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Abstract  

Background: In a star-shaped network, pairwise comparisons link treatments with a reference 

treatment (often placebo or standard care), but not with each other. Thus, comparisons between 

non-reference treatments rely on indirect evidence, and are based on the unidentifiable 

consistency assumption, limiting the reliability of the results. We suggest a method of 

performing a sensitivity analysis through data imputation to assess the robustness of results 

with an unknown degree of inconsistency.  

Methods: The method involves imputation of data for randomized controlled trials comparing 

non-reference treatments, to produce a complete network. The imputed data simulate a 

situation that would allow mixed treatment comparison, with a statistically acceptable extent 

of inconsistency. By comparing the agreement between the results obtained from the original 

star-shaped network meta-analysis and the results after incorporating the imputed data, the 

robustness of the results of the original star-shaped network meta-analysis can be quantified 

and assessed. To illustrate this method, we applied it to two real datasets and some simulated 

datasets. 

Results: Applying the method to the star-shaped network formed by discarding all comparisons 

between non-reference treatments from a real complete network, 33% of the results from the 

analysis incorporating imputed data under acceptable inconsistency indicated that the treatment 

ranking would be different from the ranking obtained from the star-shaped network. Through 

a simulation study, we demonstrated the sensitivity of the results after data imputation for a 

star-shaped network with different levels of within- and between-study variability. An 

extended usability of the method was also demonstrated by another example where some head-

to-head comparisons were incorporated.    
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Conclusions: Our method will serve as a practical technique to assess the reliability of results 

from a star-shaped network meta-analysis under the unverifiable consistency assumption.  

Keywords: star-shaped network, indirect comparisons, network meta-analysis, inconsistency, 

sensitivity analysis, data imputation  
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Background 

Network meta-analyses based on systematic reviews are often used to produce 

evidence for medical decision-making, such as deciding which of various treatment options is 

the best for a pre-defined population of patients. Specifically, network meta-analysis is a 

statistical method for integrating the data available from a network of multiple randomized 

controlled trials (RCTs) that involve multiple interventions, to estimate their relative effects by 

comparing them directly, indirectly, or both [1, 2]. The objective of a network meta-analysis is 

to compare the relative efficacy and/or safety of multiple medical interventions and to rank 

each treatment for a corresponding outcome [3].  

Since a network meta-analysis combining all information from RCTs on multiple 

interventions provides an internally coherent set of estimates of the relative treatment effects 

between competing interventions [4-6], the included trials should be comparable; that is, there 

should be no imbalance in the distribution of potential effect modifiers across the trials [7-9]. 

In principle this should ensure consistency of evidence, however the assumption of consistency 

across direct and indirect evidence should also be statistically checked [10-12]. When the 

assumption of consistency is satisfied, a network meta-analysis may have acceptable validity, 

whereas this will be questionable when inconsistency, characterized by a discrepancy between 

direct and indirect evidence, is found [13]. However checking the consistency of the direct and 

indirect evidence in a network is only feasible when there are one or more closed loops within 

an evidence network. A closed loop refers to a part of a network where each comparison has 

both direct and indirect evidence [14]. Methods of testing for inconsistency in a network have 

been previously presented, and are distinguished by how to treat inconsistency [10-12, 15-17]. 

If the consistency assumption is violated in a network, a further qualitative evaluation is 
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necessary to identify its sources [7-9].  

However, researchers might encounter an evidence network where all treatments have 

been compared only with a common treatment, but not with each other. For example, new drugs 

are often compared with placebo or standard care, rather than to active treatments, in trials 

conducted for the purpose of obtaining approval for drug licensing [18]. Once a drug receives 

regulatory approval, there may no longer be any commercial incentive to compare the drug 

against other alternatives, and therefore there are occasions where no head-to-head trials 

between active treatments exist [19]. Such networks do not have any closed loops, and are 

referred to as ‘star-shaped networks’ [20]. A study reported that 47 (31%) of 152 network 

analyses published in PubMed between inception and March 2011 included star-shaped 

networks [21]. Although a decade has passed since then, many network meta-analyses still 

consist of interventions that do not have both indirect and direct comparisons or are conducted 

in contexts where one or few closed loops are available. For example, with advances of 

biologics for the treatment of rheumatoid arthritis over the past two decades, its evidence 

network, which included only indirect evidence in the first decade, has now incorporated some 

(albeit few) head-to-head comparisons [22]. In a star-shaped network, statistically detecting or 

checking inconsistency is impossible, thus researchers need to rely solely on a qualitative 

evaluation that studies are comparable, before integrating the data into a network meta-analysis 

under the consistency assumption [23-25]. However, there may be a certain degree of 

inconsistency between the evidence from the included indirect comparisons and the unknown 

direct comparisons; it may be impossible to detect statistically, but should nonetheless be 

considered. Therefore, it is necessary to explore the degree to which results from a star-shaped 

network are robust to potential inconsistencies. 
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In this article, we suggest a sensitivity analysis for evaluating the robustness of the 

results of a star-shaped network meta-analysis, and illustrate some examples of applying the 

method to two real datasets and four simulated datasets. We then provide an interpretation of 

the results for each example. We finally discuss the proposed method and its usability.  

