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ABSTRACT 

Aim: To assess the within-subject variation of thermoregulatory responses during two consecutive 

15-km road races. Secondly, we explored whether gastrointestinal temperature (TGI) data from the 

first race could improve our previously established predictive model for finish TGI in the second race. 

Methods: We measured TGI before and immediately after both races in 58 participants, and 

determined correlation coefficients. Finish TGI in the second race was predicted using a linear 

regression analysis including age, BMI, pre-race fluid intake, TGI increase between baseline and the 

start of the race, and finish TGI in the first race. Results: Under cool conditions (WBGT 11-12°C), TGI 

was comparable between both races at baseline (37.6±0.4°C vs. 37.9±0.4°C; p=0.24) and finish 

(39.4±0.6°C vs. 39.4±0.6°C; p=0.83). Finish TGI correlated significantly between both races (r=0.50; 

p<0.001). The predictive model (p<0.001) could predict 32.2% of the finish TGI in the second race 

(versus 17.1% without finish TGI in race 1). Conclusion: Our findings demonstrate that the use of 

previously obtained thermoregulatory responses results in higher predictability of finish core body 

temperatures in future races, enabling better risk assessment for those athletes that are most likely 

to benefit from preventive measures. 

  



 
 

Introduction 

An elevated core body temperature (CBT) is commonly observed in athletes performing exercise 

and does not typically affect health or performance [1,3]. The CBT rise is caused by the production 

of metabolic heat in the exercising muscle, which cannot be completely released to the 

environment [15]. If heat storage becomes uncompensable, athletes reduce their performance 

levels in anticipation of the ensuing CBT rise [24]. Interestingly, the maximal CBT that individuals 

reach during outdoor time trials in cool to moderate conditions varies widely, ranging from 37.3-

41.5°C [13,21,25]. The variation in thermoregulatory responses has previously been linked to subject 

characteristics, (e.g. age, sex, exercise intensity, body weight, body mass index (BMI), muscle / fat 

mass [1,2,7,9,17]) and external factors (e.g. ambient temperature, wind speed, humidity) [1,13,27]. 

 

Predicting exercise-induced CBT rises can help athletes to estimate their maximal CBT during race 

conditions. We demonstrated in a previous study that age, BMI, fluid intake before the race and the 

core body temperature change during warming-up are the primary predictors for maximal 

gastrointestinal temperature (TGI) in a 15-km road race under cool ambient conditions [25]. 

Nevertheless, the combination of these within-subject and external parameters could only predict 

16.7% of finish TGI. Previous studies revealed that a history of heat illness is an independent risk factor 

for a future repeated event [1,7,17]. These findings suggest that the magnitude of exercise-induced 

TGI rises might be related to individually determined intrinsic factors. This would mean that, under 

exactly the same external conditions and with no changes in within-subject characteristics, one 

athlete would consistently demonstrate low CBT rises whereas another athlete will consistently 

demonstrate small CBT changes upon repeated equal bouts of exercise. Whether such consistent 

within individual thermoregulatory responses exist in the athletic populations, is currently 

unknown. 

 



 
 

Therefore, the aim of this study was to assess the within-subject variation of thermoregulatory 

responses during two consecutive equal exercise bouts. Secondly, we explored whether including 

TGI data from the first race edition could improve the predictability if the thermoregulatory 

responses during the second race edition. For these purposes, we performed TGI measurements in 

58 participants of a 15-km running event during two consecutive race editions, which were held 

under similar environmental conditions. We hypothesized that TGI would strongly correlate between 

both exercise bouts and could improve the prediction of finish TGI in a subsequent race.  



 
 

Materials & Methods 

We recruited 58 individuals (Table 1) that participated in two consecutive editions of a 15-km 

running event (Seven Hills Run, Nijmegen, the Netherlands; organized ~1 year apart). Before being 

included in the study, all subjects provided a written informed consent and all subjects were 

screened for the presence of any exclusion criteria for using the temperature capsule: 1. A history of 

obstructive or inflammatory bowel disease or prior abdominal surgery, 2. The presence of any 

implanted electric device, 3. A scheduled MRI scan within 1 week after the event, or 4. Pregnancy. 

