

Advice on testing the null hypothesis that a sample is drawn from a Normal distribution				
Graeme D Ruxton ¹ , David M Wilkinson ² , Markus Neuhäuser ³				
1. School of Biology, University of St Andrews, St Andrews KY16 9TH, UK				
2. Natural Science and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK				
3. Fachbereich Mathematik und Technik, RheinAhrCampus, Koblenz University of Applied Sciences, Joseph-Rovan-Allee 2, 53424 Remagen, Germany				
Corresponding author: GDR tel +44 1334 654815; fax +44 1334 644801; email gr41@st-				
andrews.ac.uk				

12 Abstract

13	The Normal distribution remains the most widely-used statistical model, so it is only natural that
14	researchers will frequently be required to consider whether a sample of data appears to have been
15	drawn from a Normal distribution. Commonly-used statistical packages offer a range of alternative
16	formal statistical tests of the null hypothesis of Normality, with inference being drawn on the basis
17	of a calculated p-value. Here we aim to review the statistical literature on the performance of these
18	tests, and briefly survey current usage of them in recently-published papers, with a view to offering
19	advice on good practice. We find that authors in animal behaviour seem to be using such testing
20	most commonly in situations where it is inadvisable (or at best unnecessary) involving pre-testing to
21	select parametric or not-parametric analyses; and making little use of it in model-fitting situations
22	where it might be of value. Of the many alternative tests, we recommend the routine use of either
23	the Shapiro-Wilk or Chen-Shapiro tests; these are almost always superior to commonly-used
24	alternatives like the Kolmogorov-Smirnov test, often by a substantial margin. We describe how both
25	our recommend tests can be implemented. In contrast to current practice as indicated by our
26	survey, we recommend that the results of these tests are reported in more detail (providing both
27	the calculated sample statistic and the associated p-value). Finally, emphasize that even the higher-
28	performing tests of Normality have low power (generally below 0.5 and often much lower) when
29	sample sizes are less than 50, as is often the case in our field.

30

31 Keywords: Gaussian distribution, parametric statistics, Schapiro-Wilk test, statistics, statistical power

32 Word count: 3978

33 Introduction

34	The Normal distribution remains the most widely-used statistical model, so it is only natural that
35	researchers will frequently be required to consider whether a sample of data appears to have been
36	drawn from a Normal distribution. This can be done most simply by visual inspection of a histogram
37	of the data, or a more specialised plot such as a Q-Q plot. However visual inspection of this nature
38	on its own does not offer an objective means of decision making: potentially the same researcher
39	could look at a graph on two different occasions and reach different conclusions as to whether the
40	data was suggestive of an underlying Normal distribution or not; or two researchers could disagree
41	when looking at the same graph without having an objective means to resolve their disagreement.
42	Hence, an alternative would be a formal statistical test of the null hypothesis of Normality, with
43	inference being drawn on the basis of a calculated p-value. Commonly-used statistical packages offer
44	a range of different alternative tests (Yap & Sim, 2011). Here we review the statistical literature on
45	the performance of these alternative tests, and briefly survey current usage of these tests in
46	recently-published papers in Animal Behaviour, showing that current common usage departs from
47	what is implied by the statistical literature. We also consider when such testing for Normality is most
48	useful. This should allow us to offer clear advice to authors on how to apply such tests and to
49	readers on how to interpret them.
50	Literature review
51	We reviewed the specialist statistics literature on Normality tests in order to explore the evidence in
52	respect to the following issues:

- 53 1. Are there differences between alternative tests in terms of their power, and if so how
- 54 substantial are these differences?
- 55 2. If there are substantial differences, can advice on selection of a test be offered?
- 56 3. How strongly is the power of such recommended tests affected by sample size?