Method development 

Notation, models, and method of testing for inconsistency   

 Let 𝜃𝑖𝑗𝑘 be the observed relative effect size of treatment k (k= 𝑇2, ⋯ , 𝑇𝑝) compared 

to treatment 𝑗 (j=𝑇0, ⋯ , 𝑇𝑝−1) from the 𝑖𝑡ℎ study comparing treatment 𝑗 versus k where a 

network contains 𝑝 + 1  treatments 𝑇0, ⋯ , 𝑇𝑝 , with 𝜃𝑖𝑗𝑘  following a normal distribution, 𝑁(𝜃𝑖𝑗𝑘, 𝜎𝑖𝑗𝑘2 ). The parameter 𝜃𝑖𝑗𝑘 is the study-specific treatment effect of treatment 𝑘 relative 

to 𝑗 in study 𝑖. It is conventional that the estimated variance of 𝜃𝑖𝑗𝑘, 𝑣𝑎�̂�(𝜃𝑖𝑗𝑘), is treated as 

if it were the true variance 𝜎𝑖𝑗𝑘2   [26, 27]. The distribution is thus assumed to satisfy 𝜃𝑖𝑗𝑘~ 𝑁(𝜃𝑖𝑗𝑘, 𝑣𝑎�̂�(𝜃𝑖𝑗𝑘)). A model of 𝜃𝑖𝑗𝑘 is as follows:  

𝜃𝑖𝑗𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝑑𝑗𝑘,  𝜏2). 

Here, 𝑑𝑗𝑘 is the mean study-specific effect size of treatment k compared to treatment j. We 

used a usual random-effects model [28, 29], which allows for between-study variation (𝜏2) 

that is common for all comparisons in a network. For simplicity, the between-study variation 

is assumed to be identical across all contrasts; however, between-study variation can also be 

modeled separately for each contrast [11, 30].  

 In the standard approach of performing a network meta-analysis, the basic parameters 𝑑𝑇0𝑘 and 𝑑𝑇0𝑗 (𝑗 and 𝑘 ≠ 𝑇0) are first defined using a chosen reference intervention (𝑇0), 
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which is usually placebo or a conventional treatment [31]. The functional parameter 𝑑𝑗𝑘 

(𝑗 and 𝑘 ≠ 𝑇0)  is then defined by a consistency relationship, 𝑑𝑗𝑘 = 𝑑𝑇0𝑘 − 𝑑𝑇0𝑗 . A model 

based on this approach is called a ‘consistency model’. For a simple network with three 

interventions A, B, and C, the consistency model would estimate the basic parameters, 𝑑𝐴𝐵 

and 𝑑𝐴𝐶, from all available evidence. The functional parameter, 𝑑𝐵𝐶, is calculated using the 

consistency equation, as 𝑑𝐴𝐶 − 𝑑𝐴𝐵. A full description of the model is given in Appendix 1 

(Additional file 1) for this simple case. In addition, the network meta-analysis can rank all the 

treatments from best to worst [32]. 

For a star-shaped network where only a common comparator (𝑇0) is compared with all 

other alternative treatments (𝑇1, ⋯ , 𝑇𝑝) without any head-to-head comparison among 𝑇1, ⋯ , 𝑇𝑝 

as shown in Figure 1, 𝑇0 is naturally assigned as the reference treatment in the above model 

for performing a network meta-analysis to estimate the basic parameters, 𝑑𝑇0𝑇1, ⋯, 𝑑𝑇0𝑇𝑝. The 

relative effect sizes among the non-reference treatments are calculated by indirect comparisons. 

An inconsistency model, in which consistency is not assumed, can be used to check 

whether the assumption of consistency holds [13]. This model represents each contrast between 

treatments in the network as an unrelated basic parameter estimated only from direct evidence; 

therefore, this is equivalent to conducting a separate pairwise meta-analysis with a shared 

heterogeneity parameter. For a fully connected simple network, when direct evidence on all 

contrasts is available, the inconsistency model would define the basic parameters, 𝑑𝐴𝐵, 𝑑𝐴𝐶, 

and 𝑑𝐵𝐶, without assuming any relationship between the parameters (see Additional file 1: 

Appendix 1). In contrast, if direct evidence is not available for one contrast, say BC, the model 

would estimate the basic parameters, 𝑑𝐴𝐵  and 𝑑𝐴𝐶 , but the relative effect size between B 

versus C cannot be estimated. In a star-shaped network, there is no difference in fit or estimated 
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treatment effects between consistency and inconsistency models because the basic parameters 

are defined identically in both models. 

 Consistency and inconsistency models can be fitted in a Bayesian framework using 

non-informative prior distributions for each defined parameter. Comparison of residual 

deviance and heterogeneity estimates between the two models can suggest inconsistency [13, 

33]. When the inconsistency model produces the smallest residual deviance value, there is 

potential overall inconsistency in the corresponding evidence network. Similarly when the 

estimated heterogeneity is smaller in the inconsistency model than in the consistency model, 

this can suggest inconsistency. No particular cut-off value was considered for determining a 

meaningful difference. 

Statistical methods  

 We considered non-directly connected pairs in a star-shaped network as missing to 

conduct a sensitivity analysis. For a star-shaped network consisting of one common comparator 

as a reference treatment, and p non-reference treatments (Figure 1), we filled in the hypothetical 

RCT data for all the 𝑝(𝑝 − 1)/2 missing pairwise comparisons, producing fully connected 

network (hereafter called a ‘complete network’). The imputed data consisted of study-level 

treatment effect sizes (𝜃𝑖𝑗𝑘∗ ) and their variances (𝑣𝑎�̂�(𝜃𝑖𝑗𝑘∗ )). They were generated to simulate 

a situation that would allow a mixed treatment comparison with some extent of inconsistency 

that is still acceptable statistically, where the acceptance was determined by examining whether 

a consistency model has a lower residual deviance value than an inconsistency model, so that 

the complete network resulting from imputation can be aggregated under the consistency 

assumption. By comparing the agreement between the analysis results from the original star-

shaped network and the complete network, the robustness of the results of the original star-
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shaped network meta-analysis was assessed. 

