
Introduction

The advent of the seventh amendment to the
Cosmetics Directive in the European Union (EU)
has led to the banning of animal testing for new
cosmetics ingredients (1). This legislation is
extremely important in terms of placing the EU at
the forefront of animal welfare for chemical safety
assessment within this industry. Such legislation
is also important, given the widespread use of Low
Molecular Weight (LMW) chemicals (defined as
chemicals with a molecular mass of less than
1,000g/mol) in the cosmetics industry, and the sub-
sequent burden that animal testing would have
imposed (in the absence of the Cosmetics Direct -
ive). However, it is also important that this legis-
lation does not come at too high an economic cost,
as the cosmetics sector in the EU is worth over €60
billion and employs over 150,000 people (with a
further 350,000 in related employment; 2). 

There are a number of regulatory endpoints that
are of importance to the cosmetics industry, for
which non-animal test methods will need to be
developed in order to comply with the Cosmetics
Directive. The need to develop alternative, non-
animal, test methods for chemical safety assess-
ment has led to the emergence of the Adverse
Outcome Pathway (AOP) concept (3–8). An AOP
relates a series of key events that link the initial
interaction between a chemical and a biological

system and an adverse effect at the organ level
(which in turn can be linked to the biological sys-
tem or even the population). The aim of an AOP is
not to outline every minute detail of the biological
pathway that is perturbed, leading to toxicity, but
rather to outline the key processes that can be
tested by using either in silico, in chemico or in
vitro methods. The importance of this approach
was recognised by the award of the 2012 Lush
Science Prize to Brigitte Landesmann and co-
workers for their work on hepatotoxicity (4).
Within the AOP paradigm, in silico approaches
have focused on defining the chemistry associated
with the initial interaction between a chemical and
the biological system, the so-called Molecular
Initiating Event (MIE; 9–11). The chemistry asso-
ciated with the MIEs can be compiled into ‘in silico
profilers’, which enable chemicals to be grouped
into mechanism-based categories, allowing for pre-
dictions of toxicity to be made by using read-across
(12–15). In addition, such profilers enable chemical
inventories to be prioritised for further in vitro
and/or in chemico investigations (rather than test-
ing every chemical in an unstructured manner).

Perhaps unsurprisingly, the ability of a chemical
to cause either skin and/or respiratory sensitisa-
tion is of particular interest to scientists develop-
ing new cosmetics products. In brief, an individual
can become sensitised to a LMW chemical via an
initial (dermal or inhalation) exposure (the induc-
tion phase), with subsequent re-exposure resulting
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in the observed toxicity (the elicitation phase), i.e.
contact dermatitis in the skin and asthma-like
symptoms in the lung (16). The ability to predict
the likelihood of skin and respiratory sensitisation
is especially important, given that once individu-
als’ immune systems are sensitised to a chemical,
they may potentially remain sensitised to it for the
remainder of their lives. The situation can be fur-
ther complicated by the ability of chemicals that
are activated to a common metabolite to cause
cross-sensitisation (the metabolite of both chemi-
cals being ultimately responsible for induction and
elicitation). Finally, in terms of chemicals capable
of causing respiratory sensitisation, there is evi-
dence that the induction phase can take place in
either the skin or the lung, with the elicitation
phase taking place on re-exposure in the lung (17).
These multiple factors combine to present a seem-
ingly complex mechanistic picture that underpins
the likelihood that a LMW chemical will result in
either skin and/or respiratory sensitisation.