57	The most recent general comparison of tests of Normality compared the power of eight tests that
58	were available through commonly-used statistics software: Shapiro-Wilk, Kolmogorov-Smirnov,
59	Lilliefors, Cramer-von Mises, Anderson-Darling, D'Agosino-Pearson, Jarque-Bera, and chi-squared
60	tests (Yap & Sim, 2011). Simulation results suggested that if the alternative hypothesis to Normality
61	is not constrained then the Shapiro-Wilk test gives the highest power. If the alternative is
62	constrained in some way (e.g. by assuming that the alternative will be symmetric but shorter tailed
63	than a Normal distribution), then the Jarque-Bera, D'Agostino-Pearson and Anderson-Darling tests
64	can offer similar power to the Shapiro-Wilk test under different constraints, but they never
65	substantially outperform it. The other four tests (Kolmogorov-Smirnov, Lilliefors, Cramer-von Mises
66	and chi-squared) never outperform Shapiro-Wilk. Yap and Sim (2011) found that power was
67	generally low (less than 0.3 and often much less) for sample sizes lower than 50, but with a steep
68	increase in power to values closer to 1 for sample sizes between 50 and 200. Yazici and Yolacan
69	(2007) concluded that the Shapiro-Wilk test gave the best power when the alternative was
70	unconstrained of the 12 tests they compared. Razali and Wah (2011) argued that across a broad
71	range of circumstances the Shapiro-Wilk test was superior to the Anderson-Darling, Lilliefors and
72	Kolmogorov-Smirnov tests, with the difference in power often being several-fold. However, power of
73	this test was less than 0.5 for five of the six underlying distributions explored when sample sizes
74	where less than 50. Ramao, Degado and Costa (2010) compared 33 different tests and concluded
75	that the Schapiro-Wilk and Chen-Shapiro tests (see below) were the best choices against an
76	unconstrained alternative, and could still be recommended when the form of the alternative was
77	constrained. Keskin (2006) compared four commonly-used tests and concluded that Shapiro-Wilk
78	offered greatest power, sometime seven times that of the other tests. Oztuna, Ethan and
79	Tuccar(2006) reached similar conclusions; and of the various underlying distributions they
80	investigated, only for a uniform distribution was the power of the Shapiro-Wilk test above 0.5 for a
81	sample size of 50. Mendes and Pala (2003) again found the Shapiro-Wilk test to be the most
82	powerful of those tested, sometimes having several-fold more power than commonly-used

83	alternatives, but still sometimes being low for even moderate samples sizes. Farrell and Rogers-				
84	Stuart (2006) again recommended the Shapiro-Wilk test after an extensive evaluation of 13 different				
85	tests across 48 different underlying distributions: across these distributions the power of Shapiro-				
86	Wilk test was 0.38 on average for <i>N</i> =20 if α was set to 0.1 to boost power.				
87	Although (based on our survey above) the Shapiro-Wilk test seems to be the best performing of the				
88	commonly-used tests, the test of Chen and Shapiro (1995) was designed to be always at least as				
89	powerful and often more powerful than the Shapiro-Wilk test; and the available evidence suggests				
90	that it achieves this performance(Brzezinski, 2012; Marmolejo-Ramos & Gonzalez-Burgos, 2013;				
91	Seier, 2002).				
92	Thus, of the commonly-used and -available tests, the Shapiro-Wilk test can be recommended as				
93	having the best power, often significantly greater power than alternatives; but even for this test				
94	power can be low for even moderate sample sizes ($N < 50$). For those willing to use a less-familiar				
95	test, that of Chen and Shapiro (1995) can be recommended as having generally better performance				
96	even than Shapiro-Wilk. Since we recommend these two tests in particular, we now briefly describe				
97	how researchers can access them.				
98	Implementation of recommended tests.				
99	The Shapiro-Wilk test is available through many commonly used statistics packages: e.g. SAS, SPSS,				
100	Statistica, Stata, and via the <i>shapiro.test</i> function in the <i>stats</i> package of <i>R</i> .				