Imputation strategy  

For the 𝑝(𝑝 − 1)/2 contrasts among non-reference treatments in the star-shaped network, 

the imputed data were generated to meet the following conditions: 

• Ⅰ: For each contrast between specific treatments, if the effect size estimated from the 

original star-shaped network is positive (or negative), the pooled effect size from a 

pairwise meta-analysis of the imputed data is assumed to be less (or greater) than that 

indirectly produced from the original star-shaped network meta-analysis. This 

condition is put in place to run the sensitivity analysis from a conservative point of 

view, assuming that the artificial direct estimate is smaller (or larger) than the observed 

indirect estimate. 

• Ⅱ: For each contrast, the precision of the pooled effect size from the pairwise meta-

analysis of the imputed data is the same as the precision of the effect size indirectly 

estimated in the original star-shaped network meta-analysis. This means that the 

variance of individually imputed effect sizes will produce the maximal variance in 

their pooled effect size, since it is generally considered that indirectly estimated effect 

sizes have greater variance than direct estimates [30]. 

• Ⅲ: For each contrast, the extent of heterogeneity in the imputed data for the effect size 

of the contrast is the same as that of the overall heterogeneity across contrasts in the 

star-shaped network. This assumption serves to maintain the level of overall 

heterogeneity in the network after imputation, enabling us to investigate only the 

impact of the potential extent of inconsistency on the results of the sensitivity analysis. 
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Assessing the robustness of conclusions from a star-shaped network meta-analysis 

through imputation 

We illustrated the sensitivity analysis method using the simplest star-shaped network, 

which involved RCTs of A versus B and A versus C. The RCT data, 𝜃𝑖𝐴𝐵 with 𝑣𝑎�̂�(𝜃𝑖𝐴𝐵) for 𝑖 = 1, … , 𝑁 and 𝜃𝑖𝐴𝐶 with 𝑣𝑎�̂�(𝜃𝑖𝐴𝐶) for 𝑖 = 1, … , 𝑀, are given, when 𝑁 and 𝑀 are the 

numbers of RCTs for A versus B and A versus C, respectively. From the star-shaped network 

meta-analysis, we obtained estimates of the basic parameters, �̂�𝐴𝐵 and �̂�𝐴𝐶, and an estimate 

of between-study variation, �̂�2. The indirectly estimated effect size between B and C and its 

variance are �̂�𝐴𝐶 − �̂�𝐴𝐵 and 𝑣𝑎�̂�(�̂�𝐴𝐶 − �̂�𝐴𝐵), respectively. 

We generated 𝜃𝑖𝐵𝐶∗   and 𝑣𝑎�̂�(𝜃𝑖𝐵𝐶∗ ) , with 𝑖 = 1, … , 𝑙  for 𝑙  hypothetical RCTs 

comparing B and C using the imputation strategy described in the above section. The value of 𝑙  was determined while calculating 𝑣𝑎�̂�(𝜃𝑖𝐵𝐶∗ ) . The effect sizes 𝜃1𝐵𝐶∗ , ⋯ , 𝜃𝑙𝐵𝐶∗   were 

generated from the following distributions: 

𝜃𝑖𝐵𝐶∗ ~𝑁(𝜃𝑖𝐵𝐶∗ , 𝑣𝑎�̂�(𝜃𝑖𝐵𝐶∗ )), for 𝑖 = 1, … , 𝑙. 
The imputation parameters, 𝜃1𝐵𝐶∗  ,  ⋯ , 𝜃𝑙𝐵𝐶∗  , were generated from a normal distribution, 𝑁(�̂�𝐴𝐶 − �̂�𝐴𝐵 + �̅�𝐵𝐶 , �̂�2). The constant �̅�𝐵𝐶 was defined artificially to represent the extent of 

potential inconsistency between the direct (𝜃𝐵𝐶∗  ) and indirect (�̂�𝐴𝐶 − �̂�𝐴𝐵 ) evidence. nnder 

condition Ⅰ, if �̂�𝐴𝐶 − �̂�𝐴𝐵 < 0, �̅�𝐵𝐶 should be positive, and if �̂�𝐴𝐶 − �̂�𝐴𝐵 > 0, �̅�𝐵𝐶 should 

be negative.  

The variances 𝑣𝑎�̂�(𝜃1𝐵𝐶∗ ) = 𝑣𝑎�̂�(𝜃2𝐵𝐶∗ ) = ⋯ = 𝑣𝑎�̂�(𝜃𝑙𝐵𝐶∗ ) = 𝑙 ∙ 𝑣𝑎�̂�(�̂�𝐴𝐶 − �̂�𝐴𝐵) −
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�̂�2 were calculated to satisfy the given conditions (Ⅱ, Ⅲ), and they were set up to be identical 

for simplicity (the derivation of this formula can be found in Additional file 1: Appendix 2). 

However, 𝑙  was an arbitrarily chosen number, with the restriction that 𝑙 ∙ 𝑣𝑎�̂�(�̂�𝐴𝐶 − �̂�𝐴𝐵) 

was larger than �̂�2.  

To account for potential uncertainty in the prediction of unknown data for the missing 

comparisons in a star-shaped network, we used a multiple imputation approach. From the 

defined distribution, the complete network data with imputations were generated 𝑚 times and 

each of the 𝑚 complete networks was analyzed using the consistency model. The resulting 

estimate of each parameter with its variance and the estimated probability of each treatment 

being the best were obtained by Rubin’s rules [34, 35], and each treatment was then ranked 

using the obtained probabilities. When pooling by Rubin’s rules [34, 35], the estimate of each 

parameter is summarized by taking the average over estimates from all imputed 𝑚 complete 

networks, and its variance is produced by incorporating both within-imputation and between-

imputation variability. 

