(3 conditions)

Prediction and Confidence
XAI-attention: Keywork importance heatmap for news headline and articles.

XAI-attribution: News attribute and article importance for related articles.

XAI-all: Explanations from both XAI-attribute and XAI-attention conditions.

where each participant used one variation of the news reviewing system as described in the follow-

ing and summarized in Table 4.1.

• Baseline Condition: For the Baseline condition, I remove AI prediction and its explanations

in the interface. The baseline interface (Figure 4.2, top) allows the user to review and share

news headlines without any machine learning support. This condition serves as the baseline

for human-alone performance in comparison to human-AI collaboration. Also, since the

Baseline condition did not include AI or XAI elements, the condition did not measure user

mental model and trust in AI or XAI.

• AI Assistant: My interface in AI Assistant condition includes AI prediction and confidence

for news headline credibility. The prediction and confidence from the ensemble model (with-

out explanations) are used in this condition. The AI predictions are in form of on-demand

using a collapsible menu on user click. This condition serves as the baseline for user mental

model and trust measurements in the AI without explanation. Figure 4.2 shows model pre-

diction and confidence at (E) and models confidence for the headline and articles separately

at (F).

• XAI Assistants: The user interface in XAI assistant conditions provides instance explana-

tions in addition to news credibility prediction. I design three XAI Assistant conditions to

study how different types of explanations affect Human-AI collaboration. I use two inter-

pretable models in each XAI Assistant condition. The XAI-attention condition presents a

90



heatmap of keywords using attention weights for news headline (Figure 4.2-D) and each re-

lated news articles. The XAI-attribution condition shows news attribution explanations for

related articles and news sources. The hierarchical attention network generates articles im-

portance score (Figure 4.2-G) and top-3 important sentences from each article. The mimic

model generates source, article, and news story attribution score (Figure 4.2-H) to present

instance explanations. The XAI-all condition is the combination of explanations in the XAI-

attribution and XAI-attention conditions. The purpose for designing XAI-all condition was

to study the effect of variety of explanation types on users.

4.2.6.2 Study Procedure

Figure 4.3 presents the overall study procedure. Participants started the task by accepting the

information sheet including the approved IRB number and study contact points information. Next,

participants saw step-by-step task instructions with visual guides for all interface components.

Visual instructions include descriptions for the headline and article attribution explanations from

XAI assistant. Next, participants answered the pre-study questionnaire including text entry and

multiple-choice questions. Participants then started the main task by reviewing news stories.

Participants were prompted to review a queue of news stories and share 12 true news for social

media users. To engage participants to review news articles and their explanations, users had to

select at least one article that represents the news headline for each news story they chose to share.

They could always skip to the next news story (as many times as needed) if they were not familiar

with the topic. The choice of the sharing task and ability to skip unfamiliar topics (unlike work that

assumes participants are familiar with a short curated list of news stories e.g., [51, 278]) improves

the fake news detection task by allowing participants to interact and examine the AI/XAI assistant

rather than focusing on news analysis. Participants also had the chance to flag news stories as fake

if they found headlines to be fake; however, these were not counted toward the required number of

shared stories needed for task completion. Also, in contrast with previous work, my interface gives

a list of related news articles to provide the context of news stories for users. Further, unlike [278],

participants did not receive feedback of the ground truth after each instance (i.e., whether the model
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made a correct or wrong prediction) to simulate a real-world scenario in which users do not have

immediate access to the credibility of their daily news. During the last four news stories (the last

third of the study), participants were asked pop-up questions about the AI assistant’s prediction

before revealing the model prediction; This was done to collect data to estimate user ability to

predict the AI’s output.

In the end, participants answered a final questionnaire of Likert-scale and slider questions about

the AI assistant followed by four open-ended response forms.

4.2.6.3 Participant Pool

The XAI system and user task were designed for non-expert end users with little knowledge

of AI. I recruited remote participants from Amazon Mechanical Turk “Master” users with above

90% acceptance rate. To encourage participants to spend enough time on the task, I measured task

duration and paid flexible time-based compensations. The payment was set to $10 per hour and

each participant could only participate once in the HIT. To further ensure data quality for analysis, I

filtered data samples based on collected user engagement measures including task duration, number

of clicks, and character counts in the final questionnaire form.

4.2.6.4 Study Measures

I take users’ mental model, human-AI performance, and trust as the primary measures in the

studies. I mainly use quantitative methods for the measurements to aim for investigating the initial

research questions (RQ1 – RQ3).

• Task Performance: I calculate the veracity of participants’ final shared and reported news as

the main performance metric. I take the credibility score of user shared news as the number

of shared true news divided by total shared news (equal to 12 in all experiments). I also

review and analyze results for the incredibility score (calculated as 1.0 – credibility score) of

all reported fake news as the secondary performance measures.

• Mental Model: I take participants’ accuracy in guessing model output (similar to Poursabzi

et al. [58]) as representative for model predictability and user mental model. For the mea-
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Figure 4.3: Overview of study Procedure. The core user tasks involve the main news review task
(8 samples) to allow users to build a mental model of the AI assistant, and additional prediction
task (4 samples) where the user guesses the model output for new instances.

surement of this prediction task, I use short pop-up questions during the study to ask “what

would the AI fake news detector predict for this news story?” from participants. Participants

could response with short “True” or “Fake” answers. Since I expect participants to interact

and understand the intelligent assistant during the early stages of the study, the pop-up ques-

tions for mental model measurements were limited to the final third of the study (i.e., the

last four news review instances). I also calculate response time for each participant as the

average time (in minutes) to review news stories for sharing or reporting. Somewhat similar

to Lage et al. [96], I aimed to see if explanations might cause longer response time or even

information overload for users.

• User Trust and Reliance: I measure user trust using a subjective rating of participants’

perceived accuracy of AI assistant. Specifically, participants answer “What was the accuracy

of the AI fake news detection?” using a continuous slider bar (between 0–100%) to indicate

their perception of AI or XAI assistant’s accuracy in the post-study survey.

I also measure user reliance using participants’ agreement rate with AI assistant predictions.

To quantitatively measure participants’ reliance on model predictions, similar to [52], I cal-

culate user agreement rate as the number of news stories which the participant inspected

and agreed with the model prediction (either true or fake news), divided by total number of

shared or reported news stories.
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4.2.7 Experiments and Results

I ran five between-subject experiments in different interface conditions for hypothesis testing.

The study had a total of 220 Amazon Mechanical Turk participants with equal participants in

each condition of which 47% were female, with 37.8% between 30-39 years old, 30.3% between

40-59 years old, 15.9% between 20-29 years old, and 3% between 50-59 years old; 51% had a

bachelor’s degree, 23% had a college degree less than bachelor, 14% had graduate school degree,

14% had high school education, and 1% had less than high school education. I removed data from

19 participants who spent less than 10 minutes or had especially low interaction behavior during

the task. A total of 122.8 hours of study time was recorded for the remaining 201 participants, who

on average spent 32.1 minutes (range = [10.3, 90.6] with SD = 20.3) on news review and selection,

and 6.5 minutes answering surveys and reading instructions.

For statistical analysis, inferential tests used one-way independent ANOVAs to compare the

conditions for each measure. In the end, I briefly review participants’ qualitative feedback to see if

they support the quantitative findings.

4.2.7.1 Human-AI Performance

To answer my first research question, I review and analyze the user performance measure for

participants’ news reviewing and sharing. I run a between-subject experiment with 40 participants

in three primary interface conditions: 1) Baseline without any intelligent assistant, 2) Interface

with the AI Assistant, and 3) Interface with the XAI-all Assistant.

Hypothesis 1: Users can share more true news stories with the help of XAI Assistant.

I report the credibility score of participants’ shared news as the primary performance measure.

Results show the average credibility score is higher than the original news feed (50% credibility)

in all three groups that indicates the overall ability of participants in news review and their engage-

ment with the task. Participants shared news in XAI assistant condition had the highest average of

75.05% (range = [61%, 92%] with SD = 10.06%) credibility and Baseline had the least credibility
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with 68.4% (range = [46%, 88%] with SD = 11.5%) credibility. The data met the assumptions for

parametric testing for all groups with validation checks passing for data normality (Shapiro-Wilk)

and homogeneity of variance (Levene’s) tests. A significant effect was observed by an ANOVA test

with F (2, 107) = 3.32 and p = 0.04 for the news credibility measure among all three conditions.

A post-hoc Tukey test showed borderline significance (p = 0.050) between the XAI assistant and

Baseline conditions, with higher news credibility scores for participants in XAI-all group compared

to Baseline group.

I use incredibility score (calculated as 1.0 – credibility score) of all reported fake news as the

secondary performance measures. Similar to credibility scores for shared news, the XAI group

has the highest average incredibility of reported fake news stories with 73.8% reporting fake news

(range = [53%, 100%] with SD = 10.7%). An ANOVA test revealed a significant main effect with

F (2, 107) = 3.78 and p = 0.026. A Tukey post-hoc test showed participants in the XAI assistant

condition had (p = 0.019) reported fake news significantly more than the Baseline condition, even

though reporting fake news was not the user’s primary task during the study.

Implications of Results: The study results show that the XAI assistant improved user performance

compared to the Baseline interface without any intelligent agent. However, model explanations

did not significantly improve user performance over the AI assistant condition. Given the unique

design challenges in misinformation detection models, this is a positive indicator that an intelli-

gent agent together with model explanations can potentially improve collaborative human-AI news

reviewing.

4.2.7.2 Mental Model

My second experiment is designed to answer RQ2 by studying the effects of model explana-

tions on users’ mental model and response time. I recruited new participants to ran studies for

hypothesis testing through comparison of AI assistant condition (as the baseline) with three XAI

assistant conditions (as treatments) in our interface.
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(a) User Prediction Accuracy (b) Task Cognitive Load

Figure 4.4: Evaluation of user (a) mental model through guessing model output and (b) cognitive
load calculated as time per news review for AI Assistant, and three XAI Assistant conditions.

Hypothesis 2: Different types of explanations have different effects on user understanding of intel-

ligent assistants.

My measure for quantitative evaluation of mental model is through user prediction task (user

guessing of model output). Figure 4.4a shows user prediction task results from four study groups.

User accuracy in their prediction task was highest (M = 62.20%) in the XAI-all group and the

worst (M = 54.65%) in the XAI-attention group. The data passed parametric tests for normality

(Shapiro-wilk test) and homogeneity of variances (Levene’s test). An ANOVA test detected a sig-

nificant main effect with F (3, 149) = 3.16 and p = 0.026 for participants between all four condi-

tions with intelligent assistant. A Tukey post-hoc test yielded a significant difference (p = 0.017)

between the XAI-attention and XAI-all groups. However, no significant pairwise difference was

detected between the AI group and any of XAI groups. Note that average user prediction task ac-

curacy in the XAI-attention group was lower than the AI assistance group, indicating the negative

effect of explanations in participants’ ability to predict model output.
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Hypothesis 3: Model explanation increases users response time.

Figure 4.4b presents participants response time for AI assistant and three XAI groups. Averaged

response time was the lowest in the AI assistant group and the highest in the XAI-attention group.

An ANOVA test detected a significant main effect with F (3, 149) = 3.34 and p = 0.021 for par-

ticipants response time between conditions in support of our initial hypothesis. A post-hoc Tukey

test revealed a significant difference (p = 0.046) between XAI-attention and AI assistant group.

This clearly indicates understanding and remembering the relation between attention map expla-

nations (keywords importance in news headline and supporting articles) and model weaknesses

is a demanding task for users. Additionally, Tukey’s test recognized a larger but not significant

(p = 0.058) between XAI-attention and XAI-attribution groups. Similar to [96], our results also

show participants can better process low dimensional news attribute explanations (4 attributions:

articles importance, news headline, news source, article content) compared to often lengthier at-

tention explanations.

Implications of Results: The results show a significant effect of explanation types on user mental

model based on the user-prediction task measure. However, none of the model explanation condi-

tions improved users’ accuracy in prediction. Notably, word level attention map explanations for

news headline and articles (in the XAI-attention condition) had a negative effect on user mental

model, potentially due to lower user satisfaction and engagement with the AI assistant. The dis-

crepancy between user prediction task accuracy between the three XAI conditions indicates that

not all explanations are informative or meaningful for end users to be able to predict model behav-

ior. Additionally, even though I embedded on-demand visualization of model explanations in our

interface, explanations impose more response time and require more time for user comprehension.

