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 
Abstract—The analysis and assessment of the pulse width 

modulation PWM techniques is commonly based on the 
comparison of the total harmonic distortion (THD) results. THD 
is usually calculated by application of the Fourier transformation 
and by taking a limited number of harmonics into the 
consideration. In this paper derivation of analytical formulae for 
the phase voltage THD is presented. The considered system is a 
symmetrical multiphase star-connected load, supplied from a 
multilevel pulse width modulated voltage source inverter (three-
phase case is also covered). The solution is based on the 
Parseval’s theorem, which links frequency spectrum and time 
domain through the average power (i.e. RMS squared value) of 
the signal. The assumption throughout the derivations is that the 
ratio of the switching to fundamental frequency is high. 
Derivations are based on the integration of the power of the 
PWM signal in a single switching period over the fundamental 
period of the signal. Only ideal sinusoidal reference voltages are 
analysed, and no injection of any type is considered. Formulae 
for phase voltage THD for any number of phases are derived for 
two- and three-level cases, for the most commonly used carrier-
based methods. Comparison of the analytically obtained curves 
with simulation and experimental results shows a high level of 
agreement and validates the analysis and derivations. 
 

Index Terms—Analytical derivation, multilevel inverter, 
multiphase system, total harmonic distortion. 
 

I. INTRODUCTION 

HE MOST common way of evaluating the total harmonic 
distortion (THD) in practice is by using the numerical 
approach, based on calculation of the Fourier 

transformation (FFT) of the signal. However, THD can be also 
calculated analytically, and the aim in this paper is to develop 
analytical formulae for the phase voltage THD. Considered 
system is an n-phase symmetrical star-connected load (e.g. 
induction machine) supplied from a multilevel (l-level) 
voltage  source  inverter  (VSI).  The        inverter output voltage is  
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obtained by means of the pulse width modulation (PWM). 

The importance of the THD as a measure of the waveform 
quality is highlighted in [1], where the risk of taking a THD 
indiscriminately as a figure of merit is also emphasised. It is 
shown, using a simple example of a leg voltage, that two 
completely different square-waveforms can result in the same 
THD although the distribution of the energy in the spectrum is 
totally different. Hence [1] discusses some other parameters, 
such as weighted THD (WTHD) or normalised THD/WTHD, 
that are regarded as more appropriate for evaluating a signal 
quality. In order to define the WTHD, it is necessary to 
assume that all the voltage harmonics see the same inductance. 
This is a perfectly valid assumption in three-phase systems, 
but, unfortunately, it does not apply to multiphase motor 
drives. This is so since, when the phase number is five or 
more, there are two (or more) planes into which voltage 
harmonics map and the inductance presented to the harmonics 
in these planes is in general different (for example, in a five-
phase induction motor drive, voltage harmonics in the first 
plane see an inductance that is approximately the sum of the 
stator and rotor leakage inductances, while harmonics mapped 
into the second plane see an inductance that equals only stator 
leakage inductance [2]). Thus, although the THD has 
drawbacks, it appears to be still the most appropriate indicator 
of the multiphase inverter output voltage quality. 

It should be noted that phase voltage THD analytical 
formula for multilevel three-phase case operating in six-step 
mode is derived in [1]. The same method of integration was 
used in [3-5] for derivation of leg-to-leg (line-to-line) voltage 
THD values. Analysed waveforms are of square-wave shape 
rather than PWM. 

The case considered in this paper is PWM operation. 
Analytical calculation of the PWM modulated multilevel 
inverter leg voltage THD has already been considered in [6, 
7]. The solution given in [6] is analytical and is given for the 
leg voltage THD and for the WTHD (assuming the same 
inductance for all voltage harmonics). It has been developed 
for the most typical numbers of levels (two, three and five, 
individually for each). The research of [6] was extended in [7] 
with an attempt at generalisation for an arbitrary number of 
levels. A complete full analytical expression for the leg 
voltage THD for multilevel VSI supply is derived in [8]. 

It appears that the issue of inverter output voltage quality 
continues to be predominantly studied in relation to three-
phase systems (e.g., [9-10]).  This is in contrast to the situation 
related to the current ripple, which has been extensively 
covered in recent times for drive systems with more than three 
phases (e.g., [2], [11-12]). General analytical formulae for the 
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phase voltage THD are therefore given in this paper for the 
first time. Circumstances when results are valid are explained. 
The same ideas of integration and derivation of the general 
formulae have been used in [13-15]. However, the results in 
[13-15] are actually not applicable to the voltage waveforms 
that they were aimed for. 

The results arrived at in the paper can be used to compare 
the output voltage quality of systems with different PWM 
schemes, different numbers of phases and different numbers of 
levels. Since the inverter output voltage harmonics are 
responsible for additional PWM produced iron losses in 
electrical machines, the results are also useful for this purpose.  

The paper is organised as follows. A review of the basic 
definitions of the signal power and THD is given in section II. 
Powers of various output voltages in multiphase multilevel 
VSIs are analysed in section III. Analytical formulae for phase 
voltage power in two-level and three-level multiphase VSIs 
are then derived in section IV. In section V, THD is calculated 
and obtained results are discussed and presented graphically. 
Analytical results are compared with simulation and 
experimental results in section VI. Conclusions are given in 
section VI I. 

II.  SIGNAL POWER AND DEFINITION OF THD 

Fourier transformation is closely related to the definition of 
the energy and the power of the signal. The instantaneous 
power )(tp / )(kp  and the energy W  of the continuous/discre- 

te signal )(tx / )(kx can be defined as [16]: 
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where 1t  and 2t , i.e. 1k  and 2k , represent instants in time 
between which the energy is calculated. 

