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The epilepsies are a heterogeneous group of neurological disorders and syndromes characterised by recurrent, involuntary,
paroxysmal seizure activity, which is often associated with a clinicoelectrical correlate on the electroencephalogram.The diagnosis
of epilepsy is usually made by a neurologist but can be difficult to be made in the early stages. Supporting paraclinical evidence
obtained frommagnetic resonance imaging and electroencephalography may enable clinicians to make a diagnosis of epilepsy and
investigate treatment earlier. However, electroencephalogram capture and interpretation are time consuming and can be expensive
due to the need for trained specialists to perform the interpretation. Automated detection of correlates of seizure activity may be a
solution. In this paper, we present a supervised machine learning approach that classifies seizure and nonseizure records using an
open dataset containing 342 records. Our results show an improvement on existing studies by as much as 10% in most cases with
a sensitivity of 93%, specificity of 94%, and area under the curve of 98% with a 6% global error using a k-class nearest neighbour
classifier. We propose that such an approach could have clinical applications in the investigation of patients with suspected seizure
disorders.

1. Introduction

The epilepsies are a heterogeneous group of neurological dis-
orders and syndromes characterised by recurrent, involun-
tary, paroxysmal seizure activity, which is typically associated
with a clinicoelectrical correlate on the electroencephalo-
gram (EEG). The diagnosis of epilepsy can be made, follow-
ing two or more unprovoked seizures (http://www.who
.int/). However, in the absence of a reliable witness account,
diagnosis in the early stages of the disease can be challenging,
which may delay initiation of treatment. Where there is
clinical uncertainty, paraclinical evidence from the EEG can
allow earlier diagnosis and treatment. However, EEG capture
and interpretation are time consuming and costly because
interpretation can currently only be performed by specialist
clinicians, trained in EEG interpretation. This has led to a
recent interest in automated seizure detection [1].

Although seizure semiology often gives clinical clues as
to whether seizures are focal or generalised in onset and
which lobe of the brain the seizure originated from, it is

often more challenging to determine whether the seizure
originated in the left or right hemisphere, in particular, in
the case of temporal and occipital lobe epilepsies. In such
cases or where there is clinical uncertainty, it is impossible
to know, before performing the test, on which EEG channels
seizure activity will be detected. This poses a problem when
trying to generalise the detection of seizures across multiple
subjects. Recent work on automated seizure detection from
EEG recordings has focused on patient-specific predictors,
where a classifier is trained and tested on the same person
[2–5]. In this paper, the focus is on using EEG classification
to generalise detection across all brain regions, in multiple
subjects without a priori knowledge of the seizure focus.

The structure, of the remainder, of this paper is as follows.
Section 2 describes the principles of preprocessing EEG data.
Section 3 describes how features are extracted from EEG
signals. Section 4 discusses machine learning and its use in
seizure and nonseizure classification, while Section 5 presents
the approach taken in this paper for whole-brain seizure
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detection. Section 6 describes the evaluation, Section 7 dis-
cusses the results, and conclusions are presented in Section 8.

2. Preprocessing of
Electroencephalography Data

Electroencephalography is the term given to the technique
of recording electrical activity resulting from ionic current
flows generated by neurons in the brain [6]. Its main clinical
application is in the evaluation of patients with suspected
epilepsy.

Before analysis or classification occurs, EEG signals, in
their raw form, need preprocessing. Preprocessing often
includes filtering and artefact removal as recordings can con-
tain unwanted noise mixed with the actual EEG energy/brain
wave/signal. Artefacts can originate from various sources
such as the subject, equipment, or the environment and
consist of ocular artefacts, such as eye blinks; movement
of the EEG sensors; and electromyogenic artefacts, caused
by muscle movement. Artefacts are normally removed by
eliminating certain frequencies from the EEG signal using
high-pass, low-pass, band-pass, and notch filters [7].

One of the most common filters used in previous studies
is a notch filter [8]. A notch filter removes any part of the
signal that is at a specific frequency. Power line artefacts
reside between 50 and 60Hz and are removed when EEG
frequencies above 60Hz are used [9, 10]. However, there has
been little justification for the use of higher frequencies [11, 12]
because most brain activity occurs between 3 and 29Hz. In
support of this, Libenson [6] argues that EEG instruments
rarely exceed 30–40Hz and signals from cortically implanted
electrodes rarely exceed 50Hz due to electrical noise and
other artefacts such as muscle movement. For these reasons,
Blanco et al. [13] use an upper cut-off frequency of 40Hz and
[14] use an upper range of 35Hz, whereas Greene et al. [15]
filter out frequencies above 34Hz stating that the frequency
range 2–20Hz provides the best discrimination between
seizure and nonseizureevents. In other studies, Wang et al.
[16] use a frequency range between 8 and 32Hz and, in [17],
frequencies above 30Hz are filtered, whereas Yuan et al. [18]
split signals into different frequency bands using bandpass
filters for theta (𝜃: 4 ≤ 𝑓 ≤ 8Hz), alpha (𝛼: 8 ≤ 𝑓 ≤ 12Hz),
and beta (𝛽: 12 ≤ 𝑓 ≤ 25Hz) to ensure that only specific
physiological data is considered.

At the lower end of the frequency spectrum, the most
common cut-off filter value is around 0.5Hz [19–22]. In [6],
the author argues that there is no cerebral activity below
0.5Hz and what little there is cannot be reliably observed in
conventional EEG recordings. In fact, the majority of signals
below 0.5Hz usually represent motion or other electrical
activity.

3. Feature Extraction from
Electroencephalography Signals

The collection of raw EEG signals is always temporal. How-
ever, for analysis and feature extraction purposes, translation,
into other domains, is possible and often required. These

include frequency representations, via Fourier transform,
[19–22] and wavelet transform [22–27]. The advantage of
frequency-related parameters is that they are less susceptible
to signal quality variations, due to electrode placement or the
physical characteristics of subjects [28]. In order to calculate
these parameters, a transform from the time domain is
required, that is, using a Fourier transform of the signal.
In several of the studies reviewed, power spectral density
(PSD) is used, in order to obtain frequency parameters. Peak
Frequency is one of the features considered in many studies.
It describes the frequency of the highest peak in the PSD.
During a seizure, EEG signals tend to contain a major cyclic
component which shows itself as a dominant peak in the
frequency domain [29]. Peak Frequency has been used along
with other features to achieve high classification accuracy.
In one example, Aarabi et al. used Peak Frequency along
with sample entropyand other amplitude features to detect
epileptic seizures and achieved a sensitivityof 98.7% and a
false detection rateof 0.27 per hour [30].

While Tzallas et al. found that Peak Frequency, along with
15 other features, provided accuracies between 78.11% and
86.18% when classifying transient events in EEG recordings
[31], in [15], it was found thatPeak Frequency only achieved an
accuracy of 54.06%.A possible explanation for low accuracies
could be that the frequency of peaks tends to decay over time.
If the window that the Peak Frequency is extracted from is
too large, this decaying of the peak could explain why some
authors have experienced less accuracy when using only the
Peak Frequency to detect seizures [32].

Wang and Lyu [33] found that median frequency dis-
played significant differences between seizure and nonseizure
patients. By segmenting the EEG signal into five separate
frequency bands for delta (𝛿: 0.5 ≤ 𝑓 ≤ 4Hz), theta (𝜃:
4 ≤ 𝑓 ≤ 8Hz), alpha (𝛼: 8 ≤ 𝑓 ≤ 12Hz), beta (𝛽: 12 ≤ 𝑓 ≤
25Hz), and gamma (𝛾: 25 ≤ 𝑓), it was possible to predict
79 of 83 seizures with a sensitivity value of 95.2%. In other
works, Päivinen et al. [34] used linear and nonlinear features
for detecting seizures and found that a combination of the two
achieved the best results.

