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Abstract 

Executive functioning deficits are reported in ecstasy users. However research into mental set 

switching has been equivocal, with behavioural studies suggesting the function is preserved. 

The current study sought to address the issue of switching deficits in ecstasy users by 

combining behavioural performance with electrophysiological correlates (EEG). Twenty 

ecstasy polydrug users, 20 non-ecstasy polydrug users and 20 drug naive controls were 

recruited. Participants completed questionnaires about their drug use, sleep quality, fluid 

intelligence and current mood state. Each participant completed a mental set switching task 

(the number-letter task) whilst EEG measures were recorded. ANOVA revealed no between 

group differences on performance of the task, however a regression suggested that ecstasy 

use was a significant predictor for performance, after controlling for cannabis use. Mixed 

ANOVA revealed a significant effect of group on the P3, with significant differences 

between both drug groups and naives. There was also an interaction between electrode and 

group on the P2 component, with ecstasy users differing from both other groups. On the P3 

component the results suggest a reduction in positivity at parieto-occipital electrodes for drug 

users compared to controls. Furthermore a significant increase in negativity in ecstasy users 

compared to control groups could be observed in several occipito-parietal electrodes at an N2 

component as well as observable atypicalities in early processing (P2) displayed by ecstasy 

users and polydrug controls. The present study provides evidence of atypical processing of 

attentional shifting in ecstasy and polydrug users.  Deficits in this executive function could 

reflect cognitive inflexibility and paucity of rapid behavioural adjustment, which may be 

problematic in real world situations. 
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1. Introduction 

Mental set switching is the ability to switch attention between task types, whereby a 

switch between tasks is associated with a performance cost, either in accuracy or time, 

compared to completing two tasks in succession (Jersild, 1927). Switching reflects cognitive 

flexibility and is one of the core executive functions outlined in Miyake et al.’s (2000) 

framework. Executive functions are the mechanisms which underpin the dynamics of human 

cognition (Miyake et al., 2000) and as such alterations to switching ability may have 

implications for tasks undertaken in daily life. In ecstasy (“MDMA”) users, research in 

switching is equivocal (Fox et al., 2001; Fox et al., 2002). However tasks used do not always 

solely assess switching (Fisk and Sharp, 2004). The Wisconsin Card Sort Task (WCST) has 

been employed frequently in ecstasy users to assess switching (Renemann et al., 2006; 

Thomasius et al., 2003)  yielding no ecstasy related deficits. The number-letter task (Rogers 

& Monsell, 1995)  has also been used to assess switching (Montgomery et al., 2005), with no 

clear ecstasy related deficit reported. Conversely Halpern et al. (2004) observed deficits in 

switching using the WCST. Interestingly, the cohort in this sample showed minimal exposure 

to any other drugs and as such potential confounds from polydrug use were reduced. 

However in a follow up study (Halpern et al., 2011) with a larger sample and similar controls 
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for concomitant drug use and other lifestyle variables, no such behavioural deficits in relation 

to switching were observed. However Dafters et al. (2006) did observe deficits in ecstasy 

users over cannabis users and controls, in a task switching version of the Stroop task. As such 

the impact of MDMA exposure on this executive function remains unclear. 

Despite equivocal behavioural results observed in previous research it would not be 

unreasonable to predict that ecstasy users may show reduced or altered set switching, as 

executive function is understood to rely heavily on areas of the prefrontal cortex. These 

frontal structures of the brain are rich in 5HT neurons (Pazos et al., 1987), therefore potential 

serotonergic neurotoxicity or downregulation from regular use of MDMA may cause 

disruption to the cognitive processes that these areas maintain. Serotonergic neurotoxicity has 

been observed in various animal studies, however projecting these findings to humans is 

problematic (for a review see Easton & Marsden, 2006). Furthermore any executive function 

deficits observed with behavioural measures have been criticised due to potential confounds 

such as lack of sleep (Cole et al., 2002) and concomitant use of other drugs in ecstasy users.  

Many studies in this area attempt to control for this with the addition of a control group of 

drug users that have never taken ecstasy (Morgan, 1998; Reay et al., 2006). 

Progress has been made using EEG to observe central serotonin dysfunction in users. 

Burgess et al. (2011)  observed ERP differences in late positivity over left parietal scalp sites 

associated with recollection between ecstasy users and controls, despite equivalent 

behavioural performance. The attenuation of this positivity in ecstasy users is evidence of a 

durable abnormality that would perhaps not have been identified by behavioural measures 

alone. There is evidence to suggest that ecstasy users may compensate behavioural 

differences with increased cortical activity compared to controls in fMRI studies (e.g. 

