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Abstract 12 

The Normal distribution remains the most widely-used statistical model, so it is only natural that 13 

researchers will frequently be required to consider whether a sample of data appears to have been 14 

drawn from a Normal distribution. Commonly-used statistical packages offer a range of alternative 15 

formal statistical tests of the null hypothesis of Normality, with inference being drawn on the basis 16 

of a calculated p-value. Here we aim to review the statistical literature on the performance of these 17 

tests, and briefly survey current usage of them in recently-published papers, with a view to offering 18 

advice on good practice. We find that authors in animal behaviour seem to be using such testing 19 

most commonly in situations where it is inadvisable (or at best unnecessary) involving pre-testing to 20 

select parametric or not-parametric analyses; and making little use of it in model-fitting situations 21 

where it might be of value. Of the many alternative tests, we recommend the routine use of either 22 

the Shapiro-Wilk or Chen-Shapiro tests; these are almost always superior to commonly-used 23 

alternatives like the Kolmogorov-Smirnov test, often by a substantial margin. We describe how both 24 

our recommend tests can be implemented. In contrast to current practice as indicated by our 25 

survey, we recommend that the results of these tests are reported in more detail (providing both 26 

the calculated sample statistic and the associated p-value). Finally, emphasize that even the higher-27 

performing tests of Normality have low power (generally below 0.5 and often much lower) when 28 

sample sizes are less than 50, as is often the case in our field.  29 
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Introduction  33 

The Normal distribution remains the most widely-used statistical model, so it is only natural that 34 

researchers will frequently be required to consider whether a sample of data appears to have been 35 

drawn from a Normal distribution. This can be done most simply by visual inspection of a histogram 36 

of the data, or a more specialised plot such as a Q-Q plot. However visual inspection of this nature 37 

on its own does not offer an objective means of decision making: potentially the same researcher 38 

could look at a graph on two different occasions and reach different conclusions as to whether the 39 

data was suggestive of an underlying Normal distribution or not; or two researchers could disagree 40 

when looking at the same graph without having an objective means to resolve their disagreement. 41 

Hence, an alternative would be a formal statistical test of the null hypothesis of Normality, with 42 

inference being drawn on the basis of a calculated p-value. Commonly-used statistical packages offer 43 

a range of different alternative tests (Yap & Sim, 2011). Here we review the statistical literature on 44 

the performance of these alternative tests, and briefly survey current usage of these tests in 45 

recently-published papers in Animal Behaviour, showing that current common usage departs from 46 

what is implied by the statistical literature. We also consider when such testing for Normality is most 47 

useful. This should allow us to offer clear advice to authors on how to apply such tests and to 48 

readers on how to interpret them.  49 

Literature review 50 

We reviewed the specialist statistics literature on Normality tests in order to explore the evidence in 51 

respect to the following issues: 52 

1. Are there differences between alternative tests in terms of their power, and if so how 53 

substantial are these differences? 54 

2. If there are substantial differences, can advice on selection of a test be offered?  55 

3. How strongly is the power of such recommended tests affected by sample size? 56 
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The most recent general comparison of tests of Normality compared the power of eight tests that 57 

were available through commonly-used statistics software: Shapiro-Wilk, Kolmogorov-Smirnov, 58 

Lilliefors, Cramer-von Mises, Anderson-Darling, D’Agosino-Pearson, Jarque-Bera, and chi-squared 59 

tests (Yap & Sim, 2011). Simulation results suggested that if the alternative hypothesis to Normality 60 

is not constrained then the Shapiro-Wilk test gives the   highest power. If the alternative is 61 

constrained in some way (e.g. by assuming that the alternative will be symmetric but shorter tailed 62 

than a Normal distribution), then the Jarque-Bera, D’Agostino-Pearson and Anderson-Darling tests 63 

can offer similar power to the Shapiro-Wilk test under different constraints, but they never 64 

substantially outperform it. The other four tests (Kolmogorov-Smirnov, Lilliefors, Cramer-von Mises 65 

and chi-squared) never outperform Shapiro-Wilk. Yap and Sim (2011) found that power was 66 

generally low (less than 0.3 and often much less) for sample sizes lower than 50, but with a steep 67 

increase in power to values closer to 1 for sample sizes between 50 and 200. Yazici and Yolacan 68 