Root mean square (RMS) has been considered a useful
feature for distinguishing between seizures and nonseizure
events. RMSmeasures the magnitude of the varying quantity
and is a good signal strength estimator in EEG frequency
bands [35, 36]. In a study onneonatal seizure detection [15], 21
features for seizure classification were compared, which saw
RMS achieve an overall accuracy of 77.71%, outperforming
the other features studied. However, the figure was reportedly
lower than that in another study [37] where RMS was used
in conjunction with other features, rather than as a single
feature.

Entropy has been used as a measure of the complexity or
uncertainty, of an EEG signal, where the more chaotic the
signal is, the higher the entropy is [15, 29]. There are two
kinds of entropy estimators: spectral entropies, which use the
amplitude of the power spectrum, and signal entropies, which
use the time series directly [38]. Many authors agree that,
during a seizure, the brain activity is more predictable than
during a normal, nonseizure phase and this is reflected by
a sudden drop in the entropy value [15, 30, 39–41]. In [38],
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four entropy measures were used, Shannon spectral entropy,
Renyi’s entropy, Kolmogorov-Sinai entropy, and approximate
entropy, and over 90% classification accuracy was achieved.
Wavelet entropy, sample entropy, and spectral entropy were
compared in [42] in which accuracies between 79% and
99.8% were reported. In another similar study, using only
approximate entropy, accuracies of 100% were achieved [43].
Several other studies produced comparatively high overall
accuracies [44–46]. While [47] found that entropy features
gave much lower classification accuracies between 54.5% and
76.3%, it was not clear why accuracies were low. However,
one possible reason is the lack of data preprocessing. If EEG
artefacts are not removed from seizure phases, this could
make the seizure signal appear to be more complex and give
the EEG signal a look more akin to anonseizure phase.

Energy is a measure of the EEG signal strength. Rather
than looking at the energy of the whole EEG signal, the
energy distribution across frequency bands has been used in
seizure detection [48]. The study found that delta and theta
frequency bands saw a much larger distribution of energy
during a seizure compared to normal EEG, whereas the
alpha, beta, and gamma frequency bands saw a lower energy
distribution during a seizure. Using the energy distribution
per frequency band as a feature achieved an overall accuracy
of 94%. In [47], the results show that using energy as a feature
produced classification accuracies between 92% and 99.81%.
In a similar study, energy was also used along with entropy
and standard deviation [49].They were evaluated in isolation
and combined together, with the best feature being energy
with an overall accuracy of 91.2%.

Correlation dimension has been investigated as a cor-
relation measure in several studies, which is a nonlinear
univariate, widely used to measure fractal dimension. Fractal
dimension measures the complexity of the EEG signal, in
other words, the regularity and divergence of the signal [50,
51]. In [52], correlation dimension and five other features
for seizure prediction of focal neocortical epilepsy produced
reasonably good results with 90.2% for sensitivity and 97%
for specificity. However, when looking specifically at the
correlation dimension, they found conflicting results, where
correlation dimension dropped in 44.9% of seizures and
increased in the preictal phase in 44.9% of seizures. They
also found that there were stronger dimension changes in
the remote channels compared with those near seizure onset.
It should be noted that the data preprocessing was minimal
as the method for calculating the correlation dimensions
tolerates a certain amount of noise. In addition, as their
study is concerned with identifying the preictal state with the
intention of predicting seizures, it differs from the current
work, which is only interested in detecting the seizure retro-
spectively by classifying blocks of data as seizure or non-
seizure.

In [53], correlation dimension and the largest Lyapunov
exponent were studied to determine their ability to detect
seizures. The study showed that neither measure on its own
was useful for the task but did work better, when they were
used together.They also noted that correlation dimensionwas
only useful when applied to the frequency subbands (delta,
theta, alpha, beta, and gamma), and not on the entire 0–60Hz

frequency spectrum that was used in the study. The authors
concluded that changes in dynamics are not spread out across
the entire spectrum but are limited to certain frequency
bands. In a comparative study, [38] explored the use of
correlation dimension, along with Hurst exponent, largest
Lyapunov exponent, and entropy, to distinguish seizures
from normal EEG. The results report an overall accuracy of
90% [54]. Meanwhile, [55] questions the use of correlation
dimension and argues that it only reflects the change in
variance and that there was little justification for its use over
the simpler linear measure of variance.

Skewness is a third-order statisticalmoment, and kurtosis
is the fourth [34]. Along with the first- and second-order
moments, mean and variance, respectively, the four statistical
moments provide information on the amplitude distribution
of a time series. Specifically, skewness and kurtosis give an
indication of the shape of the distribution [56]. Khan et al.
use skewness and kurtosis, along with normalised coefficient
of variation, for seizure detection in paediatric patients.They
managed to detect all 55 seizures from a subset of 10 patients,
achieving 100% sensitivity with a false detection rate of 1.1 per
hour. Päivinen et al. examined spectral skewness and spectral
kurtosis and found a high correlation between skewness and
kurtosis. In their study, they rejected kurtosis arguing that it
is of a higher order and thus more sensitive to noise. They
concluded that a combination of linear and nonlinear features
was best suited to seizure detection.

4. Seizure Detection and Classification

The first results in seizure detection and classification date
back to 1979 [57]. Gotman et al. investigated the automatic
recognition of interictal epileptic activity in prolonged EEG
recordings using a spike and sharp wave recognition method
[57–59]. This work lead to the investigation of functional
magnetic resonance imaging (fMRI) and the correlation
between cerebral hemodynamic changes and epileptic seizure
events visible in EEG [60]. In 2013, stereoelectroencephalog-
raphy (sEEG) using high frequency activities in the wavelet
domain was proposed [61]. While the detection sensitivity
was high (86%) and the specificity was acceptable (0.47/h),
the detection delay is long (mean delay 16.2 s).

Since 1979, computer algorithms and visualisation tech-
niques have played a central role in the analysis of EEG
datasets. However, today, there is significant interest in classi-
fication algorithms. The most common classifier used to dis-
tinguish between seizure and nonseizure events has been the
support vectormachine (SVM).Using theChildren’sHospital
Boston-Massachusetts Institute of Technology (CHB-MIT)
database and a patient-specific prediction methodology, the
study in [62] used a SVM classifier on EEG recordings from
24 subjects. The results show that a classification accuracy
of 96% and 96% for sensitivity were produced, with a false-
positive rate of 0.08 per hour. While the results are encourag-
ing, the approach is personalised to the individual. In other
words the approach cannot be generalised across more than
one patient. In a similar study, five patient records from
the CHB-MIT dataset containing a total of 65 seizures were
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evaluated using a linear discriminant analysis classifier [63].
The results show that 83.6%was achieved for sensitivity, 100%
for specificity, with an overall accuracy of 91.8%. There are
two main issues with this study. The first is that the classifier
is much more sensitive to nonseizures than seizures; failing
to detect a seizure is more problematic than failing to detect
a nonseizure. Second, the focus of the study is personalised
to the individual and is incapable of being generalised across
a wider population. Nasehi and Pourghassem [64] used the
same CHB-MIT dataset with a particle swarm optimisation
neural network (PSONN) which produced 98% for sensitivity
and a false-positive rate of 0.125 per hour. This approach is
much more sensitive to seizures than many of the studies
reviewed in this paper. Yet, again, the approach is person
specific rather than generalised across a wider population.

