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Abstract 17 

This study outlines the analysis of repeat dose toxicity data taken from Scientific Committee 18 

on Consumer Safety (SCCS) opinions for commonly used hair dyes in the European Union. 19 

Structural similarity was applied to group these chemicals into categories. Subsequent 20 

mechanistic analysis suggested that toxicity to mitochondria is potentially a key driver of 21 

repeat dose toxicity for chemicals within each of the categories. The mechanistic hypothesis 22 

allowed for an in silico profiler consisting of mechanism-based structural alerts to be 23 

proposed. This in silico profiler is intended for grouping chemicals into mechanism-based 24 

categories within the Adverse Outcome Pathway paradigm. 25 

Introduction 26 

Significant changes in the European cosmetic and chemical legislations during the last decade 27 

have concentrated efforts in the development of alternative methods to animal 28 

experimentation for safety testing purposes (Commision, 2003;  Commision, 2007). The 29 

Adverse Outcome Pathway (AOP) paradigm has emerged as a promising approach in that it 30 

enables key events in the pathway that leads to a toxicological outcome to be identified 31 

(Ankley et al., 2010;  Vinken, 2013;  Vinken et al., 2013). Key amongst these events is the 32 

Molecular Initiating Event (MIE) which has been the focus for the development of in silico 33 

profilers (Przybylak and Schultz, 2013). These profilers define the chemical features 34 

associated with a given MIE in terms of collections of structural alerts and are intended to be 35 

used to categorise chemicals based on a common MIE (Enoch et al., 2011a;  Enoch et al., 36 

2013a;  Enoch and Roberts, 2013;  Przybylak and Schultz, 2013;  Sakuratani et al., 2013a;  37 

Sakuratani et al., 2013b;  Vinken, 2013;  Vinken, Whelan and Rogiers, 2013). The 38 

mechanism-based categories of chemicals that result from such AOP-derived profilers are 39 

applicable to predict hazard via read-across and hence assist in the filling of data gaps. In 40 

addition, these groupings also form the basis for the more in-depth analysis that is required 41 

for an overall risk assessment. In such a situation, additional testing using in vitro and/or in 42 

chemico methods to assess other key steps in the AOP is likely to be required. The ability to 43 

group chemicals into mechanism-based categories using in silico profilers enables advanced 44 

testing strategies to be developed based on the prioritisation of chemicals and their testing in 45 

the more elaborated and costly assays (Gutsell and Russell, 2013).  46 
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Repeat dose toxicity results are, however, available for cosmetic ingredients present on the 47 

Annexes of Cosmetic Regulation 1223/2009. Indeed, for cosmetic substances for which some 48 

concern exists with respect to human health, e.g. colorants, preservatives, UV-filters and hair 49 

dyes. These data, consisting of No Observable Adverse Effect level (NOAEL)-values are 50 

available through the so-called opinions of the Scientific Committee on Consumer Safety 51 

(SCCS) and its predecessors, the Scientific Committee on Cosmetic products and Non-Food 52 

Products intended for consumers (SCCNFP) and the Scientific Committee on Consumer 53 

Products (SCCP). Clearly, such data could provide a useful starting point for developing 54 

MIEs and identifying the chemistry required for the grouping of chemicals for read-across.  55 

In particular for hair dyes, high quality toxicological data became available as a consequence 56 

of the step-wise strategy of the European Commission to regulate all hair dyes listed as 57 

substances in cosmetic products. As such, industry was required to submit safety dossiers for 58 

hair dye components and possible mixtures for evaluation by the Scientific Committees. The 59 

trigger for this action was the major concern of the scientific community for a putative link 60 

between the use of hair dyes and the development of cancer, with a focus on leukaemia and 61 

bladder cancer (Gago-Dominguez et al., 2001). Despite the requirement to assess the toxicity 62 

of hair dyes, few models or structural alerts for their toxic effects, or rationale for their 63 

grouping, is currently available.  64 

Therefore, the aim of this study is to propose an in silico profiler from the retrospective 65 

analysis of the oral repeat dose toxicity data available for hair dyes and retrieved from the 66 

Scientific Committees opinions published between 2000 and 2013. Mechanistic information 67 

relating these structural alerts to potential MIEs was sought from the peer reviewed literature.  68 

Methods  69 

Experimental data  70 

NOAEL values from oral 90-day rat studies for 94 hair dyes were extracted from the opinions 71 

of the SCCS and its predecessors between 2000 and 2013. Chemical names, CAS numbers 72 

and chemical structures were also taken from these reports. These data were used in the 73 

chemoinformatics analysis leading to the development of mechanism-based structural alerts. 74 

All data are available as supplementary information in the form of an Excel workbook. 75 
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Development of mechanism-based structural alerts  76 