Study procedures were approved by the Radboud University Medical Centre Ethics Committee and 

accorded to the principles of the Declaration of Helsinki. This study was conducted in agreement 

with the ethical standards according to Harriss et al. [16]. 

 

Study procedures and measurements were identical in both race editions. Baseline measurements 

were performed 2 hours before the start of the race in a laboratory set up 50 meters from the finish 

line. TGI was measured at baseline, 1 minute before the start (i.e. after warming-up), and within 15 

seconds after finishing. No measurements were performed during exercise, and subjects were 

allowed to complete the race at a self-selected pace with ad libitum fluid intake. 

 
Body height and weight (Seca 888 calibrated scale; Hamburg, Germany) were measured at baseline. 

Body mass index (BMI) and body surface area were calculated using the height and weight data. 

Body-surface area was calculated using the formula of DuBois et al. [12]. 

Subjects ingested an individually calibrated telemetric temperature capsule at least five hours (8 

a.m.) before the race (start 1 p.m.) to prevent interaction of the TGI measurements with fluid ingestion 

during testing [28]. TGI was measured using a portable telemetry system (CorTemp™ system, HQ Inc., 

Palmetto, USA), which has been demonstrated to safely and reliably measure TGI as indicator of the 

subject’s CBT [6,14]. The average of three consecutive measurements for each time point was used 

for further analyses. The TGI rise between baseline and finish was calculated by subtracting the TGI at 

baseline from the TGI at the finish line. 



 
 

Subjects self-reported the amount of fluid intake from the time of getting out of bed until the end 

of the race. Body weight was measured at baseline and within 10 minutes after the race, from which 

the relative change in body weight was calculated (expressed as percentage dehydration). 

Correction for fluid intake during the race was applied by adding the amount of fluids consumed to 

the baseline body weight and recalculating the body weight change. Subjects were allowed to drink 

ad libitum before as well as during the race. No restrictions were imposed on the type of fluids 

consumed, though subjects were requested to refrain from drinking between finishing and the 

second body weight measurement to avoid overestimating the post-race body weight. 

Individual finish times after 15-km were obtained from the organizational measuring system 

(ChampionChip®, MYLAPS, Nijmegen, the Netherlands), and running speed was calculated 

accordingly. 

Wet-bulb Globe Temperature (WBGT) was measured every 30 minutes throughout the day using a 

portable climate-monitoring device (Davis Instruments Inc., Hayward, USA) positioned in the 

start/finish area. 

Statistical analyses were performed using the Statistical Package for the Social Sciences (IBM SPSS 

Statistics for Windows, Version 20.0. IBM Corp., Armonk, NY, USA). Data was reported as mean ± 

standard deviation, with the significance level was set at p≤0.05. Normality distribution was 

examined using a Kolmogorov-Smirnov test. In case of non-Gaussian distribution, log-

transformation was performed and the data was re-examined for normality distribution. If normal 

distribution could not be attained, non-parametric tests were applied. Differences in subject and 

exercise characteristics between the race editions were analysed using a Student’s t-tests. For study 

aim 1, a repeated measurements ANOVA was used to determine if thermoregulatory responses were 

comparable between race edition 1 and 2. Coefficients of variation expressed as percentage (CoV) 

were determined for each individual subject to gain more insight the individual variation of 

thermoregulatory responses and race speed between both race editions. Subsequently a Pearson 

correlation was used to determine the consistency of finish TGI and the exercise-induced TGI 



 
 

elevation. For study aim 2 we performed a linear regression analysis with finish TGI in race edition 2 

as the dependent variable, and age, BMI, fluid intake before the race, TGI change during warming-up 

(original model) and supplemented it with finish TGI in race edition 1 as independent parameters 

[25]. To correct for large within-subject differences of metabolic heat production (e.g. race speed) 

[9,21], we performed additional analyses in which we excluded subjects that showed a >5% 

difference in race speed between both editions. Finally we created 3 dummy parameters (TGI ≥39.0°C 

(yes/no), TGI ≥39.5°C (yes/no), TGI ≥40.0°C (yes/no)) for both race editions to explore the risk for 

exceeding these TGI thresholds in the two consecutive road races. A Pearson’s Chi Square test was 

used to calculate Relative Risks (RR) and their 95% confidence intervals (CI).  