In [43], 100 seizure segments and 100 nonseizure seg-
ments were used to train a SVM classifier. The results show
that 100% was obtained for sensitivity, specificity, and overall
accuracy. Meanwhile, Nicolaou and Georgiou [65] carried
out a similar study using the BONN dataset [43] and an SVM
classifier, with 94.38% for sensitivity, 93.23% for specificity,
and an overall accuracy of 86.1%. In a similar study, Übeyli
[66], who also used the BONN dataset [43] and an SVM
classifier, produced 99.25% for sensitivity, 100% for specificity,
and 99.3% for overall accuracy. Extending this study, Übeyli
evaluated seven different classifiers with the SVM proving
the best-performing classifier with similar results produced
to those in the original study [67]. The worst performing
classifier was the multilayer perceptron neural network,
which achieved 90.48% for sensitivity, 97.45% for specificity,
and 90.48% for overall accuracy.

Acharya et al. focused on using entropies for EEG
seizure detection and seven different classifiers [68].The best-
performing classifier was the Fuzzy Sugeno Classifier, which
achieved 99.4% for sensitivity, 100% for specificity, and 98.1%
for overall accuracy. The worst performing classifier was the
Näıve Bayes Classifier, which achieved 94.4% for sensitivity,
97.8% for specificity, and 88.1% for accuracy. In [69], the
decision tree classifier was used and achieved an average
sensitivity of 99.24%, specificity of 98.76%, and accuracy of
99.02%.

The FRE (https://epilepsy.uni-freiburg.de/) dataset has
featured in several studies, which contains EEG data from a
number of patients, similar to the CHB-MIT database. How-
ever, it only has six channels, three close to the focus of the
seizure and three further away. Using the FRE dataset, Yuan
et al. presented a patient-specific seizure detection system
and an extrememachine-learning algorithm to train a neural
network [70]. Twenty-one seizure records were used to train
the classifier and 65 for testing. The results show that the
system achieved an average of 91.92% for sensitivity, 94.89%
for specificity, and 94.9% for overall accuracy. Using the same
dataset, Williamson et al. [71] used a SVM to classify EEG
recordings from 18 of the 21 patients in the dataset.The results
show an average sensitivity of 90.8% and a false-positive
rate of 0.094 per hour. Park et al. [72] adopted a similar
configuration and classifier and achieved 97.5% for sensitivity
and a false-positive rate of 0.27 per hour. While Patnaik and
Manyam [73] used a feed-forward back propagation artificial

neural network on the 21 subjects from the FRE dataset, clas-
sification was performed on a patient-specific basis and the
results, per patient, ranged from 98.32 to 99.82% for speci-
ficity and between 87.73 and 93.8% for sensitivity.

Patel et al. [74] proposed a low power, real-time classifi-
cation algorithm, for detecting seizures in ambulatory EEG.
The study compared linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), Mahalanobis dis-
criminant analysis (MDA), and SVM classifiers on 13 subjects
from the FRE dataset. The results show that the LDA gave
the best results when trained and tested on a single patient,
with 94.2% for sensitivity, 77.9% for specificity, and 87.7% for
overall accuracy. When generalised across all subjects, the
results show 90.9% for sensitivity, 59.5% for specificity, and
76.5% for overall accuracy.

In a similar study, Acir andGüzeliş used SVM classifier to
detect epileptic spikes [75]. The dataset used to evaluate their
methodology was from the Neurology Department of Dokuz
Eylul University Hospital, Izmir, Turkey, and consisted of 25
patients with one EEG record each, 18 used for training and
7 for testing. Their approach achieved 90.3% for sensitivity,
88.1% for specificity, and a 9.5% false detection rate. While
an SVM classifier was considered to discriminate between
preictal and nonpreictal states in [76], the authors used a
22 linear univariate feature space extracted from six EEG
recordings for each of the 10 patients from the European
database on epilepsy.Their approach could detect 34 of the 46
seizures achieving a sensitivity of 73.9% and a false prediction
rate of 0.15/hour.

5. Generalisation of Epileptic
Seizure Detection

Despite the advances within the last twenty years in the
EEGseizure detection and prediction field, generalised detec-
tion approaches remain relatively poor. This is especially
true when compared to patient-specific studies as discussed.
Given this poor success, itmay be easier to utilise an empirical
backward looking, “data mining” or “brute force” approach.
This is opposed to a forward-looking, conceptual model
approach, in order to find features that best describe epilepsy.

The aim of most studies in EEG detection has been to
detect patient-specific focal seizures, rather than predicting
general seizures across a much bigger population. As Shoeb
[5] explains, a seizure EEG pattern is specific to a particular
patient. The main reason for this is that focal seizures can
occur in any part of the brain, and, therefore, can only
be detected in the EEG on specific channels. A classifier
trained on a patient who experiences focal seizures in the
occipital lobes, for example, would be trained on features
from channels, including electrodes O, O1, and O2, as these
would be the channels from the area of the seizure and,
therefore, best at detecting the seizure.However, these trained
classifiers achieve low sensitivity if they are tested on a patient
who experiences focal seizures in the frontal lobes, as the
channels around the focus of the seizure have not been used
to train the classifiers.
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In order to improve on earlier studies, using the CHB-
MIT dataset, we aimed to discriminate between seizure and
nonseizure EEGs across a group of 22 subjects with seizures
occurring in different brain regions.

5.1. Methodology. The CHB-MIT dataset is a publicly avail-
able database fromphysionet.org that contains 686 scalp EEG
recordings from 22 patients treated at the Children’s Hospital
in Boston. The subjects had anticonvulsant medications
withdrawn and EEG recordings were taken for up to several
days after.

Twenty-three sets of EEG recordings from 22 patients (5
males, 17 females), aged between 1.5 and 22 years (mean, SD),
are contained within the dataset (one patient has two sets of
EEG recordings 1.5 years apart).

Most of the recordings are one hour long, although those
belonging to case 10 are two hours long and those belonging
to cases 4, 6, 7, 9, and 23 are four hours long. Records that
contain at least one seizure are classed as seizure records and
those that contain no seizures as nonseizure records. Of the
686 records, 198 records contain seizures.

Although the description supplied with the dataset states
that recordings were captured using the international 10–
20 system of EEG electrode positions and nomenclature, it
was found that 17 of the files that contained seizures had
different channel montages to the rest of the seizure files.
Therefore, these 17 records have been excluded from this
study, leaving 181 seizure files. A further 10 records were
removed from the dataset due to a large number of not a
number (NaN) elements. The remaining 171 seizure records
contain the length of the recording (in seconds) in the first
column, followed by the 23 EEG channels in columns 2–24.
Table 1 shows the subject information as well as the number
of seizures used in the study.

The final dataset used in this study was constructed
from 60-second data blocks, comprising the ictal period
(seizure), which were extracted from 171 seizure files, and 171
data blocks were randomly extracted from nonseizure files.
The classifiers were then trained on all patient records and,
therefore, classification is generalised across all subjects using
features from channels that capture the EEG in all parts of the
brain.

5.1.1. Data Preprocessing. In the CHB-MIT database, each
record was sampled at 256Hz with 16-bit resolution. Signals
were recorded simultaneously through twenty-three different
channels (FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3,
P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8,
F8-T8, T8-P8, P8-O2, P7-T7, T7FT9, FT9-FT10, FT10-T8, and
T8-P8), via 19 electrodes and a ground attached to the surface
of the scalp. A number of records contained dashes (missing
data) in the original data; no explanation is given to why the
data contains dashes. However, possible reasons could be that
there were errors in the recording phase or the occurrence
of physiological symptoms, such as sweat interference with
the electrodes or body movement. Each zero was found
and replaced with a 256-point window (50% on either side
of the zero) and was replaced with the mean value. Other

Table 1: Seizure information for each case.