The above processes were repeated, changing the value of |�̅�𝐵𝐶| to increase from 

zero until the complete network started to have a larger residual deviance value when the 

consistency model was applied than when the inconsistency model was applied, which 

produced a range of values for |�̅�𝐵𝐶|  that can be considered statistically acceptable for a 

synthesis by network meta-analysis under the consistency assumption. The value of 𝑚 was 

determined as the point where the two residual deviance curves crossed only once and never 

again, that is where the threshold value was stabilized. The proportion of |�̅�𝐵𝐶| values that 

resulted in a consistent ranking of treatments to that from the original star-shaped network 

meta-analysis was presented as a percentage, as an indicator of the sensitivity of the results to 
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the degree of potential inconsistency. A “consistent ranking” meant that the order of the 

originally observed ranking was unchanged. 

The sensitivity analysis may be generalized to a star-shaped network with more than 

three interventions by employing �̅�𝑗𝑘  for  𝑗 = 𝑇1, ⋯ , 𝑇𝑝−1  and 𝑘 = 𝑇2, ⋯ , 𝑇𝑝  (𝑗 ≠ 𝑘 ). We 

demonstrated this case with p=3, where �̅�𝑗𝑘 for  𝑗 = 𝑇1, 𝑇2  and 𝑘 = 𝑇2, 𝑇3  (𝑗 ≠ 𝑘 ) were 

simultaneously changed by an identical magnitude from zero in their respective directions.  

The developed method was implemented in R software (version 3.3.3) [36].  

Application to datasets  

Illustration of the method: Smoking cessation dataset 

To illustrate how the method can be applied, a dataset was drawn from a published and 

well-studied network meta-analysis [11, 16, 37] comparing four smoking cessation treatments: 

no intervention (𝑁𝐼), self-help (SH), individual counseling (IC) and group counseling (GC). The 

relative effect was measured by the logarithm of the odds ratio for successful smoking cessation 

at 6-12 months. There were 24 RCTs including two three-arm trials. In the original analyses, 

both the global model fit statistics and the inconsistency p-value suggested no presence of 

inconsistency (Additional file 2: Table S1). The reported overall measure of inconsistency, 

taken as the variance of inconsistency factor, was 0.61; this value was smaller than the value 

of between-study heterogeneity (0.78), suggesting an acceptable extent of inconsistency. The 

posterior distributions of the direct estimates overlapped with those of the estimates obtained 

using indirect evidence for all contrasts [16].  

In this exercise, we utilized only the 22 two-arm trials (Figure 2 (a)). A network meta-

analysis was conducted using the consistency model to produce estimates of the basic 
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parameters, 𝑑𝑁𝐼,𝑆𝐻, 𝑑𝑁𝐼,𝐼𝐶, and 𝑑𝑁𝐼,𝐺𝐶, where NI was the reference treatment. A ranking of 

the treatments was determined using the estimated probability for each treatment to be the best 

from this model.  

We formed a star-shaped network by discarding data from the four RCTs that compared 

non-reference treatments head-to-head (Figure 2 (b)). For the intended star-shaped network, 

we initially performed a network meta-analysis using the consistency model. We subsequently 

applied the proposed method for sensitivity analysis.  

From the sensitivity analysis, according to the absolute extent of inconsistency, |�̅�𝑗𝑘| 
( 𝑗 =  SH, IC, and 𝑘 = 𝐼𝐶, 𝐺𝐶 , 𝑗 ≠ 𝑘 ), we plotted traces of residual deviances from the 

consistency and inconsistency models against the corresponding |�̅�𝑗𝑘| and indicated the point 

where those two curves crossed. Estimates of the basic parameters with their 95% credible 

intervals (CrIs), the probability that each treatment was the best for smoking cessation, and the 

treatment ranking were also plotted for each value of |�̅�𝑗𝑘| up to this point. The proportion of |�̅�𝑗𝑘| that resulted in a consistent ranking of treatments to that obtained from the star-shaped 

network meta-analysis was presented. To determine the number of imputations, we started with 

an imputation number of 100 and increased it by 100 until a stabilization of threshold was 

obtained at 500 imputations (Additional file 3: Figure S1).  

Simulation for diverse scenarios 

 Datasets from a simple star-shaped network of RCTs of A versus B and A versus C 

were simulated according to levels of within- and between-study variability of treatment effect 

size (i.e., the standard errors of estimates from the individual trials and the extent of overall 

heterogeneity across contrasts) (see Additional file 2: Table S2). For each dataset, the number 
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of trials for each contrast was set to be five. The effect sizes for each contrast were arbitrarily 

chosen to be a specified value when they were pooled, and to have a specific level of 

heterogeneity that was determined in terms of the 𝐼2 statistic. This statistic was used under 

the assumption that the effect sizes were normally distributed sample means. To consider 

differences in the treatment effect among the three interventions, the pooled treatment effect 

sizes for the comparisons (A versus B and A versus C) were set at 0.5 and 1 for the effect size 

of one alternative treatment relative to the reference treatment to be half of that of another 

alternative treatment relative to the reference treatment. We then generated individual trial-

level effect sizes with their standard errors to comply with the condition that the probability for 

each treatment group being the best would be 0.66 for C, 0.33 for B, and 0 for A, respectively, 

while no heterogeneity existed. Starting from this basic scenario, we modified the level of 

standard error by halving it or by multiplying it by √2, which corresponds to the impact of 

doubling the variance while attempting to increase the scale of heterogeneity to the severe level. 