Daumann et al., 2003). Typically cognitive impairment is associated with alterations to the 

P3 amplitude or latency due to the P3 being involved in higher level processing of stimuli. 
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This component  encompasses frontal-parieto network activation (Gaspar et al. 2011) and in 

normal populations decreases in the amplitude potential reflects increased cognitive load, and 

diminished P3 reflects cognitive dysfunction. Longer latencies and smaller amplitude of the 

P3 response are indicative of cognitive impairment. Diminished P3 potentials have been 

observed in heavy and moderate ecstasy user groups in simple discrimination tasks (Casco et 

al. 2005) . Gamma et al. (2005) report observable reductions in the P3 amplitudes of ecstasy 

users in a Go/No-go task compared to controls, though this could be a polydrug effect. 

Conversely de Sola et al., (2008) report no significant differences between ecstasy users, 

cannabis users, and controls in P3 latency or amplitude in cognitive tests, though P3 latency 

was correlated with  lifetime cannabis use. Ecstasy users also exhibit longer P3 latencies in 

detecting targets (Mejias et al. 2005). The P3 component is understood to be associated with 

the allocation of attentional resources necessary for information processing and also memory 

function (de Sola et al., 2008) and will consequently be implicated in switching. In normal 

populations larger P3 is observed in repeat trials compared to switch trials (Karayanidis et al., 

2003) , indicative of a greater amount of available processing resources for non-switch trials, 

as opposed to switch trials (Goffaux, et al., 2006) .  

 

The aim of this investigation is to assess the cognitive processes supporting switching 

in ecstasy polydrug users compared to polydrug users who have not used ecstasy, and non-

drug users. It is predicted that while behavioural deficits may not be apparent, differences in 

ERP components particularly in the P3 component will emerge, especially as this component 

is thought to play a role in higher level cognitive processing and is susceptible to degradation 

with cognitive decline. Specifically, it is predicted that ecstasy-polydrug users will have 

different electrophysiological responses during the task compared to polydrug users and 

nonusers consistent with cognitive impairment or reallocation.  
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2. Experimental Procedures 

Design: 

In all analyses the between groups factor was drug user group with 3 levels (ecstasy user, 

non-ecstasy polydrug user and drug naive controls). Univariate ANOVA was conducted on 

the behavioural data with the composite scores on the number-letter task (switch cost) as the 

dependent variable. ERP data was analysed using mixed ANOVA with electrode site as 

within participants, group between participants and amplitude as the DV for each ERP 

component.   

Participants: 

Twenty ecstasy users (mean age=23.95, SD=0.57, 10 = male), 20 non-drug user controls 

(mean age=23.1, SD=0.66, 7 = male) and 20 non-ecstasy drug user controls (mean age=22.58, 

SD=0.79, 9 = male) were recruited1 via direct approach to University students, whereby 

students were contacted via email or given information about the study during lectures and 

via the online research participation scheme (SONA systems). Participants were aged 

between 18-29 years and reported no neurological impairments. The ecstasy group must have 

taken ecstasy/MDMA on 5 or more occasions. The control group must have never used 

ecstasy/MDMA, however all other illicit substances were permitted for the non-ecstasy poly 

drug user group. All participants were asked to abstain from consuming ecstasy for a 

minimum of 7 days prior to testing, and urine samples were collected upon arrival at the lab 

to confirm abstinence. Participants were also requested to abstain from use of other illicit 

drugs and alcohol for a minimum of 24 hours prior to participating and ideally 7 days. 

Tobacco smoking was permitted on the day of testing. All participants reported no current or 

last year diagnosis of psychological disorders.  

                                                 
1 Due to unusable data (from noise and artefacts), 18 ecstasy users, 20 polydrug users and 16 drug naive controls’ 

EEG data was analysed. 
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Materials 

Several questionnaires were issued to participants upon entering the lab. Participants 

completed a drug use questionnaire in which details of ecstasy use as well as other illicit drug 

use are requested. Using a method employed by Montgomery et al. (2005)  estimates of total 

lifetime drug use of each drug were calculated. Totals for last 30 days drug use as well as 

weekly drug use estimates were also calculated.   

State Mood 

State Anxiety, Arousal and Hedonic Tone (Depression) were measured using scales devised 

by Fisk & Warr (1996). Participants are required to rate on a 5 point Likert scale from 1 = not 

at all, to 5 = extremely, how they are feeling at the time of testing.  A high score on each 

subscale indicates increased hedonic tone/anxiety/arousal.  

 

Ravens Progressive Matrices (Raven, Raven & Court, 1998)  

Ravens standard progressive matrices (SPM) was used an indicator of fluid intelligence. This 

involves a series of problems (5 sets of 12, 60 in total), presented as a symbolic sequence. 

Participants are required to select an appropriate response to complete the sequence from a 

choice of 6 options. Successful completion of the task requires an understanding of the parts 

of the sequence and their interaction with one another. Each block of 12 problems begins 

with an intuitively simple problem and the problems become progressively more difficult as 

the task continues. 

 

Mental set switching 
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This executive function was investigated using the number/letter task as per Rogers and 

Monsell (1995). During this task, number-letter pairs e.g. “B6” are displayed in one of 4 

quadrants on a screen. If the number-letter pair appears in one of the top two quadrants, 

participants are to attend to the letter and respond to whether it is a vowel or a consonant.  If 

in the bottom two quadrants participants are required to attend to the number and respond to 

whether it is odd or even. In the first block of trials the number/letter pairs alternate between 

the top two quadrants; in the 2nd block the pairs alternate between the bottom two quadrants.  