The development of mechanism-based in silico profilers suitable for category formation is a 77 

time-consuming, literature-intensive process. Previous research leading to the establishment 78 

of in silico profilers for toxicological endpoints such as skin and respiratory sensitisation 79 

utilised a mechanistic hypothesis as a starting point for structural alert development (Enoch et 80 

al., 2008;  Enoch et al., 2012a). However, for complex endpoints such as organ-specific 81 

toxicity for which knowledge relating to possible MIEs is lacking, a chemoinformatics 82 

approach, coupled with a posteri mechanistic rationalisation, has been shown to be successful 83 

(Hewitt et al., 2013). Given the complexity of potential mechanisms driving oral repeat dose 84 

toxicity, the current study employed the latter approach using the protocol described 85 

hereafter. 86 

Structural similarity-based category formation  87 

All chemical structures were encoded as SMILES strings, neutralised and salts removed prior 88 

to chemical similarity analysis. Structural similarity of each chemical to all others in the 89 

dataset was calculated using the atom environments/Tanimoto coefficient approach as 90 

implemented in the freely available Toxmatch software (V1.07). Categories were developed 91 

for each chemical in the dataset using an in-house code implemented in Excel software that 92 

identified analogues with a similarity index of 0.7 or greater. Categories containing three or 93 

more chemicals were selected for further analysis. 94 

Structural alert-based category formation  95 

Each similarity-based category containing three of more chemicals was visually inspected in 96 

order to identify key structural fragments present in all category members. This structural 97 

fragment was then encoded as a SMARTS pattern-based structural alert. Each chemical in the 98 

dataset was subsequently profiled against these structural alerts in order to expand the 99 

groupings to include chemicals that were not found by the structural similarity analysis. This 100 

is an important step in the protocol as pure structural similarity-based categories are 101 

frequently unable to detect chemicals containing the key structural fragments. Structural 102 

alerts were then subjected to a mechanistic analysis involving detailed literature work in 103 

order to outline an MIE for the corresponding category members. This mechanistic analysis 104 

involved establishing potential MIEs related to chronic toxicity and linking them to the 105 
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chemistry of the structural alerts. Structural alerts were only considered as robust if a clear 106 

correlation between their chemistry and an MIE identified from relevant scientific literature 107 

could be established. 108 

Development of a refined set of structural alerts and in silico profiler  109 

The final stage in the analysis was to use the mechanistic knowledge to extend the 110 

applicability domain of the structural alerts enabling an in silico profiler to be developed. 111 

This analysis involved identifying additional structural alerts capable of triggering the same 112 

MIEs based on chemical information. The mechanistic rationale for these additional 113 

structural alerts was supported by evidence drawn from the scientific literature. All structural 114 

alerts identified in this study were then collated into an in silico profiler that allowed 115 

chemicals capable of causing the same MIE to be assigned to a single category. In keeping 116 

with the development of previous in silico profilers, the structural alerts were described 117 

within the resulting in silico profiler based on commonality of the underlying chemistry. 118 

Results and discussion 119 

The aim of this study was to develop an in silico profiler suitable for chemical categorisation 120 

of oral repeat dose toxicity data of hair dyes. The analysis involved utilising chemical 121 

similarity to identify groups of chemicals from a dataset of 94 hair dyes. Data related to 122 

repeat dose toxicity, as obtained from 90-day oral rat studies, were extracted from published 123 

SCC(NF)P and SCCS opinions with NOAEL values ranging from 0.3 mg/kg/day up to 1000 124 

mg/kg/day. The similarity analysis identified four categories of hair dyes containing either a 125 

2-nitroaminobenzene, 4-nitroaminobenzene, aromatic azo or anthraquinone moieties. These 126 

key structural fragments were used to develop a mechanistic hypothesis for the MIE for each 127 

category. This analysis resulted in the definition of four structural alerts related to the ability 128 

of aromatic chemicals to disrupt mitochondrial function due to their free radical chemistry. 129 

This mechanistic chemistry allowed an in silico profiler containing a refined set of structural 130 

alerts to be defined. The resulting in silico profiler assigned 56 of the 94 chemicals in the 131 

dataset to a mechanism-based chemical category. However, further experimental analysis is 132 

required to identify additional key steps to allow an AOP (or AOPs) to be defined. 133 

Development of mechanism-based structural alerts for category formation 134 
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The chemo-informatics analysis identified four similarity-based categories in the dataset, 135 

defined as a cluster containing three of more analogues. These included 2-136 

nitroaminobenzenes, 4-nitroaminobenzenes, aromatic azos and anthraquinones. In all 137 

datasets, a structural alert was defined based on the key fragment in each of the clusters. 138 

