
 

 

 

 

  

A DATA-DRIVEN COMPUTING FRAMEWORK FOR STRUCTURAL SEISMIC 

RESPONSE PREDICTION 

 

A Dissertation 

by 

HUAN LUO  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Stephanie Paal 

Committee Members, Joseph Bracci 

 Theodora Chaspari 

 Stefan Hurlebaus 

Head of Department, Robin Autenrieth 

 

December 2020 

 

Major Subject: Civil Engineering 

 

Copyright 2020 Huan Luo 



 

 

ii 

 

ABSTRACT 

 

Accurate and rapid seismic response prediction of reinforced concrete (RC) structures in 

earthquake-prone regions is an important topic in structural and earthquake engineering. However, 

existing physics-based modeling approaches do not have a good compromise between predictive 

performance and computational efficiency. High-fidelity models have reasonable predictive 

performance but are computationally demanding, while more simplified models may be 

computationally efficient, but do not have as good of performance. The research presented herein 

aims to address this challenge by developing a novel data-driven computational paradigm via the 

coupling of machine learning (ML) methods and physics-based models. The ML methods can 

directly link the experimental data to nonlinear properties of target component, while the physical 

models meeting universal laws (e.g., Newton’s law of motion) can be used to perform the seismic 

analysis.  Additionally, in real-world scenarios, the dataset is most likely corrupted by outliers, 

contains missing values, and has sample bias due to the potentially small size. The performance of 

existing ML methods will be negatively affected by these data-related problems. Thus, novel 

computational methods to deal with these data-related problems are also developed to make the 

proposed data-driven framework robust under these circumstances. In sum, the contributions of 

this dissertation are the following: 

1) Two RC column databases, one for rectangular and another for circular columns, were 

developed.  

2) A new ML-based backbone curve model (ML-BCV) was developed by integrating a 

multi-output least squares support vector machine for regression (MLS-SVMR) with a 
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grid search algorithm for rapid prediction of the bi-linear cyclic backbone curve of RC 

columns.  

3)  A novel, locally-weighted ML model (LWLS-SVMR) was developed by combining 

LS-SVMR and a locally weighted learning algorithm for generalized drift capacity 

prediction of RC columns.  

4) A new, component-level, data-driven framework was developed for generalized, 

accurate, and efficient seismic response history prediction of structural components 

subjected to both displacement-controlled cyclic loading and dynamic ground motions. 

The framework was illustrated for RC columns.  

5) The component-level data-driven framework was extended to the system level by 

coupling it with the simplified, physics-based shear building model. The proposed 

system-level framework was illustrated for RC frames.  

6) A novel, robust, locally-weighted ML model (RLWLS-SVMR) was developed by 

introducing a weight function into the reformulation of LWLS-SVMR to eliminate the 

negative effect induced by outliers.  

7) A new multiple imputation (MI) method (SRB-PMM) was developed by using 

sequential regression and predictive mean matching to generate several candidates for 

imputing (filling in) each missing value while considering the uncertainty associated 

with the missing data.  

8) A novel, regression-based, transfer learning model (DW-SVTR) was developed by 

coupling two weight functions with LS-SVMR to reduce the negative effect of sample 

bias due to small datasets.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation and Background 

Reinforced concrete (RC) structures in earthquake-prone regions are exposed to high seismic 

collapse risk. Accurate and rapid structural response prediction for these RC structures under 

earthquake loads is an important step to quantify global collapse risk (Moehle and Deierlein 2004). 

Existing approaches to predict the seismic response of an RC structure include physical 

experiments and numerical modeling. Physical experiments are regarded as the most reliable 

approach and are typically performed by displacement-controlled quasi-static cyclic loading or 

dynamic shake table tests (Bracci et al. 1992; 1995; Moehle 2014). However, due to the extensive 

costs associated with large-scale structural testing, experimental validation is not always feasible. 

As an alternative, numerical modeling techniques (i.e., physics-based approaches such as the finite 

element method (FEM)) are often employed to predict the seismic response of an RC building by 

performing nonlinear time-history analyses (Chopra 2007; Deierlein et al. 2010; Moehle 2014). 

Nevertheless, existing physics-based approaches do not generally have a good compromise 

between predictive performance and computational efficiency. High-fidelity models (e.g., micro-

scale FEM) have reasonable predictive performance but are computationally demanding, while 

more simplified models (e.g., shear building model) may be computationally efficient, but do not 

have as good of performance (Spacone et al. 2008; Taucer et al. 1991). Further, physics-based 

approaches do not have good generalization performance, where a given computational approach 

is suitable to one type of structure (e.g., distributed plasticity fiber model for a ductile structure) 

but may not be appropriate for another type of structure (e.g., non-ductile structure) (Deierlein et 
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al. 2010; Marini and Spacone 2006). These shortcomings are made even more evident when 

quantifying regional seismic risk. Urban areas, especially metropolitan areas, generally have a 

dense building population, which make the formulation of high-fidelity or even simplified models 

for all buildings in the region impractical due to the poor compromise between predictive 

performance and computational efficiency. Therefore, there is a strong need to provide a rapid and 

accurate approach to structural response prediction which can be extrapolated for regional 

assessments. Further, a novel computational methodology for generalized, efficient, and accurate 

seismic response prediction of RC structures is required. 

Typically, high-fidelity models involve less theoretical assumptions at the expense of 

computational efficiency, while simplified models are the opposite. Both high-fidelity and 

simplified models are based on the use of two types of equations. The first one, of axiomatic 

character, is related to universal laws that are recognized as epistemic (e.g., force equilibrium based 

on Newton’s law of motion and geometric compatibility based on kinematics), while the second 

one is composed of empirical models that researchers have derived from collected experimental 

data (e.g., constitutive equations for materials and structural components). The first one does not 

suffer any empiricism or uncertainty but the second does. In general, the material constitutive 

models are used by high-fidelity models for microscale computation, while the component 

constitutive equations are employed by simplified models for macroscale computation. The 

computational cost for the former cannot be further reduced in terms of the mathematical 

formulations. But the prediction performance for the latter can be significantly improved when the 

parameters that reflect the nonlinear properties are accurately defined for target RC structures. 

However, the existing component constitutive equations used to define these parameters are based 

primarily on empirical relations, which cannot fully capture the underlying patterns in the 
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experimental data. In such a way, though simplified models are computational efficient they may 

not be able to capture the experimentally observed behavior, leading to incompatibility between 

the predicted results and observed values. With the recent push towards real-world, big data, many 

disciplines, both in engineering and science, have been driven towards advancements in data 

science. In data science-type approaches, the physical behavior is derived directly from real-world 

big data (Solomatine et al. 2008). Empirical relations that are used to define the parameters in the 

physics-based approaches will be less informative than those directly reflected in the data. In data 

science, knowledge is extracted from the data (also called the training data) by using advanced 

artificial intelligence (AI) techniques or statistical learning approaches (e.g., machine learning 

(ML)) without any human assumptions or inference. This knowledge is typically expressed in a 

specific mathematic model which is then employed to directly relate the input predictors to the 

output responses with high generalization performance and computational efficiency without 

worrying too much about the underlying physical processes. In the past several decades, many 

researchers have published relevant physical experiments (e.g., displacement-controlled, quasi-

static cyclic loading and shake table tests) for both RC structural components (e.g., beam, column, 

and wall) and systems (e.g., frame, frame-wall). The source of the real-world physical 

experimental data provides valuable information to develop data-driven computing approaches for 

structural seismic response prediction. With the help of this physical experimental data and ML 

techniques, the observed physical behavior for new RC structural components and systems of 

interest may be efficiently reproduced. In this direction, the errors produced by empirical relations 

can be minimized. 
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1.2 Research Objectives 

This research is focused on developing a novel data-driven computational paradigm to predict the 

seismic response of RC structures in a more generalized, robust, scientific, and efficient way, 

actuating next-generation modeling approaches along the way. The proposed approach can directly 

link the experimental data to nonlinear properties of target RC structures, while still employing 

universal laws (i.e., equilibrium and compatibility can be enforced). Therefore, the proposed 

approach can potentially minimize the modeling errors characteristic of empirical models (i.e., 

component constitutive equations). The main objectives of this research are: 

(1) To collect a large number of experimental test specimens for RC structural components 

under reversed cyclic loading. For each specimen, the information collected will include the 

structural features such as geometry, material properties, and design details and the experimental 

force-displacement data. Based on the collected information, a database will be developed for the 

use in this research.  

(2) To develop new machine learning (ML) models for hardening and softening behavior 

prediction of the target structural components subjected to cyclic loading reversals based on the 

collected database.  

(3) To formulate a novel hysteretic modeler for the target structural components based on 

the collected database and the developed ML model.  

(4) To couple the developed hysteretic modeler with simplified physics-based modeling 

approaches at the component and system levels, forming novel data-driven frameworks for seismic 

response prediction of the target structural component and system. The hysteretic modeler can 

directly link the experimental data to the nonlinear properties of target structural components. 
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Simplified physics-based approaches that meet universal laws can be employed for the seismic 

analysis at the component and system levels in a computationally efficient way.  

(5) To develop new computational methods addressing the data-related problems, such as 

a dataset that is small in size and contains outliers or missing data in order that the data-driven 

frameworks are robust under such circumstances. 
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1.3 Research Scope 

In order to validate the proposed methodology, the aim of the research proposed here has been 

limited as described below. These constraints have been established based on the availability of 

physical experiment data and to maintain consistency with the research objectives. 

• Structural Systems: reinforced concrete (RC) frame buildings 

• Structural Components: RC columns 

• External Loads: quasi-static cyclic loading and ground motions 

• Seismic Response: force-displacement and time-response quantity relations 

• Data-Related Problems: outliers, small dataset, and missing data 

Although the selection of appropriate ground motions is important in order to quantify the 

seismic collapse risk of RC structures located at a specific site, this dissertation does not deal with 

such problems and only focuses on the development and validation of a novel data-driven 

computational paradigm for seismic response prediction of RC structures. The efforts in this 

dissertation are fully focused on the development of novel approaches regarding the ML, data-

driven frameworks at the component and system levels, as well as solutions to data problems.  
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1.4 Outline of the Dissertation 

This dissertation is organized into seven chapters with the following contents: 

Chapter II provides a literature review of the current state of knowledge in structural 

seismic response prediction for RC columns and frames using both traditional physics-based 

modeling and machine learning (ML) approaches, along with pertinent research efforts in this 

domain. This chapter concludes with the definition of the existing gaps in these knowledge areas 

which will be addressed in this research work. 

Chapter III presents the development of the column datasets and the validation and 

assessment methods of the ML models. All the columns in the datasets were tested under reversed 

cyclic loading. For each column specimen, the information collected includes the structural 

features such as geometry, material properties, and design details and the experimental force-

displacement data. A modified three-parameter hysteretic model and a hybrid optimization 

algorithm are proposed to extract the backbone curve and hysteretic parameters from the 

experimental force-displacement data. By pairing the collected column features and the extracted 

parameters, the RC column datasets thus can be formed. Then, the commonly used validation 

methods and assessment metrics for quantifying the performance of the ML models are introduced.  

Chapter IV describes the formulation of the novel component-level, data-driven 

framework. First, new ML models are developed to predict the hardening and softening behavior 

of RC columns subjected to cyclic loading reversals based on the column datasets presented in 

Chapter III. Then, a novel hybrid-ML-physics-based data-driven framework is proposed for 

generalized seismic response prediction of RC columns subjected to both quasi-static cyclic 

loadings and ground motions. An ML model is used to directly link the experimental data to the 

nonlinear properties of RC columns and a physics-based model that meets universal laws is used 
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to perform the seismic analysis. Two data-driven seismic response solvers are developed to 

implement the proposed framework. Numerical experiments are designed to validate the 

performance of the proposed method and results are also discussed.  

Chapter V presents the extension of the component-level data-driven framework to seismic 

response prediction of structural systems with emphasis on RC frames. The extension is achieved 

by coupling the proposed component-level framework with the multi-story shear building model. 

One major advantage of the novel approach is that the hysteretic property of each column in each 

story is determined by the proposed component-level framework based on the column dataset 

developed in Chapter III, while the shear building model can efficiently perform the seismic 

analysis. Therefore, this methodology can achieve a good compromise between prediction 

performance and computational efficiency. Two system-level data-driven seismic response solvers 

are developed to implement the proposed framework. The performance of the proposed method is 

assessed and validated by comparing the numerical results with experimental data and results 

obtained by widely-used distributed plasticity fiber approaches. 

Chapter VI details the novel computational methods for addressing data-related problems 

which have been developed in this work.  These problems include cases where the dataset is 

corrupted by outliers, the size of the dataset is small (and thus, large sample bias), and where the 

dataset contains missing values. The majority of existing ML methods can be negatively affected 

by outliers, resulting in misleading predictions. A small dataset that has large sample bias can lead 

to a fully trained ML model that has large bias. Almost all existing ML methods fail to deal with 

such a problem. Addressing missing data is one of the most important problems in ML since 

inappropriate treatment may result in loss of important information, which in turn, decreases the 

generalization performance of the ML model trained on the incomplete dataset. The investigation 
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of the effect of these data-related problems on the performance of proposed ML methods is 

presented in this chapter. Moreover, new computational approaches to solve these data problems 

are developed and presented. These computational approaches are effective at generalizing the 

proposed data-driven frameworks such that they are robust under such circumstances. The 

numerical validation of the proposed methods is presented and the results are also discussed. 

Chapter VII summarizes the findings and contributions of this research. It also describes 

the limitations of the present study and provides suggestions for future research work. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Overview 

This chapter explores various existing methods for predicting the structural response of reinforced 

concrete (RC) columns and frames under seismic loads. It begins with a review of traditional 

physics-based methods, focusing primarily on the strength, deformation capacity, and entire 

response history (e.g., hysteretic curve and relations of time-response quantities). Existing artificial 

intelligence (AI)-based techniques (i.e., machine learning (ML) methods) for predicting the 

structural seismic are subsequently presented. Further, the effect of data-related problems on the 

performance of ML methods is also introduced (e.g., a dataset that is corrupted by outliers, has 

large sample bias due to little data availability, or a dataset that contains missing values). The 

advantages and disadvantages of both physics- and ML-based methods as well as the significant 

performance deterioration of ML methods due to the data-related problems are discussed.  
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2.2 Existing Physics-Based Methods in Seismic Response Prediction  

Traditional physics-based approaches for predicting the seismic response can be divided into 

models for structural components and those for the entire system. At the component level, 

specifically for RC columns, many researchers have proposed various simplified formulas (either 

empirical or semi-empirical) to estimate the seismic capacity, which are quantified by the strength 

and deformation capacity. At the system level, both finite element methods (FEM) and simplified 

models are employed to predict the seismic response history. The peak seismic response quantities 

of interest (e.g., peak inter-story drift) can be extracted from the seismic analysis results. Relevant 

representatives of these methods are introduced in this section.    

2.2.1 Lateral strength estimation 

Existing approaches to predict the lateral strength of RC columns can be separated into two 

categories according to the type of RC column: one for flexural strength prediction of flexure-

critical columns and another for shear strength prediction of shear- and flexure-shear-critical 

columns. The most commonly used method for rapid flexural strength estimation is the rectangular 

stress block method (Whitney 1937). This approach requires the estimation of two coefficients 

(""and #") to constitute the sectional rectangular stress block. Two common ways of calculating 

these coefficients are via the ACI code (ACI 318-14-22) and the approach proposed by 

Ozbakkaloglu and Saatcioglu (2004). Another more accurate method is the fiber model, in which 

the various material constitutive relations (i.e., cover and confined concrete and longitudinal 

reinforcement) are pre-defined at the column section level. Different from the rectangular stress 

block method, the stress distribution along the section in the fiber model is not necessarily 

rectangular, which more reasonably reflects the actual flexural behavior. However, the premise of 

both the rectangular stress block method and fiber model is that the actual deflected section of the 
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column must meet the plane section assumption. Nevertheless, the actual deflected section is not 

necessarily plane, and the errors produced by these two approaches will be amplified when the 

actual deflected section is far away from the plane.  

In contrast to the approaches for flexural strength estimation, there is still no unified 

method for predicting the shear strength of RC shear- and flexure-shear-critical columns. Several 

research efforts have focused on the development of semi-empirical shear strength models. 

Priestley et al. (1994) proposed a shear strength model consisting of three independent 

components: (1) the concrete component for which the magnitude depends on the concrete 

compressive strength, displacement ductility, effective concrete area (which is a function of gross 

section area), and longitudinal reinforcement content; (2) the axial load component for which the 

magnitude depends on the column aspect ratio and the applied axial load; and, (3) the truss 

component for which the magnitude depends on the transverse reinforcement content and stirrup 

spacing to effective depth ratio. This model has been verified and can provide significantly 

improved correlation with experimental results when compared to the earlier models developed by 

Ghee et al. (1989), ASCE-ACI 426 (1973), and Watanabe and Ichinose (1991) in predicting the 

shear strength of RC shear- and flexure-shear-critical columns. Sezen and Moehle (2004) 

developed a model via a statistical regression analysis of 51 test columns from previous 

experiments reported in the literature. This model incorporates the axial load component in the 

concrete component and introduces a ductility-related factor for both concrete and transverse 

reinforcement. The numerical results were validated by comparison of the predicted results with 

experimentally observed data and values calculated according to ACI 318 (2002), FEMA 273 

(1997), and the model proposed by Priestley et al. (1994). However, both the Priestley et al. (1994) 
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and Sezen and Moehle (2004) methods require an accurate definition of the displacement ductility 

factor, where the actual value (not design value) is unknown before an experimental test.  

2.2.2 Deformation capacity estimation 

For the estimation of drift capacity, Pujol et al. (1999) and Elwood and Moehle (2005) are the most 

popularly used empirical models. Pujol et al. (1999) proposed a conservative model developed 

based on a database including 92 columns. This model identified that the predictors most affecting 

the drift capacity are column aspect ratio, concrete compressive strength, longitudinal and 

transverse reinforcement content, and maximum normalized shear stress (which is a function of 

the maximum shear force). Elwood and Moehle (2005) also developed a drift capacity model that 

has been validated and demonstrated as superior to that developed by Pujol et al. (1999). In 

addition to some of the predictors used in Pujol et al. (1999), the axial load ratio is considered in 

this model. The drift capacity model developed by Elwood and Moehle (2005) can provide a better 

estimation of the drift capacity at shear failure. However, both of these models include the 

maximum shear force of the column as a predictor variable, and the actual value of maximum 

shear force is an unknown parameter prior to testing of the column.  

2.2.3 Response history prediction 

For seismic response history prediction of RC columns and frames, one of the commonly used 

methods is nonlinear time-history analysis. A traditional time-history analysis for an RC column 

or frame relates the established, detailed, as-designed, structural model—which is based on 

available design parameters such as material properties (e.g., concrete and reinforcement strength), 

structural member dimensions (e.g., width, depth, and length), and boundary conditions (e.g., fixed 

at the column base)—to the input ground motions. Two frequently employed ways to build the 

numerical model are lumped and distributed plasticity approaches. A lumped plasticity model is 
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established by means of zero-length nonlinear springs located at the structural member ends, 

representing plastic hinges (Gilberson 1967; Filippou and Issa 1988). Hysteretic force-

displacement relations representing the members’ nonlinear cyclic responses are assigned to these 

plastic hinges. This method simplifies the modeling procedure, reduces the computational cost, 

and improves the numerical stability of the computations. A distributed plasticity fiber model more 

accurately describes the inelastic behavior of RC members, as the material nonlinearity can be 

accounted for at any element section (Spacone et al. 1996a; 1996b). At the section level, material 

constitutive relationship models such as those for concrete and reinforcement can be defined via 

discretizing the section into a series of fibers representing cover, core, or confined concrete, and 

reinforcement. Then, the well-defined section is assigned to the element (i.e., force- or 

displacement-based beam-column elements) by designating a number of integration points to 

simulate the nonlinear behavior of structural members along their lengths. The structural model is 

developed by assembling these elements to formulate the structural system. The fiber elements can 

capture cracking, onset of yielding, and the spread of plasticity throughout the cross-section as 

well as along the element length (Haselton et al. 2009; Deierlein et al. 2010).  

However, neither approach has good generalization performance. Lumped plasticity 

models require prior assumptions for the determination of spring parameters. The selected 

parameters must be capable of representing the experimental hysteretic behavior of target RC 

members (Taucer et al. 1991). Distributed plasticity models fail to fully represent the strength and 

stiffness degradation as well as the pinching effects of the hysteretic loops (Haselton et al. 2009; 

Deierlein et al. 2010). Additionally, high computational costs are required to conduct these 

analyses, especially for the distributed plasticity approach, where for each load step or time instant, 

the section, element, and structure stiffness matrix are updated iteratively. Many studies have been 
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conducted to construct reduced nonlinear models that can be used more conveniently in practice 

(i.e., low computational cost, but reasonable estimation). These simplified models ignore some 

degrees of freedom (DOFs) that do not significantly influence the results. For the multi-story 

frames, the most commonly used simplified approach is the shear building model, where the model 

only considers the lateral DOFs at each floor due to the assumption that the beam stiffness is 

infinite in axial and flexure. Therefore, the shear building model still maintains the MDOF 

properties, but can significantly reduce the computational cost. The prediction performance of the 

shear building model heavily relies on the definition of lateral force-displacement properties for 

each story.  

Decanini et al. (2004) proposed a simplified procedure for evaluating seismic demand and 

performance of RC frames subjected to severe ground motions based on an equivalent shear-

building model. In this approach, the yield strength to define the lateral force-deformation relation 

for each story is determined by analysis with an inverted-triangular static force pattern. The 

accuracy of this simplified method is validated by comparing the results of 6- and 12-story full-

frame models of nonlinear time-history analyses. Hajirasouliha and Doostan (2010) developed a 

simplified analytical model for seismic response prediction of concentrically braced frames. An 

as-designed multi-story frame model is first reduced to an equivalent shear-building model. Then, 

the shear-building model is improved by introducing supplementary springs to account for the 

displacements induced by flexural deformation in addition to shear displacements. The nonlinear 

force-deformation relation for each story of the modified shear-building model is determined by 

performing a static pushover analysis considering P-Delta effects on the full-frame models. The 

adequacy of the proposed simplified model has been examined via nonlinear time-history analyses 

on full-frame models of 5-, 10-, and 15-story concentrically braced frames. The results show that 
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the proposed simplified model not only significantly reduces the computational time, but is also 

accurate enough for practical applications in seismic design and performance assessment. 

However, the lateral force-displacement properties of the shear building model were routinely 

determined according to static pushover analyses, which ignore the cyclic strength deterioration 

and depend on the nonlinear properties of the full-frame model. Further, the determination of the 

nonlinear properties of the full-frame model is based primarily on empirical or semi-empirical 

models (e.g., material or structural component constitutive models), which may not be able to 

capture the underlying patterns in the experimental data of the materials (e.g., concrete, steel) and 

structural components (e.g., RC columns).        

Another family of simplified methods uses a static pushover analysis in place of the 

dynamic time-history analysis to efficiently estimate the peak seismic response quantities (e.g., 

peak inter-story ratio). In a traditional pushover analysis, a monotonically increasing lateral load 

pattern, with an invariant height-wise distribution, is applied to the RC frame until a target 

displacement is reached. Both the force distribution and target displacement are based on the 

assumption that the response is controlled by the fundamental mode and that the mode shape 

remains unchanged after the structure yields (Chopra and Goel 2002). Therefore, the conventional 

pushover analysis cannot consider the higher mode effect (Chopra and Goel 2002; Krawinkler and 

Seneviratna 1998) and also do not account for changes in lateral load patterns (Gupta and Kunnath 

2000; Amini and Poursha 2018). To take the higher mode effect into consideration, modal 

pushover analysis (Chopra and Goel 2002) and its variants (Chopra and Goel 2004; Poursha et al. 

2009) have been developed. To consider the inelastic effects that influence the height-wise 

distribution of inertia forces, the adaptive force distribution procedure was first proposed by Bracci 

et al. (1997), where the lateral load patterns are progressively updated to account for changes in 
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the dynamic properties of the RC frame in the inelastic region. Later, many researchers proposed 

variants to solve such problems (Gupta and Kunnath 2000; Antoniou, S., & Pinho, R. 2004; Amini 

and Poursha 2018). However, all of these methods can only estimate the peak seismic response 

and cannot predict the entire response history. Further, they also cannot consider the effect of 

cyclic strength deterioration, which is important for seismic collapse risk assessment (Deierlein et 

al. 2010).   
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2.3 Machine Learning-Based Techniques in Structural Engineering  

In contrast to the aforementioned physics-based approaches, machine learning (ML)-based 

techniques give a completely different perspective. In ML, data is the most important component. 

Given a data set which is high-quality and sufficiently large in size, ML methods are typically used 

to fit the data set without involving the laws of physics, forming a mathematical model that can 

closely capture any underlying patterns. With the recent rapid development of ML approaches in 

the engineering and science domains, many researchers in structural and earthquake engineering 

have also employed advanced ML approaches to address problems that have not been solved 

adequately via traditional physics-based approaches (Xie et al. 2020). However, few efforts have 

focused on RC columns and buildings. In this section, the most relevant literature regarding the 

strength prediction of structural components and the response history prediction of frames using 

ML methods are reviewed. This literature review is focused on those approaches that employ 

experimental data for model development; those that use simulated data are not considered in this 

dissertation. For a more detailed review of application of ML in structural and earthquake 

engineering, refer to a recently published survey paper (Xie et al. 2020). 

2.3.1 ML methods in strength prediction 

Jeng and Mo (2004) carried out research regarding the quick seismic response estimation of a pre-

stressed concrete bridge under earthquake excitation of various magnitudes along various 

directions using artificial neural networks (ANNs). Although ANNs are capable of capturing the 

nonlinear mapping between independent and dependent variables and can obtain desirable results 

(Cheng and Cao, 2015; Guler, 2014), their implementation is subject to several drawbacks. One of 

the major disadvantages is that the ANN training process is reached via a gradient descent 
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algorithm on the error space which can be more complex and may contain many local minima 

values. Moreover, trial and error processes are required to establish the optimal network structure.  

Jeon et al. (2014) proposed a novel set of probabilistic joint shear strength models using a 

multiple linear regression method and advanced ML methods including multivariate adaptive 

regression splines (MARS) and symbolic regression (SR). Experimental databases comprising 

reinforced and unreinforced concrete beam-column joint tests were established to obtain high-

fidelity regression models with reduced model error and bias. The comparison among simulated 

results by these approaches indicated that the MARS method is the best estimation method. 

Meanwhile, the predicted accuracy using MARS compared to existing joint shear strength 

relationships showed more accurate agreement. Alipour et al. (2017) adopted decision trees and 

random forests (RF) (Breiman 2001) to evaluate the load-capacity rating of bridge populations. 

Over 40,000 concrete slab bridge data sets were used. The analytical results were compared with 

a number of existing judgment-based strategies, showing that the proposed method can aid in 

determining which posted bridges should be further examined for both possible load restriction 

and restriction removal.  

Pal and Deswal (2011) adopted support vector machines for regression (SVMR) (Vapnik 

1995) to predict the shear strength of reinforced and prestressed concrete deep beams. The results 

predicted by the SVMR were compared with those obtained from ANNs and three empirical 

equations (for the reinforced concrete deep beams), and one empirical equation (for the prestressed 

concrete deep beams). The results illustrate an improved performance in terms of prediction 

capabilities by the SVMR when compared to the ANNs and empirical equations. Chou et al. (2014) 

also proposed an ML model to predict the shear strength of RC deep beams. The proposed ML 

model consists of a smart artificial firefly colony algorithm (SFA) and least squares-SVMR (LS-
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SVMR) (Suykens et al. 2002). The model performance was validated by comparing results with 

those obtained by SVMR and formula-based approaches, showing that the proposed model is 

superior to others in predicting the shear strength of RC deep beams. Vu and Hoang (2016) 

established a hybrid ML model to predict the ultimate punching shear capacity of FRP-reinforced 

slabs. LS-SVMR and the firefly algorithm (FA) were adopted to discover the mapping between 

the influencing factors and the slab punching capacity. The predicted results from the proposed 

model had better agreement when compared with experimental data than those calculated by 

formula-based and ANN-based approaches.  

2.3.2 ML methods in response history prediction 

Many ML approaches have also been proposed to model the hysteretic behavior of structural 

components (Farrokh and Joghataie 2013; Farrokh et al. 2015; Yun et al. 2008). The hysteretic 

behavior is represented by the nonlinear force-displacement relationship. These approaches used 

the experimental force-displacement data of a specific structural component to compose the 

training set, where the predictor is the displacement and the response is the force. All of the existing 

approaches are based on variants of ANNs, which are used to learn the nonlinear relationship 

exhibited by the experimental training set and then model the hysteretic behavior for the same 

structural component. However, these strategies do not relate the structural features to the 

hysteretic behavior and cannot capture the behavior variation when some structural features 

change. Moreover, the hysteretic behavior of RC structural components changes significantly 

when some structural features change (e.g., reducing the reinforcement ratio and concrete 

compressive strength or changing the geometry of the RC structural component). Therefore, these 

strategies are not appropriate for the scope of this dissertation. 
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Similar strategies were proposed to model the response history of structural systems 

subjected to earthquake excitations. Zhang et al. (2019) proposed a deep learning-based approach 

to model the nonlinear seismic response of a structural system. In this method, a training set is 

developed where the predictors are the ground motion-related information (e.g., ground 

acceleration, velocity, and displacement), and the response variables are the structural response-

related information (e.g., story acceleration, velocity, and displacement). This training set is used 

to train a deep learning model. Then, the well-trained deep learning model can be used to predict 

the structural seismic response given a new ground motion. However, this method requires prior 

knowledge about the structural response under multiple ground motions, where both structural 

response and ground motions will be grouped as training sets. Therefore, this method is only valid 

for a structure where the response and corresponding ground motions are known in advance and 

may produce significant errors when predicting for another structure where the prior knowledge 

about the training set is unknown. This is because the training set does not relate any structural 

features (e.g., structural geometry, material properties, and reinforcement details that can define a 

structural system) to the structural response. Once some structural features vary (e.g., structural 

geometry, material strength or reinforcement details are changed), the training sets will no longer 

be valid for the new structure. Thus, the well-trained deep learning model does not have predictive 

capabilities for a new structure where prior knowledge is unknown. A similar procedure was also 

used by Guarize et al. (2007) for seismic response prediction of marine structures, by Lagaros and 

Papadrakakis (2012) for seismic response prediction of 3D buildings, and by Wu and Jahanshahi 

(2018) for seismic response prediction of a three-story steel frame. Therefore, the disadvantages 

of these methods are consistent with the one proposed by Zhang et al. (2019), and thus they are 

not suitable for the scope of this dissertation. 
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2.4 Effect of Data-Related Problems on the Performance of ML Methods 

By the review presented in Section 2.3, it can be concluded that the ML methods can provide better 

prediction than the traditional physics-based approaches in structural and earthquake engineering. 

However, one important premise for those standard ML methods is that the experimental data set 

used is high-quality and sufficiently large in size. If a data set has problems, such as being 

corrupted by outliers, or having large sample bias due to small size, or containing missing values, 

the conclusions made by these models will no longer be valid. This is because standard ML 

methods are vulnerable to these data-related problems. Significant performance deterioration will 

occur for these standard ML methods when a training set is subjected to those mentioned data-

related problems.  This section reviews the existing methods to deal with these data problems. 

2.4.1 Methods for addressing outliers 

Typically, standard ML approaches are able to fit and generalize the input data well and can 

produce extremely good prediction capabilities if the input data is high quality and reasonably 

large in size. However, if the input data is corrupted by outliers, these ML methods (e.g., methods 

for regression), especially those that are sensitive to outliers, will yield unreliable prediction. Some 

of them even break down when the data is contaminated by extreme outliers. Outliers are those 

observations that are far away from all other observations due to misplaced decimal points, 

recording or transmission errors, or exceptional phenomena. These are all common occurrences in 

real-world data (Rousseeuw and Leroy 1987). In general, there are two commonly employed ways 

to deal with outliers for regression problems (Rousseeuw and Leroy 1987). The first is to use 

robust approaches while the second method is to construct outlier diagnostics. A robust approach 

first fits a regression model that adequately addresses the normal data points and then discovers 

the outliers as those points having large residuals estimated from the robust regression model 



 

 

 

 

23 

 

(Hampel et al. 2011; Rousseeuw 1984; Rousseeuw and Yohai 1984). On the contrary, outlier 

diagnostics first identify the outliers and then remove them and fit the remaining normal data points 

(Rousseeuw and Hubert 2011; Mu and Yuen 2015; Yuen and Mu 2011; Yuen and Ortiz 2017). In 

some applications, both methods yield exactly the same result. However, outlier diagnostics may 

result in outliers which are not entirely detected, leading to biased results, while robust regression 

does not pose such a risk. Robust regression approaches include least absolute deviations (LAD), 

least trimmed squares (LTS), M-estimators, etc., which were proposed to address the fact that the 

least squares (LS) method is easily affected by outliers (Rousseeuw and Leroy 1987). These robust 

methods were originally developed for parametric regression (e.g., linear regression). Recently, 

many efforts have been made to incorporate these regression approaches into the reformulation of 

ML methods to enhance their robustness.  

LTS has been integrated into backpropagation neural networks (BPNNs) to replace the 

mean squared error (MSE) as the minimization criterion (Rusiecki 2007), and LAD has been 

applied in random forests (RFs) (Roy and Larocque 2012) to replace the original LS, leading to 

model reformulations. As introduced in Section 2.3, LS-SVMR (Suykens et al. 2002) is one of the 

more frequently used ML methods in structural and earthquake engineering. LS-SVMR is a 

reformulation of SVMR (Vapnik 1995), which uses the sum of squared errors (SSE) as the loss 

function and equality constraints in place of inequality constraints to greatly simplify the SVMR 

formulation. Due to this, LS-SVMR solves a linear system problem instead of the complex 

quadratic programming (QP) problem, leading to greater computational efficiency. However, the 

use of SSE as the loss function in the formulation of LS-SVMR leads to a non-robust property. To 

overcome this problem, the weighted SSE has been adapted as the loss function by Suykens et al. 

(2002) to substitute the original SSE for the reformulation of LS-SVMR, which resulted in a new 
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LS-SVMR variant called WLS-SVMR that is robust to outliers. The weight used in WLS-SVMR 

is a function of residuals estimated by LS-SVMR, where the potential outliers tend to have larger 

residuals. The points which have larger residuals in the training set will then be assigned smaller 

weights to reduce their associated negative influence. However, WLS-SVMR breaks down under 

non-Gaussian noise distribution with heavy tails (i.e., extreme outliers) (Brabanter et al. 2009). To 

solve this problem, De Brabanter et al. (2009) proposed an iterative version of WLS-SVMR 

(IWLS-SVMR), where the weights are updated in each iteration to reduce the negative influence 

of extreme outliers until convergence criteria is reached. 

Both WLS-SVMR and IWLS-SVMR are robust, global data-driven regression models, 

meaning their solution requires the fitting of the entire training set. However, in many cases, the 

performance of global models can be further improved by local models (Menzies et al. 2011; Hand 

and Vinciotti 2003; Bottou and Vapnik 1992; Vapink and Bottou 1993; Vapnik 1992). As 

introduced in Bottou and Vapnik (1992), local learning algorithms attempt to locally adjust the 

capacity of the training system to the properties of the training set in each area of the input space. 

This results in a local model that only requires the fitting of a subset of the training data nearby 

(relevant to) the query point and can overcome the potential negative influence of irrelevant points. 

Therefore, a robust, local model may provide an improvement under these circumstances when 

compared to the robust, global models. This is because a robust, local approach can yield a model 

that both overcomes the negative interference of outliers and avoids the potential negative 

influence of irrelevant points, achieving a suitable trade-off between the capacity of the learning 

system and the number of training data points. The majority of existing local models are based on 

polynomial regression, which means that the local models are polynomial functions (Cleveland 

1979; Cleveland and Devlin 1988; Atkeson et al. 1997a; 1997b). These local models have the prior 
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assumption of polynomial functions within local regions. Thus, the class of such local models are 

out of the scope of this dissertation. Motivated by these existing solutions introduced previously, 

a novel, robust version of the local ML model will be proposed in this dissertation to address the 

problem associated with non-robustness to outliers. 

2.4.2 Methods for addressing missing data 

An incomplete dataset involves observations with missing values, as shown in Table 2.1. Table 

2.1 shows an example where three explanatory variables (or features/predictors) are partially 

observed and have missing values (represented by ‘NAN’ values), making this dataset incomplete. 

Given an incomplete dataset, existing ML approaches fail to directly construct an appropriate data-

driven model, as their original analysis procedures are only valid for complete datasets and are not 

designed to handle missing data (Rubin 1976; Little and Rubin 1987). The most common way to 

deal with this missing data problem is to simply discard every incomplete observation or case, 

transforming the incomplete dataset into a reduced, but complete, dataset. Then the reduced, 

complete dataset can be employed along with any existing ML approaches. Nevertheless, 

considering all observations in the original incomplete dataset are from realistic cases, this strategy 

involves throwing away a potentially large amount of useful information, leading to biased 

inference, and finally misinterpreted conclusions (Rubin 1976; Little and Rubin 1987). Further, 

this strategy is not always applicable. In specific, in post-earthquake structural evaluations, 

deleting the data associated with any damaged buildings with critical structural information 

missing means that further structural analyses of these damaged buildings are not feasible, and 

thus, the global collapse risk for these damaged buildings will remain unknown, posing a 

substantial, potential threat.  
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In addition to simply removing any observations associated with missing data, another 

effective way to deal with an incomplete dataset is to impute the missing values with plausible 

candidates, resulting in an imputed, complete dataset. In this way, this type of imputation approach 

maintains the size of the original incomplete dataset without risking the loss of useful information. 

The most direct imputation method is single imputation, which is performed by filling in a valid 

candidate for each missing value, such as imputing each missing value with a fixed value (e.g., the 

mean of partially observed explanatory variables) or a single value estimated by regression 

predictions (Batista and Monard 2003). However, single imputation is statistically incorrect, as it 

implies that those missing values are certain when in fact the missing values have not been 

observed (Rubin 1976; 1996; 2004). Thus, analyses of the imputed, complete dataset by single 

imputation methods fail to account for the uncertainty due to the missing data. 

  

Table 2.1 Schematic format of an incomplete dataset, where ‘NAN’ represents a missing value, 

and missing values only exist in the partially observed explanatory variables !("), !($), and !(%). 
Observations $& ⋯ $' &(&) &(() &()) ' 

()&, '&) ,"" ⋯ ,"* ,"(*+") NAN NAN -" 
()(, '() ,$" ⋯ ,$* ,$(*+") ,$(*+$) NAN -$ 
()), ')) ,%" ⋯ ,%* NAN NAN NAN -% 
(),, ',) ,-" ⋯ ,-* ,-(*+") ,-(*+$) ,-(*+%) -- 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
()., '.) ,/" ⋯ ,/* ,/(*+") ,/(*+$) NAN -/ 

 

 

As an alternative, a multiple imputation (MI) method was developed by Rubin (Rubin 2004) to 

address this drawback. The method of MI has become an extremely popular means for handling 

incomplete datasets in statistical analyses. The MI approach involves filling in each missing value 

with several plausible candidates, creating several imputed, complete datasets for analyses. Each 
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dataset is analyzed independently using techniques designed for the complete dataset, and then, 

the analyzed results are combined in such a way that the uncertainty due to missing data may also 

be incorporated into the analyses (Rubin 1996; 2004). Two popularly used approaches to create 

multiple plausible candidates for MI include joint modeling (JM) of a multivariate imputation 

model specification (Schafer 1997; Schafer and Yucel 2002) for all of the partially observed 

explanatory variables (e.g., &("), &($), and &(%) in Table 2.1) and fully conditional specifications 

(FCS) of a series of univariate imputation models (Buuren and Groothuis-Oudshoorn 2010) for 

each partially observed explanatory variable, conditional on all the other variables.  

JM involves specifying a multivariate distribution for the missing data and drawing 

plausible candidates from the corresponding posterior predictive distributions via a Markov chain 

Monte Carlo (MCMC) approximation (Schafer 1997; Schafer and Yucel 2002). The JM 

methodology is attractive when the specified multivariate distribution is a reasonable 

representation of the population distribution of the data. The commonly used multivariate 

distributions specified by JM techniques for imputation include the multivariate normal model, the 

multinomial log-linear model, and the general location model for mixed continuous and discrete 

variables (Liu and Rubin 1998). All of the mentioned JM techniques are discussed in greater detail 

in Schafer (1997). However, it is often challenging to specify a correct multivariate distribution 

for the missing data (Buuren and Groothuis-Oudshoorn 2010). As an alternative to JM, FCS 

specifies the multivariate imputation model on a variable-by-variable basis by a set of conditional 

densities, one for each partially observed explanatory variable (Buuren and Groothuis-Oudshoorn 

2010). Given starting values, FCS draws plausible candidates by iterating throughout all 

conditional densities. Compared to JM, the use of FCS is much more flexible. This is because, for 

each partially observed explanatory variable (e.g., continuous or discrete variable), an appropriate 
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univariate model can be selected. This strategy is more attractive than JM in cases where there is 

no evident, appropriate multivariate distribution for the data. Nevertheless, FCS also has a 

drawback, that is, the conditional densities may be incompatible. This means that there may not 

exist a joint density such that the conditional densities for each of the partially observed 

explanatory variables are fully conditional (e.g., the iterations cannot reach convergence). 

Additionally, both JM and FCS produce plausible candidates for missing values in terms of 

simulation. The candidates obtained by simulation may be outside the observed data range due to 

the model misspecification of either JM or FCS, leading to meaningless imputation results (Little 

and Rubin 1987).  

In Bayesian parameter estimation, a joint distribution can be factored as a product of 

conditional and marginal distributions (Hoff 2009; Raghunathan et al. 2001). By appropriately 

specifying the univariate distribution for each partially observed explanatory variable as either a 

marginal or conditional distribution, the joint distribution for the entire set of explanatory variables 

with missing values can be achieved. Motivated by this, this dissertation will propose a novel MI 

approach to create multiple plausible candidates for imputing each missing value with 

consideration of the uncertainty due to missing data.  

2.4.3 Methods for addressing small datasets 

Small datasets are an extremely challenging problem in the ML realm, and in specific, in regression 

scenarios, as the lack of relevant data can lead to ML models that have large bias. This is because, 

when a dataset is small, it may lead to a biased sample. This means that the sample points in the 

small dataset cannot accurately represent the distribution of a target domain and cannot reflect the 

underlying patterns in the target domain data (Quinonero Candela et al. 2009), leading to large 

bias in the final, fully-trained ML model for prediction in the target domain. Transfer learning (TL) 



 

 

 

 

29 

 

aims to address the problems with sample bias induced by small datasets by transferring ML 

models trained with a relevant large data set to improve prediction (Pan and Yang 2009; Torrey 

and Shavlik 2010; Weiss et al. 2016). In this dissertation, the small dataset is from the “target 

domain” and the large dataset is from the “source domain”. The target and source domains are 

typically assumed to be somewhat different but related to each other in many TL approaches (Pan 

and Yang 2009), and thus, the well-trained ML models from the source domain(s) can be applied 

to the prediction on the target domain. This seems to deviate from the default assumption in many 

standard ML settings, where the training and test datasets are independently and identically 

distributed (i.i.d), as the dataset is shifted (Cortes and Mohri 2014; Huang et al. 2007; Gretton et 

al. 2009; Quinonero Candela et al. 2009). Mathematically speaking, dataset shift happens when 

two datasets are drawn from two different distributions (Quinonero Candela et al. 2009). 

Specifically, given the distributions of the source and target domains, one can sample the training 

dataset /0)01, -011202"
/

 from the source domain distribution 31(), -)  and the test dataset 

{()34 , -34)}32"5
from the target domain distribution 34(), -), where ) ∈ 7* and - ∈ 7. A dataset 

shift is when 31(), -) ≠ 34(), -).  

However, the majority of existing TL approaches are designed for classification problems 

(Li and Chaspari 2019; Feng and Chaspari 2019; Gao and Mosalam 2018; Pan and Yang 2009), 

but less attention has been paid on regression problems (Pardoe and Stone 2010; Salaken et al. 

2019). The main difference between classification and regression problems is that the response 

variable for classification problems is discrete while that for regression problems is continuous 

(James et al. 2013). This difference strictly restricts the direct use of some existing TL approaches 

for addressing regression problems (i.e., some TL methods for classification must be modified for 

their use in regression settings, e.g., the work in Pardoe and Stone 2010). Besides, the existing 
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regression-based TL methods generally assume that the target and source domains are related to 

each other (Garcke and Vanck 2014; Pardoe and Stone 2010). Therefore, these TL methods may 

work well for the regression problems when the source and target domains are related but may 

work poorly when two domains are unrelated. The relevance is represented by the joint 

distributions of two domains (Huang et al. 2007). According to Bayes rule, the joint distribution 

can be written as 3(), -) = 3()|-)3(-) = 3(-|))3()). The equation 3(), -) = 3()|-)3(-) is 

called the generative model, while the equation 3(), -) = 3(-|))3()) is called the discriminative 

model (Garcke and Vanck 2014; Quinonero Candela et al. 2009). The majority of existing TL 

approaches focus on the discriminative approach. Thus, 31(-|))31()) ≠ 34(-|))34()) (i.e., the 

source and target domains are different) is achieved by either different marginal distributions, i.e., 

31()) ≠ 34()) (also called covariate shift) (Quinonero Candela et al. 2009) or different posterior 

distributions, i.e., 31(-|)) ≠ 34(-|)) or both. 

As mentioned previously, the majority of these approaches have been used to deal with 

classification problems, and only a few recent research efforts have focused on regression 

problems. Pardoe and Stone (2010) modified two existing boosting-based classification TL 

models, ExpBoost (Rettinger et al. 2006) and TrAdaBoost (Dai et al. 2007), to form two TL models 

called ExpBoost.R2 and Two-stage TrAdaBoost.R2 for regression problems. Both of these TL 

models are based on AdaBoost.R2 (Drucker 1997), where the reweighting of instances (i.e., data 

points) that have larger residuals predicted by a learner (i.e., ML model) is achieved by normalizing 

errors into adjusted errors within the range [0, 1] in each boosting iteration. The proposed boosting-

based transfer regression models are validated effectively by numerical experiments. Garcke and 

Vanck (2013) proposed two approaches for inductive transfer regression based on importance 

weighting. These two methods are to estimate a weight which is a density ratio of the target and 
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source data. The first one relies on the prediction performance of an ML model learned from the 

data in the source domain, while the second one minimizes the Kullback-Leibler divergence 

(Sugiyama et al. 2008) between two distributions of the target and source data. Numerical 

experiments are performed, and results indicate that the former is better than the latter. A seed-

based TL model for regression problems was proposed by Salaken et al. (2019). In this approach, 

each sample point in the target domain is regarded as a seed for initiating the transfer of the source 

data. An auto-encoder deep learning technique is used to transform the source data into an 

abstracted feature space, where the number of features for the data in the source domain matches 

that in the target domain. Then a k-means clustering algorithm, with the number of clusters equal 

to the number of sample points in the target domain, is applied to cluster the source domain data, 

and each target domain sample point is appended with a relevant cluster by minimizing the 

Euclidean distance. The effectiveness of this method is verified by numerical results. 

Although these mentioned regression-based TL approaches can reduce the effect of small 

sample bias and thus improve prediction performance for small datasets, such capabilities may be 

limited to the transfer between two related domains, as validated in the numerical experiments. If 

the source and target domain data are far apart and unrelated, these methods may no longer be 

valid because these approaches may not be able to extract the shared information from two 

unrelated domains. To alleviate this limitation, this dissertation will propose a novel TL approach 

for regression problems.   
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2.5 Summary 

This chapter reviewed the relevant existing work on seismic response prediction using both 

traditional physics-based approaches and emerging ML-based techniques as well as reviewed the 

existing methods to reduce the negative effect of data-related problems on the performance of ML-

based techniques. It can be concluded that, for physics-based approaches, the methods to define 

the nonlinear properties of RC columns depend primarily on empirical and semi-empirical models 

(e.g., material and structural component constitutive equations), which may not be able to capture 

the underlying patterns in the experimental data. For ML-based techniques, the existing methods 

do not relate the structural features to the seismic response history, which cannot capture the 

changes in nonlinear behavior due to changes in structural features. Also, the existing applications 

of ML-based techniques in structural and earthquake engineering require that the dataset used is 

high-quality and sufficiently large in size. However, real-world datasets are likely subjected to 

outliers, large sample bias due to small size, and missing values, where all can significantly 

degrade the prediction capability of standard ML methods. 