4.2.7.3 Trust and Reliance

To address RQ3, I review and analyze user trust and reliance measures in my experiments.

Hypothesis 3: Users have higher perceived accuracy in XAI assistant compared to AI Assistant.
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(a) User Perceived Accuracy of Intelligent Assistant (b) User Agreement Rate with Intelligent Assistant

Figure 4.5: User trust measures for AI Assistant and three XAI Assistants conditions.

My primary measures for user trust in the AI and XAI assistant is the participants’ perceived

accuracy of the intelligent assistant. Figure 4.5a shows a box-plot of participants’ perceived accu-

racy of the AI and three XAI assistants conditions. The results show participants had the highest

rate of perceived accuracy in the XAI-attribution group (with the visualization of news feature at-

tribution) and lowest in the XAI-attention group (with the heatmap of word feature attribution) on

average. Using an ANOVA test, I found a significant difference (F (3, 155) = 2.86 and p = 0.039)

between perceived accuracy in the four groups. For pair analysis, a post-hoc Tukey test revealed

participants’ perceived model accuracy of the XAI-attribution condition (M = 58.70%) was sig-

nificantly (p = 0.024) higher than XAI-attention (M = 45.55%). Interestingly, participants in the

XAI-all group responded with lower perceived accuracy (M = 50.38%) compared to AI Assistant

(M = 53.05%) with no explanation.

Hypothesis 4: Users will agree more with XAI assistant predictions compared to AI assistant.

I measure user reliance on algorithms via the user agreement rate with AI and XAI assistants

predictions. Figure 4.5b presents results for participants agreement rate with the AI assistant and
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three XAI assistant groups. Overall, participants had near 0.70 agreement rate with model predic-

tion in all groups except for the XAI-attention group with 0.51 agreement rate. I observed a sig-

nificant main effect using an ANOVA test with F (3, 149) = 16.44 and p < 0.001 for participants

agreement rate with intelligent assistants prediction. From the pairwise Tukey post-hoc analysis,

participants had a significantly lower agreement rate in the XAI-attention group compared to all

three other groups (p < 0.001 for all pairwise comparisons). Similar to participants’ perceived

accuracy, tests did not detect a significant increase in user agreement from model explanations.

Implications of Results: The study results indicate that model explanations helped users to adjust

their trust and reliance on the intelligent assistant. I did not observe improvements in user trust

or reliance for the XAI assistants over the AI assistant. In fact, participants actually lost trust in

the XAI-attention assistant when—despite their initial expectations—they found the system was

detecting fake news only based on news keywords. This could be considered an appropriate result

given the limitations of the model logic. The lower user trust in the XAI-attention condition coin-

cides with participants’ mental model results and might suggest the effectiveness of explanations

in helping users avoid overtrusting the intelligent assistant in cases when model logic may not be

optimal or meaningful based on human logic.

4.2.7.4 Qualitative Feedback

Reviewing participants’ written feedback in the post-study survey reflects their reasoning about

AI assistant that provides further insight into participants’ mental models of the AI/XAI assistants.

Participants answered two descriptive questions regarding their mental model of the AI assistant’s

reasoning (“How do you describe this AI’s reasoning to find fake news?”) and AI assistant’s lim-

itations (“In your opinion, what are the biggest limitations of this AI fake news detector?”). The

mean participant response length was 77.8 words (range = [338, 28], SD = 46.4) for all descrip-

tive response forms. Two team member separately reviewed participants’ qualitative feedback and

performed open coding to extract themes in participants’ notes and comments. Then, the two stu-

dents coded participants’ free response questions to identify salient themes. Over three sessions of

coding and discussion, we identified 19 codes with an inter-rater reliability of 0.82. I use codes to
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from three main categorizes of responses: AI reasoning, AI limitations, and participant-strategy.

Regarding participant mental models of AI assistants, we observed that explanations clearly

improved their understanding of AI reasoning. On average, 63.5% of participants in the XAI-

attention and 52.8% of in the XAI-all group pointed out the importance of keywords in the news;

example comments include “I think it looked for certain key words” and “The AI compares relevant

phrases in the headline to relevant keywords in the supporting stories.” In contrast, only 17.9% of

participants in the AI assistant condition had expressed such understanding. I also found 62.0%

participants in the XAI-attribution group mentioned related articles and their sources as key features

for AI reasoning compared to 31.7% in the XAI-attention group. For example, one participant

in this group commented “It tries to pull related articles from the web to prove or disprove the

headline”, and another participant said “I think it went by how many article below matched the

news.

I found interesting feedback on participants’ subjective opinions on the limitations of the AI

assistant. I saw a clear theme in responses of the need for common sense to distinguish fake and

true news. On average, from 20% of participants in all conditions (except XAI-all with 11.1%), I

received comments such as “it doesn’t have human judgment”, “I guess they will not see common

sense”, and “The AI doesn’t have the experience that a real person has in dealing with the fake

news out there.”. Also, participants in XAI-attention group paid more attention to the quality

and combination of articles in each news story with 43.1% of them expressing comments like “AI

doesn’t have enough information” and “It doesn’t see multiple sides of the story” compared to other

conditions with the average of 19.3%. Additionally, 27.2% of all participants expressed concern

about AI ability in understanding the context of the news or recognizing sarcasm. For instance,

one said “I think it can’t detect sarcasm satire or parody so it has some limitations” and another

mentioned that “The AI isn’t able to understand the context of the text. It’s not able to actually

understand the story or [its] plausibility.”. In another example, the participant said:

“It can’t seem to discern between junk news and the real deal. It can’t discern that a

site is biased. It could pull the keywords that’s for certain but any site could have the
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Figure 4.6: Conceptual model of relationships among user engagement, mental model, trust, and
human-AI performance in XAI systems. Figure created based on a model of the “process of
explaining” in XAI context from [48].

keywords. There’s more to it than that and it can’t do it.”

Challenges participants encountered in learning the model behavior was also reflected in 13.5%

of participants’ comments in all groups, for example one said:

I said [to myself] twice that I thought I understood how it worked but when asked

to predict the AI’s inference about a given headline in the last portion of the study I

believe I only matched one out of four so maybe I didn’t understand anything that well.

Overall, the qualitative user feedback complement the quantitative findings in showing which

model explanations helped participants to observe model limitations and adjust their trust and

reliance accordingly.

4.2.8 Implications of Results

In this section, I summarize different implications of my study results from our XAI system and

how machine learning explanations and fake news detection. Following Hoffman et al.’s [48] con-

ceptual model (Figure 4.6), I look for correlations between my measurements of user engagement,

mental model, performance, and trust to investigate the interplay between these factors.
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4.2.8.1 User Expectations of AI Assistant

I first analyze the relation between user expectations of AI before the study and their perceived

algorithm accuracy after the study. Research shows that various external and internal factors can

interact with user trust, with examples including user pre-knowledge [51], model stated perfor-

mance [52], and model observed performance [53]. In the pre-study questionnaire, I measured

1) participant expectation of AI assistant accuracy and (with “If you had an Artificial Intelligence

(AI) algorithm to review your daily news for fake news detection, what would be your expectation

of AI accuracy to do a good job?” question) and 2) participant estimation of fake news rate in

media (with “In your experience, what percentage of news that you read daily is false news? e.g.,

fake news, hoax, rumors, made up stories, misinformation” question).

As expected, a Pearson test shows a positive correlation (r = 0.223, p = 0.005) between

participants’ perceived accuracy at the end of the study and their initial expectation of AI accu-

racy. Regarding participants’ expectations of fake news occurrence in daily news, I expected to see

more user engagement for participants with higher anticipation of fake news. However, I surpris-

ingly found that participants expectation on fake news occurrence has a negative correlation with

their engagement with AI assistant (r = −0.189, p = 0.018). This could be due to participants

underestimating the AI assistant or choosing their intuition rather than model suggestions.

4.2.8.2 Engagement with Intelligent Assistants

As an objective measure of user engagement with intelligent assistants, I consider total contin-

ued usage based on the frequency of user interactions (clicks count) with the AI and XAI assistant

predictions. Overall average results show that participants in the XAI-all group had the highest

engagement rate with the XAI assistant (0.95 prediction check rate) for shared or reported news

stories. An ANOVA test of user engagement with the AI assistant found a significant difference

with F (3, 156) = 2.773 and p = 0.046 between conditions, and a Tukey post-hoc test shows

participants were significantly (p = 0.034) more engaged in the XAI-all condition compared to

XAI-attention condition.
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The conceptual model of the process of explaining [48] suggests that explanations in XAI

system revise mental model and can engender appropriate trust, see Figure 4.6. To test the inter-

play between user engagement and their mental model of XAI assistants, I performed a bivariate

Pearson correlation test between user engagement rate and prediction task accuracy as the mental

model measure. Despite the initial hypotheses, a Pearson correlation did not show a positive re-

lation between engagement and mental model (r = 0.099, p = 0.215). This could be due to the

narrow scope of mental-model measurement in my study being limited to the user prediction task

(model predictability for users). However, user engagement had a significant positive correlation

(r = 0.228, p < 0.001) with user agreement with the intelligent assistant. This shows as more

participants got involved with the AI or XAI predictions, the more they agreed with its predictions.

4.2.8.3 Mental Model Affecting Performance and Trust

Next, I analyze how users’ mental model interacts with trust and human-AI performance.

A Pearson test between users’ prediction task accuracy (mental model measure) and perceived

accuracy of AI assistant (my first user trust measure) showed a positive significant correlation

(r = 0.212, p = 0.008). A correlation test between user prediction accuracy and user agreement

with the AI assistant (my second user-trust measure) also showed a positive significant correla-

tion (r = 0.280, p < 0.001) between participants’ mental model and trust. Positive correlations

of mental model with both trust measures demonstrate the relation between predictability of the

intelligent agent and trust.

As hypothesized, user prediction task accuracy was positively correlated with credibility of

shared news (r = 0.305, p < 0.001) as well as incredibility of reported fake news (r = 0.283,

p < 0.001). This finding suggests users with a more accurate mental model could better guess

model failure cases, and by avoiding those cases, they could improve their performance.

4.2.8.4 Interactions Between Trust Measures

Another interesting finding from my study is that I observed interactions between multiple

measures of user trust. Previous research studies have utilized various independent trust measures

103



such as perceived algorithm performance [53], perception of control over the system [54], and the

rate of user agreement with an algorithm’s recommendations [52]. In my studies, I measured two

different trust factors to examine how they may interact. A Pearson correlation test between the

two trust measures shows a positive significant correlation between the perceived accuracy and

user agreement rate (r = 0.482, p < 0.001). This positive correlation suggests that as users feel

more confident about AI competence, they tend to agree more with its predictions.

4.2.9 Lessons Learned

In this case study, I evaluated model explanations from multiple models for intelligent assis-

tance in the fake news detection task. The case study allowed to validate the usefulness of my

framework and its guidelines for designing an end-to-end XAI system. Plus, this case study was

an opportunity to study how different types of explanations affect users in fake news detection. To

analyze the study results, I first used analysis of means for hypothesis testing based on the initial

research questions, then performed correlation analysis for meta-analysis of the results based on

the conceptual model for XAI process.

In conclusion, my research revealed multiple challenges in designing effective XAI systems in

the fake news detection domain. In particular, I observe challenges rising from the inherent differ-

ence between models’ feature learning (word-level features in our case) and human understanding

of news and information. Overall, users’ interaction with the AI and XAI assistants affected their

performance, mental model, and trust. However, model explanations in my studies did not im-

prove task performance or increase user trust and mental model. Instead, the quantitative results

and qualitative feedback indicate that explanations helped users’ to build an appropriate mental

model of intelligent assistants and adjust their trust accordingly, given the limitations of the mod-

els. For example, participants in the XAI-attention group that was significantly less successful in

guessing model outputs also showed significantly lower trust (in both trust measures) compared

to the XAI-all condition. Likewise, reviewing user engagement results showed that XAI-attention

explanations were not appreciated by the users. Similarly, reviewing qualitative comments showed

that the majority of users did not appreciate the keyword-based explanations as reliable. There-

104



fore, I conclude that improving transparency of the model helped users to appropriately avoid

overtrusting the fake news detector when they found the AI reasoning was not trustworthy or sim-

ply explanations were nonsensical. Future research is needed to assess the effectiveness of other

types of explanations, such as knowledge graphs and multi-modal evidence retrieval on users in

fake news detection assistants.

