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Abstract— The Internet of Things (IoT) will result in the 

deployment of many billions of wireless embedded systems 
creating interactive pervasive environments. It is envisaged that 
devices will cooperate to provide greater system knowledge than 
the sum of its parts. In an emergency situation, the flow of data 
across the Internet of Things may be disrupted, giving rise to a 
requirement for machine-to-machine interaction within the 
remaining ubiquitous environment. Geographic Hash Tables 
(GHTs) provide an efficient mechanism to support fault-tolerant 
rendezvous communication between devices. However, current 
approaches either rely on devices being equipped with a GPS or 
being manually assigned an identity. This is unrealistic when the 
majority of these systems will be located inside buildings and will 
be too numerous to expect manual configuration. Additionally 
when using GHT as a distributed data store, imbalance in the 
topology can lead to storage and routing overhead. This causes 
unfair work load, exhausting limited power supplies as well as 
causing poor data redundancy. To deal with these issues we 
propose an approach that balances graph-based layout identity 
assignment, through the application of multi fitness genetic 
algorithms. Our experiments show through simulation that our 
multi fitness evolution technique improves on the initial graph-
based layout, providing devices with improved balance and 
reachability metrics.  
 

Index Terms— data centric storage, evolutionary computing 
and genetic algorithms, information dispersal, load balancing, 
Wireless sensor networks 

I. INTRODUCTION 

DENTITY and addressing schemes are a key requirement of 
any network system. Such a scheme enables a device to be 

contacted and for the remote device to respond. In wireless 
mesh networks, devices are not simply endpoints but also 
route data; enabling the forwarding of information between 
endpoints. In the context of fixed wired networks, the routing 
function is commonly performed by dedicated devices; 
however, in wireless networks, devices must cooperate to 
enable global reachability. When all nodes in the network are 
able to communicate with one another, the network is said to 
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have converged. In order to facilitate convergence in a 
wireless multi-hop network, devices must run a routing 
process that provides a mechanism for each device to 
construct a local routing data structure. These local data 
structures enable a device to make forwarding decisions that 
result in a message being passed closer to its intended 
destination. Each forwarding decision is determined by a 
routing algorithm that operates on the data structure held by 
the individual device. In wireless multi-hop networks, 
information is forwarded from device to device until it reaches 
its final destination.  

Any routing and non-broadcast network architecture relies 
on parties being able to identify the originator and destination, 
in addition to suitable intermediate forwarding points in the 
network. For efficient or power-constrained routing, each 
device must have sufficient knowledge of the topology to 
forward the packets appropriately communicating nodes.  

In an IoT network, devices will be assumed to have IP 
(Internet Protocol)-compliant identities. Initially, it was 
considered that the application of IP on constrained devices 
was unrealistic; these devices may need to run for years on a 
set of batteries, and as such have limited processing, storage 
and bandwidth capabilities. However, there have been an 
increasing number of implementations of IPv6 stacks targeting 
low-power devices. 6LowPAN is one such low-power variant 
of IPv6; utilising header compression to enable the 
transmission of IPv6 within the limited 802.15.4 link layer 
frame [1]. Moreover, 6LowPAN, owing to the massive IPv6 
address space, provides the opportunity for every IoT device 
to have a globally-unique identifier. Coupling this identifier 
with the UDP-bound Constrained Application Protocol 
(CoAP) [2] service, being developed by the IETF’s CoRE 
working group, provides a full service URI; e.g. 
coap://fe80::202:b38e:ac13/pressure. Routing 6LowPAN 
packets between nodes is often accomplished using IPv6 
routing protocol for low-power, lossy links (RPL) [3].  
 Wireless Internet of Things devices will be deployed within 
private homes, industrial buildings and public spaces. In 
normal operating conditions, IoT nodes may co-operate with 
each other and a central gateway to connect them to a global 
identity space – usually the Internet. However, if devices are 
unable to communicate with each other or their gateway, then 
significant portions of the network risk losing the ability to 
transmit or relay information. When deployed in safety or 
mission-critical settings, devices must be able to operate to 
some degree during a systems failure. Furthermore, in many 
deployment situations, it may be desirable that remaining 
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active devices can provide some insight into the last known 
state of the failed or isolated devices. 