In sum, although many researchers have currently applied various ML methods to address 

the limitations of existing physics-based approaches in structural and earthquake engineering, 

there are still many existing challenges which remain unaddressed. The development of solutions 

to these problems is critical to determine if data-driven computing methods can be employed in 

structural seismic response prediction, and therefore, they will be addressed in this dissertation.  
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CHAPTER III 

DATASETS, VALIDATION, AND ASSESSMENT 

 

3.1 Overview 

This chapter presents the development of two RC column databases including 262 rectangular RC 

columns and 160 circular RC columns covering flexure-, shear-, and flexure-shear failure modes. 

The specimens in both of the RC column databases are subjected to displacement-controlled quasi-

static cyclic loading. A modified hysteretic model and a hybrid optimization algorithm are 

developed to extract the critical parameters from the experimental force-displacement data. 

Finally, the column features and corresponding extracted critical parameters are paired to form the 

RC column datasets, which will be used for the research work in this dissertation. Additionally, 

the validation methods for machine learning approaches are also introduced along with the 

assessment metrics used to quantify the performance of the ML models created in this work.
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3.2 Material and Geometric Properties of RC Columns Databases 

For the rectangular RC column database, 208 specimens were recorded as flexure failures, 18 

specimens were classified as shear failures, and the remaining 36 specimens were recorded as 

flexure-shear failures. The first 194 of the 208 flexure-critical columns, the 18 shear-critical 

columns, and the 36 flexure-shear-critical columns were extracted from the database compiled by 

Berry et al. (2004). Among the last 14 of the 208 flexure-critical columns, four columns were from 

Eom et al. (2014), six columns were from Verderame et al. (2008), and the last four columns were 

from Xie et al. (2014). The force-displacement data for all of the columns in the database have 

been modified and treated as cantilever cases to remain consistent with those tests extracted from 

Berry et al. (2004). The original number of columns with rectangular sections classified as flexure 

failures developed by Berry et al. (2004) is 199. The five columns excluded in this dissertation 

(Nos. 147, 148, 149, 181, and 182) did not contain all the necessary information (i.e., loss of force-

displacement data) required in this study. The specimen numbers are compatible with the naming 

conventions in the original references.  

 

Table 3.1 Statistical range of material and geometric properties for the rectangular RC column 

database. 

Property Minimum Maximum Mean Std.Dev 

Shear span to effective depth ratio a/d 1.08 8.40 3.84 1.57 

Stirrup spacing to effective depth ratio s/d 0.11 1.14 0.32 0.21 

Concrete compressive strength fc (MPa) 16 118 50.40 28.72 

Longitudinal reinforcement yield stress fyl (MPa) 318 635 437.58 65.88 

Transverse reinforcement yield stress fyt (MPa) 249 1424 486.91 217.57 

Longitudinal reinforcement ratio pl=Asl/bh 0.01 0.06 0.02 0.01 

Transverse reinforcement ratio pt = Ast/bs 0.0006 0.03 0.008 0.005 

Axial load ratio (P/Agfc) 0 0.9 0.26 0.19 
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Table 3.1 presents the statistical ranges of the properties for the columns in this database. The full 

database with the input parameters and all response variables considered throughout this work is 

presented in Appendix A. For the circular RC column database, 98 specimens were recorded as 

flexure failures, 32 specimens were classified as shear failures, and the remaining 30 specimens 

were recorded as flexure-shear failures. All of these specimens were extracted from the database 

compiled by Berry et al. (2004). The force-displacement data for all of the columns in the database 

recorded in the tests have also been modified and treated as cantilever cases by Berry et al. (2004). 

The original number of columns with circular sections classified as flexure and flexure-shear 

failures developed by Berry et al. (2004) are 99 and 32, respectively. The three columns excluded 

in this dissertation (No. 38 for flexure and Nos. 27 and 29 for flexure-shear) did not contain all the 

necessary information required in this study. Table 3.2 presents the statistical ranges of the 

properties of the columns in this database. The full database with the input parameters and all 

response variables considered throughout this work is presented in Appendix B. 

 

Table 3.2 Statistical range of material and geometric properties for the circular RC column 

database. 

Property Minimum Maximum Mean Std.Dev 

Shear span to effective depth ratio a/d 1.18 10.49 3.64 2.13 

Stirrup spacing to effective depth ratio s/d 0.00 0.73 0.17 0.11 

Concrete compressive strength fc (MPa) 18.9 90 37.16 14.39 

Longitudinal reinforcement yield stress fyl (MPa) 240 565.4 415.52 62.58 

Transverse reinforcement yield stress fyt (MPa) 0.00 1000 411.62 154.22 

Longitudinal reinforcement ratio pl=Asl/Ag 0.0046 0.0558 0.0265 0.0104 

Transverse reinforcement ratio pt = 4Ast/(D-2c)s 0.00 0.0427 0.0099 0.0075 

Axial load ratio (P/Agfc) 0.00 0.74 0.15 0.15 
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3.3 Development of RC Column Datasets 

This section introduces a modified hysteretic model and a hybrid optimization algorithm, which 

are used to extract the critical parameters that govern the shape of the hysteretic loops in the 

experimental force-displacement data. The column features introduced in Section 3.2 and 

corresponding extracted critical parameters for each column specimen in the databases are paired 

to form the RC column datasets used throughout this research work. The detailed information is 

as follows. 

3.3.1 Modified three-parameter hysteretic model 

Typically, the experimental force-displacement data for an RC column subjected to reversed cyclic 

loading is composed of more than ten thousand data points, where each point is comprised of the 

applied displacement paired with the corresponding measured force. It is inappropriate to directly 

pair the column features and the corresponding experimental force-displacement data. This is 

because a vector constitutes an RC column’s features while the experimental force-displacement 

data is a two-dimensional matrix with the row dimension of greater than ten thousand. Therefore, 

it is impractical to form a dataset where the predictors are a vector consisting of column features 

but the response variables are a two-dimensional matrix. As an alternative, the nonlinear relation 

of the experimental force-displacement data can be represented by a hysteretic model, which is 

governed by some critical parameters including the backbone curve and hysteretic parameters. It 

is practical to calibrate a hysteretic model with experimental force-displacement data by tuning the 

critical parameters. Once the calibrated hysteretic model can perfectly reproduce the nonlinear 

relation exhibited by the experimental data, the corresponding optimal critical parameters can be 

regarded as representative of the experimental data and thus be extracted as the response variables 
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as a vector. In this direction, a dataset where both predictors and response variables are vectors 

can be developed. 

 

 

Figure 3.1 Hysteretic behavior characteristics of RC flexure-, shear-, and flexure-shear-critical 

columns and their definitions of cyclic backbone curves. 

 

 

 

The selection of the hysteretic model is a very important step since it is related to the quality of 

the dataset. A high-quality column data can fully represent the column’s nonlinear behavior 

observed experimentally. Therefore, the selected hysteretic model should be able to capture the 

various behavioral characteristics of the desired component (RC columns in this case) as observed 

experimentally. In this case, that includes the hardening, softening, and pinching behavior, and 
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stiffness and strength deterioration, as shown in Figure 3.1. Few of the existing hysteretic models 

are versatile enough to describe the various behaviors of RC columns, especially behaviors 

observed experimentally for RC non-ductile columns (e.g., shear-critical columns), such as the 

apparent softening behavior, pinching behavior, and significant stiffness and strength 

deterioration, as shown in Figure 3.1. One of the more popular hysteretic models, proposed by 

Ibarra et al. (2005), is a versatile tool that can capture various nonlinear characteristics of RC 

columns observed experimentally. Nevertheless, implementation of this model requires many 

hysteretic parameters (i.e., parameters governing the shape of the hysteretic loops), which 

increases the difficulty in calibrating the hysteretic model and thus in obtaining a high-quality 

dataset. The traditional three-parameter hysteretic model proposed by Park et al. (1987) is both 

versatile and simple, with only three hysteretic parameters. It is able to describe the hysteretic 

behavior of various types of RC columns by appropriately tuning these three hysteretic parameters. 

However, this model does not contain a softening branching in the monotonic backbone curve. 

This section describes the modifications to the traditional three-parameter hysteretic model, which 

incorporates a softening branch into the hysteretic model to describe deterioration in the backbone 

curve.  

3.3.1.1 Backbone curve 

Two types of monotonic backbone curves will be defined for the purpose of this dissertation: one 

is for the case with deterioration, and the other is for the case without deterioration, as shown in 

Figure 3.2(a). If no deterioration occurs, the backbone curve is defined by eight parameters 

including the forces and displacements at yield and maximum points in the positive and negative 

loading directions. After the maximum points, the gray horizontal lines are applied. If deterioration 

is included, a softening branch after the maximum point is initiated up to the residual point. After 
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the residual point, the force will remain constant as the displacement increases. The hysteretic 

model allows these backbone curve parameters to take on different values in the positive and 

negative loading directions. 

 

 

Figure 3.2 Modified three-parameter hysteretic model incorporating the deterioration in the 

backbone curve. 

 

3.3.1.2 Unloading stiffness deterioration 

The deterioration in unloading stiffness is incorporated into the model by introducing a point in 

the positive direction 0";6+/=7+, ";6+1 and a point in the negative direction 0";68/=78, ";681, as 

shown in Figure 3.18(b). The parameter " has the same function as that in the traditional three-
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parameter hysteretic model, which specifies the degree of stiffness deterioration. If " → ∞, this 

corresponds to stiffness deterioration which does not exist, and the smaller the value of ", the more 

serious the stiffness deterioration. Figure 3.2(b) shows the change in unloading stiffnesses =9,;+  and 

=9,;8  relative to the initial stiffnesses =7+ and =78 in the positive and negative directions for a load 

cycle i. The equations below are used to calculate the unloading stiffnesses. 

=9,;+ =
;< − ";68

A< − ";68/=78
 (3.1) 

=9,;8 =
;= − ";6+

A= − ";6+/=7+
 

  (3.2) 

 

where point a ("! , $!) represents the target maximum point in the positive direction at cycle i; and 

point b ("" , $") represents the target minimum point in the negative direction at cycle i.  

Note that the maximum and minimum points are also called reversal points. Eqs. (3.1) and (3.2) 

are applied to all load cycles for an RC column under cyclic loading to calculate the unloading 

stiffness of reversal points by replacing the coordinates of a and b with the coordinates of new 

reversal points. 

3.3.1.3 Pinching behavior 

The pinching behavior depicted herein is similar to the traditional three-parameter hysteretic model 

except for parameter B . When pinching behavior is included, B  will lower the force at the 

maximum or minimum point of the current load cycle. For example, as shown in Figure 3.2(c), the 

initial path of the reloading line is directed towards “pinching point 1”, which can be defined by 

stiffness =",;8 . Then the reloading path is guided towards the minimum point of the current load 

cycle (i.e., yield point at the current cycle i), which can be defined by stiffness =$,;8 . With continued 

loading in the negative direction, the target minimum point b at the current cycle i is reached and 

will become the new minimum point for the next load cycle. A similar procedure happens for 
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“pinching point 2” for the next load cycle (i.e., cycle i+1), and the maximum point for the next 

load cycle is point a. In this way, the value of the parameter B can be restricted within [0,1], where 

0 represents the most apparent pinching behavior, and 1 represents the opposite. The stiffnesses to 

describe the reloading lines in the negative and positive directions at the current and next load 

cycles are calculated as follows. 

A;+ = A< −
;<
=9,;+

 (3.3) 

A;8 = A= −
;=
=9,;8

 (3.4) 

=",;8 =
B;68

A;+ − B;68 =78⁄  (3.5) 

=$,;8 =
;68 − A;+=",;8

A68
 (3.6) 

=",;+"+ =
B;<

A;+ − A;8 + B;< =9,;+⁄  (3.7) 

=$,;+"+ =
;< − (A;+ − A;8)=",;+

A< − A;+
 

(3.8) 

 

The values in Equations 3.3-3.8 are updated for each load cycle when the maximum or minimum 

point is updated. 

3.3.1.4 Strength deterioration 

As shown in figure 3.2(d), cyclic strength deterioration occurs when the maximum or minimum 

deformation exceeds the yield deformation in the positive or negative direction for the current load 

cycle. Specifically, the deformation associated with point a in Figure 3.2(d) exceeds the yield 

deformation in the positive direction for cycle i. The reloading path in the positive direction for 

the next load cycle is directed towards the new maximum point a’ rather than a due to deterioration. 

If a load reversal occurs at point c, the force at point c is less than that at point a due to the cyclic 

strength deterioration. This cyclic strength deterioration mode is similar to that in the traditional 
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three-parameter hysteretic model. The difference is that the deterioration parameter #  defined 

herein is a user-defined parameter, which controls the degree of accumulated hysteretic energy 

dissipation affecting the cyclic strength deterioration and is calculated as follows: 

E; = # F
∑ H0;
02"

H9>?
I (3.9) 

 

where ∑ '#
$
#%&  is the hysteretic energy dissipated in all previous cycles; and ''() is the ultimate 

hysteretic energy dissipation capacity which is expressed as the area enclosed by the backbone 

curve. 

3.3.2 Extraction of optimal critical parameters 

By appropriately establishing the monotonic backbone curve and hysteretic parameters, the 

proposed hysteretic model can reproduce various behavioral characteristics of RC columns 

observed in the physical experiments, such as pinching behavior, stiffness and strength 

deterioration, hardening and softening behavior, and variability of hysteretic loop areas under 

repeated load reversals. More importantly, this model is very simple and only requires three 

hysteretic parameters to be established. This enhances the model’s applicability in practice. In this 

dissertation, the proposed hysteretic model is calibrated via the experimental force-displacement 

data. The final dataset consists of the predictors that define an RC column (i.e., column features) 

and the response variables that define the hysteretic behavior of the column. The detailed 

information regarding how the dataset is developed is presented in the following sub-sections. 

3.3.2.1 Extraction of monotonic backbone curve parameters 

For the RC column specimens presented in Section 3.2, monotonic response data is not available, 

and only cyclic response data is available. There is no direct way to extract the optimal parameters 

that define the monotonic backbone curve from the cyclic response data. Haselton et al. (2009) 

suggested that the monotonic backbone curve can be approximated based on extrapolation from 
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the cyclic backbone curve. The optimal parameters associated with the cyclic backbone curve are 

easy to extract from the force-displacement data. Many existing methods have already been 

proposed to extract these parameters (Elwood and Moehle 2005; Ghannoum and Moehle 2011; 

Sezen and Moehle 2004). In this dissertation, the methodology suggested by Haselton et al. (2009) 

is utilized to relate the extracted optimal values of the cyclic backbone curve to the monotonic 

backbone curve. As shown in Figure 3.3, all the optimal parameters that define the cyclic backbone 

curve are also used to define the monotonic backbone curve except for the ultimate drift ratio (i.e., 

drift capacity). The ultimate drift ratio for the monotonic backbone curve is defined as two times 

the value A9 for the cyclic backbone curve (i.e., 2A9). We found that this method is convenient to 

implement and also works very well. The monotonic backbone curve is employed rather than the 

cyclic backbone curve because the monotonic backbone curve will eventually shrink to the cyclic 

backbone curve under reversed cyclic loading due to the cyclic strength deterioration (Deierlein et 

al 2010; Haselton et al. 2009; Ibarra et al. 2005). Therefore, the effect of the monotonic backbone 

curve is to ensure that the shrunk cyclic backbone curve closely matches the one observed 

experimentally (Deierlein et al 2010; Haselton et al. 2009; Ibarra et al. 2005). An example to show 

how the monotonic backbone curve shrinks to the cyclic backbone curve due to deterioration will 

be provided in Section 3.3.2.3. 
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Figure 3.3 Schematic for approximating the monotonic backbone curve from the cyclic 

backbone curve. 

 

For both databases, the cyclic backbone curve parameters were extracted from available hysteretic 

curves of base shear versus lateral displacement (i.e., experimental force-displacement data) when 

not specifically reported in the experimental tests. These parameters include the yield shear force 

(Vy), drift ratio at Vy (δy=Δy/l*100, where Δy is lateral drift at Vy, and l is column clear length), 

maximum shear force (Vm), drift ratio at Vm (δm=Δm/l*100, where Δm is lateral drift at Vm), ultimate 

shear force (Vu), and drift ratio at Vu (δu=Δu/l*100, where Δu is lateral drift at Vu). For Vm and δm, 

these two values can be directly extracted at the point of maximum shear.  

To extract Vy and δy, the method proposed by Sezen and Moehle (2004) is used. The first 

step of this approach is to define the initial effective stiffness, which is the secant intersecting the 

point of the hysteretic curve at 70% of the maximum shear force. Then, δy is defined by the 

intersection of this secant with a horizontal line passing through the maximum shear force. The 

yield shear force Vy is defined by the force at δy on the hysteretic curve. As the nonlinear behavior 

for flexure-, shear-, and flexure-shear-critical RC columns is different (Figure 3.1), the definition 
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of drift capacity is also different. By observation of Figure 3.1, the behavior of a flexure-critical 

column typically does not contain the strain-softening branch, but for shear- and flexure-shear-

critical columns, the backbone curve typically does contain a strain-softening branch. Strain 

softening describes the strength deterioration resulting from concrete crushing and rebar buckling 

and fracture.  

To extract δu, three different cases are considered. For the first case, where there is no 

apparent strength deterioration phenomenon present, the drift capacity δu is defined as the drift at 

the ultimate shear force (i.e., ultimate drift ratio). For the second case, where strain-softening exists 

and the shear strength drops below 80% of the maximum shear force value, the method proposed 

by Elwood and Moehle (2005) is used. In this method, the drift capacity δu is defined as the 

displacement where the shear resistance drops to 80% of the maximum shear force. For the third 

case, where strain-softening exists and the shear strength does not drop below 80% of the 

maximum shear force value, the drift capacity δu is taken as the maximum drift in the backbone 

curve. The statistical ranges of these extracted response values for the circular and rectangular RC 

column databases are summarized in Tables 3.3 and 3.4, respectively. Full databases for 

rectangular and circular RC column databases are presented in Appendices A and B. 

3.3.2.2 Optimizing the hysteretic parameters 

As mentioned previously, the three hysteretic parameters " , # , and B  govern the degree of 

unloading stiffness, strength deterioration, and pinching behavior, respectively, which in turn, 

determine the shape of the hysteretic loops. Thus, they play important roles in reproducing the 

hysteretic behavior observed experimentally. However, extraction of the three optimal hysteretic 

parameters from the hysteretic curve is difficult since there is no apparent feature to indicate the 

optimal values. Different combinations of these three hysteretic parameters may produce 
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significantly different hysteretic loops, and the optimal combination should be the one from which 

the simulated hysteretic curve closely matches that observed experimentally. In the proposed 

approach, a hybrid optimization algorithm is developed to adaptively search for the optimal values 

of these three hysteretic parameters. Before performing the proposed hybrid optimization 

algorithm, the parameter space should be defined. In the proposed hysteretic model, the range of 

each parameter is known: " ≥ 0, # ≥ 0, and 0 ≤ B ≤ 1. By an initial analysis, we found that there 

is little impact when " ≥ 120 ; therefore, " = 120  can also be utilized to represent that the 

unloading stiffness has not deteriorated (i.e., upper bound). Further, when # = 1, the rate of 

strength deterioration is very high, and the monotonic backbone curve shrinks significantly; few 

RC columns exhibit such deterioration rates. Additionally, as introduced previously, when B = 1, 

it means that there is no pinching behavior apparent in the hysteretic curve, and when  B = 0, the 

pinching behavior is the most pronounced. Therefore, the three hysteretic parameters are bounded 

as follows: 0 ≤ " ≤ 120, 0 ≤ # ≤ 1, and 0 ≤ B ≤ 1. 

The strategy of the hybrid optimization procedure is as follows. First, search for good initial 

values for the three hysteretic parameters using a metaheuristic global optimization algorithm, 

called simulated annealing (SA) (Van Laarhoven and Aarts 1987). Then, the Nelder-Mead 

downhill simplex optimization algorithm (NM-simplex) (Nelder and Mead 1965) is used to further 

search for the optimal values within a local region encompassing these good initial values. This 

strategy can effectively avoid the solution of local minima due to the use of the global optimization 

algorithm (SA). Also, it can directly find the optimal solution that is as close as possible to the 

exact solution by use of the NM-simplex algorithm. The specific procedure is described in the 

remainder of this section. 
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Suppose we have experimental force-displacement data {(A; , O;)};2"
/!

 for an RC column, 

where A; ∈ 7 represents a lateral displacement applied to the RC column and O; ∈ 7 represents a 

lateral force measured at this lateral displacement A;. There are a total P* data points that comprise 

the force-displacement hysteretic curve observed in the physical experiment. We denote the lateral 

force estimated at the lateral displacement A;  using the proposed hysteretic model as Q@,; =

Q(A;; S, ", #, B) , where S  represents the monotonic backbone curve parameters and can be 

extracted from the experimental force-displacement data in the manner introduced in Section 

3.3.2.1. Thus, the only unknown information in Q(A;; S, ", #, B)  are the three hysteretic 

parameters. The optimal values of the three hysteretic parameters ("A , #A , BA) can be reached by 

minimizing the following objective function: 

Minimize: T(", #, B) = ∑ 0O; − Q(A;; S, ", #, B)1
$/!

;2"  (3.10) 

  Subject to: 0 ≤ " ≤ 120; 0 ≤ # ≤ 1; 0 ≤ B ≤ 1 

 

The hysteretic parameter tuning procedure using the hybrid SA-NM-simplex algorithm is 

formulated as follows: 

1. Given the objective function T(", #, B)  and lower and upper bounds of the three 

hysteretic parameters, select initial values for the three hysteretic parameters, denoted 

as 0"B, #B, BB1 , where "B , #B , and BB  are the selected values within the specified 

bounds. 

2. Perform the SA procedure to tune " , # , and B  and determine good initial values 

("@, #@, B@) (those that minimize the objective function T("@, #@, B@) (Eq. 3.10)). 

3. Given the good initial values ("@, #@, B@), set values ("C , #C , BC) to construct initial local 

regions ["@, "@ + "C] , [#@, #@ + #C], and [B@, B@ + BC] and set a stop criterion for the 

NM-simplex iterative procedure. 
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4. Perform the NM-simplex iterative procedure in the initial local region. For each 

iteration, the objective is to search for an improved combination ("A , #A , BA) that can 

continue to decrease the current minimum objective function. The initial local region 

and improved combination will be updated based on the NM-simplex algorithm. 

5. Output the optimal combination ("A , #A , BA) when the stop criterion is reached. 

Note that it is possible that the combination of good initial values ("@, #@, B@) is the final optimal 

combination ("A , #A , BA). This can happen when T("@, #@, B@) is still the minimum after the NM-

simplex iterations.  

3.3.2.3 Extraction of optimal hysteretic parameters 
 

The optimal hysteretic parameters can be extracted from the experimental hysteretic curve using 

the proposed hybrid optimization procedure described above. For implementation of this 

procedure, the initial values of the three hysteretic parameters 0"B, #B, BB1 for the SA tuning 

procedure are (50, 0, 1). The values ("C , #C , BC) for the NM-simplex iterative procedure are (5, 

0.05, 0.1). These values are used to optimize the hysteretic parameters of all RC columns in the 

training set. An example is presented here to show how the proposed hybrid procedure works. 

Column specimen, “No. IC2”, from Sritharan et al. (1996) is randomly selected from the circular 

RC column dataset (See appendix B). Figure 3.4(a) shows the experimental hysteretic curve 

enveloped by cyclic and monotonic backbone curves via the extracted optimal backbone curve 

parameters introduced in Section 3.3.2.1. Figure 3.4(b) depicts the hysteretic curve based on an 

initial guess combination of the three hysteretic parameters, which seems to have a large 

discrepancy with that observed experimentally. The SA algorithm is then used to tune these three 

hysteretic parameters, producing a hysteretic curve that matches better with that observed 

experimentally (Figure 3.4(c)). The three parameters in Figure 3.4(c) are considered as good initial 
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values for the NM-simplex algorithm, which then is used to tune them, and the final optimal values 

produce a hysteretic curve that very closely matches that observed experimentally (Figure 3.4(d)). 

Specifically, given the optimal values (" = 53.18, # = 0.10, B = 0.98) , the monotonic 

backbone curve (green line) is reduced to the cyclic backbone curve (black line) due to cyclic 

strength deterioration, as observed in Figure 3.4(d). Finally, the optimal hysteretic parameters 

(" = 53.18, # = 0.10, B = 0.98) can be extracted. 

 

 

(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 3.4 Hybrid optimization procedure for the three hysteretic parameters: (a) Experimental 

hysteretic curve enveloped by the monotonic and cyclic backbone curves; (b) Simulation with 

initial guess values of the three hysteretic parameters; (c) Result of the SA algorithm; (d) Result 

of the NA-simplex algorithm. 

 

The three optimal hysteretic parameters for each of the RC columns in the rectangular and circular 

databases are obtained according to the aforementioned procedure. Since the forces and 
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displacements in the positive and negative directions for the experimental hysteretic curve are 

almost identical, the backbone curve parameters in the positive and negative directions are made 

equivalent in this work. The statistical properties of the optimal cyclic backbone curve and three 

hysteretic parameters for the circular and rectangular RC column databases are summarized in 

Tables 3.3 and 3.4. It should be noted that the original number of column specimens in the 

rectangular RC column database is 262. However, there are ten columns for which the full force-

displacement data are not available. These ten columns are from Verderame et al. (2008) and Eom 

et al. (2014) and thus, are not included for the extraction of hysteretic parameters. 

Finally, two datasets including the design parameters or structural features (e.g., section 

dimensions, material properties, and reinforcement details) and the response variables (e.g., 

backbone curve and hysteretic parameters) are developed and presented in Appendices A and B. 

For each column dataset, the structural features can define an individual RC column. The response 

variables represent the experimental force-displacement data, which quantifies the seismic 

behavior of the RC column. 

 

Table 3.3 Statistical properties of the optimal cyclic backbone curve and hysteretic parameters 

for circular RC column database. 

Critical Parameters Minimum Maximum Mean Std.Dev 

Yield shear force, \D (kN) 18.00 2443.90 223.37 246.42 

Drift ratio at yield shear, ]D (%) 0.18 3.23 0.97 0.55 

Maximum shear force, \E (kN) 19.00 2968.00 267.98 298.58 

Drift ratio at maximum shear, ]E (%) 0.26 14.04 2.79 2.15 

Ultimate shear force, \F (kN) 15.25 2558.40 234.14 265.50 

Drift ratio at ultimate shear, ]F (%) 0.43 14.66 4.74 2.79 

Stiffness deterioration parameter, ^ 0.70 110.94 23.20 22.30 

Strength deterioration parameter, _ 0.00 0.82 0.15 0.20 

Pinching parameter, ` 0.22 1.00 0.82 0.23 
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Table 3.4 Statistical properties of the optimal cyclic backbone curve and hysteretic parameters for 

rectangular RC column database. 

Critical Parameters Minimum Maximum Mean Std.Dev 

Yield shear force, \D (kN) 24.00 1110.04 178.86 153.06 

Drift ratio at yield shear, ]D (%) 0.20 2.95 0.84 0.37 

Maximum shear force, \E (kN) 29.56 1338.80 212.37 181.91 

Drift ratio at maximum shear, ]E (%) 0.31 7.94 2.01 1.35 

Ultimate shear force, \F (kN) 25.65 1217.01 177.46 157.83 

Drift ratio at ultimate shear, ]F (%) 0.72 9.39 3.72 1.91 

Stiffness deterioration parameter, ^ 0.30 119.42 19.95 22 

Strength deterioration parameter, _ 0.00 0.93 0.15 0.20 

Pinching parameter, ` 0.31 1.00 0.89 0.19 
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3.4 Validation and Assessment 

This section introduces the common ways to validate and assess the performance of machine 

learning (ML) models. Additionally, the commonly used performance metrics that are also 

employed in this work, are presented. 

3.4.1 Validation set approach 

The validation set approach is a very simple strategy for validating the performance of ML models. 

It involves randomly dividing the available set of observations into two parts, a learning set and a 

test set or hold-out set. The model is fit on the learning set with the hyper-parameters that are 

obtained based on a cross-validation procedure, and the fitted model is used to predict the 

responses for the observations in the test set. The resulting test set error provides an estimate of 

the test error. It is often used for the initial validation (James et al. 2013). Additionally, it should 

be noted that when tuning the hyper-parameters with cross-validation procedure, the learning set 

is split into training and validation sets. The potential hyper-parameter values are justified by the 

estimated error on validation set for the ML model formed by fitting the training set.  

3.4.2 K-fold cross-validation approach 

The validation set approach is conceptually simple and is easy to implement. However, the 

validation estimate of the test error can be highly variable, depending precisely on which 

observations are included in the learning set and which observations are included in the test set. 

To alleviate the randomness in selecting testing samples and therefore, enhance the robustness of 

the results, a K-fold cross-validation process is much more appropriate. This process is illustrated 

in Figure 3.5 for the case where there are five folds. The whole database is randomly and averagely 

divided into K data subsets or “folds” where each fold, in turn, serves as a test set. The performance 

of the ML models can be evaluated by averaging the results of the K data folds. Since each of the 
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K data folds is mutually exclusive to the others, this validation serves to assess the ML models 

more robustly and accurately. 

 

 

Figure 3.5 Cross-validation procedure with 5 folds for illustration. 

 

3.4.3 Leave-One-Out (LOO) cross-validation approach 

The LOO approach involves splitting the dataset into two subsets: one subset consists of a single 

observation ()", -") which is used for testing, while the second subset consists of all remaining 

observations {()$, -$), … , ()/, -/)} which then make up the learning set. In the LOO approach, 

this split is done n times, where n = the total number of observations in the dataset, such that each 

observation is predicted based on the model trained on the remainder of the observations. This 

approach thus results in predictions with far less bias. Additionally, in contrast to the validation 

set and K-fold cross-validation approaches which generate different results when applied 

repeatedly due to randomness in the learning and testing set splits, repeatedly performing the LOO 

cross validation will always yield the same results. This is because there is no randomness for the 

LOO cross-validation approach in the training and test set split.  
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3.4.4 Performance assessment metrics 

The statistical metrics (coefficient of determination (R
2
), robust R

2
 (RG$ ), root mean squared error 

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)) are used to 

quantify the prediction and generalization performance in a comprehensive manner. Given 

response variable ' = {-;};2"/
 and predicted response 'c = {-d;};2"/

, R
2
, RG$ , RMSE, MAE, and 

MAPE are calculated as follows: 

7$ = 1 −
∑ (-; − -Hc)$/
;2"

∑ (-; − -e)$/
;2"

 (3.11) 

 

7G$ = 1 − F
fghijP(|' − 'c|)

fjh(') I
$

 (3.12) 

 

7klH = m∑ (-; − -Hc)$/
;2"

P  (3.13) 

 

knH =
1
Po

|-; − -Hc|
/

;2"

 
(3.14) 

 

knpH =
100%
P or

-; − -Hc
-;

r
/

;2"

 
(3.15) 

 

where ()*(+) = (-*.)/(|+ −(-*.)/(+)|) is the median absolute deviation of +. 

Both the original and robust variant of R
2
 are typically in the range of [0, 1], with 1 representing a 

perfect prediction. However, in some cases, R
2
 could be negative and a negative R

2
 value 

corresponds to extremely poor prediction, which means the model breaks down. Both RMSE, 

MAE, and MAPE values will be equal to or greater than 0, with 0 representing perfect predictions. 



 

 

 

 

55 

 

CHAPTER IV 

COMPONENT-LEVEL DATA-DRIVEN COMPUTING FRAMEWORK
*
 

 

4.1 Overview 

This section presents the development of a novel data-driven framework for seismic response 

prediction of structural components. First, a novel multiple-output machine learning (ML) model 

is developed for generalized hardening behavior prediction based on the rectangular reinforced 

concrete (RC) column dataset presented in Chapter III. Second, a new locally weighted ML 

model is proposed for generalized softening behavior prediction based on the developed circular 

RC column dataset (also previously presented in Chapter III). Lastly, by integrating the proposed 

ML model with the proposed hysteretic model presented in Chapter III, a novel component-level 

data-driven framework is developed for generalized, accurate and efficient seismic response 

history prediction of RC structural components. The proposed framework can directly link the 

experimental data to nonlinear properties of target RC structural components (columns in this case) 

minimizing the modeling errors induced by empirical models while still employing universal laws 

(e.g., Newton’s laws of motion). Each method is assessed and validated by comparing the 

numerical results with the physical experiment data. 

 

*Section 4.2 of this chapter is reprinted with permission “Machine learning–based backbone curve model of reinforced 
concrete columns subjected to cyclic loading reversals” by Huan Luo and Stephanie Paal, 2018. Journal of Computing 
in Civil Engineering, 32, 04018042, Copyright [2018] by American Society of Civil Engineers.  
 
*Section 4.3 of this chapter is reprinted with permission from “A locally weighted machine learning model for 
generalized prediction of drift capacity in seismic vulnerability assessments” by Huan Luo and Stephanie Paal, 2019. 
Computer-Aided Civil and Infrastructure Engineering, 34, 935-950, Copyright [2019] by John Wiley and Sons. 
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4.2 Hardening Behavior Prediction 

The section presents a novel machine learning (ML) method for the generalized prediction of the 

hardening behavior in terms of the cyclic backbone curve without considering the softening 

behavior of RC columns covering flexure-, shear-, and flexure-shear-critical types. Figure 4.1 

shows the cyclic backbone curve (drift at yield shear A6, yield shear ;6, drift at maximum shear 

A5 , maximum shear ;5) that is often employed to quantify the hardening behavior of an RC 

column.  

The cyclic backbone curve constructed from experimentally derived hysteresis envelope is 

frequently used to evaluate the seismic behavior of the RC column under cyclic loading. Strain 

hardening after yielding is a common behavior in the RC column subjected to cyclic loading. 

Traditionally, this behavior is predicted by a detailed finite element modeling, which is time-

consuming and does not have a good generalization performance for flexure-shear- and shear-

critical columns. Additionally, as illustrated in Section 2.3, the ML method called least squares 

support vector machines for regression (LS-SVMR) (Suykens et al. 2002) is only valid for single 

output. But the cyclic backbone curve is composed of four values, which is a multi-output problem. 

Therefore, the LS-SVMR cannot directly be used for this application. To address these 

shortcomings, a novel ML-based backbone curve model (ML-BCV) to rapidly predict these curves 

for flexure-, shear-, and flexure-shear-critical columns is developed. The novel model integrates a 

multi-output least squares support vector machine for regression (MLS-SVMR) to discover the 

mapping between input and output variables and a grid search algorithm (GSA) (Bergstra and 

Bengio 2012) to facilitate the training process. 
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This section is organized as follows. First, the formulation of MLS-SVMR, which was 

created to deal with the multi-output case, is described. Following this, the unique integration of 

the MLS-SVMR and GSA is discussed within the application to cyclic backbone curve prediction 

(Figure 4.1). The detailed information is presented below. 

 

 

Figure 4.1 Backbone curve that quantifies the hardening behavior of the RC column subjected to 

cyclic loading reversals. 

 

4.2.1 Integration of MLS-SVMR with GSA 

For the remainder of this section, the following notations are used. Let R be the real numbers set. 

The lowercase bold letter ) ∈ 75  indicates a column vector with m dimensions that can be 

represented as ) = (,", ,$, … , ,5)4, )I ∈ 7/ indicates a row vector with n dimensions that can be 
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represented as )I = (,", ,$, … , ,/), and the capital bold letter $ ∈ 75×/ indicates a matrix with 

m rows and n columns that can be represented as $ = [)", )$, … , )/] , where )" =

(,"", ,$", … , ,5")4, )$ = (,"$, ,$$, … , ,5$)4  
, and )/ = (,"/, ,$/, … , ,5/)4. Let training set T = 

{X, Y}, where $ = [)", )$, … , )/] ∈ 75×/  indicates that the training set has n independent 

variables, and each of the independent variables has m data points, and s = ['", '$, … , '>] ∈ 75×> 

indicates that the training set has l dependent variables, and each of the dependent variables also 

has m data points. The learning objective of the MLS-SVMR can be transformed into the following 

optimization problem to find t = [u", u$, … ,u>] ∈ 7K×> and S = hijv(w", w$, … , w>) ∈ 7>×>: 

Minimize T(t, x) = 	 "
$
z{j|g(t4t) +	"

$
z{j|g(x4x`) or  

T0u0 , g;01 = 	
1
2ou04

>

02"

u0 +	
1
2oB0

>

02"

}og;0$
5

;2"

~ 

(4.1) 

 

Subjected to  s = �4t+ Ä5×>S + x or 

y;0 = Ç4();I)u0 + w0 + g;0 , i = 1,… ,f; É = 1,… , Ñ (4.2) 

where 2 = *.)3(4&, 4*, … , 4() ∈ 7(×(  represents a diagonal matrix consisting of a positive real 

regularized parameter 4# ; 8 = [:&, :*, … , :(] ∈ 7,×(  represents a matrix consisting of error 

vectors; 	=,×(  represents a matrix consisting of 1 elements with m rows and l columns; > =

?@AB&
�C, @AB*

�C, … , @AB,�C	D ∈ 7-×,, @(∙): 7. → 7- represents a mapping from n dimensions to 

some higher dimensional Hilbert space H with d dimensions. 

The Lagrangian function for Eqs. (4.1) and (4.2) is formulated as follows. 

Ö0u0 , w0 , g;0 , ";01 = T0u0 , g;01 −oo";0

>

02"

5

;2"

0Ç4();I)u0 + w0 + g;0 − y;01 (4.3) 

where H$# represents a Lagrange multiplier. 

The Karush-Kuhn-Tucker (KKT) conditions for optimality are adopted by differentiating Eq. (4.3) 

with the variables to yield the following set of linear equations: 
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(4.4) 

Rearranging Eq. (4.4) can result in (m+1) linear equation groups, and each of the equation groups 

consists of (m+1) elements, which are written in matrix format as following. 

 

                 

(4.5) 

where I(B$/ , B0/ ) = @1(B$
/)@(B0

/ ) is the kernel function that meets the Mercer rule. This means that 

the inner product @1(B$/)@(B0/ ) in the feature space has an equivalent kernel in the original input 

space. A kernel function is preferable rather than direct formulation of @(B$/) as there are many 

kernel functions (i.e., linear, polynomial, and radial basis function (RBF)) that can realize the same 

mapping function of @(B$/) in a more computationally efficient manner (because the inner product 

calculation of @1(B$/)@(B0/ ) is not necessary). As the RBF kernel works well in practice and only 

has one parameter, the parameter-tuning procedure is more straightforward when compared to that 

of the polynomial kernel function which has two parameters that need to be tuned. Also, it is well 

established that the RBF kernel is more powerful than the linear kernel; therefore, it is frequently 

used and adopted here. 
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=();I , )3I ) = g,3 F−
‖);I − )3I ‖$

2á0$
I (4.6) 

 where J#* represents the parameter of the RBF kernel. 

The ML-BCV model is established by hybridizing MLS-SVMR and GSA as illustrated in Figure 

4.2. The MLS-SVMR is adopted to learn the nonlinear mapping between the input independent 

and the dependent variables. In the MLS-SVMR training process, it requires eight hyper-

parameters: the four regularization parameters γ", γ$, γ%, γ- that govern the penalty imposed to 

input data points deviating from the regression function and the four kernel parameters 

á"$, á$$, á%$, á-$ that affect the smoothness of the approximately nonlinear function. For all of these 

eight hyper-parameters, the lower and upper bounds are set to be 2
-15

 and 2
15

 respectively, with an 

interval of 2
2
. This study utilizes the GSA to exhaustively and adaptively search for the most 

optimized set of MLS-SVMR hyper-parameters to minimize the cost function, which is the mean 

squared error (MSE) obtained by leave-one-out (LOO) cross-validation procedure.  
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Figure 4.2 Implementation of ML-BCV. 

 

4.2.2 Hardening behavior results 

The rectangular RC column dataset presented in Chapter III (see Appendix A) was utilized to 

train, test, and validate the ML-BCV model by: (1) direct comparison with experimental results; 

(2) a 10-fold cross-validation procedure; and, (3) direct comparison with traditional physics-based 

modeling approaches for three randomly selected columns (one is flexure-critical, one is shear-
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critical, and one is flexure-shear-critical). The results demonstrate the generalized performance of 

the proposed ML-BCV compared to traditional modeling approaches (i.e., physics-based models).  

4.2.2.1 Validation set approach 

This section presents the validation of the proposed ML-BCV model in predicting the hardening 

behavior quantified by the backbone curve of RC columns subjected to cyclic loading reversals 

for flexure, shear, and flexure-shear failure modes. The validation set approach presented in 

Section 3.4.1 is used. First, the training and testing sets should be established. In this study, the 

ratio of training set to testing set is 9:1 (188 of the 208 column specimens which failed in flexure, 

16 of the 18 columns which failed in shear, and 32 of the 36 specimens which failed in flexure-

shear). In total, 236 of 262 columns were randomly selected for the training set, and the remaining 

26 column specimens were regarded as the testing set. The training and testing results of the ML-

BCV model are presented in Figure 4.3.  

By observation, the training (Figure 4.3(a)) and testing (Figure 4.3(b)) results for the drift 

ratios at yield shear force and the training (Figure 4.3(e)) and testing (Figure 4.3(f)) results for the 

drift ratios at maximum shear force show that the scatter plots for drift ratios at yield and maximum 

shear forces in both training and testing processes closely flock together at the line of y=x. Further, 

this illustrates that the proposed approach is able to yield predicted results that agree with the actual 

observed values and thus, simulate both drift ratios accurately. In a similar manner, for yield and 

maximum shear force, the training (Figure 4.3(c) and (g)) and testing (Figure 4.3(d) and (h)) results 

illustrate that the proposed ML-BCV model has excellent ability to predict the yield and maximum 

shear forces. Both training and testing results have validated that the proposed method can 

reproduce experimental test data of yield and maximum shear forces of RC columns subjected to 

cyclic loading reversals and covering flexure, shear, and flexure-shear failure modes. The R
2
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(Section 3.4.4) values (R
2
= 0.98 for yield shear and R

2
= 0.99 for maximum shear) indicate that 

strong correlations exist between observed and predicted yield and maximum shear forces. The 

statistical indicators, RMSE and R
2
, for these four dependent variables in both training and testing 

results are summarized in Table 4.1. 

 

 

                                            (a)                                                                (b)           

 

(c)                                                                (d)           

 

Figure 4.3 Results of training and testing the ML-BCV model: drift ratio at yield shear force for 

(a) training result (R
2
= 0.96) and (b) testing result (R

2
= 0.93); yield shear force for (c) training 

result (R
2
= 0.99) and (d) testing result (R

2
= 0.98); drift ratio at maximum shear force for (e) 

training result (R
2
= 0.94) and (f) Testing result (R

2
= 0.91); maximum shear force for (g) Training 

result (R
2
= 1.00) and (h) Testing result (R

2
= 0.99). 
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(e)                                                                (f)           

 

 

(g)                                                                (h)           

Figure 4.3 Continued. 

 

Table 4.1 Training and testing results for the validation set approach. 

Variable 
Training result Testing result 

RMSE R
2
 RMSE R

2
 

δy 0.06 0.96 0.08 0.93 

Vy 13.25 0.99 21.74 0.98 

δm 0.31 0.94 0.48 0.91 

Vm 8.88 1 27.56 0.99 

 

 

4.2.2.2 10-fold cross-validation approach 

Additionally, a 10-fold cross-validation process introduced in Section 3.4.2 is also executed to 

more robustly and accurately evaluate the performance of the proposed ML-BCV model. The 

whole database is randomly and averagely divided into 10 data subsets or “folds” where each fold, 

in turn, serves as a testing set. The performance of the proposed ML-BCV model can be evaluated 
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by averaging the results of the 10 data folds. Tables 4.2, 4.3, 4.4, and 4.5 summarize the results of 

the 10-fold cross-validation for drift ratio at yield shear, yield shear force, drift ratio at maximum 

shear, and maximum shear force, respectively. The average RMSE and R
2
 of testing results for all 

four dependent variables are very close to those displayed in Table 4.1 for the case where the full 

database is employed for training and testing, illustrating that the proposed ML-BCV model is 

very reliable and powerful in predicting the backbone curve of RC columns subjected to cyclic 

loading reversals for flexure, shear, and flexure-shear failure modes. 

 

Table 4.2 Results of the 10-fold cross-validation for drift ratio at yield shear. 

Performance 
Data folds 

1 2 3 4 5 6 7 8 9 10 Mean 

TrainRMSE 0.06 0.06 0.06 0.07 0.07 0.06 0.06 0.06 0.07 0.07 0.06 

TrainR2 0.96 0.96 0.96 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.96 

TestRMSE 0.08 0.09 0.09 0.11 0.10 0.09 0.10 0.11 0.08 0.12 0.10 

TestR2 0.93 0.92 0.92 0.90 0.90 0.91 0.89 0.88 0.93 0.87 0.91 

 
  

Table 4.3 Results of the 10-fold cross-validation for yield shear force. 

Performance 
Data folds 

1 2 3 4 5 6 7 8 9 10 Mean 
TrainRMSE 13.58 12.03 5.82 13.93 11.94 8.33 12.31 13.63 12.03 13.01 11.66 

TrainR2 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 
TestRMSE 20.40 23.48 82.47 17.07 21.80 33.47 20.87 11.54 16.05 27.69 27.48 

TestR2 0.95 0.95 0.90 0.98 0.97 0.97 0.96 0.98 0.98 0.95 0.96 

 
 

Table 4.4 Results of the 10-fold cross-validation for drift ratio at maximum shear. 

Performance 
Data folds 

1 2 3 4 5 6 7 8 9 10 Mean 
TrainRMSE 0.42 0.36 0.46 0.28 0.22 0.38 0.36 0.38 0.43 0.46 0.38 

TrainR2 0.90 0.93 0.91 0.95 0.97 0.93 0.93 0.92 0.89 0.88 0.92 
TestRMSE 0.56 0.46 0.48 0.49 0.43 0.46 0.52 0.41 0.57 0.66 0.50 

TestR2 0.88 0.91 0.89 0.88 0.86 0.91 0.89 0.90 0.85 0.84 0.88 
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Table 4.5 Results of the 10-fold cross-validation for maximum shear force. 

Performance 
Data folds 

1 2 3 4 5 6 7 8 9 10 Mean 
TrainRMSE 15.07 9.25 13.41 16.37 15.74 9.66 14.09 13.93 12.65 13.56 13.37 

TrainR2 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 0.99 
TestRMSE 21.28 39.61 32.68 27.28 21.61 37.10 27.84 19.16 26.59 15.21 26.84 

TestR2 0.97 0.92 0.98 0.98 0.98 0.98 0.99 0.98 0.90 0.98 0.97 
 

 

4.2.2.3 Comparison with traditional physics-based methods 

Finally, this section presents a comparison between the proposed ML-BCV model and widely-

used traditional modeling approaches (i.e., distributed plasticity fiber model) to demonstrate the 

real-world application and full potential for this approach in practice. To validate the superiority 

of the proposed ML-BCV model, traditional modeling techniques were employed to simulate the 

hysteretic response (shear force versus lateral displacement) of RC columns with flexure-, shear-, 

and flexure-shear-critical modes. The classic fiber beam-column element is adopted to simulate 

the nonlinear cyclic response of RC columns failed in flexure. Since the classic fiber beam-column 

element fails to accurately reflect the nonlinear behavior of shear-critical RC columns, as 

illustrated in Marini and Spacone (2006), the modeling scheme proposed by Marini and Spacone 

(2006) is utilized to model the hysteretic force-displacement response for shear and flexure-shear 

critical RC columns.  