4.3 Example 1: Video Activity Recognition

4.3.1 Introduction

Following the case study presented in Section 4.2, I use my framework to analyze an example

XAI system from perspectives of design process workflow (between-layers) and design and eval-

uation choices (within each layer). This analysis is aiming to find insights from their work and

intended to suggest future design iterations. In this example, I analyze Nourani et al.’s [1] paper in

which authors present an XAI system to support AI novice users tasked with activity recognition

in a series of videos. This XAI research focuses on comparing variations of explanation veracity

for users in their video review and querying task. The authors explore the importance of explana-

tion veracity for user performance and agreement with the intelligent system through a controlled

user study. To provide an in depth analysis, I conducted an interview with the first author to re-

view their design step and main considerations during the process including interactions between

machine learning designers and interface designers in the team. The following descriptive anal-

ysis will emphasize on the design process in Nourani et al.’s [1] XAI system as compared to my

framework.

4.3.2 Analysis of Workflow

I present a descriptive analysis in this section to review the design process (between-layer) and

decision choices (within-layer) in the Nourani et al.’s [1] XAI system. Figure 4.8 shows the result

of my breakdown of the design and evaluation steps in Nourani et al.’s [1] XAI system in terms of

my nested framework. This visual presentation presents transitions between design and evaluation

steps during the multidisciplinary team work. The following subsections reviews the design and
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Interface Design:
Explainable Interface for 
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Design Pole 
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System Outcomes:
(1) task performance (2) user mental model
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Explanations usefulness
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Figure 4.7: My analysis of Nourani et al.’s paper [1] in terms of my proposed nested framework.
Boxes represent design and evaluation steps and arrows show transitions between the steps. The
main system design and development includes: (1) Translating system goals into interface com-
ponents and interpretability requirements while taking machine learning limitations into consid-
eration (2) Interface usability and user task testing (3) Evaluating system outcomes and revisiting
design goals.

evaluation details for their between step and within step activities.

4.3.2.1 System Goals

The main system goal for this system is to improve algorithmic transparency with the help

of model explanations. Model explanations are aiming to help users understand how the activity

recognition model works and therefor perform better in their task. The system is designed for

novices (a non-specialist population) without any particular domain expertise or AI knowledge.
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To adjust the task difficulty to their targeted user type, authors chose to use cooking videos in a

kitchen setting as the main system input and user were to identify cooking activities in the videos.

Following a previous work [53], authors decided the video activity recognition task and interactive

interface design would be suitable real-world scenario for studying XAI systems.

The choice of what to explain to users as the explanations from the machine learning model

had multiple bottlenecks. The bottlenecks included different explanations type design requests

from HCI designers in the team that were design bottlenecks for machine learning algorithms. For

example, the idea of presenting a global explanation using a tree summarization visualization for

the activities recognized in the whole cooking videos was not possible due to model constraints.

Additionally, the HCI designer have requested for instance explanations for each component (i.e.,

objects, actions and location) in each frame in form of saliency map or bounding box. However,

machine learning model design limitations did not allow for high-quality frame-level (i.e. in each

image) explanatory information for model predictions. Therefor, the main explanations to was

planned as video segments that attributed to model prediction.

4.3.2.2 Interface Design

An interface is designed to present the videos, key video segments as model explanations, and

top-3 model predictions for each video segment. The implementation is an interactive web-based

interface in the front end. Figure 4.8 shows the components of the final interface.

Design iterations involved an initial mock up sketch step to review with all team members and

discuss the necessary components and details. In the next step, authors ran a round of user testing

and interview using sample videos and wizard-of-oz intelligent assistant to collect quantitative

(system logs) and qualitative feedback regarding interface usability. The user testing was done with

10 participants including design team members (familiar with the system) and fresh participants.

Then, authors performed a round of pilot testing after refining the interface based on feedback from

first user testing. The pilot testing included the model’s predictions and explanations for the main

video dataset. The main goal for this interface testing round was to refine user task design, clarity

of task instructions and steps for the main study. Authors used think-aloud method to collect user

107



Figure 4.8: The XAI user interface design by Nourani et al. [1]. Different panels and 
components including a video player panel with visualization of attributed video segments (top-
left) and the query panel that presents the XAI’s prediction (bottom-left).

feedback during the pilot study. Pilot tests focused on understanding the usefulness and helpfulness 

of interface components to perform the task.

The pilot studies also allowed authors to review model outputs prior to the main system out-

come evaluations. For example, considering the system outcome evaluation goals and study hy-

pothesis, the model performance (96% prediction accuracy) on the test samples was higher than 

expected to conduct the user studies. Authors selected 20 videos from scenarios which the model

has lower accuracy with a combination that results in 16 correct and 4 wrong model predictions. 

Another interesting observation during iterative rounds of pilot testing with new models was that

the model outputs and explanations were changing at each training round. While this is part of the 

machine learning design cycles, it was not expected in the interface design cycles.

Another example of limitations from machine leaning explanations that were identified during
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pilot testing was the inappropriate length of attribute video segments. The interpretability tech-

nique was generating video segments with less than 1 second length which was too short for user

review in the interface. After merging short and adjacent video segments, the video progress bar

was showing longer video segments that were appropriate for user review. However, the team had

to eliminate merging of any short attribution video segment without adjacent segments. This was

an example of trade-off between presenting trustworthy explanations and user understanding of

explanations during the design cycles.

4.3.2.3 Algorithm Design

The training dataset for the model is a publicly available cooking videos (TACoS dataset [286])

that has labels for supervised learning. The cooking videos in the TACoS dataset are recorded

in a simple kitchen setting which a person is performing short cooking-related activities in each

video clip with no visual occlusion or any co-occurrence activities. The choice of dataset enables

non-expert users to easily review video data and identify requested activities. Further to limit

the training domain and simplify the user task, authors chose 28 components (including actions,

objects, and locations) from the dataset for the model train.

As for the machine learning solution, authors chose a two layer approach in which a temporal

probabilistic model mimics the relationship between DNN predictions and the ground truth labels.

The main DNN model is based on a backbone model pre-trained on large image datasets and

performs well after training on the target cooking video dataset. The interpretable model enables

complex temporal inference queries to explain its predictions by providing video segments for the

predicted activities. The queries include the three elements of action, object, and location. For

example, users can ask “Does the person cut the orange on the plate?” or “Does the person wash

the knife?”. However, authors use a set of pre-defined queries are selected and implemented in

the interface for the sake of demo and user studies. Additionally, the interpretability algorithm

generates the top-3 activities for each key video segment.

The iterative interface design and evaluation steps revealed bugs in machine learning training.

For instance, after implementing a query tool for users to search objects and actions in the video,
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the preliminary user testing results showed that the model does not identify any edible object in

the videos other than the “carrot”. Then, the machine learning team updated the training set to to

fix this bug.

4.3.2.4 System Outcome Evaluation

In the last evaluation iteration, the authors chose a range of measures to evaluate the system

outcome in accordance to the original design goals. In a controlled study with Amazon Mechanical

Turk participants, authors studied the effects of model explanations and veracity of explanations

on end users. The main objective measures included user task performance with the help of model

explanations and user understanding of model via predicting model outputs. The main subjective

measures included user’s perceived accuracy of the AI and subjective rating of their trust on the

system. Author also measured explanations usefulness and helpfulness using likert-scale questions.

Furthermore, authors paid attention to improving their measurements by calculating class-

based user task performance and user prediction performance in contrast to overall task perfor-

mance. Analysis of results showed it was more difficult for users to understand model weaknesses

compared to learning system strength. The series of user studies also confirmed the strong effect of

study condition’s ordering when studying AI-based systems in which users learning significantly

affects the results in within-subject study design.

4.3.3 Lessons Learned

I presented a descriptive analysis for design and evaluation workflow of the Nourani et al.’s [1]

XAI system. When compared to my proposed nested framework, my analysis (figure 4.7) shows

missing evaluation and design iterations and design steps from the guidelines. I find this as an

opportunity to continue the design cycles for addressing the identified limitations in the final system

evaluation. Looking into the system outcome evaluation results, the authors also suggest the need

for more refinement of the machine learning algorithm. The descriptive analysis example indicated

the importance of iterations between framework layers to identify design bottlenecks and improve

system outcomes. The authors mention communication barriers between the HCI and machine
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learning teams during the team work, which is another common issue in multidisciplinary team

work.

4.4 Example 2: Interactive Naming for DNN Visual Concepts

4.4.1 Introduction

In the analysis of second XAI system example, I use my framework to analyze Hamidi-Haines

et al.’s [2] paper in which authors present a XAI system for interactive clustering of visual concepts

in model explanations. In this analysis, I am aiming to find insights from their XAI system design

by structuring their design process based on my framework. Their system design is followed

by a systematic study of the visual concepts created by participants when using the interactive

naming interface. Authors studied the problem of users’ mental model and understanding of DNNs

decision-making in terms of human-recognizable visual concepts.

4.4.2 Analysis of Workflow

I present a descriptive analysis in this section to review the design process (between-layer) and

decision choices (within-layer) in the Hamidi-Haines et al.’s [2] XAI system. The analysis starts

with identifying system-level goals, interface design steps, and algorithm implementations. Then,

I present the human-subject study and results to evaluate the system outcomes.

4.4.2.1 System Goals

The main system goal in this paper is to develop a tool to help users understand the decisions

of a DNN trained for multi-class image recognition with supervised learning. Such a system can

provide insight into the strengths and weaknesses of the network’s decision making that may not

be observed by common performance metrics like test set precision and recall. For example, one

might discover cases in which the DNN is making the right prediction by looking at the wrong

or nonsensical reasons, which would identify potential future mispredictions. Authors formulate

their main research questions (RQs) as following:

• What fraction of DNN activation maps are explainable using human recognizable visual
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concepts?

• Is there a strong relation between DNN activation maps and human recognizable visual con-

cepts?

• Is there strong consistency between users’ defined visual concepts?

For the choice of what to explain, authors chose to visualize neural network activation maps that

represents the most important features that activate each node for the input instance. The heatmap

visualization of activation maps on each image would represent which features (i.e., pixels) are

attributed to the node’s activation.

4.4.2.2 Interface Design

Authors designed an interface to present images examples, visualize activation maps, and en-

able users interactions with samples. The interface is designed to support interactive clustering of

visual representations to establish semantics to the DNN’s activation maps limited to the test set.

The web-based implementation of the interface as shown in Figure 4.9. The set of activation maps

is presented to the users in the unlabeled examples panel (top panel) section of the interface. A list

of clusters for visual concept underneath is where users can drag and drop examples (from unla-

beled examples panel) with similar prediction reasoning. Users can give a textual label or name to

each cluster of visual concepts.

Users’ task is to review and cluster visual representations (X-feature activation maps) from the

top unlabeled panel into visual concepts cluster (bottom panel) and label each cluster. The interface

allows the users to review and compare all images in the test set. After review and clustering of

instances with meaningful heatmap explanations, the remaining instances in the unlabeled panel

will remain will be eliminated from the system as less representative features.

4.4.2.3 Algorithm Design

The model explanation in this work is based on DNN activation maps with a multi-step ap-

proach to improve human interpretability of features. First, authors reduce the number of maps
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Figure 4.9: The user interface used for visualization of feature activations and interactive naming
reprinted from Hamidi-Haines et al. [2]. System helps users to create clusters (bottom panel) of
similar activation maps for understanding DNN features and identifying human understandable
visual concepts.

using a mimic learning technique and then visualize the reduced activation maps with a gradient-

based visualization technique.

