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Summary

Advancing age is associated with a progressive loss of skeletal

muscle (SkM) mass and function. Given the worldwide aging

demographics, this is a major contributor to morbidity, escalating

socio-economic costs and ultimately mortality. Previously, it has

been established that a decrease in regenerative capacity in

addition to SkM loss with age coincides with suppression of

insulin/insulin-like growth factor signalling pathways. However,

genetic or pharmacologicalmodulations of these highly conserved

pathways have been observed to significantly enhance life and

healthspan in various species, including mammals. This therefore

provides a controversial paradigm in which reduced regenerative

capacity of skeletal muscle tissue with age potentially promotes

longevity of the organism. This paradox will be assessed and

considered in the light of the following: (i) the genetic knockout,

overexpression and pharmacological models that induce lifespan

extension (e.g. IRS-1/s6K KO, mTOR inhibition) versus the impor-

tant role of these signalling pathways in SkM growth and

adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus

their emerging role in SkM regeneration and survival under

catabolic stress; (iii) the role of dietary restriction and its impact

on longevity versus skeletal muscle mass regulation; (iv) the

crosstalk between cellular energymetabolism (AMPK/TSC2/SIRT1)

and survival (FOXO) versus growth and repair of SkM (e.g. AMPK

vs. mTOR); and (v) the impact of protein feeding in combination

withdietary restrictionwill bediscussedasapotential intervention

to maintain SkM mass while increasing longevity and enabling

healthy aging.
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Sarcopenia: demographics and impact on quality of
life in humans

Life expectancy is increasing rapidly in many countries. As a conse-

quence, there are a greater proportion of older people making up our

global population. In the UK, 10 million people are currently over

65 years of age, with the latest projections suggesting that this will

increase to 19 million people by 2050 (Cracknell, 2013). Age is the

primary risk factor for a multitude of pathological conditions, including

Alzheimer’s disease, cardiovascular disease, type II diabetes and sarco-

penia. Sarcopenia is the age-related loss of Skeletal Muscle (SkM) mass

and function (Rosenberg, 1997). Muscle loss is evident in sedentary

humans at 25 years of age, with a 10% loss in peak lean SkM mass at

40 years of age, which increases to 40% at 70 years of age (Porter

et al., 1995). Indeed, from age 50, muscle mass is lost at a rate of 1–2%

per year (Hughes et al., 2001). This loss impacts negatively on functional

and metabolic performance, maximal strength and muscle quality

(Renault et al., 2002; Morse et al., 2005a,b; Rossi et al., 2008).

Importantly, loss of functional capacity in skeletal muscle with age is

strongly correlated with decreased quality of life and increased frailty,

morbidity and early mortality (Rantanen et al., 2003). Given that

approximately 40–50% of the population over 80 years of age suffers

from sarcopenia, this condition has been recognized as a major geriatric

clinical disorder (Cruz-Jentoft et al., 2010). Thus, ameliorating age-

related SkM wasting is of high clinical importance if we are to improve

quality of life and ultimately reduce the socio-economic impact of

sarcopenia.

Overview and Rationale

This review will focus on the cellular and molecular mechanisms that

underpin age-related muscle loss and will debate the trade-off that may

occur between skeletal muscle maintenance and survival into old age

versus whole organism life/healthspan. This concept emerges from the

body of research investigating the molecular modulators of aging. It

focuses on genetic knockout (KO) of IRS-1 and p70S6K1 as well as

transgenic models such as FOXO, SIRT1 and finally pharmacological

modulation including mTOR inhibition and sirtuin activation. All of these

models have been shown to extend both lifespan and healthspan.

Importantly however, all of these pathways are also inextricably shared

with those that modulate skeletal muscle mass maintenance. Therefore,
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this review will seek to discuss the hypertrophic, degradative and sirtuin

pathways in relation to their modulatory regulation of lifespan,

healthspan and muscle cell survival particularly in inflamed aged

environments. Finally, the potential importance of optimizing dietary

restriction and amino acid uptake to ameliorate the reduction in SkM

mass while promoting healthy aging will be discussed.

Insulin-like growth factors (IGFs) and skeletal
muscle

Overview of IGF’s and their role in skeletal muscle mass

regulation

The insulin-like growth factor (IGF) family consists of the ligands, IGF-I

and IGF-II, the type I and type II IGF cell surface receptors, six specific

high-affinity binding proteins (IGFBP-1 to IGFBP-6), IGFBP proteases and

other IGFBP-interacting molecules (Holly et al., 2000). They have a wide

range of biological functions including embryonic, foetal and adult SkM

development (reviewed in Stewart & Rotwein, 1996a). In vivo rodent

studies have shown that KO of IGF-I, IGF-II or the IGF-I receptor (IGF-IR)

results in animals that are phenotypically small for their gestational age

with significant decreases in SkMmass and neonatal lethality (Nabeshima

et al., 1993; Lau et al., 1994; Stewart & Rotwein, 1996a,b). Alterna-

tively, increasing circulating IGF-I expression in transgenic mice results in

SkM hypertrophy (Matthews et al., 1988). Furthermore, KO of IGF-IIR

also results in SkM overgrowth; as IIR acts as a clearance receptor for IGF-

II, thus its removal leads to an increase in circulating IGF-II and

subsequent hypertrophy (Lau et al., 1994). Our group has extensively

characterized the multifaceted roles of the IGF system where they are

fundamental in the proliferation, survival, differentiation and hypertrophy

of primary human and mouse SkM cells (Stewart et al., 1993; James

et al., 1996; Stewart et al., 1996; Stewart & Rotwein, 1996b; Stewart

et al., 1999a,b; Foulstone et al., 2001, 2003a,b, 2004; Grohmann et al.,

2005; Saini et al., 2008; Stewart & Pell, 2010; Al-Shanti & Stewart, 2011;

Saini et al., 2012; Sharples et al., 2013; Player et al., 2014) (Reviewed in

Scime & Rudnicki, 2006). Skeletal muscle-derived IGF-I is also important

in adult muscle hypertrophy, as demonstrated using liver IGF-I-deficient

(LID) mice (Matheny et al., 2009). In this study, despite an 80% reduction

in total circulating levels of IGF-I in LID versus control (L/L) mice, following

16 weeks of hypertrophy inducing resistance exercise there was no

difference in locally produced IGF-I mRNA or IGF-IR activation between

groups (Matheny et al., 2009). Despite these compelling data, the

importance of IGF-I in mechanical load-induced hypertrophy following

resistance exercise and the development of animal models of nonphys-

iological hypertrophy have been recently debated. This controversy is

reviewed by our group elsewhere, and it not the focus of this current

review (Stewart & Pell, 2010; Sharples & Stewart, 2011).