 
 

RESULTS 

Subject characteristics (i.e. baseline body weight, BMI and body surface area) did not differ between 

race 1 and 2 (Table 1). All subjects successfully completed both races at comparable running speeds 

(11.8±1.9 km/h versus 11.7±1.9 km/h, range 8.1-16.5 km/h; p=0.78; CoV 3±3%). Environmental 

conditions were cool and comparable between race edition 1 (WBGT 11°C, TDRY-BULB 10.5°C, relative 

humidity 87%, wind speed 3.4–5.4 m/s) and race edition 2 (WBGT 12.5°C, TDRY-BULB 11.5°C, relative 

humidity 88%, wind speed 3.4–7.9 m/s). Pre-race fluid intake was not different between both race 

editions (1147±448 mL versus 1095±444 mL; p=0.25), whereas fluid intake during the races was 

higher in race edition 2 versus 1 (129±146 mL versus 85±134 mL; p=0.02). Nevertheless, the 

percentage body weight loss was not different between both races (-1.6±0.6% versus -1.5±0.5%; 

p=0.25). 

 

TGI was not different at baseline (37.6±0.4°C versus 37.7±0.4°C; p=0.24; Cov 1±1%, Figure 1), before 

the start (37.8±0.4°C versus 37.9±0.5°C; p=0.28; CoV 1±1%) and immediately after finishing 

(39.4±0.6°C versus 39.4±0.6°C; p=0.83; CoV 1±1%), and demonstrated no difference in exercise-

induced TGI increase in both race editions (1.9±0.8°C versus 1.8±0.8°C; p=0.58). Finish TGI (Pearson’s 

r=0.50, p<0.001; Figure 2A) and the exercise-induced increase in TGI (Spearman’s r=0.40, p=0.002; 

Figure 2B) correlated significantly between both races. Correction for subjects with a >5% (n=14) 

difference in race speed between both race editions improved the correlation of finish TGI between 

race edition 1 and 2 (Pearson’s r=0.59, p<0.001). Lastly, a linear regression analysis revealed that the 

higher fluid intake in race 2 did not significantly influence TGI at the finish line in race 2 (R2 = 0.00; 

p=0.87). Excluding subjects that consumed <0.5L of fluids 4 hours prior to the exercise bout (n=6) 

and re-analysing the data did not affect the correlation of finish TGI (r=0.48, p<0.001). 

 

By applying our original linear regression model to the present subject population we were able to 

predict 17.1% (F-score 2.58, p<0.05) of the finish TGI of race edition 2 (Table 2). Supplementing the 



 
 

model with finish TGI of race edition 1 as an independent variable resulted in a higher predictive 

capacity of the regression model (R2=0.32, F-score 4.66, p=0.001; Table 2). Interestingly, correction 

for subjects with a >5% difference in race speed resulted in an even stronger predictive model 

(R2=0.47, p<0.001). Lastly, re-analysing our data after exclusion of subjects that consumed <0.5L of 

fluids 4 hours prior to exercise did not affect our predictive model (R2=0.31, p<0.01). 

 

Lastly, runners that demonstrated a finish TGI ≥39.0°C in race 1, had a 3.7 times larger chance (CI: 1.0 

– 14.0) to exceed this TGI threshold again in race edition 2 compared to athletes who had a finish TGI 

lower than 39.0°C in race 1. Likewise, runners with a finish TGI≥39.5°C and ≥40.0°C in race edition 1 

had elevated risks to exceed these TGI levels again in race edition 2 (RR: 6.5, CI: 2.0 – 21.0 and RR: 6.0, 

CI: 1.5 – 24.5 respectively).  



 
 

DISCUSSION 

This study assessed the within-subject variation of thermoregulatory responses in athletes 

participating in two consecutive editions of a 15-km road race in comparable environmental 

conditions. Our results demonstrate that TGI was not different across both exercise bouts at baseline, 

start and finish, and show that both finish TGI (r=0.50) as well as the exercise-induced TGI increase 

(r=0.40) correlated significantly between the two race editions. Moreover, by supplementing our 

predictive model with the finish TGI from the first race edition, we improved the predictive capacity 

of finish TGI from 17.1% to 32.2%. Lastly, our results demonstrate that the chance of attaining a high 

TGI was significantly larger if that subject demonstrated previous high exercise-induced 

thermoregulatory responses (relative risk varying from 3.7 – 6.5). These results suggest that CBT 

responses are not different within subjects over consecutive exercise bouts. Therefore, individual 

CBT data are valuable to improve the predictability of exercise-induced thermoregulatory responses 

and to identify which athletes are most likely to benefit from cooling strategies. 