Three column specimens (BG-3 from Saatcioglu and Grira (1999), 3CMD12 from Lynn 

(1999), and 2CLD12 from Sezen and Moehle (2002)) are randomly selected from the rectangular 

RC column database presented in Chapter III (see Appendix A). A single force-based fiber beam-

column element with 5 Gauss-Lobatto integration points (i.e., monitoring sections) is employed to 

simulate specimen BG-3 failed in flexure. In each monitoring section, cover concrete fibers are 

simulated using the modified Kent and Park model (Scott et al. 1982), and the confined concrete 
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model proposed by Mander et al. (1988) is utilized to represent the confinement effect of the 

stirrups. The reinforcement fiber is modeled by the Menegotto-Pinto model (Menegotto and Pinto, 

1973). For the shear- and flexure-shear critical specimens (3CMD12 and 2CLD12, respectively) 

the modeling strategy proposed by Marini and Spacone (2006) is used. This strategy requires an 

extra nonlinear V-γ constitutive law at the section level. The element, concrete, and reinforcement 

fibers for the two shear-critical specimens are defined in the same way as specimen BG-3. The 

hysteretic model proposed by Ibarra et al. (2005) is selected to represent the nonlinear shear 

behavior of the two shear-critical columns, and their backbone curves are defined according to the 

method suggested by Sezen (2008). All modeling for these three randomly selected columns has 

been implemented in OpenSees (Mazzoni et al. 2006). 
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                                        (a)                                                                (b) 

 

(c) 

 

Figure 4.4 Comparison between simulated results and experimental data: (a) failure in flexure 

for column BG-3; (b) failure in shear for column 3CMD12; (c) failure in flexure-shear for 

column 2CLD12. 

 

A comparison between the experimental data and the simulation results is presented in Figure 4.4. 

Figure 4.4(a) demonstrates that the simulated results, including the backbone curve and hysteretic 

loops, closely agree with the measured test data, illustrating that traditional modeling can 

accurately simulate the nonlinear response of flexure-critical columns. In contrast, Figure 4.4(b) 

and (c) both overestimate the column load-carrying capacity, and Figure 4.4(b) has an apparent 

discrepancy of initial stiffness with experimental results, while the initial stiffness in Figure 4.4(c) 

has good agreement with the observed data. However, both Figures 4.4(b) and 4.4(c) capture the 

behavior characteristics of these two shear-critical columns such as pinching of hysteretic loops, 

stiffness, and strength degradation. 
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                                        (a)                                                                (b) 

 

 

(c) 

 

Figure 4.5 Comparison of backbone curves obtained between experiments, traditional modeling, 

and the proposed ML-BCV model: (a) failure in flexure for column BG-3; (b) failure in shear for 

column 3CMD12; (c) failure in flexure-shear for column 2CLD12. 

 

Table 4.6 Result comparison between traditional modeling and ML-BCV. 

Statistical indicators 
Traditional modeling Proposed ML-BCV 

Vy δy Vm δm Vy δy Vm δm 

RMSE 31.17 0.40 25.68 0.69 12.19 0.08 8.58 0.29 

MAPE (%) 14.16 46.23 7.71 39.51 5.77 9.02 2.69 18.06 

R2 0.97 0.67 0.99 0.74 1.00 0.99 1.00 0.95 

 

 

The drift ratio at yield shear, yield shear force, drift ratio at maximum shear, and maximum shear 

force are extracted from the simulated hysteretic base shear versus drift ratio plot in order to 

compare the performance between the proposed ML-BCV model and traditional modeling 
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approaches. 259 of the 262 test columns in the database, excluding the three specimens mentioned 

previously, are selected as the training set, and the testing set consists of these three columns. The 

comparison between traditional modeling and the proposed ML-BCV model is illustrated in Figure 

4.5. The results for a flexure-critical column, represented in Figure 4.5(a), show that the backbone 

curves obtained from both the proposed ML-BCV model and traditional modeling technique agree 

well with the experimental tests. However, the modeling approach overestimates the drift ratios at 

yield and maximum shear, whereas the ML-BCV model underestimates the drift ratio at maximum 

shear but overall, agrees with experimental data better than the traditional modeling approach. 

Figure 4.5(b) illustrates that the proposed ML-BCV model is far superior to the traditional 

modeling approach in predicting the backbone curve for shear-critical RC columns. Figure 4.5(c) 

demonstrates that the traditional modeling approach overestimates the yield and maximum shear 

forces of RC columns failed in flexure-shear, while the ML-BCV model yields accurate results.  

To further validate the usefulness of the proposed ML-BCV model in comparison with traditional 

modeling approaches, the statistical indicators – mean absolute percentage error (MAPE), RMSE, 

and R
2
 – are also adopted. The calculated metrics are provided in Table 4.6. These results show 

that the traditional modeling approaches are outperformed by the ML-BCV model on all accounts, 

where the associated RMSE, MAPE, and R
2 

values are 12.19, 5.77%, and 1.00 for yield shear 

force, and 8.58, 2.69%, and 1.00 for maximum shear force. Thus, the ML-BCV model reduces the 

RMSE by roughly 61% (Vy) and 67% (Vm), reduces the MAPE by approximately 59% (Vy) and 

65% (Vm), and enhances the R
2
 value by approximately 3% (Vy) and 1% (Vm). Furthermore, for the 

predictions of drift ratio at yield and maximum shear force, the performance of the traditional 

modeling approach is significantly worse than that of the ML-BCV model. Notably, the proposed 

ML-BCV model, when compared to traditional modeling approaches, reduces the RMSE by 
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approximately 80% (δy) and 58% (δm), reduces the MAPE by approximately 80% (δy) and 55% 

(δm), and enhances the R
2
 value by approximately 32% (δy) and 22% (δm). Based on these 

comparisons, the ML-BCV model presented in this thesis performs significantly better than that 

of traditional modeling approaches for both yield and maximum shear force and drift ratios and 

agrees well with experimental tests. Therefore, the novel ML-BCV model is deemed the most 

appropriate means for predicting the backbone curves of RC columns subjected to reversed cyclic 

loading across all failure modes. 
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4.3 Softening Behavior Prediction 

In this section, a novel machine learning (ML) method is proposed to predict the softening behavior 

of RC columns in a generalized and accurate way. To do this, the peak response of the softening 

behavior represented via the drift capacity was extracted from the circular RC column database 

developed in Chapter III (see Appendix B) and is regarded as the response variable. The drift 

capacity of RC columns is an important indicator to quantify the seismic vulnerability of RC frame 

buildings; however, it is challenging to accurately predict this value as the nonlinear behavior can 

vary greatly by column type. Further, the variation of nonlinear behavior for flexure-, shear-, and 

flexure-shear-critical columns can make the circular RC column dataset presented in Chapter III 

(see Appendix B) have different data patterns in different local regions. The global ML methods, 

which are required to fit the full training set, may not be able to fully capture this variation under 

this circumstance. Instead, a local model may be more appropriate, and the performance of global 

models can often be improved by localizing their learning capabilities via use of locally-weighted 

training criteria (Bottou and Vapnik, 1992; Vapnik, 1992; Vapnik and Bottou, 1993). This means 

that for different regions of the input space, there will be individual models that attempt to fit only 

the nearby training data (points which are relevant within the specific regions), conceivably 

avoiding the negative influences from irrelevant training data far away from that location, which 

the global model cannot avoid (Atkeson et al., 1997b). 

This section presents a novel, local ML model, called locally-weighted LS-SVMR (LWLS-

SVMR), which integrates LS-SVMR and locally-weighted training criteria to enhance and 

generalize the prediction of the drift capacity of RC columns, regardless of the column type. The 

details of the proposed LWLS-SVMR model are presented in the remainder of this section. 

Additionally, in the development of the LWLS-SVMR, several hyper-parameter values need to be 
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tuned. To tune these values, a hybrid coupled simulated annealing (CSA) (Xavier-de-Souza et al., 

2010) and grid search algorithm (GSA) (Bergstra and Bengio, 2012) is developed. The 

mathematical formulation of the proposed LWLS-SVMR model and the hyper-parameter tuning 

procedure are presented in the following. 

4.3.1 Development of LWLS-SVMR 

This section describes the mathematical basis for the novel LWLS-SVMR model. As previously 

mentioned, the LWLS-SVMR model combines the excellent nonlinear mapping capabilities of the 

LS-SVMR algorithm and the properties of locally-weighted learning. For the remainder of this 

section, the following notations are utilized. Let 7 be the real numbers set; ); ∈ 7* is a row vector 

with 3 dimensions (i.e., 3 variables) which can be written as ); = 0,;", … , ,;*1, and )LI ∈ 7* is a 

column vector with 3 dimensions which can be written as );I = 0,;", … , ,;*1
4; -; ∈ 7 is a real 

number; $ ∈ 7/×* is an 	n × p matrix which can be written as $ = ()", … , )/)4; the training set 

{(); , -;)};2"/
 is an P × (3 + 1) matrix which includes P data points and each data point contains 3 

predictors (i.e., ); ∈ 7*) and one response (i.e., -; ∈ 7).  

The basic procedure of the LWLS-SVMR model is as follows: 

(1) Define the query point 0)M1, å = 1,… ,f  (f  is the total number of points to be 

predicted) as a point which is not included in the training set, where the corresponding 

response value -dM is still unknown and not considered in the query process; 

(2) For each query point 0)M1, å = 1,… ,f : define a subset /0)(@), -(@)12@2"
N

from the 

training set {(); , -;)};2"/
 by a parameter QM; 

where K2 can take any value in the range (0, 1], the number of data points in the subset N is 

equivalent to O-.PAK2 ∗ /C,  and the points AB(4), R(4)C , S = 1,… , N  in the subset 
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TAB(4), R(4)CU4%&
6

,	are determined and sorted by the Euclidean distance metric.  

(2a) Calculate the Euclidean distance from each data point in the training set to each 

query point: 

hM; = ç); − )Mç, i = 1,… , P; å = 1,… ,f                                                                  (4.7) 

 

Then, for each query point, there is a distance-vector éM = 0hM", … , hM/1, å =

1,…f; 

(2b) Sort the entries in each distance vector increasingly such that a new sorted distance 

vector é(M) = 0h(M"), … , h(M/)1, å = 1,…f is obtained; 

(2c)  Select the data points in the training set {(); , -;)};2"/ ,	corresponding to the first { 

entries in the sorted distance vector é(M)  (i.e., h(M"), … , h(MN) ), as the subset 

/0)(@), -(@)12@2"
N .  

(3) After the subset is determined, the LS-SVMR fitting procedure (Suykens et al., 2002) 

is performed to calculate uI = (è", è$, … , èO)4 ∈ 7O and w ∈ 7 given the subset and 

weights which minimize the following objective function: 

T(uI, g@) =
"

$
(uI)4uI + "

$
BM ∑ #M0)(@)1g@$N

@2" , å = 1,… ,f                                   (4.8) 

Subject to:   -(@) = (uI)4Ç0)(@)
I 1 + w + g@, ê = 1,… , {                                          (4.9) 

where -4 ∈ 7, S = 1,… , N  is the error variable; 42 ∈ 7, V = 1,… ,(  is a regularization 

parameter; W2AB(4)C ∈ 7, S = 1,… , N, V = 1,… ,( is a weight that can take any value in the 

range [X, 1] used to determine the level of contribution from data points in a subset around the 

query point; X ∈ 7 is a real number approaching 0; @AB(4)
� C is a feature vector; and @(∙): 77 →

78 is a mapping function from Z dimensions to a higher ℎ-dimensional feature space. Note: 

B(4)
�  is a column vector; thus @AB(4)

� C is also a column vector.  
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If #M0)(@)1 takes a value approaching ë , the point 0)(@), -(@)1 is far away from the 

query point 0)M , -dM1 (relatively large Euclidean distance) and plays a lesser role in the 

determination of -dM; while, if #M0)(@)1 takes a value approaching one, the point is close 

to the query point (relatively small Euclidean distance) and plays a large role in the 

determination of -dM . 

(3a) The Lagrangian function is established to solve Eq. (4.8) and Eq. (4.9):	

Ö(uI, w, g@; "@) = T(uI, g@) − ∑ "@0(uI)4Ç0)(@)
I 1 + w + g@ − -(@)1N

@2"         (4.10) 

where H4 ∈ 7, S = 1,… , N is a Lagrange multiplier. 

(3b) The Karush-Kuhn-Tucker (KKT) conditions for optimality are used by 

differentiating the variables in (4.10), which results in the following: 

                                        (4.11) 

(3c) Rearranging (4.11) and eliminating uI and g@, the following matrix equation can 

be obtained: 
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where V = 1,… ,( and the kernel function is: IAB(4), B())C = @1AB(4)
/ C@AB())

/ C, S =

1,… , N; \ = 1,… , N 

(3d) For the determination of #M0)(@)1 ∈ 7, ê = 1,… , {; å = 1,… ,f, for each query 

point )M ,	let h(MN)  be the distance from )M  to the {?O  nearest neighbor )(N) (i.e., 

h(MN)  is the maximum distance compared to h(M"), … , h(M(N8")) ), and let: 

#M0)(@)1 = í0h(MN)
8" ç)(@) − )Mç1, where í(∙) is a tricube weight function, which 

is defined as the following: 

í(v) = Q(,) = î
(1 − |v|%)%, |v| < 1

ë, |v| ≥ 1                                                                             (4.13) 

where X can take any value close to zero, which in this case is equal to 10- − 4 to avoid 

a zero in the denominator in (4.12). 

(4) Solving (4.12), the Lagrange multiplier	^ = ("", … , "N) and w are obtained which can 

then be utilized to predict the query point )M using the following: 

-0)M1 = ∑ "@N
@2" =0)M , )(@)1 + w                                                                          (4.14) 

The final general form of the drift capacity model presented in this work is given by (4.14) for an 

individual query point. The approach developed in this section implements the RBF kernel 

function, which is given in Eq. (4.6). 
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4.3.2 Hybrid optimization algorithm 

As mentioned previously, there are three hyper-parameters, QM , BM , and áM$  that need to be 

accurately defined in the training process as they can significantly affect the accuracy level of the 

predicted results. Proper tuning of these parameters is necessary to optimize the proposed LWLS-

SVMR. The parameter QM is employed to establish the optimum subset size and the weights for the 

data points in the subset that yield the best prediction for each query point )M. The regularization 

parameter BM  controls the penalty inflicted on the data points diverging from the regression 

function in the subset, and the kernel parameter áM$ governs the smoothness of the approximately 

nonlinear function. If all three hyper-parameters are suitably selected, it can guarantee high 

predictive capabilities and good generalization performance. Grid search algorithm (GSA) 

(Bergstra and Bengio, 2012) is an effective optimization technique that has been very widely used 

to determine hyper-parameter values. However, GSA requires a range of space for the hyper-

parameters to be defined manually. In the proposed model, the range of each hyper-parameter is 

known: QM is within	(0, 1], BM is within (0,∞), and áM$ is within (0,∞). 

Theoretically, broader ranges for BM  and áM$, and narrower intervals in the ranges of all 

three hyper-parameters will result in the most optimum parameter pairs; however, the 

computational cost will also increase with an increase in range and number of intervals. A much 

more efficient alternative is to first determine starting values for QM, BM, and áM$ that are close to the 

optimum pairs 0QMA , BMA , áMA$ 	1. Then, a refined search for the optimum pairs 0QMA , BMA , áMA$ 	1 can be 

performed using GS by setting an appropriate region encompassing the starting values and defining 

a stop criterion for the iteration. As the range of QM is already determined and does not contain an 

infinite number, it is more straightforward to separate QM from BM and áM$ during the optimization 

of these three hyper-parameters.  
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A global optimization algorithm called coupled simulated annealing (CSA) (Xavier-de-

Souza et al., 2010) is employed to determine the starting values. CSA was originally proposed to 

reduce the sensitivity to initialization parameters. This is done by means of an acceptance 

temperature which regulates the variance of the associated probabilities while guiding the 

optimization process to quasi-optimal runs. Ultimately, this results in considerably higher 

optimization efficiency than alternate global optimization algorithms (Xavier-de-Souza et al., 

2010). 

The hyperparameter tuning procedure using the hybrid CSA-GSA algorithm, and as 

implemented within the LWLS-SVMR algorithm, is formulated as the following:  

(1) For each query point )M , å = 1,… ,f, discretize the parameter space with interval jM 

for QM (i.e., QM takes the values jM , 2jM , … ,1);  

(2) For each QM; , i = 1,… , ÑgPvzℎ0QM1, given the query point )M, determine a subset and 

weights for the corresponding subset data points; 

(3) Perform the CSA procedure in the subset to tune BM and áM$. Using leave-one-out cross-

validation, determine the starting values (BM@, áM@$ ) as those with minimum mean 

squared errors (MSE); 

(4) Given the starting values (BM@, áM@$ ), set an appropriate region encompassing (BM@, áM@$ ) 

and the stop criterion, and use GS to exhaustively search for the optimum pair (BMA , áMA$ ) 

that can continue to decrease the minimum MSE obtained in (3) (it is possible that the 

starting values are the optimum pair); 

(5) Store /QM;2;2"
>P/B?OQR"S

, {(klH);};2"
>P/B?OQR"S

, and optimum pairs /(BMA , áMA$ )	;2;2"
>P/B?OQR"S

, 

and extract the optimum pair 0QMA , BMA , áMA$ 	1 that has the minimum MSE among them. 
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The detailed implementation procedure is presented in Figure 4.6. 

 

 

Figure 4.6 Implementation of the proposed LWLS-SVMR 

 

4.3.3 Softening behavior results 

The circular RC column database presented in Chapter III (see Appendix B) covering flexure-, 

shear-, and flexure-shear-critical specimens was used to train and test the LWLS-SVMR. The 

proposed LWLS-SVMR was validated by comparison with LS-SVMR, a popular local learning 
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approach (locally weighted quadratic regression (LWQR)), and a suitable, traditional empirical 

equation (Elwood and Moehle 2005).  

4.3.3.1 Validation set approach 

To use the validation set approach as introduced in Section 3.4.1, the exclusive training and testing 

sets need to first be defined. 112 specimens (70% of the total dataset) are randomly selected from 

the circular RC column database presented in Chapter III (see Appendix B) to form the training 

set, and the remaining 48 specimens (30%) comprise the testing set.  The LS-SVMR, LWQR, and 

the proposed LWLS-SVMR models are created by fitting the training set based on the LOO cross-

validation procedure to avoid overfitting. However, the LWQR and proposed LWLS-SVMR just 

need to fit subsets of the training set to answer query points in both training and testing sets, while 

the LS-SVMR needs to fit the full training set to predict the same query points in both the training 

and testing sets. The training and testing results of the LS-SVMR, LWQR, and proposed LWLS-

SVMR models are presented in Figure 4.7 (a, b, and c, respectively). The detailed statistical 

indicators (R
2
, RMSE, and MAPE) for LS-SVMR, LWQR, and the proposed LWLS-SVMR in 

both training and testing results are summarized in Table 4.7. By inspection, the training and 

testing results predicted by the proposed LWLS-SVMR show the best agreement with the 

experimentally observed results. In comparison to the testing results obtained by the LS-SVMR 

and LWQR, the proposed LWLS-SVMR increases the R
2
 by roughly 20% and 33%, respectively, 

decreases RMSE values by approximately 32% and 53%, respectively, and decreases and MAPE 

values by approximately 39% and 54%, respectively. From this initial direct comparison of these 

three ML models, the proposed LWLS-SVMR outperforms both the popular global and local 

models. 
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                                          (a)                                                                 (b) 

 
                                                                             (c) 

Figure 4.7 Training and testing results of LS-SVMR, LWQR, and proposed LWLS-SVMR. 

 

 

Table 4.7 Comparison of training and testing results for LS-SVMR, LWQR, and LWLS-SVMR. 

Models 
Training Result Testing Result 

R
2
 RMSE (%) MAPE (%) R

2
 RMSE (%) MAPE (%) 

LS-SVMR 0.96 0.54 9.59 0.73 1.49 26.60 

LWQR 0.88 0.93 13.26 0.66 1.66 27.20 

LWLS-SVMR 0.98 0.39 4.19 0.88 1.01 12.42 

 
 

4.3.3.2 10-fold cross-validation approach 

A 10-fold cross-validation process presented in Section 3.4.2 is also employed to alleviate the 

inherent randomness in selecting training and testing samples when using the validation set 

approach. In turn, the 10-fold cross-validation procedure will result in increasingly robust results. 

The fitting procedure for the three models is the same as that introduced in the previous section 

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

 Training result: R2 = 0.96
 Testing result: R2 = 0.73

Pr
ed

ic
te

d 
R

es
ul

t

Observed Result

LS-SVMR Training and Testing Results

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

 Training result: R2 = 0.88
 Testing result: R2 = 0.66

Pr
ed

ic
te

d 
R

es
ul

t

Observed Result

LWQR Training and Testing Results

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

 Training result: R2 = 0.98
 Testing result: R2 = 0.88

Pr
ed

ic
te

d 
R

es
ul

t

Observed Result

LWLS-SVMR Training and Testing Results



 

 

 

 

82 

 

for the validation set approach; however, as the division of training and testing sets is different, 

the model fitting procedure will be performed on each of the 10 different training sets individually. 

Then, each of these models is used to predict for the data in the corresponding testing set, such that 

all of the points in the dataset are tested. The performance of the LS-SVMR, LWQR, and proposed 

LWLS-SVMR models can be evaluated via averaging the results of the 10 data folds. Figure 4.8 

present the testing results of the 10-fold cross-validation procedure in terms of R
2
, RMSE, and 

MAPE for LS-SVMR, LWQR, and the proposed LWLS-SVMR model. The average R
2
, RMSE 

and MAPE metrics for the testing results associated with all the ML models are summarized in 

Figure 4.8. As shown in Figure 4.8, the average of the 10-fold cross-validation results for all three 

ML models are comparable to the testing results obtained previously via the validation set 

approach, maintaining proof that the proposed LWLS-SVMR can reliably perform better than LS-

SVMR and LWQR models. 
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                                           (a)                                                              (b) 

 
(c) 

Figure 4.8 Results of 10-fold cross-validation using LS-SVMR, LWQR, and proposed LWLS-

SVMR in terms of (a) R
2
, (b) RMSE, and (c) MAPE. 

 

4.3.3.3 Comparison with physics-based methods 

Finally, this section presents a comparison between LS-SVMR, LWQR, LWLS-SVMR and the 

widely-used empirical model (Elwood and Moehle 2005) for predicting the drift capacity of RC 

columns using a leave-one-out (LOO) cross-validation procedure presented in Section 3.4.3. This 

comparison demonstrates the real-world application and full potential for the novel LWLS-SVMR 

model within the civil engineering realm and with respect to drift capacity prediction practices in 

general. The predicted results using the LOO procedure are partitioned according to the column 

failure mode. In addition to the quantification metrics used above (i.e., R
2
, RMSE, and MAPE), 

the mean and coefficient of variation (CV) of predicted to observed results are also employed in 
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this comparison as these two qualification metrics are commonly used to measure the predictive 

performance of an empirical equation in civil engineering. 

A comparison between the predicted and observed results for the LS-SVMR, LWQR, 

LWLS-SVMR, and empirical model developed by Elwood and Moehle (2005) is presented in 

Figure 4.9. The detailed statistical metrics are summarized in Table 4.8. From Table 4.8, it is 

evident that the Elwood and Moehle (2005) model both over- and under-estimates the drift 

capacity of RC flexure-critical columns. This leads to the highest CV of predicted to observed 

results, negative R
2
 values, the highest RMSE and MAPE values, and the highest mean of predicted 

to observed results (Table 4.8). In comparison to the poor prediction capability of the empirical 

model, Table 4.8 illustrates that the three ML models all show significant improvement in 

accurately predicting the drift capacity of RC flexure-critical columns. The proposed LWLS-

SVMR performs best among these three ML models with the highest R
2
 and lowest RMSE, MAPE, 

mean, and CV of predicted to observed results (0.81, 1.16%, 14.61%, 1.04, and 0.24, respectively). 

The global LS-SVMR model performs better than the local LWQR model in terms of R
2
, RMSE, 

MAPE, and CV of predicted to observed results. The proposed LWLS-SVMR model exhibits an 

increase in the R
2
 value by approximately 33% when compared to the global LS-SVMR model 

and 62% when compared to LWQR. Comparably, RMSE and MAPE values are decreased by 

roughly 30% and 45% (as compared to the global LS-SVMR) and 38% and 48% (as compared to 

the local LWQR), respectively. 

The empirical equation performs even worse for flexure-shear-critical columns and 

overestimates the drift capacity for nearly every flexure-shear-critical specimen. In contrast, the 

performance is improved for all three AI models. Still, the proposed LWLS-SVMR performs best 

among all models and the global LS-SVMR exhibits better performance than the local LWQR 
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approach. In tune with the results for flexure-critical columns, the proposed LWLS-SVMR 

experiences an increase in the R
2
 value by roughly 10% in comparison to the global LS-SVMR 

and 23% for the local LWQR, and demonstrates a decrease in RMSE and MAPE values by roughly 

19% and 34% for the global LS-SVMR and 30% and 35% for the local LWQR, respectively. 

Finally, for RC shear-critical columns, all of the models perform worse when compared 

accordingly for both RC flexure- and flexure-shear-critical columns. Consistent with the 

previously presented results, the empirical equation performs the worst, overestimating the drift 

capacity for all the shear-critical columns in the dataset. This may be attributed to the fact that the 

good predictors for shear-critical columns may not be the same as those for the other two types of 

RC columns. Moreover, the shear-critical columns may negatively influence the global LS-SVMR 

model in the training process. The local quadratic function may not be able to reasonably represent 

the complex nonlinearity of shear-critical columns. This leads to the failure to capture the complex 

nonlinear relationship between predictors and response. The global LS-SVMR model performs 

better than the local LWQR model, but both of these two AI models perform poorly in predicting 

the drift capacity of RC shear-critical columns. The proposed LWLS-SVMR still performs best 

among all approaches as it can avoid the negative interference from the other two types columns 

in the training process and can reasonably represent the complex nonlinear relationship for shear-

critical columns. This is exhibited via an increase in the R
2
 values by roughly 89% in comparison 

to the global LS-SVMR model and 313% in comparison to the local LWQR model. Also, an 

ultimate decrease in the RMSE and MAPE values by roughly 28% and 37%, respectively for the 

global LS-SVMR and 36% and 46%, respectively for the local LWQR is achieved. 
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                                                    (a)                                                               (b) 

  
                                                   (c)                                                                (d) 

Figure 4.9 Results comparison between LS-SVMR, LWQR, LWLS-SVMR, and empirical 

model using LOO cross-validation procedure. 

 

The generalization performance of the proposed AI model is measured by combining the 

predictions for all three types of RC columns. Notably, the proposed LWLS-SVMR model 

performs the best among the three AI models and the empirical equation. This is because it 

produces the highest R
2
 value and lowest RMSE and MAPE values (0.88, 0.96%, and 14.58%, 

respectively). Further, it yields a value for the mean of predicted to observed results which is closer 

to 1 than all other models and has the smallest CV (1.04 and 0.23) (Table 4.8). In addition, the 

global LS-SVMR model performs better than the local LWQR model, but the performance of all 

the AI models developed in this work is noticeably better than the empirical equation in terms of 

all represented qualification metrics. 
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Table 4.8 Results comparison between all models using the LOO cross-validation procedure. 

Models Failure modes RMSE (%) MAPE (%) R2 Mean CV 

LS-SVMR 

Flexure 1.66 26.78 0.61 1.07 0.36 
Shear 0.58 25.52 0.35 1.09 0.29 

Flexure-shear 0.77 19.53 0.77 1.06 0.23 
Combined 1.37 25.17 0.75 1.07 0.33 

LWQR 

Flexure 1.87 28.23 0.50 1.06 0.37 
Shear 0.66 30.01 0.16 1.11 0.33 

Flexure-shear 0.88 19.78 0.69 1.06 0.24 
Combined 1.54 27.00 0.69 1.07 0.34 

LWLS-SVMR 

Flexure 1.16 14.61 0.81 1.04 0.24 
Shear 0.42 16.12 0.66 1.07 0.24 

Flexure-shear 0.62 12.81 0.85 1.04 0.21 
Combined 0.96 14.58 0.88 1.04 0.23 

Elwood and Moehle (2005) 

Flexure 3.85 65.62 -1.10 1.49 0.66 
Shear 2.92 164.78 -15.48 2.65 0.32 

Flexure-shear 4.02 87.19 -5.43 1.87 0.52 
Combined 3.72 89.50 -0.82 1.79 0.59 
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4.4 Seismic Response History Prediction 

In this section, a novel hybrid ML-physics based data-driven framework – where an ML method 

is used to directly link the experimental data to nonlinear properties of a target component, and a 

physical model that meets universal laws is used to perform the seismic analysis – is proposed to 

predict the seismic response history of RC structural components in an efficient, generalized, and 

accurate way. For the physics-based model, the distributed plasticity approach is widely used to 

predict the seismic response of RC structural components and can accurately reflect the physical 

behavior of RC ductile components. However, it is computationally expensive and cannot 

reasonably capture the physical behavior of RC non-ductile components. This section introduces 

a novel data-driven framework that constructs a hybrid-ML-physics based computational 

procedure for generalized seismic response history prediction of both RC components in a more 

accurate and efficient way. The proposed framework is applied for RC flexure-critical, shear-

critical, and flexure-shear-critical columns under cyclic loads as well as of a full-scale RC bridge 

column subjected to six consecutive ground motions. The generalized prediction capability and 

computational efficiency of the proposed framework is validated by comparison with physics-

based modeling approaches based on the experimental data.  

4.4.1 Component-level data-driven framework 

This section presents the novel data-driven framework to predict the hysteretic behavior and time-

history response quantities of target structural components subjected to both quasi-static cyclic 

loading and ground motions in a more generalized, accurate, and efficient way. Based on the results 

of response quantities, the engineering demand parameters (EDPs) of interest can be extracted. 

The approach herein utilizes the proposed, novel hybrid ML-physics-based methodology, where 

ML is used to directly link the experimental data with the nonlinear properties of target structural 
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components and the physical model is used to perform the seismic analysis, making full use of the 

advantages of both techniques.  

The framework consists of six components, as shown in Figure 4.10.  

1. The first step is to collect the physical experimental data of the target structural 

component subjected to quasi-static cyclic loading. The experimental data should 

include the structural features and the corresponding observed force-displacement data. 

The structural features are those associated with design details that can define the target 

structural component, such as the structural geometry and material properties. The good 

predictors x, where ) ∈ 7*, can then be identified from the structural features (specific 

details regarding the selection procedure will be introduced later). The force-

displacement data denoted as (], ó) , where ] ∈ 7/!  is the displacement vector 

containing P*  applied displacements and ó ∈ 7/!  is the vector of force values 

measured experimentally at the corresponding displacements ] , is observed or 

measured via the quasi-static cyclic loading test to construct the hysteretic behavior 

(i.e., force-displacement hysteretic relationship) of the target structural component.  

2. The second step is to choose an appropriate physical model (i.e., hysteretic model) that 

can represent the hysteretic behavior of the target structural component subjected to 

cyclic load reversals (hardening and softening behavior, stiffness and strength 

deterioration, and pinching behavior). Here, it is important to identify the critical 

parameters denoted as ò, where ò ∈ 7/# is the parameter vector containing PT critical 

parameters, which define the selected hysteretic model. The function of each critical 

parameter should be clearly identified (e.g., which critical parameters control the shape 

of the backbone curve and the hysteretic loop). Then, the estimated forces óô from the 
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selected hysteretic model can be expressed as a function of critical parameters ò and 

applied displacements ], which is denoted as óô = Q(];ò) where Q(∙) represents the 

selected hysteretic model.  

3. The third step is to calibrate the selected hysteretic model with collected force-

displacement data (], ó)  by tuning the critical parameters ò  using a selected 

optimization algorithm. The parameter tuning procedure stops once the calibrated 

hysteretic model can perfectly reproduce the hysteretic behavior exhibited by the 

experimental data (], ó). The optimal critical parameters ò, which are denoted as the 

response variables ', will then be recorded.  

 

 

Figure 4.10 Data-driven framework for predicting seismic response of structural components 

under quasi-static cyclic loading and shake table tests. 
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Steps 1 through 3 will be performed n times if there are n target structural component specimens 

collected, such that a training set {(); , ';)};2"/
, where ); ∈ 7* and  '; ∈ 7/#, can be formed. In 

the training set, ); represents the predictors and '; represents the optimal critical parameters ò 

that signify the response variables governing the hysteretic behavior of the target RC structural 

component.  

4. the fourth step involves utilizing the training set to construct an ML model based on a 

k-fold cross-validation procedure. The well-trained ML model is denoted as 'c =

k();ö), where ö ∈ 7/$ is the optimal ML model parameter vector containing PU 

parameters, and k(∙) represents the selected ML technique.  

5. Steps 5 and 6 are to use the well-trained ML model to predict the hysteretic behavior 

and time-history response quantities of a new target structural component that is not 

covered in the training set under cyclic loading and ground motions, respectively. 

Specifically, in Step 5, the new target structural component is featured by predictors 

)/PV  (note that the predictors are known information). The component’s hysteretic 

behavior can be predicted by first inputting )/PV into the well-trained ML model to 

obtain the corresponding responses 'c/PV = k()/PV; ö) . Then, the predicted 

responses 'c/PV can be input into the selected hysteretic model to obtain the estimated 

force óô/PV = Q(]/PV; 'c/PV)  at the applied displacements ]/PV  under the 

displacement-controlled quasi-static cyclic loading (note that the applied displacements 

]/PV  in the displacement-controlled quasi-static cyclic loading test are known 

information). Finally, the hysteretic behavior of the new target structural component is 

predicted by the force-displacement relationship exhibited by the obtained data 

0]/PV , óô/PV1.  
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6. In Step 6, the time-history response quantities of the new target structural component 

subjected to a ground motion ÄB(z) can be predicted by establishing and solving the 

equation of motion, as shown in Figure 4.10. The most important part in Step 6 is to 

incorporate the predicted hysteretic behavior (e.g., tangent stiffness or resisting force) 

from Step 5 into the equation of motion. After all the time histories are completed, the 

EDPs of interest (e.g., maximum inter-story drift) can be extracted from the time-

history analysis results. The proposed approach is a hybrid ML -physics-based 

approach, which makes full use of the advantages of ML techniques in mapping the 

highly nonlinear relations exhibited by the physical experimental data and the 

advantages of physical models satisfying mechanics and physical laws.  

4.4.2 An illustrative example: RC columns 

This section presents the detailed procedure for the establishment of the proposed data-driven 

framework specifically for RC columns. The proposed framework can be implemented for any 

structural component as long as the experimental dataset is available. The circular RC column 

dataset presented in Chapter III (see Appendix B) is used to validate the novel data-driven 

framework in generalized seismic response history prediction of these columns under both quasi-

static cyclic loading and shake table tests. The hysteretic model developed in Chapter III is 

utilized. Since the column dataset has been presented in Chapter III, there is no need to specify 

an optimization algorithm at this time.   

4.4.3 Data-driven seismic response solvers 
 
At this point, the proposed framework is employed to predict the seismic response of RC columns 

subjected to both displacement-controlled quasi-static cyclic loading and dynamic ground 

motions. Two data-driven seismic response solvers, one for displacement-controlled quasi-static 
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cyclic loading and another for dynamic ground motions, are developed to implement the proposed 

data-driven computing framework. For a structural component (e.g., column) subjected to lateral 

earthquake loads, it can be equivalent to a single degree of freedom (SDOF) model. Algorithm 

4.1 presented below is used to implement the proposed approach for an SDOF model subjected to 

displacement-controlled quasi-static cyclic loading.  

 

Algorithm 4.1: Implementation of proposed SDOF model under quasi-static cyclic loading 
1. Development of hysteretic modeler: 

    Given an RC column training set {(#! , %!)}!"#$ , AI model ((∙), hysteretic model *(∙), and a new RC column; 

    (a) translate the new column into predictors, denoted as a query point #$%&; 

    (b) train an AI model ((#;,) based on the RC column training set {(#! , %!)}!"#$ ; 

    (c) predict the response variables for the new column, denoted as  %-$%& = ((#'();,); 
    (d) form a hysteretic modeler for the new column, denoted as [**, 0] = *(2; %-$%&); 
2. Predict hysteretic response using the developed hysteretic modeler: 

    Given the displacement history 3 = (2#, … , 2+),, hysteretic modeler [**, 0] = *(2; %-$%&); 
    for d = 1 to D do 
         (a) calculate the lateral force at the lateral displacement 2-, denoted as **(2-) = *(2-; %-$%&); 
    end for 
 
 

Given any RC column (flexure-, shear-, or flexure-shear-critical), Algorithm 4.1 can be used to 

predict the seismic response history in terms of the predicted hysteretic force-displacement curve 

úùAK , Q@(AK)ûü
K2"

W
. It should be noted that the hysteretic modeler can adaptively produce the force 

Q@(AK) and tangent stiffness †(AK) at the lateral displacement AK, which are critical components 

for the nonlinear time-history analysis. Algorithm 4.2 is developed to implement the proposed 

approach for the SDOF model subjected to dynamic ground motions. Algorithm 4.2 is a hybrid 

algorithm coupling the Newmark average acceleration method, modified Newton-Raphson 

iteration, and the hysteretic modeler developed in this work. After implementing Algorithm 4.2, 

the time-history response quantity of interest can be obtained. This can be the time-displacement 

response {(z? , A?)}?2"4
 or force-displacement response /0A? , Q@(A?)12?2"

4
. 
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Algorithm 4.2: Implementation of proposed SDOF model under dynamic ground motions 
1. Initialization: 

    Given the ground motion 562̈.(8/)9:
/"#

,
, hysteretic modeler *(2; %-$%&), mass ; and damping constant < for the new column; 

    (a) calculate the initial tangent stiffness for the new column from the hysteretic modeler 00 = *(2; %-$%&); 
    (b) select an appropriate time interval ∆8 and calculate the earthquake force: >/ = −;2̈.(8/); 
    (c) calculate the Newmark coefficients: @ = 4;/∆8 + 2<; E = 2;; 

2. Solving the equation of motion for an SDOF system by the hybrid algorithm: 

    Given the initial condition of the new RC column, i.e., >0, 20, and 2̇0, **(20), and known information from step 1; 

    (a) calculate the 2̈0 = 6>0 − <2̇0 − **(20)9 /;; 

    for t = 1 to T do 
          (a) ∆>̂/1# = >/ − >/1# + @2̇/1# +E2̈/1#; 

          (b) 0H/1# = 0/1# + 2</∆8 + 4;/(∆8)2; 

          (c) calculate the ∆2/1#, 0/,  **(2/) using modified Newton-Raphson and hysteretic modeler	*(2; %-$%&) 
                Given **(2/1#),	2/1#, ∆>̂/1#, 0H/1#, 0/1#, maximum number of iteration N, and tolerance tol 
                (a) initial assignment: **(20/) = **(2/1#), 20/ = 2/1#, ∆J# = ∆>̂/1#, 0H = 0H/1#, 0 = 0/1#; 

                for K$ = 1 to N do 
                     (a) ∆23! = ∆J3!/0H; 

                     (b) 23!
/ = 23!1#

/ + ∆23!;  

                     (c) calculate the 03!
/  and **L23!

/ M using the hysteretic modeler: N**L23!
/ M	, 03!

/ O = *L23!
/ ; %-$%&M; 

                     (d) ∆*3! = **L23!
/ M − **L23!1#

/ M + L0H − 0M∆23!; 

                     (e) ∆J3!4# = ∆J3! − ∆*3!; 

                     (f) calculate the convergence criterion: ∆2 = ∑ ∆2!!
3!
!!"# , Q>R = S∆23!S/‖∆2‖; 

                     (g) ∆2/1# =	∆2, 0/ = 03!
/ , and **(2/) = **L23!

/ M; 
                      if Q>R ≤ 8VW do 

                         (a) break the loop; 

                      end if 
                end for K$ 
           (d) ∆2̇/1# = 2∆2/1#/∆8 − 22̇/1#; 

           (e) ∆2̈/1# = 4∆2/1#/(∆8)2 − 42̇/1#/∆8 − 22̈/1#; 

           (f) 2/ = 2/1# + ∆2/1#, 2̇/ = 2̇/1# + ∆2̇/1#, and 2̈/ = 2̈/1# + ∆2̈/1#; 

    end for t 
 

 

4.4.4 Numerical results 
 

This section presents the numerical experiments carried out to validate the proposed data-driven 

framework in generalized seismic response history prediction of RC columns under displacement-

controlled quasi-static cyclic loading and dynamic shake table tests. For the displacement-

controlled quasi-static cyclic loading test, six RC columns are randomly selected from the circular 

RC column dataset presented in Chapter III (see Appendix B) to serve as the test specimens. The 

remaining 154 columns serve as the training set. For the dynamic shake table test, a full-scale 

circular RC bridge column subjected to six earthquake (EQ) ground motions is selected as the test 
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specimen. In each case, the proposed approach is compared with widely-used traditional modeling 

techniques based on experimental data. All the numerical experiments are performed using a 

Desktop PC with the Processor: Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80 GHz.  

4.4.4.1 Displacement-controlled quasi-static cyclic loading test 
 

To validate the capabilities of the novel framework, widely-used distributed plasticity approaches 

were employed to predict the hysteretic response of the flexure-, shear-, and flexure-shear-critical 

RC columns. The classic fiber beam-column element (Spacone et al. 1996a; 1996b) is utilized to 

model the nonlinear cyclic response of flexure-critical RC columns. However, the classic fiber 

beam-column element fails to reasonably capture the nonlinear hysteretic behavior of shear- and 

flexure-shear-critical RC columns, as illustrated in Deierlein et al. (2010) and Marini and Spacone 

(2006). There are many existing methods proposed to address this shortcoming (Elwood 2004; 

LeBorgne and Ghannoum 2013; Marini and Spacone 2006; Sasani 2007), and the modeling 

strategy proposed by Marini and Spacone (2006) is adopted to predict their hysteretic force-

displacement responses. For the proposed framework, the locally-weighted least-squares support 

vector machine for regression (LWLS-SVMR) presented in Section 4.3 is selected as the ML 

technique to train the model on the training set consisting of 154 circular column specimens 

introduced in Section 3.2. The predictors used in this section include the gross column cross-

sectional area nB, concrete compressive strength QX′, longitudinal reinforcement yield stress Q6>, 

longitudinal reinforcement area n@> , column effective depth d, concrete cover c, transverse 

reinforcement yield stress Q6?, transverse reinforcement area n@?, stirrup spacing s, shear span a, 

and applied axial load P. The response variables are the optimal backbone curve and hysteretic 

parameters introduced in Chapter III. It should be noted that other ML techniques can be 
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employed. However, regardless of the ML technique employed, the objective is to accurately 

predict these response variables.  

Six column specimens (N5 from Cheok and Stone 1986, NH3 from Vu et al. 1999, No. 13 

and No. 19 from Ghee et al. 1989, S1 from McDaniel 1997, and UCI5 from Hamilton et al. 2002) 

are randomly selected from the circular RC column dataset presented in Chapter III (see 

Appendix B) to serve as the test column specimens. For the widely-used traditional modeling 

techniques, a single force-based fiber beam-column element with five Gauss-Lobatto integration 

points (i.e., monitoring sections) is employed to model specimens N5 and NH3 (flexure-critical 

columns). In each monitoring section, the cover concrete fiber is simulated using the modified 

Kent and Park model (Scott et al. 1982), and the core concrete fiber is simulated by the confined 

concrete model proposed by Mander et al. (1988) to represent the confinement effect of the 

stirrups. The reinforcement fiber is modeled by the Menegotto-Pinto model (Menegotto and Pinto 

1973). For the remaining specimens, where specimens No.19 and S1 are shear-critical columns 

and specimens No.13 and UCI5 are flexure-shear-critical columns, the modeling strategy proposed 

by Marini and Spacone (2006) is used. This strategy requires an extra nonlinear shear constitutive 

law at the section level. The element, concrete, and reinforcement fibers for the four shear- and 

flexure-shear-critical specimens are defined in the same way as the flexure-critical specimens. The 

‘hysteretic’ material in OpenSees (Mazzoni et al. 2006) is used to model the nonlinear shear 

behavior, and the backbone curves are defined according to the method suggested by Sezen (2008). 

Since there is still no effective method to define the parameters regarding the pinching behavior 

and strength and stiffness deterioration for the ‘hysteretic’ material, they are calibrated with the 

corresponding experimental data. All numerical models for these six randomly selected columns 

are implemented in OpenSees.  
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For the proposed data-driven framework, Algorithm 4.1 is used. Specifically, the selected 

six columns are first featured by predictors (i.e., six columns are expressed as six query points 

where the response variables need to be predicted). Then, for each query point, the LWLS-SVMR 

is used to predict the response variables based on the aforementioned 154 training data. The 

detailed information for how the LWLS-SVMR works can be found in Section 4.3. Matlab 2018a 

is used to implement the proposed approach.  

Figures 4.11, 4.12, and 4.13 present a comparison of the results between the proposed AI-

enhanced framework and traditional modeling techniques; ground truth is defined as the 

experimental test results. Figure 4.11 demonstrates that the proposed approach effectively captures 

the unloading stiffness and cyclic strength deteriorations observed experimentally for the two 

flexure-critical columns. However, the traditional method cannot accurately reflect these 

behavioral characteristics, which is evident based on an apparent discrepancy with the 

experimental data in unloading stiffness for specimen NH3 and the inaccurate predictions of the 

cyclic strength deteriorations for flexure-critical specimen N5. Figure 4.12 illustrates that the 

proposed approach can reflect the hysteretic behavior of the two shear-critical columns, with 

accurate prediction of the lateral strength, cyclic strength deterioration, and pinching behavior 

when compared with those observed experimentally. The traditional model also reflects the 

pinching behavior and cyclic strength deterioration, but it fails to accurately describe the 

significant strength deterioration for column No. 19 and under-estimates the lateral strength of 

column S1. Figure 4.13 shows that the traditional method overestimates the initial stiffness for the 

two flexure-shear-critical columns, while the proposed approach accurately predicts their initial 

stiffnesses. For all six of the selected column specimens, the hysteretic curves predicted by the 
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proposed approach show closer agreement with the experimental data in comparison with those 

predicted by the widely-used traditional modeling techniques. 

 

 

 

Figure 4.11 Comparison of results between proposed AI-based framework, experimental data, 

and widely-used traditional model for two flexure-critical columns. 
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Figure 4.12 Comparison of results between proposed AI-based framework, experimental data, 

and widely-used traditional model for two shear-critical columns. 
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Figure 4.13 Comparison of results between proposed AI-based framework, experimental data, 

and widely-used traditional model for two flexure-shear-critical columns. 

 

Additionally, the cyclic backbone curve parameters (i.e., ;6, A6, ;5, A5, ;9, A9), the accumulated 

hysteretic energy dissipation, and the computational time for all six selected columns are utilized 

to further compare these two approaches. The statistical indicators (mean absolute error (MAE), 

root mean squared error (RMSE), and coefficient of determination (R
2
)), are used to quantify the 

performance. Note that a negative R
2 
value corresponds to a very poor performance. The calculated 

metrics are provided in Table 4.9.  

The calculated results show that the proposed data-driven framework presented in this 

work significantly outperforms the traditional approaches on all accounts. Specifically, the 

proposed approach enhances the R
2
 values by approximately 47% (;6), 9% (;5), and 18% (;9), 

reduces the RMSE by roughly 87% (;6), 68% (;5), and 56% (;9), and reduces the MAE by 



 

 

 

 

101 

 

approximately 91% (;6), 61% (;5), and 61% (;9). Furthermore, for the predictions of drift ratio at 

yield and maximum shear force, the performance of traditional approaches is significantly worse 

than that of the proposed method. Notably, the proposed method, when compared to traditional 

approaches, reduces the RMSE by approximately 85% (A6) and 87% (A5), reduces the MAE by 

approximately 89% (A6) and 85% (A5), and enhances the R
2
 from negative values to 0.9463 (A6) 

and 0.9441 (A5). Moreover, for the prediction of the accumulated hysteretic energy dissipation, 

the proposed method enhances the R
2
 value by approximately 37% and reduces the RMSE and the 

MAE by roughly 78% and 77%, respectively. Perhaps most importantly, the computational time 

for predicting the hysteretic curves of all six selected columns using the proposed method only 

requires 4 seconds in total, while using the traditional approaches takes 1,016 seconds. The 

proposed approach significantly reduces the computational cost. Based on these comparisons, the 

proposed approach performs significantly better than traditional methods; therefore, it is deemed 

that the proposed approach is the most appropriate means for generalized seismic response 

prediction of RC columns subjected to reversed cyclic loading, especially in near-real-time 

scenarios. 

