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 ABSTRACT 

Application of machine learning has become prominent in many fields and has captured 

the imaginations of various industries. The development of data driven algorithms and the 

ongoing digitization of subsurface geological measurements provide a world of 

opportunities to maximize the exploration and production of resources such as oil, gas, 

coal and geothermal energy. The current proliferation of data, democratization of state-of- 

the-art processing technology and computation power provide an avenue for both large 

and small industry players to maximize the use of their data to run more economic and 

efficient operations. The aim of this thesis is to discuss the development of robust data- 

driven methods and their effectiveness in providing insightful information about 

subsurface properties. The study opens with a brief overview of the current literature 

regarding application of data driven methods in the oil and gas industry. 

Outlier detection can be a strenuous task when data preprocessing for purposes of 

data- driven modeling. The thesis presents the efficacy of unsupervised outlier detection 

algorithms for various practical cases by comparing the performance of four outlier 

detection algorithms using appropriate metrics. Three case were created simulating: noisy 

measurements, measurements from washout formation and measurements from 

formations with several thin shale layers. It was observed that the Isolation Forest based 

model is efficient in detecting a wide range of outlier types with a balanced accuracy score 

of 0.88, 0.93 and 0.96 for the respective cases, while the DBSCAN based model was 

effective at detecting outliers due to noisy measurement with balanced accuracy score of 

0.93. 
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NMR measurements provide a wealth of geological information for petrophysical analysis 

and can be key in accurately characterizing a reservoir, however they are expensive and 

technically challenging to deploy, it has been shown in research that machine learning 

models can be effective in synthesizing some log data. However, predicting an NMR 

distribution where each depth is represented by several bins poses a different challenge. 

In this study, a Random Forest model was used for predicting the NMR T1 distribution in 

a well using relatively inexpensive and readily available well logs with an r2 score and 

corrected Mean absolute percentage error of 0.14 and 0.84. The predictions fall within the 

margin of error and an index was proposed to evaluate the reliability of each prediction 

based on a quantile regression forest to provide the user more information on the accuracy 

of the prediction when no data is available to test the model as will be the case in real 

world application. Using this method engineers and geologist can obtain NMR derived 

information from a well when no NMR tool has been run with a measure of reliability for 

each predicted sample/depth. 

Identifying sweet spots in unconventional formations can be the difference 

between an economically viable well and a money pit, in this study clustering techniques 

in conjunction with feature extraction methods were used to identify potential sweet spots 

in the Sycamore formation, elemental analysis of the clusters identified the carbonate 

concentration in sycamore siltstones as the key marker for porosity. This provided 

information as to why some layers had more production potential than the others. Machine 

learning algorithms were also used to identify key parameters that affect the productivity 

of an unconventional well using data from a simulation software. 11 completion parameters 
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(lateral spacing, area (areal spacing), total vertical depth, lateral length, stages, perforation 

cluster, sand intensity, fluid intensity, pay thickness, fracture ½ length and fracture 

conductivity lateral length) were used to predict the EUR and IP90 using a random forest 

model and the normalized mean decrease in impurity was used to identify the key parameter. 

The lateral length was identified as the key parameter for estimated ultimate recovery and 

perforation clusters the key parameter for higher IP90 with a normalized mean decrease 

in impurity of 0.73 and 0.88 respectively. 

Machine learning methods can be integrated to optimize numerous industry 

workflows and therefore has huge potential in the oil and gas industry. It has found wide 

applications in automating mundane tasks like outlier detection, synthesizing pseudo-data 

when true data is not available and providing more information on technical operation for 

sound decision making. 
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CHAPTER I  

INTRODUCTION  

 

Research Motivation 

Machine learning has risen to prominence in the 21st century. Given the substantial 

increase in the amount of data and computational power available, machine learning 

methods have shown their ability to provide valuable insights into our data. 

Machine learning has seen significant success across many industries. For 

example, outlier detection models are applied in detecting fraudulent transactions in the 

finance industry, classification and clustering algorithms are used in building 

recommendation systems in the e-commerce industry, and regression models are used in 

a variety of industries for different types of forecasting. Considering the levels of success 

that these models have seen and their diversity of application it is only reasonable that this 

method should be applied in the oil and gas industry. 

Subsurface analysis and geological interpretation is challenging, given that the 

subsurface itself is complex and requires data from various sources (seismic, well logs, 

and core data, to name a few) and a combination of empirical and theoretical analysis to 

approximate certain parameters required for the successful and economic exploration and 

exploitation of mineral reserves. Equations based on these approaches have seen success 

so far. However, could a data driven approach to the analysis of the data be better, faster, 

or more economical? This is the question that is currently being asked by a number of 

researchers in the oil and gas industry. Given the success of data driven approaches in 



 

16 

 

other industries and the wealth of data available in the industry, it is no surprise that there 

is a significant amount of attention being paid to the application of machine learning 

algorithms in petroleum engineering. 

Several authors have published works that have shown with varying degree of 

success the application of machine learning methods in petroleum engineering and some 

will be discussed in chapter 2. 

In this work I will be exploring the use of machine learning models and concepts 

in analyzing data obtained from a borehole (well logs). These logs provide valuable 

information that are used for oil, gas, water, mineral and geothermal exploration as well 

as environmental and geotechnical studies. They are usually available in most drilled well, 

increasing the applicability of this study. 

 

Overview of Machine Learning 

Machine learning can be seen as the use of algorithms or a series of algorithms to identify 

patterns/trends in data. Several machine learning models which would be discussed later 

in this work have different ways of identifying these patterns and a good understanding of 

the algorithm and data are key to a successful machine learning application. 
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Machine Learning Terminology 

The following section lists terminology commonly used when dealing with topics 

revolving around Machine Learning applications: 

• Feature: A feature/feature variable is a property or attribute of the phenomenon 

being observed/investigated, e.g. if we are examining house prices, one of the 

features might be the neighborhood a house is situated. It is commonly denoted 

using X. Other names for feature are predictor variable, independent variable 

etc. 

• Target: The target is the property itself that seeks to be predicted, using the 

previous example the house price would be the target. It is commonly denoted 

using y. Another name for target is the dependent variable. 

• Sample and Dataset: A sample/datapoint refers to a single row in the feature 

vector and/or target vector e.g. using the house analogy we can observe a single 

house in neighborhood A with price $X. Another name for sample is instance. The 

dataset refers to all the samples available. A sample (s) is member of the entire 

dataset (D)  

•  𝒔 ∈ 𝑫Algorithm: An algorithm is typically defined as specific set of instruction 

given to a computer to achieve a task. In machine learning, an algorithm is a 

process to find an equation or set of equations that describes certain statistical 

patterns and relationships in a dataset. There are several machine learning 

algorithms which have unique behaviors and underlying principles. A good 
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understanding of this machine learning algorithms is key to building a good and 

interpretable model. 

• Fitting: Fitting is the process whereby the machine learning algorithm “learns” the 

relationship or patterns within the dataset, it could be between the feature and 

target as in supervised learning or just the feature as in unsupervised learning. 

When a machine learning algorithm is fit with a dataset, the product is a machine 

learning model. Fitting is also referred to as training. 

 

Machine Learning Algorithms 

Machine learning algorithms can be broadly classified into two groups: supervised and 

unsupervised. 

Supervised Algorithms 

Supervised machine learning algorithms seek to “learn” the relationship between the 

feature and target. It does this by creating a function that maps the inputs (feature 

variables) to the output (target variable). In supervised learning a feature and target dataset 

are required to fit/train the model. The subsequent model is then used to predict on an 

unknown/unseen feature dataset with no corresponding target.  

Supervised algorithms are classified as either regression or classification. The 

major difference between regression and classification is that in regression the target 

dataset is a set of continuous variables e.g. house prices ($75,234, $94,456, $589,456, 
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$254,189, etc.) whereas in classification the target dataset is a set of discrete variables 

e.g. house type (bungalow, story-building, apartment). Supervised learning algorithms are 

usually capable of handling both regression and classification tasks, typically the 

algorithm would be designed to handle one case and modified to handle the other. 

Examples of supervised learning algorithms: Linear regression, Support Vector Machine, 

Random Forest, etc. 

Unsupervised Algorithms 

Unsupervised machine learning algorithms seeks to “learn” patterns within a dataset 

without any user assigned label/target i.e. as the name implies without or with little 

supervision. In unsupervised learning the input is the feature dataset (or simple the dataset) 

and the output would depend on the algorithm. 

Unsupervised algorithms can be used for clustering, probability density 

estimation, outlier detection and dimensionality reduction. Unsupervised learning 

algorithms are powerful tools and can be used for fraud detection, for example, your bank 

will instantly alert you if you make purchase outside your usual “pattern” this is usually 

done using unsupervised machine learning algorithms, it also used in e-commerce sites 

for customer-centric recommendations, for example, after shopping a while in your 

preferred site you can see “similar customers bought” icons, this is usually done using 

unsupervised algorithms. 
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Typical Machine Learning Workflow 

Each machine learning based study will have a workflow and would be different from 

another based on the expected outcomes. However, most machine learning workflows, 

complex or simple will follow a particular schema. This schema is illustrated in Figure I-

1 and component parts will be explained in subsequent sections. 

 

 

 

 

 

 

 

 

 

 

Data Preprocessing 

Data pre-processing is a broad term with respect to machine learning and data analytics 

and generally refers to all the steps taken to prepare a dataset (input data) to be properly 

fit by an algorithm. It is a key step and significantly affects model results accuracy and 

should be taken seriously. Some important pre-processing steps are outline below: 

 

Figure I-1: Typical Machine Learning Workflow 
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• Data cleaning: This term refers to operations performed to the dataset to make a 

dataset mathematically ready for fitting, most dataset in their original form would 

be impossible to fit for several reasons e.g. presence of non-numerical characters, 

missing data, poorly filled dataset. Steps taken to remedy this situation are referred 

to as data cleaning and include but not limited to filling missing data with user 

accepted value (mean, median, interpolated values etc.), replacing non-numerical 

values with numerical values (e.g. Yes/No to 0/1) etc. In most cases, when a data 

is “clean” there are still several steps needed to be taken on dataset to build an 

optimum model. 

• Feature Scaling: is a key operation in pre-processing as the dataset will have 

several features from different source and magnitudes. This different magnitude 

will have an adverse effect on most popular machine learning algorithms, feature 

scaling attempts to “level the playing field” and transforms the features in the 

dataset to the same or near same magnitudes which would in most cases will lead 

to a better and more accurate model. Feature scaling is explained more in 

subsequent section 

• Dimensionality Reduction: refers to the transformation of the input data set from 

a high dimensional space (large number of feature vectors) to a low dimensional 

space (small number of feature vectors). The goal of the user when performing 

dimensionality reduction is to reduce this dimensional space while retaining as 

much information from the dataset as possible. The need for dimensionality 

reduction arises because for distance-based algorithms (algorithms that measure 
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the distance between samples), in high dimensions (n << p) the concept of distance 

becomes distorted and does not work very well. The most common dimensionality 

reduction methods are feature extraction and feature selection. 

• Feature extraction involves deriving a new feature set from the original feature 

set by performing a mathematical operation on the initial set, feature extraction 

does not necessarily lead to dimensionality reduction but can be used for it. It is 

popularly used in image processing, pattern recognition and signal processing. 

Some feature extraction methods are: Principal Component Analysis (PCA), auto-

encoding, etc. 

• Feature selection involves selecting the subset of the original feature set that is 

most relevant to the machine learning task, some popular methods used for feature 

selection are: F-test, Chi-square test, mutual information etc. Some of which are 

discussed later in this work. 

Data Splitting 

Data Splitting is an important step in the machine learning workflow as it provides a 

dataset for which the model can be tested, it is most relevant to supervised learning. The 

common convention is to split the dataset into a 70:30 ratio, with 70% of the dataset used 

for the training the model (train dataset) and 30% of the dataset used for testing the 

accuracy of the model. The split is done randomly to remove as much bias as is possible. 
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Model Validation and Evaluation 

The model (supervised learning) is validated by comparing the predicted results and actual 

results using a metric, the selection of this metric is key as model is only as accurate as 

the metric you used. Popular metrics used for regression are root mean squared error 

(RMSE), mean absolute error (MAE), mean and absolute percentage error (MAPE), for 

classification evaluation F1-score, accuracy score, precision and recall are used. Some of 

which are discussed in length in subsequent section. 
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CHAPTER II  

LITERATURE REVIEW: MACHINE LEARNING APPLICATION IN OIL AND GAS 

Several authors have applied several machine learning methods in analyzing and 

interpreting the data source from the oil and gas industry. This research work cuts across 

key areas in all area of the oil and gas industry. Some of these bodies of work will be 

discussed in the chapter. 

 

Machine Learning Application in Drilling 

Machine learning methods have been applied successfully in handling several drilling 

related problems and a select few will be discussed in this section. 

Pollock et al. [1] used a combination of supervised, unsupervised and 

reinforcement methods to create a model that can be used to automatically set tool 

alignment and force control during directional drilling. Using historical data (bit depth, 

hole depth, hook load, weight on bit, differential pressure, total pump output and other 

extraneous variables) from 14 horizontal wells in Appalachia and Permian basin. The 

wells were selected on the basis that their trajectory matched well with the planned well 

trajectory. A hierarchical clustering model was used to identify closely related features 

while a GAN (generative adversarial network and LSTM (long short-term memory) was 

used in identify the sliding section during drilling. The data is passed into a neural network 

and the output is compared with the action taken by the directional driller. During the 

training process this output is iteratively updated until the error between the neural 
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networks output and drillers action is minimized. When the model was applied on a test 

dataset (new/unseen to the model) the differential pressure and rotary torque normalized 

percentage error was dropped to 0.21% and 2.7% respectively. 

Zhao et al. [2] developed a machine learning based system that is used to detect 

precursors of drilling events (severe vibration, stuck pipe, fluid loss, sudden equivalent 

circulating density change) with emphasis on stick-slip vibrations using a feature dataset 

comprising of surface data, wellbore geometry data, lithology and several downhole 

measurements. A hierarchical clustering model is first used to identify trends such as: 

stable, ramp up, step up, pulse down, ramp down, step down and pulse up in the processed 

time-series drilling data. Using the change in drilling condition from one trend to the other 

the author concluded that this method can automatically inform drillers when an unusual 

drilling event occurs. 

Zhong et al. [3] applied several classification methods (support vector machine, 

artificial neural network, random forest and gradient boosting) to identify coals beds using 

MWD (measurement while drilling) and LWD (logging while drilling) measurements. 