 

To our knowledge, this is the first study to directly compare and correlate TGI in the same subjects 

performing two similar exercise bouts without applying any intervention. Previous studies that 

measured TGI during repeated exercise bouts reported variable results, but are difficult to compare 

to the present study as they all imposed different kinds of potentially confounding interventions, 

including diurnal variation [18], variable environmental conditions[11], variable heat load [10] or 

variable exercise protocols [22]. By performing measurements in the same subjects who twice 

completed the same 15-km run under similar conditions, we were able to directly compare 

thermoregulatory responses whilst limiting the chance of confounders. Indeed, our results showed 

that BMI [26], running speed [20] and hydration status [8], which are known to influence CBT during 

exercise, were all similar across both exercise bouts and will therefore unlikely have influenced our 

results. Although fluid intake during the race was significantly higher in the second exercise bout 

(129 ± 146 mL versus 85 ± 134 mL), absolute differences between race editions were small (44 ± 150 



 
 

mL), body weight changes were comparable (-1.6±0.6 versus -1.5±0.5% of total body weight), and 

regression analysis showed no impact of fluid intake on finish TGI. To summarize, the significant 

correlations of finish TGI (r=0.50) and TGI increase (r=0.40) between both race editions suggest that 

the correlation of CBT at the finish line between two 15-km road races is moderate, whilst the 

coefficients of variation are low within subjects. 

 

Our model that demonstrated a 17.1% predictive capacity for finish TGI confirms previous findings 

(16.7% predictive capacity in a different study cohort) [25]. By adding the finish TGI from race 1 to this 

model to predict finish TGI in race 2, we were able to improve the predictive capacity from 17.1% to 

32.2%. Interestingly, correcting our model for changes in exercise intensity (<5% difference in finish 

time between race 1 and 2), further improved the predictability of finish TGI (R2=0.47). Furthermore, 

we demonstrated that individuals, who developed a finish TGI ≥39.0°C during the first edition, were 

3.7 times more likely to attain a similar or higher TGI during a second exercise bout compared to 

subjects who finished with a TGI ≤39.0°C. This chance was even greater if higher cut-off values were 

chosen; subjects finishing with a TGI ≥40.0°C had a 6.0 times greater chance for exceeding this 

threshold again during a subsequent race. These findings may help to identify athletes that benefit 

from cooling interventions preceding and during exercise [4]. 

 

The limited variation of exercise-induced TGI responses within subjects, in combination with the 

large variation in thermoregulatory responses between subjects (TGI increase ranging 0.4-3.6°C) 

raises questions regarding the underlying mechanisms that are responsible for this observation. In 

addition to anthropometric factors such as age [7], sex [17], and BMI [2,7], inherited intrinsic factors 

might play an important role. For example, several genes have been linked to the development of 

heat illness [7]. Whether the genetic variation also affects thermoregulatory responses and/or the 

capacity of heat dissipating mechanisms is currently unknown. Likewise, there is evidence that CBT 

responses are related to exercise-induced changes of the hypothalamic setpoint [5,19]. Potentially, 



 
 

the ‘high-responders’ in our study demonstrated a larger increase in the CBT setpoint compared to 

the ‘low-responders’. Since our study did not include measurements of these intrinsic factors, future 

studies focussing on the potential underlying mechanisms are warranted. 