 

Table 4.9 Performance metrics for the proposed approach and widely-used traditional methods 

in predicting seismic response of the six selected column specimens. 

Quantification Indicators AI Model Traditional Model 
R2 RMSE MAE R2 RMSE MAE 

"% (kN) 0.9953 9.34 5.99 0.6784 77.40 63.68 
#% (%) 0.9463 0.06 0.04 -1.5945 0.40 0.35 
"& (kN) 0.9905 16.13 12.84 0.9073 50.51 33.00 
#& (%) 0.9441 0.25 0.21 -2.1386 1.90 1.36 
"' (kN) 0.9649 29.38 20.74 0.8188 66.71 52.94 
#' (%) 0.8712 0.66 0.40 0.5418 1.25 0.73 

Dissipated Energy (kJ) 0.9872 9.49 7.13 0.7231 44.12 30.62 
Computational Time (s) 4 1016 
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Figure 4.14 Six earthquake (EQ) levels that serve as sequential input for the full-scale RC bridge 

column. 

 

4.4.4.2 Dynamic shake table tests 

To validate the performance of the proposed data-driven framework in predicting the seismic 

response of the RC column subjected to ground motions, a full-scale RC bridge column specimen 

subjected to six consecutive ground motions is used as an example. These shake table tests were 

organized by the Pacific Earthquake Engineering Research (PEER) Center, and the detailed 

information regarding the physical experimental set up, structural features, ground motions, and 

results can be found in Terzic et al. (2015) and Schoettler et al. (2012). The six earthquake (EQ) 

levels (or ground motions) are presented in Figure 4.14. For traditional modeling approaches, since 

this RC bridge column is designed as a flexure-critical column (Terzic et al. 2015), the fiber beam-

column element is also used to model the seismic response history. The element type, integration 

method, number of integration points, and material constitutive models described in Section 

4.4.4.1 for the two flexure-critical columns are also used here to establish the numerical model of 

the full-scale RC bridge column. For the proposed approach, Algorithm 4.2 is used. Specifically, 

the bridge column is first featured as a query point by the predictors introduced in Section 4.4.4.1. 
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Then, the hysteretic modeler for this RC bridge column is formed using the LWLS-SVMR based 

on the 154 training data specimens introduced previously. Finally, the established hysteretic 

modeler is incorporated into Algorithm 4.2 for dynamic response prediction. For both approaches, 

the damping ratio is set to 0.03. The time step (or time interval) is set to 0.0042s. Since the bridge 

column is not repaired after each ground motion (Terzic et al. 2015), the six ground motions are 

grouped sequentially and applied as a single ground motion that serves as the input to the two 

numerical models, which have been implemented in OpenSees and Matlab 2018a. Time-history 

results are presented in Figures 4.15 and 4.16. 

Figure 4.15 presents the comparison of the predicted time-displacement results between 

the traditional approach and the proposed method, with the experimental data serving as the ground 

truth. The proposed method achieves better agreement with the experimental data for EQ1, EQ3, 

EQ5, and EQ6 over the full-time histories when compared with the traditional approach. Although 

both the proposed and the traditional approaches have apparent discrepancies with the 

experimental data for EQ2 and EQ4 over the full-time histories, the proposed method captures the 

maximum drift ratio (i.e., peak drift ratio) more accurately than the traditional modeling approach. 

The maximum drift ratio is an important engineering demand parameter (EDP) which is typically 

used to quantify the seismic performance of an RC structure (Bracci et al. 1997; Deierlein et al. 

2010; Moehle 2014). Therefore, in this sense, the proposed AI-enhanced framework still performs 

better than the traditional model for EQ2 and EQ4, and thus, for all ground motions.   
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Figure 4.15 Comparison of time (s) vs. displacement (%) between the traditional approach and 

the proposed AI model, with the experimental data serving as the ground truth.  
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Figure 4.15 Continued.  

 

 

Figure 4.16 Hysteretic curves for the proposed AI-based framework, the traditional modeling 

approach, and the experimental data for all six ground motions. 

 

Figure 4.16 shows the comparison of the results regarding the predicted hysteretic curves under 

all six ground motions. It is observed that the proposed data-driven framework accurately reflects 

the capacity in terms of the hysteretic energy dissipation (i.e., the area encompassed by the 
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hysteretic loops), while the traditional modeling approach underestimates the capacity of the 

column in this manner. Moreover, the maximum drift ratio, residual drift ratio, maximum shear, 

and hysteretic energy dissipation are considered as the engineering demand parameters (EDPs) of 

interest in this work to better compare the prediction performance of the RC bridge column 

subjected to six ground motions. Figure 4.17 presents the predicted EDPs for each ground motion 

from the proposed and traditional approaches. It is clearly evident from this figure that in most 

cases the proposed data-driven framework achieves a closer agreement with the experimental data 

than the traditional modeling approach when predicting these EDPs.  

 

 

 

Figure 4.17 Predicted maximum drift ratio, residual drift ratio, maximum shear, and 

accumulated hysteretic energy dissipation for each of the six earthquake (EQ) levels.  
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Additionally, the prediction performance for these EDPs in Figure 4.17 are quantified by the MAE, 

RMSE, and R
2
 metrics. The computational time for the RC bridge column analysis under all six 

ground motions is also utilized to compare the computational cost of the existing and proposed 

approaches. The calculated metrics are provided in Table 4.10. The calculated results show that 

the traditional approach is significantly outperformed by the proposed method for all metrics and 

all response quantities. The proposed approach enhances the R
2
 value by approximately 21% for 

maximum drift ratio and 58% for hysteretic energy dissipation and increases the R
2 

value from a 

negative value (-0.5633) to 0.6198 for residual drift ratio and from -0.3449 to 0.7964 for maximum 

shear force. Further, the proposed approach reduces the RMSE and MAE by roughly 47% and 

41%, respectively for maximum drift ratio, 51% and 56%, respectively for residual drift ratio, 61% 

and 53%, respectively for maximum shear force, and 82% and 78%, respectively for hysteretic 

energy dissipation. More importantly, the computational time for predicting the seismic response 

history of the full-scale RC bridge column under all six ground motions using the proposed 

approach only requires 137 seconds, while that using the traditional approach is 10,991 seconds. 

The proposed approach significantly enhances the computational efficiency and shows great 

potential for regional seismic risk quantification, which requires hundreds of thousands of non-

linear time-history analyses. Thus, the proposed approach performs significantly better than the 

traditional method for all seismic response quantities and agrees better with the experimental data. 
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Table 4.10 Performance metrics for the proposed AI-enhanced framework and the widely-used 

traditional modeling technique in predicting the seismic response of a full-scale RC bridge 

column subjected to six ground motions. 

Quantification Indicators 
AI Model Traditional Model 

R2 RMSE MAE R2 RMSE MAE 
Maximum Drift Ratio (%) 0.9391 0.64 0.49 0.7793 1.21 0.83 
Residual Drift Ratio (%) 0.6198 0.30 0.22 -0.5633 0.61 0.50 

Maximum Shear (kN) 0.7964 78.04 73.49 -0.3449 200.61 155.11 
Dissipated Energy (kJ) 0.9872 43.64 36.46 0.6241 236.40 166.64 
Computational Time (s) 137 10991 

 

 

4.4.4.3 Discussion of results 

From the comparison of the results of both displacement-controlled quasi-static cyclic loading and 

shake table tests, it can be concluded that the proposed data-driven framework significantly 

outperforms the widely-used traditional modeling approaches in predicting the seismic response 

history of RC columns. The hysteretic curves predicted via the proposed approach will not 

perfectly match with the experimental data when the experimental hysteretic curves are smoother. 

This is because the polygonal hysteretic model is utilized to construct the hysteretic modeler where 

every branch of the force-displacement diagram follows a linear relationship. However, for the RC 

columns, the polygonal hysteretic model is sufficient to model the hysteretic behavior, and the 

predicted results presented in this section also demonstrate this fact. For other components (e.g., 

components constructed by steel material) having smoother experimental hysteretic curves, a 

smooth hysteretic model (e.g., Sivaselvan and Reinhorn 2000) can be used.  

Additionally, when predicting the hysteretic curves of the test shear- and flexure-shear-

critical columns using the widely-used traditional approach, accurate definition of the shear 

constitutive laws is required. However, there is still no unified method available to accurately 

define the shear behavior parameters (e.g., parameters regarding pinching and strength and 
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stiffness deterioration). Although these parameters can be calibrated with the experimental data, it 

is impractical when experimental data is not available. Nevertheless, the proposed approach does 

not suffer from this drawback and is applicable to flexure-, shear-, and flexure-shear-critical 

columns. More importantly, the proposed approach is extremely computationally efficient, 

exhibiting a significant reduction in computational time in comparison with the widely-used 

traditional approaches. These characteristics of the proposed approach demonstrate its’ great 

potential in quantifying regional seismic risk and for other near-real-time scenarios. 

Finally, although this work utilizes RC columns as an example to illustrate the proposed 

data-driven framework, it is a generalized approach and can be applied to any structural component 

of interest. Further, the establishment of the training dataset is an important factor, which is closely 

related to the collected physical experimental data, the selected hysteretic model, and the 

optimization algorithm.  
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4.5 Summary 

This chapter has presented the development and validation of a novel component-level data-driven 

framework for generalized, accurate and efficient seismic response prediction of structural 

components. First, a novel machine learning-based backbone curve model (ML-BCV) is proposed 

for hardening behavior prediction in terms of an RC column’s cyclic backbone curve without 

consideration of the softening branch. The proposed model consists of a modified LS-SVM to 

address the multi-output case (MLS-SVMR) and a GSA to more effectively facilitate the training 

process and more accurately predict the hardening behavior of RC columns subjected to reversed 

cyclic loading for flexure, shear, and flexure-shear failure modes. Using the MLS-SVMR, the 

nonlinear function that maps a multi-dependent variable output space from a multi-independent 

variable input space is ascertained. Then, a GSA optimization algorithm assisted training process 

is adopted to exhaustively and adaptively search for the most proper hyper-parameters for the 

MLS-SVMR. This proposed ML-BCV model can accurately predict the bi-linear backbone curve 

and thus, existing capacity and structural performance of RC columns solely based on the material 

and geometric properties, applied loads, and failure modes without human intervention, 

intelligence, or any assumptions. This makes the proposed ML-BCV a more robust approach than 

traditional modeling techniques. Additionally, a 10-fold-cross validation procedure is embedded 

in the objective GSA optimization function to establish a desirable prediction model that prevents 

overfitting and is robust with highly generalized performance. The predicted performance results 

prove that this strategy is capable of overcoming the problem of overfitting and reaches high 

accuracy in both training and testing results. The proposed ML-BCV was also compared with 

traditional modeling approaches, and it was found that the performance of the newly proposed 

ML-BCV model yields more accurate results than traditional modeling approaches.  
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Furthermore, a novel ML model, LWLS-SVMR, which integrates LS-SVMR with locally-

weighted training criterion is proposed for softening behavior prediction in terms of an RC 

column’s drift capacity. The proposed LWLS-SVMR can overcome the possible negative 

interference from irrelevant data points, and thus more accurately discover highly complex 

nonlinear relationships between influential factors and response values. An efficient strategy for 

hyper-parameter tuning of the proposed LWLS-SVMR was also developed using a hybrid global 

optimization algorithm, CSA, and an exhaustive searching algorithm, GSA, to facilitate the 

training process. CSA was used to determine appropriate starting values for the hyper-parameters, 

and GSA was then utilized to further exhaustively search for the optimum pairs within a small 

region encompassing the initial values. In order to demonstrate the superiority of the proposed 

LWLS-SVMR, results obtained from validation set, 10-fold cross-validation, and leave-one-out 

(LOO) cross-validation approaches were compared with those obtained by three popularly used 

models: a global ML model (LS-SVMR), an existing, local ML model (LWQR), and an empirical 

model (Elwood and Moehle 2005). The results proved that the proposed LWLS-SVMR 

outperformed all models in predicting the drift capacity across RC flexure-, shear-, and flexure-

shear-critical columns.  

Finally, a novel data-driven framework is proposed for predicting the seismic response 

history of structural components under displacement-controlled quasi-static cyclic loading and 

shake-table tests. The proposed data-driven framework is a hybrid approach, coupling an ML 

technique (e.g., the proposed LWLS-SVMR) and a physical model (i.e., hysteretic model). In this 

way, ML is used to directly link the experimental data with the nonlinear properties of target 

structural components, and the physical model is used to perform the seismic analysis, efficiently 

leveraging the advantages of both approaches. To validate the performance of the proposed 
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approach, RC columns are selected as an illustrative example. Two data-driven seismic response 

solvers are developed to implement the proposed method. The numerical results validate that the 

proposed approach significantly outperforms the widely-used distributed plasticity approaches in 

predicting the seismic response history of RC columns under both quasi-static cyclic loading and 

shake table tests. Moreover, the proposed method significantly enhances the computational 

efficiency for both cases in comparison with the widely-used traditional approaches, yielding great 

potential for regional seismic risk quantification and other near-real-time needs in a more accurate 

and efficient way. 

Thus, with all three models, we now arrive at full ML-based prediction of the seismic 

response of reinforced concrete columns. It should be noted that the proposed three models can 

also be applied to other structural components if the corresponding component dataset is available.  
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CHAPTER V 

SYSTEM-LEVEL DATA-DRIVEN COMPUTING FRAMEWORK 

 

5.1 Overview 

Existing physics-based modeling approaches do not have a good compromise between 

performance and computational efficiency in predicting the seismic response of reinforced 

concrete (RC) structural systems. The high-fidelity models have reasonable predictive 

performance but are computationally demanding, while more simplified models may be 

computationally efficient, but do not have as good of performance. This chapter presents a novel 

data-driven computational framework for the seismic response history prediction of RC structural 

systems to remedy this problem.  

The proposed system-level data-driven framework integrates the component-level data-

driven framework presented in Section 4.4 with a simplified shear building model. The 

component-level data-driven framework can directly link the experimental data to nonlinear 

properties of any structural component, while the shear building model (that meets the universal 

laws such as Newton’s law of motion) can perform a seismic analysis at the system level.  
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Two data-driven seismic response solvers are developed to implement the proposed 

approach. The proposed system-level computational framework is utilized for seismic response 

prediction of a large-scale 3-bay, 3-story RC frame under cyclic loads as well as of two small-

scale 3-bay, 9-story RC frames subjected to four and six consecutive ground motions respectively. 

Compared to the experimental data, the results demonstrate that the proposed system-level data-

driven framework outperforms the widely used distributed plasticity fiber model in both prediction 

capabilities and computational efficiency. Therefore, the framework is deemed a promising tool 

to achieve a good compromise between computational cost and performance. The detailed 

information is presented below.
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5.2. Methodology 
 

This section presents the novel system-level data-driven framework to predict the hysteretic 

behavior and time-history response quantities of target RC structures (e.g., RC frames) subjected 

to both quasi-static cyclic loading and ground motions in a generalized, accurate, and efficient 

way. The framework includes three steps. First, component-level hysteretic modelers are formed 

for all the main load-bearing elements in the target structural system based on the hybrid model 

presented in Chapter IV. The second step is to formulate a multi-degree of freedom (MDOF) 

numerical model for the target structural system by incorporating the hysteretic modelers 

developed in Step 1 into the well-established structural model. Finally, two data-driven seismic 

response solvers are developed to solve the MDOF model subjected to earthquake loads (i.e., 

displacement-controlled quasi-static cyclic loading or ground motions). In such a way, the 

hysteretic behavior or time-history response quantities of the target structure subjected to 

earthquake loads can be obtained. Each of these three steps will be introduced in detail in the 

following sub-sections. 

5.2.1 Component-level hysteretic modelers 
 

The component-level hysteretic modeler is denoted as [Q@, †] = Q(A; '), where ' ∈ 7/#  is the 

optimal critical parameter vector containing PT critical parameters that define a hysteretic model, 

and Q(∙) represents the hysteretic model. This modeler is employed to produce the force Q@ and 

tangent stiffness † for the component in a structure at a deformation A at each load step or time 

instant. The component could be a beam, column, wall, etc. The modeler is a hybrid-ML-physics-

based model, as shown in Figure 5.1. For different types of components, the modeler also varies. 

Specifically, given the collected physical experimental data (i.e., structural features and force-

deformation data) of n components (e.g., either beam, column, or wall in a frame-wall structure), 
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a training dataset {(); , ';)};2"/
 can be developed using the method presented in Chapter III. The 

training dataset consists of the necessary structural features (e.g., specimen geometry and material 

properties) denoted as ); ∈ 7* that serve as predictors and an optimal critical parameter vector 

'; ∈ 7/# that serves as the response variables.  

In the example presented in Figure 5.1, three types of training sets – one for beams, one for 

columns, and one for walls – can be developed. Given these three training sets, three well-trained 

ML models – one for beams, one for columns, and one for walls – can be formed by learning the 

nonlinear relations exhibited by the training sets using ML techniques. The well-trained ML model 

is denoted as 'c = k();ö), where ö ∈ 7/( is the optimal ML model parameter vector containing 

PY  parameters and k(∙) represents the ML technique. Note that the use of ML techniques is 

flexible. The ML techniques used for these three components could be the same or different from 

each other, as shown in Figure 5.1. Regardless of the types of ML techniques employed, it is 

necessary that the techniques have high generalization performance. Then, each component in the 

target structure needs to be featured by corresponding predictors, as shown in Figure 5.1. In such 

a way, each component is expressed as a query point denoted as )/PV ∈ 7*. Note that the 3 value 

may be different for each type of component, but it must be the same as those in the training sets 

(i.e., the type and number of predictors for beam, column, and wall may be different, but within 

the space of each component, the predictors must be the same). These predictors for all the 

components in the target structure are input to the corresponding well-trained ML models to obtain 

the optimal critical parameter vector 'c/PV = k()/PV; ö), as shown in Figure 5.1. The optimal 

critical parameter vector 'c/PV is then applied to the hysteretic model to form the component-level 

hysteretic modeler [Q@, †] = Q(A; 'c/PV). Note that the use of hysteretic models is also flexible. The 

hysteretic models used for these three components could be the same or different from each other. 
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Regardless of the type of hysteretic models used, the requirements are that the hysteretic models 

must be the same as those used for the training sets and must reflect various hysteretic behaviors 

experienced by these components experimentally (e.g., pinching behavior and stiffness and 

strength deterioration). The detailed information regarding how the component-level hysteretic 

modelers are developed can be found in Chapter III. 

 

 

 

Figure 5.1 Procedure for establishing component-level hysteretic modelers for structural 

components in a structural system. 

 

5.2.2 Formulation of an MDOF Model 
 

For a structure subjected to earthquake loads, the component-level hysteretic modelers developed 

in Section 5.2.1 for the components in the structure can generate the tangent stiffness and resisting 

force in their deflected DOFs given the displacement information. Then, these tangent stiffnesses 

and resisting forces can be assembled to form a structure stiffness matrix and resisting force vector 

for further calculation at the system level. In this dissertation, an MDOF model is formulated in 
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terms of the simplified shear building model to predict the seismic response of RC frames. It should 

be noted that a high-fidelity model for any structural system can be developed and then seamlessly 

integrated into this framework but will not be discussed here since the aim of this dissertation is to 

reduce the computational cost while maintaining good prediction performance. The following 

assumptions are made to formulate the system-level MDOF model: 1) axial deformations are 

ignored in all structural components; 2) masses for each story are idealized as lumped at the nodes 

of the discretized structure; and, 3) all beams are axially and flexurally rigid. A schematic sketch 

of the proposed MDOF model is presented in Figure 5.2. Assume a planar RC frame structure has 

n-stories, with each story having l-bays, as shown in Figure 5.2. Based on the aforementioned 

assumptions, the nodal mass at each story, denoted as f;0, where i = 1,… , P represents the story 

and É = 1,… , Ñ + 1  represents the column along the bay direction, has the same lateral 

translational DOF. Thus, the mass matrix for this structure is a diagonal matrix in the lateral DOF 

direction, which is written as follows: 

¢ =

⎣
⎢
⎢
⎢
⎢
⎡o f"0

>+"

02"
0 0

0 ⋱ 0

0 0 o f/0

>+"

02" ⎦
⎥
⎥
⎥
⎥
⎤

 (5.1) 
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Figure 5.2 Schematic sketch of the proposed MDOF model. 

 

The mass matrix will remain constant throughout the response history. As shown in Figure 5.2, 

the hysteretic property (e.g., tangent stiffness or shear force) for each column in each story is 

obtained by the hysteretic modeler presented in Section 5.2.1. The hysteretic property is denoted 

as ™Q@,;0 , †;0´ = Q0A;; 'c;01 where Q@,;0  and †;0  are the lateral shear force and tangent stiffness of 

column j located at story i and obtained by the modeler Q0A;; 'c;01 given the ith-story relative 

displacement (or story drift) A;, respectively. The calculation of A; is A; = ¨; − ¨;8", i ≥ 2, and 

when i = 1 , A" = ¨" , which means the relative story displacement A"  is equal to the lateral 

displacement ¨" at the first floor. The ¨; is the lateral displacement relative to the ground at floor 

i. Note that the hysteretic property for each column in each story could be the same or they could 

vary from one another, depending on the selected hysteretic model and obtained optimal critical 

parameter vector 'c;0. Due to the above assumptions, the structure stiffness matrix is a symmetric 

tri-diagonal matrix, which is written below: 
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 (5.2) 

 

The structure stiffness matrix ≠ will be updated when the column tangent stiffness  †;0 changes 

due to nonlinear behavior throughout the response history. For the damping component, Rayleigh 

damping is used, which is a combination of mass-proportional and stiffness-proportional damping. 

The Rayleigh damping matrix is given by: 

Æ = j7¢+ j"≠ (5.3) 

 

The coefficients j7 and j" can be determined from specified damping ratios Ø;) and Ø0) for the 

i5th and É5th modes, respectively. The detailed information regarding the calculation of  j7 and 

j" can be found in Chopra (2007). Given the mass, stiffness, and damping components, an MDOF 

model for an RC frame structure subjected to ground motions can be formulated.  

¢∞̈ + Æ∞̇ + ≤1(∞) = −¢Ä¨̈B(z)  (5.4) 

 

where ^ = (_&, _*, … , _.)1 is a displacement vector along the structures’ height, and each element 

represents the lateral floor displacement relative to the ground; `9(^) is a lateral resisting force 

vector along the structures’ height determined by the structure stiffness matrix a  and 

corresponding displacement vector ^, or directly assembled by the story shear force ∑ K4,$#
(;&
#%& , . =

1,… , /; 	= = (1,… ,1) ∈ 7. is a column vector; and, _̈<(\) is the ground motion.  

Note that Eq. (5.4) can be applied to both linear and nonlinear systems. This is because when 

solving Eq. (5.4), the structure stiffness matrix ≠ is not constant and will be updated to determine 

the resisting force vector ≤1(∞)  from the column tangent stiffness corresponding to the 
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deformation and state of each column. The solvers developed to obtain the hysteretic behavior and 

time-history response quantities will be introduced in the next sub-section. 

5.2.3 Data-driven seismic response solvers 
 

For the linear analysis, the initial structural stiffness matrix is used throughout the entire time 

history. Therefore, the ≤1(∞) term in Eq. (5.4) can be changed to ≠∞ where ≠ represents the 

initial structure stiffness matrix and will remain constant. For the nonlinear analysis, the structural 

stiffness matrix ≠ is not constant and will be updated to determine ≤1(∞) from the column tangent 

stiffness corresponding to the deformation and state of each column in each story. Specifically, 

given the relative story displacement A; and state (e.g., loading or unloading) of each column in 

each story, the column hysteretic modelers can adaptively produce the column shear force and 

tangent stiffness ™Q@,;0 , †;0´ = Q0A;; 'c;01 and record the current state. The recorded current state 

can trail if the deformation is in the loading branch, unloading branch, or at the reversal point 

where a transition happens between loading and unloading. Thus, this can inform the hysteretic 

modelers to determine the column shear force and tangent stiffness for the next load step or time 

instant. The produced shear force Q@,;0  and tangent stiffness 	†;0  for each column can be 

respectively assembled to a resisting force vector ≤1(∞)  and structure stiffness matrix ≠  for 

further calculation. Eq. (5.2) can be used to assemble a structure stiffness matrix ≠ from the 

column tangent stiffness †;0 . Since the force-displacement relation is nonlinear, the direct 

calculation of the resisting force vector by ≤1(∞) = ≠∞ is no longer valid. The static equilibrium 

constraint is used to directly assemble the resisting force vector ≤1(∞) from the column shear force 

Q@,;0(A;) , i = 1,… , P; É = 1,… , Ñ + 1 , produced by the hysteretic modelers. Figure 5.3 is an 

example to illustrate how the resisting force Q@,$(¨$) at the 2
nd

 floor is formed using the static 

equilibrium constraint.  
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Figure 5.3 Determination of the resisting force from story shear by static equilibrium. 

 

Specifically, given the shear force Q@,;0(A;) for each column at story i, the ith-story story shear force 

can be calculated as Q@,;(A;) = ∑ Q@,;0(A;)>+"
02" . The resisting force vector ≤1(∞) consists of the 

resisting force Q@,;(¨;)  at each floor, which is denoted as ≤1(∞) =

ùQ@,"(¨"), Q@,$(¨$) … , Q@,/(¨/)û
4

. The resisting force Q@,;(¨;)  at floor i is made up of two 

contributions: Q@,;(A;) from the story of floor i below, and Q@,;+"(A;+") from the story of floor i 

above, as shown in Figure 5.3. To maintain static equilibrium, the following equation can be 

established: 

Q@,;+"(A;+") + Q@,;(¨;) = Q@,;(A;), 1 ≤ i ≤ P − 1 

 

(5.5) 

where, when . = /, the resisting force K4,.(_.) equals K4,.(".).  

This is because there is no story above floor n. So, the resisting force vector ≤1(∞) can be re-

written as follows: 

≤1(∞) = ùQ@,"(A;) − Q@,$(A$), … , Q@,/8"(A/8") − Q@,/(A/), Q@,/(A/)û
4
  (5.6) 

 

Thus, Eq. (5.6) can be used to assemble a resisting force vector ≤1(∞) with each column shear 

force in each story, updated for each time instant. For the displacement-controlled quasi-static 

cyclic loading, the floor displacement information ∞ is known, and the quantity of interest is 
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regarding the hysteretic relationship between base shear and roof displacement or story shear and 

story drift (i.e., relative story displacement). The prediction of these quantities using the proposed 

data-driven MDOF model is straightforward. The following solver (Algorithm 5.1) is developed 

to implement the proposed approach to predict the hysteretic response of an RC frame subjected 

to quasi-static cyclic loading.  

 

Algorithm 5.1: Implementation of proposed MDOF model under quasi-static cyclic loading 
1. Development of hysteretic modelers: 

    Given an RC column training set {(#! , %!)}!"#$  and a target RC frame with n stories and l bays  

    (a) translate the columns in each story in the target RC frame into predictors, denoted as query points XL#'(),!3MY!"#
$×(84#)

; 

(b) train an AI model $(&;() based on the RC column training set {(#! , %!)}!"#$ ;  
(c) predict the response for each column in the target RC frame, denoted as  %-!3 = (L#'(),!3;,M; 

    (d) form a hysteretic modeler for each column, denoted as N**,!3 , 0!3O = *L2!; %-!3M, i = 1,…,n; j = 1,…,l+1; 

2. Predict hysteretic response using proposed AI-enhanced MDOF model: 
    Given the displacement history Z = ([#, … , [+),, hysteretic modeler N**,!3 , 0!3O = *L2!; %-!3M, i = 1,…,n; j = 1,…,l+1 

    for d = 1 to D do 
          for i = 1 to n do 
                (a) when i = 1, calculate the relative story displacement or story drift 2#- = \#- 

                (b) when ] ≠ 1, calculate the relative story displacement or story drift 2!- = \!- − \!1#-  
                for j = 1 to l+1 do 

                    (a) calculate the shear and tangent stiffness N**,!3L2!-M, 0!3L2!-MO = *L2!-; %-!3M for each column; 

                end for j 
                (a) calculate and record the story shear **,!L2!-M = ∑ **,!3L2!-M84#

3"# ; 

                (b) calculate and record the story stiffness 0!L2!-M = ∑ 0!3L2!-M84#
3"# ; 

          end for i 
         (a) assemble the structure stiffness matrix `- according to 560!L2!-M9:!"#

$
using Eq. (5.2); 

         (b) assemble the resisting force vector a:([-) according to 56**,!L2!-M9:!"#
$

 using  Eq. (5.6) 

         (c) output 56**,!L2!-M9:!"#
$

, a:([-), and `-. 

   end for d 
     

    

By implementing Algorithm 5.1, one can obtain the hysteretic response of both roof displacement 

({(¨/K)}K2"W
) versus base shear (úùQ@,"(A"?)ûü

K2"

W
) and story i drift (/0A;K12K2"

W
) versus story i shear 

(úùQ@,;0A;K1ûü
K2"

W
) for a target RC frame structure. Further, Algorithm 5.1 can also output the 

structure stiffness matrix {(≠K)}K2"W
and resisting force vector úù≤1(∞K)ûü

K2"

W
 given the entire 
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displacement history ≥ = (∞", … , ∞W)4, which are important components for the nonlinear time-

history analysis. Thus, Algorithm 5.1 will be used in Algorithm 5.2 below to calculate the 

structure stiffness matrix ≠ and resisting force vector ≤@(∞) given the displacement information 

∞, which is denoted as [≤@(∞)	, ≠] = nÑv¥{izℎf5.1(∞). The nonlinear dynamic analysis involves 

using a numerical method to solve the equations of motion presented in Eq. (5.4). In this section, 

a hybrid algorithm coupling the Newmark average acceleration (NAA) method, modified Newton-

Raphson (MNR) iteration, and Algorithm 5.1 is developed to solve Eq. (5.4). The detailed 

procedure is presented below.  

 

Algorithm 5.2: Implementation of proposed MDOF model under dynamic ground motions 
1. Initialization: 
    Given the ground motion =>?̈!(A")BC"#$

%
, hysteretic modeler N**,!3 , 0!3O = *L2!; %-!3M, i = 1,…,n; j = 1,…,l+1; 

    (a) calculate the nodal mass **+ in each story for the target RC frame; 

    (b) calculate the initial tangent stiffness for each column from the hysteretic modeler: N**,!3 , 0!3O = *L2!; %-!3M; 
    (c) calculate the mass, initial stiffness, and damping matrix M, `0, and C using Eqs.(5.1-5.3), respectively; 

    (d) select an appropriate time interval ∆8 and calculate the earthquake forces: b/ = −cd\̈.(A&); 
    (e) calculate the Newmark coefficients: e = 4c/∆8 + 2f; g = 2c; 

2. Solving Eq. (5.4) by the hybrid algorithm: 

    Given the initial condition of the target RC frame, i.e., b0, [0, and [̇0, a:([0), and known information from step 1; 

    (a) calculate the [̈0 = c1#Lb0 − f[̇0 − a:([0)M; 
    for t = 1 to T do 
          (a) ∆b-/1# = b/ − b/1# +e[̇/1# +g[̈/1#; 

          (b) h̀/1# = `/1# + 2f/∆8 + 4c/(∆8)2; 

          (c) calculate the ∆[/1#, `/,  a*([/) using modified Newton-Raphson and algorithm 1 

                Given a*([/1#), [/1#; ∆b-/1#, h̀/1#, `/1#, maximum number of iteration N, and tolerance tol 
                (a) initial assignment: a*([0/ ) = a*([/1#), [0/ = [/1#, ∆i# = ∆b-/1#, h̀ = h̀ /1#, ` = `/1#; 

                for K$ = 1 to N do 
                     (a) ∆[3! = h̀1#∆i3!; 

                     (b) [3!
/ = [3!1#

/ + ∆[3!;  

                     (c) calculate the 3̀!
/  and a*L[3!

/ M using the algorithm 1: Na*L[3!
/ M	, 3̀!

/ O = @WjVk]8ℎ;5.1L[3!
/ M; 

                     (d) ∆a3! = a*L[3!
/ M − a*L[3!1#

/ M + Lh̀ − `M∆[3!; 

                     (e) ∆i3!4# = ∆i3! − ∆a3!; 

                     (f) calculate the displacement convergence criterion: ∆[ = ∑ ∆[!!
3!
!!"# , Q>R = S∆[3!S/‖∆[‖ 

                     (h) ∆[/1# = ∆[, `/ = 3̀!
/ , and a*([/) = a*L[3!

/ M; 
                      if Q>R ≤ 8VW do 

                         (a) break the loop; 

                      end if 
                end for K$ 
           (d) ∆[̇/1# = 2∆[/1#/∆8 − 2[̇/1#; 

           (e) ∆[̈/1# = 4∆[/1#/(∆8)2 − 4[̇/1#/∆8 − 2[̈/1#; 

           (f) [/ = [/1# + ∆[/1#, [̇/ = [̇/1# + ∆[̇/1#, and [̈/ = [̈/1# + ∆[̈/1#; 

    end for t 
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By implementing Algorithm 5.2, the time-history response quantities of interest, such as time 

versus roof displacement and the distribution of peak story drift ratio along the floors can be 

obtained. It should be noted that the displacement convergence criterion in Algorithm 5.2 for the 

proposed MDOF model is satisfactory. This is because the numerical values in the displacement 

vector have the same units and do not suffer the problems associated with inconsistent units that 

bring in significant errors (Chopra 2007).
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5.3 Development of a Training Set 

For the purpose of this study, the rectangular RC column dataset presented in Chapter III (see 

Appendix A) is used to evaluate the performance of the novel system-level, data-driven framework 

in predicting the seismic response of RC frames under both displacement-controlled quasi-static 

cyclic loading and dynamic ground motions. Additionally, as shake table tests for large RC frames 

with several stories and bays (e.g., RC frame with more than 6 stories and 2 bays) are not available, 

shake table tests for smaller RC frames will be used. Since small RC frames have column features 

outside the range of the dataset, the dataset presented in Chapter III (see Appendix A) is 

supplemented with 20 small-scale RC column specimens to reduce potential sample bias. These 

column specimens are taken form Cecen (1979). Thus, the final number of column specimens in 

the dataset is 272. 

The nine optimal critical parameters employed to define a hysteretic modeler for each of 

the 20 columns in the dataset are obtained according to the method presented in Chapter III. The 

statistical properties of the optimal cyclic backbone curve and three hysteretic parameters for the 

272 column specimens are summarized in Table 5.1. 

 

Table 5.1 Statistical properties of the optimal cyclic backbone curve and hysteretic parameters. 

Critical Parameters Minimum Maximum Median Mean Std.Dev 
Yield shear force, "% (kN) 1.60 1071.01 130.50 163.72 149.05 

Drift ratio at yield shear, #% (%) 0.20 1.73 0.79 0.85 0.37 
Maximum shear force, "& (kN) 1.84 1338.80 155.09 194.63 178.50 

Drift ratio at maximum shear, #& (%) 0.31 7.94 1.69 1.99 1.33 
Ultimate shear force, "' (kN) 1.64 1217.01 126.89 163.03 155.51 

Drift ratio at ultimate shear, #' (%) 0.72 9.39 3.15 3.60 1.88 
Stiffness deterioration parameter, + 0.30 119.42 9.37 21.09 21.98 
Strength deterioration parameter, , 0.00 0.93 0.06 0.14 0.20 

Pinching parameter, - 0.31 1.00 0.98 0.87 0.19 
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5.4 Numerical Results 
 

This section presents the numerical experiments carried out to validate the proposed data-driven 

framework in generalized seismic response prediction of RC frame structures under displacement-

controlled quasi-static cyclic loading and dynamic shake table tests. For the displacement-

controlled quasi-static cyclic loading test, a large-scale (1:2) physical experimental model of a 3-

bay, 3-story RC frame structure is selected from Xie et al. (2015) to serve as the test specimen. 

For the dynamic shake table test, two small-scale (1:15) physical experimental models of 3-bay, 

9-story RC frame structures are selected from Schultz (1986) to serve as the test specimens. One 

is subjected to four earthquake (EQ) ground motions and another is subjected to six EQ ground 

motions. In each case, the proposed approach is compared with the widely used distributed 

plasticity fiber model based on experimental data. All the numerical experiments are performed 

using a Desktop PC with the Processor: Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80 GHz.  

5.4.1 Displacement-controlled quasi-static cyclic loading tests 
 

This section presents a comparison between the proposed system-level data-driven framework and 

the widely used fiber model to demonstrate the real-world application and full potential of the 

proposed approach. To validate the superiority of the novel framework, the classic fiber beam-

column element
 
is utilized to model the nonlinear cyclic response of the RC frame. For the 

proposed framework, the locally weighted least-squares support vector machine for regression 

(LWLS-SVMR) presented in Section 4.3 is selected as the ML technique. The predictors used in 

Section 4.4 are also utilized here. The response variables are those presented in Table 5.1.  

A large-scale (1:2) physical experiment of a 3-bay, 3-story RC frame subjected to 

displacement-controlled quasi-static cyclic loading is selected from Xie et al. (2015) for this 

comparison. The lateral load distribution for this experimental test is an inverse triangle, and the 
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entire loading process is controlled by the displacement of the top floor (i.e., roof displacement). 

The detailed information regarding the structural geometry, material properties, reinforcement 

details, and load pattern can be found in Xie et al. (2015). For the widely used distributed plasticity 

fiber model, a single force-based fiber beam-column element (Spacone et al. 1996a; 1996b) with 

five Gauss-Lobatto integration points (i.e., monitoring sections) is employed to model each of the 

columns and beams in the selected RC frame. In each monitoring section, cover concrete fiber is 

simulated using the modified Kent and Park model (Scott et al. 1982), and the core concrete fiber 

is simulated by the confined concrete model proposed by Mander et al. (1988) to represent the 

confinement effect of the stirrups. The reinforcement fiber is modeled by the Menegotto-Pinto 

model (Menegotto and Pinto 1973). OpenSees (Mazzoni et al. 2006) is used to implement the RC 

frame numerical model. For the proposed data-driven framework, all the beams are assumed rigid 

in axial and flexure as introduced in Section 5.2.2. All the columns in the frame are first expressed 

by predictors as query points where the response variables need to be predicted. Then, for each 

query point, the LWLS-SVMR is used to predict the response variables based on the 272 training 

data points presented in Section 5.3 (see Appendix A). Algorithm 5.1 is used to implement the 

proposed approach using Matlab 2018a. By implementing Algorithm 5.1, the hysteretic responses 

(roof displacement versus base shear and story drift ratio versus story shear) are produced. 

Figure 5.4 presents a comparison of the results between the proposed framework and 

traditional physics-based modeling techniques where ground truth is defined as the experimental 

tests. Figure 5.4(a-b) demonstrates that both methods reasonably capture the global nonlinear 

response of the RC frame in terms of the hysteretic relation of roof displacement versus base shear. 

The proposed approach effectively reflects the cyclic strength deterioration and softening behavior 

observed experimentally, while the fiber model fails to reasonably capture these types of behavior. 
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Although both methods reasonably predict the overall hysteretic response, the proposed approach 

achieves better prediction than the fiber model. The hysteretic curve predicted by the proposed 

approach has better agreement with the experimental results than that simulated by the fiber model. 

The story drift ratio versus story shear is extracted and presented in Figure 5.4(c-h). Both methods 

reasonably predict the lateral capacity of the RC frame, where the lateral strength (i.e., maximum 

shear force) predicted by both methods are close to those observed experimentally. However, the 

fiber model still does not reasonably capture the softening behavior induced by cyclic strength 

deterioration, while the proposed approach can effectively reflect these types of behavior 

characteristics observed experimentally. In total, the proposed approach can reasonably reflect the 

hysteretic behavior of the RC frame. The hysteretic curves for each story predicted by the proposed 

approach have a reasonable agreement with experimental results as shown in Figure 5.4(c,e,g). 

The story behaviors predicted by the fiber model show some discrepancy with the experimental 

results, as shown in Figure 5.4(d,f,h). 

 

 

                                            (a)                                                              (b) 

 
Figure 5.4 Comparison of results between the proposed AI-enhanced framework, experimental 

data, and widely-used traditional model (i.e., Fiber Model) for the selected RC frame 
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                                            (c)                                                              (d) 

 

                                            (e)                                                              (f)         

 

                                            (g)                                                              (h) 

 

Figure 5.4 Continued. 

 

Perhaps most importantly, the computational time for predicting the hysteretic curve of the 

selected RC frame using the proposed method only requires 10 seconds, while using the traditional 

fiber model takes 1,672 seconds (or roughly 30 minutes). Therefore, the proposed approach 

significantly reduces the computational cost. Based on these comparisons, the proposed approach 
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presented in this section performs better than the traditional physics-based method. Thus, it is 

deemed that the proposed approach is the most appropriate means for seismic response prediction 

of RC frames subjected to reversed cyclic loading, especially for application in near-real-time 

scenarios. 

5.4.2 Dynamic shake table tests 
 

To validate the performance of the proposed framework in predicting the seismic response of RC 

frames subjected to ground motions, two small-scale (1:15) 3-bay, 9-story RC frame specimens – 

structure SS1 subjected to four consecutive unidirectional ground motions and structure SS2 

subjected to six consecutive unidirectional ground motions – are used as illustrative examples. 

These shake table tests were organized by Schultz (1986). The difference between these two test 

specimens is that the columns in frame SS2 have a higher longitudinal reinforcement ratio than 

those in frame SS1. The detailed information regarding the physical experimental set-up, structural 

features, ground motions, and shake table test results can be found in Schultz (1986).  

For traditional physics-based modeling approaches, the fiber beam-column element is also 

used to model the seismic response of the two small-scale RC frames. The element type, 

integration method, number of integration points, and material constitutive models described in 

Section 5.4.1 for the large-scale RC frame are also used here to establish the numerical models of 

the two RC frames. For the proposed approach, all the beams of these specimens are assumed rigid 

in axial and flexure, and the columns in the frames are first expressed as query points by the 

predictors presented in Section 4.4. Then, the LWLS-SVMR is used to predict the response 

variables based on the 272 training specimens introduced in Section 5.3 (see Appendix A), 

forming the hysteretic modeler for each column. Finally, the established hysteretic modelers are 

incorporated into Algorithm 5.2 for dynamic response prediction. For both approaches, a damping 
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ratio of 2% is assigned to the first two modes of both frames, and the time step is set to the one 

recorded in the ground motions (i.e., 0.005s). Since these two RC frames are not repaired after 

each ground motion (Schultz 1986), the four ground motions for frame SS1 and the six ground 

motions for frame SS2 are grouped to be a sequential ground motion that serves as the input ground 

motion. OpenSees is used to perform the time-history procedures of two fiber models. Matlab 

2018a is used to implement Algorithm 5.2 as presented in Section 5.2.3 to perform the time-

history procedures of the two MDOF models. The input ground motions for frames SS1 and SS2 

are presented in Figures 5.5 and 5.6, respectively. Note that frame SS1 collapsed under EQ4, and 

thus, only the first 2.75s of the experimental results are recorded (Schultz 1986). The time-history 

results regarding the time versus roof displacement and the floors versus peak story drift ratio are 

presented in Figures 5.7-5.10. 

 

 

Figure 5.5 Four time versus ground accelerations for frame SS1. 

 

Figure 5.7 presents the comparison of the predicted time-roof displacement results for frame SS1 

between the fiber model and the proposed method, with the experimental data serving as the 

ground truth. By observation, the proposed method achieves better agreement with the 

Time (s) 

Ac
ce

le
ra

tio
n 

(g
) 



 

 

 

 

133 

 

experimental data for all four EQs over the full-time history. Further, the proposed approach nearly 

captures the peak roof displacements for all four EQs, while the fiber model underestimates those 

peak roof displacements. Peak story drift ratio is an important engineering demand parameter 

(EDP) which is typically used to quantify the seismic performance of an RC structure (Bracci et 

al. 1997; Chopra 2007; Moehle and Deierlein 2004). Figure 5.8 shows the results of floor versus 

peak story drift ratio for frame SS1. It can be seen that the proposed approach performs better than 

the fiber model, where the peak story drift ratios predicted by the proposed approach at each floor 

for all four EQs have closer agreement with the experimental results than those predicted by the 

fiber model. 

 

 

Figure 5.6 Six time versus ground accelerations for frame SS2. 
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A similar trend is observed by the comparison of the results of the predicted time-roof 

displacement for frame SS2, as shown in Figure 5.9. The proposed approach also accurately 

captures the peak roof displacements for all six EQs, while the fiber model underestimates these 

values. Additionally, for the comparison of the predicted peak drift ratios at the second through 

ninth floors, the proposed method shows better agreement with the experimental data for all six 

EQs than the fiber model (Figure 5.10). However, for the predicted peak drift ratios at the first 

floor, compared to the proposed method, the fiber model achieves a closer agreement with the 

experimental results for EQ3 through EQ5 and has a comparable performance for EQ1, EQ2, and 

EQ6. Further, both the fiber model and the proposed approach show discrepancy with the 

experimental results for the predicted peak drift ratios at the first and seventh through ninth floors 

for EQ5 and EQ6, where the PGA for EQ5 is 1.06g and for EQ6 is 1.30g. This is because under 

extreme seismic intensities, the behavior of frame SS2 becomes more irregular, and modes other 

than the first are seen to have a greater effect on displacement response, as discussed in Schultz 

(1986). Both the fiber model and the proposed method consider the first two modes more than 

others, finally leading to significant errors. In addition, for the proposed approach, the number of 

small-scale column specimens in the training dataset is only 20 and may not be sufficient to 

eliminate the potential sample bias. Thus, this causes the predicted cyclic backbone curve and 

hysteretic parameters of the columns in the small-scale RC frame SS2 to be imprecise. 

Nevertheless, in most cases, the proposed system-level data-driven framework still achieves better 

agreement with the experimental data than the traditional fiber model.  
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Figure 5.7 Time vs. roof displacement results for the traditional approach (i.e., fiber model) and 

the proposed AI model, with the experimental data serving as the ground truth. 

 

          

Figure 5.8 Distribution of peak story drift ratio along the floors for the traditional approach (i.e., 

fiber model) and the proposed AI model, with the experimental data serving as the ground truth. 
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More importantly, the computational time for all ground motions using the proposed approach 

only requires 133 (SS1) and 289 (SS2) seconds. This time is substantially diminished when 

compared to the fiber models which took 972 (SS1) and 1,942 (SS2) seconds. Thus, the proposed 

approach significantly enhances the computational efficiency while still maintaining (and in most 

cases, even improving) good prediction performance. Further, the fiber model is implemented 

using OpenSees, which is developed using compiled language (i.e., C++), while the proposed 

approach is implemented using Matlab, which is an interpreted language. Thus, OpenSees is 

inherently faster than Matlab. However, the proposed approach is still much more efficient than 

the fiber model. Based on these comparisons, the proposed approach presented in this chapter 

performs significantly better than the traditional method for all seismic response quantities and 

agrees better with the experimental data. 
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Figure 5.9 Time vs. roof displacement results for the traditional approach (i.e., fiber model) and 

the proposed AI model, with the experimental data serving as the ground truth. 
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Figure 5.10 Distribution of peak story drift ratio along the floors for the traditional approach (i.e., 

fiber model) and the proposed AI model, with the experimental data serving as the ground truth. 
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5.4.3 Discussion of results 

From the above results for both displacement-controlled quasi-static cyclic loading and shake table 

tests, it can be concluded that the proposed system-level computational framework outperforms 

the widely-used distributed plasticity fiber model in terms of both prediction capability and 

computational efficiency. In addition, since the data-driven computing procedures are initiated at 

the component level, the physical experiment data for RC columns is used in developing the 

hysteretic modeler for each column. Therefore, it is expected that the hysteretic modeler can 

reasonably reproduce the experimental hysteretic behavior of each column in the target RC frames. 