The dataset was obtained from 6 wells in the Surat basin in Australia. The author 

concluded that machine learning methods can accurately predict coal pay zones which can 

consequently reduce drilling down time and reduced cost related to coring or density log 

coal bed identification while drilling, the author also recommended the use of Neural 

Network or Random forest for multi well application. 

Bhowmik et al. [4] compared the use of two learning models (Random Forest and 

Radial basis function) coupled with genetic algorithm for riser design automation and the 
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traditional manual optimization for riser optimization configuration. The author concluded 

that the machine learning based meta models performed better in terms of computational 

time and cost as compared to the traditional manual optimization. They also noted that the 

Random Forest model performed best of all. 

 

Machine Learning Application in Reservoir Engineering and Petrophysics 

Machine learning methods have been applied successfully in handling several reservoir 

engineering and petrophysics related questions or problems and a select few would be 

discussed in this section. 

Wu et al. [5] proposed a method for locating kerogen/organic matter and pore in 

SEM images of shale samples using a Random Forest classifier on features engineered 

from SEM Images, the author concluded that this method which had an F1 score of 0.9 on 

a validation dataset was more reliable and robust method when compared to popular 

methods of threshold and object-based segmentation for locating pores and organic matter. 

Jiabo et al. [6] developed a model using several machine learning models: Linear 

Regression, Partial Least Squares, LASSO (Linear Absolute Shrinkage Selector 

Operator), ElasticNet, MARS (Multivariate Adaptive Regression Splines) and Neural 

Networks with feature set comprising of resistivity, neutron-density, gamma ray, caliper, 

photoelectric factor and synthetic lithological logs in predicting compressional and shear 

velocity for geomechanical characterization of shale wells. In both cases the Neural 

Network outperformed the other algorithms and produced the most accurate model. 
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Li et al. [7] proposed a method for predicting NMR T2 distribution using variable 

auto encoders with mineralogy and fluid saturation logs as features from a well located in 

the Bakken formation. It was observed that with hydrocarbon containing pores having 

sizes ranging from 9 to 2349.9 nm corresponding to bin 2 and 3 having high R2 score, the 

model prediction had. An average R2 score of 0.78. 

Gaganis et al. [8] used a feed-forward neural network to predict the phase 

equilibrium coefficients 𝑘𝑖 as an alternative to the various phase split approaches that 

require large computational power and multiple iterations. The authors did this by 

“treating the phase-split problem as a function learning one” and obtaining an accurate 

approximation of the function by using the neural network to provide a mapped function. 

Onwuchekwa et al.  [9] used a host of machine learning algorithms: K Nearest 

Neighbors, Support Vector Regression, Kernel Ridge Regression, Random Forest, 

Adaptive Boosting and Collaborative filtering to predict reservoir fluid properties, a 

feature set consisting of initial reservoir pressure, saturation pressure, solution gas oil 

ratio, formation volume factor, condensate gas ratio, API gravity, gas gravity, saturated 

oil viscosity and dead oil viscosity from 296 oil and 72 gas reservoirs in the Niger Delta 

and used them to predict formation volume factor, oil viscosity and condensate gas ratio. 

The author concluded that all techniques performed comparably or better than the industry 

standard of Standing and Vasquez-Beggs correlation in predicting oil formation volume 

factor, for oil viscosity the Random Forest and Adaptive Boosting gave comparable results 

with Beggs-Robinson correlation and did not require dead oil viscosity, although the 
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model performed “not as good” in predicting condensate gas ratio, the author hypothesized 

this to the limited amount of data from the gas reservoirs compared to the oil reservoirs. 

Son et al. [10] used an ElasticNet model to predict fluid saturation from NMR 1D T1-T2 

on core samples from the Meramec and successfully compared the result with fluid 

saturations gotten from a T1-T2 2-D map. 

 

Machine Learning Application in Production Engineering 

Machine learning methods have been applied successfully in handling several production 

related questions or problems. 

Cao et al. [11] proposed a data-driven method for predicting production flowrates, 

they considered 2 cases, one involving predicting future flow rates from an existing well 

and another involving predicting flow rates from a new well. A neural network was used 

for the prediction with production rate history and tubing head pressure used for model 

training in case 1 and the production history combined with geological properties, tubing 

head pressures from surrounding wells used for model training in case 2. The method 

provides more detail than the conventional decline curve analysis when forecasting and is 

less cumbersome than the reservoir simulation techniques. The author argues that this 

should not be replacement for these methods but a way to validate existing forecasts. 

Ounsakul et al. [12] proposed the use of machine learning methods in artificial 

selection, the authors gathered an initial feature set of 50 variables: well parameters, 

production conditions, fluid properties, reservoir parameters, surface facilities, probability 
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factors, supplier factors and HSE (health, safety and environment) consideration. Only 

samples that met the required threshold for cost/barrel were selected and the different 

artificial methods (gas lift, beam pump, ESP, PCP) were targets. Three algorithms: Naïve 

Bayes, Decision tree and Neural Network were used, and the decision tree had the highest 

accuracy with a reported accuracy, precision, recall and F1 score of 0.94. 

 

Machine Learning Application in Midstream, Downstream and Facilities 

Patel et al. [13] used clustering techniques to improves the efficiency of time-consuming 

nature of advanced process control in oil fields with hundreds of wells, using a case study 

of over 300 wells in a large conventional oil field in Saudi Arabia, the authors were able 

to cluster wells with similar features (well parameters) into groups and perform 

conventional APC (advance process control) methods on those wells. The authors 

recommended this method for advanced process control in fields with multiple wells given 

the success of the study. 

Omrani et al. [14] were able to use machine learning models PCA (principal 

component analysis) for dimensionality reduction and Artificial Neural network to classify 

slug flows in wells and subsea risers using flow data from multiphase flow simulator. 

The current literature on the application of machine learning and data driven methods in 

petroleum engineering and mineral exploitation in general is vast and the above mentioned 

research works are just select materials in the vast amount of research available on the 

topic. 
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CHAPTER III  

EFFICACY OF UNSUPERVISED OUTLIER DETECTION METHODS ON 

SUBSURFACE DATA 

In this chapter, I will discuss outlier detection methods for subsurface data. Outlier 

detection is an important step for a number of petrophysical and production related 

analysis because the presence of outliers can adversely affect the results of such analysis. 

Here I will discuss outlier types, importance, the limitations of univariate outlier detection 

techniques and the advantages of using unsupervised learning to identify outliers in 

multivariate data. This chapter will 

• provide an overview of unsupervised outlier detection methods  

• introduce four outlier detection algorithms  

• compare the performance of the different outlier detection algorithms on different 

configuration of data 

 

Introduction 

Outliers are datapoints (samples) that are significantly different from the general trend of 

the dataset. A sample is considered as an outlier when its attributes do not represent the 

behavior of the phenomenon/process in comparison with most of the samples in a dataset. 

Outliers are indicative of issues in data gathering/measurement process or rare events in 

the mechanism that generated the data. Identification and removal of outliers is an 

important step prior to building a data-driven model. Outliers skew the descriptive 
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statistics used by data analysis and machine learning algorithms which are required to 

build a data-driven model. A model developed on data containing outliers may not 

accurately represent the normal behavior of data because the learned model contains 

unrepresentative patterns due to the presence outliers. Outliers in a dataset affect the 

predictive accuracy and generalization capability of the created model. In the context of 

this work, outliers can be broadly categorized into three types: point/global, contextual, 

and collective outliers [15].  

Point/global outliers refer to individual datapoint or sample that significantly 

deviates from the overall distribution of the entire dataset or from the distribution of 

certain combination of features. These outliers exist at the tail end of a distribution and 

largely vary from the mean of the distribution e.g. subsurface depths where gamma ray 

reading spike above 2000gApi or well producing at an average rate of 200bbl/day having 

a recorded production of 1500bbl/day on a given day should be considered outliers. From 

an event perspective, getting the winning ticket in a national lottery is an example of a 

point outlier. 

Contextual/conditional outliers are points that deviate significantly from the data 

points within a specific context; e.g. a large gamma ray reading in sandstone due to an 

increase in potassium-rich minerals (feldspar). Snow in summer is an example of 

contextual outlier, snow in most US north-eastern states is not necessarily an outlier but 

when it occurs in June, in the context of seasons it becomes an outlier, same is the case 

with the gamma ray reading. High gamma ray readings are not necessarily outliers but 

when a high gamma ray reading occurs in sandstone or coal bed that point can be labelled 
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as an outlier. Points labeled as contextual outliers are valid outliers only for a specific 

context; a change in the context (e.g. snowing in January and high gamma ray reading in 

shale) will result in a similar point to be considered as an inlier.  

Collective outliers are small cluster of data which as a whole deviate significantly 

from the entire dataset; e.g. log measurements from regions affected by borehole washout. 

For example, it is not rare that people move from one residence to the next; however, when 

an entire neighborhood relocates at the same time, it will be considered as a collective 

outlier. As regards to subsurface characterization, outliers in well logs and subsurface 

measurements occur due to wellbore conditions, logging tool deployment, and physical 

characteristics of the geological formations. For example, washed out zones in the 

wellbore and borehole rugosity significantly affects the readings of shallow-sensing logs, 

such as density, sonic, and photoelectric factor (PEF) logs, resulting in outlier response. 

Along with wellbore conditions, uncommon beds and sudden change in formation 

properties in the formation also result in outlier behavior of the subsurface measurements.  

Outlier handling refers to all the steps taken to negate the adverse effect of 

outliers in a dataset. After detecting the outliers in a dataset, how they are handled depends 

on the immediate use of the dataset. Outliers can be removed, replaced or transformed 

depending on the type of dataset and its use. Outlier handling is particularly important as 

outliers could enhance or mask relevant statistical characteristics of the dataset. For 

instance, outliers in weather data could be early signs of a weather disaster, ignoring this 

could have catastrophic consequences, outliers in real time MWD (measurement while 

drilling) could be early signs of a kick. However, before consider handling outliers they 
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must first be detected. In this chapter, I will apply four unsupervised outlier detection 

techniques (ODTs) on various original and synthetic log datasets. Following that, a 

comparative study of these unsupervised techniques for purposes of log-based subsurface 

characterization. 

 

Overview of Outlier Detection Models 

Outlier detection methods detect anomalous observations/samples that do not fit the 

typical/normal statistical distribution of a dataset. Simple methods for outlier detection 

use statistical tools, such as boxplot and z-score which are based on univariate analysis. 

A boxplot is a standardized way of representing the distribution of samples 

corresponding to various features using boxes and whiskers. The boxes represent the inter-

quartile range of the data while the whiskers represent a multiple of the first and third 

quartile of the variable, any datapoint/sample outside these limits is considered an outlier. 

The next simple statistical tool for outlier detection is the Z-score, which indicates how 

far a datapoint/sample is from its mean for a specific feature. A Z-score of 1 means the 

sample point is 1 standard deviation away from its mean. Typically, Z-score values greater 

than or less than +3 or -3 respectively are considered outliers. However, those values can 

be changed depending on the preference of the user. Z-score is expressed as: 

                                            𝐙 − 𝐬𝐜𝐨𝐫𝐞 =  
𝐱𝐢−�̅�

𝛔
       Equation III-1 

where, 

 𝑥𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 



 

34 

 

 �̅� = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Outlier detection based on simple statistical tools generally assume that the data 

has a normal distribution and do not consider the correlation between features in a 

multivariate dataset. Advanced outlier detection methods based on machine learning (ML) 

can handle correlated multivariate dataset, detect abnormalities within them, and does not 

assume a normal distribution of the dataset [53]. Well logs and subsurface measurements 

are sensing heterogenous geological mixtures with lots of complexity in terms of the 

distributions of minerals and fluids; consequently, these measurements generally do not 

exhibit Gaussian distribution and generally exhibit considerable correlations within the 

features. Data-driven outlier detection techniques built using machine learning are more 

robust in detecting outliers as compared to simple statistical tools. 

Outliers in dataset can be detected either using supervised or unsupervised ML 

technique. In supervised ODT, outlier detection is treated as a classification problem. The 

model is trained on dataset with samples pre-labelled as either normal data or outliers. The 

model then learns to assign labels to the samples in a new unlabeled dataset as either inliers 

or outliers based on what was “learned” from the training dataset. Supervised ODT is 

robust when the model is exposed to a large, statistically diverse training set (i.e. dataset 

that contains every possible instance of normal and outlier samples), whose samples are 

accurately labelled as normal or outlier. Unfortunately, this is difficult, time consuming 

and sometimes impossible to obtain as it requires significant human expertise in labeling 

and expensive data acquisition to obtain the large dataset. On the contrary, unsupervised 
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ODT overcomes the requirement of labelled dataset. Unsupervised ODT assumes: (1) 

number of outliers is much smaller than the normal samples and (2) outliers do not follow 

the overall ‘trend’ in the dataset. 

Figure III-1 shows various outlier detection models currently in use and their mode 

of operation. Both supervised and unsupervised outlier detection techniques are used in 

different industries. For instance, in credit fraud detection neural networks are trained on 

all known fraudulent and legitimate transactions, and every new transaction is assigned a 

fraudulent or legitimate label by the model based on the information from the train dataset. 

It could also be trained in an unsupervised manner by flagging transactions that are 

dissimilar from what is normally encountered. In medical diagnosis, outlier detection 

techniques are used in early detection and diagnosis of certain diseases by analyzing the 

patient data (e.g. blood pressure, heart rate, insulin level etc.) to find patients for whom 

the measurements deviate significantly from the normal conditions.  Zengyou et al. [16] 

used a cluster based local outlier factor algorithm to detect malignant breast cancer by 

training their model on features related to breast cancer. Outlier detection techniques are 

also used in detecting irregularities in the heart functioning by analyzing the measurements 

from an ECG (Echo Cardiogram) for purposes of early diagnosis of certain heart diseases. 

In the oil and gas industry, Chaudhary et al. [17] was able to improve the performance of 

the SEPD (Stretched Exponential Production Decline) model by detecting and removing 

outliers from production data by using the Local Outlier Factor method. In another oil and 

gas application, Luis et al. [18] used one-class support vector machine (SVM) to detect 

possible operational issues in offshore turbomachinery, such as pumps, compressors, by 
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detecting anomalous signals from their sensors. When implementing an unsupervised 

outlier detection model, a prior knowledge of the expected fraction of outliers improves 

the accuracy of outlier detection. In many real-world applications, these values are known. 

For example, in the medical field, there is a good estimate of the fraction of people who 

contract a certain rare disease. Unfortunately, when working with well log dataset this 

fraction is not necessarily known as they depend on several factors (operating conditions 

during logging, type of formation etc.). This is an additional challenge in applying 

unsupervised outlier detection algorithm on well log data. 