Reductions in IGF-I and associated signalling in aging skeletal

muscle

With sarcopenia, a 33% reduction in circulating IGF-I (Benbassat et al.,

1997) and a 45% decline in SkM-derived IGF-I mRNA are observed in

older (70 � 0.3 years) vs. younger (20 � 0.3 years) human males (Leger

et al., 2008). A corresponding attenuation in downstream intracellular

signalling targets involved in protein synthesis with age has also been

described. These include reductions in the activity of PI3K, Akt, mTOR,

p70S6K1, 4E-BP1 and EIF2B in older vs. younger counterparts (Terada

et al., 1994; Welsh et al., 1997; Pallafacchina et al., 2002; Cuthbertson

et al., 2005; Leger et al., 2008). With impairments of these signalling

pathways also observed with age following muscle contraction (Fry

et al., 2011), a recent study using mouse models attempted to

recapitulate declining human serum IGF-I concentrations with age. It

should be noted that in rodents, serum IGF-I levels are consistently high

and do not decrease until very old age when sarcopenia is observed,

whereas in humans, serum IGF-I is highest during adolescence and

declines earlier in the life course, starting in middle age and paralleling

the onset of sarcopenia. This study suggested that mice with reduced

serum IGF-I at 1 year of age had significantly deteriorated healthspans.

They exhibited increased liver weight and inflammation and increased

incidence of hepatic tumours. Importantly, in SkM tissue, increased

oxidation of proteins was observed, indicative of increased oxidative

stress (Gong et al., 2014), overall suggesting an important role for IGF-I

in reducing some, but not all (see below), age-associated pathologies.

We have recently developed and begun to characterize the roles of the

IGFs, their receptors and modulatory binding proteins in an in vitromurine

cell model of SkM aging via the following: (i) comparisons of parental

(older) vs. daughter (younger) cell populations and (ii) multiple population

doublings as a way of artificially aging cells (Sharples et al., 2010, 2011,

2012, 2013). These studies demonstrated that IGF binding protein levels

are increased in cells that display aging phenotypes via mechanisms that

ultimately reduce the activity of Akt (Sharples et al., 2011, 2013). These

observations correspond with impaired differentiation and hypertrophy of

myotubes (Sharples et al., 2010, 2011, 2012; Deane et al., 2013). These

phenotypes are also observed in primary human SkM cells isolated from

aged vs. young donors (Collins et al., 2007; Bigot et al., 2008; Pietran-

gelo et al., 2009; Beccafico et al., 2010). These effects correspond with a

loss of myogenicity (Hidestrand et al., 2008) in the face of unchanged

telomere length and telomerase activity (O’Connor et al., 2009).

Together, the majority of evidence (both in vitro and in vivo) therefore

points towards the need for IGF-I and activation of its downstream

signalling pathways to maintain skeletal muscle mass across the lifespan.

Reduced Insulin/Insulin-like-Growth Factor
Signalling (IIS): enhanced longevity vs. reduced
muscle mass in aging skeletal muscle

IGF and Insulin Receptor Substrate (IRS-1)

Reductions in IGF-I activity with age are associated with reductions in SkM

size and function. However, reduced signalling through the IIS pathway is

also associatedwith increased lifespan and healthspan inmodel organisms

(Clancy et al., 2001; Holzenberger et al., 2002; Barbieri et al., 2003; Tatar

et al., 2003; Giannakou & Partridge, 2007; Piper et al., 2008; Selman

et al., 2008; Vallejo et al., 2009; Kenyon, 2011; Selman et al., 2011). For

example, both female and male mice globally lacking insulin receptor

substrate 1 (Irs1�/�) are long lived (Selman et al., 2008, 2011). Female

mice lived 32% longer compared to wild-type controls, equating to a

mean lifespan of 971 days in the Irs1�/�mice compared with 738 days in

wild-type control animals. Interestingly, Irs1�/�mice showed resistance to

several parameters associatedwith aging, including bone, skin,metabolic,

immune and motor dysfunction (Selman et al., 2008). Thus, Irs1�/�mice,

in commonwith several other long-livedmodels, enjoy a greater period of

their life free from various age-associated pathologies (Selman and

Withers 2011). Importantly, Irs-1�/� mice display reduced growth

compared to wild-type animals perhaps due to the important role for

IRS-1 in embryonic and postnatal growth (Withers et al., 1998, 1999).

Furthermore, mice with growth hormone (GH)/IGF-I defects, while

phenotypically growth retarded compared with wild-type littermates,

also exhibit enhanced longevity, lower DNA mutation frequencies, higher
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DNA excision repair and secondary attenuation of IIS (Bates & Holder,

1988; Pell & Bates, 1992; Bartke & Brown-Borg, 2004; Bartke, 2005;

Garcia et al., 2008; Garinis et al., 2009; Masternak et al., 2009; Page

et al., 2009).