Distributed Hash Tables (DHTs) provide a mechanism to 
store information in a distributed manner; holding redundant 
copies of data at selected nodes about the network. 
Geographical Hash Tables (GHTs) modify this approach to 
provide nodes with both an identity and mechanism to route 
information within a wireless mesh network [4]. However, 
both of these approaches suffer shortcomings concerning 
reachability and distribution effectiveness, when applied in 
real-world deployment arrangements.  

In response, this work proposes EBL-GHT (Evolve, 
Balance, Localise – Geographic Hash Tables); a mechanism to 
provide position-relative virtual identities that preserve or 
improve reachability and provide balanced key allocation for 
nodes in position relative topologies. It is intended that once 
deployed the identities would be used by a routing protocol 
such as Greedy Perimeter Stateless Routing (GPSR).  

The rest of this paper is organised as follows: Section II  
provides a discussion of issues relating to Distributed and 
Geographical Hash Tables, while Section III  details our 
background research. Section IV provides an overview of our 
proposed localisation mechanism. Section V provides an 
analysis of our approach. Section VI  provides a summary and 
identifies the direction for future work. 

II.  HASH TABLES: KEYING AND ADDRESS SPACES 

When allocating nodes with an identity within the available 
identity space, it is important that the share of the address 
space that maps to that node is proportional. If the address 
space is imbalanced, then in a failure situation, a 
disproportionate loss of data and connectivity may occur. 
However, GHTs, when underpinned by a uniform hash 
function, can result in an unbalanced address space. To briefly 
illustrate this point, Fig. 1 shows a simple example of a one-
dimensional address space. In this example, due to the 
physical placement of the nodes, device 20 is assigned a 
disproportionately-large portion of the address space. 

This work investigates this balancing problem inherent to the 
use of GHT address spaces in wireless Internet of Things 
sensor networks. In GHTs, a node’s identity relates to its 
physical position—either to a common reference, such as 
GPS, or simply relative to its position in regard to its 
neighbours [4]. Relating a node’s position to its identity in the 
hash table can provide additional resilience when storing 
information, owing to the fact that distance in the virtual 
address space also results in the physical separation of data 
within the sensor network. Distributing information between a 
set of autonomous peers provides a number of benefits over 

pre-planned orchestrated data distribution schemes. One 
important property is the even distribution of data between the 
collaborating nodes. If data is not distributed evenly, there is a 
risk of overloading individual nodes storage and processing 
capabilities. The risk of data loss due to node failure also 
increases.  

DHTs are usually constructed above existing converged 
identity spaces. On the Internet, devices have an established 
identifier, commonly an IP address, allocated to the device by 
an upstream service provider. Devices on the Internet can use 
this identifier to achieve global reachability, providing the 
opportunity for connected nodes to construct an overlay DHT. 
Nodes wishing to join a DHT generate a random identity and 
contact a node that is already a member of the DHT to initiate 
the joining process. The discovery of a DHT and the joining 
process is usually referred to as ‘bootstrapping’. The process 
of nodes joining with random identifiers should provide an 
even distribution of identities in the key space, resulting in 
nodes taking responsibility for an even portion of the identifier 
space. 
 The key is usually expressed as an integer of a predefined bit 
length. As such, the available address space is a product of this 
integer size. It is important that there is sufficient space so that 
nodes can pick an identity at random with a low probability of 
collision. It is also important that the keying space is 
sufficiently large so that data elements that are keyed into the 
space do not collide. Upon the node joining the DHT overlay, 
devices create neighbour relationships with other nodes in the 
overlay; the only nodes a device will contact directly using the 
underlying protocol, e.g. TCP/IP.  