 

 

 

 

Figure III-1: Popular methods used for Outlier detection 
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Machine Learning Based Outlier Detection Algorithms 

In this chapter, the performance of four unsupervised outlier detection algorithms were 

compared on their ability to identify in well logs the formation depths that exhibit 

anomalous or outlier log responses. The algorithm was used in an unsupervised manner 

without minimal tuning. Each formation depth is considered a sample and the different 

well logs are considered features. An unsupervised outlier detection algorithm processes 

the feature matrix corresponding to the available samples that contain both normal and 

anomalous behavior to detect depths that exhibit outlier behavior. Unsupervised outlier 

detection algorithms detect anomalous behavior either based on distance, density, decision 

boundary, or affinity that are used to quantify the relationships governing the inlier and 

outlier samples. In the next section four unsupervised algorithms will be introduced 

namely isolation forest (IF), one-class SVM (OCSVM), local outlier factor (LOF), and 

density-based spatial clustering of applications with noise (DBSCAN). 

Isolation Forest 

Isolation forest (IF) assumes that the outliers will likely lie in sparse regions of the feature 

space and have more empty space around them than the densely clustered normal/inlier 

data [19]. Since outliers are in less populated regions of the dataset, it generally takes 

fewer random partitions to isolate them in a segment/partition, meaning they are more 

susceptible to isolation [20]. Isolation Forest generates tree-like structures, where the 

number of partitioning required to isolate an outlier sample in a terminating node is 

equivalent to the path length from the root node to the terminating node. This path length 
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is averaged over a “forest” of such random trees and is a measure of the normality of a 

sample (to what degree a sample is an outlier or not), such that anomalies have noticeably 

shorter path lengths i.e. they are easier to partition and isolate in the feature space. A 

decision function labels each observation as an inlier or outlier based on the path length 

of the observation compared to the average path length of all observations. IF requires 

minimal hyperparameter tuning to obtain reasonable reuslts, has low computation 

requirements, fast to deploy, and can be parallelized for faster computation. The major 

hyperparameters for tuning are the amount of contamination of the dataset, number of 

trees/estimators, maximum number of samples to be used in each tree, and maximum 

number of sub-sampled features used in each tree. Figure III-2(a) illustrates the outlier 

detection by the Isolation Forest when applied to a simple two-dimensional dataset 

containing 110 samples. The green samples represent inliers and the orange samples 

represent outliers, and the shade of blue in the background is indicative of degree of 

normality of samples lying the shaded region, where darker blue shades correspond to 

outliers that are easy to partition or in this case isolate.  

One Class Support Vector Machine 

One-class support vector machine (OCSVM) is a parametric unsupervised outlier 

detection algorithm suitable when the data distribution is gaussian or near gaussian with 

very few cases of the anomalies. OCSVM is based on the support vector machine that 

finds the support vectors and then separate the data into separate classes using 

hyperplanes. OCSVM finds a minimal hypersphere in the kernel space (transformed 
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feature space) that circumscribes maximum inliers (normal samples); thereby inferring the 

normality in the dataset. OCSVM nonlinearly projects the data into a high-dimensional 

kernel space, and then maximally separates the data from the origin of the kernel space. 

As a result, OCSVM may be viewed as a regular SVM where all the training data lies in 

the first class, and the origin is taken as the only member of the second class. Nonetheless, 

there is a trade-off between maximizing the distance of the hyperplane from the origin and 

the number of training data points contained in the hypersphere (region separated from the 

origin by the hyperplane). An optimization routine is used to process the available data to 

select certain samples as support vectors that parameterize the decision boundary to be 

used for outlier detection [21]. OCSVM implementation is challenging for high-

dimensional data, tends to overfit, and needs careful tuning of the hyperparameters. 

OCSVM is best suited for outlier detection when the training set is minimally 

contaminated by outliers without any assumptions on the distribution of the inlying data. 

Important hyperparameters of OCSVM are the gamma and outlier fraction. The gamma 

influences the radius of the gaussian hypersphere that separates the inliers from outliers, 

large values of gamma will result in smaller hypersphere and ‘stricter’ model and vice 

versa. It acts as the cut-off parameter for the Gaussian hypersphere that governs the 

separating boundary between inliers and outliers [22]. Outlier fraction defines the 

percentage of the dataset that is outlier. Outlier fraction helps in creating tighter decision 

boundary to improve outlier detection. Figure III-2(a), Figure III-2(b) illustrates the 

working of the one-class SVM where the interfaces of two different shades are few 

possible decision functions that can be used for outlier detection. Figure III-2(b) illustrates 
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the outlier detection by the OCSVM when applied to a simple two-dimensional dataset 

containing 110 samples. The purple samples are outliers, and the different contour shades 

in the background is indicative of degree of normality of samples lying in the shaded 

region, with inner most contours pointing toward more “normal” samples. 

 

Density Based Clustering Algorithm with Noise Application  

DBSCAN is a density-based clustering algorithm which can be used as an unsupervised 

outlier detection algorithm. The density of a region depends on the number of samples in 

that region and the proximity of the samples to each other. DBSCAN seeks to find regions 

of high density in the dataset and define them as inlier clusters. Samples in less dense 

regions are labelled as outliers. The key idea is that for each sample in the inlier cluster, 

the neighborhood region of the certain user-defined size (referred to as bandwidth) must 

contain at least a minimum number of samples, that is, the density in the neighborhood 

must exceed a user defined threshold [23]. DBSCAN requires the tuning of the following 

hyperparameters that control the outlier detection process: minimum number of samples 

required to form a cluster, maximum distance between any two samples in a cluster, and 

parameter p defining the form of the Minkowski Distance, such that Minkowski distance 

transforms into Euclidean distance for p = 2. The DBSCAN model is particularly effective at 

detecting point outliers and can also detect collective outliers if they occur at low density regions. 

However, it is not reliable at detecting contextual outliers. DBSCAN requires significant expertise 

level in select hyperparameters for optimal performance in terms of outlier detection. Figure III-2 
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(d) shows the working of a DBSCAN model on a two dimensional dataset with 110 samples with 

10 points representing outlier (purple coded) and 100 points represents normal data (green coded). 

Local Outlier Factor 

Local outlier factor (LOF) is an unsupervised outlier detection algorithm that does not 

learn a decision function. Simple density-based outlier detection algorithms are not as 

reliable for outlier detection when the clusters are of varying densities. The Local Outlier 

Factor mitigates the problem by using relative density and assigns a score to each sample 

based on its relative density. LOF compares the local density of a sample to the local 

densities of its K-nearest neighbors to identify regions of similar density and to identify 

outliers, which have a substantially lower density than their K-nearest neighbors. LOF 

assigns a score to each sample by computing relative density of each sample as a ratio of 

the average local reachability density of neighbors to the local reachability density of the 

sample, and flags the points with low scores as outliers [24].  A sample with LOF score 

of 3 means the average density of this point’s neighbors is about 3 times more than its 

local density, i.e. the sample is not like its neighbors. LOF score of a sample smaller than 

one indicates the sample has higher density than neighbors. The number of neighbors (K) 

sets how many neighbors are considered when computing the LOF score for a sample. In 

Figure III-2 (c), the LOF is applied to the above-mentioned 2-dimensional dataset 

containing 110 samples. The radius of the circle encompassing a sample is directly 

proportional to the LOF score of the sample and by that, the points at the middle of the 

plot are the outliers in this dataset and the sample points at the ends with the smaller radius 
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circles around the sample points are the normal sample points. A standard value of K=20 

is generally used for outlier detection [25]. Like DBSCAN for unsupervised outlier 

detection, LOF is severely affected by the curse of dimensionality and is computationally 

intensive when there are large number of samples. LOF needs attentive tuning of the 

hyperparamters. Due to the local approach, LOF is able to identify outliers in a data set 

that would not be outliers in another area of the data set. The major hyper parameters for 

tuning are the number of neighbors to consider for each sample and metric p for measuring 

the distance, similar to DBSCAN, where the general form of Minkowski distance 

transforms into Euclidean distance for p=2. 
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Figure III-2: Application of the proposed outlier detection models with the blue points 

indicating inliers and red points indicating outliers (a) Isolation Forest – different shades 

of blue on map signify the decision boundaries with dark values signifying an increasing 

likelihood of a sample being an outlier (b) One class SVM -- – different shades of blue 

on map signify the decision boundaries with dark values signifying an increasing 

likelihood of a sample being an outlier (c) Local Outlier Factor – the radius of the red 

circle signifies the likelihood of a sample being an outlier (d) DBSCAN 
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Methodology 

Data for this comparative study was obtained from one well, the logs selected for the 

analysis are gamma ray (GR), density (RHOB), neutron porosity (NPHI), compressional 

velocity (DTC), deep and shallow resistivity (RT and RXO). 5617 samples are available 

from a depth interval; of 580 – 5186 ft. The dataset contains log responses from 

limestone, sandstone, dolostone and shale bed. 

Data Preprocessing 

Data preprocessing refers to the transformations applied to data before feeding it to the 

machine learning algorithm. Primary use of data preprocessing is to convert the raw data 

into a clean dataset that the machine learning workflow can process. A few data 

preprocessing tasks include fixing null/nan values, imputing missing values, scaling the 

features, normalizing samples, removing outliers, encoding the qualitative/nominal 

categorical features, and data reformatting. Data preprocessing is an important step 

because a data-driven model built using machine learning is as good as the quality of data 

processed by the model. 

Feature Transformation 

Machine learning models tend to be more efficient when the features/attributes are not 

skewed and have relatively similar distribution and variance. Unfortunately feature 

vectors can come in many different distributions and are not always normal/gaussian. 

However certain techniques can be used to transformed to this non gaussian distributions 
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to a gaussian/near-gaussian distribution. The transformed feature is a function of the initial 

feature, some simple functions used for transformations are logarithm and power (square 

(2), inverse (-1) and any reasonable real number) some more complex transformation 

involve more complex functions like the box-cox transformation, quantile transformation. 

Resistivity measurements range from 10-2 ohm-m (brine filled formation) to 103 ohm-m 

(low porosity formation) and tend to exhibit log-normal distribution. To reduce the right 

skewness observed in the resistivity data (i.e. mean >> mode), the resistivity 

measurements is transformed using the logarithmic function (logarithmic transformation). 

This reduces it skewness and variability and improves the model’s predictive performance, 

as demonstrated in subsequent sections. 

Feature Scaling 

A dataset generally contains features that significantly vary in magnitudes, units and 

range. This tends to bias the machine learning methods based on distance, volume, 

density, and gradients. Without feature scaling, a few features will dominate during the 

model development. For instance, the features with high magnitudes will weigh in a lot 

more in the distance calculations than features with low magnitudes, which for example 

will adversely affect k-nearest neighbor classification/regression and principal component 

analysis. Feature scaling is an important aspect of data preprocessing that improves the 

performance of the data-driven models. For methods based on distance, volume and 

density, it is essential to ensure that the features have similar or near similar scales for 

improved performance. Data from different logs usually range between different scales. 
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For example, the RHOB (1.95 – 2.95g/cc) and GR (50 – 250 gAPI) log have vastly 

different scales.  

For purposes of feature scaling, robust scaling method is used, which can be 

expressed mathematically as: 

                                                  𝐱𝐢𝐬 =
𝐱𝐢−𝐐𝟏(𝐱)

𝐐𝟑(𝐱)−𝐐𝟏(𝐱)
    Equation III-2

    

where xis: scaled feature x for the i-th sample; xi: unscaled feature x for the i-th 

sample; Q1(x): first quartile of feature x; and Q3(x): third quartile of feature x. The first 

and third quartiles represent the median of the lower half and upper half of the data, 

respectively, which is not influenced by outliers. Robust scaling is performed on the 

features (logs) because it overcomes the limitations of other scaling methods, like the 

Standard scaler that assumes the data is normally distributed and the MinMax scaler that 

assumes that the feature cannot exceed certain values due to physical constraints. Presence 

of outliers adversely affects the Standard scaler and severely affects the MinMax scaler. 

Robust scaler overcomes the limitations of the MinMax scaler and Standard scaler by 

using the first and third quartiles for scaling the features instead of the minimum, mean 

and maximum values. The use of quartiles ensures that the robust scaler is not sensitive to 

outliers, whereas the minimum and maximum values used in the MinMax scaler could be 

the outliers and the mean and standard deviation values used in the Standard scaler is 

influenced by outliers. 
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Validation Dataset 

3 validation datasets were created containing known organic/synthetic outliers to assess 

and compare the performances of the mentioned unsupervised outlier detection 

algorithms. Being unsupervised methods, there is no direct way of quantifying the 

performances of isolation forest, local outlier factor, DBSCAN, and one-class SVM. 

Therefore, domain knowledge, physically consistent thresholds, and various synthetic data 

creation methods is used to assign outlier/inlier label to each sample in the dataset to be 

processed by the unsupervised outlier detection model. 

Dataset #1: Noisy Measurement 

Dataset #1 was constructed from the above-mentioned dataset to compare the performance 

of the four unsupervised outlier detection algorithms in identifying depths where log 

responses are adversely affected by noise. Noise in well log dataset can adversely affect 

its geological interpretation as it masks the formation property at those depths. The dataset 

was acquired in the aforementioned well drilled with a bit of size 7.875” and is comprised 

of log responses measured at 5617 recorded depths points. Dataset #1 comprise gamma 

ray (GR), bulk density (RHOB) and compressional velocity (DTC) logs from the dataset 

for the depths where the borehole diameter is between 7.8” and 8.2”. This led to 4037 

inliers in Dataset #1. A synthetic noisy log response (200 samples) is then created based 

on the distribution shape and range of each of the feature vectors, such that each sample 

represent a valid log response but has no physical relationship to the original dataset.  



 

48 

 

Following that, synthetic noisy log responses for 200 additional depths were 

randomly introduced/ “scattered” into the feature matrix to create Dataset #1. 

Consequently, Dataset #1 contains in total 4237 samples, out of which 200 are outliers. 

Figure III-3(a) is a 3D scatterplot of Dataset #1, such that the green points are labelled as 

inlier which represent the recorded well log data from each feature vector (RHOB, GR 

and DTC) and the purple points are labelled as outliers which represent the synthetic noisy 

dataset.  

Dataset #2: Bad Hole Measurement 

Dataset #2 was constructed from the dataset to compare the performance of the four 

unsupervised outlier detection techniques in detecting depths where the log responses are 

adversely affected by the large borehole sizes, also referred as bad holes. Like Dataset #1, 

Dataset #2 comprise GR, RHOB, DTC, deep resistivity (RT), and neutron porosity (NPHI) 

logs from the dataset for depths where the borehole diameter is between 7.8” and 8.2”. 