(2007) concluded that the Shapiro-Wilk test gave the best power when the alternative was 69 

unconstrained of the 12 tests they compared. Razali and Wah (2011) argued that across a broad 70 

range of circumstances the Shapiro-Wilk test was superior to the Anderson-Darling, Lilliefors and 71 

Kolmogorov-Smirnov tests, with the difference in power often being several-fold. However, power of 72 

this test was less than 0.5 for five of the six underlying distributions explored when sample sizes 73 

where less than 50. Ramao, Degado and Costa (2010) compared 33 different tests and concluded 74 

that the Schapiro-Wilk and Chen-Shapiro tests (see below) were the best choices against an 75 

unconstrained alternative, and could still be recommended when the form of the alternative was 76 

constrained. Keskin (2006) compared four commonly-used tests and concluded that Shapiro-Wilk 77 

offered greatest power, sometime seven times that of the other tests. Oztuna, Ethan and 78 

Tuccar(2006) reached similar conclusions; and of the various underlying distributions they 79 

investigated, only for a uniform distribution was the power of the Shapiro-Wilk test above 0.5 for a 80 

sample size of 50. Mendes and Pala (2003) again found the Shapiro-Wilk test to be the most 81 

powerful of those tested, sometimes having several-fold more power than commonly-used 82 
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alternatives, but still sometimes being low for even moderate samples sizes. Farrell and Rogers-83 

Stuart (2006) again recommended the Shapiro-Wilk test after an extensive evaluation of 13 different 84 

tests across 48 different underlying distributions: across these distributions the power of Shapiro-85 

Wilk test was 0.38 on average for N=20 if  was set to 0.1 to boost power.  86 

Although (based on our survey above) the Shapiro-Wilk test seems to be the best performing of the 87 

commonly-used tests, the test of Chen and Shapiro (1995) was designed to be always at least as 88 

powerful and often more powerful than the Shapiro-Wilk test; and the available evidence suggests 89 

that it achieves this performance(Brzezinski, 2012; Marmolejo-Ramos & Gonzalez-Burgos,2013; 90 

Seier, 2002).  91 

Thus, of the commonly-used  and -available tests, the Shapiro-Wilk test can be recommended as 92 

having the best power, often significantly greater power than alternatives; but even for this test 93 

power can be low for even moderate sample sizes (N < 50). For those willing to use a less-familiar 94 

test, that of Chen and Shapiro (1995) can be recommended as having generally better performance 95 

even than Shapiro-Wilk. Since we recommend these two tests in particular, we now briefly describe 96 

how researchers can access them.  97 

Implementation of recommended tests.  98 

The Shapiro-Wilk test is available through many commonly used statistics packages: e.g. SAS, SPSS,  99 

Statistica, Stata, and via the shapiro.test function in the stats package of R.  100 

For a sample size of n, if the sample values ordered from smallest to largest are x1,…,xn,  and their 101 

mean value is �̅� then the test statistic is given by  102 

𝑊 =
(∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1 )

2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

 , 103 

for weights a1,…,an, that depend on the expected values and the covariance matrix of the order 104 

statistics (for details see for example Thode, 2002). The denominator can be seen as a measure of 105 
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the variance of the sample. The numerator is essentially a similar measure of the variance that 106 

would be the best estimator if the sample were drawn from an underlying Normal distribution.  The 107 

null hypothesis of an underlying Normal distribution is rejected if W is below a critical value. The 108 

challenge in implementing this technique to obtain the weights (a1,…,an). The software packages 109 

listed above all use the algorithm provided by Royston (1995). Given its implementation in many 110 

standard packages, we would be surprised if many researchers chose to implement this test 111 

themselves.  112 

The Chen-Shapiro test is not available in many commonly used statistical packages: to our 113 

knowledge it is only available through the the PoweR package in R. However, the implementation of 114 

this test is sufficiently straightforward that many researchers would be comfortable implementing it 115 