In the final block, the pairs are presented in anti-clockwise rotation, therefore every two 

responses requires a shift in the mental set between letters and numbers. The latency between 

the trials with the switch and those not requiring a switch is the “switch cost”.  The task is 

comprised of 6 blocks, the first two of which are practise blocks consisting to 62 trials in each. 

This is followed by 4 main blocks, each consisting of 64 trials (31 “switch” trials). There 

were 124 “switch” trials in total. There was an inter-trial interval of 1.5 seconds and 

participants were allocated an epoch of 5 seconds to respond. Participants were instructed to 

respond as quickly and as accurately as possible, and overall the task took around 20 minutes 

to complete.  

Equipment 

Electroencephalography (EEG) was recorded using a 64 channel Biosemi Ag-AgCl active-

two electrode system (Biosemi B.V, Amsterdam, Netherlands) with pin type electrodes 

mounted in a stretch-lycra headcap (Biosemi), with electrodes positioned according to the 

international 10-20 system. Electrical activity was recorded from the following sites: frontal 

(FPz, FP1, FP2), anterior-frontal (AFz,  AF3, AF4, AF7, AF8), frontal (Fz, F1, F2, F3, F4, F5, 

F6, F7, F8), frontocentral (FCz, FC1, FC2, FC3, FC4, FC5, FC6), central (Cz, C1, C2, C3, 

C4, C5, C6), temporal (FT7, FT8, T7, T8, TP7, TP8), parietocentral (CPz, CP1, CP2, CP3, 

CP4, CP5, CP6), parietal (Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10), occipitoparietal (POz, 
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PO3, PO4, PO7, PO8) and occipital (Oz, O1, O2, Iz). Vertical and horizontal electro-

occulograms were recorded using bipolar flat Ag-ACl electrodes, positioned above and below 

the left eye as well as to the outer side of each eye. Sigma electrolyte gel was used to ensure 

contact between scalp and electrodes. Data was digitized at a sampling rate of 512Hz and no 

filters were applied online so that the data could be visually inspected for noise and offline 

filtering could be performed.   

Procedure 

Testing sessions commenced at 9.30 a.m. or 1.30 p.m. and equal amounts of participants from 

each condition were tested in the morning as were in the afternoon. Upon entering the lab 

participants were given a brief description of the experiment and written consent was 

obtained. Following this participants were asked to give a urine sample, which was frozen at -

25 Celsius until completion of data collection, when all samples were transported to 

University Hospitals Aintree for analysis. Participants were then asked to fill out the battery 

of questionnaires whilst their head circumference and other details were measured, and an 

electrode cap and electrodes were fitted. The questionnaires were administered in the 

following order:  Background drug use questionnaire, state mood scale and Raven’s 

Progressive Matrices (Raven et al. 1998). Following completion of these questionnaires the 

EEG and actiview set up was tested and if necessary modified. The computerised task was 

then completed on a desktop computer running Inquisit version 3.0.6.0 (Millisecond software, 

2011). Finally participants were fully debriefed and paid £20 in store vouchers. The study 

was approved by Liverpool John Moores University Research Ethics Committee, and 

administered in accordance with the ethical guidelines of the British Psychological Society. 

EEG Analysis – Number-letter 
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The EEG data was analysed using BESA 5.3 (MEGIS software GmbH, Gräfelfing, Germany).  

All recordings were visually analysed offline, using high and low pass filters of 0.1Hz and 40 

Hz respectively. Any channels judged to be bad were replaced by interpolation and all data 

were EOG-corrected using BESAs PCA based algorithm. All trials judged to be bad after this 

point were discarded. EEG was segmented into epochs from -500 to 1000 ms from time of 

stimulus onset. Epochs were time-averaged by stimulus type so that ERPs for correctly and 

incorrectly identified stimuli in each condition of each task (e.g. correct “switches”, correct 

“non-switches” and incorrect “switches” and “non-switches”) could be generated for each 

individual. Only ERPs for correct responses on the “switch” condition were included in the 

subsequent analysis. There were 124 “switch” trials in the entirety of the task. The mean 

number of good “switch” trials retained for grand averaging per subject was 96.37 (average 

22.28%  rejected trials), after rejecting incorrect trials (4.48%) and those containing artefacts 

(17.8%). Grand averages were made for each grouping condition (ecstasy user, polydrug user 

and drug naïve) on each task condition (correct “switches”, correct “non-switches”). The 

overall P3 response was defined as the mean amplitude between 290 and 400 ms. (this time 

window was centred on the positive peak latency and the duration was chosen as this epoch 

contained the majority of positive activity for all conditions). Electrode activity was analysed 

in this epoch from occipitoparietal and occipital electrodes POz, PO3, PO4, PO7, PO8, Oz, 

O1 and O2, as the greatest amount of activity in the P3 component could be observed at these 

sites. Further components were also analysed for between group differences, including the N2 

and P2 components. The N2 component appeared to be largest over occipital and occipito-

parietal sites P7, P8, POz, PO3, PO4, PO7, PO8, Oz, O1, and O2, between 170-220ms, this 

epoch was based around the mean local negative peak at these sites and encompassed the 

majority of negative activity over all 3 conditions. The P2 epoch was most visible as a 

positive peak between 200-250ms at frontal, frontocentral and central sites Fz, FCZ, FC1, 
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FC2, FC3, FC4 and Cz. The mean amplitudes at these sites from the epoch based around the 

positive peak from the grand averages of all conditions were analysed.   