For periodical signals it is very useful to define average 
power per signal period. The average (active) power of the 
continuous and discrete periodical signal is defined as: 
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Since )(tx  and ][kx  are real values (measured signal), 

symbol for magnitude “ ” in equations (1) to (2) can be 

omitted and it will not be used further on. 
Note that the average power in (2) represents the mean 

squared value of the signal. Thus the RMS value of a 
periodical signal can be defined as: 

 Pttx
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2  (3) 

In other words, average power P  can be defined as 2RMS . 
The equation that links energy in the time and in the 

frequency domain is known as the Parseval’s theorem. The 
Parseval’s theorem for the periodical signal states that the 
energy in one period of the signal )(tx  (i.e. the average 

power P ), is equal to the energy (power) in the spectrum [16]: 
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In discrete domain (4) becomes: 
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where hX  are complex values of the Fourier transformation 

(complex series) of the signal )(tx  in (4), i.e. ][kx  in (5). 

If signal )(tx  (i.e. ][kx ) is real, the spectrum will be 

conjugate-symmetrical [17]. Because of that, it is common in 
practice that instead of the full spectrum (that is symmetrical), 
only one half is used. To keep the same energy of the 
spectrum, magnitudes of the retained components have to be 

multiplied by 2 . In this way asymmetrical spectrum with 
RMS values of the harmonics is obtained. 

The usual way for THD calculation in practice is based on 
the signal spectrum and on the FFT calculation. THD is 
defined as a distortion of the harmonics compared to the 
harmonic that is of interest (useful harmonic). A dc value of 
the signal is usually excluded from calculation (it is not 
considered as distortion), and this will also be assumed here. 
THD of an arbitrary real but periodic signal ][kx  (with period 

T ) can be calculated as: 
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where || hX  and hrmsX ,  represent magnitude in the 

symmetrical, i.e. RMS value in the single-sided 
(asymmetrical), spectrum of the hth component, respectively. 
One can see that the THD is a square root from the ratio of the 
distorting power over the useful power. 

THD in (6) can be expressed in a different way. If 
Parseval’s theorem (5) for RMS values of the asymmetrical 

spectrum and the fact that PX rms =  from (3) are applied, 
(6) becomes: 

2
1,

2
1,

2

)(THD
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XX
x

                        (7) 

From (7) THD can be easily numerically calculated from 

the time domain without full spectrum calculation. 2rmsX  is the 
average value of the squared samples (2), (3), and the first 
harmonic can be calculated using a part of the FFT 
transformation 

   K

k
rms kkjxkkx

K
X

1
1, ])sin[][]cos[][(

1
2      (8) 

where T/2   and ]cos[ k  and ]sin[ k  represent the 

values of cosine/sine function at instants k  when periodical 
signal ][kx  is sampled. 

III.  MULTIPHASE MULTILEVEL OUTPUT VOLTAGE AVERAGE 

POWERS 

A. Voltage Definitions 

Considered topology is a star-connected symmetrical load, 
Fig. 1. For the sake of generalisation, voltage values 
normalised with respect to the dc-bus voltage are used further 
on and are denoted as dcu= v/V (where v  is a voltage in 
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Volts). Normalised reference voltages are assumed to be a 
symmetrical set of n  sinusoidal signals: 
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where =ph a ,b , c ,…, n , LEG  stands for the corresponding 

leg =LEG A , B ,C ,…, N , and k  is the phase/leg index 
=k 1 to n . All voltages in the power circuit are referred to 

the negative dc-bus rail (NDC), thus 1/2 dc term in (9), Fig. 1. 
No injection of any type has been considered. 

Phase voltage of a symmetrical load can be expressed as: 

 ][][=][ tututu CMVLEGph   (10a) 

where 

n

tu
tu
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CMV

][
=][
        (10b) 

is the common mode voltage (Fig. 1). Leg voltages ][ tuLEG  

are obtained from reference leg voltages )(* tuLEG , by 
application of a particular PWM technique. 

Further analysis is given only for the PWM methods that 
use two adjacent levels for creating leg voltages, and where 
each leg switches two times in a switching period in order to 
obtain reference value on average.  

B. Power Definitions and Relationships 

A general expression for the average power of the phase 
voltages, produced by the PWM multilevel multiphase 
inverter (including three-phase) case, will be ultimately 
derived in the next section. For that purpose, powers of 
different voltages are to be considered. These are defined as 
follows: ])[( tuP phT  is the phase voltage power, )][( tuP CMVT  

is the common mode voltage power, and ])[( tuP LEGT  is the 

leg voltage power. Symbol T in index emphasises that the 
average power is calculated for one period of the fundamental. 

To obtain the average power of the phase voltage (10a), 
general expression (2) can be used: 
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Fig. 1. Considered topology with used notation. 

It can be shown (please see Appendix) that if the produced 
leg voltages form a symmetrical n-phase system (identical 
waveforms in all legs, with only the difference in the phase 
shift of n/2  between consecutive legs), then 

T CMVLEG tuuT
0

d/1  T

CMV tuT
0

2 d/1 , which is the power 

])[( tuP CMVT . The first part of the integral in (11) represents 

])[( tuP LEGT . This leads to: 

 ])[(])[(=])[( tuPtuPtuP CMVTLEGTphT   (12) 

which represents an expected result. 
The problem of finding ])[( tuP phT  according to (12) can be 

split into two tasks: calculation of ])[( tuP LEGT , and 

calculation of the ])[( tuP CMVT . Recall that the problem of 

determination of ])[( tuP LEGT  has already been solved in [6-

8], but here it will be shown again for the analysed cases using 
somewhat different approach. For calculation of ])[( tuP CMVT  

the starting point is again (2): 
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Because of symmetry, values of  T