Case Number of seizures Gender Age
1 7 F 11
2 3 M 11
3 7 F 14
4 4 M 22
5 5 F 7
6 10 F 1.5
7 3 F 14.5
8 5 M 3.5
9 4 F 10
10 7 M 3
11 3 F 12
12 27 F 2
13 10 F 3
14 8 F 9
15 20 M 16
16 8 F 7
17 3 F 12
18 6 F 18
19 3 F 19
20 8 F 6
21 4 F 13
22 3 F 9
23 7 F 6
24 16 Unknown Unknown

data removed from the segments include electrocardiograph
(ECG) signals and vagal nerve stimulus (VNS).

A bandpass filter was applied to each of the 543 EEG
segments to extract the EEG data in each of the frequency
bands. Second order Butterworth filters were used as they
offer good transition band characteristics at low coefficient
orders; thus, they can be implemented efficiently [2]. This
results in four columns of additional data: delta (𝛿: 0.5 ≤ 𝑓 ≤
4Hz), theta (𝜃: 4 ≤ 𝑓 ≤ 8Hz), alpha (𝛼: 8 ≤ 𝑓 ≤ 12Hz),
and beta (𝛽: 12 ≤ 𝑓 ≤ 25Hz). In other words, each segment
contains 115 columns of data for each of the original channel
data.

5.1.2. Feature Definition. Several features based on our find-
ings in the literature are utilised in this study and are formally
described. Each feature is ranked based on its discriminative
capabilities using feature-ranking algorithms and principle
component analysis.

The frequency domain features were extracted from the
time-series signal using PSD. In this study, PSD is defined as
the Fourier transform of the autocorrelation sequence of the
times series. The Fourier transform𝑋(𝑓) of the signal 𝑥(𝑡) is
defined as

𝑋(𝑓) = ∫

+∞

−∞

𝑥 (𝑡) 𝑒
−𝑗2𝜋𝑓𝑡

𝑑𝑡 −∞ < 𝑓 < +∞, (1)



6 BioMed Research International

where 𝑋(𝑓) contains the information for the signal and
𝑥(𝑡) is obtained from 𝑋(𝑓) using the inverse of the Fourier
transformation:

𝑥 (𝑡) = ∫

+∞

−∞

𝑋(𝑓) 𝑒
𝑗2𝜋𝑓𝑡

𝑑𝑡 −∞ < 𝑓 < +∞. (2)

Peak Frequency is one of the features considered in many
studies to have good discriminative capabilities and describes
the frequency of the highest peak in the PSD. Peak Frequency
is formally described as

𝑓max = arg(
𝑓
𝑠

𝑁

𝑁−1max
𝑖=0

𝑃 (𝑖)) , (3)

where 𝑓
𝑠
and𝑁 describe the sample frequency and the num-

ber of samples, respectively. Conversely, median frequency is
used to estimate the typical frequency present in the signal
and is regarded in the literature as a useful feature in EEG
research. Median frequency is defined as

𝑓med = 𝑖𝑚
𝑓
𝑠

𝑁
,

𝑖=𝑖
𝑚

∑

𝑖=0

𝑃 (𝑖) =̇

𝑖=𝑁−1

∑

𝑖=𝑖
𝑚

𝑃 (𝑖) . (4)

The median frequency is defined as the midpoint in the fre-
quency power spectrum where the sum of the points on each
side is equal. RMS is also used in this study as a signal strength
estimator in EEG frequency bands. It provides a measure of
the magnitude of the varying quantity and is defined as

RMS = √ 1
𝑁

𝑁−1

∑

𝑖=0

𝑥 (𝑖)
2

, (5)

where a signal represented by a time-series 𝑥(𝑡) can be cal-
culated as the root of the mean of the squares for all samples
in the signal. Measuring the complexity of the signal is
regarded as an important feature, which can be calculated
using sample entropy. In other words, sample entropy calcu-
lates the uncertainty of an EEG signal. It is described as

sampEmp =
𝑁

∑

𝑖=1

(𝑋
𝑖
∗ log (𝑋2

𝑖
)) , (6)

where 𝑁 is the length of the time series and 𝑋
𝑖
is the 𝑖th

sample of the EEG signal. Signal energy is also an important
feature and is useful for measuring the EEG signal strength
in different frequency bands. It is defined as the sum of the
squared magnitude of the samples:

𝐸 =

𝑁

∑

𝑘=1

𝑥
2

𝑘
. (7)

The correlation dimension feature is a useful measure of the
regularity and divergence of a signal, that is, its complexity. It
is proportional to the probability of the distance between two
points on a trajectory being less than some 𝑟:

𝐶dim = lim
𝑟→∞

log (𝐶 (𝑟))
log (𝑟)

, (8)

where

𝐶 (𝑟) = lim
𝑀→∞

1

𝑀2

𝑀

∑

𝑖=1

𝑀

∑

𝑗=𝑖+1

𝜃 (𝑟 −
𝑦 (𝑖) − 𝑦 (𝑗)

) ,

𝜃 (𝑟 − 1
𝑦 (𝑖) − 𝑦 (𝑗)

) = {
1: (𝑟 − 𝑦 (𝑖) − 𝑦 (𝑗)

) ≥ 0

0: (𝑟 − 𝑦 (𝑖) − 𝑦 (𝑗)
) ≤ 0.

(9)

Skewness and kurtosis are useful for providing information
on the amplitude distribution of a time series. In other
words, they indicate the shape of the distribution. Skewness
is defined as

𝑠 =
𝐸 (𝑋 − 𝜇)

3

𝜎3
, (10)

where 𝐸(𝑥) is the expected value of some variable 𝑥, 𝜇 is the
mean, and 𝜎 is the standard deviation of the signal. Kurtosis
is defined as

𝑘 =
𝐸 (𝑥 − 𝜇)

4

𝜎4
. (11)

5.1.3. Feature Selection. The literature reports that median
frequency, sample entropy, and root mean square have the
most potential to discriminate between seizure and non-
seizure records. To validate these findings, the discriminant
capabilities of each feature are determined using several
measures: statistical significance, principal component anal-
ysis(PCA) [77], linear discriminant analysis independent
search (LDAi) [77], linear discriminant analysis forward
search(LDAf) [77], linear discriminant analysis backward
search(LDAb) [77], and gram-Schmidt (GS) analysis [78].
Using these measures, the top 20 uncorrelated features were
extracted from all regions of the EEG scalp readings (region-
by-region feature extraction is considered later in the paper).

The uncorrelated feature sets were used with several
classification algorithms to determine which set of features
produced the highest area under the curve (AUC). Table 2
shows that the best results obtained were from the linear
discriminant analysis backward search technique with an
AUC of 91%. This was followed closely by statistical 𝑝 and
𝑞-values with AUC values of 90% and 89%, respectively.

Using PCA, we extracted the top five uncorrelated fea-
tures from each of the five regions covered by the EEG scalp
electrodes using the linear discriminant backward search
technique (because it produced the highest AUC value of
91%). This ensures that each region is represented without
the bias from all other regions and allows classifiers to detect
focal seizures in different parts of the brain. The channels are
grouped by region as shown in Table 3.

The top five features per region were selected based on
their rank determined by the linear discriminant backward
search technique, creating five feature sets containing five
features each. These are combined to produce a set of 25
features as shown in Table 4.