 

This study was limited by the fact that we did not measure hydration status prior to the start of the 

exercise, which could mask differences in hydration status between both exercise bouts. However, 

previous literature recommended that the consumption of ~0.5L of fluids 4 hours prior to exercise 

should ensure euhydration at the start of the exercise [23].  Whilst 52 subjects met this criterion, 6 

subjects did not. Re-analysis of our data without these subjects did not affect the correlation of finish 

TGI or our predictive model. We therefore believe that differences in hydration status did not impact 

on our findings. Furthermore, this study was also limited by the fact that both race editions were 

separated by a ~1 year time span. This could have potentially lead to the occurrence of within-

subject differences that could not have been accounted for (e.g. changes in health status, training 

status, etc.), possibly resulting in a suboptimal comparison between finish TGI in both editions. 

Nevertheless, we still found a significant correlation of 0.50 in finish TGI between both races. 

Therefore, given that a smaller time span between both exercise bouts might have resulted in a 

higher correlation, our results likely only underestimate the actual within-subject variation of 

thermoregulatory responses. 

 

In conclusion, exercise-induced thermoregulatory responses significantly correlated within subjects 

performing two consecutive conditions of a 15-km road race under cool environmental conditions, 

demonstrated a moderate within-subject variability and a low coefficient of variation. Athletes that 

showed a finish TGI ≥40.0°C had a 6.0 times greater chance for exceeding this threshold again during 

a subsequent race. More importantly, the use of previously obtained thermoregulatory responses 

improves the predictability of finish core body temperatures in future races. Our findings enable 



 
 

identification of athletes that are the most likely to benefit from cooling interventions preceding 

and during exercise. 
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FIGURE AND TABLE LEGENDS 

 

Figure 1: Gastrointestinal temperature (TGI) at baseline, 1 minute before the start and immediately after finishing in race edition 1 (solid line, circles) and 

race edition 2 (dotted line, triangles). TGI was not different at all time points (p=0.30) and increased significantly over time (p<0.001). 

 

Figure 2: Correlation between finish gastrointestinal temperature in race edition 1 (x-axis) and race edition 2 (y-axis; Figure 2A) and correlation between 

the gastrointestinal temperature increase (baseline to finish) between race edition 1 (x-axis) and race edition 2 (y-axis; Figure 2B). The regression analysis 

revealed that gastrointestinal temperature in race edition 1 accounted for 25% of the finish gastrointestinal temperature in race edition 2. The dotted 

lines refer to the correlation coefficients and the solid lines refer to the line of identity (x = y). 

 

Table 1: Subject characteristics in both race editions. 

 

Table 2: Predictor characteristics for finish gastrointestinal temperature of race edition 2 using our previously established predictive model (upper 

section) and our new model, which was supplemented with finish gastrointestinal temperature in race edition 1 as potential predictive factor. 

 



 
 

Table 1: Subject characteristics in both race editions. 

 Race Edition 1 Race Edition 2 P-Value  

Sex (male : female) 31 : 28 -  

Age (years)# 47 ± 10 -  

Height (cm) 175 ± 8 -  

Weight (kg) 73.0 ± 12.4 73.0 ± 12.3 0.71*  

Body mass index (kg/m2) 23.6 ± 2.7 23.7 ± 2.8 0.75  

Body Surface Area (m2) 1.88 ± 0.19 1.88 ± 0.19 1.00  

Values are presented as mean ± standard deviation 
# Age during race edition 1 is reported. 

* P-value refers to a Wilcoxon Signed Rank test. 

 

 

 



 
 

Table 2: Predictor characteristics for finish CBT of race edition 2 

Variable Univariate Analysis Multivariate Analysis* 

 B 95% CI β B 95% CI β 

Constant    25.0 16.1 – 33.9  

Age -0.01 -0.03 – 0.01 -0.15 NS -0.01 -0.03 – 0.00 -0.21 NS 

BMI 0.01 -0.05 – 0.08 0.06 NS 0.03 -0.03 – 0.08 0.14 NS 

CBT rise after warming-up 0.26 0.01 – 0.51 0.27 C 0.19 -0.05 – 0.42 0.20 NS 

Fluid intake before race 0.00 -0.00 – 0.00 -0.19 NS 0.00 -0.00 - 0.00 -0.17 NS 

Finish CBT race 1 0.49 0.26 – 0.72 0.49 A 0.67 0.15 – 0.59 0.41 B 

* R for model = 0.57; R2 = 0.32 

A p <0.001; B p <0.005; C p <0.05; NS not significant 

CI = confidence interval; β = standardized B 
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