Following that, the depths in the dataset where borehole diameter is greater than 12” were 

added to Dataset #2 as outliers. Consequently, Dataset #2 contains in total 4128 samples, 

out of which 91 are outliers and 4037 are inliers. Inliers in Dataset #2 are the same as those 

in Dataset #1. Comparative study on Dataset #2 involved experiments with four distinct 

feature subsets sampled from the available features GR, RHOB, DTC, RT, and NPHI logs. 

The four feature subsets are referred as FS1, FS2, FS3 and FS4, where Feature Set 1 (FS1) 

contains GR, RHOB and DTC, Feature Set 2 (FS2) contains GR, RHOB and RT, Feature 

Set 3 (FS3) contains GR, RHOB, DTC and RT, and Feature Set 4 (FS4) contains GR, 
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RHOB, DTC and NPHI. The four feature subsets were used to analyze the effects of 

features on the performances of the four unsupervised outlier detection algorithms. Figure 

III-3(b) is a 3D scatterplot of Dataset #2 for the subset FS1, where green points are the 

inliers which represent well log data measured in the borehole with diameter between 7.8” 

– 8.2” (gauge/near gauge) and the purple points are the outliers which represent well log 

data measured in the borehole with diameter greater than 12” (washout). The outlier points 

should represent points where the well logs reading will be negatively affected by the 

effect of the larger hole (e.g. limited tool depth of investigation). 

Dataset #3: Shaly Layers with Noisy and Bad Hole Measurements 

Dataset #3 was constructed from the onshore dataset to compare the performance of the 

four unsupervised outlier detection techniques in detecting thin shale layers/beds in the 

presence of noisy and bad-hole depths. Dataset #3 comprise GR, RHOB, DTC, RT, and 

NPHI responses from 201 depth points from a sandstone bed, 201 depth points from a 

limestone bed, 201 depth points from a dolostone bed and 101 depth points from a shale 

bed of the Onshore Dataset. These 704 depths constitute the inliers. 30 bad-hole depths 

with borehole diameter greater than 12” and 40 synthetic noisy log responses are the 

outliers that are combined with the 704 inliers to form Dataset #3. Consequently, Dataset 

#3 contains in total 774 samples, out of which 70 are outliers. Comparative study on 

Dataset #3 involved experiments with four distinct feature subsets sampled from the 

available features GR, RHOB, DTC, RT, and NPHI logs, namely FS1, FS2, FS3 and FS4, 

like that performed on Dataset #2. Figure III-3(c) is a 3D scatterplot of Dataset #3 for the 
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subset FS1, where green points are the inliers where each point represent well log reading 

from either sandstone, limestone, dolostone or shale bed and the purple points are outliers 

where each point either represents a synthetic noisy log data or well log reading from a 

sample depth with diameter greater than 12”. 

 

 

 

Figure III-3: Scatter plot highlighting the distribution of all created datasets: (a) Dataset 

#1, (b) Dataset #2, (c) Dataset #3 
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Metrics for Algorithm Evaluation 

The selected unsupervised outlier detection algorithms will process the four above-

mentioned datasets and will assign a label (either outlier or inlier) to each depth (sample) 

in the dataset. Labels are assigned based on the log responses for each depth. In real world 

application of unsupervised outlier detection, there is no prior information of outliers and 

outlier labels are present. For purposes of comparative study of the performances of the 

unsupervised outlier detection algorithms four datasets were created, named Datasets #1, 

#2, #3, and #4 containing outlier and inlier labels. In evaluating this algorithms 

metrics/scores employed to evaluate the classification methods will be used. In evaluating 

a binary classification model each prediction by the model are classified as either true 

positive, true negative, false positive or false negative. In comparing this algorithm, the 

outlier detection problem will be treated as binary classification problem (i.e. only two 

classes can be predicted: inlier or outlier) and therefore this tag can be used. The true 

positive/negative refer to the number of outlier/inlier samples that are correctly detected 

as the outlier/inlier by the outlier detection model. On those lines, false positive/negative 

refer to the number of outlier/inlier samples that are incorrectly detected as the 

inlier/outlier by the unsupervised outlier detection model. For example, when an outlier is 

detected as an inlier by the model, it is referred to as a false negative. 

The following classification evaluation metrics will be used in this chapter to 

compare the performance of each algorithms on the datasets, similar metrics were 

employed by Wu et al, 2019 [52]:  
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Recall 

Recall (also referred to as sensitivity) is the ratio of true positives to the sum of true 

positives and false negatives. It represents the fraction of outliers in dataset correctly 

detected as outliers. It is expressed as: 

                                                     𝐑𝐞𝐜𝐚𝐥𝐥 =  
𝐓𝐏

𝐓𝐏+𝐅𝐍
        Equation III-3     

     

It is an important metric but should not be used in isolation as a high recall does 

not necessarily mean a good outlier detection because of the possibility of large false 

positives, i.e. actual inliers being detected as outliers. For example, when an outlier 

detection model detects each data point as an outlier, the recall will be 100% but it is a 

bad performance. 

Specificity 

Specificity is the ratio of true negatives to the sum of true negatives and false positives. It 

represents the fraction of correctly detected inliers by the unsupervised outlier detection 

model. It is expressed as: 

                                                𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =  
𝐓𝐍

𝐓𝐍+𝐅𝐏
        Equation III-4 

It is an important metric in this work as it ensures that inliers are not wrongly 

labeled as outliers. It is used together with recall to evaluate the performance of a model. 

Ideally, high recall and high specificity is required. A high specificity on its own does not 

indicate a good performance. For example, if a model detects every data point as an inlier. 

The specificity will be 100%. 
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Balanced Accuracy Score 

The balanced accuracy score is the arithmetic mean of the specificity and recall, it 

overcomes the limitation of the recall and specificity by combining both metrics and 

providing a single metric for evaluating the outlier detection model. It is expressed 

mathematically as: 

             𝐁𝐚𝐥𝐚𝐧𝐜𝐞𝐝 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 𝐒𝐜𝐨𝐫𝐞 =  
𝐑𝐞𝐜𝐚𝐥𝐥+𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 

𝟐
    Equation III-5 

 

Its values range from 0 to 1, such that 1 indicates a perfect performing outlier 

detection model that correctly detects all the inliers and outliers in the dataset. Balanced 

accuracy score of less than 0.5 indicates that randomly assigned labels will perform better 

than outlier detection model for identifying either the outlier or the inlier. 

Precision 

Precision is a measure of the reliability of outlier label assigned by the unsupervised outlier 

detection algorithm. It represents the fraction of correctly predicted outlier points among 

all the predicted outliers. It is expressed mathematically as: 

                                        𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =  
𝐓𝐏

𝐓𝐏+𝐅𝐏
     Equation III-6 

 

Similar to recall, precision should not be used in isolation to assess the 

performance. For instance, if a dataset has 1000 outliers and a model detects only one 

point as an outlier and it happens to be a true outlier, then the precision of the model will 

be 100%.  
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F-1 Score 

The F-1 score is the harmonic mean of the recall and precision, like the balanced accuracy 

score it combines both metrics to overcome their singular limitations. It is expressed 

mathematically as: 

                                   𝐅𝟏 𝐒𝐜𝐨𝐫𝐞 =
𝟐 ×𝐏𝐫𝐞𝐜𝐢𝐬𝐨𝐧 × 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥
     Equation III-7 

  

The values range from 0 – 1, such that F1 score of 1 indicates a perfect prediction 

and 0 a total failure of the model. If the earlier discussed case is, where the dataset 

contains 1000 inliers and 100 outliers, and the outlier detection algorithm detects only 

one outlier which happens to be a “true” outlier, the precision is 1, the recall is 0.01 and 

the specificity is 1. The balance accuracy score is 0.5. However, the F1-score is around 

0.02. F1-score and balanced accuracy score helps to detect a poorly performing outlier 

detection model. 

ROC AUC Score 

Each unsupervised outlier detection algorithm implements a specific threshold to 

determine whether a sample is outlier. ROC curve is a plot of the true positive rate (recall) 

vs the false positive rate (1 - specificity) at different decision/probability thresholds. When 

the threshold of an unsupervised outlier detection algorithm is altered, the performance of 

the unsupervised outlier detection algorithm changes resulting in the ROC curve. For 

instance, the isolation forest computes the average path length of samples, such that 

samples with shorter path length are considered more likely to be outliers and are given a 
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higher anomaly score. A threshold is set for the isolation forest by defining the anomaly 

score beyond which a sample will be considered an outlier. For the isolation forest, the 

anomaly scores typically range from -1 to 1 with the threshold set at 0 by default, such 

that negative values (<0) are labelled outliers and positive value (>0) are labelled inliers. 

For good outlier detection, an unsupervised outlier detection algorithm should have high 

recall (high TPR) and high specificity (low FPR), meaning the ROC curve should shift 

towards the top left corner of the plot. As the ROC curve shifts to the left top corner, the 

area under curve (AUC) tends to 1, which represents a perfect outlier detection for various 

choices of threshold. An unsupervised outlier detection algorithm is reliable when the 

recall and specificity are close to 1 and independent of the choice of thresholds, which 

indicates an AUC of 1. A ROC curve exhibiting a gradient close to 1 and AUC of 0.5 

indicates that the unsupervised outlier detection algorithm is performing only as good as 

randomly selecting certain samples as outliers. 

 

Discussion of Results 

Dataset #1 

Dataset #1 as earlier explained contains measured 4037 GR, RHOB, DTC and RT 

responses combined with 200 synthetic noise samples having a total of 4237 sample 

points. The unsupervised outlier detection model performance is evaluated for three 

feature subsets referred to as FS1, FS2, and FS2⁎, where FS1 contains GR, RHOB, and 

DTC; FS2 contains GR, RHOB, and logarithm of RT; and FS2⁎ contains GR, RHOB, and 
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RT. For the subsets FS1 and FS2⁎ of Dataset #1, DBSCAN performs better than the other 

models, as indicated by the balanced accuracy score. For the subset FS1 of Dataset #1, the 

DBSCAN correctly labels 176 of the 200 introduced noise samples as outliers and 3962 

of the 4037 “normal” data points as inliers; consequently, DBSCAN has a balanced 

accuracy score and F1 score of 0.93 and 0.78, respectively. For the subset FS2 of Dataset 

#1, log transform of resistivity negatively impacts the outlier detection performance. 

Logarithmic transformation of resistivity reduces the variability in the feature. On using 

deep resistivity (RT) as is (i.e., without logarithmic transformation) in the subset FS2⁎, 

DBSCAN generates similar performance as with the subset FS1 (Table 3.1). All models 

except isolation forest (IF) are adversely affected by the logarithmic transformation of RT. 

Visual representation of the performances in terms of balanced accuracy score is shown 

in Figure III-4(a). 

LOF model does not perform well in detecting noise in a well-log dataset. Based 

on the ROC-AUC score, LOF performs the worst compared with OCSVM and IF in terms 

of the sensitivity of the accuracies (precisions) of both inlier and outlier detections to the 

decision thresholds. Based on F1 score, DBSCAN has the highest reliability and accuracy 

(precision) in outlier detection; however, hyperparameter tuning should be done to 

improve the precision of DBSCAN because the current F1 score is not close to 1. One 

reason for low F1 score is that the inlier-outlier imbalance was not addressed. All these 

evaluation metrics used in this study are simple metrics that can be improved by weighting 

the metrics to address the effects of imbalance (i.e., the number of positives is one order 
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of magnitude smaller than the number of negatives). F1 score of all the methods can be 

improved by improving the precision. 

 

Table 1: Results from Dataset #1 

 

    

BALANCED 

ACCURACY 

SCORE 

F1 SCORE 

ISOLATION FOREST 

FS1 0.84 0.55 

FS2 0.85 0.37 

FS2* 0.88 0.63 

ONE CLASS SVM 

FS1 0.91 0.57 

FS2 0.81 0.45 

FS2* 0.92 0.59 

LOCAL OUTLIER 

FACTOR 

FS1 0.73 0.28 

FS2 0.62 0.18 

FS2* 0.68 0.24 

DBSCAN 

FS1 0.93 0.78 

FS2 0.66 0.42 

FS2* 0.93 0.76 
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Dataset #2 

Dataset #2 as earlier explained contains 4037 measured GR, RHOB, DT, RXO and RT 

normal responses combined with 91 samples from depth affected by significant washout. 

In Dataset #2, model performance is evaluated for five feature subsets: FS1, FS2, FS2⁎⁎, 

FS3, and FS4. FS1 contains GR, RHOB, and DTC; FS2 contains GR, RHOB, and RT; 

FS2⁎⁎ contains GR, RHOB, and RXO; FS3 contains GR, RHOB, DTC, and RT; and FS4 

contains GR, RHOB, DTC, and NPHI. In each feature set, there are 91 depths (samples) 

labeled as outliers and 4037 depths labeled as inliers. Isolation forest (IF) performs better 

than other methods for all the feature sets. DBSCAN and LOF detections are the worst. IF 

performance for FS2 is worse compared with other feature subsets, because FS2 uses RT, 

which is a deep-sensing log and is not much affected by the bad holes. Consequently, 

when RT (deep resistivity) is replaced with RXO (shallow resistivity) in subset FS2⁎⁎, the 

IF performance significantly improves indicating the need of shallow-sensing logs for 

better detection of depths where logs are adversely affected by bad holes. Subset FS3 is 

created by adding DTC (sonic) to FS2. FS3 has four features, such that DTC is extremely 

sensitive to the effects of bad holes, whereas RT is not sensitive. In doing so, the 

performance of IF on FS3 is comparable with that on FS1 and much better than that on 

FS2. This mandates the use of shallow-sensing logs as features for outlier detection. Visual 
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representation of the performances in terms of balanced accuracy score is shown in Figure 

III-4(b). 