Figure 1 shows that several RMS and median frequency
features, fromdifferent channels and frequency bands, appear
along the principal component. This is consistent with the
findings in [33–36].
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Table 2: Results for Feature Selection techniques.

AUCs for Feature Selection techniques
AUCknn AUCknn AUCsvn AUCknn AUCtreec AUCknn AUCloglc AUCknn AUCSVN

𝑃 𝑞 PC1 PC2 PC1 & 2 LDAi LDAf LDAb GS
90 89 83 88 87 86 88 91 88

Sensitivities for Feature Selection techniques
SENSknn SENSknn SENSsvn SENSknn SENStreec SENSknn SENSloglc SENSknn SENSloglc

𝑝 𝑞 PC1 PC2 PC1 & 2 LDAi LDAf LDAb GS
83 84 53 86 80 78 76 84 76

Specificities for Feature Selection techniques
SPECknn SPECknn SPECsvn SPECknn SPECtreec SPECknn SPECloglc SPECknn SPECloglc

𝑝 𝑞 PC1 PC2 PC1 & 2 LDAi LDAf LDAb GS
83 82 90 81 79 80 85 85 86

Table 3: List of channels for the five scalp regions.

Region Channels
1 FP1-F7, F7-T7, FP1-F3, F3-C3, T7-FT9
2 FP2-F4, F4-C4, FP2-F8, F8-T8, T8-FT10
3 T7-P7, P7-O7, C3-P3, P3-O1
4 C4-P4, P4-O2, T8-P8, P8-O2
5 FZ-CZ, CZ-PZ, FT9-FT10

Table 4: Top five features for the five scalp regions.

Feature set Description Features

1 Top 5 features
from region 1

RMS CH2 0.5–30Hz
Sample entropy CH2 0.5–4Hz
RMS CH2 4–8Hz
RMS CH2 0.5–4Hz
Sample entropy CH1 0.5–4Hz

2 Top 5 features
from region 2

RMS CH16 0.5–30Hz
RMS CH16 0.5–4Hz
RMS CH12 12–30Hz
RMS CH16 12–30Hz
RMS CH16 4–8Hz

3 Top 5 features
from region 3

RMS CH3 0.5–30Hz
RMS CH3 0.5–4Hz
RMS CH4 4–8Hz
Med Freq CH3 0.5–4Hz
RMS CH4 0.5–30Hz

4 Top 5 features
from region 4

RMS CH18 4–8Hz
RMS CH18 0.5–30Hz
RMS CH17 0.5–30Hz
RMS CH17 0.5–4Hz
RMS CH18 0.5–4Hz

5 Top 5 features
from region 5

RMS CH21 0.5–30Hz
RMS CH21 4–8Hz
RMS CH21 12–30Hz
RMS CH21 8–12Hz
RMS CH21 0.5–4Hz

In summary, PCA makes a very strong case for the use of
root mean square on different channels and frequency bands.
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Figure 1: PCA for RMS feature discrimination.

The features extracted using the generalised and region-
by-region approach will be used to evaluate the capabilities of
several classifiers considered in this study.

5.1.4. SyntheticMinorityOversampling. Thenumber of obser-
vations in this study is relatively low, and it would be use-
ful to compare an oversampled dataset with the original data-
set. In order to address this issue, it is necessary to resample
the CHB-MIT dataset. In this study, the classes are balanced.
However, resampling is used to generate additional observa-
tions for both seizure and nonseizure records.

Several studies have shown that the synthetic minority
oversampling technique (SMOTE) has effectively solved the
class skew problem [79–84]. In this study, SMOTE has been
utilised to oversample both the seizure and nonseizure classes
in order to generate new synthetic records (observations)
along line segments joining the k-classnearest neighbours.
This forces the decision tree region of the minority class to
become more general and ensures that the classifier creates
larger and less specific decision regions, rather than smaller
specific regions. In [85], the authors indicated that this
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Table 5: Summary of classifiers considered in this study.

Classifiers Features Validation Sample sizes
Density-based Variance Holdout cross-validation

Original (171
seizures/171
nonseizures)

Linear discriminant classifier (LDC)
Quadratic discriminant classifier (QDC) Root mean squares 𝑘-fold cross-validation
Uncorrelated normal density classifier (UDC)
Linear and polynomial-based Skewness

Sensitivity/specificityPolynomial classifier (POLYC) Kurtosis
Logistic classifier (LOGLC) Peak frequency

SMOTE (342
seizures/342
nonseizures)

Nonlinear-based
Median frequency Receiver operator curve𝐾-class nearest neighbour classifier (KNNC)

Decision tree classifier (TREEC)
Parzen classifier (PARZENC) Sample entropy Area under the curve
Support vector classifier (SVC)

approach is an accepted technique for solving the problem
related to unbalanced datasets and, in this study, the validity
of this technique to increase the number of observations for
both seizure and nonseizure classes is evaluated.

5.1.5. Classification. Following an analysis of the literature,
the study in this paper adopts simple yet powerful algorithms,
as shown in Table 5.

These include the linear discriminant classifier (LDC),
quadratic discriminant classifier (QDC), uncorrelated nor-
mal density-based classifier (UDC), polynomial classifier
(POLYC), logistic classifier (LOGLC), k-class nearest neigh-
bour (KNNC), decision tree (TREEC), Parzen classifier
(PARZENC), and the support vector machine (SVC) [86].
The linear, quadratic, and uncorrelated normal density-based
classifiers are all density-based classifiers.TheLDC is particu-
larly useful when two classes are not normally distributed and
where monotonic transformations, of posterior probabilities,
help to generate discriminant functions. The QDC assumes
that the classes are normally distributed with class specific
covariance matrices, thus allowing a set of optimal discrim-
inant functions to be obtained. The UDC works in a similar
way to the QDC classifier using computation of a quadratic
classifier between the classes by assuming normal densities
with uncorrelated features. The QDC takes decisions by
assuming different normal distributions of data that lead to
quadratic decision boundaries.

6. Evaluation

This section presents the classification results for seizure and
nonseizure records using the CHB-MIT database. A feature
set is extracted from the raw signal frequency bands; delta
(𝛿: 0.5 ≤ 𝑓 ≤ 4Hz), theta (𝜃: 4 ≤ 𝑓 ≤ 8Hz), alpha (𝛼:
8 ≤ 𝑓 ≤ 12Hz), and beta (𝛽: 12 ≤ 𝑓 ≤ 25Hz) are used with
an 80% holdout technique and k-fold cross-validation. The
initial evaluation provides a base line for comparison against
all subsequent evaluations, considered in this section.

Table 6: Classifier performance results for top 20 uncorrelated
features.

Classifier Sensitivity Specificity AUC
LDC 70% 83% 54%
QDC 65% 92% 62%
UDC 39% 95% 65%
POLYC 70% 83% 83%
LOGLC 79% 86% 89%
KNNC 84% 85% 91%
TREEC 78% 80% 86%
PARZENC 61% 86% 54%
SVC 79% 86% 88%

6.1. Results Using Top Twenty Uncorrelated Features Ranked
Using LDA Backward Search Feature Selection. In this evalu-
ation, the top twenty uncorrelated features are extracted from
each of the frequency bands within each of the EEG channels
and used to train and test nine classifiers. The performance
for each classifier is evaluated using the sensitivity, specificity,
mean error, standard deviation, and AUC values with 100
simulations that use randomly selected training and testing
sets.