101 For a sample size of n, if the sample values ordered from smallest to largest are $x_1,...,x_n$, and their

102 mean value is \bar{x} then the test statistic is given by

103
$$W = \frac{\left(\sum_{i=1}^{n} a_i x_i\right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2},$$

- 104 for weights a_1, \ldots, a_n , that depend on the expected values and the covariance matrix of the order
- 105 statistics (for details see for example Thode, 2002). The denominator can be seen as a measure of

106	the variance of the sample. The numerator is essentially a similar measure of the variance that
107	would be the best estimator if the sample were drawn from an underlying Normal distribution. The
108	null hypothesis of an underlying Normal distribution is rejected if W is below a critical value. The
109	challenge in implementing this technique to obtain the weights $(a_1,,a_n)$. The software packages
110	listed above all use the algorithm provided by Royston (1995). Given its implementation in many
111	standard packages, we would be surprised if many researchers chose to implement this test

112 themselves.

113 The Chen-Shapiro test is not available in many commonly used statistical packages: to our

114 knowledge it is only available through the the *PoweR* package in *R*. However, the implementation of

115 this test is sufficiently straightforward that many researchers would be comfortable implementing it

116 themselves. The test statistic QH* is calculated as below:

117
$$QH^* = \sqrt{n}(1 - QH)$$

118 Where QH is obtained as

119
$$QH = \frac{1}{s(n-1)} \sum_{i=1}^{n-1} \frac{x_{i+1} - x_i}{H_{i+1} - H_i}$$

120 Where *s* is the standard deviation of the sampled values:

121
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}$$

122 Where \bar{x} is the mean of the x_i values. H_i is given by

123
$$H_i = \Phi^{-1} \left(\frac{i - 0.375}{n + 0.25} \right)$$

124 Where Φ^{-1} () is the inverse of the standard Normal cumulative distribution function. Values of QH^*

125 greater that a critical value suggest significant deviation from a Normal distribution, and critical

values are provided in Table 2 and Appendix 2 of Chen and Shapiro (1995).

127 When should testing for Normality be conducted?

128 The general consensus in the statistical literature is that preliminary testing for Normality as a means 129 of selecting whether to take a parametric or non-parametric approach to testing the hypothesis of 130 primary interest (e.g. whether to use a t-test or Mann-Whitney U-test to test for a difference in 131 central tendency between two groups) should not be undertaken (e.gSRasch, Kubinger & Moder, 132 2011; Rochon, Gondan & Kieser, 2012; Schoder, Himmelman & Wilhel, 2006; Schucany & Ng 2006; Shuster, 2009; Wells & Hintze 2007; Zimmerman, 2004). This is counter to the advice given in many 133 134 of the most widely-used introductory statistics texts used by biologists (e.g. Dytham, 2011; Fowler, 135 Cohen & Jarvis, 1998). For example, textbooks generally recommend that when comparing central 136 tendency across groups that the sample for each group is tested separately for Normality. If all 137 groups seem to be drawn from Normal distributions then a t-test or ANOVA is recommended to 138 compare means across groups; otherwise non-parametric equivalents are recommended. However 139 it is often more practical to apply the Normality testing to the residuals generated under the null 140 hypothesis, especially for more complex designs or in the case of a continuous covariate. 141 One argument against this widely-used approach is essentially philosophical: if the pre-test does not 142 give reason to reject the null hypothesis then the scientist proceeds as if the null hypothesis of Normality is true. However the philosophy of null-hypothesis statistical testing is that failure to 143 144 reject the null hypothesis does not imply that the null hypothesis holds. Essentially, the problem 145 here is that the procedure rests on the implicit assumption that the preliminary test for Normality has very high power, but (as discussed above) this will often be a highly questionable assumption. 146 147 Another philosophical concern is that the preliminary tests of Normality imply their own 148 assumptions about the underlying distribution and it seems logically inconsistent to check the