Outlier detection performance on Dataset #2 clearly shows that when features that 

are not strongly affected by hole size (e.g., deep resistivity, RT) are used, the model 

performance drops, as observed in FS2. On the contrary, when shallow-sensing DTC and 

RXO are used as features, the model performance improves. I conclude that feature 

selection plays an important role in determining the performance of ODTs, especially in 

identifying “contextual outliers.” IF model is best in detecting contextual outliers, like the 

group of log responses affected by bad holes. F1 scores are low because the fraction of 

actual outliers in the dataset is a small fraction (0.022) of the entire dataset, and 

contamination levels are not set a priori. Being an unsupervised approach, in the absence 

of constraints such as contamination level, the model is detecting many original inliers as 

outliers. Therefore, balanced accuracy score and ROC-AUC score are important 

evaluation metrics (Table 3.2). 
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Table 2: Results from Dataset #2 

    

BALANCED ACCURACY 

SCORE 
F1 SCORE 

ISOLATION 

FOREST 

FS1 0.93 0.23 

FS2 0.64 0.11 

FS2* 0.86 0.21 

FS3 0.91 0.22 

FS4 0.93 0.24 

ONE CLASS SVM 

FS1 0.76 0.22 

FS2 0.6 0.11 

FS2** 0.65 0.14 

FS3 0.74 0.21 

FS4 0.84 0.28 

LOCAL OUTLIER 

FACTOR 

FS1 0.38 0.11 

FS2 0.57 0.07 

FS2** 0.56 0.08 

FS3 0.61 0.1 

FS4 0.61 0.09 

DBSCAN 

FS1 0.58 0.18 

FS2 0.53 0.09 

FS2** 0.56 0.17 

FS3 0.58 0.14 

FS4 0.61 0.18 
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Dataset #3 

Dataset #3 consists of 774 samples with 704 sample points representing sandstone, 

limestone and dolostone beds and are labelled as inliers combined with 70 samples points 

of shale which are labelled as outliers in the dataset. Performance on Dataset #3 indicates 

how well a model detects depths where log responses are affected by either noise or bad 

hole in a heterogenous formation with thin layers of sparsely occurring rock type (i.e., 

shale). The objective of this evaluation is to test if the models can detect the noise and 

bad-hole influenced depths (samples) without picking the rare occurrence of shales as 

outliers. Outlier methods are designed to pick rare occurrences as outliers; however, a 

good shale zone even if it occurs rarely should not be labeled as outlier by the unsupervised 

methods. 

Comparative study on Dataset #3 involved experiments with four distinct feature 

subsets sampled from the available features GR, RHOB, DTC, RT, and NPHI logs, 

namely, FS1, FS2, FS3, and FS4. FS1 contains GR, RHOB, and DTC; FS2 contains GR, 

RHOB, and RT; FS3 contains GR, RHOB, DTC, and RT; and FS4 contains GR, RHOB, 

DTC, and NPHI. In all feature sets, 70 points are known outliers, and 704 are known 

inliers, comprising sandstone, limestone, dolostone, and shales. Isolation forest (IF) model 

performs better than the rest for all feature sets. Interestingly, with respect to F1 score, IF 

underperforms on FS2 compared with the rest, due to lower precision and imbalance in 

dataset. This also suggests that DTC is important for detecting the bad-hole depths, 

because FS2 does not contain DTC, unlike the rest (Table 3.3). Visual representation of 

the performances in terms of balanced accuracy score is shown in Figure III-4 (c) 
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Table 3: Results from Dataset #3 

 

  

BALANCED 

ACCURACY 

SCORE 

F1 SCORE 

ISOLATION 

FOREST 

FS1 0.91 0.81 

FS2 0.96 0.69 

FS3 0.92 0.84 

FS4 0.93 0.83 

ONE CLASS SVM 

FS1 0.78 0.57 

FS2 0.72 0.47 

FS3 0.8 0.61 

FS4 0.79 0.6 

LOCAL OUTLIER 

FACTOR 

FS1 0.8 0.61 

FS2 0.73 0.24 

FS3 0.61 0.34 

FS4 0.71 0.34 

DBSCAN 

FS1 0.75 0.95 

FS2 0.8 0.47 

FS3 0.66 0.73 

FS4 0.79 0.73 
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Figure III-4: Bar Plot showing the results (balanced accuracy score) in all cases: (a) 

Dataset #1, (b) Dataset #2 and (c) Dataset #3 
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Recommendation for Future Work 

This study highlights the effectiveness of outlier detection algorithms, in particular the 

Isolation Forest in detecting outliers in a dataset. However, for future analysis I would 

recommend the following: 

• Perform similar analysis on different types of subsurface data (not just well logs), 

e.g. seismic data, drilling data etc. 

• Developing a method to tune the hyperparameters to optimize the unsupervised 

outlier detection algorithms 

 

Conclusions 

This chapter provides a comparative study of the performance of four outlier detection 

models: Isolation Forest (IF), One Class SVM (OCSVM), Local Outlier Factor (LOF) and 

DBSCAN. Using four different datasets I was able to compare the different models in 

several real-life scenarios and evaluate their performance. From the results I concluded 

that the DBSCAN models proves the most effective in detecting noise in log data 

compared to the other models used in this study. It is also showed that outlier detection 

algorithms can be used in detecting errors in log reading due to environmental conditions. 

In this study outlier points due to washouts/bad holes were considered. From the results it 

is surmised that the Isolation Forest is by far the most robust in detecting this type of 

outliers in log data and its performance will depend on correctly selecting features which 

best relate to the cause of the outlier. Isolation forest also proved efficient in detecting 
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outliers in the presence of an infrequently occurring but relevant subgroup in a dataset. 

Overall, the Isolation Forest is recommended as the preferred algorithm in building robust 

outlier detection models in detecting outliers in a log dataset, although if the user only 

requires the removal of noisy data from the log, the DBSCAN proves to be a very powerful 

algorithm in building such models. 
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CHAPTER IV  

MACHINE LEARNING WORKFLOW FOR PREDICTING NMR T1 DISTRIBUTION 

RESPONSE OF THE SUBSURFACE 

It has been well established that single variable can be predicted using supervised machine 

learning algorithms, however prediction of multitarget signals present a different 

challenge. The target sample of signal contains multiple variables which can be dependent 

on one another. Some researchers [49, 50] have applied this technique with reasonable 

success.  This chapter explores the application of supervised machine learning algorithms 

in predicting signal data using NMR T1 distribution as a case study. This chapter: 

• provides a brief overview of nuclear magnetic resonance 

• aims to predict the NMR T1 distribution using readily available well logs 

• proposes an error metric to handle multiple variable target with high variability 

values 

• proposes a novel index for measuring the reliability of each sample prediction. 

 

Introduction 

Nuclear magnetic resonance (NMR) measurements, including T1 and T2 distributions, are 

important geological downhole measurements that provide information about pore size, 

permeability, irreducible water volume, and oil viscosity [26, 27, 28], they are essential in 

the characterization and development of fields. NMR logging is popular for oil and gas 

reservoir characterization to assess the movable hydrocarbon volumes and in-situ reservoir 
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permeability [26]. They have also been shown to improve interpretation in tight gas sands 

and unconventional reservoirs [29, 30] and also in quantifying fracture porosity [31]. 

However, NMR logging tools are expensive and can prove technically challenging to 

deploy in oil and gas wells [7]. In this chapter I will propose a machine-learning workflow 

to synthesize NMR T1 distribution along the length of a well where the deployment of 

NMR logging tool is not possible or would prove economically infeasible. The synthesis 

requires machine learning techniques to process easy-to-acquire conventional well logs, 

such as resistivity, neutron, density, sonic and spectral gamma ray logs, which are readily 

available in most wells. As NMR logs are not commonly run in most wells but provide 

important geophysical information about the subsurface geological formations, the ability 

to successfully predict T1 distribution along the entire length of the well with reasonable 

degree of accuracy can increase productivity and lower the risks associated with 

hydrocarbon exploration and production. 

 

Overview of Nuclear Magnetic Resonance Logging 

Measurements of NMR-logging tool are the response of the hydrogen nuclei in the 

formation [49]. NMR logging tool apply an external magnetic field to alter the magnetic 

moments of the hydrogen nuclei in the geological formation and measure the 

corresponding relaxation times (T1 and T2) as the nuclei come back to their equilibrium 

states. Relaxation is a measure of deterioration of NMR signal with time during the 

conversion of the excited nonequilibrium population to a normal population at thermal 
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equilibrium [32]. T1 relaxation time (longitudinal relaxation time) is the time required for 

longitudinal magnetization to return to the z-axis at 63% of the original state, whereas T2 

relaxation time is the time it takes for transverse magnetization to reach 37% of the initial 

value and is associated with the loss of spin coherence. T1 relaxation provides information 

about the inter and intra molecular dynamics. T2 relaxation involves energy transfer 

between interacting spins via dipole and exchange interactions [33]. NMR relaxations are 

controlled by three mechanisms [32]: bulk fluid relaxation, surface relaxation and 

molecular diffusion in magnetic field gradient. T1 and T2 relaxation times can be 

expressed as: 

                                                     
𝟏

𝐓𝟏
=

𝟏

𝐓𝟏𝐛
+

𝟏

𝐓𝟏𝐬
     Equation 

IV-1 

Where, the subscripts b and s represent the bulk relaxation and surface relaxation, 

respectively.  

Bulk fluid relaxation is the intrinsic property of a fluid controlled by viscosity and 

chemical composition [32]. Surface relaxation occurs at the fluid-solid interface and is 

affected by both fluid and matrix compositions. Conventional log data provide information 

about the fluid and rock matrix composition in a reservoir formation. The goal of this 

chapter is to learn the relationship between conventional well logs and NMR T1 relaxation 

time by processing the available log dataset and quantify the uncertainty in the data-driven 

predictions/synthesis. 
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Machine Learning Algorithms 

Ordinary Least Square 

OLS model is one of the simplest statistical regression models that fits the dataset by 

reducing the sum of squared errors (SSE) between the predicted and actual data [7]. Each 

feature/variable is assigned a co-efficient 𝛽, whose value is optimized such that when 

linearly combined the sum of squared error between the actual value and the predicted 

value is minimized. The OLS model assumes the output is a linear combination of input 

values xi and error εi [7]. It is expressed mathematically as: 

                     𝐲𝐢 = 𝛃𝟎 + 𝛃𝟏𝐱𝐢𝟏 + 𝛃𝟐𝐱𝐢𝟐 + ⋯ + 𝛃𝐩𝐱𝐢𝐩 + 𝛆𝐢    Equation IV-2 

Where, 𝑖 represents a specific depth from the total depth samples available for 

model training, 𝛽0 is the bias term or intercept and 𝑝 represents the number of input logs 

available for the training. 

                                   𝐒𝐒𝐄 = ‖𝐲 − 𝐗𝛃‖𝟐 = ∑ (𝐲𝐢 − 𝐲�̂�)
𝟐𝐧

𝐈=𝟏     Equation IV-3 

 

ElasticNet 

ElasticNet algorithm is a regularized regression model. The OLS method is prone to 

overfitting and has been modified using regularization terms to form other algorithms. The 

ElasticNet is one of such algorithms. ElasticNet model is an OLS algorithm constrained 

by two regularization terms 𝐿1 and𝐿2, these regularization terms force few of the 

coefficients 𝛽 to go to zero and reduce the effect of highly correlated features; thereby 
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reducing the tendency of the model to overfit. The ElasticNet aims to minimize the 

following loss function: 

                   ‖𝐲 − 𝐗𝛃‖𝟐 +  𝛂𝟏 ∑ ‖𝛃𝐣‖
𝐦
𝐣=𝟏 +  𝛂𝟐 ∑ ‖𝛃𝐣‖

𝟐𝐦
𝐣=𝟏     Equation IV-4 

Where, 𝛽 is the coefficient/weight is assigned to each feature, 𝛼1 is the 𝐿1-norm 

penalty parameter and 𝛼2 is the 𝐿2-norm penalty parameter. 

Support Vector Machine 

Support vector machine is based on the principle of structural risk minimization and has 

been applied in numerous fields for regression and classification purposes [34]. SVM 

constructs hyperplane(s) (decision boundaries that classify the data points) that separate 

data based on their similarity [34]. The objective of the support vector machine algorithm 

is to find a hyperplane in an n-dimensional space (n refers to the number of features) that 

distinctly classifies the data points and maximizes the margin between different groups. 

For regression, an error margin value is introduced, and hyperplanes are constructed to 

best approximate the continuous-valued function.  

Artificial Neural Network 

ANN is a popular machine learning method suitable for both linear and nonlinear 

regression problems. A typical Neural Network consists of an input layer, an output layer, 

and several hidden layers. The performance of the model can be altered by changing the 

number of hidden layers and/or the number of neurons in each hidden layer by 

backpropagation of error gradients. Each layer consists of neurons, made of parameters 
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(weights and biases) to perform the matrix computation on outputs computed from the 

previous layer [7]. The weights and biases are updated until the objective function is 

optimized [35]. An activation function is used in each layer to incorporate non-linearity to 

the computations. 

Random Forest 

Random Forest is an ensemble learning algorithm that can be used for both regression and 

classification [36]. Random Forest is a collection of decision trees that is trained by the 

technique of bootstrapping and aggregation, referred to as bagging. Random Forest 

combines multiple decision trees in parallel into a single predictive model to achieve low 

bias and low variance. The final prediction in a Random Forest is made by averaging the 

predictions of all the decision trees in the ensemble. For classification, mode class from 

the trees is selected as the prediction, while for regression it selects the mean/median 

prediction of all trees. Random forest does not require feature scaling and requires little 

effort in tuning the hyperparameters while providing high predictive ability. In comparison 

to other methods, random forest exhibits lower variance and bias leading to higher 

generalization.  Further, random forest uses bootstrapping that trains each decision tree in 

the forest on a random sub-sample of the dataset with replacement using a random sub-

sample of the features. In this study, the random forest classifier is the most accurate, 

reliable and efficient method compared to the above-mentioned methods. 
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Quantile Regression Forest 

Quantile regression forest is an extension of random forest that provides non-parametric 

estimates of the median predicted values as well as prediction quantiles obtained from 

each tree [37]. QRF provides a conditional distribution of the prediction of each tree. The 

full conditional distribution of the response variable represents a description of the 

uncertainty on the response variable given the predictor variable [21] as would been shown 

later in this work. 

 

Methodology 

This section discusses the methodology and workflow to be used in predicting the NMR 

T1 distribution. Figure IV-1 illustrates the workflow proposed in this chapter. 
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Description of Data 

The well logs used for this work were obtained from a well drilled into the Arbuckle, 

Kinderhook shale and the Granite wash. The Arbuckle is a cyclical carbonate that is 

dominated by intertidal and shallow subtidal facies [38] it is mainly composed of dolomite, 

mudstone, interbedded shale and chert. The granite wash is a tight sand play composed of 

coarse detrital material formed from in-situ weathering, which occurred at different 

Figure IV-1: Workflow used for NMR T1 Synthesis 
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geological time. The well under investigation is an injection well that penetrates the 

Arbuckle deep aquifer and is drilled with a water-based mud. Well logs available for this 

work are from a 2911-feet long depth interval comprising 5617 data points, where each 

point corresponds a specific depth. Figure IV-2 depicts the dataset used in this study. The 

dataset is a split into a feature set and a target set. The feature set consists of 23 

conventional logs (e.g. GR, CALI, PE, ACRTs, RHOB, NPHI etc.) shown in Tracks 1 to 

5 of log plot in Figure IV-2. The target set consists NMR T1 distributions acquired by 

Halliburton magnetic resonance imaging (MRI) tool. The target set is shown in Track 6 of 

log plot shown in Figure IV-2. At each depth, NMR T1 distribution is represented as 

cumulative responses for 10 bins equally spaced in logarithmic scale between 4 ms to 

2048 ms. In this work, the 10 discrete NMR T1 responses at each depth will be 

simultaneously predicted to synthesize the entire T1 distribution. In summary, the dataset 

comprises of 5617 samples (individual depth) and each sample can be represented as 23-

dimensional feature vector and a corresponding 10-dimensional target vector. In other 

words, each sample has 23 features/attributes and 10 targets.  