The availability of historical data from tests,
including the Local Lymph Node Assay (LLNA) and
(to a lesser extent) the Guinea-Pig Maximisa tion
Test (GPMT), has led to a significant mechanistic
understanding of skin sensitisation (18–20). This
mechanistic knowledge has been recently reviewed
and published as an AOP (21, 22). The AOP outlines
the evidence that the formation of a covalent bond
between a LMW chemical and a protein is the MIE
for skin sensitisation (23, 24). In terms of chemistry,
this means that, in order for a chemical to cause skin
sensitisation, it must either be directly electrophilic
or be activated (metab olised or oxidised) to an elec-
trophile. Mechanistic knowledge, combined with the
availability of toxicological data, has allowed several
in silico profilers to be developed (24–28). In con-
trast, the situation for respiratory sensitisation is, in
terms of mechanistic understanding, significantly
less well-defined, in the main due to the lack of a
predictive animal assay. The lack of (publicly avail-
able) historical animal data has prevented the type
of analysis being undertaken that is required in
order to develop an in silico profiler for respiratory
sensitisation. 

Structural Alerts, In Silico Profilers
and Toxicological Data 

As we have stated, the availability of toxicological
data is the key factor in the development of in silico
profilers. These data are important, as they allow us
to develop a hypothesis with regard to what the MIE
for a given endpoint is likely to be. Subsequent
analysis allows us to develop a series of structural
alerts (molecular fragments related to the MIE) that
together form a profiler. A key aspect, which might
be important for regulatory acceptance, is that each
structural alert is supported by peer-reviewed liter-

ature that relates the chemistry to the MIE. In
terms of respiratory sensitisation data, a number of
publications have attempted to develop statistically-
based Quantitative Structure–Activity Relationship
models (29–32). However, these models (and statis-
tical models in general) have met with very limited
regulatory acceptance, due to their lack of trans-
parency in terms of the underlying statistical algo-
rithm and in relation to the biochemical mechanism
leading to toxicity. Despite this, these publications
gave us access to 40 chemicals associated with
reports of respiratory sensitisation in humans.
These data were typically drawn from clinical
reports of individuals being sensitised to LMW
chemicals in the workplace (also known as occupa-
tional asthma). In addition to these published data,
we were also able to gain access to an additional
unpublished data set of over 60 chemicals from col-
leagues at the University of Manchester, UK, giving
us a final data set of 104 LMW chemicals associated
with respiratory sensitisation in humans.

Development of an In Silico Profiler
for Respiratory Sensitisation 

The major part of the work for which we were jointly
awarded the 2013 Lush Science Prize, related to the
development of an in silico profiler for respiratory
sensitisation. The profiler, which has been recently
accepted for inclusion in the next version of the
OECD QSAR Toolbox, was developed from a mecha-
nistic chemistry analysis of the data set of 104 LMW
chemicals outlined above. Our initial interest in this
area of research stemmed from a study where we
showed that, for a small number of respiratory sen-
sitisers, the most likely MIE was the formation of a
covalent bond in the lung (33). We then outlined how
such mechanistic information could be used to pre-
dict respiratory sensitisation by read-across for a
second, slightly larger, data set of chemicals (34). In
both studies we outlined the importance of the
underlying mechanistic chemistry as the guiding
principle in the process of grouping chemicals. Our
research suggested that two key factors drive the
MIE for respiratory sensitisation: chemical reactiv-
ity (electrophilicity) and the ability to cross-link pro-
teins (Figure 1). Additionally, we suggested that a
highly electrophilic chemical can cause sensitisation
without the need for protein cross-linking (for exam-
ple, cyanoacrylates). In contrast, a chemical that is
less electrophilic requires multiple reactive centres
resulting in protein cross-linking (for example, di-
isocyanates). Our mechanistic rationale for the MIE
offered a significant improvement on the previous
hypothesis that all chemicals that cause respiratory
sensitisation must have multiple reactive centres
(17, 29, 30, 32).

The availability of the larger data set of respira-
tory sensitisation data enabled us to extend our
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analysis, allowing us to outline the detailed mecha-
nistic chemistry associated with the MIE for LMW
chemicals (35). The analysis enabled us to identify
and publish a set of 52 structural alerts that
defined the chemistry associated with covalent pro-
tein binding in the lung. An important aspect is the
availability of the associated metadata for each
structural alert, which documents the reaction
mechanism and supporting peer-reviewed litera-
ture. This information is of central importance for
profilers, if they are going to be used to group chem-
icals together in regulatory toxicology (for example,
when using the OECD QSAR Toolbox).