6.1.1. Classifier Performance. The first evaluation uses all the
seizure and nonseizure blocks from all subjects in the CHB-
MIT dataset (171 seizures and 171 nonseizures). Table 6 shows
the mean averages obtained over 100 simulations for the
sensitivity, specificity, and AUC.

As shown in Table 6, the sensitivities (seizure), in this
initial test, are lower for all classifiers.This is interesting given
that the number of seizureand nonseizure blocks is equal.
One possible reason for this is that the ictal length across
the 171 records was 60 seconds. However, in the CHB-MIT
records ictal periods ranged between 6 and 752 seconds. It is
possible that some ictal blocks resemble nonseizure records
resulting inmisclassification (particularly blocks that contain
shorter runs of ictal data). Table 7 compares the holdout
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Table 7: Cross-validation results for top 20 uncorrelated features.

Classifiers 80% holdout: 100 repetitions Cross-validation, 5-fold, 1 repetition Cross-validation, 5-fold, 100 repetitions
Mean error SD Mean error Mean error SD

LDC 0.2386 0.0506 0.2427 0.2398 0.0107
QDC 0.2179 0.0434 0.2164 0.2171 0.0064
UDC 0.3299 0.0431 0.3304 0.3310 0.0035
POLYC 0.2388 0.0507 0.2544 0.2385 0.0107
LOGLC 0.1771 0.0489 0.1813 0.1734 0.0085
KNNC 0.1527 0.0401 0.1696 0.1674 0.0148
TREEC 0.2071 0.0510 0.1959 0.2003 0.0157
PARZENC 0.2651 0.0493 0.2544 0.2640 0.0100
SVC 0.1752 0.0416 0.1608 0.1728 0.0072
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Figure 2: Received operator curve for top 20 uncorrelated features.

results with the k-fold cross-validation technique using 5-fold
and one and 100 iterations, respectively.The results show that
all techniques are able to achieve a classification error, lower
than the base-rate error of 50% (i.e., 171/342).

Despite a reasonably low error rate using the hold-
out technique, the k-fold cross-validation results slightly
improved the error rates for some classifiers. However, these
results were not statistically significant.

6.1.2. Model Selection. The receiver operator characteristic
(ROC) curve shows the cut-off values for the false-negative
and false-positive rates. Figure 2 indicates that several of the
classifiers performed reasonably well. The AUC values in
Table 3 support these findings with good accuracy values for
the LOGLC and KNNC classifiers.

6.2. Results Using Top Five Uncorrelated Features Ranked
Using LDA Backward Search Feature Selection from Five Head

Table 8: Classifier performance results from top five uncorrelated
features from five head regions.

Classifier Sensitivity Specificity AUC
LDC 78% 88% 55%
QDC 84% 86% 60%
UDC 51% 91% 70%
POLYC 78% 88% 89%
LOGLC 82% 84% 90%
KNNC 88% 88% 93%
TREEC 82% 81% 89%
PARZENC 81% 93% 61%
SVC 85% 86% 90%

Regions. In the second evaluation, the top five uncorrelated
features extracted from five main regions across the head
were used to determine whether the detection of seizures
could be improved. Again, the performance for each classifier
was evaluated using the sensitivity, specificity, mean error,
standard deviation, and AUC values with 100 simulations
and randomly selected training and testing sets for each
simulation.

6.2.1. Classifier Performance. As shown in Table 8, the sensi-
tivities (seizure) for most of the algorithms improved, includ-
ing the specificities values. The AUC results also showed
improvements for several of the classifiers, with 93% achieved
by the KNNC classifier. This is encouraging given that sensi-
tivities are more important in this research than specificities.
From the previous results, we found a 4% increase in sensi-
tivities, a 3% increase in specificities, and a 2% increase in
the performance of the KNNC classifier with other classifiers
improving with similar increases.

Again, the results in Table 9 show that the global mean
error has decreased by 3% using the holdout technique. The
k-fold technique was able to decrease the global error by
6% compared with the previous evaluation, suggesting that
using a region-by-region approach improves discrimination
between seizureand nonseizureevents.

Overall, the mean errors produced, using all of the vali-
dation techniques, are significantly lower than the expected
error, which is 171/342, that is, 50%.
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Table 9: Cross-validation results from top five uncorrelated features from five regions.

Classifiers 80% holdout: 100 repetitions Cross-validation, 5-fold, 1 repetition Cross-validation, 5-fold, 100 repetitions
Mean error SD Mean error Mean error SD

LDC 0.1690 0.0419 0.1696 0.1675 0.0120
QDC 0.1493 0.0449 0.1462 0.1509 0.0088
UDC 0.2926 0.0440 0.2836 0.2940 0.0037
POLYC 0.1690 0.0419 0.1871 0.1709 0.0091
LOGLC 0.1734 0.0413 0.1696 0.1648 0.0120
KNNC 0.1203 0.0339 0.0936 0.1135 0.0101
TREEC 0.1835 0.0460 0.1988 0.1784 0.0202
PARZENC 0.1328 0.0433 0.1316 0.1325 0.0146
SVC 0.1460 0.0378 0.1316 0.1411 0.0101
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Figure 3: Received operator curve for top five uncorrelated features
from five head regions.

6.2.2. Model Selection. Again, the ROC curve shows the
cut-off values for the false-negative and false-positive rates.
Figure 3 indicates that the performance of several classifiers
improved. The AUC values in Table 8 support these findings
with the KNNC classifier showing a 2% increase in perfor-
mance.

6.3. Results Using Top Twenty Uncorrelated Features Ranked
Using LDA Backward Search Feature Selection and Oversam-
pledUsing SMOTE. To test whether a larger number of obser-
vations can improve on the previous set of results, the 171
seizure and 171 nonseizure records were oversampled using
the SMOTE technique. The SMOTE algorithm generates
synthetic samples to increase the overall size of the dataset
(in this case, it doubles the number of seizureand nonseizure

Table 10: Classifier performance results for top 20 uncorrelated
features using SMOTE.

Classifier Sensitivity Specificity AUC
LDC 72% 84% 54%
QDC 64% 94% 64%
UDC 38% 95% 66%
POLYC 72% 84% 85%
LOGLC 82% 88% 92%
KNNC 90% 91% 96%
TREEC 87% 88% 92%
PARZENC 75% 92% 57%
SVC 82% 89% 91%

records). As with the first evaluation, the top 20 uncorrelated
features were used with oversampling to determine whether
the overall detection rate could be improved.

6.3.1. Classifier Performance. Table 10 indicates that the
sensitivities and specificities, for some of the algorithms,
improved. Furthermore, the AUC results showed improve-
ments with the KNNC classifier achieving 96%. The results
also show that the AUC values, for several other algorithms,
increased. From the previous set of results (region-by-
region), we found a 2% increase in sensitivities, 3% increase
in specificities, and 3% increase in the performance of the
KNNC classifier.

The results in Table 11 show that the global mean error
has not improved on the previous evaluation. However, the
k-fold technique was able to decrease the global error by 4%
compared with the previous evaluation, indicating that using
a larger number of observations improves the discrimination
between seizureand nonseizurerecords.

The results show that, using the 80% holdout method,
several classifiers produced better results. Overall, the global
mean errors were significantly lower than the expected error,
which is 342/684, that is, 50%.

6.3.2. Model Selection. The ROC curve again shows the
cut-off values for the false-negative and false-positive rates.
Figure 4 shows an improvement on the previous set of results.
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Table 11: Cross-validation results for top 20 uncorrelated features using SMOTE.