While there are clear benefits of reduced IIS signalling for lifespan and

aspects of healthspan, as eluded to above, reductions in SkM mass

correspond with decreases in IGF-I with age. Indeed, some studies

suggest that bone, cardiac muscle and other tissues display aged

characteristics when IGF-I is impaired (Adamo and Farrar, 2006; Anversa,

2005; Ceda et al., 2005; Geusens and Boonen, 2002). Indeed, Irs1�/�

mice have reduced body weight and fat mass compared to age-matched

controls (Pete et al., 1999; Selman et al., 2008) with reduced gastroc-

nemius SkM weight that is proportionately greater than the decrease

seen in total body weight (Pete et al., 1999). Irs1�/� mice are, however,

more resilient to age-associated osteoporosis compared to controls,

which may account somewhat for this discrepancy. A recent study using

an inducible liver-derived IGF KO mouse, allowing temporal reductions

of IGF of 70% in the serum, showed that lower IGF from the age of

1 year resulted in greater oxidative stress in SkM, accelerated bone loss

and reduced lifespan (Gong et al., 2014). Indeed, across 31 genetically

diverse inbred mouse strains, lower serum IGF-I was associated with

enhanced longevity (Yuan et al., 2009). Furthermore, human population

studies suggest that reductions in IGF-I at young age but elevations at

old age might maximize healthy lifespan, reviewed in Yang et al. (2005).

To the authors’ knowledge, the only study to investigate potential

mechanisms of SkM adaptation with IRS-1 loss suggested that it did not

affect glucose uptake or GLUT1/4 function in electrically stimulated

mouse muscle (Dumke et al., 2001). Skeletal muscle mass or synthetic/

degradative signalling was, however, not investigated in this study.

Overall, it is clear that reductions in IIS enhance lifespan and delay some

aging-associated parameters yet perhaps results in small body size that is

characterized by both reduced fat mass and potentially, proportionally

smaller SkM mass. However, more investigation into SkM mass and the

corresponding cellular signalling in Irs1�/� mice into old age is required

in the near future to understand the potential crosstalk between the

mechanisms that control increased lifespan and healthspan while

contributing to reductions in SkM mass with age.

Mammalian target of Rapamycin (mTOR)

In addition to reduced IIS, reduced signalling through the target of

rapamycin (TOR) signalling pathway has also been shown to modulate

lifespan and increase healthspan in model organisms (Kapahi et al., 2004;

Kaeberlein et al., 2005; Powers et al., 2006; Hansen et al., 2007; Harrison

et al., 2009; Anisimov et al., 2010; Bjedov et al., 2010;Miller et al., 2011;

Robida-Stubbs et al., 2012; Zhang et al., 2014). Longevity in humans is

also associated with reduced mTOR signalling (Slagboom et al., 2011;

Passtoors et al., 2013). The TOR or mTOR (mammalian target of

rapamycin) is, however, a key regulator of SkM growth where it also

plays a central role in the crosstalk between growth and metabolism in a

wide variety of cell types (Inoki et al., 2003) and SKM (most recently see

Hamilton et al., 2014). Mammalian target of rapamycin regulates its

hypertrophic effects in SkM through the phosphorylation of downstream

effectors such as P70S6 kinase 1 (S6K1) and eIF4E-binding protein1

(4E-BP1) (reviewed in Schiaffino et al., 2013). Their roles in SkM growth

following contraction and mechanical load-induced hypertrophy, syner-

gistic ablation, myotube hypertrophy and amino acid sensing are also well

defined (Fujita et al., 2007; Drummond et al., 2009; Willett et al., 2009;

Goodman et al., 2011; Miyazaki et al., 2011; Philp et al., 2011; Jacobs

et al., 2013; Hamilton et al., 2014). In older people, mTOR becomes less

responsive to contraction-induced activation (via resistance exercise),

compared with young adults (Fry et al., 2011). The activity of mTOR in

response to amino acid feeding is also impaired in older individuals, a

phenomenon known as ‘anabolic’ resistance (Cuthbertson et al., 2005).

Rapamycin-induced inhibition of mTOR has, however, been shown to

increase lifespan in yeast, drosophila and mice (Powers et al., 2006;

Harrison et al., 2009; Anisimov et al., 2010; Bjedov et al., 2010; Miller

et al., 2011; Robida-Stubbs et al., 2012; Wilkinson et al., 2012).

Further, rapamycin diminishes a range of aged-related pathologies

(reviewed by Johnson et al., 2013b), and despite a contentious study

claiming that it does not (Neff et al., 2013), the wide consensus is that

appropriate modulation of mTOR signalling could be an important route

of intervention to slow aging and increase healthspan (reviewed by

Johnson et al., 2013a). However, in skeletal muscle rapamycin-induced

inhibition of mTOR has been shown to impair myogenic differentiation

(Willett et al., 2009), blunt the anabolic response to overload and

nutrients (Goodman et al., 2011), with muscle-specific inactivation of

mTOR leading to myopathy (Risson et al., 2009). These data therefore

suggest, perhaps paradoxically, that despite inhibition of mTOR increas-

ing lifespan and improving many age-related pathologies, mTOR

signalling plays a critical role in maintaining SkM mass and anabolism.

Despite this, the only study that has so far investigated muscle size and

function in mice with advancing age, suggests that muscle cross-

sectional area and grip/paw strength were unaffected by a 16-month

treatment of rapamycin vs. aged-matched controls (Neff et al., 2013).

Similar to rapamycin-induced mTOR inhibition, global deletion of the

ribosomal protein S6K1 in mice, a downstream effector of mTOR, also

increases lifespan and improves healthspan in mice (Selman et al., 2009).

In contrast to rapamycin treatment having no impact on muscle size

(Neff et al., 2013), S6K1(�/�) myotubes are smaller, despite having a

normal number of nuclei, and their response to a hypertrophic stimuli of

IGF-I or nutrients is blunted (Ohanna et al., 2005). Further, deletion of

S6K1 in mice induces SkM atrophy even in the presence of high nutrient

availability via AMPK activation, where AMPK inhibition in S6K1-

deficient myotubes restores SkM growth via increases in myotube

diameter and sensitivity to nutrient signals (Aguilar et al., 2007). In aged

human SkM, S6K1 is downregulated in response to amino acid feeding

(Cuthbertson et al., 2005) and attenuated in old vs. young rodents

during recovery from immobilization-induced atrophy (Morris et al.,

2004). S6K1 is also reduced in contracting aged SkM in comparison with

young muscle, suggesting it plays an important role in SkM protein

synthesis, which is hampered with age (Parkington et al., 2004; Kumar

et al., 2009). However, surprisingly little is currently known about

whether basal muscle maintenance and function is altered in the context

of aging in long-lived mTOR mutant or, as discussed, rapamycin-treated

mice. Studies examining protein synthesis, protein degradation and SkM

function in long-lived mouse models are urgently required if we are to

increase our understanding of the potential trade-off between longevity

and muscle function. Depicted in Figure 1 (Fig. 1).