149	assumption of Normality but not these other underlying assumptions. On a more practical level the
150	Type I and Type 2 error rates of the key test of interest (e.g. the t-test or U-test in the example
151	mentioned above) are strongly influenced by the detail of the preliminary-testing procedure, and
152	most concerningly the Type I error rates can deviate strongly from the nominal levels.
153	It is also important to note that the reliability of parametric methods such as for example ANOVA
154	and the classical version of the t-test are also sensitive to violation of the assumption of equal
155	variance across groups. Indeed for large samples, methods are often more robust to violation of
156	Normality assumption (Lumley, Diehr, Emerson & Chen, 2002). However, pretesting for
157	homogeneity of variances before selecting an appropriate statistical test is similarly not
158	recommended (Rasch et al., 2011; Zimmerman, 1998; 2004a&b). Some tests of homogeneity of
159	variance make the assumption that the underlying distributions are Normal (Zimmerman 2004a);
160	although the Brown-Forsythe modification of Levene's test was designed to avoid this assumption
161	(Brown & Forsyth, 1974). Further, the robustness of methods to separate violations of either
162	normality or homogeneity of variance assumptions are not a good guide to the robustness of these
163	methods to both violations ocurring simultaneously (Zimmerman, 1998).
164	For the moment, it is safe to conclude that preliminary testing for Normality as a means to selecting
165	whether to take a parametric or non-parametric approach to testing the hypothesis of primary
166	interest should not be undertaken. There are other situations, however, where testing to see if a
167	distribution seems to be Normal seems useful. These relate to evaluating quality of model-fit, rather
168	than selection of parametric versus alternative statistical tests of a null hypothesis. For example,
169	some model fitting procedures (e.g. general linear modelling) assume that residuals around the
170	fitted model are Normally distributed, and it may sometimes be useful to test this as part of
171	evaluation of how successful a model-fitting exercise has been. However, caution needs to be
172	applied in the interpretation of such testing. The issue of low power when sample sizes are small
173	remains; and when sample sizes are very big then the test may suggest rejection for departures from

174	Normality that are biologically trivial. Alternatively, it might sometimes be useful to test for
175	Normality to help justify fitting a Normal model to data in order to make predictions from that
176	model, taking advantage of the known properties of the Normal distribution. The central limit
177	theorem suggests that we might reasonably often expect to find Normal distributions. The central
178	limit theorem implies that if we draw a large number of independent samples from any underlying
179	distribution, then the distribution of the means of those samples will be approximately Normal.
180	Many test statistics, scores and estimators encountered in practice contain sums of random
181	variables within them. For example, students' exam grades are generally weighted sums of scores on
182	a number of individual questions. Further, many estimators can be represented as sums of random
183	variables through the use of influence functions (Johnson 2004). The central limit theory indicates
184	that these statistical parameters will have asymptotically Normal distributions. Finally, one could
185	interpret the p-value of a test on Normality as a descriptive measure, rather than performing a
186	formal test with a fixed significance level. That could be useful, for example, when trying to find a
187	suitable transformation for a sample of data. Residual analysis including testing on Normality could
188	be applied to decide between different possible transformations.
189	Current usage in Animal Behaviour
190	We found that formal testing of the null hypothesis of Normality was carried out in 23 papers

191 published in Animal Behaviour during 2014. Of these 12 used the Shapiro-Wilk test, 9 the 192 Kolmorogov-Smirnov test, and one each used chi-square goodness of fit and the Lilliefors tests. 193 Sample sizes ranged from 7 to 401, however in 17 of the 23 papers the sample size was 30 or less for 194 at least on test of Normality. For 20 of the 23 papers the Normality test was used in order to decide 195 whether parametric or non-parametric analysis should be used to test the hypothesis of primary 196 interest (our experience with other areas of whole organism biology such as ecology, microbiology 197 and palaeontology suggests this is a very common usage). On the other three occasions the test was 198 used to examine the distribution of residuals from a fitted model. Only one paper of the 23 gave the