The type of mechanistic chemistry analysis that
we used for the development of our in silico pro-
filer, also enabled us to explore areas of closely
related chemical space for which no toxicological
data are available. In practice, this allows us to
either extend a structural alert (which has data
associated with it) to cover closely related chemi-
cals, or to define multiple structural alerts cover-
ing both the parent and metabolite structures.
This is the reason why, on first inspection, it often
seems as if too many structural alerts are defined
from a given set of data; for example, we recently
published a set of 52 structural alerts in the respi-
ratory sensitisation profiler from a data set of only
104 chemicals (35). As an example of our approach
to this area of profiler development, let us consider
the chemical hexamine, which is reported in the
data set as being a respiratory sensitiser in
humans. Our analysis of the mechanistic chem-
istry for this chemical showed that it readily

releases formaldehyde, which is capable of cross-
linking proteins (Figure 2). 

The mechanistic information that we gained from
the chemistry of hexamine toxicity allowed us to
define other chemicals also likely to cause respira-
tory sensitisation due to the release of formaldehyde.
It is worth remembering that these chemicals are
not associated with toxicological data; instead, they
are related through a common MIE. Importantly, we
make it clear to the user of the profiler that there are
no toxicity data in the associated metadata for the
alerts defined from these chemicals. In our profiler,
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Figure 1: Examples of chemicals able to
cause respiratory sensitisation
due to electrophilicity alone
(cyanoacrylates) or requiring
multiple centres to be capable 
of protein cross-linking 
(di-isocyanates)
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Figure 2: Bio-activation of hexamine to
formaldehyde and subsequent
Schiff base reactions resulting in
protein cross-linking and
potential respiratory sensitisation
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we were able to define an additional six structural
alerts (including hexamine) for chemicals capable of
releasing formaldehyde (Figure 3). 

Profiling levels: Mechanistic domains, 
mechanistic alerts and structural alerts 

In keeping with the previous profilers we have
developed (9, 10, 13), we have recently assigned
each of the 52 published structural alerts (35) iden-
tified from the mechanistic analysis of the respira-
tory sensitisation data set, to two additional tiers:
mechanistic domains and mechanistic alerts (13).
The three profiling tiers were defined as follows:
— Mechanistic domain: One of the six general

reaction mechanisms, as defined by Aptula and
Roberts (36), these being: acylation, Michael
addition, Schiff base formation, SN1, SN2, and
SNAr.

— Mechanistic alert: One or more structural alerts
grouped together, based on the presence of a
common reaction site. One or more structural
alerts grouped together, based on each of the
structural alerts being activated to a common
electrophile responsible for reactivity. 

— Structural alert: A fragment in a molecule
related to covalent protein binding. 

Thus, within each mechanistic domain, mechanis-
tic alerts were created on the basis of the presence

of a common reactive centre (the site of attack by a
biological nucleophile), as defined by a group of
structural alerts. For example, alkenes acting as
Michael acceptors, due to the influence of a polar-
ising moiety, were grouped into a mechanistic alert
based on the presence of the sp2 carbon atom as the
target of nucleophilic attack. In addition, chemi-
cals that had been shown to be activated to a com-
mon electrophile, were also grouped into a single
mechanistic alert — for example, a mechanistic
alert consisting of the six structural alerts, shown
in Figure 3, that release formaldehyde (formalde-
hyde being the common electrophile responsible for
toxicity). This new analysis has enabled us to
improve the definition of a number of the pub-
lished structural alerts in terms of ensuring a sin-
gle alert identifies a single chemical class. This
resulted in an updated set of 66 structural alerts.
The breakdown of mechanistic domains, mechanis-
tic alerts and structural alerts for this updated ver-
sion of the respiratory sensitisation profiler, is
detailed in the supplementary information
(SMARTS patterns are also included). 