Sirtuins: divergent roles in the modulation of
lifespan vs. skeletal muscle mass

Sirtuins and their roles in aging and longevity

Significant recent research effort has focused on elucidating the various

roles of sirtuins (silent information regulator 1–7; Sir1-7) in aging.

Sirtuins are a group of seven highly conserved protein deacetylases

involved in the process of chromatin remodelling and gene regulation

(see Morris, 2013). They have also been shown to have pathophysiological
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relevance in cancer, obesity, SkM, inflammation and neurodegeneration

(Rodriguez & Fraga, 2010; Schug & Li, 2011; Park et al., 2012; Donmez

& Outeiro, 2013). There is emerging evidence that these proteins may

regulate SkM mass, potentially through alterations in IGF-I and associ-

ated signalling (discussed below). The metazoan Sir2 proteins are

recognized, somewhat controversially, for their role in regulating lifespan

in yeast, worms and fruit flies (Kaeberlein et al., 1999; Burnett et al.,

2011; Viswanathan & Guarente, 2011). The rodent homologue of Sir2,

SIRT1, does not increase lifespan in mice, although overexpression does

improve healthspan (Herranz et al., 2010). More specifically, neural-

specific SIRT1 overexpression has been shown to increase lifespan and

delay aspects of aging relative to wild-type littermates (Satoh et al.,

2013). Downregulation of SIRT1 also induces an aging phenotype

(Sommer et al., 2006). Activation, rather than overexpression of SIRT1

using a small molecular activator (resveratrol), reportedly reduces age-

related ill health in ad libitum fed old mice, if administered from the

middle age, it is, however, without impact on lifespan (Pearson et al.,

2008; Miller et al., 2011). Under more pathological conditions, resve-

ratrol administration does extend lifespan, specifically in mice placed on

high fat diets (Baur et al., 2006). It is worth stating here that resveratrol

has pleiotropic cellular targets and therefore, effects cannot always be

directly linked to SIRT activation per se and results should be interpreted

with this caveat in mind. Interestingly however, SIRT6, when overex-

pressed in male mice, has also been attributed to increased lifespan

(Kanfi et al., 2012b) and short-lived phentoypes are evident in SIRT6 KO

animals (Mostoslavsky et al., 2006).

Sirtuins and their impact on IGF signalling and skeletal muscle

In terms of SkM growth and protein synthesis, evidence exists,

implicating SIRT1 and SIRT6 as negative regulators of IGF-I and

downstream Akt/mTOR signalling (Ghosh et al., 2010). For example, in

mouse neural cells, SIRT1 silencing and overexpression increased and

decreased IGF-I and associated Akt signalling, respectively (Sansone

et al., 2013). Similarly, SIRT6 overexpression in mice has been associated

with a reduction in circulating IGF-I (Kanfi et al., 2012a). An exciting

recent link between SIRT1 and IGF-I has been established in a range of

nonskeletal muscle human cell types. When stimulated with exogenous

IGF-I for prolonged periods, cells exhibited reduced SIRT1 deacetylase

activity, increased p53 acetylation and increased senescence, when

compared with cells exposed to acute administration of IGF-I exhibiting

increased proliferation (Tran et al., 2014). Although speculative, reduc-

tions in IGF-I with age could be an attempt to alleviate senescence and

maintain SIRT1 activity (Tran et al., 2014). In SkM, our group has shown

that the induction of apoptosis, by low-dose tumour necrosis factor-

alpha (TNF-a) with the addition of IGF-I, is elevated compared with TNF-a
administration alone. Death was associated with increased SIRT1 mRNA

levels, which when suppressed using SIRT1 siRNA, culminated in

exacerbated, not reduced, apoptosis (Saini et al., 2008, 2012). Overall

suggesting that under conditions of both anabolic and catabolic

conflicts, SIRT1 was important to the maintenance of survival in skeletal

muscle cells. Therefore, SIRT1 appeared fundamental in negatively

regulating IGF-I basally, yet in the presence of inflammatory catabolic

stress (Saini et al., 2008, 2012), or where IGF-I exposure was prolonged

enough to induce cell death (Tran et al., 2014), SIRT1 was important in

maintaining survival. It is also worth noting that SRT2104, a synthetic

small molecular activator of SIRT1, reduced circulating TNF-a in mice

(Mercken et al., 2014). Suggesting a potential regulatory loop between

SIRT1 and TNF-a, yet this link in SkM is yet to be directly established. This

concept is particularly relevant in aging muscle where chronic low-level

TNF-a exposure and changing IGF-I concentrations are strongly associ-

ated with muscle wasting in vivo and the pathologies of sarcopenia and

cachexia (Li & Reid, 2000; Meadows et al., 2000; Foulstone et al., 2001;

Greiwe et al., 2001; Bruunsgaard et al., 2003a,b; Bruunsgaard &

Pedersen, 2003; Stewart et al., 2004; Grohmann et al., 2005; Li et al.,

2005; Saini et al., 2006, 2008, 2010, 2012).

Fig. 1 Depicts the extracellular and

intracellular signaling molecules involved in

the cross-talk between skeletal muscle mass

regulation and life/health-span modulation.

Genetic or pharmacological suppression of

IIS, TOR and Sirtuin pathways increase

organism life/health-spans. However, these

pathways are fundamental in protein

synthesis, growth, differentiation and

survival in skeletal muscle into old age. This

figure therefore provides the potential

molecular and cross-talk modulators for this

paradigm of lifespan versus muscle mass

maintenance with age.
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In addition to its role in regulating IGF-I and survival in the presence of

aberrant IGF-I, SIRT1 may also play a role in negatively regulating mTOR.