For the first step, they utilize explanation modules [287] to the fully-connected layer of the

original DNN to reduce the number of activation maps to a handful of X-features. The new expla-

nation module forms a low-dimensional explainable concept space for the original deep networks

which is desired to maintain the following properties (1) faithfulness of X-features to the original

model, (2) sparsity of X-features, and (3) orthogonality of X-features. Additionally, the authors

define the significant X-features for each input instance to be a subset of X-features that account

for at least 90% of the prediction score. We call these maps the significant activation maps or

simply the significant activations. Lastly, activation maps of each X-feature on input images are
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visualized using Excitation Back Propagation [288] (ExcitationBP), a gradient-based visualization

approach.

4.4.2.4 System Outcome Evaluation

The evaluation of this system was done for an image classification task on the Caltech-UCSD

Birds [289] dataset which includes 12 labeled categories of birds. After training the main DNN

with explanation modules to obtain X-features, authors applying ExcitationBP on each X-features

and present feature maps with higher than %90 importance to the model prediction. This approach

reduces the feature dimensionality without significant loss of accuracy from 4096 features (in the

main DNN) to only 5 X-features (from the explanation module).

The authors run a user study with five participants to work with the XAI interface for reviewing

images with the activation heatmap overlay. The participants were instructed cluster images with

similar explanations and label each cluster with an appropriate visual concept. Although not all

images were supposed to be reviewed and clustered, participants’ were instructed to add as many

images to each cluster during the study. The evaluation results were analyzed with three measures

(M1-M3) for quantitative and qualitative assessment of initial goals.

Completeness of Visual Concepts (M1): For the first evaluation measure, authors measure how

well the participants cover the activation maps. Authors define the partial coverage and complete

coverage metrics for activations that have been labeled by at least one or all participants. Results

show that approximately between 20% to 40% of activation maps were not labeled with visual

concept clusters. However, we see that partially covered activations are quite high for most an-

notators. The comparison between each individual participant and union of all participants show

consistency between them.

Looking into the study post-interview results show participants were unsure about activation

maps with unclear semantic information such as case in which activation heatmap showed the

edges of the image or mainly looking at the background.

Visual Concepts Correctness (M2): Next, authors measure if activation maps generated by the sys-

tem can fully represent human-understandable visual concepts. Specifically, the goal is to observe
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whether each activation map can represent a particular semantic visual concept. Authors adopt the

metric of cluster purity [290] to measure the quality of each cluster of visual concept created by

participants.

The purity of a visual concept cluster is calculated as the number of activation maps that belong

to the major map in each cluster divided by the total number of examples in that cluster. Results

show that the purity rate for different clusters varies between 0.52 to 0.90, suggesting that the map-

ping from activation maps to visual concepts is not a one-to-one relation. However, all participants

show a relatively consistent purity rate in their visual concept clustering task, indicating the mutual

perception of users on DNN features.

Participants Agreement (M3): For the last evaluation measure, authors review similarity in the

labels that participants used for each visual concept cluster. The similarity metric between cluster

labels helps to how well participants agree on semantic visual concepts. Note that participants

were free in creating any number of clusters and labeling these clusters during the task.

Analysis of user labeling results shows the largest fraction of activation maps are annotated by

all participants, indicating an overall agreement in cluster labels. Next, authors look into activa-

tion maps in similar clusters to find potential translations between the labels among participants.

Overall, many of the mismatched cluster labels have the same are sensible based on descriptions

provided by the annotators. Also, in many cases, different choices of labels show a difference in

the resolution of choosing labels of objects (i.e., birds) parts in the image. This problem could

be potentially resolved by using dictionaries to reduce the total number of labels used for visual

concepts.

4.4.3 Lessons Learned

I present a descriptive analysis of Hamidi-Haines et al.’s [2] XAI system for interactive naming

of DNN activation map to create human recognizable visual concepts. This XAI example also

showed the importance of following design guidelines in for tools dedicated to the analysis and

annotation of DNNs involved with end-users. When compared to my proposed nested framework,

I found the authors’ attention and focus on supporting user understanding of DNN features for
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creating visual concepts. This is distinct from the previous case study and example in which the

primary goal was to design an XAI assistant for end-users. Authors mostly relied on computational

methods to analyze participants’ data and draw conclusions about visual concepts. I find this XAI

system design examples as an opportunity to identify new design considerations focused on user

understanding and perception of raw model explanations. In comparison to my proposed XAI

framework, the promising results reported from system evaluation are mainly derived from the

interpretability technique (Layer 3) and user understanding of explanations (Layer 2) that address

the initial research questions. However, looking into the evaluation process, I find the evaluation

of system outcomes (Layer 1) to be a missing piece that could have improved system evaluation

for obtaining conclusive results, necessary to proceed with the system design steps.

4.5 Findings and Conclusion

I presented a case study and two XAI system design examples to demonstrate and validate

different functionalities of the proposed XAI framework. Specifically, the first case study demon-

strated the Generative Function of the framework with step-by-step review of a fake news detection

XAI system. Then, for the Descriptive Function of the framework, the design process of two exist-

ing XAI systems were analyzed (e.g., for communication purpose and to assess design alternative)

and recommendations for next design cycles were made.

My case study and reviews focused on both design steps and evaluation steps of these XAI sys-

tems to identify their process and pitfalls in comparison to the guidelines from my framework. The

lessons learned from the case study and examples showed that there are opportunities to improve

the framework by introducing new design and evaluation methods (within-step contribution) spe-

cific for XAI systems as well as by adapting guidelines from other frameworks (between-step con-

tribution). For example, the interactive naming in Hamidi-Haines et al.’s [2] XAI system showed

the extend in which the annotation data collected users could be used for insights on model ex-

planations meaningfulness. Also, the Nourani et al.’s [1] XAI system showed the difficulties in

users’ learning of model behavior on complex domains and tasks. Accordingly, in the next two

chapter I will introduce two evaluation methods for specific to XAI systems as contributions to
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the my framework. Additionally, future work and case studies are needed to further validate the

usefulness of this framework in XAI system design.
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5. USER TRUST DYNAMICS IN EXPLAINABLE AI

5.1 Introduction

Research shows user trust and reliance on AI predictions could enhance human-AI performance

in a collaborative setup when learning a mental model of AI error boundaries [62]. However, build-

ing a correct mental model to achieve justified trust can be difficult in situations involving complex

and demanding tasks, which often results in users over-trusting or under-trusting the intelligent

system in the process of learning and revising their understanding [291]. Consequently, the evalu-

ation of intelligent interfaces can be difficult due to the longitudinal nature of user experience and

learning in cognitive tasks. As a common case within complex AI-based systems, user responses

to insights may trigger long after exposure and affect system evaluation results [10]. Such exam-

ples indicate the necessity of repeated measurements during human-subject studies and look into

relations between multiple measures in complex systems. Studying dynamics of user behavior is

particularly important to understand users temporal patterns of trust and reliance on the intelligent

agent and improve system design and evaluations accordingly. Following the discussion in Sec-

tion 3.5.4, the proposed XAI design and evaluation framework also lacks the explicit emphasize

on evaluating dynamics of user behavior in evaluation cycles.

To improve evaluation techniques for XAI system outcomes (Layer 1, Section 3.2.4), I analyze

the human-subject evaluation data from our case study in Section 4 and investigate types of user

trust dynamics in an explainable intelligent assistant. Specifically, I investigate the effects of inter-

pretability on trust evolution over time in a human-AI collaborative setup for fake news detection.

My study results show not only model explanations effect on user trust level (see Section 4), but

also trust morphs over time. I cluster user trust changes over time into five types of trust dynam-

ics and look into each cluster for insights on user behavior trends. Analysis of results revealed a

positive interaction between two constructs of trust and positive effect of initial user expectation of

intelligent assistant on their trust journey.
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5.2 Method

My analysis goal is to study the effects of model explanations on temporal dynamics of user

behavior which is an addition to the existing static measurements (Table 3.2) I aim to investigate

how user trust and reliance in the explainable intelligent agent changes over time as the user is

interacting with model predictions and its explanations. I formulate the main research goal with

the following research question: How does user trust evolve over time, and how is the evolution

affected by the presence of AI explanations?

To answer this research questions, I analyze user study data from the fake news detection case

study presented in Section 4 in which novice users worked with a news review interface with a

build-in intelligent assistant. I periodically measured participants’ subjective trust and calculated

their reliance on the AI predictions based on study logs. I exposed participants to different types

of intelligent assistants (with and without explanations) in each study condition. In the following I

briefly revisit the user task, study design, and its periodical measures.

5.2.1 Experimental Design

Considering I am using the same collected data as the fake news detection case study in Section

4, I only review the general study conditions, dynamic trust and reliance measurements, and leave

the details to the Section 4.2.6.1.

I run a controlled human-subject experiments with a baselines and three control conditions to

study user behavior with the AI assistant and its explanations. The study followed a between-

subjects design with four different conditions, in which each participant used one variation of the

system as described in the following:

The AI Assistant baseline condition includes the AI prediction and its confidence for the cred-

ibility of the news story. The AI predictions are in the form of on-demand using a collapsible

menu on user click. I used three XAI Assistant conditions to study how different explanations

types might affect user trust. The user interface in the three XAI conditions provides instance ex-

planations in addition to the news credibility prediction. The XAI-attention condition presents a
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heatmap of keywords using attention weights for the news headline and in each related news article

(in the news article pages). The XAI-attribution condition shows news attribution explanations for

related articles and their news sources. The hierarchical attention network generates an article’s

importance score and the top-3 important sentences from each article. The mimic learning model

generates source, article, and news story attribution score for each article. The XAI-all condition is

the combination of explanations in the XAI-attribution and XAI-attention conditions. The purpose

of this XAI-all condition was to study the effect of variety of multiple explanation types together.

The study procedure is the same as the presentation in Section 4.2.6.2 with additional de-

tails on periodical measurements for user trust. Specifically, participants’ were answering mini-

questionnaires during the task as described in the next section.

5.2.2 Dynamic Measurement

I use subjective and objective measures of user expectation, subjective trust, and reliance to

aim for investigating the initial research question.

• Expectation of AI: In the pre-study questionnaire, I measure participants’ expectation of AI

assistant accuracy by asking “If you had an Artificial Intelligence (AI) algorithm to review

your daily news for fake news detection, what would be your expectation of AI accuracy

to do a good job?” question. I intend to test the possible interactions between users’ pre-

knowledge and expectations and trust during their experience with the system.

• User Trust: I measure user trust using the subjective rating of participants’ perceived accu-

racy of the AI assistant twice during the study (at 1/3 and 2/3 task progress) and once at the

post-study questionnaire. Specifically, participants answer “What was the accuracy of the

AI fake news detection?” using a continuous slider bar (between 0–100%) with the step size

of 1.

• User Reliance Rate: My metric for user reliance on AI assistant is based on (1) user agree-

ment and (2) engagement with AI predictions. Similar to [52], I count user agreement (or
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disagreement) instances by news stories which the participant inspected and agreed (or dis-

agreed) with the model prediction; either for the true or fake news samples. (1) User agree-

ment rate is calculated as the difference between total agreement and disagreement instances

divided by total instances which the user inspected the AI prediction. (2) User engagement

(in 0 to 1 range) is calculated as total divided by the total number of user’s model prediction

inspection divided by shared and reported news. User reliance is calculated as the multipli-

cation of user agreement and user engagement rates.

5.3 Results

In this section, I evaluate how different types of model explanations affect on dynamics of user

trust and relianace. We hypothesize that explanations would help users to build appropriate trust

with respect to observed system performance (set of %75 accurate predictions).

5.3.1 User Trust Dynamics

In this section, I analyze the repeated trust measurements during the study to investigate how

user trust on intelligent assistant evolved over time.

Using the three perceived accuracy measurements during the study, I identified four profiles for

trends of participants’ trust in model prediction. I use rule-based clustering to classify participants

into clusters of 1) progressive trust in which participants continually have higher perceived accu-

racy, 2) tentative trust with overshoot, 3) tentative trust with undershoot, and 4) digressive trust

where participants continually lose trust in the AI. I analyzed the four clusters of participants with

similar behavior for further insights.