Urinary Analysis 

Frozen urine samples were delivered to University Hospitals Aintree and were analysed using 

Solid Phase Extraction (Mixed Mode Phase) followed by Reverse Phase HPLC MS/MS 

detection using BOTH Positive & Negative Ion Multiple Reaction Monitoring (MRM). Urine 

Specimens have been tested for the Synthetic Cannabinoids (JWH-018, JWH-073, JWH-250, 

JWH-398, JWH-122, JWH-019, AM-694, WIN 48098 & WIN-55212-2), as well as the 

‘designer’ drugs ‘Mephedrone’, bk-MDMA or ‘Methylone’, bk-MBDB or ‘Butylone’, bk-

PMMA or ‘Methedrone’, 1-benzylpiperazine, TFMPP, mCPP and MDPV. In addition they 

were tested for were a series of 12 Piperazine compounds, 4 β-Keto Amphetamines, a series 

of 11 Methcathinone compounds, 4-Fluoroamphetamine, Bupropion & the Hallucinogenic 

Amphetamines: D.O.B. (‘bromo-STP’ or ‘Brolamphetamine’), D.O.C. and D.O.I. and  

‘Traditional’ Drugs of Abuse: Amphetamine(s) including M.D.M.A., M.D.A. & M.D.E.A., 

Barbiturates, Benzodiazepines, THC & Cannabinoids, Buprenorphine, Cocaine & metabolites, 

Methadone & metabolites, Opiates & Opioids (Morphine, Codeine, Dihydrocodeine, 

Tramadol, d-Propoxyphene, Oxymorphone & Oxycodone), LSD, G.H.B. (and the Lactone 

Precursor), Psilocybin, Ketamine and Methaqualone. 

Statistical Analysis 

EEG data was analysed using a mixed ANOVA for each component (P2, N2, P3) with 

drug user group as the between subjects factor, electrode sites for the particular component as 

the within subject factor, and mean amplitudes at the various components at selected sites as 

the dependent variable. Any significant interactions or main effects between groups were 

further analysed using univariate ANOVA and Tukey HSD test.   
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3. Results 

State mood scores, fluid intelligence score and drug use variables are displayed in 

Table 1.  

<<Insert Table 1 Here>> 

One way ANOVA revealed that there were no significant between group differences 

on age, levels of arousal, depression and anxiety or total score on Ravens Progressive 

Matrices.  t-tests between the ecstasy user group and the polydrug-non-ecstasy group 

revealed that the ecstasy user group had a significantly larger lifetime total of joints smoked 

than the non ecstasy drug users  t(17.88) = 2.02, p<.05 (Levene’s test was significant so 

degrees of freedom have been adjusted accordingly). Ecstasy users had also smoked 

significantly more joints within the last 30 days t(16.01) = 1.86, p<.05.   

Urinary Analysis 

Some drug metabolites were found in participants’ urine. Specifically 3 ecstasy users’ urine 

contained THC (mean 0.0083mg/l ± 0.01185), Δ-9-THC (0.16mg/l ± 0.18mg/l), 11-hydroxy-

Δ-9THC (0.003mg/l ± 0.003). One ecstasy user’s urine also contained 1-benzopiperazine 

(0.84mg/l) and TFMPP (0.18mg/l). One participant in the polydrug group had cannabis 

metabolites in their urine, specifically THC (0.001mg/l), Δ-9-THC (0.41mg/l) and 11-

hydroxy-Δ-9THC (0.002mg/l)2.  

Behavioural Data Analysis 

Incorrect answers were given a score of 0 and were not investigated any further. Mean 

reaction times were calculated for correct switch trials as well as correct non-switch trials so 

                                                 
2 Main analyses were re run excluding these participants. This did not change the direction or significance of 

results so analyses in the paper pertain to all participants.  
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that a switch cost could be calculated. Reaction time data reduction involved excluding 

reaction times less than 200ms and greater than 4000ms. Individual trial reaction times that 

were more than 3 standard deviations above the individual mean were discarded. The mean 

percentage of outliers that were discarded from each group were: ecstasy users 1.27 (±0.73) 

(rank = 24.58), polydrug users 1.64 (± 0.77) (rank = 33.75), drug naïve 6.56 (±22.0) (rank = 

33.18), there were no between group differences in amount of outliers (H(2) = 3.53, p>.05). 