SIRT1 (�/�) mouse embryonic fibroblasts (MEFs) and human HELA cells

depleted of SIRT1 using shRNAi resulted in elevated mTOR signalling,

which was not abolished by leucine deprivation (Ghosh et al., 2010). In

the same study, SIRT1 activators and inhibitors (resveratrol/nicotinamide)

reduced and increased mTOR activity, respectively (Ghosh et al., 2010).

SIRT1 activation following resveratrol administration in myoblasts inhib-

ited IGF-I-associated signalling (Akt) and abolished leucine-stimulated

increases in mTOR (Liu et al., 2010). These studies suggest that any

changes in SIRT1 with age in response to catabolic stress or nutrient

restriction could potentially impact on mTOR function and result in

altered regeneration. Overall, these data present potential negative

regulation by SIRT1 on pathways such as Akt/mTOR linked to SkM

growth. On the contrary, recent work by Hong et al. (2014) suggested

that SIRT1 and SIRT2 deacetylate the substrate of mTOR, S6K, specifically

on mTOR-dependant phosphorylation site Thr-389. In this case, acety-

lation blocked S6K activation and thus, deacetlyation by the sirtuins may

actually be involved in the phosphorylation of S6K (Hong et al., 2014).

Furthermore, in cardiac muscle, SIRT1 can also deacetylate Akt and PDK,

enabling binding to phosphatidylinositol 3,4,5-trisphosphate [PIP(3)], and

thus its localization to the membrane where PDK can subsequently

facilitate Akt phosphorylation (Sundaresan et al., 2011). Sirtuin activa-

tion, however, specifically in SkM tissue or cells through overexpression

in rodent models or supplementation of resveratrol/its analogues in

humans, requires further investigation to decipher its role in negatively

or positively regulating SkM mass. Importantly, based on evidence

described above, the reductions in IGF-I seen with age could be an

attempt to increase SIRT1 to harness its role in cell survival especially

when under a catabolic cytokine stress (e.g. TNF-a) that as mentioned

above, is chronically elevated in the circulation and skeletal muscle with

age (and discussed in more detail directly below).

Sirtuins and their role in survival and differentiation under

catabolic stress in skeletal muscle cells

Despite this apparent trade-off with survival vs. growth, our group has

shown that activation of SIRT1 in murine myoblasts following resveratrol

administration can begin to rescue differentiation of SkM cells following

catabolic stimulation by TNF-a (Saini et al., 2012). This is important

when considering that TNF-a is chronically increased in the aging

circulation and that it is produced by muscle itself (Greiwe et al., 2001;

Bruunsgaard et al., 2003a,b; Bruunsgaard & Pedersen, 2003). In

agreement with our group, resveratrol can reverse the negative impact

of TNF-a on myotube hypertrophy (Wang et al., 2014). Similarly,

activation of SIRT1 using SRT2104 attenuated SkM mass losses of the

gastrocnemius and soleus in mice following 2 weeks of hindlimb

unloading (Mercken et al., 2014). SRT2104 also extended lifespan,

without reducing SkM weight into old age (Mercken et al., 2014).

Therefore, as well as an important role in myoblast survival, SIRT1 may

also be involved in maintaining adequate differentiation, hypertrophy

and attenuating atrophy in vivo during stress stimuli such as those

experienced with chronic inflammation or disuse.

Finally, it is important to consider that changes in the [NAD+]/[NADH]

ratio occur during skeletal muscle differentiation and this changing ration

in turn can regulate SIRT1 (Sartorelli & Caretti, 2005). A reduction in the

[NAD+]/[NADH] ratio coincides with skeletal myogenesis, whereas an

increase is associated with impaired myogenesis (Fulco et al., 2003). It is

clear, however, that differences prevail in terms of derived data. Indeed,

Fulco et al. (2008) suggested that increasing SIRT1 activity in mouse and

human SkM cells impaired differentiation and myosin heavy chain

production (Fulco et al., 2003, 2008), which differs from our work with

TNF-a, but complements more recent unpublished work where under

control conditions, resveratrol increased proliferation in both control and

artificially agedmyoblasts but impaired differentiation (Deane CS, Hughes

DC, Sharples AP, unpublished). An increase in proliferation, inhibition of

p21cip and p27kip and a reduction in differentiation following SIRT1

overexpression in rat myoblasts have also been previously reported

(Rathbone et al., 2009). Therefore, despite its proposed negative regu-

lation of IGF-I/Akt/mTOR, SIRT1 seems to be fundamental to SkM cell

survival, enabling proliferation and impairing differentiation under control

conditions, yet protecting differentiation under conditions of stress.

Importantly, the impact of activating SIRT in aged SkM cells/tissue basally

or under stress remains to be fully determined especially, we hypothesise,

in situations of dietary restriction that directly regulate the NAD/NADH

ratio and impact on SIRT expression.

Sirtuins: regulators of longevity and survival vs. activators of

protein degradation in SkM via FOXO transcription factors

In addition to its role in SkMproliferation, SIRT1 has also been implicated in

controlling protein degradative pathways, specifically via forkhead box

protein O (FoxO) transcription factors. These transcription factors are

involved in targeting and activatingmembers of the ubiquitin proteasome,

such as muscle atrophy F-box (MAFbx/atrogin1), muscle RING finger 2

(MuRF1), and autophagy–lysosome pathways involved in protein degra-

dation (Sandri et al., 2004; Edstrom et al., 2006; Sandri, 2008). SIRTs have

been shown to activate both FOXO3a gene expression and deacetylate

FOXO3a, thereby activating FOXO DNA binding and elevating the

expression of target genes such as p27(Kip1), manganese superoxide

dismutase and Bim, proteins associated with cell cycle arrest, oxidative

stress and apoptosis respectively (Brunet et al., 2004; Wang et al., 2007;