199	calculated test statistic and exact <i>P</i> -value. All other papers simply reported whether the <i>P</i> -value was
200	greater than 0.05 or not, or (presumably equivalently) in words, whether the null hypothesis of
201	Normality was rejected or not. The null hypothesis of Normality was rejected in six papers (9 of the
202	31 test performed overall); the median sample size of tests that rejected the null hypothesis was 29;
203	the median sample size of those that did not reject the null hypothesis was 18: this difference was
204	statistically significant: we used a Brunner-Munzel test rather than a Mann-Whitney U-test because
205	of strong difference in the variances (Neuhäuser, 2012) $W_{BF} = 17.45$, $P = 0.023$. This suggests that in
206	many cases Normality may have been incorrectly assumed because the test used did not have the
207	power to detect a significant departure from Normality because of low sample sizes.
208	
209	
210	Discussion and Conclusions
211	For very large samples the Shapiro-Wilk test cannot be applied. For example, the function
212	shapiro.test in R does not work for n>5001. However, we would like to mention that any marginal
213	
	and irrelevant deviation from Normality can be significant in the case of very large samples. Thus, if
214	and irrelevant deviation from Normality can be significant in the case of very large samples. Thus, if the sample size is large enough, every sample will be significantly non-Normal because the Normal
214 215	
	the sample size is large enough, every sample will be significantly non-Normal because the Normal
215	the sample size is large enough, every sample will be significantly non-Normal because the Normal distribution will never be exactly true with real data. Thus, we do not recommend testing for
215 216	the sample size is large enough, every sample will be significantly non-Normal because the Normal distribution will never be exactly true with real data. Thus, we do not recommend testing for Normality when sample sizes are extremely large (over 250 as a rule of thumb).
215 216 217	the sample size is large enough, every sample will be significantly non-Normal because the Normal distribution will never be exactly true with real data. Thus, we do not recommend testing for Normality when sample sizes are extremely large (over 250 as a rule of thumb). Ties (identical values) can occur in a sample; even when the underlying distribution is continuous,
215 216 217 218	the sample size is large enough, every sample will be significantly non-Normal because the Normal distribution will never be exactly true with real data. Thus, we do not recommend testing for Normality when sample sizes are extremely large (over 250 as a rule of thumb). Ties (identical values) can occur in a sample; even when the underlying distribution is continuous, rounding (as a result of graduations in a measuring device) leads to ties. Often, the possibility of ties
215 216 217 218 219	the sample size is large enough, every sample will be significantly non-Normal because the Normal distribution will never be exactly true with real data. Thus, we do not recommend testing for Normality when sample sizes are extremely large (over 250 as a rule of thumb). Ties (identical values) can occur in a sample; even when the underlying distribution is continuous, rounding (as a result of graduations in a measuring device) leads to ties. Often, the possibility of ties is not considered in the comparison of Normality tests; for instance, Yap and Sim (2011) only
 215 216 217 218 219 220 	the sample size is large enough, every sample will be significantly non-Normal because the Normal distribution will never be exactly true with real data. Thus, we do not recommend testing for Normality when sample sizes are extremely large (over 250 as a rule of thumb). Ties (identical values) can occur in a sample; even when the underlying distribution is continuous, rounding (as a result of graduations in a measuring device) leads to ties. Often, the possibility of ties is not considered in the comparison of Normality tests; for instance, Yap and Sim (2011) only investigated continuous distributions. However, the Shapiro-Wilk test is highly sensitive to the

223 power in comparison to the chi-squared test. In the absence of extensive investigation of the 224 performance of alternative tests; we would recommend Royston's method be used whenever there 225 are ties in a sample. Based on our review above, we think there are a number of ways that 226 researchers in animal behaviour (and more widely) could take better advantage of formal tests of 227 the null hypothesis that a sample is drawn from a Normal distribution. 228 Firstly, at present authors seem to be using such testing most commonly in situations where it is 229 inadvisable (or at best unnecessary); and making little use of it in situations where it might be of 230 value. Specifically, despite this being the most common use by far in our survey of 2014 Animal 231 Behaviour papers, we do not recommend that authors use a formal test of Normality as a means to 232 selecting whether to take a parametric or non-parametric approach to testing the hypothesis of 233 interest. Rather we recommend that the statistical approach be determined prior to data collection 234 on the basis of underlying knowledge of the system. Where this knowledge is not definitive, conservatively selecting a non-parametric approach can be recommended. Conversely, we 235 236 recommend that authors make more use of Normality testing in other situations. Firstly, many 237 models within the general linear model framework (including least-squares regression) assume that 238 the residuals around the fitted model are Normally distributed. Thus diagnostic testing of the quality 239 of model fit might often usefully involve testing this assumption (we found 47 papers in 2014 issues 240 of Animal Behaviour where such testing might have been appropriate, of which only three presented 241 or mentioned Normality tests). Secondly, we argue that many quantities of interest to researchers 242 might be expected to be Normally distributed on theoretical grounds, and in such cases we would 243 recommend testing this expectation. If a Normal distribution can be justified then fitting such a 244 model to the data (estimation of the mean and variance) would allow the very well-understood 245 properties of the Normal distribution to be utilised in order to explore expected properties of the 246 population of interest.