These structural alerts were used to identify additional related chemicals not identified by the 139 

structural similarity analysis. This is a crucial step in the development of mechanism-based 140 

structural alerts when using chemical similarity to cluster the initial dataset as related 141 

chemicals are frequently omitted. The resulting structural alerts and the number of analogues 142 

identified using them to re-analyse the data are summarised in Table 1. 143 

[Table 1 here] 144 

2-nitroaminobenzene and 4-nitroaminobenzene structural alerts  145 

A total of 26 chemicals were identified using the 2-nitroaminobenzene and 4-146 

nitroaminobenzene structural alerts. The nitro group in these chemicals can be readily 147 

reduced to an amino moiety by nitroreductase via a hydroxylamine intermediate in the gut 148 

and the liver resulting in the production of 1,2- and/or 1,4-diaminobenzenes (Gorontzy et al., 149 

1993;  Roldan et al., 2008). These chemicals are then prone to oxidation to the corresponding 150 

1,2- and/or 1,4-phenylenediamines (Figure 1).  151 

[Figure 1 here] 152 

Importantly, the conversion of 1,2-diaminobenzenes into 1,2-phenylenediamines is reversible 153 

implying that these chemicals are capable of cycling electrons. This also holds true for the 154 

corresponding 1,4-diaminobenzenes. It is known that this electron cycling mechanism allows 155 

these types of chemicals to interfere with the electron transport chain within the mitochondria 156 

(Wallace and Starkov, 2000). The mechanism leading to disruption could therefore involve 157 

the 1,2-diaminobenzene moiety within a chemical accepting an electron from respiratory 158 

complex I. This could oxidise the 1,2-diaminobenzene moiety to a 1,2-phenylenediamine 159 

which thereafter could transport the electron several steps down the respiratory chain directly 160 

into complex VI. The release of the electron would then reduce 1,2-phenylenediamine back 161 

to a 1,2-diaminobenzene allowing the process to be repeated in a cyclic fashion (Figure 2). 162 

This disruption ultimately could lead to a reduction in mitochondrial membrane potential and 163 

a subsequent reduction in ATP production (Bironaite et al., 1991;  Chan et al., 2005;  164 

Munday, 1992;  Wallace and Starkov, 2000). 165 
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[Figure 2 here] 166 

The aromatic amine moiety of the reduction products is also known to induce uncoupling of 167 

oxidative phosphorylation via a protonophoric mechanism (Terada, 1990) (Figure 3). The 168 

deprotonated form of these compounds scavenges a free proton from the inner membrane 169 

space. Upon protonation the compound is able to migrate across the inner mitochondrial 170 

membrane into the mitochondrial matrix. Due to the increased alkaline environment within 171 

the matrix the proton dissociates and the deprotonated compound returns to the inner 172 

membrane space enabling the cycle to continue. The continuation of this cycle increases 173 

oxygen consumption and heat production, alongside a reduction in the electrochemical 174 

gradient and ATP production (Chan, Truong, Shangari and O'Brien, 2005;  Pessayre et al., 175 

2012;  Terada, 1990;  Wallace and Starkov, 2000). Therefore, it is suggested that both 176 

mechanisms might contribute to the observed mitochondrial dysfunction. 177 

[Figure 3 here] 178 

Anthraquinone structural alert 179 

The structural alert based on the anthraquinone moiety identified a total of 5 chemicals in the 180 

dataset. These chemicals have also been shown to be capable of disrupting the electron 181 

transport chain in mitochondria by transporting electrons from respiratory complex I directly 182 

to complex IV (Henry and Wallace, 1995;  Kitani et al., 1981). This process is similar to that 183 

outlined for 1,2- and 1,4-diaminobenzenes in that the anthraquinone moiety accepts an 184 

electron from complex I to become a semi-quinone radical. This radical species could 185 

transport an electron directly to complex IV, being oxidised back to the anthraquinone in the 186 

process (Figure 4). Again, this reaction is reversible allowing the anthraquinone moiety to 187 

cycle electrons repeatedly from respiratory complex I to complex IV. In addition to acting as 188 

direct electron transport agents, the production of the semi-quinone radical has also been 189 

suggested to cause indirect mitochondrial toxicity due to their ability to react with molecular 190 

oxygen to produce reactive oxygen species. The chemical species include hydroxyl and 191 

superoxide radicals that are capable of evoking widespread damage to mitochondrial DNA, 192 

proteins and lipids (Kappus, 1986;  Ohkuma et al., 2001).  193 

[Figure 4 here] 194 

Aromatic azos structural alert 195 
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The final structural alert identified from the similarity analysis related to chemicals 196 

containing an aromatic azo moiety and identified 6 chemicals from the dataset. Chemicals 197 

containing an aromatic azo linkage are readily reduced to the free amine by the enzyme 198 

azoreductase (Nam and Renganathan, 2000). The presence of an additional nitro, amine or 199 

hydroxyl group in the 2- or 4-position on at least one of the aromatic rings could result in the 200 

possibility of the production of a 1,2- or 1,4-diaminobenzene moiety (Figure 5). This moiety 201 

might then act as an electron cycling agent resulting in the disruption of the respiratory chain 202 