The considered values of the 𝐼2  statistic were 0% (no heterogeneity), 40% (moderate 

heterogeneity), and 70% (severe heterogeneity) [38].  

This method was applied to each dataset. According to the absolute extent of 

inconsistency, represented by |�̅�𝐵𝐶| , we plotted traces of residual deviances from the 

consistency and inconsistency models, and then indicated the point where those curves crossed. 

The probability of each treatment group being the most effective was plotted for each value of |�̅�𝐵𝐶| up to this point. The proportion of |�̅�𝐵𝐶| values that resulted in a ranking of treatments 

consistent with the original ranking in the star-shaped network was presented. For each 

simulated dataset, we ran the process by applying a sufficiently large number of imputations 

(500). 



15 

 

Extension of application: Crohn’s disease dataset 

We demonstrated the extended usability of our method by considering network meta-

analyses that are conducted in contexts where few closed loops are available. From an original 

network in a recently published review conducted to compare the effects of interventions for 

the maintenance of surgically induced remission in Crohn’s disease [39], a sub-network 

consisting of placebo, purine analogues, 5-aminosalicylic acid (5-ASA), adalimumab, and 

infliximab was abstracted (see Additional file 3: Figure S2 (a)). The relative effect was 

measured by the logarithm of the risk ratio for clinical relapse. 

We plotted traces of residual deviances from the consistency and inconsistency models 

according to |�̅�𝑗𝑘| (𝑗 = placebo, 𝑘 = adalimumab, infliximab, and 𝑗 = 5 − ASA, 𝑘 =infliximab),  with an indication of the point where those two curves crossed. Since purine 

analogues were most frequently connected with other alternative treatments in the network, we 

chose them as the reference treatment. The estimates of the basic parameters and the probability 

to be the best treatment for reducing relapse were also plotted for each value of |�̅�𝑗𝑘| up to 

this point. The proportion of |�̅�𝑗𝑘| values that resulted in a consistent ranking of treatments 

compared to that obtained from the star-shaped network meta-analysis was presented. Since 

the example dataset contained two three arm trials, we used the shared parameter model [31] 

to incorporate both the arm-level and the trial-level data into the analysis. We set the number 

of imputations to 500. 

Results of application  

Smoking cessation dataset 

When the consistency model was applied to the complete network, the resulting values 
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for �̂�𝑁𝐼,𝑆𝐻𝑐 , �̂�𝑁𝐼,𝐼𝐶𝑐  and �̂�𝑁𝐼,𝐺𝐶𝑐  were 0.43 (95% CrI, -0.38 to 1.25), 0.73 (0.26 to 1.20), and 

1.38 (0.25 to 2.5), respectively, and the best treatment for smoking cessation was GC, followed 

by IC, SH, and NI (Additional file 2: Table S3). The star-shaped network formed by discarding 

the head-to-head contrast data produced �̂�𝑁𝐼,𝑆𝐻𝑠 , �̂�𝑁𝐼,𝐼𝐶𝑠 , and �̂�𝑁𝐼,𝐺𝐶𝑠  values of 0.33 (-0.73 to 

1.39), 0.72 (0.19 to 1.25), and 3.52 (0.12 to 6.93), respectively, with the same order of ranking. 

However, the estimate, �̂�𝑁𝐼,𝐺𝐶𝑠  , which was obtained only from direct evidence, was more 

exaggerated than �̂�𝑁𝐼,𝐺𝐶𝑐 , and the probability of 𝐺𝐶 being the best intervention for smoking 

cessation became even higher.    

The range of |�̅�𝑗𝑘| for statistically acceptable inconsistency was approximately from 

zero to 1.05 (Figure 3), the upper threshold of which is a value in the middle of the half widths, 

1.06, 0.53, 3.41, of the above intervals of �̂�𝑁𝐼,𝑆𝐻𝑠 , �̂�𝑁𝐼,𝐼𝐶𝑠 , and �̂�𝑁𝐼,𝐺𝐶𝑠 . As |�̅�𝑗𝑘| increased, the 

estimate of 𝑑𝑁𝐼,𝑆𝐻 increased and the estimate of 𝑑𝑁𝐼,𝐺𝐶 decreased (Figure 4). The estimates 

of basic parameters became closer to each other, and the exaggerated probability of GC being 

the best intervention decreased to a level similar to the findings obtained from the original 

complete network (Figure 5 (a)), and the order of the ranking then changed (Figure 5 (b)). The 

proportion of |�̅�𝑗𝑘| values that produced a treatment ranking consistent with that from the 

star-shaped network meta-analysis was approximately 67%.  

Simulated datasets 

For a given effect size, a star-shaped network with a greater level of between-study (or 

within-study) variability, when the level of within-study (or between-study) variability was 

fixed, produced a larger threshold of |�̅�𝐴𝐵| at which the residual deviance curves from the 

two models intersected (Additional file 3: Figure S3). The threshold showed that a greater 
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extent of uncertainty present in an evidence network allowed a higher level of actual 

inconsistency to be acceptable. Within the range extending up to the threshold, the proportion 

of |�̅�𝐴𝐵| values that produced a consistent ranking of the treatments with the original ranking 

was smaller (Figure 6). A small proportion indicates that the conclusions from the complete 

networks, simulated under assumption that there was no inconsistency, could have a great 

possibility of differing from the conclusions of the original star-shaped network. 

In the network with the basic scenario, the proportion of |�̅�𝐵𝐶| values that produced 

a treatment ranking consistent with that from the star-shaped network meta-analysis was 

approximately 69% (Figure 6(d)). In the absence of heterogeneity, when only the standard error 

was modified by halving it or to double the variance, the proportion increased to 100% and 

decreased to 48%, respectively (Figure 6(a) and Figure 6(g)). While keeping the level of 

standard error, as 𝐼2 increased to 40% and then to 70%, the proportion decreased to 65% and 

42%, respectively (Figure 6(e) and Figure 6(f)). 