However, a theoretical assumption is made at the system level, where the shear building model is 

used to translate the responses at the component level to the structural response at the system level. 

Ultimately, it was found that this assumption does not have a significant influence on the predictive 

performance of the proposed approach. This may be attributed to the phenomenon that the beams 

in the RC frames utilized are stiffer than the columns, and thus, the shear building model is 

appropriate for this case.  
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5.5 Summary 

A novel system-level data-driven framework is proposed in this section to predict the seismic 

response of RC structural systems under displacement-controlled quasi-static cyclic loading and 

shake table tests. The proposed system-level computational framework is a hybrid ML-physics 

based approach, which incorporates a novel component-level data-driven framework presented in 

Section 4.4 with a shear-building model. This integration efficiently leverages the advantages of 

both approaches. Two data-driven seismic response solvers are developed to implement the 

proposed approach for the seismic response prediction of RC structural systems under 

displacement-controlled quasi-static cyclic loading and shake table tests. To validate the 

performance of the proposed approach, RC frames are selected as illustrative examples. The 

numerical results validate that the proposed approach outperforms the widely-used traditional 

modeling approaches in predicting the seismic response of RC frames under both quasi-static 

cyclic loading and shake table tests. Moreover, the proposed method significantly enhances the 

computational efficiency for both cases in comparison with the widely-used traditional 

approaches, yielding great potential for regional seismic risk quantification and other near-real-

time needs. 



 

 

 

 

141 

 

CHAPTER VI 

SOLUTIONS TO DATA-RELATED PROBLEMS
*
 

 

6.1 Overview 

Machine learning (ML) methods have high requirements for the input data in order to achieve high 

generalization performance. The input data must be high-quality and sufficiently large in size. 

Otherwise, once trained, the ML models will not be able to accurately predict the target response 

variables. In real-world scenarios, datasets are most likely corrupted by outliers, contain missing 

values, and may not be sufficient in size, leading to large sample biases. These data-related 

problems will significantly degrade the generalization performance of ML methods as introduced 

in Section 2.4, and thus negatively affect the performance of the proposed data-driven frameworks 

presented in Chapters IV and V. This chapter presents novel computational methods which were 

created to deal with such data-related problems, yielding data-driven frameworks that are 

extremely robust. First, a novel locally weighted ML model is developed to eliminate the negative 

effect induced by outliers. Second, a new multiple imputation (MI) method is proposed to deal 

with missing data problems. Lastly, a novel regression-based transfer learning (TL) method is 

developed to reduce the negative effect of small sample bias. Each method is assessed and 

validated by comparing the numerical results with physical experiment data. With the help of these 

new computational methods, the proposed data-driven frameworks will have good generalization 

performance even if the dataset is plagued with any or all of these kinds of issues. The detailed 

information is given below.

 

*Section 6.4 of this chapter is reprinted with permission from “Reducing the effect of sample bias for small data sets 
with double-weighted support vector transfer regression” by Huan Luo and Stephanie Paal, 2020. Computer-Aided 
Civil and Infrastructure Engineering, 1-16, Copyright [2020] by John Wiley and Sons. 
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6.2 Solution to Dataset Corrupted by Outliers 

As introduced in Section 2.4.1, standard ML methods can be negatively affected by a dataset 

corrupted by outliers. This section presents a novel ML approach for constructing data-driven 

procedures that are robust to input data which is corrupted by outliers. The novel ML approach is 

an extension of locally weighted least squares support vector machines for regression (LWLS-

SVMR) presented in Section 4.3 and thus is called robust LWLS-SVMR (RLWLS-SVMR). A 

significant drawback of LWLS-SVMR is that it is sensitive to outliers close to query points. To 

solve this shortcoming, an extra weight that is a function of residuals is introduced into the 

reformulation of LWLS-SVMR to form RLWLS-SVMR. The major advantage of the proposed 

method over LWLS-SVMR is not only that it is robust to input data contaminated by various types 

of outliers (i.e., extreme and non-extreme outliers) but also that it maintains the local nature, where, 

in order to predict a query point, the entire set of training data does not need to be fit. Instead, it 

only requires the fitting of a subset of training data nearby (relevant to) the query point. These 

characteristics yield a model that both overcomes the negative interference of outliers and avoids 

the potential influence of irrelevant points, achieving a suitable trade-off between the capacity of 

the learning system and the number of training data points. The development of the proposed 

RLWLS-SVMR is presented in the next sub-section. 

6.2.1 Development of RLWLS-SVMR 

Assume a multi-dimensional training set {(); , -;)};2"/
 is collected from a domain of interest and 

some observations (i.e., data points) have been corrupted by outliers. For the remainder of this 

section, the following notations are utilized. Let 7 be the real numbers set; ); ∈ 7* is a row vector 

with 3  dimensions (i.e., 3  variables) which can be written as ); = 0,;", … , ,;*1 , and );I ∈ 7* 

represents the transpose of ); and is a column vector with 3 dimensions which can be written as 
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);I = 0,;", … , ,;*1
4; -; ∈ 7 is a real number; $ ∈ 7/×* is an 	P × 3 matrix which can be written 

as $ = ()", … , )/)4; the training set {(); , -;)};2"/
 is an P × (3 + 1) matrix which includes P data 

points and each data point contains 3 explanatory variables (i.e., ); ∈ 7*) and one response (i.e., 

-; ∈ 7).  

Given an independent test set /0)M , -dM12M2"
5

 that is not included in the training set, for each 

query point )M , å = 1,… ,f , where the response values -dM  are to be predicted and thus not 

considered in the following process. The basic procedure of the RLWLS-SVMR is as follows: 

(1) Define a subset /0)(@), -(@)12@2"
N

from the training set {(); , -;)};2"/
 by a parameter QM, 

where QM can take any value in the range (0, 1]; the number of data points { in the 

subset is equivalent to µgiÑ0QMP1, and the points in the subset	are determined and 

sorted by the Euclidean distance metric via the following procedure: 

(2) Calculate the Euclidean distance from each data point in the training set to each query 

point ç); − )Mç, i = 1,… , P; å = 1,… ,f, so for each query point, there is a distance 

vector  éM = 0hM", … , hM/1, å = 1,…f; 

(3) Sort the entries in each distance vector increasingly so a new sorted distance vector 

é(M) = 0h(M"), … , h(M/)1, å = 1,…f is obtained; 

(4) The data points in the training set {(); , -;)};2"/ ,	corresponding to the first { entries in 

the sorted distance vector é(M)  (i.e., h(M"), … , h(MN)), can be selected as the subset 

/0)(@), -(@)12@2"
N . Note: for different query points, the subset may vary.  

(5) After the subset is determined, the learning objective of the RLWLS-SVMR is to   find 

uI = (è", è$, … , èO)4 ∈ 7O  and w ∈ 7  that minimize the following objective 

function: 
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T(uI, g@) =
"

$
(uI)4uI + "

$
BM ∑ ∂M0)(@)1#M0)(@)1g@$N

@2" , å = 1,… ,f  (6.1) 

Subject to:   -(@) = (uI)4Ç0)(@)
I 1 + w + g@, ê = 1,… , {  (6.2) 

where -4 ∈ 7, S = 1,… , N  is the error term; 42 ∈ 7, V = 1,… ,(  is a regularization 

parameter; W2AB(4)C, c2AB(4)C ∈ 7, S = 1,… , N; V = 1,… ,( are weights that can take 

any value in the range [X, 1], W2AB(4)C is a function of Euclidean distance where data 

points in a subset close to a query point have larger weights and far away from the 

query point have smaller weights; c2AB(4)C is a function of residual where data points 

in a subset around the query point having large residuals have smaller weights and 

having small residuals have larger weights; X ∈ 7 is a real number approaching 0; 

@AB(4)
/ C  is a feature vector, and @(∙): 77 → 78  is a mapping function from p 

dimensions to a higher h-dimensional feature space. Note: B(4)
/  is a column vector, 

thus @AB(4)
/ C is also a column vector.  

If #M0)(@)1 takes a value approaching ë, it means the point 0)(@), -(@)1 is far away 

from the query point 0)M , -dM1 (relatively large Euclidean distance) and plays a lesser 

role in the determination of -dM; while, if #M0)(@)1 takes a value approaching one, it 

means the point 0)(@), -(@)1  is close to the query point 0)M , -dM1  (relatively small 

Euclidean distance) and plays an important role in the determination of -dM . 

(6) The Lagrangian function is established to solve Eq. (6.1) and Eq. (6.2): 

Ö(uI, w, g@; "@) = T(uI, g@) − ∑ "@0(uI)4Ç0)(@)
I 1 + w + g@ − -(@)1N

@2"   (6.3) 

where H4 ∈ 7, S = 1,… , N is a Lagrange multiplier (also called support values). 

The Karush-Kuhn-Tucker (KKT) conditions for optimality are used by differentiating 

the variables in Eq. (6.3) above, which results in the following: 
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 (6.4) 

Rearranging Eq. (6.4) and eliminating uI and g@, using the kernel function to replace 

the inner product of the feature vectors, the following matrix equation can be obtained: 

 
(6.5) 

where V = 1,… ,( and the kernel function is IAB(4), B())C = @1AB(4)
/ C@AB())

/ C	, S =

1,… , N; \ = 1,… , N. 

(7) To determine #M0)(@)1 ∈ 7, ê = 1,… , {; å = 1,… ,f , for each query point )M , let 

h(MN)  be the distance from )M  to the {?O  nearest neighbor )(N)  (i.e., h(MN)  is the 

maximum distance compared to h(M"), … , h(M(N8")) ), and let #M0)(@)1 =

í0h(MN)
8" ç)(@) − )Mç1 , where í(∙)  is a tricube weight function (Cleveland 1979), 

which is defined as the following: 

í(v) = Q(,) = î
(1 − |v|%)%, |v| < 1

ë, |v| ≥ 1 (6.6) 

where X can take any values close to 0, and in this work X = 1- − 4 to avoid a zero in 

the denominator in Eq. (6.5). 

The weight ∂M0)(@)1 in Eq. (6.5) is associated with the robustness to outliers close to 

a query point, and the determination of ∂M0)(@)1 ∈ 7, ê = 1,… , {; å = 1,… ,f, for 
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each query point )M is discussed in detail in the next section. The initial values of 

∂M0)(@)1 are set to one. Note that when ∂M0)(@)1 = 1, ê = 1,… , {; å = 1,… ,f and 

the values are not updated, the proposed RLWLS-SVMR reverts to LWLS-SVMR.  

(8) After solving Eq. (6.5) (Suykens et al. 1999; 2002), the Lagrange multiplier ^ =

("", … , "N) and w can be obtained, which can then be utilized to predict the query 

point )M using the following: 

-d0)M1 = ∑ "@N
@2" =0)M , )(@)1 + w  (6.7) 

The RBF kernel is utilized, which is defined as follows: 

=0)M , )(@)1 = g,3 F−
Z["8[(-)Z/

/

$\"/
I  (6.8) 

6.2.2 Detection of negative effects due to outliers 

In comparison to data-driven procedures established by global ML approaches, where the outliers 

in the training set {(); , -;)};2"/
 must first be detected and removed (Rousseeuw and Leroy 1987) 

or robust global ML methods must be employed directly for the entire training set, the proposed 

RLWLS-SVMR is a robust, local ML model. In this sense, all the points of the training set 

{(); , -;)};2"/
 are not necessarily considered in the training procedure for prediction of an individual 

query point )M. Considering the fact that the outliers are just a small portion of the entire training 

set, it is possible that outliers only exist in certain regions of the training set rather than being 

distributed across the entire training set. In this case, the advantage of the proposed RLWLS-

SVMR model is distinct. This is because, given a query point )M , the selected subset 

/0)(@), -(@)12@2"
N

 around this query point may not contain outliers, or the subset may contain 

outliers but they are sufficiently far away from the query point (see Figure 6.1) such that the 

outliers have little negative effect on the prediction of the query point.  
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Figure 6.1 shows a schematic sketch illustrating how an outlier can affect the prediction of 

a query point. Figure 6.1(a) shows the case where an outlier (red square point) exists in a selected 

subset /0)(@), -(@)12@2"
N

but far away from the query point (black triangular point). Figure 6.1(b) 

shows the case where an outlier occurs close to the query point. Each point 0)(@), -(@)1 in this 

subset has a weight #M0)(@)1, and points close to the query point have larger weights #M0)(@)1 

while points far away from the query point have smaller weights #M0)(@)1. In this way, points close 

to the query point have important contributions to the prediction of the query point, while those 

far away have little influence. If an outlier is far away from the query point, it is possible that the 

outlier will yield little negative influence on the prediction of the query point (see Figure 6.1(a)). 

This means the weight ∂M0)(@)1 in Eq. (6.5) does not need to be updated (i.e., RLWLS-SVMR 

reverts to LWLS-SVMR), since the outlier does not have a significantly negative effect on 

prediction. Thus, it is necessary to detect these types of negative effects such that a non-robust 

local model (i.e., LWLS-SVMR) learned via a subset containing outliers can be reliably employed.  

This can be achieved by selecting an appropriate region encompassing the query point (e.g., 

the region enclosed by the blue dashed rectangle in Figure 6.1) by way of imposing a threshold. 

Then, the residuals between observed and predicted values within this region can be calculated, 

and a bound (positive number) can be selected. If the absolute average of the calculated residuals 

is smaller than the bound, it means the outlier has little negative impact on the prediction of the 

query point (e.g., Figure 6.1(a)); however, if the absolute average is greater than the bound, the 

outlier is considered to have a sufficiently negative influence (e.g., Figure 6.1(b)). The reasoning 

for choosing the absolute average of the residuals within the selected region as the judgment 

criterion is explained here. Considering the observation form -; = -;?N9P + g; , if the LWLS-

SVMR perfectly fits the true function, the predicted value will equal the true value (-d; = -;?N9P). 
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Thus, the residuals can be obtained by -; − -d; = -; − -;?N9P = g; . As g;  in classical statistical 

learning approaches is assumed zero mean (Rousseeuw and Leroy 1987), the absolute average of 

residuals within the selected region (i.e., the range within the blue dashed rectangle) will be zero, 

that is ∑H0{g;};2"> 1∑ = 0 (assume there are Ñ data points within the blue dashed rectangle). The 

algorithm 6.1 is developed to realize this detection procedure: 

 

 

                                        (a)                                                                (b) 

Figure 6.1 Schematic sketch for detection of negative effects due to an outlier: (a) outlier far 

away from the query point has a diminished negative effect on prediction of the query point; (b) 

outlier close to the query point has a significantly negative effect on prediction of the query 

point. 
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Algorithm 6.1: Implementation of proposed algorithm for the detection of negative effect due to outliers 
For each query point &0 , / = 1,… ,*, do 
    (a) Given an optimal  combination	340 , 50 , 6017, define a subset 83&(2), 9(2)7:234

5 and weights ;03&(2)7 using Eq. 
(6.6); 
    (b) Set all weights <03&(2)7 in Eq. (6.5) for the subset 83&(2), 9(2)7:234

5  to 1;  

    (c) Solve Eq. (6.5) to obtain +, =, and compute residuals >2 = ?2/ A50<03&(2)7;03&(2)7B, where C = 1,… , D; 
    (d) Set a threshold value and select the residuals within the region where the points having weights ;03&(2)7 are 
greater than the threshold; 
    (e) Set a bound value and calculate the absolute of average of the selected residuals, and compare the absolute and 
bound; 
    If absolute > bound then 
        Flag = 1 
    else  
        Flag = 0 
    end if 
end for 
 

 

In Algorithm 6.1, flag = 1 represents the case when a negative influence is detected; while flag = 

0 represents the opposite. 

6.2.3 Robust regression by iterative RLWLS-SVMR 

When outliers exist close to a query point )M, the predicted response value for the query point )M 

will be negatively affected by those outliers (see Figure 6.1(b)). Thus, a robust approach is 

presented here to eliminate the negative influence of outliers by iteratively updating the weights 

∂M0)(@)1, as a function of g@ estimated by LWLS-SVMR. These weights are computed via Eq. 

(6.9) and according to Suykens et al. (2002).  

 

∂M0)(@)1 = ∏

1															iQ	|g@/	A| ≤ |"	
|$ − |g@/	A|
|$ − |"

			iQ	|" ≤ |g@/	A| ≤ |$

ë																							¥zℎg{èiêg

 (6.9) 

 

where g& = 2.5, g* = 3, X = 10DE, and " = 1.483lmn(-4) is a robust estimate where MAD is 

the median absolute deviation and other variables are defined previously. 
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Algorithm 6.2: Implementation of proposed iterative RLWLS-SVMR 
For each query point &0 , / = 1,… ,*, do 
1. Initialization stage: 
    (a) Given an optimal combination 340 , 50 , 6017, define a subset 83&(2), 9(2)7:234

5 and weights ;03&(2)7 using Eq. (6.6); 
    (b) Set all weights <03&(2)7 in Eq. (6.5) for the subset 83&(2), 9(2)7:234

5  to 1;  

    (c) Solve Eq. (6.5) to obtain +, =, and compute >2 = ?2/ A50<03&(2)7;03&(2)7B, where C = 1,… , D. 
2. Iterative stage: 
    Set the maximum iterative number  E, tolerance FGH, count I = 0, and F = KL4 
    while  F > FGH && I < E do 
        (a) Set +(*) = +, =(*) = =, >2

(*) = >2, and <0
(*)3&(2)7 = <03&(2)7; 

        (b) Compute the robust estimate O(*) = 1.483$TU3>2
(*)7; 

        (c) Update the weights <0
(*64)3&(2)7 from O(*) and  >2

(*) using Eq. (6.9); 
        (d) Solve Eq. (6.5) to obtain the +(*64) and =(*64); 
        (e) Update the >2

(*64) = ?2
(*64)/ A50<0

(*64)3&(2)7;03&(2)7B; 
        (f) Calculate F = V+(*64) − +(*)V; 
        (g) Set + = +(*64), = = 	=(*64), >2 = >2

(*64), and <03&(2)7 = <0
(*64)3&(2)7; 

        (h) Set I = I + 1 
     end while 
 3. Output stage: 
     (a) Output the final + and = from the procedure 2 
     (b) Given + and =, predict the response value 9Y0 of the query point &0 using Eq. (6.7). 
end for 
 

 

After ∂M0)(@)1 is determined, the iterative RLWLS-SVMR to predict the response value of a query 

point )M is achieved by the algorithm 6.2 above. 

6.2.4 Implementation of a hybrid algorithm  

This section introduces the implementation procedure of the proposed RLWLS-SVMR by using a 

hybrid algorithm. As introduced in Section 6.2.2, outliers are only representative of a small amount 

of the training data, and therefore, not all of the regions will necessarily contain outliers. It is true 

that some query points may be far away from outliers. In this case, the negative effect from outliers 

can be ignored, the weights ∂M0)(@)1 in Eq. (6.5) do not need to be updated (i.e., the RLWLS-

SVMR reverts to LWLS-SVMR), and the results predicted by the LWLS-SVMR model can be 

trusted, as discussed in Section 6.2.2. By combining detection of the negative effect of outliers 

and the iterative version of RLWLS-SVMR, an efficient hybrid algorithm is developed to predict 
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query points by adaptively using either LWLS-SVMR or the iterative version of RLWLS-SVMR 

depending on whether or not a negative effect is detected. The hybrid algorithm is implemented in 

this section as the following: 

 

Algorithm 6.3: implementation of proposed hybrid algorithm 
For each query point &0 , / = 1,… ,*, do 
     Given an optimal combination	340 , 50 , 6017, detect if there is any negative influence induced by outliers using 
Algorithm 6.1 
     If  flag = 0 then 
         Predict the response 9Y0 of the query point &0 according to + and = obtained in Algorithm 6.1 using Eq. (6.7) and 
record the predicted result; 
     else 
         Perform an iterative procedure using Algorithm 6.2 and record the final predicted result; 
     end if 
end for 
 

 

In addition to the implementation of RLWLS-SVMR, other relevant ML approaches are also 

implemented for performance comparison. The relevant ML approaches are LS-SVMR (Suykens 

et al. 2002), weighted LS-SVMR (WLS-SVMR) (Suykens et al. 2002), and iterative WLS-SVMR 

(IWLS-SVMR) (De Brabanter et al. 2009). Note that the LWLS-SVMR is already incorporated 

into the hybrid algorithm and the disadvantage of LWLS-SVMR for datasets corrupted by outliers 

has already been discussed in theory (Section 6.2.2). Thus, direct implementation of LWLS-

SVMR is not included in this dissertation. LS-SVMR serves as the baseline to address the 

problems associated with input datasets corrupted by outliers (since all other models used here are 

variants of LS-SVMR). The main difference between the proposed RLWLS-SVMR and WLS-

SVMR and IWLS-SVMR is that RLWLS-SVMR is a robust, local model, whereas both WLS-

SVMR and IWLS-SVMR are robust, global models. The detailed formulations for LS-SVMR, 

WLS-SVMR, and IWLS-SVMR can be found in the original references (Suykens et al. 2002; De 

Brabanter et al. 2009). The RBF kernel is also utilized for LS-SVMR, WLS-SVMR, and IWLS-
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SVMR. The optimal hyper-parameter combinations for all four models are obtained using five-

fold cross-validation on the training data (De Brabanter et al. 2002).  

6.2.5 Numerical results 

This section presents illustrative examples for validating the proposed approach. In order to assess 

the proposed approach for a dataset {(); , -;)};2"/
 corrupted by outliers, two examples are carried 

out. The two examples vary in terms of the type of data: one employs simulated datasets, and the 

second utilizes a multi-dimensional, real-world dataset. The proposed method is compared with 

LS-SVMR, WLS-SVMR, and IWLS-SVMR for both examples. The generalization performance 

for the simulated datasets is quantified by the coefficient of determination (R
2
), mean absolute 

error (MAE), and root mean square error (RMSE) metrics introduced in Section 3.4.4. Since R
2
, 

MAE, and RMSE are sensitive to outliers, and the real world datasets may contain outliers, the 

performance for real world datasets is quantified by a robust variant of R
2
 (7G$) (Kvalseth 1985) 

which was also presented in Section 3.4.4.  

A very simple example is used to illustrate that original R
2
, MAE and RMSE are sensitive 

to outliers in a test set, but the robust variant of R
2
 is robust to such outliers. Assume a response 

variable in the test set is corrupted by one outlier, ' = (2, 4, 6, 8, 100, 12, 14)  (i.e., the fifth 

element (100) is corrupt, and the actual value is 10). A robust model is applied to predict the 

response values for the test set, and the predicted response is 'c = (2, 4, 6, 8, 10, 12, 14), which 

means the robust model perfectly predicts the response in the test set. However, if we use the 

original R
2
, MAE, RMSE and 7G$ 	to quantify the performance of the robust model, one can obtain 

the performance of this robust model is -0.09, 12.86, 34.01, and 1, respectively. Therefore, only 

the robust variant of R
2 
reflects the actual performance of the robust model, and the other statistics 

are sensitive to outliers and fail to quantify the actual performance. Note that if more outliers exist 
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in the test set, the robust variant of R
2
 may also fail to reflect the actual performance, but it is still 

more robust than RMSE, MAE, and the original R
2
 (Kvalseth 1985). 

6.2.5.1 Results for simulated datasets 
 
In this example, four synthetic datasets corrupted by four combinations of two types of random 

error terms and two types of outliers are generated to show the robustness of RLWLS-SVMR. In 

the real world, the random error term reflects data noise that cannot be avoided as purely clean 

data is impossible (Rousseeuw and Leroy 1987) (note that noise is not necessarily representative 

of an outlier as introduced in Rousseeuw and Leroy 1987). The error model proposed by Huber 

(1964) is used to generate these four synthetic datasets. Specifically, the random error terms are 

simulated using a Gaussian distribution with zero mean and either constant or non-constant 

variance. The outliers are simulated by either a Gaussian distribution with higher variance or a 

standard Cauchy distribution with heavy tails. In this setting, a dataset {(); , -;)};2"/
 not corrupted 

by outliers is simulated from a sinc function, which is defined in this way: 

-; =
êiP(,;)
,;

+ g; 
(6.10) 

 
where o$ is drawn from a uniform distribution o$~q[−10, 10], -$ is a random error term that is 

drawn from a Gaussian distribution using either constant variance, i.e., -$~	r(0, 0.01*) or non-

constant variance, i.e., -$~	rA0, J$*C and J$~q[0.01, 0.05].  

The smaller variance is selected to distinguish noise from outliers in the regression setting (Figure 

6.2). The number of normal data points following the definition above is 162. Another 38 points 

are defined as the potential outliers, where g; is drawn from either a Gaussian distribution with 

higher variance, i.e., g;~	º(0, 1$)  or a standard Cauchy distribution with heavy tails, i.e., 

g;~	µ(0,1). A total of 200 data points are drawn from the mixture procedure introduced above to 

form the training set. By setting different random number seeds, four combinations of error terms 
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and outliers are established to form four synthetic training datasets where the locations of outliers 

differs in order to more extensively evaluate the robustness of these four ML models, as shown in 

Figure 6.2 (a,c,e,g).  

In Figure 6.2, the four synthetic training datasets are shown on the left (subfigures a,c,e,g) 

which differ according to the error and outlier distributions, while the corresponding test sets are 

shown on the right (subfigures b,d,f,h). The variations are as follows: Figure 6.2(a,b), Synthetic 1: 

the error terms for normal points are drawn from g;~	º(0, 0.01$) and the potential outliers are 

drawn from g;~	º(0, 1$); Figure 6.2 (c,d), Synthetic 2: the error terms for normal points are drawn 

from g;~	º(0, á;$) and á;~Ω[0.01, 0.05], and the potential outliers are drawn from g;~	º(0, 1$); 

Figure 6.2(e,f), Synthetic 3:  the error terms for normal points are drawn from g;~	º(0, 0.01$) and 

the potential outliers are drawn from g;~	µ(0,1); and, Figure 6.2(g,h). Synthetic 4: the error terms 

for normal points are drawn from g;~	º(0, á;$) and á;~Ω[0.01, 0.05] and the potential outliers 

are drawn from g;~	µ(0,1). Note that the potential outliers are only applied to the four synthetic 

training datasets. It is clearly observed that not all of the potential outliers are real outliers, and 

only the points far from the bulk of the data points are true outliers (i.e., y-outliers). Another 200 

independent test data points (i.e., Figure 6.2 (b,d,f,h)) not corrupted by outliers corresponding to 

four different synthetic training datasets are drawn to test the performance of the data-driven 

procedures. The scatter plots of training and test data as well as the predictions on the test data by 

the LS-SVMR, WLS-SVMR, IWLS-SVMR, and RLWLS-SVMR models are presented in Figure 

6.2. 
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                                       (a)                                                                         (b) 

 

                                       (c)                                                                         (d) 

 

                                       (e)                                                                         (f) 

 

Figure 6.2 Left subfigures (a,c,e,g): Training of a sinc function with four synthetic training 

datasets (with various error and simulated outlier characteristics employed to plague the training 

data); Right subfigures (b,d,f,h): Testing (estimation of the sinc function) by LS-SVMR, WLS-

SVMR, IWLS-SVMR, and RLWLS-SVMR.  
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                                      (g)                                                                        (h) 

 

Figure 6.2 Continued.  

 

It should be noted that for LS-SVMR, WLS-SVMR and IWLS-SVMR, a global model is formed 

using the entire training dataset before predicting the query points in the test dataset.  For the 

proposed RLWLS-SVMR, different query points in the test dataset are predicted by distinct, 

individual local models. Each model is formed by training different subsets of training data to 

achieve an adequate trade-off between prediction capacity and the number of input data for 

different query points. A comparison of the results between LS-SVMR, WLS-SVMR, IWLS-

SVMR, and the proposed RLWLS-SVMR on the four test datasets is shown in Figure 6.2(b,d,f,h). 

By observation, compared to the true function, LS-SVMR is negatively affected by outliers, 

especially by those produced by the standard Cauchy distribution with heavy tails. The LS-SVMR 

is influenced heavily in the direction of outliers, leading to a significant deviation from the true 

function (Figures 6.2(f) and 6.2(h)). The WLS-SVMR model improves the performance of LS-

SVMR but still suffers negative effects. By contrast, both IWLS-SVMR and the proposed 

RLWLS-SVMR models perform much more robustly to outliers, where both overcome the 

negative interference from outliers and very closely fit the true function.  



 

 

 

 

157 

 

Table 6.1 presents the metrics of original R
2
, RMSE, and MAE for LS-SVMR, WLS-

SVMR, IWLS-SVMR, and R-LWLS-SVMR based on the test datasets. Since these datasets are 

simulated and we know the true values, these metrics can give correct quantifications for the actual 

performance of these four ML models. Thus, it can be concluded that both IWLS-SVMR and 

RLWLS-SVMR do adequately capture the true function, and the proposed RLWLS-SVMR has 

the highest R
2
 and lowest RMSE and MAE values, which deem it as the best model for these types 

of datasets among the four ML models. 

 

Table 6.1 Performance comparison between LS-SVMR, WLS-SVMR, IWLS-SVMR, and 

RLWLS-SVMR in terms of original R
2
, RMSE, and MAE. The synthetic datasets represent the 

training data corrupted by outliers and the original R
2
, RMSE, and MAE are computed on 

corresponding test datasets between predicted and true values. The bold values represent the best 

performance. 

Datasets Models RMSE MAE R2 

Synthetic dataset 1 

LS-SVMR 0.1163 0.0742 0.5182 
WLS-SVMR 0.1115 0.0589 0.5576 
IWLS-SVMR 0.0213 0.0070 0.9839 

RLWLS-SVMR 0.0052 0.0040 0.9990 

Synthetic dataset 2 

LS-SVMR 0.1380 0.0992 0.5834 
WLS-SVMR 0.0847 0.0515 0.8428 
IWLS-SVMR 0.0137 0.0106 0.9959 

RLWLS-SVMR 0.0083 0.0051 0.9985 

Synthetic dataset 3 

LS-SVMR 1.7270 1.6301 -43.5127 
WLS-SVMR 1.7160 1.6964 -42.9457 
IWLS-SVMR 0.0490 0.0164 0.9642 

RLWLS-SVMR 0.0019 0.0011 0.9999 

Synthetic dataset 4 

LS-SVMR 1.6499 1.0328 -42.4528 
WLS-SVMR 0.1997 0.1062 0.3633 
IWLS-SVMR 0.0229 0.0179 0.9916 

RLWLS-SVMR 0.0085 0.0050 0.9989 
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6.2.5.2 Example 2: results for real-world datasets 

To further investigate the robustness of the proposed RLWLS-SVMR for multi-dimensional 

problems and demonstrate its practical application in the real-world, we employ eight real-world 

multi-dimensional datasets across different engineering and science domains to test the model 

performance and compare it with LS-SVMR, WLS-SVMR and IWLS-SVMR. These eight 

benchmark datasets (and associated tasks) are the following: (1) Circular RC columns (predicting 

the lateral strength) as presented in Chapter III (see Appendix B); (2) Concrete slump specimens 

(predicting concrete flow) (Yeh 2007); (3) Automobile characteristics (predicting the fuel 

consumption) (Quinlan 1993); (4) Servo (predicting the rising time of a servomechanism) (Quinlan 

1993); (5) Crabs (predicting the body depth of crabs) (Campbell and Mahon 1974); (6) Boston 

housing (predicting the median value of home price in the greater Boston area) (Harrison and 

Rubinfeld 1978); (7) Nelson (predicting the dielectric breakdown strength) (Nelson 1981); and (8) 

Bodyfat (predicting the body fat of human beings) (Penrose et al 1985). The detailed information 

for all eight real-world datasets can be found in the provided websites in the references. The final 

results are reported for all eight datasets to demonstrate the broad application of the proposed 

appraoch. A detailed discussion of how the models peform is carried out for the Circular RC 

column dataset presented in Chapter III (see Appendix B) to thoroughly explain the proposed 

approach and its’ performance.  

Accurate modeling of lateral strength of RC columns is a very important topic in structural 

and earthquake engineering, as the strength is an important factor for the design of buildings. In 

this specific example, the prediction performance of LS-SVMR, WLS-SVMR, IWLS-SVMR, and 

the proposed RLWLS-SVMR is evaluated for lateral strength prediction of the circular columns. 

Detailed information regarding this dataset can be found in Chapter III (see Appendix B). 
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The leave-one-out (LOO) cross-validation procedure presented in Section 3.4.3 is 

employed to evaluate the performance of LS-SVMR, WLS-SVMR, IWLS-SVMR, and RLWLS-

SVMR on lateral strength prediction of these 160 RC columns as well as for the other seven real-

world datasets. The performance of these ML models on prediction in these eight real-world 

datasets is quantified by the robust variant of R
2
 defined in Section 3.4.4. Note that the true values 

of the response variables in the real-world datasets are unknown. This is because the observed 

values of the response variables in real-world datasets contain a random error term (i.e., - =

-?N9P + g), and the random error is unknown. If outliers exist in the real-world dataset, the original 

R
2
, RMSE, and MAE will be sensitive to these outliers and fail to reflect the prediction 

performance of these four ML models based on the LOO cross-validation procedure, while the 

robust variant of R
2
 is more robust to outliers and can give a more objective evaluation, as 

discussed in Section 6.2.5. Additionally, it is worth noting that a robust estimator is able to detect 

outliers where points possess large residuals, while a non-robust estimator cannot be used for this 

purpose, because the outliers may possess very small residuals (Rousseeuw and Leroy 1987).  

A comparison of results is presented in Figure 6.3. By observation of this figure, the green 

points in all four ML models flock around the red lines which indicates that the predicted and 

observed values are equal (i.e., near-perfect prediction). However, compared to IWLS-SVMR 

(Figure 6.3(c)) and RLWLS-SVMR (Figure 6.3(d)), the green points in LS-SVMR (Figure 6.3(a)) 

and WLS-SVMR (Figure 6.3(b)) are much more scattered. Additionally, there are three red square 

points in all four ML models which are distant from the red lines. Compared to LS-SVMR and 

WLS-SVMR, the two red points (i.e., values more than 1000 kN in the observed value direction 

in Figure 6.3) in IWLS-SVMR and RLWLS-SVMR are much further from the red lines, which 

lead to higher residuals (i.e., difference between observed and predicted values).  The other 
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remaining red point (i.e., value less than 1000 kN in the observed value direction in Figure 6.3) 

appears to maintain  nearly the same deviation in all four ML models (i.e., the residuals for this 

red point in all four ML models are almost equivalent). 

By analysis of the dataset, it is found that these two red points (i.e., values more than 1000 

kN in the observed value direction in Figure 6.3) correspond to two full-scale column tests 

conducted by Stone and Cheok (1989), where the section dimensions (explanatory variables) and 

lateral strength (response variable) of these two columns are extreme values which are far larger 

than all other remaining columns in the dataset. It is also found that the other remaining red point 

corresponds to a column test performed by Priestley et al. (1981) where the applied axial load 

(explanatory variable) on this column is an extreme value which is much larger than all other 

columns in the dataset. Thus, these three red points are detected and identified as high leverage 

points (i.e., extreme values in the x direction; note that this does not take y into accoun,t and if a 

high leverage point is also an outlier, it will negatively affect the performance of a non-robust 

estimator). By observation of Figure 6.3, it is evident that the LS-SVMR is heavily influenced by 

these two high leverage points (i.e., values more than 1000 kN (outliers)). This negative effect for 

the LS-SVMR model is exhibited by smaller residuals for the two high leverage points (outliers) 

but greater scatter in the remaining points than the results for WLS-SVMR, IWLS-SVMR, and 

RLWLS-SVMR. The WLS-SVMR slightly reduces the negative interference from these points 

where the residuals are slightly larger, and the green points are slightly less scattered in comparison 

to the LS-SVMR. However, both IWLS-SVMR and RLWLS-SVMR improve the prediction on 

all green points by significantly reducing the negative interference, where the green points are 

much less scattered and those two red points are far away from the red lines. The proposed 

RLWLS-SVMR performs better than IWLS-SVMR where the green points in RLWLS-SVMR are 
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less scattered than those in IWLS-SVMR. Since the other remaining red point does not 

deleteriously change the prediction for all four ML models, it can be concluded that this leverage 

point is a good leverage point while the other two red points mentioned above are bad leverage 

points that are also outliers. The final results for the RC column dataset as well as for the other 

seven datasets mentioned previously are reported in Table 6.2. From Table 6.2, it is observed that 

the proposed RLWLS-SVMR performs best across all eight benchmark real-world datasets.  

 

 

(a)                                                                        (b) 

 

                                      (c)                                                                        (d) 

Figure 6.3 Comparison of results using leave-one-out (LOO) cross validation procedure on 160 

RC columns of: (a) LS-SVMR, (b) WLS-SVMR, (c) IWLS-SVMR, and  (d) RLWLS-SVMR. 
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Table 6.2 Performance comparison between LS-SVMR, WLS-SVMR, IWLS-SVMR and 

RLWLS-SVMR on eight benchmark real world datasets in terms of the robust variant of R
2
 

using LOO cross validation procedure. The bold values represent the best performance. 

Datasets Number of 
observations 

Number of 
predictors 

LS-
SVMR 

WLS-
SVMR 

IWLS-
SVMR 

RLWLS-
SVMR 

Columns 160 10 0.9747 0.9756 0.9837 0.9928 
Concrete 

slump 
103 7 0.4675 0.4456 0.4338 0.6419 

Auto MPG 392 7 0.9393 0.9427 0.9434 0.9723 
Boston 

Housing 
506 13 0.8691 0.8820 0.8854 0.9231 

Bodyfat 252 14 0.9973 0.9994 0.9995 0.9999 
Crabs 200 7 0.9928 0.9924 0.9921 0.9937 
Servo 167 4 0.7367 0.8326 0.8789 0.9265 

Nelson 128 2 0.8626 0.8657 0.8675 0.9012 
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6.3 Solution to Missing Data 

As introduced in Section 2.4.2, any standard machine learning (ML) methods fail to construct a 

data-driven model when a dataset is incomplete and contains missing data. This section presents a 

new multiple imputation (MI) method to address the missing data problem in ML models. The 

approach works by filling in each missing value with multiple realistic, valid candidates, 

accounting for the uncertainty due to missing data. The proposed method, called sequential 

regression-based predictive mean matching (SRB-PMM), utilizes Bayesian parameter estimation 

to consecutively infer the model parameters for variables with missing values, conditionally based 

on the fully observed and imputed variables. Given the model parameters, a hybrid approach 

integrating PMM with a cross-validation algorithm is developed to obtain the most plausible 

imputed dataset. Two case studies are carried out to validate the usefulness of the SRB-PMM 

approach based on the rectangular RC column dataset presented in Chapter III. The results from 

both case studies suggest that the proposed SRB-PMM approach is an effective means to handle 

missing data problems prominent in the earthquake engineering field. 

6.3.1 Development of SRB-PMM 

This section presents the formulation of the proposed SRB-PMM method. The proposed method 

couples the sequential regression, predictive mean matching (PMM), and cross-validation (CV) 

algorithms to generate multiple plausible and realistic candidates for each missing value with 

consideration of the uncertainty due to missing data. The detailed procedure for the proposed 

method is presented below.  

Assume a dataset {(); , -;)};2"/
, where ); ∈ 7*+M and -; ∈ 7 is collected from a domain of 

interest. In this dataset, there are P observations, and each observation has (3 + å) explanatory 

variables (i.e., ); ∈ 7*+M) and one response variable (i.e., -; ∈ 7). However, some data points 
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(i.e., observations) have one or more explanatory variables with missing values, making the 

collected dataset {(); , -;)};2"/
 incomplete. For the remainder of this section, we assume there are 

no missing values in the response variable (as this is not relevant in the proposed application 

domain) and the following notations are used. Let $A=@ = 0$", … , $*1 ∈ 7/×* be a matrix with P 

observations, and each observation has 3 fully observed explanatory variables (i.e., there are no 

missing values for all P observations in these 3 explanatory variables, such as $", … , $* shown in 

Table 2.1). Let $5;@@ = 0&("), … , &(M)1 ∈ 7/×M  be a matrix with P  observations and each 

observation has å partially observed explanatory variables (i.e., there is at least one missing value 

for each of these å partially observed explanatory variables, such as &("), &($), &(%) shown in Table 

2.1), and &("), … , &(M) have been ordered increasingly in terms of the missing data ratios. Let ' ∈

7/  be a vector. Thus, the dataset {(); , -;)};2"/
 can also be written as æ = ($, '), where $ =

0$A=@, $5;@@1 ∈ 7/×(*+M). A schematic format of this incomplete dataset is presented in Table 2.1. 

Let  ø = 0ø", … , øM1 ∈ 7/×M be the indicator matrix where ¥;0 = 1 if ,;0 is observed and ¥;0 =

0 if ,;0  is missing. Note that the indicator matrix ø is only applied to $5;@@ . Thus, for the Éth 

explanatory variable, where É = 1,… , å, the vector &(0) can be thought of as consisting of two 

parts: &(0)
A=@ = /,;0: ¥;0 = 12, the data that is observed, and &(0)

5;@@ = /,;0: ¥;0 = 02, the data that is 

not observed. We assume that the missing data are missing at random (MAR) (Hoff 2009), which 

means that ø and $5;@@ are statistically independent and the distribution of ø does not depend on 

the model parameter ò. 

From a probability perspective, missing values can be reasonably imputed only when a 

multivariate imputation model 30$5;@@|$A=@, ò1 is specified correctly (Schafer 1997), where ò =

0¡", … , ¡M1  is the model parameter (e.g., regression coefficients, dispersion parameter). The 
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multivariate imputation model 30$5;@@|$A=@, ò1 can be factored as follows (Raghunathan et al. 

2001): 

30$5;@@|$A=@, ò1 = 30&("), … , &(M)|$A=@, ò1
= 3M0&(M)|&("), … , &(M8"), $A=@, ¡M1
× 3M8"0&(M8")|&("), … , &(M8$), $A=@, ¡M8"1 × …× 3"0&(")|$A=@, ¡"1 (6.11) 

                           

where Z#, s = 1,… , V are the conditional density functions.  

Eq. (6.11) is initiated by regression of the variable with the fewest number of missing values (i.e., 

&(")), &(") on  $A=@. The missing values are imputed by PMM based on the regression results to 

form an imputed, complete data vector &("). Then, the complete &(") vector is appended with $A=@ 

to impute variable &($) with the next fewest number of missing values using the univariate model 

3$0&($)|&("), $A=@, ¡$1. This means,  &(")  is imputed on ≥" = $A=@ , &($)  is imputed on ≥$ =

0$A=@, &(")1  where &(")  has imputed values, &(%)  is imputed on ≥% = 0$A=@, &("), &($)1  where 

&(")  and &($)  have imputed values, and others (i.e., &(-), … , &(M) ) are imputed in a similarly 

sequential manner. The detailed imputation procedure for imputing each partially observed 

explanatory variable using SRB-PMM is presented below. 

Since missing values exist in &(0), the model for &(0) cannot be established directly. For 

the model 3"0&(")|$A=@, ¡"1 (which can be written as 3"0&(")
A=@, &(")

5;@@|$A=@, ¡"1), the unknown 

quantities include the model parameter ¡" and missing values &(")
5;@@

.  According to Bayes rule, the 

following equation can be given: 

3"0&(")
A=@, &(")

5;@@|$A=@, ¡"1
= 	3"0&(")

5;@@|&(")
A=@, $A=@, ¡"1 × 3"0&(")

A=@|$A=@, ¡"1 (6.12) 
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We specify a normal linear model for 3"0&(")
A=@|$A=@, ¡"1 as well as for all other conditional density 

functions. For a linear model, the regression of &(")
A=@  from $A=@  depends only on $A=@" =

{$A=@: ¥;" = 1}, which is given by: 

 

&(")
A=@ = $∗A=@"_" + ¬" (6.13) 

 

where t& = AW&&, … W&7C is a regression coefficient vector; u∗G"4& is the design matrix including 

the column corresponding to the intercept term in the regression model (i.e., the column with unity 

entries), v& = AX&&, … , X&(.;<=)C  is an error vector, /G"& = P-/3\ℎAw(&)
G"4C  is the number of 

observed data in w(&)  (note that the number of observations in u∗G"4&  is also /G"& , i.e., 

S.x-Au∗G"4&, 1C = S.x-A{uG"4: z$& = 1}, 1C = /G"& ) and X&&, … , X&(.;<=)~  i.i.d. 	r(0, J&*)  or 

v&~r(|, J&
*}), and } is the identity matrix.  

Thus, in this case, the model parameter ¡" = (_", á"$) and the posterior distributions need to be 

determined. Given this setting, the likelihood function is a multivariate normal function 

($∗A=@"_", á"$√)  (Hoff 2009), which includes unknown model parameters _"  and á"$ . The 

posterior joint distribution of these two unknown model parameters can be written as follows: 

30_", á"$|$A=@", &(")
A=@1

= 30_"|á"$, $A=@", &(")
A=@1 × 30á"$|$A=@", &(")

A=@1 
(6.14) 

 

The posterior joint distribution of unknown model parameters (_", á"$) can be made via a Monte 

Carlo approximation by sampling from these two conditional distributions 30á"$|$A=@", &(")
A=@1 and 

30_"|á"$, $A=@", &(")
A=@1. Throughout this section, a v-prior distribution (Zellner 1986) is used for 

these unknown model parameters (_", á"$). With the use of the v-prior distribution, the resulting 

conditional distributions for 30_"|á"$, $A=@", &(")
A=@1 and 30á"$|$A=@", &(")

A=@1 are obtained as follows 

(Hoff 2009):  
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/á"$|$A=@", &(")
A=@2~inverse-gammaù"+/789

$
, \̂9

/+11G
$

û (6.15) 

 

/_"|á"$, $A=@", &(")
A=@2~º ƒ

v
v + 1_

ô
",

v
v + 1á"

$(($∗A=@")_$∗A=@")8"≈ (6.16) 

 

where t~& = �Au∗G"4&C
H
u∗G"4&Ä

D&
Au∗G"4&C

H
w(&)
G"4 is a regression coefficient vector estimated by 

ordinary least squares (OLS);  JÅ&* = S_(�Aw(&)
G"4 − u∗G"4&t~&C

I
Ä /(/G"& − Z)  is an unbiased 

estimate of J&* , ÉÉ7 = Aw(&)
G"4C

1
Ñ} − 3u∗G"4& �Au∗G"4&C

H
u∗G"4&Ä

D&
Au∗G"4&C

H
(3 + 1)Ü áw(&)

G"4  is 

the sum of squared residuals (SSR). 

Since we can sample from both of these two conditional distributions, a value of (_", á"$) sampled 

from the posterior joint distribution 30_", á"$|$A=@", &(")
A=@1  can be extracted by first sampling 

á"$	from Eq. (6.15) and then sampling _" from Eq. (6.16) given the drawn á"$. Thus, multiple 

independent sample values from 30_", á"$|$A=@", &(")
A=@1 can be made by independently repeating 

the procedure. Suppose we obtain l sample values {(_", á"$)@}@2"1  from 30_", á"$|$A=@", &(")
A=@1. 

So, the mean of the model parameters given the l samples can be obtained by a Monte Carlo 

approximation, where _∆" = (1/l)∑ (_")@1
@2"  and áe"$ = (1/l)∑ (á"$)@1

@2" .  Given the sampled 

model parameters 0_∆", áe"$1 , a regression model can be established by inserting the model 

parameters into Eq. (6.13). Next, a hybrid procedure to generate the realistic candidates for missing 

values using PMM incorporated with a k-fold cross-validation procedure based on an ML model 

is described. 

In contrast to other imputation approaches, the goal of the regression model in the PMM 

approach is not to actually generate the imputed values. Instead, the aim is to establish a metric for 

matching cases with missing values to similar cases with observed values (Schenker and Taylor 

1996; Little 1988; Morris et al. 2014; Rubin 1986). The similarity is measured by the Euclidean 
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distance between the fitted values for the observed data and the predicted values for the missing 

data. For each missing case, the PMM algorithm first identifies a set of cases of observed data 

whose fitted values are close to the predicted value for the case with missing data in terms of the 

measured similarities. From those close cases, one case is randomly sampled and assigned its 

observed value as a substitute for the missing value. Therefore, the PMM imputes the missing 

values based on the realistic observed values, and thus, never generates imputations outside the 

observed value ranges. In this way, PMM overcomes the problems associated with meaningless 

imputations generated by aforementioned MI approaches (Section 2.4.2). However, in this 

procedure, the randomly selected case may not be the most plausible case, since there is no 

standard method to evaluate whether or not the selected one is the most plausible.   