JIJIT tuuTuuP
0

d/1)(  are 

identical for the same angular span between phases. If the 
phase angle between phases n/2  is denoted with  , then the 
angle span between phases JI,  can take discrete values of 

 , where  /2 , 2, 1, ,0= n . Finally this means that the 

values of )( JIT uuP  are mutually equal for the same  . For 

example, in the five-phase case for 0= , =)( AAT uuP  

=)( BBT uuP  =)( EET uuP  … ,0)(= JIT uuP ; for 1= , 

=)( BAT uuP  =)( ABT uuP  =)( CBT uuP  … ,1)(= JIT uuP ; and 

for 2= , =)( CAT uuP  =)( ACT uuP  =)( DBT uuP  … 

,2)(= JIT uuP . Note that, if JI   ( 0= ), then that term of 

the sum is T I tuT
0

2d/1  and represents the power of the leg 

voltage ])[( tuP LEGT . For each   there are exactly n2  pairs 

of JI,  that have the same ),( JIT uuP , except for 0=  and 

for the last /2= n  for even n , for which there are n  pairs of 
JI,  with the same value of )( LEGT uP  i.e. /2),( nuuP JIT . 

Taking this into account, (13) can be rewritten as: 
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Coefficient K  in (14) is equal to 2  for every /2<1 n , 

while for 0=  and for /2= n  (that exists only for even n ) 
it is equal to 1=/20 nKK  .  

The problem of calculation of the leg, phase and common 
mode voltage average powers is reduced now to calculation of 
the )( JIT uuP , i.e. calculation of ),( JIT uuP . )( LEGT uP  
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equals ),( JIT uuP , for 0= , while )( CMVT uP  and 

)( phT uP  are determined by (14) and (12), respectively.  

C. Determination of )( JIT uuP  

Value of )( JIT uuP  can be calculated in a following way. 

Because Iu  and Ju  are PWM leg voltage square-waveform 
signals, this means that the process of integration will start 
with a switching period and progress with further integration 
throughout the whole fundamental period. The area under the 
product of two switching signals has to be calculated. The 
problem will be at first analysed in a general case, while later 
on the focus will be on the most typical dispositions of the 
carriers, in-phase disposition (PD), phase opposition 
disposition (POD) and alternating phase opposition disposition 
(APOD). An arbitrary case with two leg voltage PWM signals, 

Iu  and Ju , within one switching period, is shown in Fig. 2. 

Values of Ii , If  and Ji , Jf  in Fig. 2 are defined as: 
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Integer parameter JIi ,  takes values 2)( , 2, 1, 0, l , while 

fractional part is in the range 1<0 ,JIf . Throughout this 

analysis it is assumed that the voltage steps of the inverter are 
equal and constant. 

To obtain the average power of the product of the signals 

Iu  and Ju  during one switching period, the shaded area 
shown in Fig. 2b has to be calculated next. The value of 

)( JIsT uuP  can be calculated as the total shaded area divided 

by the switching period sT : 
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Fig. 2. Graphical interpretation of the calculation of :)( JIsT uuP a. Reference 

signals and produced PWM signals. b. Product of the produced PWM signals. 

One switching period sT  is shown. 
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Taking into account that sk k Tt  
5

1
, Is fTtt  /)( 32  and 

Js fTtt  /)( 43  one gets: 
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In (17) the last term in the sum in brackets, sTt /3 , depends 
on the position of the pulses inside the switching period, i.e. 
on the modulation strategy. It is determined by the duration of 
the interval during which the pulses overlap within a switching 
period. Thus, in a general case, instead of ,3t  a variable ovlt  

can be used. Also, it is wise to add and subtract JI ff  term to 
the other terms in a bracket in (17), and replace 

)1/()(  lfi II  and )1/()(  lfi JJ  with *
Iu  and *

Ju , 
respectively, see (15). Thus in general (17) can be rewritten 
as: 
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Notice here that the average power of the product of the two 
square-wave (PWM) signals )( JIsT uuP  is represented in a 

form of the power of product of the reference signals plus term 
that is a consequence of PWM. Also, note that the same value 
of )( JIsT uuP  will be obtained even if modulation strategy has 

multiple leg transitions within the switching period, but the 
duration of overlapped pulses, ovlt , is the same. However, 
such a modulation strategy would increase switching losses 
and is not considered here. 

Average power of the product of the signals Iu  and Ju  

during one fundamental period, )( JIT uuP , can be obtained as 

a sum, i.e. as an integral (because ff s / ) of )( JIsT uuP  

during one fundamental period T: 
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As already explained, determination of the value of 
)( JIT uuP  from (19) is sufficient for determination of 

)( LEGT uP , )( CMVT uP  and )( phT uP . Analytical formulae for 

two- and three-level case and for any number of phases will be 
derived in the following section. It should be emphasised 
again that only pure sinusoidal references are analysed. 

IV. MULTIPHASE TWO- AND THREE-LEVEL PHASE VOLTAGE 

AVERAGE POWER  

A. Two-Level Case 

The first integral in (19) is independent of the number of 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TPEL.2014.2316912

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

levels of the inverter and of the used modulation strategy. 
Hence, this result will be reused for the three-level case later 
on. Reference leg voltages are defined as in (9). Due to the 

symmetry, ),( ** JIT uuP  is the same for any values of I  and 

J  with the same span  . For the sake of calculation it will 
be assumed that AI   while J  takes value of A, B, C,… for 
different corresponding value of  0, 1, 2,… Reference 

signals *
Iu  and *

Ju  are shown in Fig. 3a. In a shown example 

AI   and BJ  . Substitution t =  will be used for the 
sake of simplicity in calculations. Because of the symmetry, 
this integral can be calculated as: 

)cos(
84

1
d

2

2
d

2

1 22/

2/

**
2

0

**' 




   


m

uuuuP JAJAT  (20) 

The second integral in (19), ,''TP  is independent of the 
modulation strategy, but is dependent on the number of levels 
of the inverter. In the case of a two-level inverter, according to 

(15) integer values JIi ,  are always zero, thus *
II uf   and 

*
JJ uf  . Because 2l , this means that this integral for two-

level case is again determined by the value of (20) but with the 

opposite sign ( '''
TT PP  ). 