Figure 5.1 shows the clustering results for trust measurements during the study (T1-T12). Over-

all, the most common trend (36.3%) was tentative trust with an overshoot, 23.6% gained trust con-

tinually, 21.0% lost trust continually, 10.8% did not change their subjective trust feedback, and

8.3% had trust undershoot during the task. A Pearson Chi-square test shows a significant relation-

ship with χ2(18.89, N = 139) = 18.895 and p = 0.026 between study conditions and user trust

types. Results show that the majority of participants 61.7% from the XAI-attention condition had
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Progressive Trust Tentative Trust

Tentative Trust Digressive Trust

Figure 5.1: User trust dynamics: four profiles of participants’ trust changes over time. Subjective
perceived accuracy of news assistant is measured three times during the study (at T4, T8, and T12)
in the range of 0-100.

overshoot in their second perceived accuracy measurement. In comparison, 34.2% of participants

from the AI group and 39.4% of the XAI-attribute group were continuously gaining trust in the

system.

Clustering participants with their trust evolution patterns shows model explanations effect on

how user trust evolves over time. However, this effect was not observed for user reliance changes

over time. Also, I did not detect dependency between the same clusters in reliance and trust

measures. This could be because of the possible lag between user exposure and insights in complex

interactive systems. This latency between users’ interactions with the system and coming to their

conclusions have also been reported in previous research [10].

5.3.2 User Reliance Dynamics

In this section, I analyze the repeated measurements during the study to investigate how user

reliance on intelligent assistant evolved over time.
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Progressive Reliance Tentative Reliance

Tentative Reliance Digressive Reliance

Figure 5.2: User reliance dynamics: four profiles of user reliance evolution in time in the range
of -1.0 (complete independence) to 1.0 (complete dependence). Measurements are for all 12 news
sharing instances and error bars represent standard error of the mean.
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Similar to the previous section, I identified four profiles for trends of participant reliance on

model predictions. I first summarized participants’ news review progress into three average points

of early (T1-T4), mid (T5-T8), end (T9-T12) segments. Then, using rule-based clustering I clas-

sified participants into four clusters of 1) progressive reliance with participants continually relying

more on the AI, 2) tentative reliance with overshoots in reliance, 3) tentative reliance with an

undershoot in reliance, and 4) digressive reliance where participant continually lost trust in the AI.

Figure 5.2 shows the clustering results for reliance measurements during the study (T1-T12).

Overall, the cluster of participants with an overshoot in their reliance on AI assistant is the largest

group with 42.3% of the total, only 16.5% gained trust continually, 21.1% lost trust continually,

and 18.6% had trust undershoot during the task. A Pearson Chi-square test did not show any

significant relationships between the explanation conditions and user reliance profile types.

Clustering participants with their trust evolution patterns shows model explanations effect on

how user trust evolves over time. However, this effect was not observed for user reliance changes

over time. Also, I did not detect dependency between the same clusters in reliance and trust

measures. This could be because of the possible lag between user exposure and insights in complex

interactive systems. This latency between users’ interactions with the system and coming to their

conclusions have also been reported in previous research [10].

5.4 Discussion

The following discussion presents findings drawn from the two trust measures in the experi-

ments and recaps the main highlights. In the end, I review the limitations of this work and open

questions to investigate.

5.4.1 Model Explanations Significantly Affect User Trust and Its Dynamics

The study results indicate that users working with the same intelligent system can perceive the

system accuracy differently depending on how the model and its decision making is explained. In

my experiments, the news keyword heatmap explanations (XAI-attention condition) significantly

reduced user-perceived accuracy, as participants considered it an unreliable way of detecting fake
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news. This finding is similar to Nourani et al.’s [53] finding that explanations that do not align with

human rationale (“meaningless” explanations) reduced user trust. Following the related research

on user trust in intelligent systems (e.g., [52, 292]), I conclude that AI transparency and machine

learning explanations do not necessarily improve user trust, instead transparency empowers the

user to build appropriate trust in the system.

I observed that explanations can shape how user trust is evolved by analyzing study measure-

ments over time. Recurring measurements of user reliance revealed whether model explanations

are persuasive (resulting in an increase of user overtrust) or implausible (resulting in a decrease

of user trust) to the user. However, the findings suggest the dynamics of self-reported subjective

performance measures were not aligned with the objective behavioral measures. This could be

an indicator of possible lead or lag in reflections of trust between the two measurements of trust.

This latency between users’ exposure to the system, adapting their behavior, and coming to their

conclusions have also been reported in previous research, see [10]. I conclude that the recurring

measurements of user trust in complex systems (e.g., AI-based systems) is invaluable to understand

the dynamics of user behavior and complement the limitations of self-report measurements.

5.4.2 User Expectations of AI Assistants

I looked into the relationship between participants’ expectation of the AI (before the study)

and their perceived detection accuracy of the AI at the end of the study to test for possible in-

teractions. A Pearson test showed a small positive correlation (r = 0.223, p = 0.005) between

participants’ expectation and perceived accuracy rating. Comparison of this correlation among the

four conditions shows the correlation is moderate (r = 0.436, p = 0.006) in the XAI-attention

group.

5.4.3 User Trust and Reliance Changes Significantly Over Time

Analyzing profiles of user trust and reliance showed that users changed their thoughts and be-

havior about the intelligent agent over the study duration. To test for this pattern over the different

study conditions, I divided the study duration into three early (T1-T4), mid (T5-T8), end (T9-T12)

125



segments to perform analysis on these changes. A one-way independent ANOVA test on reliance

rate showed significant differences over time segments in the AI group (F (2, 113) = 3.84 and

p = 0.024), the XAI-attention group (F (2, 122) = 4.44 and p = 0.014), and the XAI-all group

(F (2, 116) = 5.024 and p = 0.008). The test did not detect statistically significant changes in par-

ticipants’ perceived accuracy in each condition; however, participants showed significant changes

between their first and last trust measurements for the digressive trust cluster (F (2, 98) = 3.634

and p = 0.030), progressive trust cluster (F (2, 110) = 5.154 and p = 0.007). This is an indicator

of participants’ learning of AI limitations and strengths during their experience with the intelligent

system. Therefore, it could be beneficial to take user learning phases into account for user study

experiments of AI-based systems by allocating longer study duration proportional to the agent’s

degree of complexity.

5.4.4 User Reliance Variations Dampen Over Time

To understand the rate of change of reliance during user experience/interactions with the AI/XAI

assistants, I looked into participants’ reliance variance during the study. I observed a high mag-

nitude zig-zag pattern of user reliance changes at the beginning of the study compared to lower

variation towards the end of the study. I investigated variations in participants’ reliance rate based

on the standard deviation between the first and second half of the study. I observed less variance in

user reliance in the second half of the study in all conditions, and a one-way independent ANOVA

test found a marginally significant difference (F (1, 77) = 4.00 and p = 0.049) between the first

and second half of the study for the XAI-attribution. Hence, based on the observations in our case

study, I conclude that recurrent measurements can help to recognize users’ learning phases and

identify appropriate trust measurements time for reducing noise from user learning effects.

5.4.5 Trust Evolution Rate

Another finding in the study results was the difference between the rate of changes in par-

ticipants’ trust measurements. A correlation test between participants’ final perceived accuracy

and the absolute value of changes in participants’ perceived accuracy showed a negative Pearson
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correlation with p = 0.003. This negative correlation could indicate that participants with higher

final perceived accuracy gained their trust in smaller steps (more skeptical) compared to partic-

ipants with lower final perceived accuracy who lost trust in larger steps during the study. Also,

participants’ with tentative trust had larger steps sizes (mean = 15.5%) compared to participants

with progressive or digressive trust (mean = 7.71%). The signal in the trust evolution rate could

be further investigated as an opportunity to identify cautious users who gently build justified trust

compared to users with more spontaneous swings in their feeling and perception of the system.

5.4.6 Effects of Early Impressions

Lastly, I examined the possible effects of participants’ first impressions on the dynamics of

their trust. I divided participants’ into two groups of positive first impressions who were gaining

trust in the system at the beginning of the study (i.e., first six news review instances), and negative

first impressions who were losing trust in the system early on. I observed that participants’ with

positive first impressions were more likely (39.4% of total participants) to continue gaining trust

until the end of their experience compared to participants’ with a negative first impression were

less likely (28.3% of total participants) to change their mind and gain trust. Similar to the effect

of user expectations of the AI Assistant prior to study, this observation suggests the importance of

users’ first impression of the intelligent agent in their trust dynamics as participants’ were more

likely to keep their early perception of the system.

5.5 Findings and Conclusion

Overall, the study results showed the value of using recurring measurements in XAI system

evaluation as suggested in Section 3.5.4. The dynamic measures of trust improves the XAI frame-

work by introducing new techniques and considerations for XAI outcome evaluation (Layer 1)

and interface (Layer 2). Also, dynamic measurements of user trust and other interactions with

XAI systems motivate the potential design approaches such as the use of adaptive explanations to

prevent users from overtrusting and undertrusting an intelligent agent.

Finally, I recognize a few limitations in our studies and analysis that could become more clear
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in future work. Primarily, the fake news detection domain tackles a complicated problem. Though

the presented study used the same curated list of news and articles for all conditions, it is not clear

how participants’ prior knowledge might have influenced the results. Second, I did not observe

dependency or correlation between dynamics of user trust and user reliance over time, although

the two measures showed positive correlation on their static measurements in Section 4.2.8.4. In

addition to the latency between user learning and experience (reflected in the behavioral reliance

measurements) and their coming to a conclusion about the system (reflected in the self-report trust

measurements), other factors such as potential cognitive biases or users’ lack of conscious aware-

ness of behavior could have been affected the measurements which require further investigation.
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6. HUMAN-ATTENTION BENCHMARK

6.1 Introduction

Recent and continuing advancements in model interpretability techniques unveiled new oppor-

tunities to enable human review of model reasoning and learning representations for their correct-

ness in accordance to design goals, law and regulations, and safety requirements. Such evaluations

could potentially prevent adverse outcomes of AI-based systems—such as unfair and discrimina-

tory decision-making when performing real-world tasks. However, with the complexity of inter-

pretability techniques and human cognitive biases, the question remains: how should we choose

effective and efficient methods for the evaluation of machine learning explanations? Different

approaches have been proposed for evaluating interpretable models and XAI systems at different

stages of system design [112]. In machine learning research, various computational methods are

used to measure the fidelity of interpretability techniques with respect to the underlying black-box

model [110, 105]. On the other hand, in the field of human-computer interaction, human-grounded

evaluation approaches measure human factors such as user satisfaction, mental model, and trust

in XAI systems designed for different tasks. However, there are fundamental differences between

these evaluation approaches. Computational methods set a precedent to objectively evaluate the

model against a baseline ground truth, yet they lack the ability to quantify human interpretations.

On the other hand, while more descriptive in nature, human subject studies tend to be more costly,

imprecise, and subjective to the task. Another major difference between these evaluation methods

is that once the human user is exposed to the evaluation study setup, she can not unlearn the ex-

perience for another round of evaluation. These differences raise the need to study the trade-off

between objective ground-truth evaluation and subjective human-judgment of explanations.

Looking into the discussion on limitations of ground truths for model explanations in Sec-

tion 3.5.3, I propose a human-attention baseline to quantitatively evaluate model saliency expla-

nations. The proposed evaluation benchmark contributes to the computational methods for direct
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evaluation of model explanations (Layer 3, Guideline 7, Section 3.4.4) in XAI evaluations steps.

My publicly available human-grounded benchmark enables fast, replicable, and objective exe-

cution of evaluation experiments for saliency explanations. To foster the interest of the machine

learning community, I demonstrate this benchmark’s utility for quantitative evaluation of model

explanations and compare it with the single-layer feature mask ground truth and human judgment

rating evaluations. My study results reveal the efficiency of threshold-agnostic evaluation with a

human-attention baseline as compared to previous methods with binary ground truth masks and

labels. My experiments also reveal user biases in the subjective rating of saliency explanations.

6.2 Background

The evaluation of model explanations and interpretability techniques can be categorized in

different ways [112, 3]. For instance, previous works have examined the fidelity of interpretability

techniques to the black-box model [105, 110], evaluated correctness of model explanations with

ground-truth [93], as well as the usefulness of explanations in different tasks and domains [54].