Classifiers 80% holdout: 100 repetitions Cross-validation, 5-fold, 1 repetition Cross-validation, 5-fold, 100 repetitions
Mean error SD Mean error Mean error SD

LDC 0.2174 0.0328 0.2237 0.2158 0.0073
QDC 0.2062 0.0286 0.2003 0.2037 0.0055
UDC 0.3322 0.0297 0.3333 0.3314 0.0020
POLYC 0.2174 0.0328 0.2266 0.2148 0.0056
LOGLC 0.1498 0.0285 0.1477 0.1469 0.0048
KNNC 0.0959 0.0232 0.0599 0.0614 0.0074
TREEC 0.1234 0.0295 0.1360 0.1227 0.0115
PARZENC 0.1620 0.0420 0.1462 0.1589 0.0130
SVC 0.1428 0.0292 0.1418 0.1412 0.0055
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Figure 4: Received operator curve for top 20 uncorrelated features
using SMOTE.

6.4. Results Using Top Five Uncorrelated Features Ranked
Using LDA Backward Search Feature Selection from Five
Regions and Oversampled Using SMOTE. In the final evalu-
ation, the top five uncorrelated features extracted from five
main regions across the head were used with oversampling
to determine whether the overall detection rate could be
improved.

6.4.1. Classifier Performance. Table 12 indicates that the sensi-
tivities and specificities, for the algorithms, improved. In
addition, the AUC results showed a 2% increase on the previ-
ous evaluation with the KNNC achieving 98% accuracy. The
results show that the AUC values, for several other classifiers,
increased. From the previous set of results, we found a 3%
increase in sensitivities, 3% increase in specificities, and a 2%
increase in performance for the KNNC classifier.

Table 12: Classifier performance results for top five uncorrelated
features ranked using LDA backward search feature selection from
five regions and oversampled using SMOTE.

Classifier Sensitivity Specificity AUC
LDC 82% 90% 56%
QDC 87% 92% 63%
UDC 52% 91% 70%
POLYC 82% 90% 92%
LOGLC 88% 87% 94%
KNNC 93% 94% 98%
TREEC 90% 90% 94%
PARZENC 96% 98% 82%
SVC 90% 89% 93%

The results in Table 13 show that the global mean error
has decreased by 3% using the holdout technique. The k-
fold technique was able to decrease the global error by a
further 3% compared with the previous evaluation. This
indicates that using a region-by-region approach and a
larger dataset is better at discriminating between seizureand
nonseizureevents.

The final set of results shows that using the 80% holdout
method, several classifiers produced better results. The best
result was obtained in the final evaluation by the KNNC
classifier with 93% for sensitivity, 94% for specificity, 98% for
AUC, and 6% global error.

6.4.2.Model Selection. TheROCcurve in this final evaluation
is illustrated in Figure 5, and it shows a clear improvement
when compared with the previous set of evaluations.

7. Discussion

The study has focused on discriminating between seizure
and nonseizure EEG records across a group of 24 subjects,
in contrast to earlier studies that have focused on seizure
detection in single individuals. The classifiers were trained
using all 24 patients, allowing classification to be generalised
across the whole population contained in the CHB-MIT
database. To achieve this, features from all the channels that
capture the EEGwere used. In the initial, classification results
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Table 13: Cross-validation results for top five uncorrelated features ranked using LDA backward search feature selection from five regions
and oversampled using SMOTE.

Classifiers 80% holdout: 100 repetitions Cross-validation, 5-fold, 1 repetition Cross-validation, 5-fold, 100 repetitions
Mean error SD Mean error Mean error SD

LDC 0.1359 0.0291 0.1374 0.1308 0.0044
QDC 0.1060 0.0267 0.1023 0.1082 0.0043
UDC 0.2835 0.0304 0.2851 0.2881 0.0025
POLYC 0.1359 0.0291 0.1301 0.1337 0.0049
LOGLC 0.1260 0.0262 0.1213 0.1182 0.0072
KNNC 0.0661 0.0198 0.0278 0.0311 0.0049
TREEC 0.0974 0.0319 0.1082 0.0969 0.0117
PARZENC 0.0321 0.0170 0.0336 0.0341 0.0054
SVC 0.1072 0.0255 0.1067 0.1034 0.0063
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Figure 5: Received operator curve for top five uncorrelated features
ranked using LDA backward search feature selection from five
regions and oversampled using SMOTE.

using the top 20 uncorrelated features from the whole brain
were extracted from 805 possible features using the linear
discriminant analysis backward search technique to rank
features (this technique was adopted because it produced the
biggest AUC value, 91%, during the feature-ranking phase).
This approach achieved reasonably good results, using the
KNNC classifier, with 84% for sensitivity, 85% for specificity,
and 91% for the AUC, with a global error of 15%.

Interestingly, the features used in this initial evaluation
involved channels from the eight lobes of the brain but not
the channels spreading across the centre of the scalp (F3-
C3, C3-P3, FZ-CZ, CZ-PZ, F4-C4, and C4-P4). This implied
that rather than having generalised seizures across the whole
brain, a majority of focal seizures occurred in each of the

lobes. Unlike previous studies that used the BONN dataset
[43], which only contains one channel, or the FRE dataset
that contains six channels and identifies focal and extra focal
channels, the CHB-MIT database used in this study contains
23 channels with no information on the seizure type or
location.

Using the top five uncorrelated features from EEG chan-
nels specific to the five main regions of the head improved
the sensitivities and specificities, while producing high AUC
values. The best classification algorithm was the KNNC clas-
sifier, which achieved 88% for sensitivity, 88% for specificity,
and an AUC value of 93% with a 12% global error. This was
followed closely by the SVC classifier, which achieved 85% for
sensitivity, 86% for specificity, and an AUC value of 90% with
a 14% global error.

The SMOTE technique was used to increase the number
of seizureand nonseizure records and again to determine
whether the previous results could be improved. The top 20
uncorrelated features from the whole brain were used. This
improved the sensitivity, specificity, and the AUC results.The
best classification algorithm was the KNNC classifier, which
achieved 90% for sensitivity, 91% for specificity, and an AUC
value of 96% with 9% global error. We found that using the
SMOTE technique and five uncorrelated features from EEG
channels specific to the fivemain regions of the head provided
further improved sensitivity, specificity, andAUC results.The
best classification algorithm was again the KNNC classifier,
which achieved 93% for sensitivity, 94% for specificity, and
an AUC value of 98% with 6% global error.

Comparing our results with other studies, we find that
Shoeb [62] produced a better sensitivity value (96%) than
those reported in this study. However, their approach utilised
a SVM classifier trained and tested on an individual patient
and was not concerned with the generalisation of seizures
across a bigger population group. Consequently, the 93% sen-
sitivity value produced in this paper appears to be extremely
good given that our classifiers were trained and tested on data
from 24 different patients not just on one. In a similar study,
Nasehi and Pourghassem [64] used a neural network and
reported a sensitivity value of 98%, which again is higher than
the results reported in this study. However, as with the work
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Table 14: Seizure detection studies and classification results.