in the mitochondria, as outlined previously for the 2-nitroaminobenzene and 4-203 

nitroaminobenzene clusters.    204 

[Figure 5 here] 205 

Additional chemicals capable of electron cycling 206 

The mechanistic chemistry outlined for the four structural alerts identified from the similarity 207 

analysis suggests that the ability to cycle electrons might represent a key MIE for 208 

mitochondrial toxicity for aromatic chemicals of this type. The mechanistic analysis further 209 

suggests that chemicals capable of forming free radicals could trigger this type of MIE 210 

resulting in toxicity. Therefore, it should be possible to develop additional structural alerts 211 

based around this mechanistic chemistry to increase the applicable chemical space relating to 212 

the MIE with respect to electron cycling. For example, based on the analysis of the chemistry 213 

outlined above for the 2-nitroaminobenzene category, it is conceivable to assume that 214 

chemicals containing a 1,2-diaminobenzene moiety would also be capable of cycling 215 

electrons, as this structure is one of the key intermediates in the mechanism proposed in 216 

Figure 1. Table 2 defines a refined set of structural alerts of mechanistically related 217 

chemicals. It should be noted, however, that the quinone structural alert includes chemicals 218 

containing an anthraquinone moiety. The aromatic azo structural alert is included in Table 2 219 

for completeness. 220 

[Table 2 here] 221 

The majority of the mechanistic chemistry for these structural alerts is as discussed 222 

previously (Table 2). The scope of the pro-quinone structural alert is significantly extended as 223 

evidenced by the number of chemicals assigned to the resulting category. This is due to the 224 

extensive additional mechanistic chemistry knowledge in the wider literature relating to the 225 

types of chemicals readily converted to the corresponding quinones (Enoch et al., 2011b;  226 
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Kalgutkar et al., 2005). In addition, the anthraquinone structural alert has been extended to 227 

cover quinones, based on the related chemistry and the proven ability of these chemicals to 228 

disrupt the respiratory chain in mitochondria via the same mechanism (Henry and Wallace, 229 

1995;  Kitani, So and Miller, 1981;  Scatena et al., 2007). In contrast, the mechanistic 230 

chemistry for the three 1,3-substituted structural alerts is somewhat different to the remaining 231 

structural alerts in that these chemicals are not able to form quinone-type species due to the 232 

1,3-motif. However, it has been reported that they are capable of causing toxicity via a free 233 

radical mechanism (Aptula et al., 2009) (Figure 6). Thus, the inclusion of these three 234 

structural alerts can be justified based on the hypothetical mechanistic rationale that a key 235 

MIE for mitochondrial toxicity could be electron cycling due to free radical formation.  236 

[Figure 6 here] 237 

Mitochondria and repeat dose toxicity 238 

The hypothetical mechanistic analysis presented above suggests that chemicals capable of 239 

free radical chemistry might disrupt the respiratory chain in the mitochondria leading to 240 

chronic toxicity. This is in keeping with previous research into the cardiotoxicity of 241 

anthracyclines upon extended low dose exposure (Montaigne et al., 2012). This adverse 242 

reaction has been shown to be related to mitochondrial dysfunction which results in the 243 

activation of a number of protein kinases. The MIE for this toxicity has been suggested to 244 

involve the ability of the quinone moiety within these drugs to form a semi-quinone radical 245 

and thus cycle electrons (Figure 3). In addition, these chemicals have been shown to form a 246 

variety of reactive oxygen species also capable of disrupting the normal function of 247 

mitochondria. It has also been suggested that mitochondrial dysfunction is a key driver in 248 

chronic toxicity (Kovacic and Jacintho, 2001a;  Kovacic and Jacintho, 2001b;  Porceddu et 249 

al., 2012;  Vinken, Whelan and Rogiers, 2013). A recent study also outlined how for the 250 

same chemical the mechanism driving toxicity can change on-going from acute to chronic 251 

exposure (Nikam et al., 2013). The importance of mitochondrial dysfunction as a driver of 252 

chronic toxicity has recently also led to the definition of a number of structural alerts, one of 253 

which (2-aminonitrophenol) was included in the current study (Naven et al., 2013). 254 

[Table 3 here] 255 

The data in Table 3 highlights that a variety of adverse effects within multiple organs are 256 

associated with the NOAEL values for chemicals assigned to each category. This variability 257 



10 
 

in the toxicity profile adds weight to the hypothesis that the observed toxicity might have 258 

been initiated by mitochondria dysfunction. This is due to the fact that mitochondria are 259 

present within most organ systems, performing a number of roles vital to normal cellular 260 

functioning. There is an extensive body of literature outlining a range of chemicals that 261 

inhibit the mitochondrial physiology resulting in toxicity at the organ level (Dykens and Will, 262 

2008). Typically, the most susceptible organs are those containing a higher concentration of 263 

mitochondria, those exposed to a higher concentration of the compound and/or those with a 264 

higher aerobic energy demand, such as the liver, kidney and cardiac muscle (Amacher, 2005;  265 