To solve this problem, a hybrid approach is developed to select the most plausible cases 

based on the k-fold cross-validation (CV) algorithm (James et al. 2013). The purpose of this hybrid 

method is not to evaluate if a randomly selected single case for one missing value in one partially 

observed explanatory variable is the most plausible. Instead, it evaluates the imputed, complete 

dataset where the missing values in all the partially observed explanatory variables are imputed. 

The evaluation criterion is based on an ML model’s performance estimated by the CV algorithm 

on the imputed, complete dataset, where the most plausible cases should be those that result in the 

ML model with the best performance. We denote that $A=@7 = {$A=@: ¥;" = 0} , $∗A=@7  is the 

design matrix for $A=@7  as explained for $∗A=@"  previously, PA=7  is the number of cases with 

missing values in &(")  (note that the number of missing data in $A=@7  is also PA=7 , i.e., 

êi«g($A=@7, 1) = êi«g({$A=@: ¥;" = 0}, 1) = PA=7), and PA=7 + PA=" = P. The detailed procedure 

regarding the donor pool generation (i.e., selected close cases) for the missing values in &(")
5;@@ 

using the PMM algorithm is summarized in Algorithm 6.4. 
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Algorithm 6.4: Generate realistic candidates for missing values using PMM  
1) Calculate the fitted and predicted values for o(#)>?* and o(#)@!**, respectively:  
oh(#)>?* = p∗>?*#qr#  

oh(#)@!** = p∗>?*0qr# 

2) Select k cases as the plausible candidates for each missing value s(#),!@!** in o(#)@!**: 

for all ] = 1,… , t>?0 do 
    2.1) Calculate the Euclidian distance vector u! = Soh(#)>?* − sv(#),!@!**S. 

    2.2) Sort u! increasingly to obtain an increasingly ordered vector u! = Lw!(#), … , w!($"#$)M. 
    2.3) Select k cases from o(#)>?* corresponding to the first k close entries (i.e., w!(#), … , w!(B)) in u!. 
    2.4) Assign their observed values as the k candidates for the missing value s(#),!@!**. 

            end for i 
 

 

Using Algorithm 6.4, each missing value in &(")
5;@@

 has { candidates to impute. For each missing 

value, randomly sample one of the  { candidates and impute the missing value. After all the 

missing values in &(")
5;@@ are imputed in the same way, an imputed vector is obtained, which is 

denoted as &ô(")
5;@@

. Then, continue this procedure within the remaining { − 1 candidates for each 

missing value until all candidates are used. Finally, there will be { imputed &ô(")
5;@@

, which is denoted 

as /&ô("),>
5;@@2

>2"

N
. Each combination 0&(")

A=@, &ô("),>
5;@@1, Ñ = 1,… , { forms an imputed &(") vector, which 

is denoted as &ô("),>. Therefore, { imputed &ô(") vectors are formed, which is denoted as /&ô("),>2>2"
N

. 

To impute the missing values in &($), ≥" = $A=@ is updated by ≥$,> = 0$A=@, &ô("),>1, Ñ = 1,… , {. 

Then, Algorithm 6.5 is developed to impute &(0), É = 2,… , å in a sequential way. 

 

 

 

 

 

 



 

 

 

 

170 

 

 

Algorithm 6.5: Sequentially impute the missing values for Z(+), [ = 2,… , / 

Given the XZ2,8Y8"#
B

, where Z2,8 = Lp>?*, oh(#),8M. 
for all W = 1,… , k do 
    for all K = 2,… , x do 

1) Compute the model parameters Lqr3 , yz32M using Eqs. (6.12-6.16) with the replacement of variables and parameters for 

o(3), i.e., >3Lo(3)|Z3,8 , q3 , y32M. 
2)  Generate k realistic candidates for each missing value in o(3)@!** using algorithm 6.4 with the replacement of variables 

and parameters for o(3). 
3)  Randomly select a candidate for imputing each missing value in o(3)@!**.  
4)  Denote the finally imputed o(3) as oh(3),8 and update the Z34#,8 = LZ3,8 , oh(3),8M. 

           end for j 
           5)  Set |h 8 = Lp8

!@CD/% , %M, where |h 8 is an imputed, complete dataset and p8
!@CD/% = ZE4#,8 = LZE,8 , oh(E),8M. 

       end for l 

 

 

By implementing Algorithm 6.5, one can obtain { imputed, complete datasets /æô >2>2"
N

. Next, we 

use a k-fold cross-validation (CV) algorithm to minimize a cost function and determine which 

imputed dataset is the most plausible based on a data-driven model (ML technique). The following 

procedure is used to select the most plausible imputed dataset, which is defined as the one capable 

of minimizing the cost function µO ù', Q0$;5*9?P1û by a k-fold cross-validation procedure, where 

µO(∙) represents the cost function and Q(∙) represents an ML technique: 

 

Algorithm 6.6: Selection of the most plausible imputed dataset by K-fold CV procedure 
Given the k imputed datasets X|h 8Y8"#

B
, where |h 8 = Lp8

!@CD/% , %M, cost function }~(∙), ML technique *(∙). 
for all W = 1,… , k do 

1) Compute the cost by K-fold CV procedure: 

    }�F1G>8-L|h 8M =
#
F
∑ }~ Ä%$% , *6p$%,8

!@CD/%9ÅF
H"# . 

       end for l 
       2) Choose the imputed dataset that has the ;]t 6X}�F1G>8-L|h 8MY8"#

B 9. 
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In Algorithm 6.6, P3 is the size of the †th group (i.e., P3 = QÑ¥¥{(P/=)); '/: is the observed 

response variable for the †th group in terms of the Ñth imputed, complete dataset æô >; Q0$/:,>
;5*9?P1 

is the predicted response for the †th group by an ML technique Q(∙) trained on 0$8/:,>
;5*9?PK , '8/:1 

in terms of æô >; 0$8/:,>
;5*9?PK , '8/:1 is the complementary set of 0$/:,>

;5*9?PK , '/:1 in æô >. 

Using Algorithms 6.4 – 6.6, the most plausible imputed, complete dataset can be 

determined. The f most plausible imputed, complete datasets to constitute an ensemble can be 

created for MI analyses to account for the uncertainty of missing data by independently repeating 

Algorithms 6.4 – 6.6 m times. Each imputed, complete dataset can be used to develop an analytical 

model, and thus m analytical models forming an ensemble can be developed for predictions. The 

final predicted results are the average of the predicted results of m models. A schematic flowchart 

is presented in Figure 6.4 to illustrate this procedure.  

6.3.2 Design of two case studies 

This section presents the details of the numerical experiment design and validation for the 

performance of the SRB-PMM in practical applications in CE. Two case studies are performed. 

The first case study is to evaluate the capabilities of the proposed SRB-PMM in improving the 

lateral strength prediction performance of a data-driven model based on an RC column dataset 

subjected to ten different missing data ratios. The second one serves to illustrate the practical 

application of the SRB-PMM in post-earthquake structural analysis when the target damaged 

building is missing critical structural information. The detailed information is introduced below. 
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Figure 6.4 Schematic flowchart for the prediction based on an ensemble of m data-driven models. 

 

In structural engineering, RC columns are the primary lateral load-carrying structural member to 

effectively resist earthquake loads. The lateral strength of an RC column is a critical factor when 

quantifying the seismic performance of the overall structure. Thus, it is important to accurately 

predict the lateral strength of RC columns in structural engineering. The RC column dataset 

presented in Chapter III (with full details in Appendix A) is used to perform the two case studies. 

There are ten features or predictors used in this study: the column gross sectional area nB 

(calculated by w × ℎ, where w is column section width and ℎ is column section depth), concrete 

compressive strength QX′, column cross-sectional effective depth h , longitudinal reinforcement 

yield stress Q6> , longitudinal reinforcement area n@> , transverse reinforcement yield stress Q6? , 

transverse reinforcement area n@?, stirrup spacing ê, shear span j, and applied axial load p. The 
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response variable is the lateral strength ;5, which is defined as the maximum shear force in the 

hysteretic force-displacement curve.  

Since the RC column dataset does not contain missing values, the case studies are 

performed on synthetic incomplete datasets. For Case Study 1, synthetic incomplete datasets with 

ten different missing data ratios are generated from the complete column dataset to 

comprehensively test the performance of the proposed SRB-PMM approach. The performance of 

the proposed approach is also compared with the two widely used MI methods mentioned 

previously: JM and FCS. For Case Study 2, an RC column randomly sampled from the RC column 

dataset serves as an example of the target damaged building which is hypothetically missing some 

critical structural information when surveyed in a post-earthquake state. The randomly sampled 

RC column’s critical feature information regarding the material strength and reinforcement details 

is necessary to build the numerical model for further seismic analysis; however, in this case study, 

this information is removed and thus assumed unknown. The proposed SRB-PMM approach will 

be used to impute this critical feature information. The seismic analysis results obtained from the 

imputed information will be compared with experimentally observed results to illustrate the 

practical application of the SRB-PMM approach. The detailed information regarding the designs 

of these two case studies is presented in Sections 6.3.2.1 and 6.3.2.2. 

6.3.2.1 Design of case study 1 

The purpose of this first case study is to evaluate the capability of the SRB-PMM approach in 

improving the lateral strength prediction performance of a data-driven model based on the 

mentioned RC column dataset subjected to ten different missing data ratios and thus, to investigate 

how the missing data ratio affects its performance. The synthetic incomplete datasets are generated 

in the following way. First, for the original complete RC column dataset, we use the 10-fold cross-
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validation procedure (Section 3.4.2) to generate ten different training and test sets where the ten 

test sets are mutually exclusive. Then, we select ten missing data ratios: 5%, 10%, 15%, 20%, 

25%, 30%, 35%, 40%, 45%, and 50%. For each missing data ratio, we generate an incomplete 

training set from each original complete training set by randomly sampling observations. The 

number of sampled observations equals the |giÑ(fiêêiPv	{jzi¥ × P?N), where P?N  is the size of 

the training set. Given the sampled observations, we randomly sample half of the column features 

(or predictors) (i.e., five features), which serve as the fully observed explanatory variables. The 

remaining half of the column features serve as the partially observed explanatory variables (e.g., 

it could be the concrete compressive strength, reinforcement yield stress, or other features). The 

number of explanatory variables with missing values for each sampled observation is set randomly 

between 1 and 5. Following these steps, a synthetic incomplete training set can be generated from 

the complete training set. Note that the 10 mutually exclusive test sets for each missing data ratio 

are held constant (i.e., missing data is only applied to the training set).  

The least squares support vector machines for regression (LS-SVMR) technique is used to 

construct the data-driven model employed in this work. Five types of data-driven models are 

designed. Delete-LS-SVMR is established as a baseline, where the data-driven model is developed 

based on the reduced, complete training set formed by deleting the observations with missing 

values in the incomplete training set. SRB-PMM-LS-SVMR is the data-driven model developed 

using the proposed SRB-PMM method where the incomplete training set is first imputed using the 

SRB-PMM approach presented in Section 6.3.1 and then the SRB-PMM-LS-SVMR is developed 

based on the imputed, complete training set. The third and fourth data-driven models developed in 

this work are established to thoroughly compare the performance of the proposed approach with 

existing, popular MI approaches. JM-LS-SVMR and FCS-LS-SVMR are developed using the JM 
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(with a multivariate normal model) (Schafer 1997) and FCS (with a univariate normal model) 

(Buuren and Groothuis-Oudshoorn 2010) imputation methods, respectively. The final data-driven 

model, Complete-LS-SVMR, is employed as an experimental benchmark (or ground truth), where 

the original complete training set is used to develop the data-driven model. The ten test sets for all 

five data-driven models are the same, as introduced above. For each developed data-driven model, 

the final performance is evaluated by taking the average of the ten tests. 

6.3.2.2 Design of case study 2 

In the second case study, the objective is to illustrate the practical application of the SRB-PMM 

approach in expediting post-earthquake structural evaluations when critical structural information 

required for seismic analysis is missing. The rectangular RC column dataset (Appendix A) is also 

used in this case study. Specifically, we first randomly sample an RC column from the 262 column 

specimens, and this column then serves as the target structure with missing critical feature 

information. The critical feature information considered in this case study is the concrete 

compressive strength QX′, longitudinal reinforcement yield stress Q6>, longitudinal reinforcement 

area n@>, transverse reinforcement yield stress Q6?, and transverse reinforcement area n@?. This is 

because these features may easily be missing from field surveys, whereas the feature information 

regarding the column geometry may more easily be extracted in a routine evaluation. Thus, the 

information pertaining to these five features is assumed unknown for the sampled column and 

requires imputation before a seismic analysis can be carried out. The synthetic incomplete datasets 

are generated based on the remaining 261 column specimens in a similar way as in Case Study 1 

but with two differences. The first difference is that this case study only has one incomplete dataset 

for each missing data ratio and does not have the split of training and test sets. The second 
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difference is regarding the partially observed explanatory variables. In this case study, the partially 

observed explanatory variables are restricted to the aforementioned five features. 

In this case study, we limit the missing data ratio to 5% and 10%. Therefore, in total, there 

are two synthetic incomplete datasets. The sampled column missing the information pertaining to 

the five critical features is then added to these two synthetic, incomplete datasets. Then, the SRB-

PMM method is used to impute the missing values in the synthetic, incomplete datasets. After all 

the missing values are imputed, we then use the imputed feature information along with the known 

feature information (e.g., column geometry) to perform a seismic analysis of this sampled column. 

The performance of the SRB-PMM method is evaluated by comparing the imputed sampled 

column’s simulated seismic response with its experimentally observed response in terms of the 

hysteretic force-displacement relation.  

6.3.3 Case study implementation 

To implement the SRB-PMM method, some parameters introduced in Section 6.3.1 need to be 

established. The number of close cases { is set to five. The m most plausible candidates is set to 

three. The cost function (i.e, µO(∙)) is mean squared error (MSE), which is evaluated by the LS-

SVMR based on the 10-fold cross-validation procedure (Section 3.4.2). The detailed 

implementation of the JM and FCS methods can be found in Schafer (1997) and Buuren and 

Groothuis-Oudshoorn (2010). The m candidates to account for the uncertainty of missing data for 

the JM and FCS methods is also set to three. All codes are implemented in Matlab. To illustrate 

the post-earthquake structural evaluation, OpenSees (Mazzoni et al. 2006) is used to perform the 

seismic analysis of the sampled column with the imputed feature information. 
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6.3.4 Numerical results 

In this section, the experimental results of the two case studies are presented. For the first case 

study, results pertaining to the performance of the five data-driven models, SRB-PMM-LS-SVMR, 

FCS-LS-SVMR, JM-LS-SVMR, Delete-LS-SVMR, and Complete-LS-SVMR are all presented. 

Further, the investigation of how the missing data ratio affects the performance of these data-driven 

models in terms of R
2
, RMSE, and MAE is presented. For the second case study, the hysteretic 

force-displacement relation of the sampled RC column obtained with the imputed critical feature 

information is compared with the experimentally observed results for the same column. At last, a 

discussion regarding the proposed SRB-PMM approach is presented. 

6.3.4.1 Results for case study 1 

The results for each missing data ratio are averaged to reflect the performance of SRB-PMM-LS-

SVMR, FCS-LS-SVMR, JM-LS-SVMR, and Delete-LS-SVMR in terms of the average R
2
, RMSE, 

and MAE metrics. The average R
2
, RMSE, and MAE values across ten different missing data 

ratios are reported in Figure 6.5. Note that the results for Complete-LS-SVMR do not fluctuate with 

the variation of missing data ratios since the Complete-LS-SVMR is developed based on the 

original complete training set and serves as the benchmark for this work. By observation of Figure 

6.5, the results for SRB-PMM-LS-SVMR, FCS-LS-SVMR, JM-LS-SVMR, and Delete-LS-SVMR 

show that the average RMSE and MAE values increase globally (though some values decrease 

locally) with increasing missing data ratios, and the average R
2
 values decrease globally (though 

some values increase locally) with increasing missing data ratios. This phenomenon suggests that 

the performance of all imputation methods are inversely related to the missing data ratio, which is 

to be expected. Additionally, compared to the results of Delete-LS-SVMR, the proposed SRB-

PMM-LS-SVMR improves the prediction performance for all ten missing data ratios, while both 
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JM-LS-SVMR and FCS-LS-SVMR degrade the prediction performance in some cases. Moreover, 

the obvious difference between Delete-LS-SVMR and Complete-LS-SVMR suggests that directly 

deleting the observations with missing values is not an effective way to handle the missing data 

since it reduces the prediction performance of the data-driven modeling procedure substantially. 

To further investigate these findings, the following criteria (Kang 2013) are used to 

quantify the R
2
, RMSE, and MAE improvements (%) versus discarding the observations with 

missing values, for each imputation method, across the ten different missing data ratios. The R
2
, 

RMSE, and MAE improvements (%) are calculated as the following: 

R
2
 improvement (%) = 100 × ù G/	aLbc	LdefbgbLhi

G/	aLbchfb	LdefbgbLhi
− 1û (6.17) 

RMSE improvement (%) = 100 × ù1 − jklm	aLbc	LdefbgbLhi

	jklm	aLbchfb	LdefbgbLhi
û (6.18) 

MAE improvement (%) = 100 × ù1 − knm	aLbc	LdefbgbLhi

	knm	aLbchfb	LdefbgbLhi
û (6.19) 

Note that the improvement is not calculated using the average R
2
, RMSE, and MAE values for 

each missing data ratio. The improvement for each missing data ratio is first calculated based on 

the original R
2
, RMSE, and MAE values. Then, the calculated improvements are averaged to 

reflect the average prediction performance improvements of SRB-PMM-LS-SVMR, FCS-LS-

SVMR, and JM-LS-SVMR in comparison to Delete-LS-SVMR. The average improvements in terms 

of R
2
, RMSE, and MAE are reported in Table 6.3. Then, the average improvements are employed 

to compare the prediction performance of SRB-PMM-LS-SVMR, FCS-LS-SVMR, and JM-LS-

SVMR. The greater the average improvements, the better the performance of imputation methods. 

By observation of Table 6.3, it is found that, in most cases, the proposed SRB-PMM-LS-SVMR 

outperforms both JM-LS-SVMR and FCS-LS-SVMR and achieves the best improvement in 

prediction performance, meaning that the proposed SRB-PMM imputation method possesses the 
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best performance in most cases. Further, the proposed SRB-PMM method always improves the 

prediction performance, which is demonstrated by all positive values in Table 6.3. Both JM and 

FCS occasionally degrade the prediction performance, which is illustrated by the appearance of 

some negative values in Table 6.3. The performance degradation of both JM and FCS may be 

attributed to the meaningless imputations induced by simulated candidates outside of the observed 

data range.  

 

 

 

Figure 6.5 The performance comparison of SRB-PMM-LSSVMR, FCS-LS-SVMR, JM-LS-SVMR, 
Delete-LS-SVMR, and Complete-LS-SVMR in terms of the average R

2
, RMSE, and MAE metrics 

versus ten missing data ratios. 

 

Table 6.3 The average performance improvement versus discarding observations with missing 

values across ten missing data ratios in terms of R
2
, RMSE, and MAE. The bold values represent 

the best performance improvements. 

Indicators Models 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

R2 

JM-LS-SVMR 0.83 1.60 0.00 1.13 1.07 -2.67 0.31 3.40 2.16 1.17 

FCS-LS-SVMR 1.43 1.41 0.84 1.33 0.73 -0.43 1.21 2.06 2.26 3.76 

SRB-PMM-LS-SVMR 2.49 3.81 1.66 2.33 2.59 1.96 1.60 5.26 4.02 4.10 

RMSE 

JM-LS-SVMR 5.86 8.99 -0.05 7.24 8.11 -14.52 1.71 15.99 12.01 7.41 

FCS-LS-SVMR 11.84 8.56 8.35 9.51 7.02 -2.43 8.49 10.10 13.17 23.67 

SRB-PMM-LS-SVMR 22.99 27.64 16.37 17.90 21.37 16.52 11.71 27.62 24.81 25.57 

MAE 

JM-LS-SVMR 3.25 4.65 1.90 6.23 3.94 6.77 9.55 14.48 10.98 12.43 

FCS-LS-SVMR 8.73 10.50 11.06 13.80 12.51 14.92 16.74 16.02 15.59 23.52 

SRB-PMM-LS-SVMR 14.30 14.87 12.20 11.99 12.81 12.58 13.01 16.07 15.78 21.40 
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6.3.4.2 Results for case study 2 

An RC column (specimen No. 6 in Tanaka and Park 1990) is randomly sampled from the column 

dataset. The column’s critical feature information introduced in Section 6.3.2.2 is assumed 

unknown and requires imputation prior to any seismic analysis. The missing data ratios considered 

in this case study are limited to 5% and 10%, as introduced in Section 6.3.2.2. After the synthetic, 

incomplete datasets are generated, the SRB-PMM approach is run independently three times for 

each missing data ratio to account for uncertainty due to the missing data. For each run, a group 

of the most plausible candidates for the five missing values can be generated. The seismic analysis 

for the sampled column is then based on the imputed feature information. Figures 6.6(a,b,c) and 

6.7(a,b,c) present the imputed values and the seismic analysis results of the sampled column 

generated from the synthetic incomplete column datasets with 5% and 10% missing data ratios, 

respectively. Figures 6.6(d) and 6.7(d) show the average of the simulated results to account for the 

uncertainty due to the missing data. 

By observation of Figures 6.6(a,b,c) and 6.7(a,b,c), it is evident that it is necessary to 

account for the uncertainty due to the missing data. This is because, although a single run may 

produce a good result, it can also produce significant bias. For example, for the 5% missing data 

ratio, Figures 6.6(a,c) show that the seismic analysis results underestimate the actual seismic 

performance of the sampled column, while the results presented in Figure 6.6(b) overestimates the 

true seismic performance; and for the 10% missing data ratio, the results in Figures 6.7(a,c) 

overestimate the actual seismic performance in spite of Figure 6.7(b) showing a good estimation. 

Thus, it is hard to judge which single run is a reasonable estimation before knowing the actual 

seismic performance. However, once considering the uncertainty, the estimation can be justified 

even if the actual seismic performance is unknown. Both Figures 6.6(d) and 6.7(d) account for the 
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uncertainty of the missing data, and these results show reasonable estimations. Therefore, this case 

study demonstrates that the proposed SRB-PMM method performs well for the incomplete column 

datasets with 5% and 10% missing data ratios, which in turn illustrates its practical application in 

post-earthquake structural evaluation subjected to missing data problems. 

 

 

                                        (a)                                                                (b) 

 

                                        (c)                                                                 (d) 

Figure 6.6 Seismic analysis result for the sampled RC column missing critical feature 

information. (a), (b), and (c) are the three results comparison between the experimental and 

simulated results, and the three simulated results are obtained from the three imputed information 

presented on the figures using the SRB-PMM based on the column dataset with 5% missing data 

ratio. The simulated result in (d) is taking the mean of the three simulated results to account for 

the uncertainty due to the missing data. 
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                                        (a)                                                                (b) 

 

                                        (c)                                                                (d) 

Figure 6.7 Seismic analysis result for the sampled RC column missing critical feature 

information. (a), (b), and (c) are the three results comparison between the experimental and 

simulated results, and the three simulated results are obtained from the three imputed information 

presented on the figures using the SRB-PMM based on the column dataset with 10% missing 

data ratio. The simulated result in (d) is taking the mean of the three simulated results to account 

for the uncertainty due to the missing data. 

 

Results from these two case studies demonstrate that the proposed SRB-PMM method is able to 

generate realistic, valid candidates for the missing values, without risking meaningless imputations 

as is characteristic of existing, popular imputation approaches. The first case study further 

illustrates that the proposed SRB-PMM method enhances the lateral strength prediction 

performance of the data-driven model when compared to the baseline model (Delete-LS-SVMR). 

It can also be concluded that when the missing data ratio is less than 10%, the proposed SRB-PMM 
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method can generate valid candidates, which yields the SRB-PMM-LS-SVMR model, trained on 

the imputed dataset, having comparable performance to the model formed using the original 

complete training set (i.e., Complete-LS-SVMR). The second case study validates the practical 

application of the SRB-PMM in seismic performance estimation of RC columns when information 

regarding critical features is missing. These results demonstrate the wide-scale capabilities of the 

proposed data-driven modeling framework towards expediting post-disaster structural evaluations, 

where all critical structural properties may not be known in the field.  

As the SRB-PMM method is a multiple imputation (MI) method, the uncertainty due to the 

missing data is also incorporated into the final structural analyses. On the basis of these two case 

studies, the results show that by independently running the method three times, it is sufficient to 

cover the variation induced by the uncertainty of the missing data. Therefore, based on the two 

case studies, it can be concluded that the proposed SRB-PMM method is a useful and effective tool 

to handle missing data problems in CE applications. 
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6.4 Solution to Small Datasets 

As introduced in Section 2.4.3, small datasets typically have unignorable sample bias and can lead 

to a fully-trained machine learning (ML)model that has a large bias. This section presents a novel 

regression-based transfer learning (TL) model to address small sample bias. The proposed TL 

model is termed double-weighted support vector transfer regression (DW-SVTR), as it couples 

least squares support vector machines for regression (LS-SVMR) with two weight functions. The 

first weight function uses kernel mean matching (KMM) to reweight the source domain data such 

that the means of the source and target domain data in a reproduced kernel Hilbert space (RKHS) 

are close. In this way, the source domain data points relevant to the target domain points have a 

larger weight than irrelevant source domain points. The second weight is a function of estimated 

residuals, which aims to further reduce the negative interference of irrelevant source domain 

points. The proposed approach is assessed and validated by simulated and real datasets, showing 

that the proposed DW-SVTR can even reduce sample bias and improve prediction performance 

between two irrelevant domains. The detailed information is presented as follows. 

6.4.1 Development of DB-SVTR 
 

Suppose two datasets, /0)01, -011202"
/

 and {()34 , -34)}32"5
 where )01  and )34  are both ∈ 7*  and -01 

and -34  are both ∈ 7, are sampled from the source domain distribution 31(), -)	and the target 

domain distribution 34(), -) respectively, where ) ∈ 7*, - ∈ 7. In the proposed TL method, we 

do not have the pre-assumption that the source and target domains are related. Therefore, the 

source and target domains could be unrelated (e.g., both the marginal and posterior distributions 

of the two domains are different). Since the source and target domains could be unrelated and 

arbitrarily far apart, this means that the units of the predictors and response variables between these 

two domains may vary greatly, leading to a significant discrepancy in numeric values. In this case, 
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there is no way to utilize the information from the source domain to improve the prediction for the 

target domain. Thus, the first step is to eliminate the impact of the different units. For both 

domains, we first transform the predictors )? ∈ 7*  and response -? ∈ 7  of the dataset 

{()? , -?)}?2"K
 to zero mean and unit variance space respectively using the following formulas: 

)? = ()? − )∆)./»[ (6.20) 

 

-? =
-? − -e
á6

 (6.21) 

 

where the “./” operator means element division of two vectors, as explained in Matlab, Bà ∈ 77 is 

the mean of the predictors,	âJ ∈ 77 is the standard deviation of the predictors, Rä ∈ 7 is the mean 

of the response variable,	JK ∈ 7 is the standard deviation of the response variable. 

After successfully transforming the data, the data in both domains will be within the space with 

zero mean and unit variance. Denote …01 = 0)01, -011 is a point from the transformed dataset in the 

source domain and …34 = ()34 , -34) is a point from the transformed dataset in the target domain. 

Since the dataset in the target domain is small and not sufficient in size, it cannot be directly 

employed to train a good ML model due to the potential sample bias. Thus, we need to borrow the 

data from the source domain to augment the small dataset in the target domain to reduce the sample 

bias. Denote …; = (); , -;) is a point from the augmented dataset {(); , -;)};2"5+/
 that is formed by 

combining the transformed source domain dataset /0)01, -011202"
/

 and the transformed target 

domain dataset {()34 , -34)}32"5
. Given the augmented dataset, the learning objective of the proposed 

DW-SVTR is to find optimal model parameters u = (è", è$, … , èO)4 ∈ 7O  and w ∈ 7  that 

minimize the following objective function:  

Minimize:	T(u, g;) = 	
"

$
u4u+	"

$
B ∑ #(…;)∂();)g;$5+/

;2"  (6.22) 

Subject to:�y; = u4Ç();) + w + g; , i = 1,… , (f + P) (6.23) 
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where -$ ∈ 7, S = 1,… , N  is the error term; 4 ∈ 7  is a regularization parameter; W(ã$), c(B$) ∈

7, . = 1,… ,( + / are weights that can take any value in the range [X, 1], W(ã$) is a weight to 

determine the importance of each data point in the augmented dataset and c(B$) is a weight, which 

is a function of residual where data points having large residuals have smaller weights and having 

small residuals have larger weights; the determination of these two types of weight function will 

be introduced in detail; X ∈ 7  is a real number approaching 0; @(B$)  is a feature vector, and 

@(∙): 77 → 78 is a mapping function from p dimensions to a higher h-dimensional feature space. 

If #(…;) takes a value approaching ë, it means that the point …; is irrelevant to the data points in 

the target domain and plays a lesser role in the prediction for the target domain; while, if #(…;) 

takes a value approaching one, it means the point …; is highly relevant to the target domain and 

plays an important role in the prediction for the target domain. 

The Lagrangian function is established to solve Eq. (6.22) and Eq. (6.23): 

Ö(u, w, g;; ";) = T(u, g;) − o ";((u)4Ç();) + w + g; − -;)
5+/

;2"

 (6.24) 

where H$ ∈ 7, . = 1,… ,( + / is a Lagrange multiplier (also called support values). 

The Karush-Kuhn-Tucker (KKT) conditions for optimality are used by differentiating the variables 

in Eq. (6.24) above, which results in the following: 

 (6.25) 

   

Rearranging Eq. (6.25) and eliminating u and g; , using a kernel function to replace the inner 

product of feature vectors, the following matrix equation can be obtained: 

1

1

0 ( )

0 0

0 , 1,...,
( ) ( )

0 ( ) ( ) , 1,...,

m n

i i
i

m n

i
i

i
i

i i i

T
i i i

i

L

L
b
L e i m n
e v
L y b e i m n

a j

a

a
g b

j
a

+

=

+

=

¶ì
= ® =ï¶ï

ï¶
= ® =ï¶ï

í¶ï = ® = = +
ï¶
ï
¶ï = ® = + + = +ï¶î

å

å

w x
w

x z

w x



 

 

 

 

187 

 

 

  

(6.26) 

 

where the kernel function is K(çL, çM) = φN(çL)φ(çM)	, i = 1,… ,m + n; t = 1,… ,m + n. 

For the determination of #(…;) ∈ 7, i = 1,… ,f + P, for each data point in the augmented dataset, 

we wish to accord points relevant to the points in the target domain more weight than irrelevant 

points. In conjunction with the use of the kernel function, the relevance is evaluated by the 

Euclidean distance in a reproduced kernel Hilbert space (RKHS). Specifically, in a feature space, 

data points (e.g.,Ç(…;)) close to the points (e.g., (…34) ) in the target domain will acquire more 

weights than distant points. Since the small dataset in the target domain has already been included 

in the augmented dataset, the #(…; ∩ …34) will be one. Thus, the problem is changed to determine 

the #0…; ∩ …011. To obtain the #0…; ∩ …011 for each data point in the source domain, the data points 

in the source domain are reweighted such that the mean (i.e., 
"

/
∑ #0…; ∩ …011Ç0…011/
02"  ) of the 

weighted data points in the source domain is close to the mean (
"

5
∑ Ç(…34)5
32"  ) of the data points 

in the target domain. Denote _ = /#0…; ∩ …011202"
/

 as a weight vector containing the weight for 

each data point in the source domain. According to the kernel mean matching (KMM) algorithm 

(Huang et al. 2007; Gretton et al. 2009), the weight vector _ can be obtained by minimizing the 

discrepancy between the mean of the weighted source domain data and the mean of the target 

domain data subjected to two constraints as shown in the following:  

_ = j{vmin
o
Õ"
/
∑ #0…; ∩ …011Ç0…011 −

"

5
∑ Ç(…34)5
32"

/
02" Õ

$
  (6.27) 

1 1 1 2 1
1 1

1 1

2 1 2 2 2 2
2 2

1 2

0 1 1 1
11 ( , ) ( , ) ( , ) 0

( ) ( )
11 ( , ) ( , ) ( , )

( ) ( )

11 ( , ) ( , ) ( , )
( ) ( )

m n

m n

m n

m n m n m n m n
m n m n

K K K b
v

y
K K K y

v

K K K
v

g b
a
a

g b

a

g b

+

+

+

+ + + +
+ +

é ù
ê ú
ê ú+ é ù
ê ú ê ú
ê ú ê ú
ê ú+ ê ú =
ê ú ê ú
ê ú ê ú
ê ú ê úë ûê ú

+ê ú
ê úë û

!

!

!

"
" " " # "

!

x x x x x x
x z

x x x x x x
x z

x x x x x x
x z

2

m ny +

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

"



 

 

 

 

188 

 

 

By reformulating Eq. (6.27) and using the kernel function to replace the inner product of feature 

vectors, the following quadratic programming (QP) problem concerning the two constraints can 

be formulated: 

Minimize:  T(_) = "

$
	_4≠"_ − Œ4_ (6.28) 

 

Subject to: œ"
/
∑ #0…; ∩ …011 − 1/
02" œ ≤ – 

0 ≤ #0…; ∩ …011 ≤ —, É = 1,… , P 
(6.29) 

 

where a& = a#) ≔ IAã#
9, ã)

9C ∈ 7.×. , s, \ = 1,… , / is a kernel matrix calculated based on the 

data in the source domain, î = 1000 is the upper boundary to reflect the scope of discrepancy 

between the source domain distribution Z9(ã)  and the target domain distribution Z1(ã) , ï =

A√/ − 1C/√/  is the normalization precision, ó ≔ .
,
a*=,×& ∈ 7.  where a* = a#0 ≔

IAã#
9, ã0

1C ∈ 7.×,, s = 1,… , / and ò = 1,… ,( is a kernel matrix calculated based on the source 

and target domain data.  

After solving the QP problem and normalizing the weight _ = _/fj,(_), each data point in the 

source domain will have a weight  #0…; ∩ …011. Since the weight #(…; ∩ …34) for each data point in 

the target domain has been determined, the remaining is to determine the weight #(…;) for each 

data point in the augmented dataset. The points having a large weight in the augmented dataset 

will be more relevant to the target domain points than points having a small weight. Additionally, 

irrelevant data points are equivalent to outliers, as they are distant from the target domain data 

points (De Brabanter et al. 2009; Mu and Yuen 2015; Rousseeuw and Leroy 1987; Suykens et al. 

2002; Yuen and Mu 2012; Yuen and Ortiz 2017). Although these ‘outliers’ already have small 

weights, we wish to further reduce their negative effect. Thus, another weight	∂();), which is a 

function of residuals, is incorporated too, as presented in Eq. (6.30). By imposing a weight #(…;) 

to each data point in the augmented dataset, the relevant points will have small residuals while the 
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irrelevant points or ‘outliers’ will have large residuals. Points having large residuals will have a 

small weight 	∂();) , whereas points having small residuals will have a large weight 	∂();) . 

Therefore, in this sense, the importance of the relevant points is further emphasized, while that of 

the irrelevant points is further diminished. According to Suykens et al. (2002), ∂();) is determined 

by the following: 

 

∂();) = “
1															iQ	|g;/	A| ≤ |"	

X/8|P;/	r|
X/8X9

			iQ	|" ≤ |g;/	A| ≤ |$
ë																							¥zℎg{èiêg

  (6.30) 

 

where c& = 2.5, c* = 3, ε = 10DE, and δ = 1.483MAD(eL) is a robust estimate where MAD is the 

median absolute deviation and other variables are defined previously.  

After solving Eq. (6.26) (Suykens et al. 1999; 2002), the Lagrange multiplier ^ = ("", … , "N) and 

w can be obtained, which can then be utilized for prediction in the target domain (e.g., )4) using 

the following: 

-d()4) = ∑ ";5+/
;2" =()4 , );) + w   (6.31) 

 

The RBF kernel presented in Eq. (4.11) is utilized. 

 

 

 

 

 

 

 

 

 



 

 

 

 

190 

 

6.4.2 Implementation 

The implementation procedure of the proposed DW-SVTR approach for reducing the sample bias 

of small datasets is summarized as follows: 

 

Algorithm 6.7: Implementation of proposed DW-SVTR model 
Require: Training datasets in the source domain 8]+<:+34

= = 83&+<, 9+<7:+34
=  and target domain {]>?}>34@ =

{(&>? , 9>?)}>34@ , test data in the target domain &?, and optimal hyper-parameter combination 35, 61, 6A17. 
 
1. Initialization stage: 
    (a) Transform the training datasets in the source and target domains individually using Eq. (6.20-6.21). 
    (b) Record the means &̀B5? , 9aB5?  and standard deviations bC!"# , 6D!"#  for the target domain training dataset 
{(&>? , 9>?)}>34@ .  
    (c) Combine the transformed datasets in the source and target domains as an augmented dataset {(&* , 9*)}*34@6=. 
2. Reweighting stage:  
    (a) Calculate the c4 and d in Eq. (6.28) using Eq. (4.11) with the parameter 6A1. 
    (b) Set ;(]* ∩ ]>?) = 1, f = 1,… ,*. 
    (c) Solve Eqs. (6.28-6.29) to obtain , = 8;3]* ∩ ]+<7:+34

=  and normalize it as , = ,/*gh(,). 

    (d) Combine {;(]* ∩ ]>?)}>34@  and 8;3]* ∩ ]+<7:+34
=  as {;(]*)}*34@6=. 

    (e) Set weight <(&*) in Eq. (6.30) for each data point in the augmented dataset {(&* , 9*)}*34@6= to 1;  
    (f) Solve Eq. (6.26) to obtain +, =, and compute >* = ?*/35<(&*);(]*)7, I = 1,… ,* + L. 
3. Iterative stage: 
    Set the maximum iterative number i, tolerance FGH, count C = 0, and F = KL4 
    while  F > FGH && C < i do 
        (a) Set +(2) = +, =(2) = =, >*

(2) = >*, and <(2)(&*) = <(&*); 
        (b) Compute the robust estimate O(2) = 1.483$TU3>*

(2)7; 
        (c) Update the weight <(264)(&*) from O(2) and  >*

(2) using Eq. (6.30); 
        (d) Solve Eq. (6.26) to obtain the +(264) and =(264); 
        (e) Update the >*

(264) = ?*
(264)/ A5<(264)(&*);(]*)B; 

        (f) Calculate F = V+(264) − +(2)V; 
        (g) Set + = +(264), = = 	=(264), >* = >*

(264), and <(&*) = <(264)(&*); 
        (h) Set C = C + 1 
     end while 
4. Output stage: 
    (a) Transform the data &? with the recorded mean &̀B5?  and standard deviation bC!"#  using Eq. (6.20); 
    (b) Output the final + and = from the stage 3; 
    (c) Given + and =, predict the response value 9Y(&?) of the transformed data &? using Eq. (6.31). 
    (d) Transform the predicted 9Y(&?) back by 9Y(&?) = 9Y(&?) × 6D!"# + 9aB5

? . 
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6.4.3 Numerical results 
 
To thoroughly assess the performance of the proposed DW-SVTR approach, two examples are 

carried out. First, a simulated example is used to illustrate the general performance for the most 

challenging case where both the marginal and posterior distributions of the two domains are 

different. Then, the proposed approach is employed to predict the shear strength of non-ductile 

reinforced concrete (RC) columns to illustrate the real-world utilization of the approach when 

sufficient large datasets are not available. 

6.4.3.1 Results for simulated datasets 

This example is designed to illustrate how the proposed DW-SVTR works in an especially 

challenging case. In this example, the datasets in the source and target domains are respectively 

generated from different joint distributions, where both the posterior and the marginal distributions 

are different i.e., 31()) ≠ 34()) and 31(-|)) ≠ 34(-|)). The source domain has a sufficiently 

large number of data points, while the target domain has a small number of data points. Thus, the 

target domain has a potentially large sample bias. This case is more challenging as both the 

predictor and the response values in the datasets between the source and the target domains may 

be significantly different, more likely leading to the case where there is no relevance between the 

source and the target domains. It is commonly thought that there is no way to use an ML model 

trained in one domain to improve the prediction on another, seemingly, completely irrelevant 

domain. However, the theory presented in the previous section along with the following 

experimental results demonstrates that the proposed DW-SVTR can still reduce the negative effect 

induced by the sample bias of small data and improve the predictive performance in this case. 

The marginal distributions of the datasets in the source and target domains are assumed as 

normal and uniform distributions, respectively, where ,1~º¥{fjÑ(8, 3$)  and 
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,4~ΩPiQ¥{f(−5,5). The responses for the dataset in the source domain are generated from -1 =

−6,1 + (,1)% + ë1, while those for the dataset in the target domain are generated according to 

-4 = ,4 + (,4)$ + (,4)% + ë4 . The error term distribution for the source domain dataset is 

ë1~º¥{fjÑ(0, 200$) and for the target domain dataset is ë4~º¥{fjÑ(0, 12$). Thus, in this 

sense, the posterior and the marginal distributions between the source and the target domains are 

different. Ten points (red square points in Figure 6.8a) randomly sampled from the target domain 

serve as the training data in the target domain and 600 points (blue circle points in Figure 6.8b) 

randomly sampled from the source domain are the training data in the source domain. An 

individual test dataset including 200 points (green square points in Figure 6.8d) is randomly 

generated from the target domain. In this example, three analytical cases are considered. In these 

analytical cases, the training dataset is varied, but the test dataset holds constant: (1) Target only: 

the 10 training sample points in the target domain (red square points in Figure 6.8a) are used to 

train an ML model, and this trained ML model is then used to predict the 200 test sample points 

in the target domain (green square points in Figure 6.8d); (2) Source only: the 600 training sample 

points in the source domain (blue circle points in Figure 6.8b) is used to train an ML model, and 

this ML model is used to predict the 200 test sample points in the target domain; and, (3) DW-

SVTR:  both the 10 and the 600 training sample points are used as the training dataset for the 

proposed DW-SVTR, and the trained DW-SVTR model is then utilized to predict the 200 test 

sample points in the target domain. The least squares support vector machines for regression (LS-

SVMR) technique is employed for cases (1) and (2). All the hyper-parameters for both LS-SVMR 

and proposed DW-SVTR in these three cases are obtained using 10-fold cross-validation on the 

corresponding training data sets. 
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The experiment is run 10 distinct times by setting different random seeds to 

comprehensively reflect the performance of the proposed DW-SVTR. A typical representative of 

the results for 10 runs is presented in Figure 6.8. Figure 6.8(a) shows the small training dataset in 

the target domain, which only includes 10 training sample points and thus has a potentially large 

sample bias. Figure 6.8(b) presents the training datasets in the source and target domains that are 

combined in a coordinate system. It is found that, in Figure 6.8(b), only three points in the target 

domain are surrounded with the points in the source domain in the original space. This illustrates 

the significant lack of relevance between the two domains since the data points in the source 

domain only potentially can reduce the sample bias within the range represented by the three points 

in the target domain. Figure 6.8(c) shows the combined training dataset in the transformed space. 

Note that the transformation for the datasets in the source and target domains is first performed 

separately using Eqs. (6.20-6.21). Then the transformed datasets in the source and target domains 

are combined, as described in Algorithm 6.7 in Section 6.4.2. It is observed in Figure 6.8(c) that 

the relevance between the two domains significantly increases after transformation. Figure 6.8(d) 

shows the results for all three analytical cases. For analytical case 1, from Figure 6.8(d), it is 

observed that the LS-SVMR model trained with 10 training sample points has a large bias in some 

areas where the training sample points are not available. This is demonstrated in Figure 6.8(d) by 

the apparent discrepancy of the blue dashed line (i.e., target only) and the black solid line (i.e., true 

function) in the areas where the training sample points are not available as shown in Figure 6.8(a). 

For analytical case 2, as the source domain training dataset is not significantly relevant to the target 

domain, the LS-SVMR model trained with the 600 source domain training sample points has a 

significantly large bias for prediction on the target domain. This is illustrated by the significant 

discrepancy between the magenta dotted line (i.e., source only) and black solid line across almost 
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all the areas represented by the test dataset in the target domain. For analytical case 3, the proposed 

DW-SVTR model is trained with the combined training dataset in the transformed space. Since 

the proposed DW-SVTR model accords more weight to the source domain sample points that are 

close to the 10 target domain training sample points than the distant source domain points, the 

proposed approach can borrow more relevant source domain sample points to augment the 10 

target domain training sample points, effectively reducing the sample bias without suffering 

significant negative effects from those distant source domain points. Also, the negative 

interferences of these distant source domain points are further diminished by the second weight in 

the proposed DW-SVTR model, as introduced previously. 

The obtained three hyper-parameters for the proposed DW-SVTR for this typical 

representative are presented in Figure 6.8(d). The results predicted by the DW-SVTR (red dash-

dot line in Figure 6.8d) agree well with the true function (black solid line in Figure 6.8d), 

demonstrating that the proposed DW-SVTR can reasonably predict all test sample points in the 

target domain regardless of the unrelated nature of the two domains, and further, illuminating the 

powerful TL capabilities of the proposed DW-SVTR approach. The results of 10 random trials for 

these three analytical cases are presented in Figure 6.9. Figure 6.9(a) and (b) show the predictive 

performance comparison over the 10 random trials using box plots in terms of R
2
 and RMSE, 

respectively. By observation of Figure 6.9, it is evident that the proposed DW-SVTR (i.e., 

Analytical Case 3) statistically performs the best over the other two analytical cases, and the 

Analytical Case 2 (i.e., source only) statistically has the worst performance.  
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                                          (a)                                                                   (b) 

 

                                          (c)                                                                  (d) 

Figure 6.8 A typical representative of 10 random trials for the comparison of the results among 

three analytical cases. (a) target domain training sample points in the original space; (b) 

combined source and target domain training datasets in the original space; (c) combined source 

and target domain training datasets in the transformed space; (d) result comparison of three 

analytical cases in the original space. 
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Figure 6.9 Result comparison among three analytical cases over the 10 random trials using box 

plots in terms of R
2
 and RMSE. 

 

6.4.3.2. Results for shear strength prediction of non-ductile RC columns 

In structural and earthquake engineering, ductile columns typically have good seismic 

performance and deformation capacity and will most likely experience flexure failures under large 

earthquakes, while non-ductile columns often have relatively worse seismic-resistant capacity, 

leading to flexure-shear and shear failures under earthquakes (Moehle 2014). Non-ductile columns 

will easily cause the global collapse of RC frame buildings under large earthquakes due to the 

shear strength deficiency. Thus, it is critical and necessary to identify the shear strength of non-

ductile columns before the occurrence of large earthquakes such that these non-ductile columns 

can be reinforced and retrofitted to enhance their seismic performance avoiding the global collapse 

of RC frame buildings.  

In this example, two-column datasets including rectangular RC columns and circular RC 

columns (presented in Chapter III) are used to further assess the proposed DW-SVTR model in 

a real-world application. For the rectangular RC column dataset, there are a total of 262 sample 

points where 208 of them are flexure-critical columns (ductile columns) and the remaining 54 are 

shear- and flexure-shear-critical columns (non-ductile columns). For the circular RC columns, 
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there are a total of 160 sample points where 98 of them are ductile columns (i.e., flexure-critical 

columns) and the remaining 62 are non-ductile columns (i.e., flexure-shear- and shear-critical 

columns). For each dataset, the input predictors (i.e., explanatory variables) are column gross 

sectional area (”"), concrete compressive strength (”$), column cross-sectional effective depth 

(”% ), longitudinal reinforcement yield stress (”- )  and cross-sectional area (”s ), transverse 

reinforcement yield stress (”t) and cross-sectional area (”u), stirrup spacing to effective depth 

ratio (”v), shear span to effective depth ratio (”w), and applied axial load (”"7), and the response 

variables are lateral strength (-") and drift capacity (-$) respectively. Thus, for either rectangular 

or circular section RC columns, the dataset is comprised of the same predictors with two different 

response variables. More detailed information for the 262 rectangular RC column dataset and for 

the 160 circular RC column dataset can be found in Section 3 and Appendices A and B.  