themselves. The test statistic QH* is calculated as below: 116 

𝑄𝐻∗ = √𝑛(1 − 𝑄𝐻) 117 

Where QH is obtained as 118 

𝑄𝐻 =
1

𝑠(𝑛 − 1)
∑

𝑥𝑖+1 − 𝑥𝑖

𝐻𝑖+1 − 𝐻𝑖

𝑛−1

𝑖=1

 119 

Where s is the standard deviation of the sampled values: 120 

𝑠 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 121 

Where �̅� is the mean of the xi values. Hi is given by  122 

𝐻𝑖 = Φ−1 (
𝑖 − 0.375

𝑛 + 0.25
) 123 
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Where -1() is the inverse of the standard Normal cumulative distribution function. Values of QH* 124 

greater that a critical value suggest significant deviation from a Normal distribution, and critical 125 

values are provided in Table 2 and Appendix 2 of  Chen and Shapiro (1995).  126 

When should testing for Normality be conducted? 127 

The general consensus in the statistical literature is that preliminary testing for Normality as a means 128 

of selecting whether to take a parametric or non-parametric approach to testing the hypothesis of 129 

primary interest (e.g. whether to use a t-test or Mann-Whitney U-test to test for a difference in 130 

central tendency between two groups) should not be undertaken (e.gSRasch, Kubinger & Moder, 131 

2011; Rochon, Gondan & Kieser, 2012; Schoder, Himmelman & Wilhel, 2006; Schucany & Ng 2006; 132 

Shuster, 2009; Wells & Hintze 2007; Zimmerman, 2004). This is counter to the advice given in many 133 

of the most widely-used introductory statistics texts used by biologists (e.g. Dytham, 2011; Fowler, 134 

Cohen & Jarvis, 1998). For example, textbooks generally recommend that when comparing central 135 

tendency across groups that the sample for each group is tested separately for Normality. If all 136 

groups seem to be drawn from Normal distributions then a t-test or ANOVA is recommended to 137 

compare means across groups; otherwise non-parametric equivalents are recommended. However 138 

it is often more practical to apply the Normality testing to the residuals generated under the null 139 

hypothesis, especially for more complex designs or in the case of a continuous covariate.  140 

One argument against this widely-used approach is essentially philosophical: if the pre-test does not 141 

give reason to reject the null hypothesis then the scientist proceeds as if the null hypothesis of 142 

Normality is true. However the philosophy of null-hypothesis statistical testing is that failure to 143 

reject the null hypothesis does not imply that the null hypothesis holds. Essentially, the problem 144 

here is that the procedure rests on the implicit assumption that the preliminary test for Normality 145 

has very high power, but (as discussed above) this will often be a highly questionable assumption. 146 

Another philosophical concern is that the preliminary tests of Normality imply their own 147 

assumptions about the underlying distribution and it seems logically inconsistent to check the 148 
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assumption of Normality but not these other underlying assumptions. On a more practical level the 149 

Type I and Type 2 error rates of the key test of interest (e.g. the t-test or U-test in the example 150 

mentioned above) are strongly influenced by the detail of the preliminary-testing procedure, and 151 

most concerningly the Type I error rates can deviate strongly from the nominal levels.  152 

It is also important to note that the reliability of parametric methods such as for example ANOVA 153 

and the classical version of the t-test are also sensitive to violation of the assumption of equal 154 

variance across groups. Indeed for large samples, methods are often more robust to violation of 155 

Normality assumption (Lumley, Diehr, Emerson & Chen,  2002). However, pretesting for 156 

homogeneity of variances before selecting an appropriate statistical test is similarly not 157 

recommended (Rasch et al., 2011; Zimmerman, 1998; 2004a&b). Some tests of homogeneity of 158 

variance make the assumption that the underlying distributions are Normal (Zimmerman 2004a); 159 

although the Brown-Forsythe modification of Levene’s test was designed to avoid this assumption 160 