Author Year Dataset Classifier Patients Sensitivity (%) Specificity (%) Accuracy (%) FPR/h
Aarabi et al. [11] 2006 AMI BPNN 6 91.00 95.00 93.00 1.17

Acharya et al. [68] 2012 BONN
PNN, SVM,
C4.5, BC,
FSC, KNN,

GMM

10 94.4–99.4 91.1–100 88.1–95.9 —

Bao et al. [87] 2008 BONN PNN 10 — — 71–96.8 —
Chandaka et al. [88] 2009 BONN SVM 10 92.00 100 95.96 —
Kannathal et al. [38] 2005 BONN ANFIS 10 91.49 93.02 92.2 —
Kumar et al. [42] 2010 BONN EN, RBNN 10 — — 94.5 —
Kumari and Jose [89] 2011 BONN SVM 5 100.00 100 100 0
Acharya et al. [44] 2012 BONN SVM 10 94.38 93.23 80.9–86.1 —
Polat and Güneş [90] 2007 BONN DTC 10 99.40 99.31 98.72 —
Polat and Güneş [69] 2008 BONN C4.5 10 99.49 99.12 99.32 —
Song and Liò [91] 2010 BONN BPNN, ELM 10 97.26 98.77 95.67 —
Srinivasan et al. [43] 2007 BONN PNN, EN — — 100
Subasi [92] 2007 BONN MPNN, ME 10 95.00 94 94.5 —
Subasi and Gursoy [93] 2010 BONN SVM 99-100 98.5–100 98.75–100 —
Übeyli [66] 2008 BONN SVM 10 99.25 100 99.3 —

Übeyli [67] 2009 BONN
PNN, SVM,
MPNN,

CNN, ME,
MME, RNN

10 99.20 99.78 99.2 —

Yuan et al. [46] 2011 BONN SVM, BPNN,
ELM 10 92.50 96 96 —

Zheng et al. [94] 2012 BXH SVM 7 44.23 — — 1.6–10.9
Khan et al. [63] 2012 CHBMIT LDA 5 83.60 100 91.8
Nasehi and Pourghassem [64] 2013 CHBMIT IPSONN 23 98.00 — — 0.125
Shoeb [62] 2009 CHBMIT SVM 24 96.00 — — 0.08
Acir and Güzeliş [75] 2004 DEU SVM 7 90.30 — —
Rasekhi et al. [76] 2013 EUR SVM 10 73.90 — — 0.15
Park et al. [72] 2011 FRE SVM 18 92.5–97.5 — — 0.2–0.29

Patel et al. [74] 2009 FRE SVM, LDA,
QDA, MDA 21 90.9–94.2 59.5–77.9 76.5–87.7 —

Patnaik and Manyam [73] 2008 FRE BPNN 21 91.29 99.19 — —
Williamson et al. [71] 2011 FRE SVM 21 90.80 — — 0.094
Yuan et al. [18] 2012 FRE ELM 21 93.85 94.89 94.9 0.35
Bao et al. [87] 2008 JPH PNN 12 — — 94.07 —
Saab and Gotman [10] 2005 MON BC 76.00 — — 0.34
Grewal and Gotman [95] 2005 MON2 BC 16 89.40 — — 0.22
D’Alessandro et al. [96] 2005 PEN & BON PNN 2 100.00 — — 1.1
Sorensen et al. [97] 2010 RIG SVM 6 77.8–100 — — 0.16–5.31
Acharya et al. [68] 2012 SGR & BONN PNN, SVM 21 + 10 — — 99.9 —
Buhimschi et al. [22] 1998 Unknown PNN 4 62.50 90.47 — 0.2775
Subasi [17] 2006 Unknown DFNN 5 93.10 92.8 93.1 —

of Shoeb, the classifiers were trained and tested on specific
patients.

In comparison with other studies that adopted a similar
approach to our study, our approach produced better overall
results. For instance, in [63], Khan et al. report an 83.6%
specificity value, while Patel et al. [74] report 94% for sensitiv-
ity, 77.9% for specificity, and 87.7% for overall accuracy. Yuan
et al. [18] report 91.72% for sensitivity, 94.89% for specificity,
and 94.9% for accuracy.While Aarabi et al. [11], Acharya et al.
[44], Kannathal et al. [38], and Patnaik and Manyam [73] all

reported similar results. The results found in this paper can
be compared in more detail with the papers listed in Table 14.

Our study produced better results than similar studies
reported in the literature.Where this is not the case, a patient-
specific seizure detector was used and is therefore noncom-
parable.

This work has potential future clinical applications in the
investigation of patients with suspected seizure disorders and
may be useful in the assessment of patients with nonepilep-
tic attack disorder (NEAD). Introducing automated seizure



14 BioMed Research International

detection technologies could help increase capacity within
healthcare systems such as the UK National Health Service
(NHS), which currently suffers from a chronic shortage of
trained clinical neurophysiologists to interpret EEGs [98].
Tele-EEG reporting has previously been suggested as a
solution, but this carries increased costs and there remain
concerns over data security [99]. Automated seizure detec-
tion may therefore be a viable solution, following further
work aimed at further improving accuracy.

8. Conclusions and Future Work

Epilepsy is one of the most common neurological conditions
and one of the least understood.The seizures that characterise
epilepsy are frequently unannounced and affect a sufferer’s
quality of life, as well as increasing the risk of injury and, in
some cases, death. A strong body of evidence has suggested
that these epileptic seizures can be predicted by analysis of
EEG recordings.

Within a supervised-learning paradigm, this paper util-
ises EEG signals to classify seizure and nonseizure records.
Most of the previous work in this area has focused on detect-
ing seizures using data from individual patients. In this paper,
however, the focus has been to generalise seizure detection
across a group of subjects from the CHB-MIT database.

A rigorous, methodical, approach to data preprocessing
was undertaken, and features were extracted from the raw
EEG signals using several feature-ranking techniques. In
the first evaluation, the top twenty uncorrelated features,
extracted from each of the frequency bands within the EEG
channels, were used to train nine classifiers. AUC values as
high as 91% were achieved, with sensitivity and specificity as
high as 85% when using the KNNC classifier. In the second
evaluation, the top five uncorrelated features were extracted
from five main regions across the head and again were used
to train nine classifiers. This approach improved the AUC,
sensitivities, and specificities for several of the classifiers. The
highest result, achieved with the KNNC classifier, was 93%
for the AUC, 88% for sensitivity, and 88% for specificity. This
was closely followed by the SVC classifier, where theAUCwas
90%, sensitivity was 85%, and specificity was 86%.

There were concerns that the number of observations in
the CHB-MIT database was small. To test whether a larger
dataset containing synthetic data would yield better results,
the original CHB-MIT dataset was oversampled using the
SMOTE technique to double the size of both 37 classes
(342 seizures and 342 nonseizures). The same evaluations
were performed again using the oversampled dataset and the
top 20 uncorrelated sets of features, including the top five
uncorrelated features from the five main regions of the brain.
This technique improved the results with an AUC of 96%,
a sensitivity of 80%, and a specificity of 91% for the KNNC
classifier when using the 20 uncorrelated features. However,
the best results were when the top five uncorrelated features
from the five main regions were used on the oversampled
dataset with an AUC value of 98%, a sensitivity of 93%, a
specificity of 94%, and a global error of 6%.

Future work will include the use of regression analysis,
using a larger number of observations.Thiswould help to pre-
dict the early signs of a seizure, not just when the seizure hap-
pens. Another direction of research will include the evalua-
tion of different parameter adjustment settings. In addi-
tion, more advanced classification algorithms and tech-
niques will be considered, including advanced artificial neu-
ral network architectures, such as higher order and spiking
neural networks. The investigation and comparison of fea-
tures, such as fractal dimension and cepstrum analysis, auto-
correlation zero crossing and correlation dimension, have
also not been performed.

More importantly, continuous long-term EEG recordings
of several hours for one subject (rather than 60-second
blocks) will be investigated in future work. This will include
the detection of different types of seizure activity and how
well classifiers can differentiate between them.

Overall, the study demonstrates that classification algo-
rithms provide an interesting line of enquiry, when separating
seizure and nonseizure records.
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