Crohn’s disease dataset 

The range of |�̅�𝑗𝑘|  for statistically acceptable inconsistency was zero to 

approximately 1.7 (see Additional file 3: Figure S2 (b)), where the obtained maximum value 

was located roughly in the middle of the half widths of the originally estimated 95% CrIs of 

the four basic parameters. As |�̅�𝑗𝑘| increased, the estimates of basic parameters became closer 

to each other, but none were reversed in ranking (Additional file 3: Figure S2 (c)). The 

proportion of |�̅�𝑗𝑘| values that produced a treatment ranking consistent with that from the 

original network meta-analysis was then 100% (Additional file 3: Figure S2 (d)). This can 

therefore strengthen confidence in the results from the original network meta-analysis. 
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Discussion 

In practice, we occasionally come across a situation where health technologies of 

interest have never been compared against each other, but it is still necessary to assess their 

comparative effectiveness based only on a star-shaped network meta-analysis under the 

unverifiable consistency assumption. We have developed a method for sensitivity analysis that 

accounts for an unknown degree of inconsistency by imputing data for all missing pairwise 

comparisons in a star-shaped network.  

We established the imputation strategy based on the following rationale. If the effect 

size for each contrast estimated from the original star-shaped network is positive (or negative), 

the pooled effect size from a pairwise meta-analysis of the imputed data is less (or greater) than 

that. We set up this condition to run the sensitivity analysis from a conservative perspective, as 

the observed treatment difference (from indirect information only) should be considered biased 

if the true difference is closer to the null or if the direction of the effect may be different. In 

reality, the true difference might be one that even strengthens the existing conclusion, but we 

did not deal with such cases, since they would then not be a cause for concern and therefore 

beyond our scope. We also assumed that the precision of the pooled effect size obtained from 

the pairwise meta-analysis of the imputed data would be equal to the precision of the effect 

size obtained indirectly from the original star-shaped network meta-analysis. This equality 

implies that the variance of individually imputed effect sizes will produce the maximal variance 

of their pooled effect size. This could be considered as the most conservative case. If some 

information is available on the precision of the unknown direct estimate, regarding how 

relatively small it could be, it is possible to take that information into account in the equation 

of 𝑣𝑎�̂�(𝜃𝑖𝐵𝐶∗ ) to the variance of indirectly obtained estimate as a proportion.  
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We established the extent of heterogeneity in the imputed effect sizes necessary for each 

missing contrast to have the same level as the overall heterogeneity in the original star-shaped 

network. nnless the numbers of studies within contrasts are sufficiently large, it may be hard 

to estimate the overall heterogeneity, and any existing heterogeneity could be dramatically 

exaggerated. To take such cases into account, our simulation study considered a condition with 

severe heterogeneity. Furthermore, in practice, the number of included studies in a network 

meta-analysis is often insufficient to precisely estimate the heterogeneity variance. In that case, 

we may consider informative priors for heterogeneity variance to incorporate some external 

evidence into the network meta-analysis model [40, 41] in our method as an attempt to 

overcome this problem. 

In this method, for a star-shaped network consisting of one common comparator and 

p alternative treatments, we imputed data for 𝑝(𝑝 − 1)/2 missing contrasts. If p is 2, 3, 4, or 

5, the number of contrasts for data imputation would be 1, 3, 6, or 10, respectively. When p≥4, 

the number of missing contrasts becomes larger than the number of connected contrasts, 

meaning that the proportion of unknown information is high. Therefore, for a star-shaped 

network where p≥4, it may not be recommended to apply this method because data imputation 

may inordinately neutralize the evidence contained in the star-shaped network. When the 

proportion of missing contrasts is relatively small in a network involving more than 4 

alternative treatments, but including few head-to-head comparisons, our suggested method can 

be used, and we presented the extended usability of this method through the example using a 

Crohn’s disease dataset.  

Since the unit of imputed data in a network meta-analysis is a trial, the proportion of 

missing information is usually higher than that in ordinary applications. Therefore, a large 
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number of imputations are required to stabilize the results of the sensitivity analysis through a 

multiple imputation strategy [34, 35]. In another example of meta-regression, the number of 

imputations was increased to 100 [42]. In our approach, stabilization was defined as occurring 

once the residual deviance curves of two models crossed and never overlapped again. The 

number of imputed complete networks, 𝑚 , should be determined during the analysis 

depending on the data. For the smoking cessation example, the exploratory results by different 

numbers of imputations (m=100, 200, 300, 400 and 500) in Additional file 3: Figure S1 suggest 

that 500 was sufficient. We also explored the number with several simulated datasets to confirm 

that repeating imputations 500 times is sufficient to achieve stabilization. Some exploratory 

residual deviance plots demonstrate that a much smaller number, such as 100, may be enough 

(Additional file 3: Figure S4). However, we recommend just applying a large number, such as 

500, rather than running the exploration process for choosing the number of imputations per 

dataset, which would save much greater computational intensity.  