(Brown & Forsyth, 1974). Further, the robustness of methods to separate violations of either 161 

normality or homogeneity of variance assumptions are not a good guide to the robustness of these 162 

methods to both violations ocurring simultaneously (Zimmerman, 1998).  163 

For the moment, it is safe to conclude that preliminary testing for Normality as a means to selecting 164 

whether to take a parametric or non-parametric approach to testing the hypothesis of primary 165 

interest should not be undertaken. There are other situations, however, where testing to see if a 166 

distribution seems to be Normal seems useful. These relate to evaluating quality of model-fit, rather 167 

than selection of parametric versus alternative statistical tests of a null hypothesis. For example, 168 

some model fitting procedures (e.g. general linear modelling) assume that residuals around the 169 

fitted model are Normally distributed, and it may sometimes be useful to test this as part of 170 

evaluation of how successful a model-fitting exercise has been. However, caution needs to be 171 

applied in the interpretation of such testing. The issue of low power when sample sizes are small 172 

remains; and when sample sizes are very big then the test may suggest rejection for departures from 173 
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Normality that are biologically trivial.    Alternatively, it might sometimes be useful to test for 174 

Normality to help justify fitting a Normal model to data in order to make predictions from that 175 

model, taking advantage of the known properties of the Normal distribution. The central limit 176 

theorem suggests that we might reasonably often expect to find Normal distributions. The central 177 

limit theorem implies that if we draw a large number of independent samples from any underlying 178 

distribution, then the distribution of the means of those samples will be approximately Normal. 179 

Many test statistics, scores and estimators encountered in practice contain sums of random 180 

variables within them. For example, students’ exam grades are generally weighted sums of scores on 181 

a number of individual questions.  Further, many estimators can be represented as sums of random 182 

variables through the use of influence functions (Johnson 2004). The central limit theory indicates 183 

that these statistical parameters will have asymptotically Normal distributions. Finally, one could 184 

interpret the p-value of a test on Normality as a descriptive measure, rather than performing a 185 

formal test with a fixed significance level. That could be useful, for example, when trying to find a 186 

suitable transformation for a sample of data. Residual analysis including testing on Normality could 187 

be applied to decide between different possible transformations. 188 

Current usage in Animal Behaviour  189 

We found that formal testing of the null hypothesis of Normality was carried out in 23 papers 190 

published in Animal Behaviour during 2014. Of these 12 used the Shapiro-Wilk test, 9 the 191 

Kolmorogov-Smirnov test, and one each used chi-square goodness of fit and the Lilliefors tests. 192 

Sample sizes ranged from 7 to 401, however in 17 of the 23 papers the sample size was 30 or less for 193 

at least on test of Normality. For 20 of the 23 papers the Normality test was used in order to decide 194 

whether parametric or non-parametric analysis should be used to test the hypothesis of primary 195 

interest (our experience with other areas of whole organism biology such as ecology, microbiology 196 

and palaeontology suggests this is a very common usage). On the other three occasions the test was 197 

used to examine the distribution of residuals from a fitted model. Only one paper of the 23 gave the 198 
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calculated test statistic and exact P-value. All other papers simply reported whether the P-value was 199 

greater than 0.05 or not, or (presumably equivalently) in words, whether the null hypothesis of 200 

Normality was rejected or not. The null hypothesis of Normality was rejected in six papers (9 of the 201 

31 test performed overall); the median sample size of tests that rejected the null hypothesis was 29; 202 

the median sample size of those that did not reject the null hypothesis was 18: this difference was 203 

statistically significant: we used a Brunner-Munzel test rather than a Mann-Whitney U-test because 204 

of strong difference in the variances (Neuhäuser, 2012)  WBF = 17.45, P =  0.023. This suggests that in 205 

many cases Normality may have been incorrectly assumed because the test used did not have the 206 

power to detect a significant departure from Normality because of low sample sizes. 207 

 208 

 209 

Discussion and Conclusions  210 

For very large samples the Shapiro-Wilk test cannot be applied. For example, the function 211 

shapiro.test in R does not work for n>5001. However, we would like to mention that any marginal 212 

and irrelevant deviation from Normality can be significant in the case of very large samples. Thus, if 213 

the sample size is large enough, every sample will be significantly non-Normal because the Normal 214 

distribution will never be exactly true with real data. Thus, we do not recommend testing for 215 