Now the third integral '''
TP  of (19), with ovlt  term, has to be 

 

uA

* uB

*
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1
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Fig. 3: a. Leg voltage reference signals 

*
Au and 

*
Bu  ( 1 ). b. Calculation 

of ''
TP  term of (19) for the three-level case. Calculation of '''TP  term of (19) 

for PD-PWM: c. sma llerf  for xmm0  (29) and d. sma llerf  for 

1 mmx  (32). 

calculated. The calculation of this integral, '''
TP , is the most 

complex and depends on the both number of levels and used 

modulation strategy. In a two-level case if both signals *
Iu  and 

*
Ju  are compared with the same carrier signal, or say in 

general if produced pulses are centred with respect to each 
other in every switching period, the solution is simple. In this 

case, the value of sovl Tt /  is determined by the signal with a 

smaller fractional part, i.e. with the smaller value. Thus, taking 
into account that 2l , and because of the symmetry,  

 


   2
sin

2

1
d

2

2 2/

2/

*''' 





m

uP AT  (21) 

Summation of the three components yields the value of 
)( JIT uuP  of (19) for the two-level case in the form: 

 


 
2

sin
2

1
)( '''''' 


m

PPPuuP TTTJIT  (22) 

From ,)( JIT uuP  values of ,)( LEGT uP  )( CMVT uP  and 

)( phT uP  can be calculated. The value of )( LEGT uP  in two-

level case is determined as ),( JIT uuP , for 0= : 

 
2

1

2

0
sin

2

1
)( 


  


m

uP LEGT  (23) 

The value of )( CMVT uP  can be obtained by substituting (22) 

into (14). Finally, an analytical solution for the phase voltage, 
for the two-level case and any number of phases, can be 
obtained by substituting (23) and obtained value for )( CMVT uP  

into (12), which leads to: 

 
 

2
sin=)(

2/

1=





K

n

m
uP

n

phT  (24) 

where 2=K  for every  , i.e. 1=K  if /2= n  that 

exists only if n  is an even number. 

B. Three-Level PD-PWM Case  

In the three-level case calculation of the integrals in (19) is 

more involved. The value of '
TP  is independent of the number 

of levels, thus it is determined again by (20). For the 

calculation of the second integral ''TP , Fig. 3b will be used, 

where two fractional parts of reference signals *
Au  and *

Bu  for 
the three-level case are shown. One can see that, because of 
the symmetry, it is enough to determine the value of the 
integral in zones I, II and III and to multiply it by 2. The value 

of the fractional part Af , in zone I is )cos(1, mf A  , while 

in the zones II and III it is )cos(12, mf A  . In general, 

instead of leg B, any leg J  can be considered 
) , , ,( CBAJ  . The value of the fractional part of the leg J  

in zones I and II is )cos(1,   mf J , while in the zone III 

it is )cos(12,   mf J . Using this notation and by 

replacing 3l  one gets: 
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8

1

8
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2
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8

1)(3

ddd
2

2

2

2
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2/
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2/

1,2,

2/

2/

1,1,
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






 


 























mm

tfftfftff

P

JAJAJA

T  (25) 

Because of the complexity of the calculation of '''TP , only 

the most typical carrier dispositions are considered, PD and 
POD (which is in the three-level case identical to APOD [18]). 
PD-PWM is considered first. 

If carriers that are intersecting with reference signals *
Iu  

and *
Ju  are denoted with Ic  and Jc , then one can say that in 

PD-PWM case for any set of I  and J , carriers Ic  and Jc  

are always in phase. This means that PWM signals Iu  and Ju  
are always centred with respect to each to other as in Fig. 4 (to 
be compared with a general case from Fig. 2). Note that this is 
the maximum possible value of ovlt . One can see that sovl Tt /  
in (18) is actually determined by the signal with narrower 
pulse, i.e. with the signal with smaller fractional part. This will 

be denoted as smallerf  ( sovlsmaller Ttf / ). For calculation of '''
TP , 

this means that smallerf  has to be integrated during the whole 
fundamental period.  

One can see that borders of integration for the small 
modulation index values are constant, as it is illustrated in 
Fig. 3c. However, when the modulation index exceeds a 
certain value xm , some borders of integration  k

lx
(  and 

) k
rx   become dependent on the modulation index m , 

Fig. 3d. Values of 
lx  and 

rx  in Fig. 3d can be determined in 

a general case for any  , as the crossing points of the 
fractional parts of 2,Af  and 1,Jf . This leads to: 




 


 
2

sin2/1
2

sin
,

 m
rlx      (26) 

Value of xm  corresponds to xt  =  that is determined 

with .
rl xx    The value of x  can be obtained in a 

straightforward manner from Fig. 3, since it is in the middle of 
the span from /2  to ;/2    thus .2//2=  x  

Substituting 
rlx ,

  with x  in (26), one gets 

))2/sin(1/(2= xm . 
 

0

i
l
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i
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1
f TI s

f TJ s
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Fig. 4: Reference signals and produced PWM signals, if carriers are in phase. 

One switching period sT  is shown. 