Switch cost was calculated by subtracting the mean reaction time from 2 preliminary 

blocks with no switching (all letters, followed by all numbers) from the mean reaction time 

from the switch trials (from letters to numbers) in the main blocks of the task. One participant 

in the drug naïve group had an incomplete dataset for this task and as such was excluded 

from analysis. ANOVA revealed that there was no significant difference between groups on 

switch cost F(2, 56) = 0.41, p>.05. Given the heavy use of cannabis in the ecstasy use group 

in particular, and the possible confounding effects of sex, IQ and age on performance, a 

stepwise regression analyses were conducted on the behavioural data, to observe whether 

level use of ecstasy (after controlling for cannabis use, age, sex and IQ) was a predictor for 

performance on the task. In step 1, age, sex and IQ (RPM total score) were entered as 

predictors. This model accounted for a small and non-significant 3.6% of the variance in 

switch cost (R²change = 0.036, F(3, 52) = 0.65, p>.05)  (β = 0.01; 0.05; 0.18 for sex, age and 

IQ respectively, p > .05 in all cases). In Step 2, total lifetime dose of cannabis was entered as 

a predictor, this model accounted for an additional non-significant 0.4% of the variance in 

switch cost (R²change = 0.004, F(4, 51) = 0.53, p>.05)  (β = 0.07, p >.05). In the 3rd step, 

total lifetime dose of ecstasy was entered as a predictor. This regression model accounted for 

15.2% of the variance in switch cost. After controlling for age, sex, IQ and cannabis use, total 

ecstasy use predicted an additional 11.2% of variance in switching deficits (R²change = 0.11, 

F(5, 50) = 1.79, p >.05). While the overall regression model was non-significant, total 
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lifetime dose of ecstasy emerged as the only significant predictor of switch cost after 

controlling for all of the other variables, meaning participants who had consumed a greater 

amount of ecstasy showed significantly poorer performance in this task (β = 0.59; t(50) = 

2.57, p<.01).  Furthermore, to investigate the effects of recent cannabis use, we performed the 

same regression analyses with amount smoked in the last 30 days replacing total lifetime dose 

as a predictor. In step 1, age, sex and IQ (RPM total score) were entered as predictors. This 

model accounted for a small and non-significant 3.6% of the variance in switch cost 

(R²change = 0.036, F(3, 52) = 0.65, p>.05)  (β = 0.01; 0.05; 0.18 for sex, age and IQ 

respectively, p > .05 in all cases). In Step 2, number of joints smoked in the last 30 days  was 

entered as a predictor, this model accounted for an additional non-significant 0.5% of the 

variance in switch cost (R²change = 0.005, F(4, 51) = 0.54, p>.05)  (β = 0.07, p >.05). In the 

3rd step, number of tablets used in the last 30 days was entered as a predictor. This regression 

model accounted for 8.9% of the variance in switch cost. After controlling for age, sex, IQ 

and cannabis use, total ecstasy use predicted an additional 4.8% of variance in switching 

deficits (R²change = 0.048, F(5, 50) = 0.98, p >.05). There were no significant individual 

predictors.  

 

ERP analysis 

The grand averages for each group (users, polydrug non-users and drug naïve controls) 

can be observed at various electrodes measured for the separate components in Figures 2, 3 

and 4. Mean amplitudes for each condition and electrode are given in Table 2. Due to some 

participants not completing the task and some unusable EEG data 6 participants are excluded 

from statistical analysis on the EEG data, 4 from the drug naïve group (n=16) and 2 from the 

ecstasy user group (n=18).  
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<<Insert Table 2 about here>> 

Mixed ANOVA3 of mean amplitudes at component P3 (290-400ms) revealed a 

significant main effect of electrode site F(4.04, 206.02) = 15.78, p<.001, though the electrode 

x user group interaction was non-significant F(5.05, 206.02) = 0.99, p>.05. There was 

however a significant main effect of group F(2,51) = 3.35, p<.05. To further explore this 

difference, a series of one-way ANOVAs with group as between participants were conducted. 

This yielded significant effect of group at electrode O1 F(2,51) = 3.80, p<.05, with post hoc 

tests indicating that both drug using groups differed significantly from drug naïve participants 

(p<.05) but not from each other (p>.05). There were also significant differences at electrode 

POz F(2,51) = 4.56, p<.05, and again, post hoc analysis showed that both drug groups 

differed significantly from drug naïve participants (p<.05, one tailed) but not from each other 

(p>.05); There were also significant differences at PO4 F(2,51) = 3.11, p<.05, with post hoc 

tests indicating significant differences between polydrug and naive participants (p<.05).  

Mixed ANOVA of mean amplitudes at component N2 (170-220) revealed a 

significant main effect of electrode F(4.27, 217.82) = 12.23, p<.001. The electrode x user 

group interaction F(8.54) = 217.81) = 0.76, p>.05, and the main effect of group F(2,51) = 

1.83, p>.05, were however non-significant so this component is not discussed further.  