The importance of being able to profile chemicals
at either the mechanistic alert or structural alert
level is best illustrated by using two example
chemicals for which no respiratory sensitisation
data are available. Imagine a situation where we
are trying to assess the respiratory sensitisation
potential of propyl cyanoacrylate and p-tolyl-
methoxymethanol. Our first step is to profile these
target chemicals for information about their poten-

Figure 3: Structural alerts defined for chemicals capable of releasing formaldehyde 
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tial ability to react covalently in the lung (Table 1).
The results of this profiling show that propyl
cyanoacrylate is capable of undergoing a Michael
addition reaction due to the polarised alkene moi-
ety (Figure 4). Subsequent profiling of the respira-
tory sensitisation data set at the structural alert
level identifies two analogues, methyl cyanoacry-
late and ethyl cyanoacrylate, which have both been
reported as being sensitisers. The presence of the
common cyanoacrylate alert allows us to make a

read-across prediction that propyl acrylate is also
likely to be a respiratory sensitiser. In this exam-
ple, there is no need to go to the next, less strict,
mechanistic alert level of profiling, as we have
been able to identify analogues at the structural
alert level. 

Inspection of the profiling results for the second
target chemical, p-tolylmethoxymethanol, show it
to be capable of reacting with proteins via a Schiff
base mechanism, due to its ability to release
formaldehyde (mechanisms as shown in Figures 2
and 3). However, for this chemical there are no
analogues in the data set that contain the same
benzylhemiformal structural alert. It is in cases
such as this that the additional mechanistic alert
level of profiling becomes useful, as it allows us to
identify chemicals that do not share a common
structural alert, but that instead share very closely
related chemistry. For p-tolylmethoxymethanol,
profiling at the mechanistic alert level allows us to
identify a single analogue, hexamine, that has
been shown to cause respiratory sensitisation in
humans. This allows us to predict that p-tolyl-
methoxymethanol is likely to be a sensitiser based
on a one-to-one read-across. It is important to state
that within the AOP paradigm both read-across
predictions would, in an ideal scenario, be sup-
ported with additional data drawn from in chemico
and/or in vitro assays (Table 1). 

Our general approach to using in silico profilers
is summarised in the flowchart in Figure 5. The
flowchart includes an additional step, outlining a
method for dealing with chemicals that do not con-
tain a structural alert related to the formation of a
covalent bond in the lung. For chemicals such as
these, our suggestion is to profile them for simple

Figure 4: Michael addition mechanism for
chemicals containing a
cyanoacrylate structural alert
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Table 1: Chemical structures and in silico profiling results for propyl cyanoacrylate and p-
tolylmethoxymethanol 

Mechanistic Mechanistic Structural 
Name domain alert alert

Propyl 
cyanoacrylate Michael addition Polarised alkenes 5 Cyanoacrylates 2

p-Tolylmethoxy-
methanol Schiff base p-Formaldehyde 1 Benzyloxymethanols 0

The number of analogues, excluding the target chemical, identified in the data set at each profiling level are shown in
bold.
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organic functional groups (such profilers are avail-
able in tools such as the OECD QSAR Toolbox).
Structural analogues can then be identified, based
on the common functional groups. This final profil-
ing tier also offers the opportunity to identify
chemicals that do not cause respiratory sensitisa-
tion, by using negative skin sensitisation data. If
such a group of chemicals were all negative in the
LLNA, then this could be used as evidence for the
absence of protein reactivity. In turn, this could be
used as an indication that they are also unlikely to
result in sensitisation in the lung via covalent bond
formation. Again, such predictions should be used
as part of a weight-of-evidence approach to chemi-
cal risk assessment. However, it is noted that there
is no formal relationship between the absence of
skin sensitisation and of respiratory sensitisation;
it is at this point in a weight-of-evidence approach
that further information from the tests suggested
by the AOP could be valuable. A recent article
builds on our work in this area, outlining how
mechanistic information, including in chemico
data relating to protein reactivity, can be used to
devise an AOP-driven testing strategy for respira-
tory sensitisation (37). 