Taking this into account and by using (26), values of 
lx  

and 
rx , as a function of m, in Fig. 3d can be expressed as: 

 
m

m

m

m x
x

x
x rl

arccos=arcsin
2,

   (27) 

The value of the integral '''
,1TP , when ,0 xmm  can be 

calculated according to the graphical interpretation shown in 

Fig. 3c, i.e. by dividing area of '''
1,TS  by 2 . Due to the 

symmetry, the value of the integral of fsmaller can be calculated 
(from zones I, II and III) as: 

 



   



 πΛα

Λαπ
A,

Λαπ

π
J,

π

Λα
A,T θfθfθf

l
P

2/

2/

2

2/

2/

1

2/

2/

12
'''
,1 ddd

2

2

)1(

1

 (28) 

One gets that: 

 


 88

1
cos

2
sin1

2
='''

,1




 m
PT  (29) 

where xmm0 . 

For the higher modulation index values 1< mmx  value 

of the integral '''
,2TP  can be calculated directly by integration of 

the area '''
,2TS  in Fig. 3d, and by dividing by 2 . However, it 

can be also calculated in a simpler way using previously 
obtained expression (29). One can see from Fig. 3d that 

,2= '''
,

'''
,1

'''
,2  TTT SSS  i.e. after dividing by ,2  that 

'''
,

'''
,1

'''
,2 2=  TTT PPP . Here '''

,1TP  is as in (29), but now calculated 

for 1< mmx . The value of '''
,TP  for any value of   is: 

  
rx

lx

AJT ff
l

P



 d)(

2

1

)1(

1
= 2,1,2

'''
,  (30) 

where values of 
lx  and 

rx  are given by (27). After 

calculation of the integral one gets: 

 



  m

m

m

m
P x

x
T arccos1

4

1
=

2

2
'''
,   (31) 

Finally, to complete the set of equations, one recalls that: 

 '''
,

'''
,1

'''
,2 2=  TTT PPP  (32) 

where '''
,1TP  is determined by (29), '''

,TP  is given by (31), while 

1< mmx  ( ))2/sin(1/(2= xm ). 

For determination of ),( JIT uuP  in (19) values of '
TP , 

''
TP and '''

TP  should be replaced with values from (20), (25) and 

(29) for xmm0 , i.e. (32) for 1< mmx , respectively. 

After all the substitutions one gets ( ))2/sin(2/(1 xm ): 








 

 1< ,2

0 ,0

2
sin1

24

1
=)( '''

, mmP

mmm
uuP

xT

x
JIT


  (33) 

where '''
,TP  is determined by (31). 

An analytical solution can be obtained now for leg, CMV 
and phase voltage for the three-level case with PD-PWM for 
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any number of phases. The value of )( LEGT uP  is determined 

as ),( JIT uuP , for 0= . Note that the last term in the sum 

in (33) is always 0, because xm  i.e. 1xm . One gets: 

 24

1
)(

m
uP LEGT   (34) 

The value of )( CMVT uP  can be obtained by replacing (33) 

into (14). Finally, after substitution of these results into (12), 
)( phT uP  for the three-level n-phase PD-PWM case becomes: 

 















 





 


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1< ,arccos1

0 ,0

2
sin

2

1
=)(

2

2

2/

1=

mm
m

m

m

m
K

mm

mK
n

uP

x
x

x

x

n

phT




 (35) 

where ))2/sin(2/(1 xm  and 2=K  for /2<1 n , i.e. 

1=K  for /2= n  (this exists only for even n ). Note that 

xm  depends on the value of ;  thus each value in the 
summation has to be calculated first. 

C. Three-Level (A)POD-PWM Case 

The situation when carriers Ic  and Jc  are in counter-phase 
in a particular switching period is shown in Fig. 5. One can 
see that two cases with a different ovlt  have to be considered, 

when 1 JI ff  (Fig. 5a) and when 1>JI ff   (Fig. 5b). 
One gets that: 

 





1> ,)1(

1 ,0

)1(

1
2

'''

JIJI

JI

sT ffff

ff

l
P  (36) 

where '''

sTP  represents ))1(/( 2 lTt sovl  term from (18). 

As when the carriers are in phase, the expression (36) has to 
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Fig. 5: Reference signals and produced PWM signals, if carriers are in 

counter-phase if: a. 1 JI ff , b. 1 JI ff . One switching period sT  

is shown. 

be integrated during the fundamental period to obtain '''
TP . 

Here some care has to be exercised. Most frequently signals 
*
Iu  and 

*
Ju  do not belong to the carriers that are in counter-

phase during the whole fundamental period, Fig. 6. This 
means that in some intervals, when references belong to the 
carriers that are in phase, or to the same carrier, smallerf  has to 

be integrated for determination of '''TP  (zones I and III). When 
references are compared with carriers that are in counter-phase 
and if 1 JI ff , the value for integration is 0  (upper row in 

(36); zone II, the second half), i.e. if 1>JI ff  , 1 JI ff  
(lower row in (36); zone II, the first half), has to be integrated 

for determination of '''
TP . 

In the shown example shaded area in Fig. 6b shaded area 
represents the last integral in (19). Because of symmetry, it 
can be calculated in general case as: 





   







2/

2/
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2/2/

2/
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1,
'' dd1)(d
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1 










 AJAA

'
T ffffP (37) 

One can see that the borders of integration are not changing 
with the increase of the modulation index m. This simplifies 
integration. After calculation of the integral one gets: 

 


 88

1
cos

2
sin

2
cos

2
=''' 


 m

PT  (38) 

As already mentioned, there is no change of the borders of 
integration, so (38) is valid for the whole modulation index 
range of m from 0  to 1 . Similarity of (38) with the 
corresponding expression (29) (that is only valid for xmm ) 

for the PD-PWM is obvious. 
The value of ),( JIT uuP , for any  , for (A)POD-PWM 

case can be calculated next. It is determined by a sum of 

terms, as in (19), where 
'

TP  and ''
TP  are given with (20) and 

(25), respectively, and '''
TP  is now defined by (38). After 

substitutions one gets: 
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Fig. 6: a. Leg voltage reference signals 

*
Au and 

*
Bu  ( 1 ). b. Calculation 

of '''
TP  term of (19) for (A)POD-PWM represents a combination of (29) and 

(36) when carriers are in phase and in counter phase. 
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 


 
2

sin
2

cos
24

1
=)(



m

uuP JIT  (39) 

An analytical solution can be now obtained for the leg, 
phase and CMV voltage for the three-level case with (A)POD 
carrier disposition, for an n-phase system. As explained, the 
value of )( LEGT uP  is determined as ),( JIT uuP , for 0= . 