Jacobs et al., 2008). The activation of FOXO transcription factors by the

SIRT family appears to, however, impair the ability of FOXO to promote cell

apoptosis, instead shifting its function towards oxidative stress resistance

and DNA repair (Brunet et al., 2004; Greer & Brunet, 2005; Wang et al.,

2007). It is also well established that overexpression of FOXO can extend

lifespan in drosophila (Giannakou et al., 2004;Min et al., 2008; Alic et al.,

2014). Interestingly, in TNF-a-stimulated SkM cells the activation of SIRT1

via resveratrol restored Akt/mTOR/S6K and 4E-BP1 signalling and reduced

FOXO1but not FOXO3aprotein levels, all ofwhichwereunchangedbasally

(Wang et al., 2014). Therefore, the role for SIRT1 activation on FOXO3a in

SkM tissue with age requires further investigation. FOXO1 and its role in

oxidative stress resistance in aging SkM also requires attention, especially

following catabolic stress or dietary restriction where SIRT1 elevation is

associated with survival. It is worth mentioning here that class I histone

deactylases (HDACs) (sirtuinsare class III HDACS)havealso been linkedwith

activating FOXO3a and the SkM-atrophy programme (via MAFbx/atrogin-

1) during nutrient deprivation and disuse-induced atrophy (Beharry et al.,

2014). Potentially this suggests that FOXO1 and FOXO3a aremodulated by

class I andclass IIIHDACs, respectively, andthismayaccount for someof the

discrepancy detailed above. The role of the SIRTs in SkM is intriguing and

warrants further investigation, specifically the promotion of longevity via

resistance to oxidative stress vs. increased protein degradation with aging.

Sirtuins and NF-Kb and their roles in longevity and skeletal

muscle loss with age

While discussing protein degradation above, it is worth noting that SIRT6

has been associated with modulating lifespan via nuclear factor jB
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(NF-Kb) signalling (Yeung et al., 2004; Kanfi et al., 2012b). The inhibition

of NF-Kb delays DNA damage, cellular senescence and oxidative stress

during aging (Tilstra et al., 2012). However, in SkM, NF-Kb is another

important protein where cytokine and oxidative stress signalling

converge to reduce myoblast differentiation, induce atrophy and

increase protein degradation (Langen et al., 2001; Hunter & Kandarian,

2004; Lu et al., 2012). SIRT6 attenuates NF-Kb signalling through histone

deacetylation of NF-Kb gene promoter regions and suppresses those

genes associated with senescence and aging (Kawahara et al., 2009).

The deletion of SIRT6 in KO mice also results in shortened lifespan and

significantly reduced body weight, suggesting an important develop-

mental and postnatal role for this protein:protein interaction (Mosto-

slavsky et al., 2006). Studies by our laboratory suggest that inhibition of

NF-Kb can promote delayed myoblast apoptosis in the presence of TNF-a
(Stewart et al., 2004). It is, however, worth noting that there was no

change in NF-Kb during disuse atrophy (2 weeks hindlimb suspension)

even in the presence of SRT2104 (Mercken et al., 2014). Interestingly,

very recent work suggests SIRT activation in murine models via SRT2104

causes a reduction in the ratio of phosphorylated NF-Kb to total protein

(Mercken et al., 2014). This therefore suggests that SIRT1 and SIRT6 may

be important in reducing NF-Kb. Overall, SIRT1 and/or SIRT6 may

regulate lifespan as a consequence of reduced IGF-I signalling and

potentially attenuate the effects of inflammatory NF-Kb signalling.

Effect of Dietary Restriction (DR) on longevity and
skeletal muscle mass

Calorie restriction is defined as a reduction in energy intake, while

maintaining nutrient intake, relative to that consumed normally by

individuals with free (ad libitum) access to food (Selman, 2014). For the

purposes of this review, dietary restriction (DR) will incorporate both

calorie restriction and those interventions in which macro/micronutrients

are altered without any overall change in energy intake. DR is the most

reproducible intervention, to date, to extend medium and maximum

lifespan in various model species (Mair & Dillin, 2008; Speakman &

Selman, 2011; Selman, 2014). In mice, there seems to be a strain-

specific association with DR and longevity, and in primates, the link

between lifespan extension and DR may also be confounded by genetic

heterogeneity (reviewed by Selman, 2014). Nevertheless, DR reduces

incidence and severity of various pathological conditions in rodents and

primates, which are leaner, and display reductions in insulin resistance,

glucose intolerance, cognitive decline and immune dysfunction (Masoro

et al., 1982; Barger et al., 2003; Selman et al., 2005; Mattison et al.,

2012), indicating DR per se is beneficial for health.

Trade-off between cellular energy metabolism and growth in

skeletal muscle with dietary restriction

The intuitive impact of chronic DR on SkM mass is that over time,

absolute muscle mass decreases. This is not surprising if you consider

that in the presence of nutrient restriction, the cell shifts away from

growth in an attempt to survive. Further, protein from SkM can provide

energy during severe nutrient restriction. One of the first studies to

demonstrate this and to establish the molecular link between AMPK

energy sensing and cellular growth through mTOR/S6K signalling was

that of Inoki and collegues (Inoki et al., 2003). Using various cell types

(HEK293, MEF, EEF, LEFs) under starvation conditions, they reported

increased AMPK activity and phosphorylated tuberous sclerosis 2 (TSC2).

The TSC2 inhibited mTOR and other substrates, including S6K, 4EBP-1

and EIF2, which resulted in reduced cell size and growth rates. The role

of TSC2 in this process was confirmed in TSC2 KO cells, which grew and

maintained normal size in the presence of starvation. The AMPK

activation of TSC2 and inhibition of mTOR therefore appears central in

responses to energy deprivation. Fascinating but perhaps unintuitively,

given the data thus far, DR appears to delays or prevent age-related loss

of SkM mass in rats and rhesus monkeys via attenuation of DNA

damage, proteosomal machinery, autophagy, inflammatory signalling

and mitochondrial abnormalities (Aspnes et al., 1997; Phillips & Leeu-

wenburgh, 2005; Hepple et al., 2008; McKiernan et al., 2011). Indeed,

short-term DR can potentially increase SkM stem cell availability and

subsequent SkM repair following cryo-injury in young and old mice

(Cerletti et al., 2012). In a recent in vivo study, chronic DR (by 30% of

recommended daily intake) for a period ranging from 4 to 20 years

(mean 9.6 years), resulted in reduced IGF-I levels, and a threefold

reduction in Akt mRNA/ 30–50% reduction in Akt activity, together with

increased FOXO3a and FOXO4 expression (Mercken et al., 2013). These

changes in FOXO were reported to modify several genes linked to

longevity including genes associated with stress resistance, antioxidants,

DNA repair, protein turnover and cell death (Mercken et al., 2013). In

SkM however, this shift away from growth towards stress resistance,

would potentially reduce protein synthesis and increase degradation over

time (Sandri et al., 2004; Edstrom et al., 2006). Furthermore, superoxide

dismutase 2 (SOD2) expression, a transcriptional target of FOXOs, was

increased under DR, as was DNA damage-binding protein 1 (DDB1),

both key regulators of DNA repair. Further, cyclin D2 was significantly

downregulated during moderate DR, as a fundamental orchestrator of

cell cycle progression for proliferation or growth (Mercken et al., 2013).