<<Insert Figure 2, 3 & 4 about here>> 

At component P2 (200-250ms) Mixed ANOVA revealed a non-significant effect of electrode 

F(3.30, 168.44) = 1.60, p>.05, though the electrode x user group interaction was significant 

F(6.61, 168.44) = 2.12, p<.05. The main effect of group was not significant for this 

component F(2,51) = 2.11, p>.05. To further explore the nature of the significant interaction, 

a series of one way ANOVAs were used. These yielded significant group differences at 

                                                 
3 In all mixed ANOVAs, Mauchley’s test was significant so adjusted degrees of freedom are reported in line 

with the Greenhouse Geisser statistic.  
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electrode Fz F(2,51) = 3.52, p<.05, with post hoc analysis showing that ecstasy polydrug 

users differed from both other groups (p<.05); at electrode FCz F(2,51) = 5.66, p<.01, with 

ecstasy polydrug users differing from both other groups (p<.05); and at electrode Cz F(2,51) 

= 3.14, p<.05, with ecstasy polydrug users differing from both other groups (p<.05 one tailed). 

Inspection of Table 2 suggests that for all the electrodes, ecstasy users have higher mean P2 

amplitudes than the other two groups, with the exception of electrode FC3, where the 

opposite pattern is seen. 
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4. Discussion 

The aim of this study was to examine the processes involved in mental set switching 

in ecstasy users, using a number-letter task. The control groups did not differ from the ecstasy 

users on the background variables such as fluid intelligence, age and state mood. Nor did they 

differ on the number-letter task in terms of number of switch cost or errors. A regression 

analysis revealed that after controlling for cannabis use, level use of ecstasy predicted 

performance deficits behaviourally. This is in line with previous research on amphetamine 

users (Ornstein, 2000) which suggests that more chronic use leads to a greater deficit in 

mental set switching, as well as Halpern et al. (2004)’s original study who observed greater 

performance deficits on this task in heavy ecstasy users than light users. 

The electrophysiological data also provide support for deficits in this executive 

function with drug use. The P3 component, thought to play an important role in the allocation 

of attentional resources and as such an important role in the ability to switch between mental 

sets, showed significant between group differences at several occipito-parietal and occipital 

electrode sites. Nonusers displayed a significantly higher mean amplitude in this component 

(290-400ms) compared to ecstasy users as well as polydrug controls. A diminished P3 

component is thought to reflect cognitive impairment, and as such these findings are in line 

with those of Casco et al.  (2005) and Mejias et al. (2005) who have observed reduced P3 in 

ecstasy users compared to controls in other cognitive tasks. Interestingly, the polydrug 

control group appear to have a reduced P3 in several areas compared to drug naive controls, 

suggesting some evidence of atypical processing that is related to the use of drugs in general 

and not just ecstasy i.e. a polydrug effect. Furthermore, it has been suggested previously that 

concomitant cannabis use may account in part or fully for cognitive deficits observed in 

ecstasy users (Dafters et al., 2004; Gamma et al., 2005), though in the present study, level of 

ecstasy use appears to be a more important predictor.  
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Analysis of the N2 component provided some interesting findings, with ecstasy users 

and polydrug users generally showing greater negativity compared to drug naïve controls at 

the electrodes measured (occipito-parietal and occipital sites). These differences were only 

significant between ecstasy users and drug naïve controls at site P7, and differences between 

these groups were approaching significance at two more sites (PO7 and O1). There were, 

however, no observable differences between ecstasy users and polydrug controls in this 

component. This component is thought to reflect conflict monitoring and is also reported to 

be greater in trials with high conflict (Yeung & Cohen, 2006). Perhaps higher mean 

amplitude in this component would reflect inefficiency in processing this type of information. 

Differences were also apparent in the P2 component, involved in early processing of 

stimuli. It was observed that ecstasy users displayed a significantly higher mean amplitude 

than both control groups at fronto-central site FCz. Further to this, the ecstasy users were 

approaching significance for higher mean amplitude than polydrug controls at central site CZ 

and approached significance for having a higher mean amplitude compared to both groups at 

frontal midline site Fz. Atypicalities at this early stage of processing in ecstasy users appear 

to provide evidence to suggest additional resources are being recruited as a compensatory 

mechanism. Perhaps additional recruitment of resources at this stage allowed for similar 

results behaviourally, despite a diminished P3 amplitude at a later stage of processing. 

These results suggest evidence for an ecstasy/polydrug effect on the degradation of 

the executive function of mental set switching. Few previous studies have found cognitive 

atypicalities (Halpern et al., 2004), however those who have previously suggested no deficit 

in this executive function have neither had the purity of the cohort examined in the Halpern et 

al., (2004) study, nor perhaps equivalent lifetime dose. However in the follow up study 

(Halpern et al., 2011) using participants with minimal exposure to other drugs and a larger 
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sample size, the effects of MDMA on switching were not evident, so perhaps of greater 

importance, is the use of more sensitive measures of cognitive impairment such as EEG. 