One gets that )( LEGT uP  is the same as in PD-PWM case, i.e. 

that it is again determined with (34). This result can be 
generalised: )( LEGT uP  is independent of a modulation 

strategy, provided that ff s /  is high enough, the output leg 
step is constant, and only two adjacent levels are used (see 
[8]). 

The value of )( CMVT uP  can be obtained by substituting (39) 

into (14). After substitution of all these results into (12), 
)( phT uP  for the three-level n-phase case with carriers in 

(A)POD becomes: 

 
 




 


   nn
Kn

n

m
uP

n

phT


 sincos1

2
=)(

2/

1=

 (40) 

where 2=K  for /2<1 n , i.e. 1=K  for /2= n  

(which exists only for even n ). Note that the power of the 
produced phase voltage is linearly proportional to the value of 
the modulation index m, with the coefficient of proportionality 
being different for the different numbers of phases n . Linear 
dependence was also present in the two-level case (24), while 
in the three-level case with PD-PWM (35) the dependence was 
more complex. 

V. ANALYSIS AND GRAPHICAL REPRESENTATION OF PHASE 

VOLTAGE POWER AND THD 

Comparing (34) with (23) one can see that the power of the 
leg voltage signal created by the three-level inverter is always 
lower than power produced by the two-level inverter 

2/1)2/(4/1(  m , ).10 m  However, this power is 

always greater or equal than the power of the ideal sinusoidal 
leg voltage reference of (9), that can be calculated by (2) and 

that amounts to 8/4/1 2m . This means that if a multilevel 
inverter is used, ‘wasted’ power that goes into the additional 
non-fundamental harmonics is reduced compared to the two-
level case. Usage of non-adjacent levels in a three-level 
inverter causes two-level operation. Thus one can conclude 
that usage of non-adjacent levels will increase ‘wasted’ power, 
which confirms previously given statement. 

From the previous analysis one can see that the position of 
pulses inside the switching period sT , i.e. used modulation 
strategy, is important for determination of the power of the 
phase voltages but not for the leg voltages. For different 
position of pulses different area under JIuu  curve, i.e. 

)( JIsT uuP , can be obtained, see (18) and Fig. 2. In fact this 

difference is determined by the ovlt . If the carriers are in 

phase (Fig. 4), then the area, i.e. the value of )( JIsT uuP , is 

greater than if the carriers are in counter-phase, Fig. 5 (proof: 

fsmaller = 1>),(min  JIJI ffff  for 1<,0 JI ff ). This is 

also obvious since ovlt  is greater for PD than in (A)POD case. 

A consequence of this is that after integration over the 

fundamental period the obtained value of )( JIT uuP  will be 

greater for PD-PWM than for POD- or APOD-PWM for any 
pair of I  and J . Referring this back to (14), this means that 
PD-PWM will put more power into CMV than (A)POD. 

Because )( LEGT uP  is the same for PD and (A)POD (34), 

looking at (12) this means that PD-PWM produced phase 
voltages will contain less power than those produced by POD 
and APOD carrier dispositions. This is in agreement with 
conclusions of [18], where double Fourier transformation 
analysis of the leg voltages has been done. It was shown that 
PD-PWM localises high amount of energy at the multiples of 
the switching frequency and, since those harmonics cancel in 
phase voltages, PD-PWM has been proposed as superior when 
compared to the POD and APOD. The same conclusion is 
obtained here through the time domain analysis, and through 
the spectral analysis in [18], thanks to the Parseval’s theorem 
(5) that links a signal power in the time and in spectral 
domains. 

If reduction of the power that is going into CMV is of 
interest, then the (A)POD represents the best choice. Further, 
one can see that (40) for even numbers of phases n becomes 

equal to )2/(=)( muP phT . Comparing this result with the 

power of the leg voltage (34), for the three-level case, one can 
see that the only difference is in the constant term 1/4. This 
power is the power of dc value of 1/2 that is a difference of 
reference phase and reference leg voltages that are referred to 
NDC. This means that for an even n and for the three-level 
inverters with carriers in (A)POD the CMV does not contain 
any ripple and is a pure dc-value (of dcV2/1 ) or zero, 
depending on the point to which it is referenced. Because of 
the mirror-symmetry around the time axis, this conclusion can 
be generalised to any even number of phases with an odd 
number of levels, and to both POD and APOD carriers. 

Because PD-PWM has the maximum possible ovlt  in each 
switching period, one can generalise that it puts the maximum 
power into common mode voltage, and minimises power that 
goes into the phase voltage, i.e. RMS2. As a consequence, one 
can conclude that PD-PWM is a modulation strategy that 
produces the lowest phase voltage THD, see (7). 

Phase voltage power, according to the analytical 
expressions (24), (35) and (40) for the two- and three-level 
case with PD and (A)POD carrier dispositions, respectively, 
and for phase numbers 6 5, 3,=n  and 7  is shown graphically 
in Fig. 7. Power of the reference phase voltages, given with 
(9), can be easily calculated using (2) and is also shown in 

Fig. 7 (gray dashed line, /8=)( 2* muP phT ). 