 

 

 



 

75 

 

Figure IV-2: Well log representation of dataset: Depth (TRACK 1), Caliper and Gamma 

ray (TRACK 2), Density and Neutron (TRACK 3),  Sonic measurements (TRACK 4), 

Photoelectric Log (TRACK 5), Micro-resistivity measurements (TRACK 6), Resistivity 

measurements (TRACK 7), Spectral Gamma Ray measurements (TRACK 8), NMR 

measurements (TRACK 9) 

 

 

 

Data Pre-Processing 

Data pre-processing is an essential step in developing a standard machine learning 

workflow. Data pre-processing broadly refers to all the steps taken in converting raw data 

(unprocessed data) to a dataset ready to be fit by a machine-learning algorithm. Data pre-

processing tasks includes feature scaling, dimensionality reduction, feature selection, and 
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feature transformation, to name a few. In this chapter, as shown in Figure IV-1, the pre-

processing steps would involve data splitting, feature scaling and feature selection. Figure 

IV-3 describes in detail the data preprocessing pipeline adopted in our work. To ensure 

data quality, the caliper log is checked to ensure there is no significant borehole problems 

with hole diameter greater than 8.2” removed. (Bit size: 7.875”). Depth matching and 

depth shifting was performed to ensure that the feature vector and target vector correspond 

to the same sample/depth. 70% of the dataset (including the features and targets) is used 

as the training dataset and the remaining 30% is used to validate the results of model. 

Training dataset is processed by the considered model to learn the relationship between 

the feature and target vector. The validation dataset is used to evaluate the predicted target 

vector for a sample against the true target vector. In the subsequent sections, the feature 

selection workflow implemented in our study will be elaborated.  

Figure IV-3 highlights the preprocessing workflow used in most machine learning 

projects. Data cleaning essentially prepares the dataset in a format that can be processed 

by the algorithm (i.e. numerical values, no missing values etc.). Data partitioning is 

performed to negate the effect of overfitting. Overfitting is characterized by a model fitting 

too closely to a specific dataset (training dataset) thereby reducing its accuracy when 

deployed on a new dataset (generalization).  Partitioning the datasets provides a 

“test”/validation dataset that would be used to evaluate the applicability of the model when 

deployed. The “test” dataset is not used during any part of model training so as closely 

mirror a deployment scenario. Data partitioning involves randomly selecting a subset of 

the dataset for training the model and another for evaluating the model, this prevents a 
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situation where the model “memorizes” the dataset and has no general applicability. The 

other data-preprocessing steps are feature scaling and feature selection. Feature scaling is 

discussed in Section 3.4.1.2 

Note: Although Feature scaling is not required for Random Forest. Several models 

which require feature scaling such as OLS, ElasticNet, SVM and Neural Network are used 

in this project. 

 

 

 

 

Figure IV-3: Pre-processing workflow for this project 

 

 

 

Feature Selection 

Dimensionality reduction reduces undesired characteristics in high dimensional data, 

namely, noise (variance), redundancy (highly correlated variables), and data inadequacy 

(features ≫ samples). Dimensionality reduction leads to some loss of information but have 
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potential benefits such as: reducing storage requirements, aiding data visualization and 

comprehension, reduce model fitting [39]. High dimensional data leads to increased 

training time and increased risk of overfitting [40]. Dimensionality reduction methods can 

be broadly categorized into feature selection and feature extraction methods. Feature 

selection methods select the most relevant features from the original set of features based 

on an objective function. (Correlation criterion, information theoretic criterion, accuracy 

score etc.) 

Features obtained using feature selection retain their original characteristics and 

meaning as in the original feature set, whereas those obtained using feature extraction are 

transformations of the original features that are different from the original feature set [41]. 

Feature selection methods are categorized as either filter or wrapper methods [42]. Filter 

methods ranks the features based on some mechanism (e.g. variance) and a threshold is 

set such that feature which do not meet the thresholds are removed. Examples of filter 

methods are dependence measure, mutual information, Markov blanket, and fast 

correlation-based filter [42]. Wrapper methods involves using different subsets of features 

and evaluating each subset through the results obtained by the model. These methods are 

essentially tied or “wrapped” to the model used in fitting the data [42]. An example of this 

is the Forward selection which start with an empty feature space; following that features 

are added one at a time for each step. For each step, the method selects the feature that 

most improves the model accuracy, features are added until there is negligible increase in 

model accuracy when adding new features. Two popular feature selection methods were 

combined in this work, namely mutual information and f-test. 
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Mutual Information 

Mutual Information is a non-linear measure of the linear or nonlinear correlation between 

variables. Mutual information between two random variables measures the dependence 

between them, it is also referred to as the Information Theoretic Ranking Criteria (ITRC). 

It can be expressed mathematically as [42]: 

                        𝐌𝐈(𝐗; 𝐲) ∶=  ∑ ∑ 𝐩(𝐱𝐣𝐲 , 𝐲𝐢) 𝐥𝐨𝐠
𝐩(𝐱𝐣,𝐲𝐢)

𝐩(𝐱𝐣)𝐩(𝐲𝐢)𝐗     Equation IV-5 

Where, target 𝑦𝑖 is one element in the multitarget variable y, feature 𝑥𝑖 is one 

element in the feature vector X, 𝑝(𝑥𝑗 , 𝑦𝑖) is the joint probability density function of feature 

𝑥𝑗 and target 𝑦𝑖, and  𝑝(𝑥𝑗) and 𝑝(𝑦𝑖) are the marginal density functions. If X and y are 

independent, i.e. no information about 𝑦 can be obtained from X, the mutual information 

is 0. For our study, X represents each of the 23 logs (features) while y is the 10-dimensional 

target vector.  

F-Test 

The F-test is a statistical tool used to compare the similarity of two models. F-Test 

performs a hypothesis test by creating two linear regression models X and Y. X is a model 

built using randomly selected constants as a feature vector and Y is the model built using 

a constant and a feature. X and Y are then used to predict the target. The sum of squared 

error (SSE) between the two models is recorded. If X and Y have similar results, the null 

hypothesis is accepted and it is assumed there is no relationship between that feature and 

the target. A key difference between the F-test and mutual information is the F-test 
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estimate the degree of linear dependency between two random variables (X and y), while 

the mutual information methods can capture any kind of statistical dependency but require 

more samples for accurate estimation. In this study thresholds of 0.15 and 250 were set 

for the mutual information and f scores, respectively, for feature selection. Features that 

do not meet this threshold are removed to create a lower dimensional space. The selected 

features are further filtered by considering the correlation between the selected features, 

if two features have a correlation coefficient greater than 0.9, the feature with the lower 

mutual information score is removed. The mutual information score and F-score for each 

feature in the initial feature set is shown on a bar plot in Figure IV-4. The final features 

used for model training and predictions are: RHOB (Density log), DTC (Compressional 

wave velocity), DTST (Stoneley wave delay time), NPHI (Neutron log), RT10 (10inch 

resistivity reading), RT30 (30inch resistivity reading) and URAN (Spectral Gamma ray – 

Uranium). These selected features were used as features to predict the NMR T1 responses 

for the 10 bins equally spaced in logarithmic scale between 4 ms to 2048 ms.  
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Figure IV-4: Bar plot showing the Mutual Information and F1 score for each feature 

used in Project 

 

 

 

Evaluation Metric 

For the hydrocarbon-bearing reservoir under investigation in this study, NMR T1 

responses across the 10 bins lie between 0 - 21. The majority of bin values are either zero 

or near zero as shown in Figure IV-5. As a result of this, commonly regression evaluation 

metrics, such as root mean square (RMSE) and mean absolute error (MAE), would prove 
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inadequate in evaluating the model as their results will be biased towards bins with smaller 

values. To illustrate this, suppose a model predicts a bin value as 10 when the actual value 

is 9.6 and the same model predicts a bin value as 0.004 when the actual value is 0.2; when 

using the RMS or MAE, the latter seems to be the better prediction with an error of 0.196 

compared to the former which has an error of 0.4. This deceptive result would negative 

affect model evaluation and ranking. In handling this problem, a metric that provides a 

relative measure of error rather than an absolute one is employed. The mean absolute 

percentage error (MAPE) provides a relative measure of errors as the difference between 

the predicted and actual is scaled using the actual value. It is mathematically expressed as: 

                                                    𝐌𝐀𝐏𝐄 = ∑ |
𝐲𝐢−𝐲𝐢

^

𝐲𝐢
|𝐧

𝐢=𝟏     Equation IV-6 

The limitation of MAPE for a sparse multitarget data is that the MAPE values will 

tend to infinity as most of the values in denominator are near zero. When the actual values 

are zeros or very close to zeros the MAPE is ineffective [43]. Tabataba et al. [44] suggests 

adding a small value to the denominator for normalization, for which the term corrected 

MAPE (cMAPE) is coined. In view of this, a slight modification is made to the formula 

by adding a 1 to the normalization parameters resulting in the following equation: 

                                                         𝐌𝐌𝐀𝐏𝐄 = ∑ |
𝐲𝐢−𝐲𝐢

^

𝐲𝐢+𝟏
|𝐧

𝐢=𝟏    Equation IV-7 

MMAPE (Modified Mean Absolute Percentage Error) overcomes the problem of 

MAPE tending to infinity. One drawback to this method however is that for bins with 

values close to zero it does not spot large relative error.  For example, if a bin has a value 
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of 0.01 and the model predicts 0.1, the MMAPE outputs an error 0.09 (9%). In practice 

this method performs well for model evaluation and should be applied in similar cases. 

 

 

 

 

 

Figure IV-5: Distribution of incremental porosity values in Bin 2 (8ms), the distribution 

is skewed highly to the right, with many values zero or near zero, this poses significant 

problems in selecting an error metric for model evaluation 
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Figure IV-5 shows the distribution of incremental porosity for the Bin 1 of the measured 

T1 time. It highlights the problem stated in the section above, the values range from 0 to 

7 with most of the values near 0 or 0. Using RMSE or MAE will create a model bias 

towards 0 (tends to underestimate) and using the basic MAPE is unadvisable as the error 

will tend to infinity and would create a something close to random model.  For this reason, 

the model is evaluated using the MMAPE (Modified Mean Absolute Percentage Error) 

expressed in Equation 4.7.  

“Confidence Index” Computation 

Quantile Regression Forest (QRF) is used to infer the full conditional distribution (spread) 

of the response variable (target) for high-dimensional predictor variables (feature) [37].  

A random regression forest comprises of multiple estimators (trees), each estimator/tree 

makes a prediction and the final prediction provided by the random forest is the average 

(mean/median) of the predictions of all trees. The quantile regression forest provides the 

quantile values of the predictions of all the trees, not just average as is provided by the 

basic Random Forest algorithm.  This distribution provided by the quantile regression 

forest can be used to measure the uncertainty of each prediction. When each estimator 

provides varied predictions, the final prediction from the regression forest has high 

uncertainty, while in cases where each estimator provides similar prediction, the final 

prediction is considered to have less uncertainty. QRF is used to build prediction intervals 

that determine the certainty of the prediction for a specific sample [37]. For example, a 

95% prediction interval for the value 𝐼 is given by: 
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                                      𝐈(𝐱) = [𝐐𝟎.𝟎𝟐𝟓(𝐱), 𝐐𝟎.𝟗𝟕𝟓(𝐱)]    Equation IV-8 

where, 𝑄0.025(𝑥) represents the 2.5th percentile of the prediction distribution of 𝑥 and 

𝑄0.975(𝑥) represents the 97.5th percentile of the prediction distribution of 𝑥. The following 

mathematical formulation can determine the confidence index (CI) for NMR T1 synthesis 

at each depth/sample: 

                                        𝐂𝐈(𝐲) = 𝟏 − 𝐬𝐜𝐚𝐥𝐞 (
𝐐𝟎.𝟕𝟓(𝐲)−𝐐𝟎.𝟐𝟓(𝐲)

𝐲
^ )   Equation IV-9 

 

                                                  𝐬𝐜𝐚𝐥𝐞(𝐱) =
𝐱𝐢−𝐱𝐦𝐢𝐧

𝐱𝐦𝐚𝐱−𝐱𝐦𝐢𝐧
                Equation IV-10 

where, Q0.75(y) is the 3rd quartile of the prediction distribution of y, Q0.25(y) is the 1st 

quartile of the prediction distribution of y and 𝑦
^
 is Q0.5(y). The results are scaled so that 

the index has a value between 0 -1 with samples having values closer to 1 indicative of 

low uncertainty. The confidence index allows the user to evaluate the performance of a 

random forest model by analyzing the variability in the predictions from each tree in the 

random forest, such that a low variability in predictions is an indicator of accurate 

predictions and can be used to evaluate a models performance when deployed on a new 

dataset. The confidence index proposed in this chapter is novel; however, assessing 

prediction reliability using Quantile regression forest have been proposed by various 

authors [45, 46, 47]. The accurate predictions are associated with the narrow prediction 

intervals while the poorer predictions are associated with the wider prediction intervals. It 

should be noted that a wide prediction interval does not always equal a poor prediction, 

but a narrow prediction interval is almost always associated with accurate prediction. 

Hence, the confidence index tends to be pessimistic as a measure of accuracy. 
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Discussion of Results 

In predicting the NMR T1 distributions, five algorithms ordinary least squares (OLS), 

ElasticNet, support vector machines (SVM), neural networks and random forest (RF). The 

algorithms process the train dataset which consists of 2825 datapoints and the trained 

model is used to predict the NMR T1 distributions of the validation dataset which consists 

of 1212 datapoints with each of the 10 bins predicted independent of the other. The 

average error for each bin is averaged to obtain the error for each sample, and the error 

from all samples are averaged to obtain the error from each model. The results are 

presented in Table 4.1. The best performing models were observed to be the random forest 

and artificial neural network model with an average MMAPE of 0.14 and 0.21 

respectively. The sample error distribution of the random forest model on the validation 

dataset is presented as a histogram in Figure IV-6(a). The majority of the sample errors in 

the validation dataset (approximately 83% of the testing dataset) lie between 0 – 0.2 in 

terms of MMAPE. In Figure IV-7(a) 16 randomly selected samples predicted using the 

random forest models with MMAPE errors between 0 and 0.2. Figure IV-7(b) shows 

another 16 randomly selected samples with MMAPE errors greater than 0.3. These 

samples (MMAPE > 0.3) represents 3% of the test samples. 