Messages that require routing are passed between 
neighbours of the overlay using the distance of the key to the 
neighbour entry as a method of forwarding data closer to its 
destination. This process can introduce path stretch [5] as 
nodes bypass the topological view of the supporting network 
and instead forward information based on the overlay 
topology. It is this property that makes overlay-based 
distributed hash tables unsuitable for sensor network 
deployments; however, there is ongoing work to make 
adaptations to improve the use of overlay protocols in wireless 
environments [6].  

As an alternative to the traditional overlay-based DHT 
found on the Internet, wireless sensor networks can utilise 
position-relative identity spaces. In such schemes, nodes are 
provided with an identity relative to their physical location 
and/or another relative position metric, e.g. hop distance. A 
device can use its own identifier and those allocated to its 
neighbours to route information closer to a destination node—
a process referred to as ‘greedy forwarding’. Devices can use 
the same mechanism to distribute information into the GHT, 
as is found in a regular DHT; nonetheless, when using GHT, 
there is no underlying service that can be used to directly 
identify a device; rather, this information must be stored in the 
overlay. This is commonly referred to as a distributed 
'indirection point; requiring communicating devices to first 
lookup the current position-relative identity using the hash of 
the known identity. This relies on the node with which you 
want to communicate, having already performed the same 
hash function on its own identity and stored this in the overlay 
with its current address as the data element. 

 

Fig. 1. Address Space Imbalance – This simplified diagram depicts 
the imbalance caused in GHT where a node is allocated an identity 
that positions it within a disproportionally large region of address 
space.  



Before a device can take part in a GHT, it must first be 
associated with an identity that falls within the addressable 
range of the network. The network must be bounded; in a 
GHT, this is usually the x and y coordinates between 0 and N, 
where N is dependent on the key length. If the devices in the 
network are keying data using a consistent hash function, such 
as MD5 on unique data, this should see the even distribution 
of keys in the coordinate space. If there is an even distribution 
of nodes in the coordinate space—either through physical 
location or virtual coordinates—then there is a good 
probability that each node will have an equal proportion of the 
keys to be stored. However, geographic hash functions 
demonstrate undesirable behaviour with regard to even 
distribution of keys, explored below. 

For nodes to communicate, they need to be aware of their 
position so they can assume an appropriate identity, enabling 
them to forward and receive information. Commonly, schemes 
point to the use of GPS [7], although that has complications 
due to cost and the nature of deployment. In the absence of a 
reliable mechanism to determine location from fixed/physical 
external reference points, nodes can use a co-operative 
localisation approach. 

Individual sensors can detect their immediate neighbours in 
the network. Using this per-node neighbour information, 
localisation algorithms attempt to recreate the topology, 
identifying suitable candidate coordinates to be allocated to 
the individual nodes. Both localisation and GPS-based 
position schemes provide the GHT with an approximated 
location of the device in the physical space. If the nodes are 
physically spread evenly, then storage load will accordingly be 
distributed evenly. If they are not, the network will suffer from 
imbalance; individual nodes will be the closest available 
identity for a large portion of the address space. In an effort to 
preserve the robustness of the distribution, the scheme 
proposed should retain the distance assurance properties of the 
GHT with the balancing properties of a standard DHT. 

III.  POSITION-RELATIVE DISTRIBUTED HASH TABLES 

A. Distributed and Geographical Hash Tables 

DHT provides a useful abstraction to facilitate reliable and 
robust data dissemination in wireless sensor networks. There 
are three main approaches to building a DHT in wireless 
sensor networks: 1) Overlay DHT, where the address space is 
built on top of an existing converged protocol [6]; 2) Virtual, 
where nodes construct a tree [8]; and 3) physical location-
based schemes [4], which map N-dimensional spaces onto the 
actual or estimated physical location of the node.  

In [5], Awad et al. propose a virtual location scheme, 
referred to as Virtual Chord Protocol (VCP). In the scheme, 
nodes are provided with an identity within the range spanning 
0–1. As nodes connect, they obtain an identity relating to that 
of a neighbour; this identity is used to route packets, as well as 
identity keys, that map to that node. Such a scheme may create 
unbalanced address spaces. This is intrinsic to their address 
allocation mechanism; as nodes join the system, the existing 
address space at a particular location will be partitioned. 
Depending on the ordering of nodes joining the system, areas 
of the address space may have been heavily partitioned and 
areas may have little partitioning; this results in data items 

being disproportionately placed at areas of low partitioning, 
resulting in an imbalance. 