Dykens and Will, 2008;  Dykens and Will, 2007). In addition, it has been recognised by the 266 

pharmaceutical industry that mitochondrial dysfunction may be a cause of numerous 267 

toxicities within a variety of organs, and has led to the withdrawal of a number of therapeutic 268 

drugs (Amacher, 2005;  Dykens and Will, 2008;  Dykens and Will, 2007;  Pessayre, 269 

Fromenty, Berson, Robin, Letteron, Moreau and Mansouri, 2012).  270 

Adverse Outcome Pathway concept, perspectives and proposed future work 271 

The analysis presented above outlines how structural alerts related to potential MIEs could   272 

be derived. The main focus of this type of analysis is the development of the mechanistic 273 

chemistry relating the structural alerts to a possible MIE. This focus is a process that involves 274 

an in-depth survey of relevant scientific literature in support of the mechanistic hypothesis 275 

made, enabling in silico profilers to be developed for a given MIE. The current study has 276 

resulted in the development of a profiler capable of identifying chemicals that could cycle 277 

electrons and thus lead potentially to the disruption of the respiratory chain in the 278 

mitochondria. An important aspect of the on-going development of in silico profilers is the 279 

experimental verification of the mechanistic hypothesis, which increases confidence in the 280 

prediction of an MIE for an untested chemical. Such analysis has been recently undertaken 281 

for the in silico profilers relating to covalent protein binding in the OECD QSAR Toolbox 282 

(Enoch et al., 2012b;  Enoch et al., 2013b;  Nelms et al., 2013;  Rodriguez-Sanchez et al., 283 

2013). In terms of the current study, future work would consist of testing of a representative 284 

number of hair dyes/chemicals from each of the categories outlined to cause mitochondrial 285 

toxicity in an in vitro experimental set-up. In the longer term, the applicability domain of the 286 

in silico profiler could then be much better defined through the use of directed and intelligent 287 

testing of compounds using assays appropriately defined by the key events of the AOP. 288 
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To be able to predict oral repeat dose toxicity reliably, it is necessary, in addition to defining 289 

the applicability domain of the in silico profiler and by extension the MIE associated with the 290 

profiler, to generate extensive knowledge of subsequent key events in the AOP leading to 291 

toxicity. This requirement is highlighted by the broad range of oral NOAEL values for the 292 

categories derived in the current study which vary between one and two orders of magnitude 293 

(Table 2 for the ranges, Table 3 for each chemical within each category). Importantly, these 294 

values show the limitations of the in silico profilers ability to predict oral repeat dose toxicity. 295 

Assuming no additional information is available, the most realistic prediction for an untested 296 

chemical, assigned to one of the categories, would be to state that the oral NOAEL value 297 

would be likely to fall within the range of the values for the other category members. 298 

However, even this type of prediction may not be appropriate, in that the new untested 299 

chemical could be capable of altering a downstream key event in the AOP in a different 300 

manner to the remaining category members. It is also possible that the chemical may have a 301 

different toxicokinetic and/or dynamic profile to the other category members. It is therefore 302 

essential that the mechanistic information relating to the MIE contained within an in silico 303 

profiler is complimented with information derived from other existing in vivo data, in vitro, in 304 

silico or in chemico tests designed to target other key events in the AOP (and relating to 305 

toxicokinetics and dynamics). Only when a significant proportion of this information is 306 

available will the estimation of values such as NOAELs become possible without using 307 

animal models. 308 

Conclusions 309 

This study proposes an in silico profiler for chemicals used as hair dyes capable of causing 310 

mitochondrial dysfunction. It is based on a retrospective analysis of oral repeat dose toxicity 311 

data for 94 hair dye chemicals and is intended for use in grouping and category formation. It 312 

is important to note that the proposed profiler does not predict oral repeat dose toxicity; 313 

instead it provides arguments for a key MIE that might be responsible for initiating an AOP 314 

leading to chronic toxicity. This work generally shows that detailed mechanistic analysis is 315 

required for the development of in silico profilers and explains how such analysis can be used 316 

to identify potential MIEs. Clearly future in vitro work must be undertaken to outline 317 

additional key events in biological pathway before a relevant and complete AOP could be 318 

established. 319 
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Figure 1: Reduction of 2-nitroaminobenzene to the corresponding 1,2-diaminobenzene and 452 

then subsequent oxidation to a 1,2-phenylenediamine 453 

Figure 2: Electron cycling process leading to disruption of the respiratory chain in the 454 

mitochondria due to the presence of an alternate electron acceptor  455 

Figure 3: Cycling of the compound within the inner membrane space (IMM), scavenging 456 

hydrogen ions from within the inner membrane space (IMS) and transporting them to the 457 

mitochondrial matrix (MM)  458 

Figure 4: Activation of the anthraquinone moiety into a semi-quinone radical 459 

Figure 5: Reduction of aromatic azo compounds producing a 1,4-diaminobenzene and 1,4-460 

phenylenediamine capable of cycling electrons 461 

Figure 6: Free radical mechanism for 1,3-diaminobenzene (an analogous mechanism is 462 

possible for the 1,3-dihydroxybenzene and 3-hydroxyaminobenzene containing chemicals)  463 