Replacement of Animals in
Regulatory Toxicology

Our work in developing in silico profilers, and
specifically, a profiler for respiratory sensitisation,
offers tools that can be used as part of the AOP
approach to chemical risk assessment. As we have
outlined, in silico profilers encode the mechanistic
information associated with the MIE for organ tox-
icity (9, 10, 13, 26, 35). This information can then
be used to group chemicals together, and to make
predictions via read-across, a process that has
been supported at the OECD within the develop-
ment of the OECD QSAR Toolbox. Currently, the
LLNA assay is sometimes used to assess the poten-
tial of a chemical to cause respiratory sensitisa-
tion. This approach, at worst, is using a different
organ (skin versus lung) in a different species
(mouse versus human) to assess a chemical’s abil-
ity to sensitise the human lung. It is worth noting
that variations of the assay, involving exposure via
inhalation, are also possible. Taking a broader
view, the development of AOPs will lead to more-
detailed mechanistic knowledge and to the devel-
opment of better, more-relevant, non-animal

Figure 5: Flowchart illustrating how the respiratory sensitisation profiler can be used to
form chemical categories and make predictions by using read-across
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assays. To this end, we are currently involved in an
international working group that is developing an
AOP for respiratory sensitisation. However,
despite the progress that the AOP paradigm will
surely bring to regulatory risk assessment, at the
time of writing, within well-defined limitations,
chemistry-driven in silico profilers offer one of the
key solutions to the problem of making predictions
of organ toxicity, when no other data or informa-
tion are available.

Conclusions, Future Outlook and
Perspectives 

In this article, we have outlined the development
of an in silico profiler for respiratory sensitisation,
for which we were jointly awarded the 2013 Lush
Science Prize. Our approach is based around a
detailed understanding of the MIE leading to
organ-level toxicity, allowing for chemical category
formation and read-across. The approach is in-line
with the OECD QSAR Toolbox (for which we have
developed a number of the profilers), and is cur-
rently one of the key methods to make predictions
of toxicity without the use of animals. However,
significant challenges remain, especially when we
look to developing alternative methods for toxicity
endpoints associated with repeated-dose exposure.
Specifically, in terms of in silico approaches, there
is a requirement for more-detailed profilers that
encode the mechanistic information leading to tox-
icity in differing organs, for example, the liver, kid-
ney and the heart. Therefore, we have used the
Lush Prize money to co-fund, with Liverpool John
Moores University, a PhD studentship for work on
developing new and improved in silico profilers for
organ-level toxicity. In the wider predictive toxicol-
ogy field, this work needs to be matched with the
development of new in chemico and in vitro assays
that enable other key events in AOPs to be inves-
tigated. This will allow risk assessment to be car-
ried out by using a weight-of-evidence approach
that uses a variety of non-animal test data.

Acknowledgements

Professor Raymond Agius, Dr Martin Seed and Dr
Jill Stocks, from the Centre for Occupational and
Environmental Health at the University of
Manchester, UK, are gratefully acknowledged for
their efforts in collating the original data set. The
research outlined in this article was funded, in
part, by the following: the European Community’s
Seventh Framework Programme (FP7/2007-2013)
COSMOS Project under Grant Agreement Number
266835 and from Cosmetics Europe, European
Chemicals Agency Service Contract No.
ECHA/2008/20/ECA.203, and a framework con-

tract (Agreement Number 300000801) with the
Organisation for Economic Co-operation and
Development (OECD). 

References

1. Anon. (2003). Directive 2003/15/EC of the Euro -
pean Parliament and of the Council of 27 February
2003 amending Council Directive 76/768/EEC on
the approximation of the laws of the Member States
relating to cosmetic products. Official Journal of the
European Union L66, 11.03.2003, 26–35.