The imputed data consisted of study-level treatment effect sizes (𝜃𝑖𝑗𝑘∗  ) and their 

variances (𝑣𝑎�̂�(𝜃𝑖𝑗𝑘∗ )). We established the assumption that the variances of the effect sizes for 

each contrast would be identical. According to the conditions described in the “Imputation 

strategy” section, the variances were calculated so that, for each contrast, the variance of the 

pooled effect size of the imputed data would be the same as that of the indirectly estimated 

effect size from the original star-shaped network meta-analysis. Since it is the precision of 

pooled estimate of the imputed effect sizes that contributes to estimation of basic parameters 

in the resulting network meta-analysis after imputation, any combination of values for the 

individual variances is acceptable as long as the overall precision is satisfying the condition. In 

the same context, for each contrast, we allowed the number of trials (𝑙)  to be arbitrarily 
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chosen under the restriction that 𝑙 ∙ 𝑣𝑎�̂�(�̂�𝐴𝑘 − �̂�𝐴𝑗) (𝑗 ≠  𝑘 ≠  𝐴) is larger than �̂�2. A trade-

off exists between 𝑙 and 1/𝑣𝑎�̂�(𝜃𝑖𝑗𝑘). 

Methods of testing the consistency assumption are distinguished by how to treat 

inconsistency. The Bucher method [15], the back-calculation method, and the node-splitting 

method [16] are local test methods that evaluate the inconsistency of each contrast that 

constitutes a network. Global test methods assess the comprehensive inconsistency of the 

network based on modeling. The types of models used for testing include a random-

inconsistency Bayesian model [11], a design-by-treatment interaction model [17], and an 

inconsistency model with unrelated mean relative effects [13]. For our method, we tried to 

assess the overall inconsistency in the network according to the magnitude of potential 

inconsistency, for which a global testing approach was appropriate. Our sensitivity analysis 

was based on the idea of data imputation for missing contrasts in a star-shaped network, which 

requires limiting the number of loops to be closed. We therefore adopted an inconsistency 

model with unrelated mean relative effects, rather than a model estimating inconsistency 

factors, which is not recommended unless the number of closed loops is sufficiently large [13]. 

In the smoking cessation example, we showed that the sensitivity analysis may 

successfully simulate some expected results from an unknown complete network. In the full 

network, including all 24 RCTs, the estimated absolute extent of inconsistency for the contrasts 

ranged from 0.17 to 1.7 [16]. In our sensitivity analysis, the maximum obtained value assumed 

to be common for all contrasts was 1.05, a value in the middle of the above range. Regarding 

the robustness of the results of the star-shaped network, we could conclude that in 33% of the 

sensitivity analyses undertaken with statistically acceptable inconsistency, the resulting 

treatment ranking would be inconsistent with the ranking from the star-shaped network. These 
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results suggest that a star-shaped network meta-analysis should be interpreted with caution 

unless the obtained treatment ranking is shown to be robust to uncertainty of the unverifiable 

consistency assumption.  

In the application to simulated datasets, we demonstrated the sensitivity of the results 

after data imputation against the synthesis results from a given star-shaped network with 

different levels of within- and between-study variability. In a network meta-analysis, both 

inconsistency and heterogeneity can be caused by some common sources, such as differences 

in some effect modifiers, which are closely related to each other [13]. For this reason, 

performing a star-shaped network meta-analysis using a consistency model may be considered 

more valid when a lower level of heterogeneity within the network is present.  

When we considered a star-shaped network with more than three interventions, we 

assumed that �̅�𝑗𝑘 for  𝑗 = 𝑇2, ⋯ , 𝑇𝑝−1 and 𝑘 = 𝑇3, ⋯ , 𝑇𝑝 (𝑗 ≠  𝑘) would be simultaneously 

changed by an identical magnitude from 0 in their respective directions. However, it is also 

possible to assign different levels of inconsistency if there is an appropriate rationale for doing 

so. For example, in the full known complete network of the smoking cessation meta-analysis, 

there was a contrast for which the inconsistency estimate was observed to be somewhat larger 

than others, although no statistically significant inconsistency was found overall. If prior 

information was available on the diversity of the extent of inconsistency for the contrasts, 

taking such considerations into account may point to ways to further refine how to undertake a 

sensitivity analysis.  

Some limitations of this study motivate further research. First, the estimated variance 

of each individual trial was treated as if it were the true variance in the network meta-analysis 

models in our approach. However, the variances themselves are given in the form of estimates, 
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and it therefore might be necessary to consider uncertainty in the variances [43, 44]. A further 

investigation to introduce a probability distribution for the estimated variances would be 

worthwhile. Second, we used a point estimate of heterogeneity from a star-shaped network 

meta-analysis for the data imputation process. However, further research may consider 

generating the estimate of heterogeneity from its posterior distribution. Third, we built up a 

method that can be applied to a general form of comparative measure that follows at least 

asymptotic normality. This assumes using a log transformation for a ratio type of measure, such 

as log odds ratios or log relative risks, when a binary outcome was considered. However, since 

there is a correlation between log odds ratios (or log risk ratios) and their estimated variances, 

there could be an issue on pooling the estimates by the inverse variance weight method. An 

arm-specific data imputation strategy with arm-based modeling that accounts for specific types 

of outcome measures could also be considered for an elaboration of our method.  

We defined consistency in the ranking as an unchanged order of the originally observed 

ranking. However, a change of ranking may not necessarily be interpreted as indicating an 

inconsistency in the results, depending on the probability difference based on which the order 

was obtained. Although the observed ranks were switched between treatments, their associated 

probabilities of being the best treatment might not be considered significantly different, as we 

observed from the overlapping distributions of probabilities in Additional file 3: Figure S5 for 

the smoking cessation example. However, it is a convention that authors report treatment 

rankings based only on the order of probabilities, and we tried to demonstrate how likely it was 

for the originally obtained conclusion from a star-shaped network to remain robust in terms of 

the order of rankings that authors would report. 