  464 
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Table 1: Structural alerts identified from the similarity analysis carried out on the 93 hair dye 476 

chemicals 477 

Structural alert Key structural fragment 
Number of 

analogues 

2-nitroaminobenzenes 

 

R = hydrogen, carbon 

20 

4-nitroaminobenzenes 

 

R = hydrogen, carbon 

6 
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Aromatic azos 

 

R = at least must be NH2, NH 

6 

Anthraquinones 

 

5 



24 
 

Table 2: Refined set of structural alerts capable of free radical cycling chemistry (NOAEL values relate to 90-day oral rat studies)  

Name Key structural features Number of chemicals 

oral NOAEL 

ranges 

(mg/kg/day) 

Figure 

Pro-quinones 

(R = OH, NH2, NH, NO2) 

 

 

39 1.4 – 250.0 1 
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Quinones 

(X = NH,O) 

 

 

 

7 2.0 – 200.0 3 

Meta-substituted benzenes 

(R = NH2, OH) 

 

4 50.0 – 100.0 5 
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Aromatic azos 

(R1 = aromatic carbon) 

(R2 = NH2, NH, OH) 

 

6 0.3 – 52.6 4 
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Table 3: Repeat dose data the chemicals grouped into categories by the structural alerts defined in the current study (AAT – alanine 

aminotransferase, APTT – activated partial thromboplastin time, AST – aspartate aminotransferase, BWG – body weight gain, GI – 

gastrointestinal, MCH – Mean Corpuscular/cell Haemoglobin, MCV – Mean Corpuscular/cell Volume, PT – Prothrombin Time, RBC – Red 

Blood Cell)    

ID Category Chemical 
NO(A)EL 

(mg/kg bw/day) 

LO(A)EL 

(mg/kg bw/day) 
Reported adverse effects 

1 Quinone Disperse Violet 1 2 20 

↑ Centrilobular/Midzonal hepatocyte 

hypertrophy 

↑ Triglycerides (♀) 

↑ Cholesterol 

↓ Motor activity 

2 Quinone Lawsone 2 7 

↓ Erythrocyte count (♀) 

↓ Blood urea (♀) 

↓ Albumin:Globulin ratio (♀) 

↑ Bilirubin (♀) 

↑ Kidney weight (♀) 

↓ Blood glucose (♂) 

↑ Triglycerides (♂) 

↑ Haematopoiesis, spleen (♂) 

↑ (Multi)focal ulceration of mucosa, 

forestomach 

↑ Interstitial oedema, forestomach 

3 Quinone Acid Green 25 
100 

 

300 

 
↑ Kidney weight 

4 Quinone HC Green No. 1 100 300 

↓ Food consumption (♀) 

↓ Body weight (♀) 

↑ Hypokalemia 

↑ Oliguria (♂) 

5 Quinone Acid Blue 62 
300 

 

1000 

 

↑ Kidney weight 

↑ Liver weight 
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↑ Ptyalism 

↑ Tubular nephrosis 

↑ Centrilobular hepatocyte hypertrophy 

↑ Blood Urea 

↑ Albumin 

↑ Cholesterol 

↑ AAT 

↓ Body weight 

↓ Glucose 

6 Quinone 

Hydroxyanthraquinone 

aminopropyl methyl 

morpholinium methosulfate 

200 800 

↓ Absolute thymus weight (♀) 

↓ Body weight (♂) 

↓ Relative thymus weight 

7 Quinone Acid Violet 43 
300 

 

1000 

 

↑ PT 

↑ APTT 

8 Pro-quinone Toluene-2,5-diamine 10 20 

↑ AST 

↑ Mononuclear cell infiltrates, diaphragm 

↑ Mononuclear cell infiltrates, eye 

↑ Mononuclear cell infiltrates, thigh 

↑ Mononuclear cell infiltrates, tongue 

↑ Muscular degeneration, diaphragm 

↑ Muscular degeneration, thigh 

↑ Muscular degeneration, tongue 

↑ Muscular regeneration, diaphragm 

 

9 Pro-quinone Picramic acid 5 15 

↑ Ulceration of GI tract 

↑ Inflammation of GI tract 

↑ Fibrosis of GI tract 

↑ Tubular cell swelling 

↑ MCV 

↑ MCH 

↑ Reticulocyte count 

10 Pro-quinone HC Red No. 13 No NO(A)EL 5 ↑ Creatinine (♀) 
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 ↑ Kidney weight 