Limitations:  

Unlike the relatively “pure” MDMA user groups in the two studies by Halpen et al. 

(2004 & 2011), the current ecstasy user group tended to take several other drugs – in 

particular cannabis. Although we attempted to control for this with the addition of a polydrug 

control group, it was apparent that the ecstasy user group smoked significantly more cannabis 

and consumed significantly more cocaine than this group.  Furthermore there were 9 

participants in the ecstasy user group who reported using ketamine in the last 30 days, 

compared to none in the polydrug group, this is potentially problematic for the interpretation 

of the current results given the association between ketamine use and executive function 

deficits in humans (for a review see Morgan & Curran, 2006), and specifically that switching 

has been shown to be impaired in animals with ketamine exposure (Stoet & Snyder, 2006).   

Moreover, the polydrug user group also showed a diminished P3 response compared to drug 

naive controls in several sites, so perhaps it would be more accurate to call the observed 

effects “polydrug effects”.  With this in mind, it can also not be ruled out that premorbid 

factors do not predict drug use, and that such factors (for example differences in sensation 

seeking) contribute to the observed differences in the present study. In addition, the self 

reporting of psychological state is potentially problematic and in future research, a structured 

psychiatric assessment may be more appropriate. Tobacco use was also not controlled for in 

the current study, there has been previous research to suggest that tobacco smoking has an 

affect on EEG measures (Illan & Polich, 2001; Gilbert et al., 2004).  In particular abstinence 

from tobacco smoking in normal users of tobacco, has shown performance and activity 

decline that can last for up to 31 days (Gilbert et al., 2004). However, smokers were 

permitted to smoke tobacco on the day of testing so this is unlikely to have affected the 
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results reported here. The quasi-experimental design employed here also means that the 

current authors cannot state that the individual differences witnessed here are not the result of 

factors other than drug use, though we have attempted to control for many of these such as 

fluid intelligence, age, state mood and residual intoxication of drugs. Residual intoxication of 

alcohol was self-report, but in future studies it would be advantageous to verify this with a 

breathalyser to ensure no residual alcohol intoxication. Self report measures for background 

drug use are also problematic, however because of the legal status of the drugs consumed, 

this remains the most appropriate measure of background drug use, and is also the most 

commonly used in this area of research (Fox et al., 2001; Montgomery et al., 2005; 

Montgomery et al., 2010). The purity of the tablets consumed by the current set of 

participants as well as the strength of the cannabis being consumed is questionable. However, 

Parrott (2004)  reported that the purity of ecstasy tablets collected from amnesty bins in 

nightclubs in the UK is approaching 100%.  However if this is not the case then this raises 

additional concerns over the magnitude of cognitive deficits incurred (Montgomery et al., 

2010).  

The present study provides evidence for differences in cognitive function in 

ecstasy/polydrug users. Given its association with resource allocation and higher level 

processing, electrophysiological differences in the P3 component suggest a deficit in the 

cognitive resources necessary for normal functioning in the set switching task. Furthermore 

atypical early processing of stimuli in ecstasy users is suggestive of compensatory 

mechanisms used to attenuate behavioural differences due to disturbances in normal 

processing. Moreover after controlling for cannabis-related effects, regression analysis 

suggests that set switching performance declines with increased use of ecstasy.  The broader 

implications here suggest reduced cognitive flexibility with increased drug use. The inability 

to rapidly adjust behaviour to suit environmental changes has consequences for real world 
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situations, for example the ability to which ones job can be performed adequately.  

Furthermore, as this sample was relatively young, it would be interesting to observe 

persistent problems with cognitive flexibility in an ageing population with a history of heavy 

drug use. 
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Table 1: Background Variables 

 Ecstasy Users 

 

Non-Ecstasy Drug Users Drug Naïve Controls 

 Mean SD n Mean SD n Mean SD n 

RPM (max= 60) 48.68 5.96  48.35 5.83  51.35 5.01  

State anxiety 11.4 4.08  12.44 2.18  11.75 2.12  

State depression 13.1 3.91  12.61 2.4  12.1 3.14  

State arousal 19.7 4.54  20.5 3.68  20.1 3.02  

          

Ecstasy          

Frequency (times/wk) 0.24 0.42 12 - - - - - - 

Last 30 days (Tablets) 0.60 2.26 20 - - - - - - 

Total use (Tablets) 177.65 301.73 20 - - - - - - 

Cannabis          

Frequency (times/wk) 2.67 3.24 12 0.95 1.9 13 - - - 

Last 30 days (joints) 32.77* 53.75 15 6.09* 15.34 17 - - - 

Total use (joints) 5057.88* 7504.30 16 1091.71* 2531.65 19 - - - 

Cocaine          

Frequency (times/wk) 0.15 0.14 11 0.27 0.34 2 - - - 

Last 30 days (lines) 0.4 1.12 15 1.60 3.58 5 - - - 

Total use (lines) 813.97 1940.19 16 107.30 208.43 5 - - - 

Ketamine          

Frequency (times/wk) 0.26 0.42 5 0.02 - 1 - - - 

Last 30 days use (grams) 1 2.65 9 - - - - - - 

Total use (grams) 31.26 70.61 11 1.13 1.62 3 - - - 

          

Alcohol units p/w 15.33 15.29 20 10.53 8.37 20 9.93 11.58 20 

Tobacco cigarettes p/d 6.98 6.32 13 7.1 5.48 5 1  1 

RPM = Raven’s Progressive Matrices; * significant difference at p<.05 
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Table 2: Mean amplitudes across components, for each electrode measured. 