2. Yeomans, M. (2013). Cosmetics Europe Reports EU
Personal Care Market as the World Leader.
[Cosmeticsdesign-europe.com, 14.06.13]. Available
at: http://www.cosmeticsdesign-europe.com/Business-
Financial/Cosmetics-Europe-reports-EU-personal-
care-market-as-the-world-leader (Accessed 19.11.
14).

3. Ankley, G.T., Bennett, R.S., Erickson, R.J., Hoff,
D.J., Hornung, M.W., Johnson, R.D., Mount, D.R.,
Nichols, J.W., Russom, C.L., Schmieder, P.K., Serr -
ano, J.A., Tietge, J.E. & Villeneuve, D.L. (2010).
Adverse outcome pathways: A conceptual frame-
work to support ecotoxicology research and risk
assessment. Environmental Toxicology & Chem -
istry 29, 730–741.

4. Landesmann, B., Mennecozzi, M., Berggren, E. &
Whelan, M. (2013). Adverse Outcome Pathway-
based screening strategies for an animal-free safety
assessment of chemicals. ATLA 41, 461–471.

5. Schultz, T.W. (2010). Adverse outcome pathways: A
way of linking chemical structure to in vivo toxico-
logical hazards. In In Silico Toxicology: Principles
and Applications (ed. M.T.D. Cronin & J.C.
Madden), pp. 346–384. Cambridge, UK: Royal
Society of Chemistry.

6. Vinken, M. (2013). The adverse outcome pathway
concept: A pragmatic tool in toxicology. Toxicology
312, 158–165.

7. Adler, S., Basketter, D., Ceton, S., Pelkonen, O., van
Benthem, J., Zuang, V., Andersen, K.E., Angers-
Loustau, A., Aptula, A., Bal-Price, A., Benfenati, E.,
Bernauer, U., Bessems, J., Bois, F.Y., Boobis, A.,
Brandon, E., Bremer, S., Broschard, T., Casati, S.,
Coeke, S., Corvi, R., Cronin, M., Daston, G., Dekant,
W., Felter, S., Grignard, E., Gundert-Remy, U.,
Heinonen, T., Kimber, I., Kleinjas, J., Komulainen,
H., Kreiling, R., Kreysa, J., Leite, S.B., Loizou, G.,
Maxwell, G., Mazzatorta, P., Munn, S., Pfuhler, S.,
Phrakonham, P., Piersma, A., Poth, A., Prieto, P.,
Repetto, G., Rogiers, V., Schoeters, G., Schwarz, M.,
Serafimova, R., Tahti, H., Testai, E., van Delft, J.,
van Loveren, H., Vinken, M., Worth, A. & Zaldivar,
J.M. (2011). Alternative (non-animal) methods for
cosmetics testing: Current status and future
prospects. Archives of Toxicology 85, 367–485.

8. Przybylak, K.R. & Schultz, T.W. (2013). Informing
chemical categories through the development of
Adverse Outcome Pathways. In Chemical Toxicity
Prediction: Category Formation and Read-Across
(ed. M.T.D. Cronin, J.C. Madden, S.J. Enoch &
D.W. Roberts), pp. 44–71. Cambridge, UK: Royal
Society of Chemistry.

9. Enoch, S.J. & Cronin, M.T.D. (2010). A review of
the electrophilic reaction chemistry involved in
covalent DNA binding. Critical Reviews in Tox -

In silico profiler for respiratory sensitisation                                                                                                                                373



icology 40, 728–748.
10. Enoch, S.J., Ellison, C.M., Schultz, T.W. & Cronin,

M.T.D. (2011). A review of the electrophilic reaction
chemistry involved in covalent protein binding rele-
vant to toxicity. Critical Reviews in Toxicology 41,
783–802.

11. Enoch, S.J. & Cronin, M.T.D. (2012). Development
of new structural alerts for chemical category for-
mation for assigning covalent and non-covalent
mechanisms relevant to DNA binding. Mutation
Research. Genetic Toxicology & Environmental
Muta genesis 743, 10–19.