Following the review in Section 2.4.1, I review limitations in the two evaluation approaches,

human judgment evaluation and ground-truth evaluation, for the trustworthiness of machine learn-

ing explanations and assess their advantages and limitations. Note that in this section, I focus on

the trustworthiness of explanations with the assumption of having a high-fidelity ad-hoc explainer.

6.2.1 Objective Evaluation with Ground Truth

Ground truth baselines have been used as an objective way to quantify the correctness of model

explanation is to examine it against. Ground truth is often annotated by users or synthesized in

data to represent relevant features (i.e., a binary mask for features) and provide a baseline for

quantitative evaluation of explanations quality. Quantitative similarity metrics like Intersection

over Union (IoU) and mean Average Precision (mAP) are used to measure the model’s saliency

map explanations in comparison to the ground truth mask. However, the relationship between

the evaluation of machine learning explanations and the auxiliary tasks, such as binary object

https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark

130



localization and semantic segmentation, is not clear yet.

In a review of limitations in threshold-based evaluations for model saliency map, Choe et

al. [293] present an evaluation protocol to include a hyperparameter search for the τ threshold

for generating objects’ “binary mask” from the saliency score map. However, unlike our proposed

evaluation protocol, they do not consider the pixel-wise evaluation of saliency score maps in the

first place. Apart from binary mask baselines that annotate entire features associated with the tar-

get class, perhaps closest work to our human attention benchmark is Das et al.’s [174] VQA-HAT

baseline for evaluating saliency maps in visual question and answering models. They test multiple

game-inspired, attention annotation methods to ask participants to sharpen regions of a blurred

image to answer a question. The resulting baseline is a human attention map that enables object

identification but does not indicate whether the necessary or sufficient features are annotated by

individual participants.

6.2.2 Subjective Human Judgment

User review of model explanations for their subjective feedback is a common approach for

evaluating machine learning explanations. Different papers have run user studies to evaluate the

human understanding of saliency map explanations from DNNs as a proxy for explanations good-

ness and human interpretability of explanations. For example, Alqaraawi et al. [294] showed that

instance explanations carry new information to users, but model behavior remained largely unpre-

dictable for participants. In other work, Zhang et al. [232] compared saliency explanations from

multiple networks with human explanations of objects in images. They performed a large crowd-

sourced study to directly compare machine learning and human explanations and human feedback

on model explanations. Their results indicate that the features learned by some DNN models are

more similar to human intuition. However, it is not clear from their study whether the model gen-

eralizability or the choice of interpretability technique was more effective on user satisfaction of

explanations. To address the limitations in human judgment evaluation studies, Lertvittayakumjorn

and Toni [237] defined a set of objective evaluation tasks for quantitative evaluation of model ex-

planations with respect to different explanatory purposes. They used three human-grounded tasks
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Cat Dog Sheep Cow Train Motorbike Horse TV/Monitor

Figure 6.1: Examples of human annotations of salient features on images with the target class in the
caption. (Top) Input images with human-attention mask heatmap overlay. (Middle) Single-layer
object’s segmentation mask for the target class. (Bottom) Resulting multi-layer human attention
mask. Each image is annotated by 10 unique participants.

to evaluate local explanation methods for their ability to reveal model behavior, justify model

predictions, and help users investigate uncertain predictions. The review of previous research in-

dicates that the dissonance between machine learning models’ goal to learn discriminant features

and human expectation of logical and common sense explanations undermines the correctness and

completeness of human judgment evaluation methods.

6.3 Human-Attention Benchmark

I captured the human annotation of salient features in order to create a human-grounded bench-

mark to evaluate model explanations. Participants were prompted to select relevant regions in im-

ages and phrases in text documents that they felt most representative of the target subject or topic,

respectively. Figure 6.1 show examples from the resulting multi-layer ground truth from aggregat-

ing annotation from multiple unique annotators for each image. In comparison to the single-layer

object’s segmentation map, the human-attention benchmark allows for a higher level of granular-

ity in the evaluation of saliency maps and reflects human attention to features. Also, compared

to human judgment rating evaluations, the human attention benchmark enables reproducible and
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cost-efficient evaluation. The following reviews the details of benchmark specification, annotation

procedure, and data processing.

Table 6.1: Details of the evaluation benchmark for human-attention masks in different public
datasets.

Domain Image Text

Dataset
PASCAL VOC

2012
ILSVRC

2014 20 Newsgroup IMDB 50K

Number of classes 20 20 2 2

Samples per class 50 5 100 100

Total annotation
sample size 1000 100 200 200

6.3.1 Benchmark Specifications

The benchmark presents multi-layer masks representing what features humans expect to be

the most important representations of a particular class. For each sample, I collect annotations

from 10 unique annotators from Amazon Mechanical Turk platform that were instructed to select

areas (in images) or words (in documents) that they deem most relevant to the target class. The

multi-layer mask generated by aggregating annotations for each individual sample provides more

granular representation of attributed features compared to the single-layer mask. Note that this

method—collecting multiple user annotations for human-attention masks—balances the trade-off

between objective annotation of precise feature-masks (i.e., segmentation mask) and subjective

human judgment of the representative features. Also, it is important to mention that this human-

attention baseline evaluates the explanations’ correctness or trustworthiness of saliency explana-

tions and does not intend to measure the fidelity of ad-hoc interpretability techniques to the black

box models.

The development of this benchmark consists of a validation subset from ImageNet [295] and

PASCAL VOC2012 [90] image datasets and 20 Newsgroup [296] and IMDB [297] text datasets.
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Table 6.1 presents details for the number of classes and annotated samples from the four datasets

in this explanation evaluation benchmark. For the PASCAL VOC dataset, 50 randomly selected

samples from all 20 classes are annotated including Vehicles (airplane, bicycle, boat, boat, bus,

car, motorbike, train), Households (bottle, chair, dining table, potted plant, sofa, TV/monitor), and

Animals (bird, cat, cow, dog, horse, sheep) and other (person). To create a validation set from the

ImageNet dataset, I randomly selected five images from 20 classes including living things (man,

woman, cat, dog, bird, ant, elephant, shark, zebra, flower, tree), indoor objects (chair, computer,

ball, book, phone), outdoor objects (car, ship, airplane, house). The set includes images covering

broad considerations such as multi-object and complex scenes, co-occurrence of target object,

target object in different scales, and lighting conditions.

For the text domain datasets, 100 randomly selected movie reviews from each positive and

negative classes of IMDB dataset are selected. Similarly, 100 randomly selected text documents

(with the headers removed from samples) from the 20 Newsgroup dataset are selected from two

categories of medical (sci.med) and electronic (sci.elect).

6.3.2 Annotation Interface and Procedure

In order to generate multi-layer human-attention explanations, I ask annotators to provide their

interpretations of the salient features that are most meaningful for the specific class from the data

set. Each sample is annotated with 10 unique annotators recruited from Amazon Mechanical Turk

(AMT). Recruitment advertisement for Human Intelligence Task (HIT) required participants to

have at least 1000 previously approved HITs in AMT platform with the HIT approval rate of above

95%. Recruited participants were walked through a training slideshow of the task instructions and

interface controls at the beginning of their HIT. As a control, each training slide was displayed on

screen for two seconds before participants were able to continue to the next slide. Afterward, they

were asked to agree to the IRB approved information sheet for data collection, and continued to a

set of 12 images or documents for annotation. Participants were paid $0.40 for the image and text

annotation HITs to reach an average hourly pay rate of $10 an hour.

I designed two fundamentally similar human annotation interfaces to capture human feedback
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for all image and text datasets. Annotators were using an interface with basic annotation tools

in which each document or image was presented individually. Each annotation HIT started with

the same two samples to serve as attention check and help the annotator to get adjusted with the

interface and task. These are then followed by 10 samples from the main validation set. Task

instructions prompted participants to select relevant regions in images that they felt most represen-

tative to the target object that could be entire or parts of it but generally not the background scenery.

For image annotations, the annotators were specifically asked to use their mouse to lasso “salient

area(s) that explain target “object” in the image”. Similarly, for text annotations, participants were

prompted to select relevant words in text documents that they felt most representative of the target

topic or class. For example, for the movie review IMDB dataset, the annotators were explicitly

asked to “select words and phrases which explain the positive or negative sentiment of the movie

review”.

6.3.3 Data Processing and Storage

In order to generate multi-layer feature masks from multiple user annotations, I run a union

operation on all individual annotation that displays what areas are most frequently selected by the

annotators. Figure 6.1 presents examples of resulting human-attention masks from different im-

ages. Although specified in annotation task instructions, I also applied the exact segmentation mask

of the target object’s true pixels (only for image datasets) to remove the impact of participants’ im-

precision or hand jitter that might have included the background pixels. The exact segmentation

masks for images are created by two authors and included in the benchmark. Human attention

masks for image datasets are stored in the format of grayscale masks the same size as original

images. The human attention masks for text datasets are JSON objects with lists of index-word

pairs with human-attention scores in the range of 0 to 1.0. I did not perform any feature filtering

for text annotation samples. The benchmark is stored in a public domain and free for research use.
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(a) Relation between two ground truth measures
(b) Relation between subjective rating and baseline
measures

Figure 6.2: Comparison of averaged evaluation scores (1.0− MAE) between two ground truth
baselines and human judgment rating for each sample. Evaluation scores are not normalized and
the black dashed lines shows the ideal regression line with the slope equal to 1.0 and intercept of
zero. (a) Scatterplot of evaluation scores based on segmentation mask (vertical axis) and human-
attention mask (horizontal axis). (b) Scatterplot of evaluation score based on two ground truth
baselines and human judgment rating.

6.4 Evaluation of Saliency Explanations

In this section, I present multiple evaluation experiments to validate the proposed benchmark

with empirical results. These experiments compare three baselines: 1) human-attention mask as

the ground truth, 2) segmentation mask as the ground truth, and 3) human-judgment rating for

evaluating model saliency explanations. My goal is to understand the relationship between the

three evaluation methods and communicate the benefits of the proposed benchmark over other

common evaluation methods in the literature. The series of experiments are based on saliency maps

generated by the Grad-CAM [184] technique for a VGG-19 [298] image classifier on a subset of

100 validation samples from the two classes of cat and dog in PASCAL VOC dataset. The VGG

network is pre-trained on ImageNet-1k and tuned on PASCAL VOC 2007 for the purpose of this

evaluation. All evaluation scores are based on pixel-wise Mean Absolute Error (MAE) between

https://pytorch.org/docs/master/torchvision/models.html
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model saliency score map and the ground truth baseline.

The saliency map error is calculated as the MAE between model saliency score map and the

ground truth mask. I also looked into False Positive (FP) and False Negative (FN) saliency expla-

nation errors individually. I calculate FP saliency error as pixel-wise MAE for the model saliency

map scores outside the object’s segmentation mask (i.e., error in background pixels) and FN error

as the pixel-wise MAE for model saliency map scores inside the ground truth mask (i.e., error in

target pixels). In the following subsections, I review details and share evaluation results from the

three methods.

6.4.1 Comparison to Segmentation Mask

In the first evaluation experiment, I compare my proposed human-attention benchmark (multi-

layer feature mask) with the segmentation mask (single-layer feature mask) as the evaluation

ground truth for the set of saliency maps from Grad-CAM technique. Given the lack of granu-

larity for distinguishing important features in the segmentation mask, I hypothesize that the two

baselines would result in different evaluation scores for the same set of inputs.

Intuitively, the difference between the two baselines is that unlike the segmentation mask,

which scores all target features equally, the human-attention mask gradiates the “salient” features

more than others. To identify the difference between two evaluation baselines, I calculate evalua-

tion scores using both baselines for direct comparison. Specifically, I first normalize both ground

truth masks and model saliency maps and then calculate the pixel-wise MAE error between model

saliency map and the ground truth baseline. For example, a saliency map identical to its human

attention mask results in zero MAE error. In the opposite situation, with cases having no overlap

between the ground truth mask and the model saliency map, the MAE error would be 1.0. Note

that MAE is a threshold agnostic metric that—unlike Intersection over Union—does not require

choosing the τ hyperparameter for generating objects’ binary masks or bounding boxes, see [293]

for more discussion. Also, evaluating the saliency score map (without converting to a binary mask)

retains the granular information in the model explanation.