 P3   

 PO7 PO3 O1 Oz POz PO8 PO4 O2   
Ecstasy  1.25 (2.13) 2.59 (1.63)       0.68 (1.84)      0.40 (1.52)      2.67 (2.37)      1.63 (2.58)      2.24 (1.70)      0.37 (1.76)   

Polydrug 1.94 (2.05) 2.57 (1.54)       0.71 (1.90)      0.27 (1.72)      2.27 (0.94)      0.92 (3.11)      1.94 (1.77)      0.32 (2.82)   

Drug Naive 2.03 (2.20)       3.56 (2.61)      2.37 (2.41)*    1.66 (2.33)      4.50 (3.26)      1.56 (3.49)      3.61 (2.75)      1.93 (2.72)   

           

 N2 

         P7 P8 

Ecstasy  -2.56 (0.61)     -0.90 (0.46)     -1.58 (0.53)      -0.15 (0.48)     0.45 (0.60)     -0.66 (0.78)     -0.06 (0.60)    -0.48 (0.60)      -2.81 (0.46)*     -1.36 (0.63)             

Polydrug -2.08 (0.57)     -0.70 (0.44)     -1.17 (0.50)      0.47 (0.45)      0.81 (0.57)     -1.44 (0.74)      0.12 (0.57)     0.39 (0.57)      -1.88 (0.44)      -0.87 (0.60)      

Drug Naive -0.60 (0.64)     0.05 (0.50)       0.20 (0.56)       0.70 (0.51)     1.09 (0.64)      -0.45 (0.82)      0.57 (0.64)     0.56 (0.63)      -0.66 (0.49)*      -0.13 (0.67) 

           

 P2 

 FC3 FC1 Fz FC4 FC2 FCz Cz    

Ecstasy  -0.18 (4.22)      1.07 (1.38)      1.54 (1.63)      1.66 (1.33)      1.57 (1.24)     2.10 (1.45)      1.78 (1.24)    

Polydrug 0.95 (1.18)        0.65 (1.34)      0.37 (1.84)      1.61 (1.64)      1.10 (1.69)     0.64 (1.43)      0.45 (2.34)    

Drug Naive 0.96 (2.30)        0.74 (1.86)      0.28 (1.12)      0.88 (1.53)      0.59 (1.29)     0.59 (1.71)      0.47 (1.63)    
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Figure 1. Grand Average Waveforms for the 3 Groups Across Electrodes: O1, Oz, POz and 

PO4 (correct switches) 
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Fig. 1: Depicts the waveforms from electrodes that showed significant group differences in the P3 component. 

Ecstasy users are displayed in (blue), polydrug users are displayed in (black) and drug naïve controls are 

displayed in (lilac). These waveforms are from grand averaged data from each user group. The significant 

differences between ecstasy users and drug naïve controls as well as polydrug users and drug naïve controls can 

be seen in O1, the difference (approaching sig) between polydrug users and naives can be seen in Oz (between 

290-400ms). The significant differences between these groups in this component can be viewed again in POz, 

this time the difference between ecstasy users and drug naïve controls is approaching significance and finally 

PO4 depicts the difference between polydrug users and drug naïve controls 
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Figure 2. Grand Average Waveforms for the 3 Groups Across Electrodes: P7 and PO7 

(correct switches) 
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Fig. 2: Depicts the waveforms from electrodes that showed significant group differences in the N2 component. 

Ecstasy users are displayed in (blue), polydrug users are displayed in (black) and drug naïve controls are 

displayed in (lilac). P7 shows the significant difference between ecstasy users and drug naïve controls,  this 

difference is approaching significance and can be observed in PO7, to observe the difference that is approaching 

significance in O1 see Figure 1. 
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Figure 3. Grand Average Waveforms for the 3 Groups Across Electrodes: Fz, FCz and Cz 

(correct switches) 
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Fig. 3: Depicts the waveforms from electrodes that showed significant group differences in the P2 component. 

Ecstasy users are displayed in (blue), polydrug users are displayed in (black) and drug naïve controls are 

displayed in (lilac). The significant differences between ecstasy users and both control groups can be seen in 

FCz (200-250ms), the difference (approaching sig) between ecstasy users and the two control groups can be 

seen in Fz. Finally in Cz the difference between ecstasy users and polydrug users (approaching sig) can be 

observed. 

 

 