↑ PT (♂) 

↓ Albumin:Globulin ratio (♀) 

↓ Glucose (♀) 

↓ MCH (♂) 

↓ MCV 

11 Pro-quinone 
2,2'-Methylenebis-4-

aminophenol 
5 15 

↑ Cast formation, kidney 

↑ Thickened basement membrane, kidney 

↑ Tubular basophilia, kidney 

↑ Tubular degeneration, kidney 

12 Pro-quinone 
4-Nitrophenyl 

aminoethylurea 
5 25 

↓ RBC count 

↓ Haemoglobin concentration 

↑ MCV 

↑ Reticulocyte count 

↑ Extramedullary haematopoiesis, spleen 

↑ Haemosiderosis (♀) 

↓ Packed cell volume (♂) 

13 Pro-quinone HC Red No. 1 5 20 

↓ Erythrocytes (♀) 

↑ Leukocytes (♀) 

↑ Lymphocytes (♀) 

↓ Thymus weight (♂) 

↑ MCH (♂) 

14 Pro-quinone 
Tetrahydro-6-

nitroquinoxaline 
5 25 

↑ Ptyalism 

↑ Liver weight 

↑ Spleen weight 

15 Pro-quinone p-Phenylenediamine 8 16 ↑ Myodegeneration, skeletal muscle 

16 Pro-quinone 
2-Chloro-6-ethylamino-4-

nitrophenol 
10 30 ↑ Liver weight 

17 Pro-quinone Dihydroxyindoline 10 20 ↑ Pigmentation, kidney 

18 Pro-quinone 
PEG-3-2',2'-di-p-

phenylenediamine 
10 25 

↑ Intracellular pigmentation, kidney tubules 

↑ Pigmentation, thyroid epithelium 

↑ Pigmentation, duodenum 
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19 Pro-quinone 
p-Methylaminophenol 

sulphate 
10 30 

↑ Tubular epithelial degeneration, kidney 

↑ Single cell necrosis, kidney 

↓ Specific gravity (♂) 

↑ Urinary volume (♂) 

20 Pro-quinone 
2-Hydroxyethyl picramic 

acid 
15 60 

↑ Protein cylinders, kidneys 

↑ Activation of thyroid epithelial cells 

21 Pro-quinone HC Yellow No. 13 21 90 

↑ Degeneration, Islet cells 

↑ Inflammation, endocrine pancreas 

↑ Fibrosis, endocrine pancreas 

↑ Serum cholesterol (♂) 

22 Pro-quinone 
3-Methylamino-4-

nitrophenoxyethanol 
25 100 

↑ Ptyalism 

↓ Lymphoid in thymus 

23 Pro-quinone HC Orange No.1 25 No LO(A)EL Nothing reported 

24 Pro-quinone 
2-Amino-6-chloro-4-

nitrophenol 
30 90 

↓ Body weight 

↑ Kidney weight 

25 Pro-quinone 
4-Hydroxypropylamino-3-

nitrophenol 
30 90 

↑ Thyroid weight 

↓ AST 

26 Pro-quinone Acid Yellow 1 30 100 

↑ Mean absolute reticulocyte 

↑ Haematopoiesis 

↑ Lesions, caecum 

↑ Lesions, intestine 

↑ Lesions, liver 

↑ Lesions, spleen 

↑ Haemosiderosis (♀) 

↑ MCV (♀) 

↑ Spleen weight (♂) 

27 Pro-quinone 1,2,4-Trihydroxybenzene 50 100 

↑ Piloerection 

↑ Ptyalism 

↑ Mean RBC volume 

↑ MCH 

↑ Platelets 

↓ Haematocrit 
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↓ RBC count 

↓ Haemoglobin 

↑ Kidney weight 

↑ Liver weight 

↑ Spleen weight 

↓ Body weight (♂) 

28 Pro-quinone 4-Amino-3-nitrophenol 50 250 ↑ Liver weight (♂) 

29 Pro-quinone HC Violet No. 2 50 200 

↑ Liver weight 

↓ RBC 

↓ PT 

30 Pro-quinone HC Yellow No. 11 50 200 

↑ Acidophilic globules in cortical tubular 

epithelium 

↑ Liver weight (♀) 

↑ Kidney weight 

↓ Thymus weight 

↓ Creatinine 

31 Pro-quinone HC Yellow No. 2 50 No LO(A)EL Nothing reported 

32 Pro-quinone 

2-Nitro-4-amino-

diphenylamine-2’-carboxylic 

acid 

60 180 
↑ Thrombocytes 

↑ Water consumption (♀) 