Fig. 7 clarifies the previously given statement, that the 
phase voltage produced by the PD-PWM has a smaller 
average power (smaller higher order harmonics) than the 
voltage produced by the (A)POD-PWM for the same number 
of phases. Of course, phase voltage produced by the (A)POD-
PWM has a smaller average power than the one produced by 
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the two-level PWM inverter. An interesting fact to be noted is 
that the phase voltage produced by a three-phase inverter has 
smaller power than those produced by inverters with higher 
numbers of phases. For the two-level case and for three-level 
case with PD-PWM this can be generalised into a statement 
that power of the phase voltage increases with the phase 
number n; however, for (A)POD this is not the case. 

Note that the values for the three-level PD-PWM in Fig. 7 
are twice smaller than for the two-level case for the given 
number of phases, for small modulation index values. This is 
also obvious from equations (24) and (35). The maximum 
value of the modulation index m  up to which this applies is 
determined by the smallest value of xm  for a particular n, i.e. 

by )))/sin(1/(2min( n . Thus for the three-phase case this is 

true up to the modulation index of 0.5774, for the five-phase 
case up to 0.5257, for the six-phase case up to 0.5, and for the 
seven-phase case up to 0.5129. 

Operation of the three-level inverter with PD carrier 
disposition for small modulation index values is similar to the 
operation of the two-level VSI with halved dc-bus voltage. 
From the point of view of the space vectors and sub-sectors, 
used space vectors for sub-sectors of the three-level case are 
identical for the small modulation index values as for the two-
level case with halved dc-bus value. Maximum modulation 
index in the linear modulation region for an n-phase system, 
for odd numbers of phases, is given with 

))2/(cos(1/= nmmax   [19], and it is obtained with min-max 
zero-sequence injection. For even numbers of phases mmax=1 
and linear region cannot be extended. Particular values of the 
modulation index mx, up to which the power of the phase 
voltage obtained with the two-level inverter is twice more than 
the power obtained with the three-level inverter (0.5774, 
0.5257, etc.), are equal to mmax/2 for any particular number of 
phases. 

By using analytical expressions (24), (35) and (40) for the 
phase voltage average power obtained with two- and three-
level multiphase PWM          inverter with PD and (A)POD carriers,  
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Fig. 7: Analytical curves plotted using (24), (35) and (40): the average power 
during the fundamental period of the phase voltage generated by two- and 
three-level PWM multiphase inverters with PD and (A)POD carriers, 

).( phT uP  

and by using (7), THD values of the phase voltages can be 
obtained.  According to  (3), RMS values of the phase voltages 

can be calculated as )(=, phTrmsph uPU . Total harmonic 

distortion is defined with reference to the fundamental (first 
harmonic) of the output, which is equal to the reference value 
since dead time has not been considered. RMS value of the 

fundamental is equal to )2/(2)(= *
1,, muPU phTrmsph  . 

Substituting these expressions into (7), one gets: 

 1
)(8

=
)()(

=)(THD
2

1,,

*


m

uP

U

uPuP
u

phT

rmsph

phTphT

phT  (41) 

where )( phT uP  is given by (24), (35) and (40) for the 

considered cases of the two-level and three-level PWM with 
PD and (A)POD carriers, respectively, and m is the 
modulation index value 10 m . 

Curves that represent THD of the phase voltages, for the 
two-level and three-level PWM with PD and with (A)POD 
carriers, are generated according to the analytical expression 
(41) for various phase numbers and are shown in Fig. 8. 

Calculation of the phase voltage power and THD for any 
other number of levels and any other shape of references can 
be executed in the same manner. However, due to complex 
analytical calculations and due to the simplicity of finding the 
problem solution numerically, full solution for only the most 
common cases in practice, two-level and three-level PD and 
(A)POD PWM, was given here. Numerical calculation of the 
THD does not necessarily mean calculation by finding the 
spectrum first; THD can be also calculated numerically in time 
domain, as explained at the end of section II . Some results for 
the phase voltage THD, for the three-phase load supplied from 
the five, seven and nine-level inverter with different carrier-
based strategies, are given in [20], where the region of 
overmodulation is also covered. The method of THD 
calculation in [20] was obviously numerical, by means of the 
spectrum determination; however the number of harmonics 
taken into consideration is not given. 

VI. COMPARISON OF THE THEORETICAL CURVES WITH 

SIMULATION AND EXPERIMENTAL RESULTS 

To validate the theoretically obtained analytical results, 
simulations and experiments have been done. Simulation 
software PLECS block-set has been used. Scope in this 
software has a built-in function for RMS and THD calculation. 
The built-in functions use exact numerical approach as the one 
described in section II , but are also adapted to work with a 
variable simulation step time [21]. According to (3) average 
power of the signals is calculated as a squared value of the 
RMS value from the PLECS scope. This way of calculation is 
very precise and that is the reason why this software has been 
used for proper simulation verification of analytical results. 

Theoretical analytical curves for power of the generated 
output phase voltage of Fig. 7 are compared with simulation 

values from PLECS scope )(RMS2  in Fig. 9. A corresponding 
comparison of the analytical THD traces with simulation 
results, which are the values read from the PLECS scope, is 
shown in Fig. 10. Simulations are done for the constant V/f 
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ratio ( 1/50=/fm ), for 1=Vdc V (for easier comparison of 
power curves, when needed), and for the switching frequency 
of 2=sf kHz. Dead time has been neglected. Excellent 
agreement between simulation and analytical results is 
obvious. This means that the used switching frequency, i.e. 
ratio ff s/ , is high enough for all the modulation indices. 