12. Enoch, S.J. (2010). Chemical category formation
and read-across for the prediction of toxicity. In
Recent Advances in QSAR Studies: Methods and
Applications (ed. T. Puzyn, J. Leszczynski & M.T.D.
Cronin), pp. 209–219. Berlin, Germany: Springer.

13. Enoch, S.J., Cronin, M.T.D. & Ellison, C.M. (2011).
The use of a chemistry based profiler for covalent
DNA binding in the development of chemical cate-
gories for read-across for genotoxicity. ATLA 39,
131–145.

14. Enoch, S.J., Cronin, M.T.D., Schultz, T.W. &
Madden, J.C. (2008). Quantitative and mechanistic
read across for predicting the skin sensitisation
potential of alkenes acting via Michael addition.
Chemical Research in Toxicology 21, 513–520.

15. Enoch, S.J. & Roberts, D.W. (2013). Predicting skin
sensitisation potency for Michael acceptors in the
LLNA using quantum mechanics calculations.
Chemical Research in Toxicology 26, 767–774.

16. Kimber, I., Basketter, D.A., Gerberick, F. & Dear -
man, R.J. (2002). Allergic contact dermatitis. Inter -
national Immunopharmacology 2, 201–211.

17. Holsapple, M.P., Jones, D., Kawabata, T.T., Kim -
ber, I., Sarlo, K., Selgrade, M.K., Shah, J. &
Woolhiser, M.R. (2006). Assessing the potential to
induce respiratory hypersensitivity. Toxicological
Sciences 91, 4–13.

18. Gerberick, G.F., Ryan, C.A., Kern, P.S., Schlatter,
H., Dearman, R.J., Kimber, I., Patlewicz, G.Y. &
Basketter, D.A. (2005). Compilation of historical
local lymph node data for evaluation of skin sensiti-
zation alternative methods. Dermatitis 16, 157–
202.

19. Kern, P.S., Gerberick, G.F., Ryan, C.A., Kimber, I.,
Aptula, A. & Basketter, D.A. (2010). Local lymph node
data for the evaluation of skin sensitisation alterna-
tives: A second compilation. Dermatitis 21, 8–32.

20. Cronin, M.T.D. & Basketter, D.A. (1994). A multi-
variate QSAR analysis of a skin sensitization data-
base. SAR & QSAR in Environmental Research 2,
159–179.

21. Schultz, T.W., Diderich, B. & Enoch, S.J. (2011).
The OECD Adverse Outcome Pathway approach: A
case for skin sensitisation. In AXLR8-2 Workshop
Report, pp. 288–300. Berlin, Germany: AXLR8.
Available at: http://axlr8.eu/assets/axlr8-progress-
report-2011.pdf (Accessed 19.11.14).

22. OECD (undated). Testing of Chemicals: Adverse
Outcome Pathways, Molecular Screening and
Toxicogenomics. Paris, France: Organisation for
Economic Co-operation & Development. Available
at: http://www.oecd.org/chemicalsafety/testing/
adverse-outcome-pathways-molecular-screening-
and-toxicogenomics.htm (Accessed 14.08.14).

23. Roberts, D.W., Aptula, A.O. & Patlewicz, G. (2006).
Mechanistic applicability domains for non-animal
based prediction of toxicological endpoints. QSAR

analysis of the Schiff base applicability domain for
skin sensitization. Chemical Research in Toxicology
19, 1228–1233.

24. Roberts, D.W., Patlewicz, G., Kern, P.S., Gerberick,
F., Kimber, I., Dearman, R.J., Ryan, C.A., Bask -
etter, D.A. & Aptula, A.O. (2007). Mechanistic
applicability domain classification of a local lymph
node assay dataset for skin sensitization. Chemical
Research in Toxicology 20, 1019–1030.

25. Roberts, D.W., Aptula, A.O. & Patlewicz, G. (2007).
Electrophilic chemistry related to skin sensitiza-
tion. Reaction mechanistic applicability domain
classification for a published data set of 106 chemi-
cals tested in the mouse local lymph node assay.
Chemical Research in Toxicology 20, 44–60.