Geographic Hash Tables, as proposed by Ratnasamy et al. 
in [9], detail the Data Centric Storage where user data is 
pushed into an identity space formed by the physical real-
world coordinates obtained via GPS sensors. This type of 
scheme can be useful when the accuracy of placement is 
essential; however, the strictness of identity related to a 
physical real-world position relies on the good physical 
distribution of nodes throughout the coordinate space to 
combat imbalance. Alternative similar approaches may use 
localisation in an effort to estimate the position of the nodes. 
This does nothing to improve the balancing issue, but does 
remove the requirement for GPS sensors. Alabno et al in [10] 
address the issue of non-uniformity of data placement. The 
approach outlined makes an estimation of network density 
dividing the address space into areas with coordinating nodes, 
the scheme relies on individual nodes knowing their 
geographic position within the network. 

Scatterpastry [6] can be implemented using either overlay 
or underlay DHT. When using the overlay mechanism, there 
must be an existing Layer 2 frame-forwarding mechanism in 
place on the network, such as Destination-Sequenced Distance 
Vector (DSDV), for example[11]. However, the issue with this 
sort of approach is that the transmission in the DHT space 
causes path stretch in the Layer 2 space.  

B. Localisation 

Localisation algorithms provide a mechanism to identify the 
positions of individual nodes within wireless networks. Such 
information can then be provided to the individual devices so 
they can make forwarding decisions. Depending on the 
network deployment requirements, it might be possible to 
equip a subset of the nodes with a GPS or physically record 
their location. This provides valuable information when 
attempting to identify the location of the remaining nodes. 
These extrapolative, absolute location approaches are referred 
to as anchor-based localisation schemes. In [12], nodes use the 
hop-based position estimate from GPS-enabled device, which 
leads to a decentralised system, although it is reliant on the 
external GPS system and the continued operation of the subset 
of devices equipped with GPS receivers.  

Anchor-free localisation does not require information 
external to the sensor network; instead, it utilises the 
information from the sensor network with the aim of 
estimating the relative positioning of devices. Usually, 
individual devices transmit the information they hold about 
the network back to a central co-ordinating unit. The 
information passed could include the following: Neighbour 
Identities, Node Identity, Signal Strength or incoming packets 
(RSSI), bit error rates, and ultrasonic/temperature or other 
sensory information. This information can be used by the 
localisation algorithm with the aim of determining the location 
of the devices.  

Owing to the high search space, it is common for 
approaches to use probabilistic meta-heuristics. For example, 
in [13], Chagas et al. apply Genetic Algorithms and Simulated 
annealing using RSSI values from sensors to identify their 
location. Other schemes make use of graph-drawing 
algorithms and produce good results [14], typically using 



Kamada-Kawai or Fruchterman-Reingold. Kamada-Kawai 
utilises spring force [15], whereas Fruchterman-Reingold uses 
an opposed force-directed algorithm [16]. In [17], Nawaz et al. 
detail an anchor-free localisation mechanism that utilises a 
modified graph-drawing algorithm. The approach is based on 
the Kamada-Kawai graph drawing algorithm [15], utilising a 
sensor equipped with range-finding devices.  

Genetic Algorithms (GAs) have also been used for 
localisation. GAs require the specification of a fitness 
function; a mechanism to evaluate a given outcome’s 
suitability. They are a type of evolutionary search heuristic 
that model natural selection based on fitness. In [18], Zhang et 
al. detail the implementation of a GA to identify a node’s 
position in a bounded two-dimensional space. The mutation of 
individual node position is bound by their current location, 
and the fitness function rewards the correct placement of 
nodes with respect to their neighbours. 

C. Summary 

GHT networks, to fulfil their primary purpose, require an 
identity that provides a node with the opportunity to conduct 
greedy forwarding. If we are also to use the GHT for 
distributed data storage, we need the address space to be 
evenly distributed across the nodes in the topology. 