In experiments, as in simulations, fV/  ratio was kept 

constant and equal to 1/50=/fm  and fs = 2 kHz. Custom-made 
two-level and three-level inverter of the neutral-point clamped 
(NPC) type were used. Two-level inverter can supply up to an 
eight-phase system. Three six-pack Infineon IGBT modules 
FS50R12KE3 are used. IGBT modules of the three-level NPC 
inverters are Semikron SKM50GB12T4, while clamping 
diodes are Semikron SKKD 46/12. Each NPC inverter has six 
phases, so that for seven-phase experiments two units were 
paralleled to the same dc-bus. The experiments have been 
done using three-, five-, and six-phase symmetrical induction  
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Fig. 9: Comparison of the analytical curves for the average power of the phase 
voltage generated by two- and three-level PWM multiphase inverter (Fig. 7; 
continuous lines) with simulation results from PLECS scope RMS2 (discrete 
values, identified with markers). 
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Fig. 10: Comparison of the analytical curves for phase voltage THD (Fig. 8; 
continuous lines) with simulation results from PLECS scope (discrete values, 
identified with markers). 
 

machines and for seven-phase case using symmetrical LR  
load. Dc voltage, provided from Sorensen SGI 600/25 dc 
source, was 600V in all the cases, except for the six-phase 
machine where it had to be lowered to 250V due to the 
limitation imposed by the voltage rating of the machine. The 
inverters’ dead time is 6 s. THD was calculated using Fourier 
transformation as in (6). Two    cases were considered: when the 
harmonic spectrum was limited at 21kHz (the first ten side-
bands), and when a full spectrum is used for calculation of 
THD. Comparison of theoretical analytical curves and 
experimental results for the THD is given in Fig. 11. 

From Fig. 11, it is evident that there are minor differences 
between the experimental and analytical values. With full 
spectrum, experimental THD values are slightly higher than 
analytical predictions. This is due to the dead-time effect, 
which has not been considered in either analytical derivations 
or in simulations but is unavoidable in practice. The effect of 
truncating the spectrum at 21kHz is also evident in Fig. 11. 
With the applied truncating, all the experimental THD values 
become slightly lower than the theoretically predicted values, 
regardless of the existence of the dead time. 

Finally, an attempt is made to evaluate the minimum 
switching to fundamental frequency ratio that is required for 
the procedure in the paper to be regarded as accurate enough. 
The highest fundamental frequency (50Hz here) is used and 
phase voltage THDs are evaluated for all the considered (two-
level and three-level) PWM schemes, using at first analytical 
expressions. Simulations are further done for switching 
frequencies 2kHz, 1kHz and 500Hz, for all the considered 
phase numbers. Table I shows percentage difference between 
the value at the used switching frequency and the analytical 
value. It follows from Table I that the fs/f ratio of 40 (i.e. 2kHz 
switching frequency) is more than sufficiently high to provide 
accurate results. Even the ratio of just 20 (i.e. 1kHz) appears 
as high enough for the two-level and three-level (A)POD 
PWM for all phase numbers. However, reducing the ratio to 
only 10 does lead to rather high differences and this ratio is 
therefore too low. 
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Fig. 11: Comparison of the analytical curves (continuous lines) for the phase voltage THD (Fig. 8) with experimental results using the full and up to 21kHz 
spectrum for THD calculation (discrete values labelled with corresponding markers), for a. three-, b. five-, c. six- and d. seven-phase configuration. 
 

TABLE I. PERCENTAGE DIFFERENCE BETWEEN THE PHASE VOLTAGE THD 

VALUE AT A GIVEN SWITCHING FREQUENCY AND THE VALUE OBTAINED 

USING ANALYTICAL EXPRESSION. FUNDAMENTAL FREQUENCY IS 50HZ IN 
ALL CASES. 

fs 2kHz 1kHz 500Hz 

Phase no. 3 5 6 7 3 5 6 7 3 5 6 7 

2-level 0.5 0 0.3 0.4 2.2 -0.1 1.1 1.3 8.7 -0.4 6.4 5 

3-level PD 1.9 0.7 1.3 0.5 7.9 1.3 5.6 2.3 30 2.2 25.2 13 

3-level (A)POD 0.4 -0.1 -0.1 0.2 1.6 -0.6 -0.5 -0.1 17.9 2.5 9.4 11.2 

VII.   CONCLUSION 

Analytical expressions for the average power (RMS2) and 
THD for the PWM produced phase voltage are derived in this 
paper. Considered reference voltage is purely sinusoidal, and 
analysis is given for the star-connected symmetrical load. Due 
to the complexity of the analytical derivation, and 
simultaneous simplicity in obtaining the results numerically, 
the analysis has been restricted to the two- and three-level n 
phase cases. However, the principle used is general and it can 
be applied to any number of levels and phases. For the three-
level case PD-PWM and POD (i.e. APOD) PWM are covered. 
The superiority of the PD-PWM, for producing phase voltages 
with lower THD, is confirmed once again by the time domain 
power analysis here. Analytical curves are compared with 

simulation and experimental results, and an excellent 
agreement is demonstrated. 

APPENDIX 

A proof of the identity   

  T

CMV

T

CMVLEG tu
T

tuu
T 0

2

0

d
1

d
1

    (42) 

is provided here. Let us select uA as a representative of uLEG 
and n=5, without any loss of generality. Then 
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Thus one has an identity of the functions to be integrated, 

 2
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...  CABAEAEAA uuuuuuuuu
  (44) 

Because of the symmetry, all integrals with the same angular 
span between phases (A-A, B-B, …, E-E; A-B, B-C, …, E-A; 
A-C, B-D, …, E-B) are identical, so that one can write 

2

22

5

10105

5

22 CABAACABAA uuuuuuuuuu 
  (45) 

This concludes the proof of the validity of (42). 
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