.  
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Table 4: NMR T1 Prediction Results from the different algorithms 

Model 

Result 

cMAPE R2 Score RMSE 

OLS 0.32 0.85 0.85 

ElasticNet 0.33 0.39 0.88 

SVM 0.22 0.68 0.63 

Random Forest 0.14 0.84 0.4 

Neural Network 0.19 0.71 0.56 

 

 

 

 

 

 

Figure IV-6: (a) Distribution of average error in terms of Modified MAPE and (b) 

distribution of confidence index for each depth in the test dataset 
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Figure IV-7: Comparison of measured NMR T1 distributions (continuous lines) against 

predicted NMR T1 distributions (dashed lines) for samples/depths with (a) MMAPE less 

than 0.2 and (b) MMAPE greater than 0.3 

 

 

 

 Confidence Index 

The Quantile regression forest is fit with the train dataset and the quantile values from 

each prediction of the validation dataset is recorded. Predictions from the Quantile 

regression forests using the 1st and 3rd quartile is displayed in Figure IV-8. In Figure IV-

8, the more accurate the random forest sample predictions correspond to smaller 
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interquartile range (i.e. the thickness of the shaded interval) justifying the use of the 

proposed confidence index as an indicator of prediction certainty. The quartile values are 

used in computing a confidence index using Equations 4.9 & 4.10. The confidence index 

from every sample is obtained and plotted as a histogram displayed in Figure IV-6(b). 

Majority of confidence-index values lie between 0.8 – 1, which represent 78% of all test 

samples. Figure IV-9(a) displays 16 randomly selected test samples with confidence index 

between 0.8 and 1, while Figure IV-9(b) shows the samples with the lower confidence 

index (<0.7) which represents 4% of the test samples. In Figure IV-9(a), the predicted and 

measured NMR T1 distributions exhibit good match. In Figure IV-9(b), which shows the 

test samples with relatively lower confidence index, exhibits poor match between the 

predicted and measured NMR T1 distribution. Figure IV-9(a) and Figure IV-9(b) 

highlights the effectiveness of the confidence index in identifying accurate predictions 

without the use of a test data for reference. Hence, the confidence index can be reliably 

used when processing unseen, new datasets.  

 



 

90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-8: Porosity values (Vertical axis) and Bins 4ms – 2048ms (Horizontal 

axis). Measured NMR T1 distribution (continuous line), predicted NMR T1 

distribution (dashed line) and prediction intervals (shaded region). Narrow 

prediction intervals indicate low uncertainty in the prediction. It should be noted 

that a wide prediction interval does not always mean a poor prediction, but a 

narrow prediction interval is almost always associated with accurate prediction 
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Figure IV-9: Comparison of measured NMR T1 distributions (continuous lines) against 

predicted NMR T1 distributions (dashed lines) for samples/depths with confidence index (a) 

greater than 0.7 and (b) less than 0.7 
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Recommendation for Future Work 

This  work successfully predicts the NMR T1 distribution of a well using readily available 

logs, however the model training and testing was done on a small dataset and the samples 

were performed in one well. For future work I will recommend: 

• That a larger dataset from multiple wells be used for training and testing model, 

testing the model on entire wells is highly recommended 

• Perform sensitivity analysis on how the error between the predicted and actual 

values affects the estimated parameters from the NMR distribution (water 

saturation, pore size distribution, fluid viscosity) 

• Introduction of noise to the dataset to evaluate how robust the generated model is 

to noise and other adverse environmental conditions which are known to affect 

NMR measurements 

 

Conclusions 

In this chapter, three novel accomplishments are presented. A robust machine-learning 

workflow is applied to synthesize multitarget NMR T1 distribution along a continuous 

depth interval. A robust metric is proposed to evaluate the error in synthesis of NMR T1 

distribution. A metric referred to as the “confidence index” is applied to quantify the 

uncertainty and the accuracy of the synthesis of NMR T1 distribution when the model is 

deployed on unseen, new data. Several data driven models were used to synthesize the 

NMR T1 distribution of a formation using 23 input logs. Of the 23, 7 logs (density, 
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compressional wave velocity, Stoneley wave travel time, neutron, resistivity at 10 inches, 

resistivity at 30 inches and Uranium log) were selected as they were observed to provide 

the most information about the T1 distribution based on the feature selection methods, 

namely F–Test and Mutual Information. Of the models trained on the dataset, the Random 

Forest is the most accurate when synthesizing the NMR T1 distribution with an average 

MMAPE of 0.14, such that 83% of the testing samples have MMAPE values between 0 

to 0.2, indicating the robustness of multitarget NMR T1 synthesis. The Quantile regression 

forest is then used to compute a confidence index which serves as an indicator of accuracy 

and certainty of multitarget synthesis. The confidence index can serve as an effective 

measure of accuracy during model deployment on new, unseen data for which NMR T1 

distribution is not measured.  
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CHAPTER V  

PRACTICAL APPLICATION OF MACHINE LEARNING: CASE STUDIES 

IDENTIFYING POROUS LAYERS IN SYCAMORE AND KEY COMPLETION 

PARAMETERS IN UNCONVENTIONALS 

This chapter will discuss 2 case studies requiring supervised learning. They cover different 

areas in petroleum engineering: petrophysics/geology and well completions. The aim of 

this chapter is to show the workflows that can be created and the interpretation capabilities 

of machine learning techniques. Each case study will contain a brief introduction of the 

problem case and an explanation of the methods used, plots and diagrams will be used to 

analyze the result from each case and, finally, a technical analysis will be provided. 

This chapter would: 

• Use feature extraction techniques for dimensionality reduction and defining cluster 

labels based on the new dimensional space 

• Provide insightful geological information based on the assigned cluster labels 

• Use regression models in predicting key metrics in evaluating performance of 

unconventional wells 

• Identify the key parameters that affect the performance of unconventional wells. 
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Case 1: Chemofacies Classification of Sycamore Core using X-ray Fluorescence 

Data in identifying Landing Zones 

The Sycamore Formation is a regionally extensive, low permeability oil reservoir in the 

Admore basin of Southern Oklahoma [48]. It has two distinct members: 1) the lower, non-

reservoir member which consists of glauconitic shale, and minor argillaceous-siliceous 

limestone and the upper member which comprises the Sycamore reservoir, consisting of 

thin-medium bedded, peloidal silty turbidites or liquefied sediment-gravity flows [48]. 

An approximately 300ft of core was obtained from the Sycamore Formation. On visual 

inspection 5 lithofacies were identified based on their grain size as: 1) argillaceous 

mudstone, 2) massive siltstone 3) bioturbated siltstone 4) planar laminated siltstone, and 

5) poorly sorted fine-grained sandstone. The lithofacies classification diagram is shown in 

Figure V-1. 

The poorly laminated sandstone and planar laminated siltstone existed in one feet 

respectively of the entire core. For ease of investigation the poorly laminated sandstone 

and planar laminated siltstone was lumped into the massive siltstone category, leading to 

the formation of 3 distinct categories: 1.) argillaceous mudstone, 2) massive siltstone, and 

3) bioturbated siltstone. 
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Figure V-1: Lithofacies Classification based on Visual Inspection of Core samples with 

thin-section images 

 

 

 

An X-ray fluorescence spectrometer which is an X-ray instrument used for non-

destructive chemical analyses of rocks, mineral and fluids. It does this by radiating an X-

ray know as an incident beam and some of this energy is absorbed by the atoms in this 

material and excites it which causes emission of fluorescent X-rays with discrete energies 

characteristic of the elements present in the sample. An X-ray fluorescence spectrometer 

was used in determining the elemental composition of the core on a foot by foot basis. 

Some elemental composition from the XRF process is shown from Figure V-3. Using the 

SEM images from selected thin section samples from the siltstone, certain distinctions are 

observed with some looking to be more than the other. The SEM images are shown in 
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Figure V-2. This is further observed when the porosity is measured on randomly selected 

samples in the core. Porosity is seen differ in the siltstone, with some of the siltstone 

seeming to have high porosities and others low porosity. 

 

 

 

 

Figure V-2: Thin Sections  from similar regions identified as Siltstone, from analyzing 

the image a) more organic content, porous and less cemented as compared to b)   
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Figure V-3: Elemental Composition from XRF (X-ray Fluorescence) spectroscopy for 

select elements: Aluminum (Track 2), Calcium (Track 3), Magnesium (Track 4), 

Potassium (Track 5), Titanium (Track 6) and Silicon (Track 7) 

 

 

 

In this case study, I aim to identify this porous siltstone by analyzing the elemental 

composition obtained from the XRF analysis using machine learning. This is done using 

unsupervised learning techniques: PCA (principal component analysis) and K-Means for 

feature extraction/reduction and clustering, respectively. 
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The XRF data consist of elemental composition of magnesium, aluminum, silicon, 

phosphorous, sulphur, potassium, calcium, titanium, vanadium, manganese, iron, thorium, 

uranium, strontium, zirconium and molybdenum. The PCA technique is used to reduce 

the dimensional space of the feature set before the feature set is fed into the K-Means 

algorithm as the K-Means algorithm is a distance-based model, which is adversely 

affected by a high dimensional feature space. K-means is clustering technique that can 

identify samples exhibiting similar properties in terms of the feature set, these techniques 

are further explained in the section below. 

Machine Learning Algorithms 

Principal Component Analysis 

PCA is a technique for reducing the dimensionality of high dimensional datasets while 

minimizing information loss, it does this by creating new uncorrelated variables that are 

linear functions of the original feature set and successively maximize variance between 

the new variables. [51]. It creates these variables using eigenvalue/eigenvectors or SVD 

(single value decomposition) [51] of the centered data matrix (feature set subtracted by 

the mean of the individual features). As earlier explained the PCA seeks to create a new 

feature set of uncorrelated variables which are linear functions of the original feature while 

maximizing the sum of the variance from each created feature by this definition PCA is 

feature extraction technique as it creates a new feature set which is linear function of the 

original dataset i.e. the new feature set is “extracted” from the original dataset. PCA can 

be used for feature reduction by measuring the variance of each new feature in the new 
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feature set and selecting the features that account for a certain percentage of the total 

variance (sum of the variance of each feature in the new feature set). By convention this 

percentage is set between 70 – 90% depending on the user. 

K-Means 

K-means is a clustering technique used in defining samples in a feature set with “similar” 

feature properties into clusters. K-means is a centroid based clustering technique and it 

form clusters in an n-dimensional space by initializing k (user set) random points in an n-

dimensional space and each sample is in the feature set is assigned to the closest point 

based on the distance metrics of choice by the user (usually Euclidean). K clusters are now 

formed, the point is then moved to the center (centroid) of the new formed cluster based 

on the mean distance of the samples in the kth cluster (hence the name K-means), the 

samples are then re-assigned based on their distance proximity to this new point. The 

process is repeated n times by which a stable solution would have been found. K-means 

is a simple but effective method for clustering and is one of the most used clustering 

algorithms. The downside to the K-means algorithm is that the results become 

questionable as the dimensional space increases as the concept of the distance between 

samples becomes difficult to quantify using the usually distance metrics because of this 

K-means is commonly used in associated with some sort of feature reduction technique in 

high dimensional spaces. It is also adversely affected by outliers; the present of outliers 

distort the position of the centroid leading to unstable and unrepresentative clusters.  



 

101 

 

Selecting the number of clusters to be used is a crucial step in the K-Means clustering 

process, 3 methods were used in the study: 1) elbow plot, 2) silhouette plot and 3) domain 

knowledge. 

• Elbow Plot: an elbow plot is used to visualize the reduction in variance in each 

cluster as the number of clusters k increases, the guiding logic here is that at 

optimum number of clusters the reduction in variation within the cluster becomes 

less significant. The plot of the variance measure within the cluster vs k value is 

plotted it forms an elbow shape as is seen in Figure V-4. The k value where the 

slope becomes noticeably less steep as it moves to the k + 1 value is considered a 

strong candidate for the value of k. Figure V-4 illustrates a typical elbow plot used 

for selecting the value of k. 
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Figure V-4: Typical elbow plot used to determine the optimum number of clusters, in 

this case anywhere between 3 -5 would be a good choice of k 

 

 

 

• Silhouette Analysis: The silhouette analysis is a tool used to measure how tightly 

grouped the samples in each in cluster are, and is an effective tool in identifying 

an optimum value of k. The silhouette coefficient is calculated using the following 

equation [22]: 

                                           𝒔(𝒊) =  
𝒃(𝒊)−𝒂(𝒊)

𝐦𝐚𝐱 {𝒃(𝒊),𝒂(𝒊)}
     Equation V-1 
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where  𝑏(𝑖) is the cluster separation from the next closest sample, it is the average 

distance between the sample xi and all samples in the nearest cluster 𝑎(𝑖) is the 

average distance between a sample xi and all other samples in its cluster 𝑠(𝑖) is 

the silhouette coefficient and is bounded in the range of -1 to 1. An ideal silhouette 

coefficient for a sample will be as close to 1 as possible and will occur when b(i) 

>> a(i) and a(i) is a small as possible i.e. distinct and tight clusters. The silhouette 

score for each cluster will be the average silhouette coefficient for samples in that 

cluster. Not only is it necessary to search for a high silhouette score, the 

distribution of the silhouette coefficient should be somewhat uniform for a cluster 

to be classified as good. Figure V-5 shows a typical silhouette plot used for 

determining optimum value of k, each cluster label is represented by a thickness 

and length, the thickness and length of each bar represents the number of samples 

in each label and the length represents the average silhouette score. Ideally each 

bar should meet a set threshold for silhouette score (0.5 – 0.9) and should be spread 

evenly (this would depend on cluster expected by the user). 
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Figure V-5: A Silhouette plot for K-Means clustering on sample data with 3 clusters, it 

is ideal that each “finger” are of similar width and length and cross a user defined 

threshold for similarity 

 

 

 

• Domain Knowledge: Knowledge of the problem can help decide the optimum 

number of clusters, as clustering is an unsupervised machine learning algorithm 

the algorithm has no priori knowledge of the dataset the optimum number of 

clusters selected by the above methods may bear no resemblance to practical 

scenario. Hence, I generally advice that two values of k should be selected using 

the elbow plot and silhouette score (which in most cases tend to point to the same 

answer) and the deciding factor should be based on the users understanding of the 

data. 