For each dataset, we select the non-ductile columns as the target domain and the ductile 

columns as the source domain. The main difference between ductile and non-ductile columns is 

that the lateral strength for the ductile columns is governed by flexural strength while that for non-

ductile columns is dominated by shear strength (Moehle 2014). The lateral strength is defined as 

the maximum shear force (kN) in the hysteretic force-deformation curve. Ten numerical 

experiments are designed to sufficiently assess the performance of the proposed DW-SVTR 

approach based on these two datasets. For each dataset, the task for the target domain will always 

be the shear strength prediction of non-ductile columns. But the source domain training dataset 

will vary. The detailed information is as follows.  

In this validation, the target domain data is the 54 non-ductile RC rectangular columns with 

shear strength as the response variable. Five numerical experiments are designed to explore the 

impact of four different transfer strategies in comparison to one baseline. In Experiment 1, the 
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source domain training dataset is the 208 rectangular ductile columns with flexural strength as the 

response variable. In Experiment 2, the source domain training dataset is the 208 rectangular 

ductile columns with drift capacity as the response variable. In Experiment 3, the source domain 

training dataset is the 98 circular ductile columns with shear strength as the response variable. In 

Experiment 4, the source domain training dataset is the 98 circular ductile columns with the drift 

capacity as the response variable. Experiment 5 corresponds to the baseline, where only the target 

domain training dataset is used and no transfer strategy is applied. It should be noted that the units 

between lateral strength (kN) and drift capacity (%) are different, which causes the numeric values 

between them to have a significantly large discrepancy. Further, the reinforcement layouts between 

rectangular and circular columns are also different. In this sense, Experiment 1 could be analogous 

to when the source and target domains have related joint distributions; Experiment 2 could be 

analogous to related marginal distributions but unrelated posterior distributions (i.e., 31(-|)) ≠

34(-|))); Experiment 3 could be analogous to unrelated marginal distributions (i.e., 31()) ≠

34())) but related posterior distributions; and, Experiment 4 could be analogous to unrelated 

marginal and posterior distributions (i.e., 	31()) ≠ 34()) and 31(-|)) ≠ 34(-|))). Therefore, 

these five numerical experiments can thoroughly and effectively assess the performance of the 

proposed DW-SVTR model. 

For each experiment, the availability of the target domain training data is apportioned as 

10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% of total target domain data, and the test set 

for the target domain will always be 50% of the total target domain data (mutually exclusive from 

the target domain training data). For each case of data availability, each experiment is run 10 times 

with different random seeds to measure the performance variability of the proposed DW-SVTR 

model and ensure the results statistically reliable. It should be noted that for each run, the same 
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target domain training and test sets are applied for all four experiments and the baseline. For 

Experiments 1 to 4, the proposed DW-SVTR model is used, while for Experiment 5 (i.e., baseline) 

an LS-SVMR model is used. The results for these transfer strategies and baseline in each case of 

target domain data availability are shown in Figure 6.10, where both R
2
 and RMSE are taken as 

the averages of the R
2
 and RMSE over the 10 random trials.  

From Figure 6.10, it is observed that, compared to the baseline, both R
2
 and RMSE (here, 

R
2
 and RMSE are taken as the average of 10 random trials) suggest that the proposed DW-SVTR 

model significantly improves the prediction performance when the target domain training data is 

very small (i.e., only has 10% availability). The RMSE is decreased from 109.59 kN (i.e., baseline) 

to 72.34 kN (i.e., Experiment 1), 96.22 kN (i.e., Experiment 2), 91.02 kN (i.e., Experiment 3), and 

97.52 kN (i.e., Experiment 4), which is equivalent to a reduction of 34%, 12%, 17%, and 11%, 

respectively. The R
2
 is increased from 0.19 (i.e., baseline) to 0.62 (i.e., Experiment 1), 0.40 (i.e., 

Experiment 2), 0.46 (i.e., Experiment 3), and 0.35 (i.e., Experiment 4), enhancing the values by 

229%, 110%, 142%, and 84%, respectively. With the increase in size of the target domain training 

data, the prediction performance in terms of averages of RMSE and R
2
 over 10 random trials for 

all five experiments globally increases, and the improved performance by proposed DW-SVTR 

globally decreases. This is because, with the increase of available target domain training data, the 

target domain sample bias decreases and thus, the performance difference between the baseline 

and the proposed approach also decreases. According to different transfer strategies, the improved 

performance by the proposed DW-SVTR also varies. The most significant performance 

improvement in terms of both RMSE and R
2
 is for Experiment 1, followed by Experiment 3, and 

Experiment 2 is comparable to Experiment 4, but both Experiments 2 and 4 are outperformed by 

Experiment 3. It is worth noting that the proposed DW-SVTR model also works for Experiment 2 
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where the posterior distributions between the source and target domains are unrelated and for 

Experiment 4 where both the marginal and posterior distributions are unrelated as introduced 

previously. This further demonstrates that the proposed approach is effective even if the source 

and target domains are unrelated. The performance variability over the 10 random trials for all five 

cases is reported in the boxplots in Figures 6.11 and 6.12. By observation of Figures 6.11 and 6.12, 

it is observed that, compared to the baseline, the proposed DW-SVTR statistically improves the 

performance in terms of the median of 10 random trials for all four transfer strategies.  

 

 

                                         (a)                                                                (b) 

 

Figure 6.10 Performance versus size of target domain training data availability curve in terms of 

(a) mean RMSE and (b) mean R
2
 for rectangular columns over the 10 random trials. 
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Figure 6.11 Boxplots for rectangular columns over 10 random trials based on four different 

transfer situations and one baseline in terms of RMSE and the 1, 2, 3, 4, and 5 in the x-axis 

represent the Experiment 1, Experiment 2, Experiment 3, Experiment 4, and Experiment 5 (i.e., 

Baseline). 
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Figure 6.12 Boxplots for rectangular columns over 10 random trials based on four different 

transfer situations and one baseline in terms of R
2
 and the 1, 2, 3, 4, and 5 in the x-axis represent 

Experiment 1, Experiment 2, Experiment 3, Experiment 4, and Experiment 5 (i.e., Baseline). 

 

 

For the circular columns, the target domain dataset is comprised of the 62 non-ductile circular 

columns with shear strength as the response variable. Experiment 1 corresponds to the scenario 

where the source domain training dataset consists of the 98 circular ductile columns with flexural 

strength as the response variable. Experiment 2 corresponds to the scenario where the source 

domain training dataset consists of the 98 circular ductile columns with drift capacity as the 

response variable. Experiment 3 corresponds to the scenario where the source domain training 

dataset consists of the 208 rectangular ductile columns with flexural strength as the response 

variable. Experiment 4 corresponds to the scenario where the source domain training dataset 

consists of the 208 rectangular ductile columns with drift capacity as the response variable. 
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Experiment 5 also corresponds to the baseline, as introduced in the validation of RC rectangular 

column dataset. The same validation procedure described in the rectangular column’s validation 

is also utilized here. The four transfer strategies are also the same. The results for these four transfer 

strategies and baseline in each case of target domain training data availability are shown in Figure 

6.13, where both R
2
 and RMSE are taken as the averages of the R

2
 and RMSE over the 10 random 

trials. 

From Figure 6.13, it is observed that when the availability of target domain training data is 

10%, the R
2 

for the baseline is negative, which means the well-trained LS-SVMR model for the 

baseline has a significantly large bias and thus breaks down. In this case, the proposed DW-SVTR 

can still improve the performance of the baseline. Additionally, when the availability of target 

domain training data is 15%, both R
2
 and RMSE suggest that the proposed DW-SVTR approach 

significantly improves the prediction performance of the baseline. The RMSE is decreased from 

143.38 kN (i.e., baseline) to 110.48 kN (i.e., Experiment 1), 129.07 kN (i.e., Experiment 2), 128.57 

kN (i.e., Experiment 3), and 135.66 kN (i.e., Experiment 4), which is equivalent to a reduction of 

roughly 23%, 10%, 10%, and 5%, respectively. The R
2
 is increased from 0.16 (i.e., baseline) to 

0.49 (i.e., Experiment 1), 0.33 (i.e., Experiment 2), 0.31 (i.e., Experiment 3), and 0.19 (i.e., 

Experiment 4), enhancing the values by roughly 206%, 106%, 94%, and 19%, respectively. With 

the increase in size of the target domain training data, a similar tendency reflected in the 

rectangular columns is also exhibited by the circular columns. According to the different transfer 

strategies, the improved performance by the proposed DW-SVTR also varies. The most significant 

improvement for both RMSE and R
2
 is again Experiment 1, followed by Experiment 3. Experiment 

2 is slightly better than Experiment 4, but both are outperformed by Experiment 3. This 

investigation agrees well with that for the rectangular columns. The performance variability over 
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the 10 random trials for all five experiments is also reported in boxplots in Figures 6.14 and 6.15. 

By observation of Figures 6.14 and 6.15, it is evident that, compared to the baseline, the proposed 

DW-SVTR statistically improves the performance in terms of the median of the 10 random trials 

for all four transfer strategies, as observed in the rectangular column validation.  

 

 

                                          (a)                                                                 (b) 

Figure 6.13 Performance versus size of target domain training data availability curve in terms of 

(a) mean RMSE and (b) mean R
2
 for circular columns over the 10 random trials. 
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Figure 6.14 Boxplots for circular columns over 10 random trials based on four different transfer 

situations and one baseline in terms of RMSE and the 1, 2, 3, 4, and 5 in the x-axis represent the 

Experiment 1, Experiment 2, Experiment 3, Experiment 4, and Experiment 5 (i.e., Baseline). 
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Figure 6.15 Boxplots for circular columns over 10 random trials based on four different transfer 

situations and one baseline in terms of R
2
 and the 1, 2, 3, 4, and 5 in the x-axis represent the 

Experiment 1, Experiment 2, Experiment 3, Experiment 4, and Experiment 5 (i.e., Baseline). 

 

The results obtained by both the simulated and multi-dimensional real-world datasets presented 

above suggest that the proposed DW-SVTR approach can reduce the sample bias induced by a 

small dataset and then improve the prediction performance. Further, the proposed DW-SVTR 

model is also validated effectively by the results for the most challenging case: two unrelated 

domains where both their marginal and posterior distributions are different (i.e., 31()) ≠ 34()) 

and 31(-|)) ≠ 34(-|))).   

The simulated example gives a clear and direct explanation to illustrate how the proposed 

approach reduces the sample bias and improves the prediction performance for two unrelated 

domains. The real-world example explicitly investigates the performance of the proposed approach 
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in terms of target domain training data availability and different transfer strategies. For the relation 

between performance variability and target domain training data availability over 10 random trials, 

as shown in Figures 6.11, 6.12, 6.14 and 6.15 (i.e., boxplots), it is observed that the variability 

occurs when the size of the target domain training data is small (e.g., 10% availability). Further, 

with the increase of the target domain training data availability, the performance variability 

decreases in general, though there are several results not following this trend. This is because, 

when the target domain training data is small (e.g., 10% availability), different random seeds (i.e., 

10 random trials) produce the target domain training data that has different levels of sample bias 

for the corresponding test data. This causes the variation of performance improvement, leading to 

apparent performance variability. When the size of target domain training data increases, the 

difference among these levels of sample bias is decreased, producing the relatively lower 

performance variability. For the relation between performance variability and different transfer 

strategies, all of the numerical results suggested that Experiment 1 produces the best performance 

improvement. This could be explained by the fact that, compared to other transfer strategies, 

Experiment 1 is associated with the source domain that is related to the target domain, which makes 

that the source domain can provide more useful information for the proposed DW-SVTR model 

to reduce the sample bias and improve the prediction performance. Notably, even for two irrelevant 

domains, the proposed approach is still able to seek limited useful information from the source 

domain to reduce the sample bias and enhance the prediction performance. 
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6.5 Summary 

This chapter has presented the development and validation of novel computational methods to 

address three popular and challenging data-related problems. Specifically, a novel machine 

learning (ML) approach is proposed that is robust to input data corrupted by outliers. The proposed 

model is a modification of LWLS-SVMR to overcome its noted drawback regarding lack of 

robustness to outliers close to query points. The formulation and implementation of the proposed 

method is introduced in detail. Furthermore, this method is a robust, local model, where prediction 

of a query point only requires fitting of a subset (not the entire training set) where the data points 

are relevant with the query point. In comparison to other robust, global approaches, this 

characteristic enables avoidance of a potential negative influence from irrelevant points and 

achieves a suitable trade-off between capacity of the learning system and number of training data. 

Four simulated datasets and eight multi-dimensional real-world datasets are employed to verify 

that the proposed approach is able to significantly reduce the negative effects of outliers. The 

proposed RLWLS-SVMR exhibits robustness to outliers and performs best in comparison to all 

other approaches.  

Subsequently, a novel multiple imputation (MI) method called sequential regression-based 

predictive mean matching (SRB-PMM) is proposed to address missing data problems. The SRB-

PMM method imputes the missing values for the partially observed explanatory variables 

sequentially, starting from the variable with the fewest number of missing values to that with the 

greatest number of missing values. The use of PMM ensures the imputed values are always inside 

the observed data range and thus, overcomes the problems associated with meaningless 

imputations due to the misspecification of the imputation model. Further, a hybrid approach 

coupling PMM and a K-fold cross-validation algorithm is developed to select the most plausible 
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imputed dataset. To validate the usefulness of SRB-PMM, two case studies in CE are performed 

based on the RC column dataset presented in Chapter III. The aim of the first case study is to 

compare the SRB-PMM method with existing MI methods and to investigate how the missing data 

ratio affects their performance. For this case study, five data-driven models (i.e., Delete-LS-SVMR, 

SRB-PMM-LS-SVMR, JM-LS-SVMR, FCS-LS-SVMR, and Complete-LS-SVMR) are developed to 

predict the lateral strength of RC columns. The results reveal that with increasing missing data 

ratios, the performances of SRB-PMM, joint modeling (JM), and fully conditional specification 

(FCS) decrease globally. Compared to the baseline (i.e., Delete-LS-SVMR), the SRB-PMM method 

improves prediction performance across all ten missing data ratios, while both JM and FCS 

occasionally degrade the prediction performance. Additionally, discarding observations with 

missing values is not always applicable, most relevant, in the case of post-earthquake damage 

survey data. The second case study aims to illustrate this point by estimating the seismic 

performance of RC columns, where these columns are missing critical feature information. The 

results show that the proposed SRB-PMM method can generate realistic, valid candidates for the 

critical feature information, resulting in reasonable seismic performance estimation.   
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Finally, a novel regression-based, transfer learning (TL) approach is proposed to reduce 

the sample bias induced by small datasets. The proposed TL model is termed double-weighted 

support vector transfer regression (DW-SVTR), as it couples least squares support vector machines 

for regression (LS-SVMR) with two weight functions. The model formulation and implementation 

are introduced in detail. Numerical experiments including simulated and multi-dimensional real 

data are performed to assess and validate the performance of the proposed DW-SVTR model, 

showing that the proposed approach can transfer the useful information of a large source domain 

dataset to reduce the sample bias of a small target domain dataset. Further, the results also 

demonstrated that the proposed approach is valid even for transfer between two irrelevant domains. 
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CHAPTER VII 

CONCLUSIONS 

 

7.1 Summary and Conclusions 

Accurate and rapid seismic response prediction of reinforced concrete (RC) structures in 

earthquake-prone regions is an important topic of research in structural and earthquake 

engineering. However, existing physics-based modeling approaches do not exhibit good 

compromise between predictive performance and computational efficiency and overall do not have 

good generalization performance. To address these problems, this dissertation has proposed a 

novel data-driven computational paradigm, which can provide a generalized, accurate, robust and 

efficient way to predict structural seismic response. Further, new computational approaches have 

been developed to deal with three popular data-related problems: outliers, missing values, and 

small datasets. To be specific, the contributions in this dissertation are summarized in the 

following: 

• Two RC column datasets, one for rectangular and another for circular columns, were 

developed for use in this research. Each column specimen in the datasets was tested 

under cyclic loading reversals. Each data point was composed of the column’s features 

(e.g., geometry, material properties, and design details) that serve as predictors and 

critical parameters (e.g., backbone bone curve and hysteretic parameters) that serve as 

response variables. The critical parameters quantify the nonlinear hysteretic properties 

of the RC column subjected to cyclic loading. To extract the critical parameters from 

the experimental force-deformation data, a modified three-parameter hysteretic model 

and a hybrid optimization algorithm were proposed. The proposed hysteretic model 
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allowed the definition of the softening branch in the monotonic backbone curve. A 

global metaheuristic algorithm, called simulated annealing (SA), and a downhill 

simplex method were integrated to optimize three hysteretic parameters, effectively 

avoiding local minima. A high-quality dataset which is large (relative to the number of 

features, response variables, and application domain) is essential for the development 

of accurate and reliable machine learning models and thus, is an important contribution 

of this dissertation. 

• A new machine learning (ML)-based backbone curve model (ML-BCV) was developed 

for rapid prediction of the bi-linear cyclic backbone curve of RC flexure-, shear-, and 

flexure-shear-critical columns based on the developed RC rectangular column dataset. 

The proposed approach integrates a multi-output least squares support vector machine 

for regression (MLS-SVMR) with a grid search algorithm. The model was tested using 

cross-validation approaches. Further, the model was compared to the traditional 

distributed plasticity fiber model in predicting the cyclic backbone curve of three 

columns (one for flexure-, one for shear-, and one for flexure-shear-critical RC 

columns). The results showed that the proposed ML-BCV reduced the root-mean-

square error (RMSE) for the four values governing the shape of the backbone curve by 

80% (drift ratio at yield shear), 61% (yield shear force), 58% (drift ratio at maximum 

shear), and 67% (maximum shear force), demonstrating that the ML-BCV is 

increasingly robust and accurate compared to traditional modeling approaches.  

• A novel locally weighted ML model (LWLS-SVMR) was developed by combining LS-

SVMR and a locally weighted learning algorithm for generalized drift capacity 

prediction of RC flexure-, shear-, and flexure-shear-critical columns based on the RC 
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circular column dataset. The proposed LWLS-SVMR was validated by comparison 

with global LS-SVMR and locally weighted quadratic regression (LWQR) using cross-

validation approaches.  Finally, the model was also compared with a traditional 

empirical equation, and the results demonstrated that the proposed LWLS-SVMR is 

superior to all other approaches and thus, is a promising ML-based technique for 

enhancing the prediction of drift capacity, universally across RC flexure-, shear-, and 

flexure-shear-critical columns. 

• A new component-level data-driven framework was developed for generalized, 

accurate, and efficient seismic response history prediction of structural components 

subjected to both displacement-controlled cyclic loading and dynamic ground motions. 

The proposed framework is a hybrid ML-physics based approach, where ML was used 

to directly link the experimental data to nonlinear properties of a target component and 

a physical model that meets universal laws was utilized to perform the seismic analysis. 

The framework was illustrated via an RC column. The proposed hysteretic model, 

LWLS-SVMR, and the RC circular column dataset were used to establish the 

framework. Two data-driven seismic response solvers were developed to implement 

the established framework. The two solvers were utilized for seismic response history 

prediction of RC flexure-, shear-, and flexure-shear-critical columns under cyclic loads 

as well as a full-scale RC bridge column subjected to six consecutive ground motions. 

When compared to the experimental data, the results demonstrated that the proposed 

data-driven framework significantly outperformed the widely used distributed 

plasticity fiber model in terms of overall accuracy, generalized prediction capabilities, 

and computational efficiency. 
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• The component-level data-driven framework was extended to the system-level by 

coupling it with a shear building model. The proposed system-level framework was 

illustrated via an RC frame building. The lateral nonlinear force-deformation 

characteristics of the RC columns in each story were determined by the component-

level framework using the column dataset, while the system-level seismic response 

history was obtained by the shear building model (satisfying equilibrium and 

compatibility under earthquake loads). Two data-driven seismic response solvers were 

developed to implement the proposed system-level framework. The two solvers were 

utilized for seismic response history prediction of a large-scale 3-bay, 3-story RC frame 

under cyclic loads as well as of two small-scale 3-bay, 9-story RC frames subjected to 

four and six consecutive ground motions, respectively. Compared to the experimental 

data, the results demonstrated that the proposed system-level data-driven framework 

outperformed the widely used distributed plasticity fiber model in terms of accuracy, 

prediction capability, and computational efficiency and is an extremely promising tool 

to achieve good compromise between predictive performance and computational 

efficiency. 

• A novel, robust locally weighted ML model (RLWLS-SVMR) was developed by 

incorporating an extra weight that is a function of residuals into the reformulation of 

LWLS-SVMR for eliminating the negative effect induced by outliers. An efficient 

hybrid algorithm was developed to predict query points adaptively using either LWLS-

SVMR or iterative RLWLS-SVMR, depending on whether or not outliers surrounded 

the query points. The proposed RLWLS-SVMR was compared with three other global 

robust ML models using synthetic datasets corrupted by non-extreme and extreme 
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outliers and real-world datasets. The results validated that the proposed RLWLS-

SVMR performed more robustly against both non-extreme and extreme outliers than 

other global, robust ML models.  

• A new multiple imputation (MI) method (SRB-PMM) was developed by using 

sequential regression and predictive mean matching to generate several candidates for 

imputing (filling in) each missing value, while considering uncertainty of missing data. 

The proposed SRB-PMM method utilized Bayesian parameter estimation to 

consecutively infer the model parameters for variables with missing values, 

conditionally based on the fully observed and imputed variables. Given the model 

parameters, a hybrid approach integrating PMM with a cross-validation algorithm was 

developed to obtain the most plausible imputed dataset. The proposed SRB-PMM 

method was compared with two other MI methods using synthetic, incomplete datasets 

generated using the developed RC column dataset. The results showed that the 

proposed SRB-PMM method can generate valid and realistic candidates for the missing 

values and is an effective means to handle missing data problems prominent in the 

earthquake engineering field.  

• A novel regression-based transfer learning (TL) model (DW-SVTR) was developed by 

coupling two weight functions with LS-SVMR to reduce the negative effect of small 

sample bias, where TL is defined as knowledge transfer from a large, relevant dataset 

(source domain) to a small dataset (target domain). The first weight function used 

kernel mean matching (KMM) to reweight the source domain data such that the means 

of the source and target domain data in a reproduced kernel Hilbert space (RKHS) are 

close. In this way, the source domain data points relevant to the target domain points 
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have a larger weight than irrelevant source domain points. The second weight is a 

function of estimated residuals, which aims to further reduce the negative interference 

of irrelevant source domain points. The proposed DW-SVTR was tested using synthetic 

datasets and the RC column datasets. The results disclosed that the proposed DW-

SVTR can reduce small sample bias and improve prediction performance, even 

between two irrelevant domains. 
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7.2 Limitations and Recommendations for Future Work 

As machine learning (ML) is a rapidly bourgeoning field and new applications are being developed 

frequently, the present study is of course subjected to several limitations. First, to achieve the goal 

of computational efficiency, the present study has proposed a polygonal hysteretic model to 

establish the modeler in Chapter III. This means that the hysteretic curve predicted by the 

proposed method is the piecewise line not the smooth curve. Though it can reasonably describe 

the nonlinear behavior of RC columns and frames, it may not be able to represent the hysteretic 

characteristics of structures that have smoother hysteretic curves. Second, like all ML methods, 

the novel ML models proposed in Chapters IV and VI can accurately predict the response within 

the input ranges of the training set. Outside of these ranges, it cannot necessarily reliably be used 

for prediction. In this case, the predicted results must be carefully checked with physical 

knowledge or experts. Third, the system-level data-driven framework proposed in Chapter V has 

a limitation associated with the shear-building model employed. This limitation restricts the 

application of the proposed method to RC frames where the beams are stiffer than the columns. 

When more component-level physical experimental data (e.g., beams) are available, a high-fidelity 

system-level model can be developed to eliminate the limitation of the shear building model. 

Though, this will also translate to an increase in the computational time for the high-fidelity model. 

Lastly, since both component- and system-level data-driven frameworks are developed for the 

seismic response prediction in the context of two-dimensional structural components and systems, 

these two frameworks cannot be applied for the three-dimensional problems.  

There are several potential domains where the methodology described in this dissertation 

can be extended. A few of these are the following:  
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1) The physical relation between structural features (i.e., material strength, component 

geometry, reinforcement details) and strength or deformation capacity can be 

investigated and/or could be derived from the experimental dataset. This requires the 

development of novel hybrid physics-ML-based approaches, where the physics can 

inform ML how to select meaningful feature interactions that satisfy the physical laws. 

Therefore, new approaches could potentially identify an optimal set of predictors that 

correlate with the strength or deformation capacity well. The potential predictors could 

be formed based on the physical constraints imposed to the formulation of ML 

methods. In this way, an explainable parametric equation that has generalization 

performance on par with ML models could be derived. 

2) Solutions for engineering and science problems using machine learning are controlled 

by data without accounting for any human interpretation. But those using physics-based 

methods are usually subjected to theoretical assumptions. Therefore, ML-based 

methods are free from human assumptions but need data for computation, while 

physics-based methods are data-free in computation but involve human assumptions. 

By inserting the physical constraints into the formulation of ML approaches and 

utilizing both advantages, it is possible to formulate a novel computational paradigm 

which would be both data-free and assumption-free.  

3) The proposed methodology could be extended to the development of a novel data-

driven computing paradigm for flexibility-based beam-column element formulation. 

Given the material constitutive models, the state determination process of the 

flexibility-based beam-column element satisfies the equilibrium and compatibility 

conditions. The equilibrium equation is derived from Newton’s laws of motion and the 
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compatibility relation is the kinematic constraint. Thus, they do not suffer any 

empiricism or uncertainty. In contrast, the traditional material constitutive models are 

formulated by a physical model, which is empirical and uncertain. Therefore, the ML 

techniques can be coupled with flexibility-based beam-column element formulations. 

In this way, ML is used to model the material constitutive relation based on the material 

datasets (e.g., concrete, rebar), while the equilibrium and compatibility are still 

enforced along the element. In this case, the empiricism, error, and uncertainty 

embedded in the traditional material constitutive models can be minimized without 

risking the loss of material constitutive information.  

4) The results presented in this dissertation have also verified that the proposed 

methodology achieves a good compromise between predictive performance and 

computational efficiency. This characteristic demonstrates that the proposed approach 

is a promising computational tool in quantifying regional seismic risk and for other 

near-real-time scenarios. Although this dissertation utilized RC frames as illustrative 

examples to illustrate the performance of the proposed system-level data-driven 

framework, it is a generalized approach and can be applied to any structural system of 

interest where appropriate data is available. The application of the proposed framework 

to other structural systems is straightforward and the application procedure is that 

outlined in this dissertation, especially in Chapter V. For different structural systems, 

the formulation of the MDOF model may vary from that proposed in Chapter V, 

especially for structural systems where the shear building model is not appropriate. 
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APPENDIX A 

DATABASE OF RECTANGULAR REINFORCED CONCRETE COLUMNS 

 

No. Reference !/# $!  
(MPa) 

$"#  
(MPa) 

$"$  
(MPa) %# %$ &/'%$! ("  

(kN) 
(&  

(kN) 
('  

(kN) 
)"  
(%) 

)&  
(%) 

)'  
(%) * + , 

1 Berry et  
al. (2004)  2.35 23.1 375 297 0.0179 0.0070 0.26 515.1 656.88 613.2 0.51 1.53 2.83 2.80 0.06 0.95 

2   2.34 41.4 375 316 0.0179 0.0107 0.21 591.49 764.21 723.02 0.41 1.11 2.14 1.81 0.00 0.96 
3   2.35 21.4 375 297 0.0179 0.0075 0.42 510.09 641.56 586.18 0.32 0.81 1.76 2.81 0.03 0.93 
4   2.34 23.5 375 294 0.0179 0.0134 0.60 570.16 696.51 696.51 0.30 1.31 1.31 4.04 0.07 0.98 
5   4.26 23.6 427 320 0.0151 0.0111 0.38 160.52 192.05 153.64 0.69 1.27 3.10 32.47 0.18 0.99 
6   4.24 25 427 280 0.0151 0.0087 0.21 143.89 169.23 146.42 0.65 1.67 3.65 7.28 0.13 1.00 
7   4.13 46.5 446 364 0.0151 0.0045 0.10 161.39 199.59 167.12 0.55 1.83 6.12 8.61 0.20 0.98 
8   4.13 44 446 360 0.0151 0.0065 0.30 235.05 279.25 226.2 0.54 1.01 2.91 11.34 0.17 0.94 
9   4.13 44 446 364 0.0151 0.0041 0.30 221.34 276.98 221.58 0.44 0.91 2.39 4.36 0.34 1.00 
10   4.13 40 446 255 0.0151 0.0030 0.30 210.27 264.56 211.65 0.51 1.06 1.99 2.63 0.27 0.98 
11   4.13 28.3 440 466 0.0151 0.0068 0.22 169.39 213.3 170.64 0.72 2.09 4.41 7.47 0.18 0.97 
12   4.13 40.1 440 466 0.0151 0.0085 0.39 225.82 268.88 245.14 0.60 1.93 3.15 4.83 0.02 0.98 
13   4.13 41 474 372 0.0151 0.0062 0.50 243.61 292.02 233.62 0.52 1.16 2.13 9.46 0.13 0.96 
14   4.13 40 474 388 0.0151 0.0029 0.50 221.43 295.02 271.22 0.41 1.06 1.55 3.11 0.45 0.98 
15   4.13 42 474 308 0.0151 0.0117 0.70 253.81 295.55 236.44 0.32 0.49 0.90 48.40 0.35 0.99 
16   4.13 39 474 372 0.0151 0.0065 0.70 249.4 295.37 240.3 0.35 0.65 1.04 54.82 0.32 0.99 
17   4.13 40 474 308 0.0151 0.0225 0.70 282.87 309.5 247.6 0.44 0.88 2.35 51.26 0.00 0.98 
18   4.44 25.6 474 333 0.0157 0.0107 0.20 146.01 166.83 133.46 0.72 1.27 4.38 39.97 0.07 0.95 
19   4.44 25.6 474 333 0.0157 0.0107 0.20 135.88 167.76 134.21 0.63 1.14 3.62 49.67 0.05 0.93 
20   4.44 25.6 474 333 0.0157 0.0107 0.20 139.2 175.29 140.23 0.53 1.48 3.49 13.06 0.27 0.94 
21   4.44 25.6 474 333 0.0157 0.0107 0.20 138.03 170.42 136.34 0.57 1.16 4.28 14.00 0.05 0.98 
22   3.24 32 511 325 0.0125 0.0073 0.10 327.73 385.62 374.98 0.74 1.71 4.50 5.57 0.15 0.99 
23   3.24 32 511 325 0.0125 0.0073 0.10 348.09 409.2 327.36 0.75 2.39 6.31 6.75 0.10 0.99 



 

 
 

 

233 
 

24   3.24 32.1 511 325 0.0125 0.0090 0.30 504.4 588.11 470.49 0.70 1.72 4.86 2.00 0.05 0.99 
25   3.24 32.1 511 325 0.0125 0.0090 0.30 485.52 618.67 494.94 0.56 1.44 4.82 1.96 0.14 0.99 
26   3.10 26.9 432 305 0.0188 0.0070 0.10 319.35 393.1 355.57 0.65 2.15 5.89 20.56 0.04 0.99 
27   1.50 20.6 392.8 323 0.0068 0.0088 0.33 125.09 158.92 149.34 0.66 1.55 3.37 0.30 0.03 0.56 
28   4.34 24.8 362 325 0.0142 0.0032 0.03 101.39 115.75 115.75 0.66 5.09 5.09 31.05 0.00 1.00 
29   4.34 24.8 362 325 0.0142 0.0032 0.03 94.76 108.7 104.41 0.55 3.33 5.37 24.01 0.00 1.00 
30   4.34 24.8 362 325 0.0142 0.0032 0.03 88.79 101.46 81.17 0.53 3.10 3.88 7.03 0.00 1.00 
31   2.17 21.1 341 559 0.0222 0.0062 0.80 51.05 63.78 51.02 0.62 1.05 1.69 54.56 0.32 1.00 
32   3.49 27.9 374 506 0.0162 0.0038 0.11 69.23 76.38 61.1 0.76 1.73 4.26 7.53 0.02 0.91 
33   3.49 27.9 374 506 0.0162 0.0038 0.11 70.85 80.03 64.02 0.67 1.60 4.16 5.20 0.05 0.87 
34   3.49 27.9 374 506 0.0162 0.0038 0.11 69.23 76.38 61.1 0.76 1.73 4.26 6.51 0.06 0.92 
35   3.49 24.8 374 352 0.0162 0.0038 0.12 69.71 84.58 82.2 0.65 1.75 2.28 1.09 0.00 0.95 
36   3.49 27.9 374 506 0.0162 0.0038 0.11 62.42 75.16 68.71 0.54 1.85 2.51 1.06 0.00 0.98 
37   3.49 27.9 374 506 0.0162 0.0038 0.11 63.69 74.68 72.81 0.60 2.03 2.86 1.12 0.00 0.99 
38   2.62 85.7 399.6 328.4 0.0380 0.0164 0.40 195.41 238.99 227.9 0.59 1.82 2.40 2.02 0.02 0.99 
39   2.62 85.7 399.6 792.3 0.0380 0.0164 0.40 200.38 244.13 214.17 0.61 2.01 6.98 2.18 0.07 0.99 
40   2.62 85.7 399.6 328.4 0.0380 0.0164 0.63 196.65 242.14 193.71 0.60 1.52 1.91 16.32 0.00 0.98 
41   2.62 85.7 399.6 792.3 0.0380 0.0164 0.63 194.35 246.68 213.94 0.57 1.51 4.50 3.59 0.00 0.99 
42   2.62 115.8 399.6 328.4 0.0380 0.0164 0.25 198.55 240.89 195.71 0.59 1.70 6.36 2.04 0.01 0.93 
43   2.62 115.8 399.6 792.3 0.0380 0.0164 0.25 208.43 245.77 214.12 0.61 1.02 6.38 1.62 0.03 0.92 
44   2.62 115.8 399.6 328.4 0.0380 0.0164 0.42 245.56 283.43 226.74 0.65 1.92 4.06 4.07 0.26 0.99 
45   2.62 115.8 399.6 792.3 0.0380 0.0164 0.42 250.16 287.97 230.38 0.62 1.74 4.74 1.70 0.06 0.99 
46   2.21 99.5 379 774 0.0243 0.0053 0.35 305.19 392.85 360.08 0.44 0.81 2.03 11.08 0.40 0.98 
47   2.21 99.5 379 774 0.0243 0.0077 0.35 345.97 406.63 325.3 0.57 2.02 3.81 4.47 0.04 0.95 
48   2.21 99.5 379 344 0.0243 0.0065 0.35 357.89 428.33 342.66 0.63 1.01 1.67 53.43 0.93 0.65 
49   2.21 99.5 379 1126 0.0243 0.0053 0.35 310.37 390.01 312.01 0.48 0.71 2.83 65.19 0.14 0.98 
50   2.21 99.5 379 774 0.0243 0.0053 0.35 368.56 405.59 385.47 0.61 0.83 1.00 56.86 0.14 1.00 
51   2.21 99.5 379 857 0.0243 0.0052 0.35 353.67 420.07 375.06 0.56 0.90 1.07 12.52 0.13 0.98 
52   2.28 99.5 339 774 0.0181 0.0051 0.35 292.15 363.01 290.41 0.35 0.53 1.05 83.12 0.35 0.91 
53   6.14 29.1 367 363 0.0163 0.0061 0.10 52.3 61.72 60.24 0.80 1.02 2.50 4.59 0.01 0.80 
54   6.14 30.7 367 363 0.0163 0.0036 0.09 47.42 61.2 58.8 0.76 1.06 3.23 7.34 0.04 0.95 
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55   6.14 29.2 367 363 0.0163 0.0061 0.10 48.52 57.43 52.46 0.79 1.52 3.05 5.96 0.01 0.97 
56   6.14 27.6 429 363 0.0163 0.0036 0.10 42.23 49.08 44.44 0.76 1.12 2.40 2.58 0.00 1.00 
57   6.14 29.4 429 392 0.0163 0.0061 0.19 64.98 74.13 61.69 0.97 1.45 3.04 9.71 0.01 0.93 
58   6.14 31.8 429 392 0.0163 0.0036 0.18 63.24 74.91 64.61 0.94 1.82 3.08 2.68 0.04 0.89 
59   6.14 33.3 363 392 0.0163 0.0061 0.26 68.22 78.86 63.09 0.90 1.21 1.93 8.74 0.05 0.99 
60   6.14 32.4 363 392 0.0163 0.0036 0.27 57.77 77.97 62.38 0.72 1.42 2.16 45.27 0.06 0.99 
61   6.14 31 363 373 0.0163 0.0061 0.28 66.65 76.96 61.57 0.72 1.02 2.20 24.29 0.05 1.00 
62   6.14 31.8 363 373 0.0163 0.0036 0.27 65.44 78.48 65.78 0.91 1.56 2.48 47.36 0.05 0.88 
63   3.28 39.3 439 454 0.0194 0.0094 0.21 411.08 466.77 373.42 0.95 1.83 4.39 7.66 0.08 0.99 
64   3.30 39.8 439 616 0.0194 0.0051 0.31 436.89 483.1 386.48 0.75 0.97 2.82 2.18 0.10 1.00 
65   3.05 43.6 430 470 0.0321 0.0030 0.00 228.4 276.2 216.96 1.73 4.53 6.44 47.76 0.20 0.80 
66   3.05 34.8 430 470 0.0321 0.0060 0.14 234.76 267 213.6 1.66 2.71 4.31 78.84 0.32 1.00 
67   3.05 32 438 470 0.0321 0.0091 0.15 272.63 325.9 260.72 1.32 6.82 8.58 50.52 0.06 0.98 
68   3.09 37.3 437 425 0.0321 0.0085 0.13 282.9 342.8 306.6 1.51 6.43 8.97 52.78 0.01 0.99 
69   3.09 39 437 425 0.0321 0.0085 0.13 292.35 341.8 304.7 1.50 6.55 8.79 51.48 0.03 0.99 
70   5.18 80 430 430 0.0151 0.0054 0.30 109.62 130.15 104.12 0.78 1.21 1.65 4.55 0.00 0.99 
71   5.18 80 430 430 0.0151 0.0054 0.30 101.62 120.55 99.44 0.78 1.29 1.44 2.76 0.04 1.00 
72   5.18 80 430 430 0.0151 0.0054 0.20 77.83 95.31 76.24 0.75 1.38 2.14 16.48 0.02 0.97 
73   5.18 80 430 430 0.0151 0.0054 0.20 112.75 137.58 110.06 0.69 1.22 1.58 56.27 0.67 0.78 
74   5.18 80 430 430 0.0151 0.0081 0.20 119.2 141.24 112.99 0.72 1.30 1.97 60.17 0.36 0.68 
75   5.18 80 430 430 0.0151 0.0081 0.30 105.9 125.57 100.45 0.79 1.17 2.15 60.75 0.22 0.79 
76   5.18 80 430 430 0.0151 0.0081 0.30 112.29 131.09 104.87 0.83 1.21 1.69 56.00 0.78 1.00 
77   5.18 80 430 430 0.0151 0.0081 0.20 92.96 110.31 88.25 0.88 1.27 2.08 49.50 0.23 0.88 
78   5.18 80 430 430 0.0151 0.0159 0.20 82.76 101.02 80.82 0.78 1.40 2.39 42.36 0.15 0.95 
79   5.18 80 430 430 0.0151 0.0159 0.30 104.91 126.45 101.16 0.77 1.47 2.50 11.32 0.12 0.99 
80   5.18 80 430 430 0.0151 0.0159 0.20 106.79 131.62 105.29 0.73 1.38 2.29 8.10 0.17 0.91 
81   5.18 80 430 430 0.0151 0.0159 0.30 112.13 134.8 107.84 0.85 1.44 2.50 21.85 0.16 1.00 
82   5.18 80 430 430 0.0603 0.0054 0.20 149.98 175.29 144.34 1.29 1.81 4.27 11.83 0.00 1.00 
83   5.18 80 430 430 0.0603 0.0054 0.30 141.26 164.68 147.35 0.98 1.43 3.03 6.10 0.00 0.99 
84   5.18 80 430 430 0.0603 0.0054 0.30 139.1 165.49 132.6 1.11 2.33 3.74 11.72 0.01 0.99 
85   5.18 80 430 430 0.0603 0.0054 0.20 172.37 204.77 163.81 1.30 1.87 3.45 55.80 0.00 0.99 
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86   5.18 80 430 430 0.0603 0.0081 0.20 137.98 158.04 126.44 1.29 2.24 3.98 24.65 0.00 1.00 
87   5.18 80 430 430 0.0603 0.0081 0.20 165.5 195.1 156.08 1.07 2.06 4.11 5.03 0.03 1.00 
88   5.18 80 430 430 0.0603 0.0081 0.30 148.65 175.01 140.01 1.08 1.51 3.45 5.75 0.00 0.99 
89   5.18 80 430 430 0.0603 0.0081 0.30 144.29 170.52 136.42 1.06 1.58 3.13 5.91 0.02 1.00 
90   5.18 80 430 430 0.0603 0.0159 0.20 145.73 171.53 137.22 1.27 2.20 5.83 51.87 0.02 1.00 
91   5.18 80 430 430 0.0603 0.0159 0.20 144.18 166.88 133.5 1.24 1.77 4.62 12.26 0.00 0.99 
92   5.18 80 430 430 0.0603 0.0159 0.30 143.08 170.4 136.32 1.27 2.62 5.31 50.24 0.03 0.99 
93   5.18 80 430 430 0.0603 0.0159 0.30 148.23 172.28 137.82 1.15 2.51 4.35 29.46 0.02 0.99 
94   4.01 27.2 448 428 0.0222 0.0017 0.10 307.81 368.43 294.75 1.40 5.16 6.33 42.80 0.02 0.77 
95   4.01 27.2 448 428 0.0222 0.0017 0.24 342.59 400.28 320.22 1.12 3.44 4.27 4.35 0.08 1.00 
96   3.99 28.1 448 428 0.0222 0.0023 0.09 300.83 379.95 303.96 1.55 5.88 6.68 19.50 0.11 1.00 
97   3.99 28.1 448 428 0.0222 0.0023 0.23 378.81 424.53 339.63 1.45 4.62 5.47 4.75 0.04 0.99 
98   2.11 76 510 510 0.0355 0.0158 0.10 271.16 324.13 282.05 1.09 6.89 9.39 8.15 0.10 0.99 
99   2.11 76 510 510 0.0355 0.0158 0.20 334.05 378.35 310.72 1.06 2.91 8.05 4.27 0.09 1.00 
100   2.11 86 510 510 0.0246 0.0158 0.10 236.12 275.46 228.63 0.98 2.64 7.29 6.56 0.07 0.97 
101   2.11 86 510 510 0.0246 0.0158 0.19 282.44 318.88 255.1 1.12 3.41 6.88 4.03 0.07 1.00 
102   2.10 118 393 1415 0.0186 0.0081 0.60 281.06 334.25 308 0.35 0.68 0.91 42.97 0.48 1.00 
103   2.10 118 393 1424 0.0186 0.0127 0.60 319.02 365 287 0.39 0.86 1.81 4.00 0.13 0.98 
104   2.10 118 393 1424 0.0186 0.0167 0.60 325.56 391.75 313.4 0.52 1.32 2.47 7.16 0.06 0.99 
105   2.10 118 393 1424 0.0186 0.0127 0.35 316.43 362.5 290 0.54 1.32 2.97 1.36 0.24 1.00 
106   2.10 118 393 1424 0.0186 0.0167 0.35 302.8 370 296 0.45 1.31 3.46 0.94 0.11 0.98 
107   8.40 40.6 407 351 0.0101 0.0010 0.34 44.28 54.54 43.63 0.68 1.36 1.61 3.61 0.37 1.00 
108   6.28 72.1 454 463 0.0258 0.0140 0.50 114.32 135.92 110.74 0.24 0.86 1.38 2.03 0.32 0.99 
109   6.33 71.7 454 542 0.0258 0.0124 0.36 125.29 148.84 121.07 0.34 0.54 2.40 3.62 0.14 0.98 
110   6.33 71.8 454 542 0.0258 0.0124 0.50 118.67 143.59 112.87 0.24 0.36 1.75 5.07 0.08 0.95 
111   6.28 71.9 454 463 0.0258 0.0224 0.50 125.67 138.85 113.08 0.41 0.51 2.26 2.65 0.15 1.00 
112   6.28 101.8 454 463 0.0258 0.0246 0.45 152.88 181.97 145.57 0.21 0.31 0.72 2.57 0.24 0.97 
113   6.28 101.9 454 463 0.0258 0.0294 0.46 154.31 170.12 136.09 0.44 0.53 1.34 2.18 0.07 0.99 
114   6.33 102 454 542 0.0258 0.0120 0.45 147.96 159.18 127.34 0.44 0.50 1.06 2.19 0.07 0.99 
115   6.28 102.2 454 463 0.0258 0.0187 0.47 156.29 177.97 145.38 0.31 0.40 1.12 4.76 0.36 1.00 
116   5.12 34 455.6 570 0.0195 0.0040 0.43 161.49 194.64 155.72 0.74 1.58 2.88 51.33 0.09 0.99 



 

 
 

 