Results: Figure 6.2-(a) shows the scatter plot of evaluation scores (1.0 − MAE) between human-
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attention and segmentation mask baselines. The two evaluation scores are statistically significantly

(r = 0.896 , p < 0.001) correlated, as expected. Using a linear regression test, I find a regression

slope of w = 0.896 and intercept of b = 0.48. As seen in Figure 6.2-(a), this weight and bias result

in different evaluation scores between the two ground truth, especially in the higher and lower

range of scores. To examine the statistical significance of the difference between two ground truth

evaluations, I use an ANCOVA test with a custom model to the test for homogeneity of regression

slopes between the calculated regression model and the ideal of slope 1.0 with a zero intercept. The

test for homogeneity of regression slopes fails with a significant difference (p < 0.001) between

the two lines indicating that the two evaluation baselines are not equal. Next, I look into FP and

FN saliency explanation errors individually. The results show that the difference between the two

baselines is only due to FN errors being treated differently between the two baselines. This was

expected since both baselines measure zero evaluation score for the saliency explanations outside

the ground truth mask.

6.4.2 Comparison to Human Judgment

In the second evaluation experiment, I compare explanation evaluation scores using the two

ground truth baselines with the human ratings of explanation goodness. Subjective human ratings

of the model explanations are commonly used as a direct approach for evaluating machine learning

explanations by providing a numerical rating of explanations goodness using a simple quantitative

measure such Likert scales. However, subjective measures typically lack precision and may include

user bias. I hypothesize that results from human-judgment scores will be significantly different for

both (human-attention mask and object segmentation mask) ground truth evaluations. I use the

same subset of images and saliency map explanations from Grad-CAM technique similar to the

previous section for the purposes of this human-subjects study. Figure 6.3-(Top) shows examples

of heatmap overlays from the Grad-CAM technique used in the user study.

I designed a simple interface to collect user feedback about the quality of heatmap overlays

from the Grad-CAM saliency explanation technique. The participants started by reading task in-

structions followed by a series of images for review and rate. Given an image from the test set,
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the target classification, and a heatmap overlay, participants were instructed to “review and rate

the heatmaps which explain what parts the AI used to make it’s classification decision” and were

asked to rate the “goodness” of the AI decision on the scale of 1 to 10. A total of 200 unique

participants’ were recruited from Amazon Mechanical Turk and paid $0.20 per HIT to review and

rate 14 images. The first four image ratings (identical images were used for all participants) were

used as training and attention check examples; these were disregarded for data collection.

Figure 6.2-b shows a scatterplot of the evaluation scores (1.0 − MAE) between human judg-

ment ratings and ground truth scores from objects’ segmentation masks and human attention

masks. The two regression lines for human-attention ground truth (in orange) and segmentation

mask (in blue) show both baselines produce different evaluation scores from the user rating scores.

To test for the statistical significance of observed differences, I first normalize user ratings across

participants by subtracting each participant’s mean rating. Then, I use a Pearson’s correlation

test and linear regression test to compare the human judgment rating scores and the two ground

truth scores. The user ratings show a moderate-strength correlation with object segmentation mask

baseline (r = −0.121, p = 0.002) and small correlation with human-attention mask baseline

(r = −0.306, p < 0.001). I also observe signs of user bias, noting that none of the participants

rated any of the saliency map instances in the test set below 3-stars even though there are multiple

examples with scores below 0.3 for both ground truth evaluation types. These cases were specifi-

cally from the examples with multiple occurrences of the target object in which the saliency map

was only pointing to one of the target objects. This could potentially indicate a side effect of lower

user attention in reviewing cases with incomplete saliency explanations.

To compare measurements between evaluation approaches, I run a linear regression analysis

and find that the segmentation mask scores fit with a slope of w = 0.313 and intercept of b = 0.268

(Figure 6.2-b, blue trend line), and the fit for human-attention mask scores has a slope ofw = 0.428

and intercept of b = 0.210 (Figure 6.2-b, orange trend line). Note that the difference between the

two linear regression models’ slopes with the ideal slope of 1.0 is higher with the segmentation-

mask baseline. To examine the statistical significance difference between the measures, I use
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Figure 6.3: Examples of heat-map overlay of saliency maps using the Grad-cam (Top) and LIME 
(Bottom). 

ANCOVA with a custom model to test for homogeneity of the regression slopes between the two 

regression models as well as between the calculated regression model and the ideal of slope 1.0 

with zero bias. The homogeneity test fails with a significant d ifference o f p  <  0 .001 between 

the two regression models and the ideal line. The analysis indicates the subjective measurement 

of explanations goodness produces significantly different results from both objective ground truth 

measures.

6.5 Discussion

In this section, I review and discuss the evaluation experiments and open problems around 

model explanation evaluation. The evaluation experiment results showed that the human-attention 

benchmark has allowed for a higher level of granularity in the evaluation of saliency maps and 

reflected human attention to the features in comparison to the single-layer object’s segmentation 

map. As compared to the human judgment rating evaluations, I observed signs of participants’ bias 

in their ratings.
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6.5.1 Implications of Results

I ran human-subject experiments to understand the differences between the subjective and ob-

jective evaluation of saliency explanations. Although the evaluation results from the three methods

had positive correlations, the experimental results showed significant differences among all eval-

uation scores. The difference in scores was mainly due to the clear non-uniform distribution of

weights in human attention masks while the segmentation mask weights are uniformly distributed

for all features (e.g., pixels, words).

While segmentation mask benchmarks are mainly used for object segmentation evaluation and

weakly supervised object localization [92, 293], the human-attention baseline reflects human fac-

tors in feature attribution. For example, in annotations of living things, users were more likely

to select facial features as important features while the segmentation mask offers a uniformly

weighted single-layer mask. This is reflected in the evaluation results with human judgment with

participants’ ratings of explanations being closer to the human-attention baseline rather than the

segmentation mask baseline. Due to the same effect, evaluation results with the human-attention

baseline could be extended to better anticipate user acceptance and trust in model explanations

when putting on different applications.

6.5.2 User Biases in Rating

I explored the human judgment evaluation results to find other possible external or internal

factors that could affect participants’ subjective ratings. For example, human judgment ratings

may include user biases toward visual appearance or completeness of saliency maps resulting in

incorrect ratings. I reviewed and compared the results from human judgment for Grad-CAM and

LIME explanations to identify possible biases. Also, I reviewed the results to assess possible

participants’ biases toward model explanation FP and FN error types.

To evaluate the effect of visual appearance of saliency explanations, I compared participants’

rating of saliency map explanations from LIME [86] technique to Grad-CAM explanations on the

same subset of images and the same classifier. The saliency explanations from the LIME technique
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(a) Subjective and ground truth evaluation scores
from LIME and Grad-CAM Explanations.

(b) Subjective and ground truth evaluation scores for
samples with high FP and High FN explanation MAE
error.

Figure 6.4: Discrepancies between averaged human judgment rating of saliency explanations and
human-attention baseline evaluation. Evaluation scores are not normalized and the black dashed
lines shows the ideal regression line with the slope equal to -1.0 and intercept of zero. (a) Par-
ticipants evaluate saliency explanations from LIME and Grad-CAM differently. (b) Participants
evaluate saliency explanations’ FP error (model looking at background pixels) differently than FN
errors (model not looking at target pixels).

(Figure 6.3-(Bottom)) are visually more chunky and pixelated (mainly due to use of super pixels in

LIME’s pipeline) compared to smooth concept activation maps from Grad-CAM technique (Fig-

ure 6.3-(Top)). I analyze results after running a new user study to collect participants’ subjective

ratings of LIME explanations.

I used two linear regression models to compare participants’ ratings between the two groups,

see 6.4-(a). I find the slope of w = −0.428 and intercept of b = 0.789 for the user ratings on

samples with LIME saliency map (Figure 6.4-(a) green trend line) and slope of w = −0.607

and intercept of b = 0.947 for samples with Grad-CAM saliency map (Figure 6.4-(a), yellow trend

line). I would have expected to see the similar regression slopes between the two groups if the users

were evaluating both saliency map explanation types similarly. However, the test for homogeneity

between the two regression slopes shows a significant difference (p < 0.001) between the two

model error types. This indicates that users rated the saliency maps differently, although ground
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truth evaluation score (Figure 6.4-(a), y axis) for both sets of samples.

I then analyze participants’ rating behavior with respect to different explanation error types. I

first divided the samples for the test set into two groups with high FP (when the model is looking at

background pixels) explanation error and high FN explanation errors (when the model is missing

foreground pixels). Using linear regression models, I find the slope of w = −0.121 and intercept

of b = 0.265 for the samples with FP explanation error score (Figure 6.4-(b) yellow trend line)

and slope of w = −0.306 and intercept of b = 0.525 for samples with high FN explanations

error score (Figure 6.4-(b), green trend line). I would have expected to see the similar regression

slopes between the two groups if the users were evaluating both saliency error types similarly.

However, the test for homogeneity between the two regression slopes shows a significant difference

(p < 0.001) between the two explanation error types. This indicates that users pay less attention

to FP explanation errors and in turn, are more critical for FN explanation errors. Looking at image

samples from the user study, these images included several examples in which the target object

was on a smaller scale and the model saliency map was largely exceeded to the background pixels.

6.5.3 Reproducibility and Objectivity Trade-off

One way to categorize different evaluation measures is by their objectivity and reproducibility

of results. As implemented in this paper, users’ subjective rating of explanations could collect re-

sults for correctness and goodness of model generated explanations. Ribeiro et al. [86] presented a

case for correction of model explanation in which users reject wrong features and add new features

for quantitative evaluation of model explanations. A different method is to collect user feedback

through the direct comparison of explanations from multiple interpretability techniques. For ex-

ample, users could review several options to choose the best machine-generated explanation and

provide justifications for their choices. However, although these methods can provide detailed

insights, subjective user feedback is not reusable for new models and interpretability techniques.

This limitation indeed exists in studies for evaluating XAI systems in different applications and

domains [112], including tasks and scenarios concerned with the fairness of the decision-making

system.
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On the other hand, objective evaluation that utilizes ground truth, provides quantitative and

reproducible results, yet lacks the guidance of human correctness and goodness scores that show

which improvements would be most significant. My benchmark bridge the trade-off between ob-

jectivity and subjectivity of a baseline to satisfy both evaluation aspects.

6.6 Findings and Conclusion

I proposed a human-attention baseline for direct evaluation of machine learning saliency expla-

nations. Based on the human-attention baseline, I created evaluation benchmarks for four public

datasets that can significantly reduce evaluation time and costs over design cycles. The proposed

baseline and four benchmarks contribute to the XAI framework by improving computational meth-

ods for direct evaluation of model explanations (Layer 3, Guideline 7, Section 3.4.4).

In a series of experiments, I compared the (1) proposed baseline with (2) binary feature mask

baseline evaluation and (3) subjective user rating evaluations. Although the evaluation results

from these three methods had positive correlations, the experimental results showed significant

differences among all evaluation scores. The comparison between the binary feature mask and

human-attention mask revealed that the human-attention baseline can better reflect the human fac-

tors in feature attribution whereas binary feature mask offers a uniformly weighted single-layer

mask. Additionally, I observed that human judgment ratings may include user biases toward vi-

sual appearance and completeness of saliency maps resulting in incorrect ratings. For example, in

the experiments, I identified significantly different user rating between human judgment for Grad-

CAM and LIME explanations. Similarly, participants’ had biases toward different errors types in

model saliency explanations which under mines the evaluation quality as compared to baseline.

Results suggest human-attention baseline for XAI evaluation can be a better substitute for user

subjective rating specially in safety and fairness critical domains and applications such as medical,

law and autonomous systems.
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7. DISCUSSION AND CONCLUSION

This dissertation explored problems and proposed solutions for building effective XAI systems

to improve human-AI interactions. In this section, I review a summary of my contributions and a

discussion on existing open problems worth exploring in future work.