33 Pro-quinone 4-Amino-m-cresol 60 120 ↑ Spleen weight 

34 Pro-quinone HC Blue No. 12 60 No LO(A)EL Nothing reported 

35 Pro-quinone HC Blue No. 11 80 160 
↑ Kidney weight 

↑ Vacuolated tubular cell 

36 Pro-quinone HC Red No. 3 90 250 ↓ Body weight 

37 Pro-quinone 
2-Hydroxyethylamino-5-

nitroanisole 
100 500 

↑ Liver weight 

↑ Spleen weight 

↑ PT 

↑ Fibrinogen level 

↑ Blood urea nitrogen 

↑ AAT (♂) 

↑ Urinary volume 
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38 Pro-quinone HC Orange No. 3 100 300 

↑ Kidney weight 

↑ Liver weight 

↑ Spleen weight 

↑ AAT 

↑ AST 

39 Pro-quinone HC Yellow No. 10 100 500 

↑ Staining, body 

↑ Staining, fur 

↑ Body weight 

↑ Ptyalism 

↑ Food consumption 

↑ Liver weight 

↑ Spleen weight (♂) 

40 Pro-quinone HC Orange No.  2 150 500 

↑ Ptyalism 

↓ BWG 

↓ Food consumption 

↓ Blood glucose 

41 Pro-quinone Acid Blue 62 
300 

 

1000 

 

↑ Kidney weight 

↑ Liver weight 

↑ Ptyalism 

↑ Tubular nephrosis 

↑ Centrilobular hepatocyte hypertrophy 

↑ Blood urea 

↑ Albumin 

↑ Cholesterol 

↑ AAT 

↓ BWG 

↓ Glucose 

42 Pro-quinone 
2-Nitro-5-glyceryl 

methylaniline 
200 800 

↑ Ptyalism 

↑ Vacuolated pancreatic cells 

↑ Vacuolated renal tubular cells 

↑ Tubular nephrosis 

↑ Piloerection 
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↑ Hunched back 

↑ Hypokinesia 

↑ Bilateral opacity 

↑ Adrenal weight 

↑ Kidney weight 

↑ Liver weight 

↓ BWG 

43 Pro-quinone 
3-Nitro-p-

hydroxyethylaminophenol 
200 No LO(A)EL Nothing reported 

44 Pro-quinone 
N,N'-bis(hydroxyethyl)-2-

nitro-p-phenylenediamine 
240 720 

↑ Kidney weight 

↑ Liver weight 

↓ Activity (♀) 

↓ Ataxia (♀) 

↑ Ptyalism (♀) 

↑ Ocular discharge (♀) 

↑ Lethargy (♀) 

↑ Hunched posture (♀) 

↑ Triglycerides (♂) 

↑ Urea (♂) 

↑ Urinary specific gravity 

45 Pro-quinone HC Yellow No. 4 250 500 

↓ Body weight 

↑ Thyroid lesions 

↑ Uterine lesions (♀) 

↑ Kidney lesions (♂) 

1 Mortality 

46 Pro-quinone HC Yellow No. 9 250 No LO(A)EL Nothing reported 

47 
Meta-

hydroquinone 
5-amino-6-chloro-o-cresol No NO(A)EL 

100 

 

↑ Centrilobular hepatotrophy, liver 

↑ MCV 

↑ Mean corpuscular Hb (♀) 

↑ MCH concentration (♀) 

48 
Meta-

hydroquinone 
3-Amino-2,4-dichlorophenol 80 160 

↑ Liver degeneration 

↑ Liver necrosis 
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↑ Foci mononuclear cell infiltration 

↑ Kidney degeneration 

↑ Kidney necrosis 

↑ Tubular epithelial cell hypertrophy 

↑ Phosphorus (♂) 

↑ Sodium (♂) 

↑ Chloride (♂) 

49 
Meta-

hydroquinone 

2,6-

Dihydroxyethylaminotoluene 
100 316 

↑ Bilirubin 

↑ Urobilinogen 

↓ Serum creatinine (♀) 

50 
Meta-

hydroquinone 
2-Methylresorcinol 100 200 

↑ Clonic spasms 

↑ Ptyalism 

↑ Scratching movements 

↑ Body weight (♂) 

↑ Liver weight (♂) 

↑ AST (♂) 

↑ AAT (♂) 

51 Aromatic azo Basic Brown 16 50 150 ↓ BWG (M) 

52 Aromatic azo Basic Brown 17 60 120 ↑ Extramedullary haemopoiesis 

53 Aromatic azo Basic Red 76 20 60 

↓ RBC (M) 

↓ Haemoglobin 

↓ Haematocrit (M) 

↓ MCH concentration (F) 

54 Aromatic azo Disperse Black 9 100 No LO(A)EL Nothing reported 

55 Aromatic azo Disperse Red 17 10 30 ↑ Spleen weight 

56 Aromatic azo HC Yellow N
o
. 7 10 40 

↑ Kidney weight 

↑ Bilateral discolouration of fundus 

↑ Pytalism 

↑ Tubular basophilia 

↑ Blood phosphorous (F) 

↓ Blood glucose (F) 

↑ Blood sodium (M) 
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