The preprocessing workflow is like what has been used in previous sections, the features 

were scaled using a MinMax scaler, feature selection was done using PCA. Since K-

means is adversely affected by outliers, the Isolation forest model was used to identify 
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outliers to be excluded from the dataset based on the workflow discussed in chapter 3. The 

initial dataset had 291 samples after outlier detection and removal 269 samples remained 

i.e. 12 samples were identified as outliers. 

Discussion of Results 

The feature set (elemental composition of the core samples across the 300ft core) is fed to 

the PCA algorithm, 7 principal component (PC) features are observed to account for 

approximately 92% of the variance in the extracted feature set. The 7 PC features (reduced 

feature set) are then used create the clustering model. Using the silhouette score/plot 

combined with the elbow plot as seen in Figures V-6 and V-7 below it can be observed 

that the optimum value of k is either 3 or 4. From the elbow plot 3 – 5 are reasonable 

choices for k, looking at the silhouette plot for k = 5, the width of label 2 looks very thin, 

this disqualifies 5 as a choice for k. Since the aim of this clustering model is delineate 

between the porous/non-porous siltstone combined with fact that major elemental 

differences between the bioturbated and argillaceous mudstone is not expected. 3 was 

decided as the optimum choice of k. 

The composition of certain proxy elements is plotted for each cluster label using a 

box plot (Figure V-8) to interpret the results of the clusters. Looking at the boxplot from 

this proxy elements label 1 likely represents the mudstone with its high aluminum and 

titanium content which are proxies for clay and organic content and low calcium content 

and silicon/aluminum ratio.  
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Figure V-6: Elbow plot to select optimum k for clustering 
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Figure V-7: Silhouette Plot used  for analysis a) n_clusters = 3, b) n_clusters = 4, and c) 

n_clusters = 5 
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Figure V-8: Boxplot showing distribution of certain proxy elements in the cluster labels: 

a) Calcium, b) Aluminum, c) Si-Al ratio and d) Titanium 

 

 

 

Label 0 and 2 seems to be the siltstone with their relatively high Si/Al ratio and lower 

aluminum content. One key difference however is their carbonate content with Label 2 

having significantly higher values for calcium than label 0, also label 0 seems to have on 

average slightly higher values of aluminum and titanium indicating a higher organic 

content than label 2. Collating this evidence, it is hypothesized that label 0 represents the 

more porous siltstone while label 2 represents the less porous siltstone. The porosity 

difference I hypothesize is due to less cementation in label 0 than label 2 using the lower 

amount of carbonate present as evidence and also the increased amount of organic material 
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in label 0 (higher amounts of aluminum and titanium which are proxies for organic 

content). This is likely due to the depositional process that led to the formation of the 

sycamore and meramac formation, Figure V-9 shows the comparison of the cluster defined 

labels and the labels observed by visual inspection. Two things can be quickly observed. 

One is that there is good match with what has been written so far also the porous siltstone 

seem to occur less as depth increases. Steady increase of organic matter which promotes 

carbonate dissolution during the geological depositional process is the likely cause of this 

phenomenon. 
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Figure V-9: Comparing the cluster labels from K-means and Lithofacies obtained from 

visual inspection 
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To further validate this study, thin section images of the depths in lower end of core 

representing points that have been identified as non-porous siltstone were compared with 

images at shallower depth in points identified as porous siltstone are compared. The 

images identified as porous limestone seem to show more organic content and less 

carbonate content as compared to the images obtained from region identified as less 

porous as seen in Figure V-10. 
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Figure V-10: Comparing thin section images from the upper core section containing 

what was classified as porous siltstone (a & b) with the images from the lower core 

section containing what was classified as cemented siltstone (c & d) both siltstone were 

considered to be the same when investigated visually (images are taken at the same 

resolution) 
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Case 2: Identifying Key Parameters in Completion Design 

Oil and gas from unconventional sources in North America such as shale and tight sands 

has increased significantly in recent times. Completion has always been a key aspect in 

the petroleum production process and how a well is completed can significantly affect the 

production of the well. In unconventional reservoirs, how the well is completed plays a 

crucial role in determining if a well would ultimately be economic or not. The completion 

process for unconventional wells are typically more complex as more operations are 

performed from the onset such as hydraulic fracturing, also the wells are completed 

horizontally to contact as much reservoir area as possible. Identifying the key factors that 

affect this operation can aid engineers in completing wells more effectively and aid the 

decision-making process. 

Machine learning models can be used for prediction, this point has already been 

established in previous chapters, and it can also be used to identify the features that mostly 

affect the target (the variable to be predicted). In this case study, a parameter grid is fed to 

a simulation software and the corresponding estimated ultimate recovery (EUR) which is 

the approximate amount of oil/gas that can potentially be recovered or has already been 

produced from a well or reserve and IP90 which is the average daily production after the 

first 90 days of production, is recorded. The IP90 has gathered attention in recent times as 

a key metric in evaluating unconventional wells, since majority of the production from 

unconventional wells comes in the early days due to the steep decline observed in 

unconventional wells. Wells with high IP90s are economically viable. 
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The parameters are lateral spacing, area (areal spacing), total vertical depth, lateral length, 

stages, perforation cluster, sand intensity, fluid intensity, pay thickness, fracture ½ length 

and fracture conductivity. In this case the values used in the parameter grid is the feature 

set while IP90 and EUR are the targets. The aim of this work is to the identify the key 

parameters of the ones listed that affect the IP90 and EUR of a gas well and compare the 

parameters that affect each target, this would be done by splitting the dataset into a train 

and test dataset creating a model using several algorithms and the train dataset. The models 

that performs best on the test dataset is selected and the key features are identified. In this 

study I would be using three algorithms for model training: 1) OLS 2) ElasticNet and 3) 

Random Forest. These models have already been explained in previous sections but the 

mechanism for identifying the driving features are explained below. 

Feature Importance Computation from Select Algorithms 

Linear Models 

Linear models such OLS (ordinary least squares), LASSO (least absolute shrinkage and 

selector operator) and ElasticNet computes a coefficient β for each feature variable such 

linear combination of the coefficients and the variables results in the predicted the value. 

The coefficient β is optimized to minimize an objective function, for the OLS that function 

the sum of square error between the predicted value and the actual value (SSE) as 

expressed in equation 4.2 and for the ElasticNet the function is the SSE plus the L1 and 

L2 norms (distance between coefficients) for regularization, this is expressed in equation 

4.3 and 4.4. 
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This coefficient provides useful information about the final result, as the larger the 

absolute value of the coefficient assigned to a variable the larger the effect that variable 

has on the predicted value, it also provides direction using sign with a positive sign 

inferring a direct relationship and negative sign an inverse relationship. It is important to 

note that this is only effective when the feature set has been scaled such that each feature 

has the same range. 

Random Forest  

The random forest algorithm consists of n number of trees called estimators with each tree 

consisting of randomly selected features and samples. The use of randomly selected 

features and samples is done to make each tree uncorrelated and independent of each other, 

thereby reducing the risk of overfitting. A good way to think about this is imagine a police 

officer question 2 suspects in different rooms, this way the information provided by one 

suspect is independent of the other and the officer can get an unbiased information from 

the suspects. The random forest determines feature importance by one of two methods: 1) 

mean decrease in impurity, 2) Permutation importance. 

• Mean Decrease in Impurity: For each decision tree a split is performed to 

minimize the impurity in each node i.e. the measure of how often a randomly 

chosen target sample would be labelled incorrectly if they were randomly labelled 

based on their distribution. The feature that best achieves this in a particular node 

would be used for splitting a tree. The mean decrease in impurity measures the 

sum of the decrease in impurity for all features divided by the number of time it 
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was used for splitting proportional to the number of samples it splits (remember 

each tree does not have the same number of samples). The feature with the highest 

value is considered to be the most importance in predicting the target sample. 

• Permutation Importance/Mean Decrease Accuracy: In this method values from 

each feature are randomly shuffled n times such that the information from the 

feature is distorted and the mean decrease in accuracy for all n times is recorded. 

The feature with largest decrease in accuracy is considered to be the most 

important as the information distortion from that feature most affects the model 

results. 

In this study the mean decrease in impurity was used in a calculating the feature 

importance from the Random Forest. 

Discussion of Results 

Before the models are trained, the correlation between the features and the target (EUR 

and IP90) is checked using spearman and pearson correlation coefficients. In both cases 

the area, lateral length, stages and perforation cluster have the highest correlation to 

the target. The barplot of the feature correlation with the target is shown in Figure V-11. 
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Figure V-11: Feature correlation with the target: a) Feature correlation with IP90 b) 

Feature correlation with EUR 

 

 

 

The algorithms are trained on 1349 randomly selected samples and created models are 

tested on the remaining 579 samples. The Random Forest performs best in predicting both 
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EUR and IP90 with an r2 score of 0.99 for both case and an RMSE (root mean square 

error) of 0.077 and 37.8 respectively on the random selected test samples. The results are 

shown in Table 5.1, the comparison of the predicted and actual target values is shown in 

Figure V-12. 

 

 

 

Figure V-12: Comparing the predicted and actual values of EUR and IP90 from the 3 

models used: a) OLS b) ElasticNet c) Random Forest 
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Table 5: Result table comparing the model results in case study 2 

MODEL TARGET 
METRICS 

R2 SCORE RMSE 

OLS 
EUR (Bcf) 0.96 0.37 

IP90 (Mcf/D) 0.94 532 

ELASTICNET 
EUR (Bcf) 0.7 0.767 

IP90 (Mcf/D) 0.94 532 

RANDOM FOREST 
EUR (Bcf) 0.998 0.08 

IP90 (Mcf/D) 0.999 33.8 

 

 

 

Of the linear models, the Ordinary least square model performed the best with an r2 score 

of 0.96 and 0.94 respectively. As the random forest model performs the best of the 3, its 

feature importance ranking will take precedence and will be the primary consideration, 

coefficients from the OLS would then be used to verify the results of the Random Forest. 

Ideally the random forest’s mean decrease in impurity and the OLS coefficients should be 

pointing towards the same variables/features, also the OLS coefficient provides 

information on the directional relationship between the feature and target through the signs 

(i.e. does an increase in the value of this feature lead to an increase in the value of the 

target). Figures V-13 and V-14 show the normalized mean decreased in impurity for the 

random forest and coefficients for each variable from the OLS model respectively. The 

plots highlight that the lateral length is the key factor in terms of determining the EUR 

which makes sense as the longer the lateral the larger the area contacted by the reservoir, 
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however this should be taken with a grain of salt as we know that this relationship is not 

perfectly linear as the longer the lateral the larger the frictional effect on the fluid which 

can ultimately impair the fluid flow. However, generally it can be said that the longer the 

lateral length the larger the ultimate recovery from that well, interestingly though when 

you look at IP90 the effect of lateral length is largely diminished and the perforation cluster 

seems to be the key factor, with IP90 having a direct relationship with perforation cluster 

as observed from the positive coefficient from the OLS model.  

 

 

 

 

Figure V-13: Barplot of the coefficient values from each features with respect to the 

target: a) Target: EUR, b) Target: IP90 
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Figure V-14: Barplot of the normalized mean decrease impurity for each feature with 

respect to the target: a) Target: EUR, b) Target: IP90 

 

 

 

Knowing that the most productive time of an unconventional well is in its early life this 

poses an important question to the operator, should completion funds be diverted unto 

making more perforations per unit length and recouping funds are quick as possible or 

drilling longer laterals and getting more production over a longer period. This decision 

would involve the business team (time value of money) and technical department (would 

the perforation close over time leading to underperformance of the well?). 

These points are highlighted to show that as powerful as machine learning is as a 

tool for analysis, domain knowledge and expertise in the field is still required to make 

the best of the information provided to best maximize it potential. 

 

 



 

122 

 

Conclusions 

In this chapter, 2 case studies were explored to highlight practical aspect of machine 

learning applications in petroleum engineering and how data driven methods can provide 

quick insights to the technical and business development teams when machine learning is 

combined with expertise. Potential landing zones in the sycamore were identified by 

locating reservoir structures in the sycamore siltstone using the elemental composition of 

the core also information on the depositional environment of the formation was 

hypothesized based on model evidence. The second case looked at involved identifying 

the key completion parameters that affect the production potential of an unconventional 

well using IP90 and EUR as a metric. It was found that the lateral length of the drilled 

well is the most important factor in term of estimated ultimate recovery and perforation 

cluster (perforation per unit length) as the key factor with regards to IP90. The question 

as to what metric should be considered when planning an unconventional well was left 

open to the operator’s preference but fair warning was highlighted about the frictional 

energy losses that can occur in longer laterals and maximizing early time productivity in 

unconventional wells. 

 

 



 

 

CHAPTER VI  

CONCLUSIONS 

 

This study provides practical applications of data driven methods for exploration and 

production, exploring the general machine learning workflow and shedding some light on 

the current state of the art machine learning practices in the oil and gas industry in the first 

two chapters. Chapter 3 and 4 presents the results of my independent study on applications 

dealing with machine learning assisted outlier detection in subsurface signals and signal 

prediction using machine learning algorithms with NMR distributions used as a case study. 

Chapter 5 explores two case studies with the application of machine learning in 

geology/petrophysics and well completions and seeks to explore the practical aspects of 

machine learning and the need for subject matter expertise. These studies brought about the 

following conclusions: 

 
• Machine learning methods can be used for outlier detection in well log and by 

implication subsurface measurement data, such as seismic data. 

• Machine learning assisted outlier detection models trump the current convention 

for outlier detection by considering feature interaction in multivariate data, 

which is common for most datasets from the industry, as well as being able to 

handle contextual outliers. 

• The Isolation Forest is a powerful tool for outlier detection in most cases and 

when information about the dataset is limited it is the best option of the algorithms 

tested in this work with Balance accuracy score of over 80% in all cases 
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explored. 

• Signals and multi-target dataset can be successfully predicted using machine 

learning models. 

• The random forest outperforms all other models explored for predicting the 

NMR distribution with an MMAPE of 0.15. 

• Using the quantile regression forest, we can compute an effective method for 

validating the model without the use of a validation dataset. 

• The confidence index can be used as a potential tool for stochastic analysis when 

the model is being deployed in a new well. 

• Clustering methods can be used to identify difficult to spot pattern in complex 

subsurface data as is seen in case 1 in chapter 5, where we identified the porous 

beds in the core sample using elemental composition and provided a plausible 

explanation for this occurrence. 

• Key Factors and drivers affecting complex flow problems can be identified using 

data driven techniques which can in turn spur healthy technical and business 

debate as can be seen in chapter 5 case 2 where lateral length was identified as 

the major factor in increasing EUR and more perforation clusters as the main 

factor in increasing IP90. 
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