236 
 

117   5.12 34 455.6 570 0.0195 0.0079 0.43 151.94 186.39 149.12 0.61 1.52 3.78 8.39 0.01 0.99 
118   5.12 34 455.6 570 0.0195 0.0079 0.20 132.41 164.29 135.35 0.87 1.92 7.06 8.70 0.03 0.99 
119   5.12 34 455.6 570 0.0293 0.0054 0.46 159.2 203.94 163.15 0.57 1.73 3.52 57.26 0.03 0.91 
120   5.12 34 455.6 570 0.0293 0.0105 0.46 168.34 204.46 171.57 0.87 1.86 6.09 8.56 0.03 0.94 
121   5.12 34 477.8 570 0.0229 0.0105 0.46 180.29 221.46 181.16 0.83 3.01 6.03 8.70 0.03 0.94 
122   5.12 34 455.6 580 0.0293 0.0051 0.46 175.65 209.17 182.34 0.87 2.01 6.06 22.89 0.03 0.96 
123   5.12 34 455.6 580 0.0293 0.0051 0.23 161.03 198.49 158.79 1.22 1.95 6.65 7.47 0.03 0.96 
124   5.12 34 427.8 580 0.0328 0.0051 0.46 178.26 219.33 175.46 0.83 1.95 5.48 5.54 0.02 0.94 
125   5.12 34 427.8 570 0.0328 0.0105 0.46 174.08 209.03 167.23 0.83 2.77 6.14 10.69 0.00 1.00 
126   3.74 69.6 586.1 406.8 0.0193 0.0091 0.05 55.92 70.28 56.23 1.21 2.07 4.51 5.34 0.05 0.87 
127   3.74 69.6 586.1 406.8 0.0193 0.0091 0.05 52.85 68.06 54.45 1.11 1.76 5.14 6.09 0.05 0.79 
128   3.44 67.8 572.3 513.7 0.0193 0.0092 0.10 78.73 95.64 76.51 1.24 2.83 6.38 4.68 0.03 0.94 
129   3.40 67.8 573.3 514.7 0.0193 0.0091 0.10 77.98 92.97 74.37 1.21 2.79 6.34 4.99 0.04 0.96 
130   3.37 65.5 572.3 513.7 0.0193 0.0092 0.21 85.2 107.65 86.12 1.05 2.82 5.00 1.20 0.05 1.00 
131   3.24 65.5 573.3 514.7 0.0193 0.0090 0.21 81.59 101.86 81.49 1.04 2.81 4.93 1.39 0.03 0.98 
132   3.41 37.9 572.3 513.7 0.0193 0.0091 0.00 50.88 59.16 47.33 1.51 3.06 6.19 10.34 0.05 0.73 
133   3.48 37.9 573.3 514.7 0.0193 0.0091 0.00 50.14 58.3 46.64 1.48 2.97 6.13 10.94 0.10 0.81 
134   3.70 48.3 586.1 406.8 0.0193 0.0092 0.14 61.94 71.2 56.96 1.18 1.97 3.65 2.10 0.06 0.76 
135   3.72 48.3 587.1 407.8 0.0193 0.0091 0.14 54.86 69.4 55.52 1.02 1.93 3.71 2.35 0.06 0.70 
136   3.35 38.1 572.3 513.7 0.0193 0.0091 0.36 70.9 84.5 69.4 1.05 2.10 4.21 2.06 0.45 0.99 
137   3.35 38.1 573.3 514.7 0.0193 0.0091 0.36 69.87 84.5 69.4 1.06 2.10 4.16 2.41 0.31 0.99 
138   3.83 24.9 497 459.5 0.0214 0.0061 0.11 200.81 250 200 1.15 2.42 5.87 5.87 0.02 0.78 
139   3.83 26.7 497 459.5 0.0214 0.0061 0.16 247.02 267.58 214.06 1.37 2.56 6.37 7.54 0.01 0.84 
140   3.83 26.1 497 459.5 0.0214 0.0061 0.22 242.78 305.3 244.24 1.28 2.47 4.78 3.36 0.01 0.84 
141   3.83 25.3 497 459.5 0.0214 0.0061 0.11 219.48 248.05 203.94 1.40 2.62 6.92 17.00 0.01 0.78 
142   3.83 27.1 497 459.5 0.0214 0.0061 0.16 245.52 260.5 214.6 1.50 2.46 6.84 14.43 0.02 0.92 
143   3.83 26.8 497 459.5 0.0214 0.0061 0.21 274.66 309.81 250.25 1.35 2.74 5.18 3.29 0.02 0.76 
144   3.83 26.4 497 459.5 0.0214 0.0057 0.11 209.72 234.62 192.7 1.32 2.37 6.72 5.55 0.00 1.00 
145   3.83 27.5 497 459.5 0.0214 0.0057 0.15 245.31 259.52 216.62 1.87 2.66 7.46 49.07 0.02 0.92 
146   3.83 26.9 497 459.5 0.0214 0.0057 0.21 267.74 299.56 241.65 1.59 2.70 5.62 3.82 0.01 1.00 
147   4.22 102.7 517.1 793 0.0245 0.0062 0.00 36.15 44.3 35.44 1.65 5.08 5.25 57.92 0.10 0.99 



 

 
 

 

237 
 

148   4.22 86.3 517.1 793 0.0245 0.0062 0.20 59.32 73.16 58.52 0.69 1.56 3.39 29.51 0.05 0.83 
149   4.22 87.5 455.1 793 0.0245 0.0071 0.00 25.77 32.16 27.63 1.00 3.05 4.38 51.84 0.16 1.00 
150   4.22 83.4 455.1 793 0.0245 0.0071 0.10 43.52 51.27 41.02 0.85 1.76 3.01 59.99 0.04 0.99 
151   4.22 90 455.1 793 0.0245 0.0071 0.20 56.03 62.92 50.34 0.71 1.22 2.77 56.04 0.06 0.99 
152   4.22 67.5 475.8 1262 0.0245 0.0071 0.00 28.14 37.48 36.53 1.47 6.07 6.10 58.01 0.06 0.99 
153   4.22 74.6 475.8 1262 0.0245 0.0071 0.10 37.59 46.98 37.59 0.68 1.70 4.67 50.10 0.02 0.98 
154   4.22 81.8 475.8 1262 0.0245 0.0071 0.20 46.68 55.45 44.36 0.61 1.36 2.85 37.07 0.21 1.00 
155   4.22 75.8 475.8 1262 0.0245 0.0055 0.20 44.36 56.21 44.97 0.52 1.37 2.54 53.97 0.06 1.00 
156   4.22 87 475.8 1262 0.0245 0.0047 0.20 51.63 59.15 47.32 0.74 1.28 2.66 48.88 0.11 1.00 
157   4.22 71.2 475.8 1262 0.0245 0.0041 0.20 43.24 53.34 42.67 0.65 1.51 2.87 45.22 0.14 0.98 
158   6.99 92.4 451 391 0.0215 0.0186 0.14 99.72 114.85 92.88 1.05 1.62 7.57 1.96 0.03 0.98 
159   6.99 93.3 430 391 0.0215 0.0186 0.28 129.68 159.77 127.82 0.90 1.56 4.26 3.06 0.12 0.97 
160   6.99 98.2 451 418 0.0215 0.0186 0.39 151.8 162 132.6 1.14 1.37 3.54 3.37 0.19 1.00 
161   6.99 94.8 451 391 0.0215 0.0087 0.14 80.06 104.87 85.5 0.80 1.52 4.55 3.33 0.24 1.00 
162   6.99 97.7 430 391 0.0215 0.0087 0.26 141.98 167.76 134.21 0.94 1.44 2.52 2.16 0.41 0.99 
163   6.99 104.3 451 418 0.0215 0.0087 0.37 166 185 148 0.89 1.24 1.85 2.30 0.63 0.96 
164   6.99 78.7 446 438 0.0215 0.0186 0.40 142.4 167.23 136.78 0.81 1.28 8.69 3.24 0.01 1.00 
165   6.99 109.2 446 438 0.0215 0.0186 0.41 189.7 212.88 170.3 0.96 2.70 5.67 2.07 0.01 0.78 
166   6.99 109.5 446 825 0.0215 0.0206 0.41 174.18 198.22 158.58 1.01 1.32 4.82 2.56 0.01 0.88 
167   6.99 104.2 446 825 0.0215 0.0140 0.37 162.93 185.99 148.79 1.04 1.40 3.15 4.01 0.02 0.92 
168   6.99 104.5 446 744 0.0215 0.0206 0.53 183.91 201.54 161.23 0.85 1.00 3.32 4.47 0.11 0.97 
169   6.99 109.4 446 492 0.0215 0.0186 0.51 191.4 208.39 166.71 0.96 1.13 3.30 2.21 0.07 1.00 
170   2.45 33.7 453 410.9 0.0245 0.0027 0.08 98.67 112.95 90.36 0.84 1.82 3.00 50.25 0.00 0.40 
171   2.45 33.7 453 410.9 0.0245 0.0027 0.08 97.55 112.95 103.61 0.89 1.99 3.02 21.57 0.00 0.39 
172   2.45 32.1 453 410.9 0.0245 0.0052 0.09 100.24 112.39 89.91 0.92 2.94 3.87 43.40 0.00 0.38 
173   2.45 32.1 453 410.9 0.0245 0.0052 0.09 97.29 112.39 90.06 0.83 2.88 4.01 55.27 0.00 0.31 
174   2.45 29.9 453 410.9 0.0245 0.0027 0.10 96.52 112.3 91.09 0.88 2.43 3.12 45.08 0.00 0.33 
175   2.45 29.9 453 410.9 0.0245 0.0027 0.10 93.65 112.3 99.59 0.77 2.40 2.99 7.59 0.00 0.32 
176   2.45 27.4 453 410.9 0.0245 0.0037 0.10 101.47 114.08 91.26 0.97 2.87 3.02 52.86 0.00 0.31 
177   2.45 27.4 453 410.9 0.0245 0.0037 0.10 99.75 114.08 97.63 0.93 2.85 2.96 47.44 0.00 0.33 
178   2.45 36.4 453 410.9 0.0245 0.0027 0.16 110.33 130.12 114.92 0.75 1.80 2.95 42.76 0.00 0.56 



 

 
 

 

238 
 

179   2.45 36.4 453 410.9 0.0245 0.0027 0.16 104.13 130.12 104.09 0.71 1.92 3.35 45.09 0.00 0.54 
180   2.45 34.9 453 410.9 0.0245 0.0037 0.08 99.35 115.81 92.65 0.83 1.98 2.96 52.19 0.00 0.35 
181   2.45 34.9 453 410.9 0.0245 0.0037 0.08 98.87 115.81 98.18 0.80 1.98 3.17 34.15 0.00 0.37 
182   2.45 36.5 453 410.9 0.0245 0.0037 0.08 101.06 116.51 106.96 0.86 2.91 3.04 52.16 0.00 0.31 
183   2.45 36.5 453 410.9 0.0245 0.0037 0.08 98.89 116.51 93.21 0.85 2.94 3.05 54.39 0.00 0.34 
184   2.70 37.6 461 485 0.0243 0.0051 0.30 158.88 201.04 160.83 0.60 2.94 3.73 7.35 0.10 1.00 
185   2.70 37.6 461 485 0.0243 0.0051 0.60 159.9 185.66 148.53 0.50 0.87 1.86 53.02 0.00 1.00 
186   2.16 39.2 388 524 0.0169 0.0084 0.57 1059.5 1239 991.2 0.49 0.75 2.54 51.60 0.13 0.99 
187   2.16 39.2 388 524 0.0169 0.0084 0.57 1071.01 1338.8 1217.01 0.34 0.71 1.99 10.00 0.05 1.00 
188   2.24 32.2 388 524 0.0194 0.0089 0.59 998.79 1201.3 1109.41 0.42 1.92 2.01 11.24 0.01 0.98 
189   3.34 35.9 363 368 0.0158 0.0020 0.03 134.42 151.8 123.94 0.64 1.38 3.51 7.26 0.05 0.98 
190   3.34 35.7 363 368 0.0158 0.0020 0.03 129.57 147.96 124.47 0.80 1.36 3.41 55.26 0.30 0.99 
191   3.34 34.3 363 368 0.0158 0.0020 0.03 132.91 153.11 147.09 0.71 2.88 5.96 70.03 0.40 1.00 
192   3.34 33.2 363 368 0.0158 0.0020 0.03 131.32 157.06 143.41 0.61 1.83 8.15 106.82 0.69 0.72 
193   3.34 36.8 363 368 0.0158 0.0020 0.03 131.47 159.46 127.57 0.61 2.65 7.08 50.85 0.14 0.97 
194   3.34 35.9 363 368 0.0158 0.0020 0.03 145.68 170.59 159.81 0.80 7.94 8.50 119.42 0.74 0.64 

195 Xie et al.  
(2015)  4.17 31.1 582 441 0.0101 0.0060 0.11 25.84 38 31 0.59 1.78 3.73 52.24 0.03 0.75 

196   4.17 34.5 582 441 0.0101 0.0060 0.11 26.14 37.83 31 0.56 1.70 3.73 47.45 0.05 0.86 
197   4.17 32.5 481 441 0.0127 0.0060 0.21 34.3 42.06 33 0.57 1.54 4.13 48.66 0.07 0.99 
198   4.17 30.1 582 441 0.0127 0.0060 0.21 33.73 39.87 32 0.56 1.82 4.13 48.93 0.01 0.90 

199  Berry et  
al. (2004) 1.60 21.6 371 344 0.0127 0.0066 0.17 66.45 86.91 69.53 0.38 1.29 1.72 51.82 0.39 0.84 

200   1.78 27.1 318 336 0.0266 0.0025 0.07 407.65 471.31 377.05 0.42 0.80 2.11 1.24 0.51 0.95 
201   1.08 19.8 341 559 0.0222 0.0062 0.80 75.58 82.71 66.16 0.61 1.00 1.04 1.27 0.26 0.42 
202   1.08 19.8 341 559 0.0222 0.0062 0.80 85.56 91.31 71.55 0.86 1.06 2.18 2.46 0.11 0.66 
203   1.08 19.8 341 559 0.0222 0.0105 0.80 94.98 114.95 101.87 1.13 1.85 3.71 17.55 0.58 0.36 
204   1.32 31.8 340 249 0.0313 0.0022 0.18 115.4 130.58 104.46 0.50 0.82 1.16 2.45 0.39 0.42 
205   1.32 33 340 249 0.0313 0.0022 0.45 113.32 133.96 107.17 0.24 0.34 0.84 16.07 0.50 0.51 
206   3.10 33.6 496 345 0.0245 0.0016 0.07 72.66 87.89 70.31 1.34 3.52 3.60 3.58 0.92 0.34 
207   1.18 34.9 441 414 0.0301 0.0016 0.16 258.45 322.65 258.12 0.64 1.10 1.10 17.02 0.76 0.46 
208   2.22 34.9 441 414 0.0301 0.0028 0.16 213.35 263.17 210.54 0.79 1.37 1.83 11.70 0.68 0.46 



 

 
 

 

239 
 

209   1.18 42 441 414 0.0301 0.0031 0.27 337.21 409.38 327.5 0.63 0.92 1.01 4.52 0.21 0.77 
210   1.63 29.9 462 414 0.0244 0.0009 0.10 175.12 213.61 199.84 0.68 0.93 2.01 3.65 0.56 0.47 
211   3.52 26.9 331 399.9 0.0303 0.0007 0.09 236 277 221.6 0.66 1.04 1.05 20.00 0.17 0.33 
212   3.52 27.6 331 399.9 0.0303 0.0007 0.26 287.4 328 262.4 0.60 0.92 1.23 12.94 0.88 0.99 
213   3.52 27.6 331 399.9 0.0303 0.0017 0.26 281.8 355 284 0.60 1.06 1.74 5.16 0.09 0.67 
214   3.52 26.9 331 399.9 0.0303 0.0007 0.09 254 270 216 0.62 0.76 1.13 2.95 0.18 0.98 
215   2.91 21.9 434 400 0.0188 0.0019 0.00 353.89 406.99 325.59 0.70 1.94 2.25 3.76 0.21 0.73 
216   1.39 16 434 400 0.0188 0.0004 0.00 577.36 604.55 483.64 0.62 0.71 1.08 21.38 0.88 0.99 
217   1.60 21 371 344 0.0127 0.0115 0.35 85.81 110.7 88.56 0.38 0.93 1.55 52.77 0.49 0.83 
218   2.12 32 369 316 0.0201 0.0048 0.14 82.88 101.38 81.1 0.90 1.60 3.85 62.32 0.68 1.00 
219   2.13 29.9 370 316 0.0265 0.0047 0.15 87.35 110.59 88.47 0.76 1.28 1.98 52.32 0.36 1.00 
220   1.14 32.3 336 341 0.0177 0.0039 0.60 24.9 31.61 29.39 2.09 3.74 4.07 13.15 0.18 0.92 
221   1.14 34 336 341 0.0177 0.0039 0.70 30.44 36.74 29.39 2.95 4.34 5.01 16.91 0.18 0.99 
222   1.14 32.8 336 341 0.0177 0.0039 0.90 22.28 29.56 25.65 2.07 3.30 3.50 45.64 0.74 1.00 
223   2.17 21.1 341 559 0.0222 0.0062 0.80 53.82 66.55 59.85 0.30 0.47 1.02 52.49 0.53 0.99 
224   2.17 21.1 341 559 0.0222 0.0105 0.90 51.49 67.37 53.9 0.51 1.92 3.77 2.43 0.11 0.54 
225   3.25 28.8 341 559 0.0222 0.0062 0.70 41.6 51.22 40.98 0.41 0.67 1.51 4.27 0.11 0.89 
226   3.25 28.8 341 559 0.0222 0.0062 0.70 43.57 54.91 43.92 0.36 0.68 1.37 13.85 0.26 1.00 
227   3.25 28.8 341 559 0.0222 0.0105 0.70 43.25 51.78 42.28 0.56 0.77 2.86 5.81 0.89 1.00 
228   1.66 25.8 361 426 0.0213 0.0080 0.26 101.26 129.98 103.98 0.52 1.50 2.52 8.73 0.72 1.00 
229   1.66 25.8 361 426 0.0213 0.0080 0.62 105.23 133.78 107.02 0.32 0.75 1.03 5.06 0.05 0.68 
230   1.29 46.3 441 414 0.0412 0.0077 0.74 451 505.6 404.48 0.40 0.76 0.86 4.93 0.24 1.00 
231   3.10 34.7 496 345 0.0245 0.0016 0.12 78.52 98.76 94.99 0.79 3.61 3.63 15.22 0.18 0.82 
232   3.10 34.7 496 345 0.0245 0.0016 0.12 84.85 101.31 83.29 0.89 2.64 3.57 15.86 0.28 0.95 
233   3.10 26.1 496 345 0.0245 0.0023 0.15 85.54 104.59 99.48 1.17 2.78 4.88 3.92 0.04 0.77 
234   3.10 26.1 496 345 0.0245 0.0023 0.15 80.48 98.48 98.48 1.07 5.43 5.49 6.16 0.14 0.99 
235   3.10 33.6 496 345 0.0245 0.0016 0.11 79 94.23 75.38 1.44 2.58 4.81 2.19 0.03 0.98 
236   3.10 33.6 496 345 0.0245 0.0016 0.11 89.89 104.9 99.78 1.46 2.60 5.59 49.66 0.04 1.00 
237   3.10 33.6 496 345 0.0245 0.0016 0.07 76.34 93.27 80.42 1.22 3.42 3.42 6.48 0.02 0.98 
238   3.10 33.4 496 345 0.0245 0.0031 0.12 83.21 93.07 92.32 1.47 6.61 6.70 6.23 0.12 0.97 
239   3.10 33.4 496 345 0.0245 0.0031 0.12 81.38 99.37 88.46 1.14 6.69 6.72 9.27 0.12 0.96 



 

 
 

 

240 
 

240   3.06 33.5 496 317 0.0245 0.0074 0.12 100.77 119.77 116.41 1.69 5.87 5.91 4.31 0.08 0.95 
241   3.06 33.5 496 317 0.0245 0.0074 0.12 99.42 114.67 101.38 1.44 6.18 6.24 3.29 0.08 0.99 
242   3.06 33.5 496 317 0.0245 0.0045 0.12 95.33 115.89 115.89 1.25 5.96 5.96 1.98 0.03 0.64 
243   3.06 33.5 496 317 0.0245 0.0045 0.12 99.65 121.04 106.35 1.43 5.71 5.75 3.26 0.45 0.99 
244   3.52 33.1 331 399.9 0.0194 0.0007 0.07 182.46 240.77 207.62 0.48 1.92 2.59 8.84 0.16 0.98 
245   3.52 25.5 331 399.9 0.0194 0.0007 0.28 268.19 306 279 0.64 0.96 1.03 1.46 0.15 0.99 
246   3.52 33.1 331 399.9 0.0194 0.0007 0.07 191.78 229 183.2 0.53 1.08 1.67 8.48 0.52 0.99 
247   3.52 25.5 331 399.9 0.0303 0.0017 0.28 310.88 367 293.6 0.73 1.57 1.69 5.14 0.03 1.00 
248   2.11 86 510 449 0.0246 0.0075 0.10 224 267.57 220.47 1.12 1.92 6.40 59.86 0.07 0.96 
249   2.11 86 510 449 0.0246 0.0075 0.19 266.19 324.13 287.83 0.81 1.73 4.25 2.24 0.03 0.75 
250   3.76 21.1 434.4 476 0.0247 0.0017 0.15 247.92 302.52 242.02 0.90 1.81 2.34 7.45 0.03 0.86 
251   3.76 21.1 434.4 476 0.0247 0.0017 0.60 243.75 300.99 261.79 0.49 0.82 0.92 8.66 0.03 0.99 
252   3.76 21.8 434.4 476 0.0247 0.0017 0.15 240.23 294.58 235.66 0.93 2.05 2.68 4.93 0.03 0.90 

253  Cecen  
(1979) 2.56 32 480 745 0.0328 0.0089 0.18 4.13 4.74 4.27 2.73 4.48 6.72 26.03 0.00 0.62 

254   2.56 32 480 745 0.0328 0.0089 0.16 4.04 4.59 4.13 2.48 3.97 5.96 26.09 0.00 0.63 
255   2.56 32 480 745 0.0328 0.0089 0.14 3.63 4.16 3.75 2.33 3.66 5.49 25.89 0.00 0.61 
256   2.56 32 480 745 0.0328 0.0089 0.13 3.02 3.46 3.11 2.19 3.42 5.13 26.04 0.00 0.61 
257   2.56 32 480 745 0.0328 0.0089 0.11 2.46 2.82 2.54 1.99 3.10 4.65 26.02 0.00 0.61 
258   2.56 32 480 745 0.0187 0.0089 0.09 2.23 2.56 2.3 2.06 3.26 4.89 25.93 0.00 0.64 
259   2.56 32 480 745 0.0187 0.0089 0.07 2.01 2.3 2.07 1.83 2.89 4.33 25.98 0.00 0.58 
260   2.56 32 480 745 0.0187 0.0089 0.05 1.84 2.1 1.89 1.95 3.03 4.54 26.02 0.00 0.56 
261   2.56 32 480 745 0.0187 0.0089 0.04 1.71 1.96 1.76 1.88 2.88 4.31 26.18 0.00 0.56 
262   2.56 32 480 745 0.0187 0.0089 0.02 1.6 1.84 1.65 1.69 2.69 4.02 26.14 0.00 0.62 
263   2.56 32 480 745 0.0328 0.0089 0.18 4.13 4.74 4.27 2.73 4.48 6.72 25.93 0.00 0.61 
264   2.56 32 480 745 0.0328 0.0089 0.16 4.04 4.59 4.13 2.48 3.97 5.96 26.15 0.00 0.56 
265   2.56 32 480 745 0.0328 0.0089 0.14 3.63 4.16 3.75 2.33 3.66 5.49 26.04 0.00 0.59 
266   2.56 32 480 745 0.0328 0.0089 0.13 3.02 3.46 3.11 2.19 3.42 5.13 26.00 0.00 0.57 
267   2.56 32 480 745 0.0328 0.0089 0.11 2.46 2.82 2.54 1.99 3.10 4.65 26.04 0.00 0.61 
268   2.56 32 480 745 0.0187 0.0089 0.09 2.23 2.56 2.3 2.06 3.26 4.89 25.99 0.00 0.60 
269   2.56 32 480 745 0.0187 0.0089 0.07 2.01 2.3 2.07 1.83 2.89 4.33 25.99 0.00 0.62 
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270   2.56 32 480 745 0.0187 0.0089 0.05 1.84 2.1 1.89 1.95 3.03 4.54 26.07 0.00 0.59 
271   2.56 32 480 745 0.0187 0.0089 0.04 1.71 1.96 1.76 1.88 2.88 4.31 26.07 0.00 0.58 
272   2.56 32 480 745 0.0187 0.0089 0.02 1.6 1.84 1.64 1.69 2.69 4.02 26.07 0.00 0.60 
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APPENDIX B 

DATABASE OF CIRCULAR REINFORCED CONCRETE COLUMNS 

 

No. Refer
ence !/# $! 

(MPa) 
$"# 

(MPa) 
$"$ 

(MPa) %# %$ 
&
/'%$! 

(" 
(kN) 

(& 
(kN) 

(' 
(kN) 

)" 
(%) 

)& 
(%) 

)' 
(%) * + , 

1 

Berry 
et al. 
(2004

) 

5.73 33.2 373 312 0.0257 0.0044 0.06 162.22 192.00 163.40 0.80 2.18 3.03 51.97 0.02 1.00 

2  3.65 34.8 371 312 0.0257 0.0044 0.06 286.08 343.00 319.69 1.00 2.70 5.20 22.47 0.00 0.93 
3  6.77 33.8 373 342 0.0257 0.0044 0.06 128.33 149.00 119.28 0.66 1.23 3.44 52.25 0.03 1.00 
4  5.69 40.0 305 389 0.0257 0.0126 0.00 110.00 134.00 130.82 1.03 4.13 5.55 55.58 0.00 1.00 
5  5.60 35.1 305 263 0.0256 0.0187 0.01 30.17 37.00 30.59 2.35 4.75 7.01 56.34 0.61 1.00 
6  3.88 33.0 294 207 0.0218 0.0248 0.34 62.18 77.00 77.06 0.73 4.23 4.38 2.75 0.02 1.00 
7  4.17 26.0 308 308 0.0243 0.0076 0.21 113.03 139.00 128.72 0.50 1.24 3.58 19.49 0.01 1.00 
8  4.19 28.5 308 280 0.0243 0.0153 0.59 132.90 163.00 130.76 0.48 1.20 2.00 52.37 0.13 1.00 
9  2.09 28.4 303 300 0.0243 0.0075 0.24 540.06 687.00 669.00 0.42 1.69 3.67 12.49 0.03 1.00 
10  2.09 32.9 303 423 0.0243 0.0080 0.41 632.40 781.00 711.23 0.47 1.39 2.73 45.56 0.06 1.00 
11  2.10 32.5 307 280 0.0243 0.0261 0.37 687.16 812.00 801.70 0.41 0.97 2.29 5.37 0.13 1.00 
12  2.10 32.5 307 280 0.0243 0.0261 0.74 735.00 937.00 822.50 0.59 1.65 2.59 65.29 0.00 1.00 
13  2.62 29.9 448 372 0.0320 0.0102 0.20 326.62 364.00 353.50 1.72 4.19 6.56 51.43 0.02 0.83 
14  4.19 32.3 337 466 0.0243 0.0062 0.14 121.69 142.00 113.86 0.59 1.18 4.54 45.82 0.23 1.00 
15  4.18 40.0 474 372 0.0182 0.0064 0.53 177.09 212.00 189.30 0.56 1.18 2.02 50.87 0.21 0.99 
16  4.19 39.0 474 338 0.0182 0.0147 0.74 180.00 206.00 165.17 0.58 0.97 1.59 59.57 0.72 1.00 
17  2.11 38.0 423 300 0.0320 0.0142 0.19 399.84 461.00 410.86 0.92 3.51 5.18 7.33 0.02 0.89 
18  2.11 37.0 475 300 0.0320 0.0142 0.39 449.49 579.00 462.90 0.84 2.50 3.76 3.00 0.08 1.00 
19  7.05 38.8 240 240 0.0183 0.0063 0.05 23.98 31.00 24.51 0.53 1.29 2.99 50.14 0.05 1.00 
20  7.05 36.2 240 240 0.0183 0.0063 0.09 25.80 33.00 26.10 0.45 1.00 2.13 47.40 0.08 1.00 
21  4.02 34.5 448 620 0.0558 0.0145 0.24 32.00 41.00 37.71 1.40 5.13 8.01 58.51 0.00 1.00 
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22  6.25 35.8 475 493 0.0200 0.0063 0.07 1121 1289 1030.9
6 1.20 3.59 6.00 50.99 0.01 1.00 

23  3.13 34.3 475 435 0.0200 0.0149 0.07 2443.9 2968 2558.4 0.99 4.67 7.78 16.13 0.03 1.00 
24  3.12 24.1 446 441 0.0196 0.0141 0.10 52.85 59.00 47.59 1.03 5.13 9.43 43.72 0.28 1.00 
25  3.12 23.1 446 441 0.0196 0.0141 0.21 60.55 73.00 58.74 0.81 1.82 8.21 17.18 0.19 1.00 
26  6.24 25.4 446 476 0.0196 0.0068 0.10 26.07 32.00 30.30 1.07 3.61 7.37 57.42 0.11 0.88 
27  3.12 24.4 446 441 0.0196 0.0141 0.10 48.54 63.00 50.16 0.56 2.39 7.57 18.70 0.11 1.00 
28  6.24 23.3 446 476 0.0196 0.0068 0.10 25.94 30.00 24.17 1.09 2.01 4.75 48.69 0.02 0.78 
29  1.79 26.5 399 355 0.0046 0.0284 0.14 90.54 117.00 93.40 0.35 3.10 3.31 1.60 0.01 0.81 
30  2.36 31.6 375 366 0.0091 0.0101 0.21 68.02 102.00 81.62 0.42 1.15 4.53 0.86 0.02 0.91 
31  2.38 31.6 345 335 0.0254 0.0341 0.21 115.77 146.00 116.80 0.64 1.80 5.72 7.10 0.01 0.58 
32  1.76 31.3 363 381 0.0385 0.0134 0.00 150.23 176.00 170.91 0.75 1.52 3.42 11.75 0.03 0.85 
33  1.76 29.3 363 381 0.0385 0.0134 0.12 175.13 212.00 206.23 0.71 1.56 3.44 5.27 0.00 0.78 
34  2.35 30.5 363 381 0.0385 0.0063 0.12 121.40 154.00 148.19 0.65 1.48 3.65 3.76 0.08 0.92 
35  2.35 30.9 363 381 0.0385 0.0063 0.23 142.85 174.00 160.98 0.70 1.66 3.65 2.94 0.00 0.88 
36  4.72 29.0 448 434 0.0204 0.0094 0.09 63.88 74.00 72.64 1.19 3.64 5.46 50.61 0.01 1.00 
37  4.72 35.5 448 434 0.0204 0.0094 0.09 61.82 72.00 71.13 1.18 4.17 4.22 53.89 0.00 0.88 
38  4.72 35.5 448 434 0.0204 0.0094 0.09 66.77 77.00 77.19 1.51 5.40 5.56 51.74 0.01 1.00 
39  4.72 35.5 448 434 0.0204 0.0094 0.09 64.91 77.00 71.87 1.14 3.67 6.87 55.50 0.32 1.00 
40  4.72 32.8 448 434 0.0204 0.0094 0.09 67.14 79.00 71.67 1.04 2.43 5.91 9.51 0.00 1.00 
41  4.72 32.8 448 434 0.0204 0.0094 0.09 60.58 68.00 62.74 1.15 2.00 5.86 11.15 0.00 1.00 
42  4.72 32.5 448 434 0.0204 0.0094 0.09 59.28 75.00 68.54 0.95 2.72 6.60 11.12 0.00 1.00 
43  4.72 27.0 448 434 0.0204 0.0094 0.10 64.51 74.00 69.47 1.12 2.37 6.61 15.03 0.00 0.93 
44  4.72 27.0 448 434 0.0204 0.0094 0.10 57.00 68.00 55.28 1.02 3.58 5.45 11.66 0.00 1.00 
45  4.72 27.0 448 434 0.0204 0.0094 0.10 60.55 72.00 57.85 0.90 3.18 5.07 11.24 0.00 1.00 
46  6.29 41.1 455 414 0.0266 0.0089 0.15 307.98 357 357.50 1.45 8.72 8.74 8.23 0.03 1.00 
47  2.11 38.3 428 430 0.0241 0.0114 0.31 467.00 582 482.80 0.83 3.63 5.03 3.75 0.02 1.00 
48  2.11 35.0 486 434 0.0521 0.0304 0.33 849.00 1100 1099 1.85 7.53 9.47 51.20 0.05 1.00 
49  8.57 36.6 477 445 0.0362 0.0092 0.30 130.70 149.00 135.10 1.87 3.41 9.09 6.32 0.00 1.00 
50  8.57 40.0 477 437 0.0362 0.0060 0.27 152.84 175.00 168.44 1.92 3.72 5.75 9.99 0.15 1.00 
51  8.57 38.6 477 445 0.0362 0.0092 0.28 144.20 167.00 153.40 1.86 7.17 9.31 7.11 0.00 1.00 



 

 
 

 

244 
 

52  4.15 31.0 462 607 0.0149 0.0070 0.07 248.00 285.00 262.00 0.89 5.09 7.32 7.74 0.13 1.00 
53  8.30 31.0 462 607 0.0149 0.0070 0.07 134.00 151.00 150.00 1.80 7.34 9.14 23.42 0.06 0.96 

54  10.3
8 31.0 462 607 0.0149 0.0070 0.07 83.77 98.00 90.03 1.68 3.01 10.4

6 43.75 0.00 0.89 

55  4.15 31.0 462 607 0.0075 0.0070 0.07 152.00 180.00 170.00 0.63 1.45 5.21 15.00 0.00 1.00 
56  4.15 31.0 462 607 0.0298 0.0070 0.07 415.00 480.00 479.00 1.42 7.14 7.30 29.21 0.15 1.00 
57  3.15 34.5 441 607 0.0273 0.0090 0.09 467.00 555.00 548.00 0.95 6.72 7.22 12.05 0.02 1.00 
58  8.39 34.5 441 607 0.0273 0.0090 0.09 174.00 203.00 193.00 1.78 9.00 9.53 43.40 0.00 1.00 

59  10.4
9 34.5 441 607 0.0273 0.0090 0.09 162.35 190.00 188.60 2.06 14.0

4 
14.6

6 15.00 0.00 1.00 

60  3.16 31.4 448 431 0.0192 0.0054 0.05 341.17 410.00 327.73 1.39 5.70 7.24 53.18 0.10 0.98 
61  3.16 34.6 448 431 0.0192 0.0054 0.04 342.16 431.00 416.76 1.14 4.84 6.63 31.69 0.02 0.81 
62  3.16 33.0 461 434 0.0192 0.0081 0.04 371.20 453.00 409.10 1.06 4.92 8.24 12.24 0.05 1.00 
63  6.96 65.0 419 1000 0.0328 0.0154 0.31 56.25 71.00 62.80 0.94 2.35 9.13 16.68 0.00 0.96 
64  7.02 65.0 419 420 0.0328 0.0349 0.31 54.54 68.00 60.96 0.91 2.25 7.44 5.49 0.01 1.00 
65  6.97 90.0 419 580 0.0328 0.0175 0.42 66.00 85.00 81.26 0.85 2.89 3.29 57.16 0.07 1.00 
66  7.02 90.0 419 420 0.0328 0.0174 0.42 65.50 78.00 71.39 0.67 2.74 4.16 12.92 0.02 1.00 
67  6.96 90.0 419 1000 0.0328 0.0154 0.21 60.72 74.00 62.53 1.10 3.43 8.62 6.45 0.01 1.00 
68  6.96 90.0 419 420 0.0328 0.0343 0.42 79.08 94.00 90.67 0.86 1.97 6.60 4.19 0.00 1.00 
69  3.13 56.2 455 455 0.0099 0.0013 0.13 244.95 308.00 260.70 0.74 2.81 3.45 1.92 0.20 1.00 
70  3.13 56.3 455 455 0.0099 0.0013 0.11 234.00 293.00 234.40 0.64 1.64 3.86 4.90 0.03 0.69 
71  3.13 57.0 455 455 0.0099 0.0013 0.10 225.88 272.00 217.90 0.59 1.58 3.34 0.70 0.00 0.88 
72  3.13 52.7 455 455 0.0099 0.0013 0.11 226.82 265.00 212.24 0.68 2.12 2.97 7.50 0.01 0.47 
73  4.15 37.2 462 607 0.0149 0.0070 0.12 275.27 330.00 258.60 1.23 5.22 7.32 9.24 0.14 1.00 
74  4.15 37.2 462 607 0.0149 0.0035 0.06 240.26 288.00 224.30 1.16 5.25 5.28 51.19 0.07 0.81 
75  6.20 32.6 315 352 0.0254 0.0017 0.19 190.42 237.00 214.30 0.75 3.01 3.76 2.62 0.08 1.00 

76  5.42 60.6 430 414 0.0213 0.0176 0.00 97.18 117.00 111.74 1.41 4.23 10.1
1 53.08 0.00 0.77 

77  5.42 62.6 430 414 0.0213 0.0176 0.00 99.25 111.00 106.70 1.30 4.21 11.3
6 5.91 0.02 0.92 

78  5.42 69.6 430 414 0.0213 0.0192 0.00 107.18 137.00 120.70 0.95 2.84 10.2
3 7.47 0.00 0.50 

79  5.42 69.6 430 414 0.0213 0.0192 0.10 138.58 167.00 133.85 0.66 1.35 2.81 45.99 0.02 0.59 
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80  5.42 69.6 492 414 0.0213 0.0192 0.10 148.69 177.00 141.79 0.77 1.30 3.13 2.39 0.05 1.00 
81  5.42 69.6 506 414 0.0213 0.0192 0.10 144.10 176.00 140.65 0.70 1.28 3.16 4.67 0.08 0.71 
82  5.42 69.6 506 414 0.0213 0.0192 0.10 139.19 171.00 136.52 0.75 2.09 3.00 11.67 0.05 0.72 
83  5.42 69.6 492 414 0.0213 0.0192 0.10 149.95 182.00 120.60 0.77 1.83 3.79 4.31 0.02 0.70 
84  5.48 32.7 565 434 0.0198 0.0092 0.04 131.26 153.00 132.30 1.59 4.44 7.55 52.91 0.00 0.99 

85  5.48 34.2 565 434 0.0198 0.0092 0.04 136.76 159.00 144.30 1.85 4.44 10.7
0 58.37 0.00 1.00 

86  5.48 33.9 565 434 0.0198 0.0092 0.04 139.91 157.00 152.60 1.81 8.66 13.1
5 57.86 0.00 0.62 

87  6.83 22.0 379 379 0.0156 0.0024 0.19 87.17 106.00 99.85 0.85 1.90 3.83 2.65 0.81 0.76 
88  4.74 36.5 459 692 0.0117 0.0053 0.00 59.26 70.00 62.32 1.01 2.99 6.17 14.55 0.00 0.95 
89  4.74 36.5 459 692 0.0117 0.0053 0.00 61.52 74.00 66.43 1.09 2.53 5.13 11.84 0.07 1.00 

90  4.74 35.6 459 692 0.0117 0.0053 0.00 82.80 106.00 84.80 1.62 8.14 11.0
5 1.00 0.00 1.00 

91  4.19 27.0 337 466 0.0243 0.0112 0.61 142.63 175.00 140.10 0.58 0.86 2.53 66.01 0.20 1.00 
92  8.04 34.5 448 620 0.0558 0.0145 0.24 18.00 19.00 15.25 2.50 3.77 7.86 15.89 0.09 1.00 
93  4.02 34.5 448 620 0.0558 0.0145 0.35 38.50 42.00 37.35 1.74 3.81 7.99 15.75 0.00 1.00 
94  6.96 90.0 419 1000 0.0328 0.0154 0.42 67.50 81.00 73.23 0.95 2.77 4.61 51.48 0.00 1.00 
95  6.96 90.0 419 1000 0.0328 0.0154 0.42 63.50 78.00 62.75 1.22 1.81 5.92 57.50 0.00 1.00 

96  5.48 31.7 565 434 0.0198 0.0092 0.04 172.00 192.00 185.75 2.05 9.67 10.5
0 

110.9
4 0.00 0.68 

97  2.11 30.6 436 316 0.0320 0.0051 0.00 255.00 289.17 280.70 1.21 1.67 2.26 12.08 0.15 0.22 
98  1.57 30.1 436 328 0.0320 0.0051 0.00 376.20 391.65 319.50 1.53 1.70 1.85 5.90 0.42 0.88 
99  2.09 29.5 448 372 0.0320 0.0038 0.00 269.10 280.66 230.80 1.47 1.50 3.56 35.53 0.53 0.61 
100  2.09 33.4 436 326 0.0320 0.0051 0.10 287.20 352.28 295.90 1.05 1.51 2.01 7.14 0.21 0.72 
101  1.57 35.0 436 326 0.0320 0.0051 0.10 419.18 504.83 394.60 1.31 2.36 2.58 5.31 0.36 0.95 
102  1.83 36.7 482 326 0.0320 0.0038 0.18 398.42 486.64 392.30 1.15 1.79 1.94 53.55 0.70 0.46 
103  2.09 33.2 436 326 0.0320 0.0038 0.00 233.45 270.46 216.37 0.84 1.33 3.58 71.13 0.72 0.41 
104  2.11 30.9 436 310 0.0320 0.0039 0.00 226.53 284.83 222.80 0.86 1.44 2.22 10.19 0.11 0.35 
105  1.50 32.8 296 0 0.0320 0.0000 0.00 204.46 239.26 194.30 0.52 0.91 1.22 7.38 0.12 0.67 
106  1.18 28.8 366 368 0.0385 0.0047 0.00 120.87 176.36 141.09 0.34 0.98 2.30 10.78 0.20 0.27 
107  1.18 29.3 366 368 0.0385 0.0094 0.00 152.73 203.82 166.50 0.49 1.28 2.64 13.18 0.17 0.32 
108  1.19 28.6 366 0 0.0385 0.0000 0.13 140.65 158.23 128.00 0.22 0.31 0.64 1.40 0.39 0.64 
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109  1.18 29.8 366 368 0.0385 0.0047 0.12 143.82 192.49 153.99 0.20 0.63 1.71 2.06 0.62 0.68 
110  1.18 28.6 366 368 0.0385 0.0094 0.13 178.28 225.30 180.24 0.33 0.99 1.99 2.83 0.27 0.43 
111  1.18 31.4 366 368 0.0385 0.0134 0.12 163.70 213.14 170.51 0.34 0.95 2.44 1.25 0.49 0.27 
112  1.18 30.5 366 368 0.0513 0.0094 0.12 178.27 228.03 193.00 0.32 0.96 1.97 2.29 0.42 0.78 
113  1.19 28.7 366 0 0.0385 0.0000 0.25 165.37 188.44 150.75 0.18 0.26 0.43 2.24 0.51 0.66 
114  1.18 27.8 366 368 0.0385 0.0047 0.26 160.22 191.95 141.10 0.19 0.62 1.21 1.52 0.68 0.69 
115  1.18 30.5 366 368 0.0385 0.0094 0.24 192.49 238.42 190.74 0.21 0.95 1.79 2.73 0.36 0.49 
116  1.18 31.3 366 368 0.0385 0.0134 0.23 215.36 279.09 218.10 0.31 1.28 2.33 2.71 0.32 0.54 
117  1.18 31.3 363 381 0.0385 0.0063 0.12 186.70 246.58 197.26 0.37 0.96 2.08 1.99 0.69 0.77 
118  1.79 31.1 363 0 0.0385 0.0000 0.12 114.57 132.03 105.62 0.28 0.42 0.79 1.88 0.80 0.58 
119  1.76 31.2 363 381 0.0385 0.0063 0.12 150.39 186.48 149.18 0.55 1.10 2.38 2.15 0.29 0.55 
120  1.76 20.5 363 381 0.0385 0.0063 0.18 137.25 171.15 136.92 0.56 1.28 2.38 4.99 0.24 0.30 
121  1.18 31.1 363 381 0.0385 0.0063 0.23 194.13 234.05 187.24 0.28 0.96 1.67 3.28 0.32 0.41 
122  1.76 29.7 363 381 0.0385 0.0063 0.24 158.58 201.24 160.99 0.44 1.13 2.29 2.41 0.34 0.42 
123  1.76 18.9 363 381 0.0385 0.0063 0.38 145.46 176.08 140.86 0.45 1.11 1.96 2.70 0.32 0.53 
124  1.76 41.3 363 381 0.0385 0.0063 0.18 187.03 228.59 182.87 0.50 1.04 2.15 2.03 0.33 0.50 
125  2.06 26.8 454 200 0.0136 0.0013 0.00 290.60 331.10 264.88 0.48 0.63 0.90 15.16 0.21 0.66 
126  2.06 31.2 438 200 0.0136 0.0013 0.00 276.00 326.30 261.04 0.45 0.67 0.88 17.18 0.12 0.61 
127  2.09 26.6 303 300 0.0243 0.0112 0.57 615.28 729.06 705.98 0.38 1.13 1.42 44.67 0.12 1.00 
128  2.09 37.5 436 328 0.0320 0.0051 0.00 310.91 321.38 290.70 2.31 2.83 4.13 23.09 0.53 1.00 
129  2.09 37.2 296 328 0.0320 0.0051 0.00 199.64 220.69 215.70 0.72 0.96 3.90 50.64 0.01 0.61 
130  2.62 36.0 436 328 0.0320 0.0051 0.00 237.92 276.18 268.50 3.23 4.00 4.02 40.31 0.82 1.00 
131  2.09 31.1 436 328 0.0320 0.0076 0.00 325.80 330.92 320.30 2.51 2.74 3.88 33.97 0.09 0.22 
132  2.09 28.7 448 372 0.0320 0.0102 0.20 403.40 445.13 378.60 1.88 3.66 5.49 56.07 0.15 1.00 
133  2.11 31.2 448 332 0.0320 0.0102 0.20 415.92 437.35 384.75 2.07 3.26 5.21 54.93 0.17 1.00 
134  2.09 29.9 448 372 0.0320 0.0051 0.20 380.10 407.10 325.68 1.89 2.14 2.22 10.71 0.67 0.89 
135  1.57 28.6 436 328 0.0320 0.0102 0.10 510.80 525.82 420.66 2.23 2.59 4.09 30.10 0.11 0.71 
136  2.09 33.7 424 326 0.0324 0.0051 0.00 270.62 316.38 273.80 1.11 2.04 4.37 5.63 0.35 1.00 
137  2.09 34.8 436 326 0.0192 0.0051 0.00 188.32 230.34 204.80 0.85 3.31 4.96 9.08 0.12 1.00 
138  2.62 34.3 436 326 0.0320 0.0051 0.10 258.82 312.36 249.89 1.04 1.87 2.92 6.73 0.09 0.53 
139  2.11 32.3 436 332 0.0320 0.0076 0.00 283.90 332.54 315.00 1.20 1.89 4.09 11.62 0.16 0.53 



 

 
 

 

247 
 

140  2.11 33.1 436 310 0.0320 0.0077 0.00 285.54 340.48 191.30 1.05 3.96 6.02 4.88 0.06 0.40 
141  2.09 37.0 475 340 0.0320 0.0047 0.39 372.82 489.30 391.44 0.48 1.40 2.12 7.19 0.00 0.46 
142  3.32 35.9 240 240 0.0183 0.0063 0.05 64.23 74.85 67.51 0.57 1.05 3.50 55.33 0.04 1.00 
143  3.30 34.4 240 240 0.0183 0.0063 0.10 66.58 79.69 63.75 0.49 0.98 3.04 49.45 0.01 1.00 
144  1.19 26.5 375 335 0.0091 0.0427 0.25 138.83 174.82 139.86 0.50 2.10 3.83 2.35 0.01 0.37 
145  1.19 26.5 382 335 0.0162 0.0312 0.12 137.61 181.65 145.32 0.67 1.83 3.68 5.71 0.02 0.43 
146  2.35 31.6 382 387 0.0162 0.0075 0.10 80.29 101.73 97.67 0.64 1.73 4.69 8.22 0.01 0.64 
147  1.18 30.2 366 368 0.0257 0.0094 0.12 190.96 254.24 203.39 0.46 1.32 2.81 6.40 0.12 0.30 
148  1.76 32.0 363 381 0.0385 0.0063 0.00 144.24 168.20 134.56 0.83 1.52 2.80 46.51 0.17 0.36 
149  1.76 42.2 363 381 0.0385 0.0063 0.09 170.62 212.18 169.74 0.57 1.33 2.68 2.46 0.27 0.41 
150  1.54 30.0 462 361 0.0052 0.0028 0.06 326.31 399.52 391.40 0.35 1.26 2.61 2.45 0.04 0.67 
151  1.54 30.0 462 361 0.0104 0.0017 0.06 462.81 587.36 557.60 0.48 1.68 1.78 1.90 0.18 0.83 
152  2.11 35.0 468.2 434.4 0.0521 0.0270 0.15 774.00 985.10 979.90 1.69 9.25 9.53 48.03 0.13 1.00 
153  2.65 34.7 458.5 691.5 0.0137 0.0010 0.00 123.22 143.26 114.61 0.45 0.68 1.14 52.17 0.79 1.00 
154  2.65 34.7 458.5 691.5 0.0137 0.0010 0.00 150.98 164.42 131.54 0.80 1.03 1.32 50.24 0.00 0.57 
155  3.12 24.3 446 441 0.0196 0.0141 0.20 59.84 77.00 61.24 0.78 2.71 7.15 19.31 0.13 1.00 
156  2.11 39.4 427.5 430.2 0.0241 0.0114 0.15 442.40 550.00 542.00 0.96 4.12 5.53 8.55 0.04 0.94 
157  1.57 34.4 436 326 0.0320 0.0038 0.10 357.28 437.45 359.70 1.02 1.46 1.69 14.45 0.22 0.58 
158  2.06 29.8 454 200 0.0136 0.0013 0.00 332.58 405.48 387.90 0.55 1.94 2.44 14.70 0.10 0.72 
159  2.09 36.2 436 326 0.0320 0.0102 0.10 378.86 436.30 349.04 1.34 4.37 4.90 31.49 0.10 0.95 
160  2.65 35.4 458.5 691.5 0.0117 0.0026 0.00 143.58 169.79 163.20 0.79 2.42 4.06 7.95 0.04 0.76 

 
 