Interestingly, DR in rats also reduced levels of the inflammatory cytokine

TNF-a and associated signalling (Phillips & Leeuwenburgh, 2005). These

studies therefore suggest that chronic moderate (~30%) DR results in

transcriptional reprogramming, which shift cellular regulation from

growth to maintenance/repair and lifespan activities, while potentially

reducing local inflammation. Perhaps most importantly, humans and

mice on DR diets had higher lean SkM mass-to-fat mass ratios (Mercken

et al., 2013). Therefore, there is potentially an optimal level of DR which

has the beneficial effect of longevity, while perhaps preventing growth

but not inducing muscle loss. Although overall SkM mass is likely to be

reduced by long-term DR, the ratio of lean mass to fat mass may be

greater and total body weight maybe reduced, a signature conducive of

reduced metabolic disease risk. It remains to be determined, however,

whether chronic DR changes SkM strength or the proportions of

extracellular matrix to muscle tissue, or alters contractile properties and

force per cross-sectional area/muscle quality. Indeed, the influence on

force production following DR could be affected by fibre type, as type I

fibres were ~62% larger after DR (30% DR for 12 years) in rhesus

monkeys vs. control. Furthermore, in this study it was observed that

there was delay in type II fibre atrophy with age (McKiernan et al.,

2011). So while data of long-term studies are limited, they do suggest

potential for both longevity and muscle health.

Despite this body of work, several other studies oppose these

findings. For example, although different to sustained DR, Lee and

Goldberg investigated the impact of acute fasting in mice and showed

that this resulted in a reduction in SIRT1 activity and an increase in the

atrogenes MuRF-1 and atrogin-1, which ultimately led to a significant

decrease in SkM mass (Lee & Goldberg, 2013). Dietary restriction

(�30%) for 6 weeks, in combination with exercise, also reduced

gastrocnemius SkM weight and cross-sectional area in comparison with

similarly exercised mice under ad libitum feeding (Park et al., 2013).

However, it should be noted that this study did not include a DR or

ad libitum alone group. This does, however, highlight the temporal role
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of short-duration fasting vs. longer duration DR and the modulation of

SIRT1 (McKiernan et al., 2012; Mercken et al., 2013). DR in combination

with physical activity and its impact on SkM phenotypes therefore

requires further investigation. Finally, it is unlikely that DR is a pragmatic

intervention for humans, given that there is a considerable level of

motivation and restraint required, where DR mimetics maybe more

practical as reviewed previously by Selman et al. (Selman, 2014).

Roles of amino acid feeding or high-protein diets in
association with calorie restriction: potential impact
on skeletal muscle mass vs. disease and longevity

One of the issues with DR is the contribution of total calories from

carbohydrates vs. proteins. Most studies do not differentiate between

the two. It is well established that protein intake can enhance muscle

protein synthesis in a dose-responsive manner in young and old adults

(Cuthbertson et al., 2005; Moore et al., 2009). Furthermore, increasing

dietary protein can help maintain SkM mass during periods of disuse

(reviewed in Wall & van Loon, 2013) and induce greater increases in

skeletal muscle hypertrophy following chronic supplementation when

combined with exercise (resistance) vs. exercise alone (meta-analysis

Cermak et al., 2012). Indeed, there is substantial support to suggest

that with DR, overall weight loss is no different with higher protein

intakes vs. DR alone (Sacks et al., 2009; de Souza et al., 2012). With

some acute trials showing that fat mass decreases while SkM is spared

(Krieger et al., 2006), importantly, exercise in combination with higher

protein content in DR diets seems to have a SkM maintaining effect

(Garthe et al., 2011; Josse et al., 2011; Mojtahedi et al., 2011), without

negative impact on markers of mitochondrial biogenesis, albeit after

acute fasting in humans (Taylor et al., 2013). Interestingly, undertaking

DR that is protein rich reduces both body mass and percentage body fat,

with associated reductions in circulating insulin and IGF-I levels (Maestu

et al., 2010), alluding to potential benefits for lifespan while potentially

maintaining SkM mass. Supplementation with branched-chain amino

acids (BCAAs) such as leucine, isoluecine, valine or metabolites of

leucine such as b-hydroxy-b-methylbutyrate (HMB) have become a

favoured intervention as they have been shown to activate mTOR and

protein synthesis in SkM to a greater extent compared with other

essential/nonessential amino acids (Atherton et al., 2010; Pimentel et al.,

2011; Churchward-Venne et al., 2012; Salles et al., 2013). Leucine alone

can activate protein synthesis in humans to the same extent as whey

protein and mixed essential amino acids plus leucine when administered

1–3 h postresistance exercise (Churchward-Venne et al., 2012). How-

ever, the requirement for whey protein for optimal protein synthesis 3–

5 h postexercise is acknowledged (Churchward-Venne et al., 2012;

Phillips, 2014). Previously, Mourier and colleagues observed that DR in

human males (wrestlers) when combined with supplementation of mixed

BCAAs led to a reduction in total body mass and fat mass (�17.3%),

although SkM mass was unchanged (Mourier et al., 1997). This suggests

a potential role for BCAAs in maintaining SkM mass under DR

conditions. Furthermore, a recent study highlighted that HMB attenuated

the loss of SkM mass observed following DR in murine exercise models

(Park et al., 2013). Mice underwent exercise at 6 m.min�1 run for 1 h,

three times a week alone or combined with HMB and/or DR. The HMB

animals had higher lean mass than the training alone group. Grip

strength decreased under DR, but was maintained in DR mice supple-

mented with HMB. Interestingly, gastrocnemius mass and myofibre

cross-sectional area were greater with HMB in the presence of a DR diet

compared to DR alone, albeit there were no data reported for either ad

libitum or HMB alone supplemented mice (Park et al., 2013). This latter

finding was also associated with the reduced ubquitin ligase, MAFbx,

alluding to reduced protein degradation. Surprisingly however, Akt and

mTOR mRNA were elevated under DR conditions in SkM. Speculation

based on evidence presented in above sections suggests this may be due

to increased SIRT1, yet this hypothesis requires further investigation.