7.1 Summary

I organized my research contributions in the four following parts:

C1: A Design and Evaluation Framework for Explainable AI Systems. I reviewed over 200 XAI-

related research papers to organize different XAI design goals and evaluation measures across

disciplines. Table 3.1 presents a list of selected papers and my categorization of XAI design and

evaluation methods that organizes literature along two main dimensions of: design goals and evalu-

ation methods, and an auxiliary dimension of targeted users for the XAI system. From my review, I

provide summarized ready-to-use tables of evaluation methods and recommendations for different

goals in XAI research. This categorization revealed the necessity of an interdisciplinary effort for

designing and evaluating XAI systems. Additionally, I want to draw attention to the resources in

the social sciences field that can facilitate the extent of social and cognitive aspects of explanations.

As a product of my review, I proposed a design and evaluation framework that connects de-

sign goals and evaluation methods for end-to-end XAI systems design in multidisciplinary teams.

The proposed framework provides step-by-step design guidelines paired with evaluation methods

to close the iterative design and evaluation loops in system design. I hope my framework drives

further discussion about the interplay between different design goals and evaluation outcomes in

XAI systems. Although the presented framework is intended to give guidance on what evaluation

measures are appropriate to use at which design stage to build XAI systems, it is not meant to

offer all detailed aspects of interface and interaction design and development of interpretable ma-

chine learning techniques. Therefore, the framework is to benefit from other design guidelines for

additional details and considerations in each design step.
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C2: Case Study and Examples for XAI Framework. I presented a case study to demonstrate the

generative function of the framework during a system design process. In our case study, a multi-

disciplinary team of researchers with machine learning and HCI backgrounds collaborate on the

design and development of a XAI system for fake news detection. The case study presents a prac-

tical example of how-to-use of my framework for XAI system design. I reviewed system design

steps and different between-layer and within-layer framework guidelines that were used in this case

study. In the end, I presented a thorough review and analysis of system evaluation results. Results

showed that users’ interaction with the AI and XAI assistants affected their performance, mental

model, and trust. However, model explanations in our studies did not improve task performance or

increase user trust and mental model. Instead, explanations helped users’ to build an appropriate

mental model of intelligent assistants and adjust their trust accordingly, given the limitations of the

models.

In addition to the XAI system design case study, I analyze two existing XAI systems to

demonstrate the framework’s descriptive functionality to describe their design process workflow

(between-layers) and design and evaluation choices (within each layer). Both analyses are aiming

to find insights from their work and intended to suggest future design iterations.

In conclusion, my case study and examples revealed multiple challenges and open problems

in designing effective XAI systems. The challenges for XAI designers like aligning design goals

for machine learning algorithms and users interactions components. The open problems like the

dissonance between the AI reasoning and human sense-making. Additionally, the main case study

led to the identification of two limitations in existing XAI evaluation methods which addressed

them in this dissertation. The new evaluation methods (contributions C3 and C4) also contribute

to the XAI framework by improving evaluation of XAI systems during system design cycles.

C3: User Trust Dynamics in Explainable AI. The first contribution to improve the proposed XAI

framework is a study to demonstrate the importance of dynamics of user behavior with XAI sys-

tems. This study contributes to the XAI framework by introducing important aspects of Human-

XAI interactions and the value of recurrent user behavior measurements in XAI systems. My study
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showed that users’ trust and reliance on complex XAI systems change overtime and studying dy-

namics of user behavior is essential for accurate evaluation to improve the XAI system during

design cycles. Specifically, I analyzed the effects of interpretability on dynamics of user behavior

and trust over time in a human-XAI collaborative setup in the fake news detection case study.

My study results indicate that users working with the same intelligent system can perceive the

system accuracy differently depending on how the model and its decision making is explained.

Also, the study results show model explanations effect on user trust level as well as how it morphs

over time by analyzing study measurements over time. Recurring measurements of user reliance

revealed whether model explanations are persuasive (resulting in an increase of user overtrust) or

implausible (resulting in a decrease of user trust) to the user. However, my findings suggest the

dynamics of self-reported subjective performance measures were not aligned with the objective

behavioral measures. This could be an indicator of possible lead or lag in reflections of trust be-

tween my two measurements of trust. This latency between users’ exposure to the system, adapting

their behavior, and coming to their conclusions have also been reported in previous research [10].

I conclude that the recurring measurements of user trust in complex systems (e.g., AI-based sys-

tems) is invaluable to understand the dynamics of user behavior and complement the limitations of

self-report measurements.

C4: A Human-Attention Benchmark. My final contribution to the XAI framework is a human-

attention baseline for quantitative evaluation of model saliency explanations. This human-attention

baseline contributes to the inner-layer of the XAI framework by proposing a new baseline for di-

rect evaluation of machine learning saliency explanations. My publicly available human-attention

benchmark enables fast, replicable, and objective execution of evaluation experiments for saliency

explanations. The human-attention evaluation benchmark covers a subset of four major public

datasets in image and text domains. This human-grounded benchmark resolves the main limita-

tions of user review and feedback in controlled user studies such as study costs, imprecision, and

subjectivity to the task.

https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark
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I demonstrated the benchmark’s utility for quantitative evaluation of model explanations to

foster the interest of the machine learning community. In a series of experiments, I studied the

relationships and trade-offs between my benchmark and two common evaluation approaches: (1)

binary annotation mask and (2) human subjective review and feedback. The study results indi-

cated the significant difference between evaluation with a human-attention baseline as compared

to two previous methods. My experiments also revealed user biases in their subjective rating

when exposed to different visual appearance and error types of saliency explanations. I conclude

that human-attention baseline is the most accurate ground-truth for direct evaluation (i.e. feature-

level) of model saliency explanations when compared to binary segmentation mask and human

subjective review.

7.2 Open Problems

In the following I am reviewing research limitations and future opportunities to extend my

research.

L1: Limitations and opportunities in the Framework. My framework provides a basis for XAI

system design in interdisciplinary teamwork and I presented a case study and two examples to

demonstrate, validate, and improve the framework. However, no framework is perfect or entirely

comprehensive. I acknowledge that the validity and usefulness of a framework are to be proven

in practice with further case studies from the community. The presented case study and exam-

ples serve as a practical examples of using my framework in a multidisciplinary collaborative XAI

design and development effort. The lessons learned and pitfalls in our end-to-end implementa-

tion case study are incorporated in the framework guidelines as well as added to this dissertation

through contributions C3 (studying dynamic of user trust) and C4 (proposing a human-attention

benchmark). Without doubt, future work is needed to examine practicality and usefulness of this

framework in various domains and setups.

Moreover, this framework has a common limitation of many multidisciplinary design frame-

works of being light on specific details at each step. Rather than contributing detailed guidelines

for each framework layer, the framework is intended to pave the path for efficient collaboration
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among and within different teams, which is essential for XAI system design given the inherently

interdisciplinary nature of the area. The diversity of design goals and evaluation methods at each

layer can help maintain the balance of attention from the design team to different aspects of XAI

system. This higher level of freedom allows for extendability with other design guidelines (see

the discussion in Section 3.5.5) to integrate with more tailored approaches for specific domains.

Therefor, I identify a possible direction to continue this framework as to be adopting and merg-

ing other human-AI interaction guidelines with it so to achieve more detailed and tailored design

framework.

L2: Limitations and opportunities in the Case Study. In our case study research, we designed and

implemented model explanations from multiple models as part of an ensemble approach for fake

news detection. The case study served well to demonstrate how to use the XAI framework and

validate its guidelines. Plus, this approach allowed us to study how different types of explanations

affect users in fake news detection and analysis of study results showed the value of using recurring

measurements in XAI system evaluation. However, I recognize a few limitations in our studies and

analysis that could become more clear in future work. Firstly, the fake news detection domain

tackles a complicated problem. Though the presented study used the same curated list of news and

articles for all conditions, it is not clear how participants’ prior knowledge might have influenced

the results.

Second, for the analysis of user trust dynamics, I did not observe dependency or correlation

between dynamics of user trust and their reliance over time. In addition to the latency between

user learning and experience (reflected in the behavioral reliance measurements) and their coming

to a conclusion about the system (reflected in the self-report trust measurements), other factors

such as potential cognitive biases or users’ lack of conscious awareness of behavior could have

been affected the measurements which require further investigation.

Considering the complicated nature of the news review and fake news detection task, future

research is needed to assess the effectiveness of other types of explanations, such as knowledge

graphs and multi-modal evidence retrieval on users with XAI fake news detection assistants. Fur-
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thermore, study results from dynamic measurement of user behavior motivated potential design

approaches such as adaptive, interactive, and personalized explanations to prevent users from

overtrusting and undertrusting in the intelligent agent. Future work is needed to continue studying

personalized explanations as a trust calibration mechanism to help users in building a justified trust

relative to the system performance.

L3: Limitations and opportunities in the Human-Attention Benchmark. The proposed human-

attention benchmark allows for direct evaluation of model saliency explanations and contributed

to the inner-level of the framework as a computational evaluation technique. Evaluation experi-

ments showed the proposed benchmark is more efficient and accurate baseline compared to the

binary baseline and subjective human rating. A limitation of creating this human-attention bench-

mark is the annotation cost for multi-level human explanation masks. However, annotation cost

for an open-sourced benchmark could be justified when compared to repeated novel rounds of

evaluations for subjective human judgments. As typically, the iterative design and evaluation of

machine learning based systems require multiple rounds of training and test. My human attention

benchmark can significantly reduce evaluation costs over design cycles.

In my future work, I plan to study annotators’ opinion when annotating objects in different size

and pose to learn general patterns in human attention. This could potentially help to optimize the

number of annotators for each sample.

Another direction for this benchmark would be extend it to domains with fairness, safety, or

legality concerns to assessing model trustworthiness with expert-grounded baseline. Specifically,

creating a subset of edge case instances or scenarios with expert annotated explanations to assure

that the model is learned features and patterns that are aligned with design specifications.

Lastly, I am interested in examining the use case of the human-attention benchmark for tuning

models to improve prediction rationale and its effects on explanation quality.

7.3 Conclusions

This dissertation proposed a XAI design and evaluation framework that provides step-by-step

design guidelines paired with evaluation methods for end-to-end XAI system design in multidis-
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ciplinary teams. This framework was the product of an in-depth literature review and analysis to

organize diverse XAI design goals and evaluation measures across three disciplines of machine

learning, human-computer interactions, and visualization. I presented a case study to demonstrate

the generative function of the framework with a practical example for XAI system design. I re-

viewed system design steps and different between-layer and within-layer framework guidelines

that were used in this case study. Two additional analysis of existing XAI systems were presented

to demonstrate the framework’s descriptive functionality for analyzing their design process work-

flow (between-layers decision points) and design and evaluation choices (within-layer decision

points).

The main case study led to the identification of two limitations in existing XAI evaluation

methods which I addressed them in two follow up studies. The new evaluations for (C3) studying

dynamics of user trust and (C4) direct evaluation of saliency explanations contributed to the XAI

framework by improving the toolbox of evaluation methods of XAI systems in system design

cycles.

My case study revealed multiple challenges and open problems in designing effective XAI

systems. The challenges arising from multidisciplinary nature of XAI systems (e.g., aligning de-

sign goals for different XAI system components) and inherent limitations of machine learning

algorithms (e.g., the dissonance between the AI reasoning and human sense-making). I hope

my framework drives further discussion about the interplay between different design goals and

evaluation outcomes in XAI systems. However, this framework is not intended to offer detailed

guidelines for interface and interaction design or development of interpretable machine learning

techniques. Hence, it can benefit from adapting design guidelines from related AI-based system

design frameworks for additional details and considerations.

The proposed framework will have potentially impacts in designing transparency demanding

applications of AI, such as domains concerned with ethical, legal, and safety aspects of intelligent

systems. This framework will primarily translate and connect design goals among teams with

multidisciplinary focus where complex XAI system outcomes like morality, fairness, and legality
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are expected to be delivered. Also, my additions to the framework have promising future impacts

on XAI design for critical domains. On one hand, algorithm development and testing using expert-

grounded benchmarks (C4) for direct evaluation of model trustworthiness are valuable to improve

model evaluation cycles. On the other hand, studying users’ understanding of explanations and

their trust dynamic (C3) — especially when experiencing persuasive or deceptive explanations —

in critical domains can lead to the creation of new design considerations and user trust calibration

mechanisms in XAI systems. Future work is needed to examine practicality and usefulness of this

framework in such domains and setups.
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