An approach known as ‘threshold analysis’, based on a similar conceptual framework 
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of sensitivity analysis to assess confidence in recommendations obtained from network meta-

analyses, has been proposed in the literature [45-47]. Threshold analysis derives a set of 

thresholds that describe how much each data point from a study or contrast could change before 

the recommendation changes. This method could also be applied to a star-shaped network, such 

as the example created from the smoking cessation meta-analysis. Figure S6 in Additional file 

3 presents results from the threshold analysis for the star-shaped network at the contrast level. 

If the invariant interval is within the 95% credible interval of the effect size for each contrast 

from a base-case star-shaped network meta-analysis in this context, it is interpreted that the 

optimal treatment recommendation could change. The result suggests some possibility of IC 

being optimal, instead of GC. Since only one study was available in the analysis in which GC 

was compared to NI, a wide credible interval for their relative effects was produced. As a result, 

the sensitivity analysis suggests that some potential change in the effect size estimate from its 

currently observed value—even within the range of the credible interval—could have changed 

the current recommendation to the second best option, IC.  

In contrast with the results from the threshold analysis method, our approach suggested 

that the ranking of GC as distinctly more effective than other treatments would remain stable, 

whereas the rankings of IC and NI may be switched. Although both approaches utilize 

sensitivity analysis, they were designed to incorporate different concerns: the impact of 

potential bias in the given direct data or the impact of potential inconsistency between observed 

indirect evidence and non-existing direct data. The discrepancy in the results may stem from 

the fact that these approaches focus on different features. 

Where individual patient data (IPD) are available for at least one of the trials included 

in a star-shaped network meta-analysis, methods for population-adjusted indirect comparisons, 
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such as the matching-adjusted indirect comparison and the simulated indirect comparison, 

could be applied with improving balance in patient characteristics between the trials [48-50]. 

These population adjustment methods apply both to anchored comparisons and unanchored 

comparisons without a common comparator [51]. If there is a lack of overlap between IPD and 

aggregate data populations, it is necessary to assess the robustness of the comparisons because 

these methods may produce biased estimates, and our proposed method of sensitivity analysis 

will be a useful tool. Furthermore, when no IPD are accessible and if it is determined that the 

studies are highly exchangeable, researchers may just attempt to integrate data through a 

network meta-analysis using a consistency model. Our proposed method could serve as an 

alternative approach to assess the reliability of results from a star-shaped network before 

making a conclusion relying on those results. 

Conclusions 

Our method will serve as a practical technique to investigate the reliability of results 

from star-shaped network meta-analyses under the unverifiable consistency assumption, and 

therefore will help to assess evidence for use in unbiased clinical decision-making.  
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Figure legends 

Figure 1. A graphical representation of a star-shaped network consisting of one common 

comparator treatment (𝑇0) and p other alternative treatments (𝑇1,  ⋯ ,  𝑇𝑝). Each node represents 

an intervention, and a link between two nodes reflects one or more randomized controlled trials. 

 

Figure 2. (a) A graphical representation of the evidence network for four smoking cessation 

counseling programs. (b) A graphical representation of the derived star-shaped network by 

eliminating four trials corresponding to direct comparisons among self-help, individual 

counseling, and group counseling. Each node represents an intervention, and a line between 

two nodes reflects one or more randomized controlled trials (RCTs). The numbers on each solid 

line connecting two interventions correspond to the number of RCTs comparing those 

interventions. 

 

Figure 3. Residual deviances by model type (y-axis) against the absolute extent of 

inconsistency (x-axis). The solid line and dashed line indicate the consistency model and 

inconsistency model, respectively. A vertical line marks the point at which the two lines cross, 

and the value of that point on the x-axis is shown.  

 

Figure 4. Interval plot of estimates of basic parameters against the extent of inconsistency (x-
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axis) within the obtained range. The black square, gray circle, and dim gray triangle symbols 

indicate the estimated treatment effect sizes for self-help, individual counseling, and group 

counseling compared to no intervention, with the vertical lines extending from the symbols 

representing 95% credible intervals.  

 

Figure 5. (a) Probability that each treatment is the best for smoking cessation against the extent 

of inconsistency within the obtained range. (b) Ranking of each treatment for successful 

smoking cessation against the extent of inconsistency within the obtained range. The gray 

dotted, gray solid, black solid, and black dotted lines indicate the probabilities and rankings 

corresponding to no intervention, self-help, individual counseling, and group counseling, 

respectively. A vertical line marks the point at which some lines cross, and the percentages in 

the dark gray and dim gray boxes represent the proportions of |�̅�𝑗𝑘|  that resulted in a 

consistent ranking and an inconsistent ranking of treatments relative to the original ranking, 

respectively. 

 

Figure 6. Probability of each group being the best (y-axis) against the extent of inconsistency, |�̅�𝐵𝐶| (x-axis), within the obtained range for each data set. (a) when 𝐼2 is 0% and the standard 

error is 1, (b) when 𝐼2 is 40% and the standard error is 1, (c) when 𝐼2 is 70% and the standard 

error is 1, (d) when 𝐼2 is 0% and the standard error is 2, and (e) when 𝐼2 is 40% and the 

standard error is 2, (f) when 𝐼2 is 70% and the standard error is 2, (g) when 𝐼2 is 0% and the 

standard error is 2√2, (h) when 𝐼2 is 40% and the standard error is 2√2, and (i) when 𝐼2 is 

70% and the standard error is 2√2. The black dotted, gray solid, and black solid lines indicate 
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the probability corresponding to groups A, B, and C, respectively. A vertical line marks the 

point at which some lines cross, and the percentages in the dark gray and dim gray boxes 

represent the proportions of |�̅�𝐵𝐶| that resulted in a consistent ranking and an inconsistent 

ranking of treatments relative to the original ranking, respectively. 