26. Enoch, S.J., Madden, J.C. & Cronin, M.T.D. (2008).
Identification of mechanisms of toxic action for skin
sensitisation using a SMARTS pattern based app -
roach. SAR & QSAR in Environmental Research 19,
555–578.

27. Patlewicz, G., Dimitrov, S.D., Low, L.K., Kern, P.S.,
Dimitrova, G.D., Comber, M.I.H., Aptula, A.O.,
Phillips, R.D., Niemela, J., Madsen, C., Wedebye,
E.B., Roberts, D.W., Bailey, P.T. & Mekenyan, O.G.
(2007). TIMES-SS — A promising tool for the
assessment of skin sensitization hazard. A charact-
erization with respect to the OECD validation prin-
ciples for (Q)SARs and an external evaluation for
predictivity. Regulatory Toxicology & Pharma -
cology 48, 225–239.

28. Roberts, D.W., Patlewicz, G., Dimitrov, S.D., Low,
L.K., Aptula, A.O., Kern, P.S., Dimitrova, G.D.,
Comber, M.I.H., Phillips, R.D., Niemela, J., Mad -
sen, C., Wedebye, E.B., Bailey, P.T. & Mekenyan,
O.G. (2007). TIMES-SS — A mechanistic evaluation
of an external validation study using reaction chem-
istry principles. Chemical Research in Toxicology
20, 1321–1330.

29. Cunningham, A.R., Cunningham, S.L., Consoer,
D.M., Moss, S.T. & Karol, M.H. (2005). Devel opment
of an information-intensive structure–activity rela-
tionship model and its application to human respira-
tory chemical sensitizers. SAR & QSAR in
Environmental Research 16, 273–285.

30. Graham, C., Rosenkranz, H.S. & Karol, M.H.
(1997). Structure–activity model of chemicals that
cause human respiratory sensitization. Regulatory
Toxicology & Pharmacology 26, 296–306.

31. Piirila, P., Estlander, T., Hytonen, M., Keskinen,
H., Tupasela, O. & Tuppurainen, M. (1997).
Rhinitis caused by ninhydrin develops into occupa-
tional asthma. European Respiratory Journal 10,
1919–1921.

32. Seed, M.J., Cullinan, P. & Agius, R.M. (2008).
Methods for the prediction of low-molecular-weight
occupational respiratory sensitisers. Current
Opinion in Allergy & Clinical Immunology 8,
103–109.

33. Enoch, S.J., Roberts, D.W. & Cronin, M.T.D. (2009).
Electrophilic reaction chemistry of low molecular
weight respiratory sensitisers. Chemical Research
in Toxicology 22, 1447–1453.

34. Enoch, S.J., Roberts, D.W. & Cronin, M.T.D. (2010).
Mechanistic category formation for the prediction of
respiratory sensitisation. Chemical Research in
Toxicology 23, 1547–1555.

35. Enoch, S.J., Seed, M.J., Roberts, D.W., Cronin,
M.T.D., Stocks, S.J. & Agius, R.M. (2012). Devel -
opment of mechanism-based structural alerts for

374                                                                                                                                          S.J. Enoch et al.



respiratory sensitisation hazard identification.
Chemical Research in Toxicology 25, 2490–2498.

36. Aptula, A.O. & Roberts, D.W. (2006). Mechanistic
applicability domains for nonanimal-based predic-
tion of toxicological end points: General principles
and application to reactive toxicity. Chemical

Research in Toxicology 19, 1097–1105.
37. Mekenyan, O., Patlewicz, G., Kuseva, C., Popova, I.,

Mehmed, A., Kotov, S., Zhechev, T., Pavlov, T.,
Temelkov, S. & Roberts, D.W. (2014). A mechanis-
tic approach to modelling respiratory sensitisation.
Chemical Research in Toxicology 27, 219–239.

In silico profiler for respiratory sensitisation                                                                                                                                375