11

247	Secondly, there are considerable differences between the different tests available in terms of their
248	statistical power. We recommend the routine use of either the Shapiro-Wilk or Chen-Shapiro tests;
249	these are almost always superior to commonly-used alternatives like the Kolmogorov-Smirnov test,
250	often by a substantial margin. We describe (above) how both our recommend tests can be
251	implemented. In contrast to current practice as indicated by our survey, we recommend that the
252	results of these tests are reported in detail (providing both the calculated sample statistic and the
253	associated p-value).
254	Finally, we amphasize that even the higher performing tests of Normality have law power (generally
254	Finally, we emphasize that even the higher-performing tests of Normality have low power (generally
255	below 0.5 and often much lower) when sample sizes are less than 50. This small sample size
256	situation is common in animal behaviour, as indicated by our survey above. Taborsky (2010) found
257	that that the average sample size per treatment in laboratory experiments in the study of behavior
258	was approximately 18, rising to 23 in field studies. In 17 of the 23 papers in our survey the sample
259	size used in at least one test of Normality was less than 30; in such circumstances power to reject
260	the null hypothesis will be low. However, of those 17 papers 14 failed to reject the null hypothesis
261	and none of them discussed the issue of low power. We would recommend that such a discussion
262	should be included any time sample size is less than 50 and the null hypothesis is not rejected.

263 We believe that these are easy-to-implement actions that together will significantly improve the

264 usefulness of tests for Normality to authors, editors, reviewers and readers across whole-organism

265 biology and beyond.

266

- 267 Acknowledgment
- 268 We thank two anonymous reviewers for very helpful comments.

269 References

270	Brown M. B., & Forsythe, A. B. (1974). "Robust tests for equality of variances". Journal of the		
271	American Statistical Association, 69, 364–367.		
272	Brzezinski, M. (2012). The Chen-Shapiro test nor Normality. <i>The Stata Journal</i> , 12, 368-374.		
273	Chen, L., & Shapiro, S. (1995). An alternative test for Normality based on Normalised spacings.		
274	Journal of Statistical Computation and Simulation, 53, 269-287.		
275	Dytham, C. (2011). <i>Choosing and using statistics; a biologists guide</i> . (3 rd ed.). Chickester, U.K.: Wiley-		
276	Blackwell.		
277	Farrell, P.J., & Rogers-Stewart, K. (2006). Comprehensive study of tests for Normality and symmetry:		
278	extending the Spiegehalter test. Journal of Statistical Computation and Simulation, 76, 803-816.		
279	Fowler, J.,, Cohen, L., & Jarvis, P. (1998). Practical statistics for field biology. Chichester, U.K.: John		
280	Wiley.		
281	Johnson, O. (2004). Information Theory and the Central limit Theorem. London, U.K.: Imperial College		
282	Press.		
283	Keskin, S. (2006). Comparison of serval univariate Normality tests regarding Type I error-rate of the		
284	test in simulation based small samples. <i>Journal of Applied Science Research</i> , 2, 296-300.		
_0.			
285	Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002) The importance of the normality assumption in		
286	large public health data sets. Annual Reviews in Public Health, 23, 151-169.		
287	Marmolejo-Ramos, F., & Gonzalez-Burgos, J. (2013). A power comparison of various tests of	Formatted: Spanish (Spair	1)

- 288 univariate Normality on ex-Gaussian distributions. *Methodology*, 94, 137-149.
- 289 Mendes, M., & Pala, A. (2003). Type I error rate and power of three Normality tests. *Pakistan Journal*
- 290 of Information and Technology, 2, 135-139.