Normality when sample sizes are extremely large (over 250 as a rule of thumb).    216 

Ties (identical values) can occur in a sample; even when the underlying distribution is continuous, 217 

rounding (as a result of graduations in a measuring device) leads to ties. Often, the possibility of ties 218 

is not considered in the comparison of Normality tests; for instance, Yap and Sim (2011) only 219 

investigated continuous distributions. However, the Shapiro-Wilk test is highly sensitive to the 220 

presence of ties (Royston, 1989). Royston (1989) presented a simple method of modifying the 221 

Shapiro-Wilks test statistic for non-continuous data and showed that the modified test has a high 222 
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power in comparison to the chi-squared test. In the absence of extensive investigation of the 223 

performance of alternative tests; we would recommend Royston’s method be used whenever there 224 

are ties in a sample. Based on our review above, we think there are a number of ways that 225 

researchers in animal behaviour (and more widely) could take better advantage of formal tests of 226 

the null hypothesis that a sample is drawn from a Normal distribution.  227 

Firstly, at present authors seem to be using such testing most commonly in situations where it is 228 

inadvisable (or at best unnecessary); and making little use of it in situations where it might be of 229 

value. Specifically, despite this being the most common use by far in our survey of 2014 Animal 230 

Behaviour papers, we do not recommend that authors use a formal test of Normality as a means to 231 

selecting whether to take a parametric or non-parametric approach to testing the hypothesis of 232 

interest. Rather we recommend that the statistical approach be determined prior to data collection 233 

on the basis of underlying knowledge of the system. Where this knowledge is not definitive, 234 

conservatively selecting a non-parametric approach can be recommended. Conversely, we 235 

recommend that authors make more use of Normality testing in other situations. Firstly, many 236 

models within the general linear model framework (including least-squares regression) assume that 237 

the residuals around the fitted model are Normally distributed. Thus diagnostic testing of the quality 238 

of model fit might often usefully involve testing this assumption (we found 47 papers in 2014  issues 239 

of Animal Behaviour where such testing might have been appropriate, of which only three presented 240 

or mentioned Normality tests). Secondly, we argue that many quantities of interest to researchers 241 

might be expected to be Normally distributed on theoretical grounds, and in such cases we would 242 

recommend testing this expectation. If a Normal distribution can be justified then fitting such a 243 

model to the data (estimation of the mean and variance) would allow the very well-understood 244 

properties of the Normal distribution to be utilised in order to explore expected properties of the 245 

population of interest.  246 
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Secondly, there are considerable differences between the different tests available in terms of their 247 

statistical power. We recommend the routine use of either the Shapiro-Wilk or Chen-Shapiro tests; 248 

these are almost always superior to commonly-used alternatives like the Kolmogorov-Smirnov test, 249 

often by a substantial margin. We describe (above) how both our recommend tests can be 250 

implemented. In contrast to current practice as indicated by our survey, we recommend that the 251 

results of these tests are reported in detail (providing both the calculated sample statistic and the 252 

associated p-value).  253 

Finally, we emphasize that even the higher-performing tests of Normality have low power (generally 254 

below 0.5 and often much lower) when sample sizes are less than 50. This small sample size 255 

situation is common in animal behaviour, as indicated by our survey above. Taborsky (2010) found 256 

that that the average sample size per treatment in laboratory experiments in the study of behavior 257 

was approximately 18, rising to 23 in field studies. In 17 of the 23 papers in our survey the sample 258 

size used in at least one test of Normality was less than 30; in such circumstances power to reject 259 

the null hypothesis will be low. However, of those 17 papers 14 failed to reject the null hypothesis 260 

and none of them discussed the issue of low power. We would recommend that such a discussion 261 

should be included any time sample size is less than 50 and the null hypothesis is not rejected.  262 

We believe that these are easy-to-implement actions that together will significantly improve the 263 

usefulness of tests for Normality to authors, editors, reviewers and readers across whole-organism 264 

biology and beyond.  265 

 266 
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