Therefore, in the light of the above discussion it would be prudent to

investigate, on a background of DR, how AMPK and SIRT1 (energy

sensing) change in the presence of BCAAs and the way in which they

impact on Akt/mTOR (growth) via the molecular modulators of TSC1/

TSC2 (discussed above and seen in Fig. 1).

Finally, it is important to note that increased protein intake, especially

BCAAs, stimulates targets such as mTOR and S6K, which are

downstream of IIS, the precise signalling which is reportedly suppressed

to enable longevity and to reduce age-related disease. This therefore

contributes to the recently debated paradigm whereby downstream IIS

signalling is still activated, yet independently of IGF binding to its

receptor, and thus protein synthesis in SkM mass may be maintained

with increased protein intake during aging. However, it has been

conversely suggested that increased protein intake may increase

incidence of diseases, such as cancer, and thus impact negatively on

longevity (Renehan et al., 2004). Indeed, it is known that cancer

patients who do not respond to chemotherapy or are end-stage patients

have reduced protein diets that, while potentially adding to the

chronically inflamed milieu that causes SkM loss (cachexia), can slow

tumour progression. Examples include animal models where DR can

attenuate tumorigenesis via inhibition of mTOR, whereas leucine

feeding can increase pancreatic tumour growth in both lean and

overweight mice (Vellai et al., 2003; Bjornsti & Houghton, 2004;

Hursting et al., 2010; Lashinger et al., 2011; Liu et al., 2014). Restrict-

ing the amino acid methionine can also limit tumour growth, and both

methionine and essential amino acid restriction increase lifespan in

rodents (Richie et al., 1994; Miller et al., 2005; Emran et al., 2014;

Sinha et al., 2014). Overall, these studies suggest caution for cancer

patients and amino acid supplementation, even those who suffer with

muscle loss (Liu et al., 2014). The role of higher protein diets with age

and the impact on disease risk and early mortality have recently received

a high level of attention. Cohorts of 6381 adults aged 50 and over were

studied for their habitual dietary intake and macronutrient composition

with corresponding disease and mortality incidence (Levine et al., 2014).

Between the ages of 60 and 65, those who reported high animal-

derived protein intake had a 75% increased risk in overall mortality and

a fourfold increase in cancer risk during the subsequent 18 years. If

aged over 65 years of age, however, higher protein intake was

associated with reduced cancer risk, but a fivefold increased risk of

diabetes. These results therefore suggested that a low-protein diet is

potentially beneficial in midlife; however, the benefits reduce with age.

In an attempt to compliment these studies with mechanisms, high-

protein diets were implemented in middle-aged mice, where the

increase in GH/IGF signalling observed was associated with increased

progression of tumours. The authors did, however, suggest that low

protein impacted negatively on SkM mass in aged mice (Levine et al.,

2014). In agreement with this study, an investigation published in the

same issue as that by Levine et al. using a Geometric Framework

approach to investigate the contributions of protein-to-carbohydrate

ratios and their association with increased longevity in mice, suggested

that healthy aging is not as a consequence of high-protein low calorie

diets, but low-protein (especially BCAAs) diets, with the remaining

macronutrients being made up of carbohydrate rather than fat (Solon-

Biet et al., 2014). Also, data by Levine et al. have been scrutinized in

terms of the methodological design. For example, 24-h dietary recalls
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suggesting up to 18 years of habitual diet are potentially not appro-

priate to account for lifelong habitual dietary intake. Furthermore, the

grouping of the low- to high-protein categories [based on Institute of

Medicines’ (IOM) Acceptable Macronutrient Distribution Range] has also

received attention, where the low-protein group would probably be

classed as protein deficient. It is also worth stating that in the total

cohort (50 years and over), the level of protein intake was not

associated with differences in all-cause, cancer or CVD mortality.

Importantly, however the study did find a significant association

between the subjects aged 50–55, higher protein consumption and

cancer/mortality. Amongst 2253 subjects, the risk of cancer and

mortality was increased in the high-protein subjects who also had

higher IGF-I serum levels. It is indeed, established that people in the

highest circulating IGF-I quintiles are at the highest risk of developing

cancer (Hankinson et al., 1998; Kaaks et al., 2000; Giovannucci et al.,

2003) and the role of IGF-I and associated signalling in cancer cells and

tumour development is fairly robust (Pollak et al., 2004; Guevara-

Aguirre et al., 2011). It is important to note that these are similar

pathways to growth/amino acid stimuli required for SkM maintenance

with age. The future paradigm we should be addressing would

therefore be the trade-off between maintenance of SkM mass vs.

longevity, potentially at the expense of age-related diseases.

Conclusion

The understanding of aging and the development of interventions to

increase healthy lifespan have been greatly aided by the development of

genetic mutants for IIS, TOR and sirtuin pathways as well as the use of

pharmacological agents known to act on these pathways. However, all

of these pathways are fundamental in regulating the trade-off between

survival and maintenance vs. growth, particularly in skeletal muscle

where age-associated losses in SkM mass and function are observed

with advancing age. This provides a paradigm in which there is

potentially reduced regenerative capacity within SkM tissue with age in

an attempt to promote longevity of the organism and survival within the

tissue. Optimizing dietary restriction (DR) or using DR mimetics in

combination with amino acid administration may be critical interven-

tions to help attenuate SkM loss with advancing age, while enabling

healthy aging.
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