291	Neuhäuser, M. (2012). Nonparametric statistical tests: a computational approach. New York: CRC		
292	Press.		
293	Oztuna, D., Elhan, A. H., & Tuccar, E. (2006). Investigation of four different Normality tests in terms	(Formatted: Spanish (Spain)
294	of Type I error rate and power under different distributions. Turkish Journal of Medical Science, 36,		
295	171-176.		
296	Rasch, D., Kubinger, K. D., & Moder, K. (2011). The two-sample t-test: pre-testing its assumptions		
297	does not pay. Statistical Papers, 52, 219-231.		
298	Razali, N. M., & Wah, Y. B. (2009). Power comparisons for Shapiro-Wilk, Kolmogorov-Smirnov,	(Formatted: Spanish (Spain)
299	Lilliefors and Anderson-Darling tests. Journal of Statistical Modelling and Analytics, 2, 21-33.		
300	Rochon, J., Gondan, M., & Kieser, M. (2012). To test or not to test: preliminary assessment of		
301	Normality when comparing two independent samples. BMC Medical Research Methodology, 12, 81.		
302	Romao, X., Degado, R., & Costa, A. (2010). An empirical power calculation of univariate goodness-of-		
303	fit tests for Normality. Journal of Statistical Computation and Simulation, 80, 545-591.		
304	Royston, P. (1989). Correcting the Shapiro-Wilk W for ties. Journal of Statistical Computation and		
305	Simulation, 31, 237-249.		
306	Royston, P. (1995). Remark AS R94: A remark on algorithm AS 181: The W test for Normality. Applied		
307	Statistics, 44, 547-551.		
308	Schoder, V., Himmelmann, A., & Wilhel, K. P. (2006), Preliminary testing for Normality: some		
309	statistical aspects of a common concept. Clinical and Experimental Dermatology, 31, 757-761.		
310	Schucany, W.R., & Ng, H. K. T. (2006). Preliminary goodness-of-fit tests for Normality do not validate		
311	the on-sample student t. Communications in Statistics: theory and methods, 35, 2275-2286,		
312	Seier, E, (2002), Comparison of tests for univariate Normality. Interstat, 17, 1-17.		
	14		

313 Shuster, J. (2009). Student t-tests for potentially abnormal data. Statistics in Medicine, 28, 2170-

314 2184.

- 315 Taborsky, M. (2010). Sample size in the Study of Behaviour. *Ethology*, 116, 185-202.
- 316 Thode. H. C. (2002). Testing for Normality. New York: Marcel Dekker.
- Wells, C. S., & Hintze, J. M. (2007). Dealing with assumptions underlying statistical tests. *Psychology in Schools*, 44, 495-502.
- 319 Yap, B. W., & Sim, C. H. (2011). Comparison of various Types of Normality tests. Journal of Statistical
- 320 *Computation and Simulation*, 81, 2141-2155.
- 321 Yazici, B., & Yolacan, S. (2007). A comparison of various tests of Normality. Journal of Statistical
- 322 *Computation and Simulation*, 77, 175-183.
- 323 Zimmerman, D. W. (1998). Invalidation of parametric and non-parametric statistical tests by
- 324 concurrent violation of two assumptions. *Journal of Experimental Education*, 67, 55-69.
- 325 Zimmerman, D.W. (2004a). A note on preliminary tests of equality of variances. British Journal of
- 326 Mathematics and Statistics in Psychology, 57, 173-181.
- 327 Zimmerman, D. W. (2004b). Conditional probabilities of rejecting Ho by Pooled- and Separate-
- 328 Variances t Tests Given Heterogenity of Sample Variances. Communications in Statistics, 33, 69-81.