If the protocol was to use GPS sensors, the network would 
be bound to those identities, meaning that, in order to obtain 
even data distribution, it would be required that the physical 
nodes be positioned in a grid layout; unrealistic for many 
scenarios. Equally, the localisation scheme could provide a 
relative or anchored location; though this does nothing to 
address the underlying location dependency. 

A scheme is required to allocate addresses that are relatively 
positioned to maintain reachability but which are distant 
enough to provide equal coverage of the two-dimensional 
bounds of the DHT. The next section will detail an approach 
to a) create node identities that retain their position in relation 
to their neighbours and also b) provide even coverage of the 
identity space. This is referred to as a position-relative 
topology. 

IV.  DESIGNING THE EBL-GHT 

The purpose of this work is to design and evaluate a 
mechanism that will allocate a unique identifier to the 
individual nodes within the target sensor network. The ID 
allocated to the node will enable it to take part in a position-
relative GHT (using greedy forwarding). The importance of 
the relationship between the identity and its physical position 
relates to the ability of the nodes within the network to use a 
multiple keying function that separates the placement of data 
within the DHT.  
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Equation (1) specifies a key rotation algorithm, where P 
nodes can create keys k based on the MD5 hash value of each 

node’s Universal Resource Identifier (md5(uri)), bound by the 
dimensions of the key space (xmax and ymax) and distribution 
count (d). If the data is distributed at a number of points across 
two dimensions within the DHT - and the DHT’s space relates 
to the physical space - this would lead to better redundancy 
given localised failure and redundancy no worse in the case of 
random failure, as found in previous work [19]. It is the 
intention that the scheme be used both in industrial and home 
settings, where it would be useful that the state of devices in 
the network is preserved in the event that a proportion of the 
system is lost.  

For example, in a home IoT network, an oven could be left 
on, causing a house fire. The information relating to how the 
fire started could be passed into the remaining network and, 
depending on the extent of the damage to the building, the 
state and spread of the fire could be modelled to provide 
information relating to the cause, thus facilitating a reduction 
in the risk of future incidents. Alternatively, the information 
could be extracted in real-time to provide essential 
information to first responders. This would require that the 
responders know the mechanism used to key information and 
the URI used by the individual devices.  

As described in the previous section, providing the exact 
location of a node via GPS is costly and can be difficult to 
implement indoors. In an effort to overcome the lack of an 
exact geospatial address, we can approximate the relative 
positioning between nodes given a complete map of the 
wireless network. Other research shows that the Fruchterman-
Reingold algorithm [16] is a good approach to estimating the 
individual node positions within a network given a set of 
edges, vertices and weights. The algorithm provides a similar 
layout to the target physical topology; an assertion extensively 
tested by Efrat et al [14].  

Fig. 2 shows the original node position (top left), the 
Fruchterman-Reingold-based layout using the node and 
neighbour relations with equal weighting on node links (top 
right). The bottom diagram gives an indication of the poor 

 

Fig.2. Fruchterman-Reingold localization – This collection of diagrams 
shows the relationship between a node’s physical position (top left) and 
the Fruchterman-Reingold estimation. Shapes in the bottom diagram 
show “gaps” in this notional address space. 



distribution of identities; creating three voids in the address 
space, represented by the three shapes. Data falling in these 
“spaces” would overload the adjacent nodes. 

Fig. 3 shows the effects of this problem (using the igraph 
library [20]). We see the placement of keys in a virtual address 
space; following the identity assignment provided by the 
Fruchterman-Reingold algorithm. The notional/virtual address 
space is represented by the whole square while the nodes 
assigned address space occupy the top right triangle. The blue 
lines indicate both the direction and distance between where a 
key is located in notional address space, and the physical node 
where it has actually been persisted. 

As can be seen, half of the nodes in the topology store over 
half of the keys; with those nodes along the edge between the 
real and virtual address space particularly overloaded. If a 
proportion of those nodes are lost, a disproportionate amount 
of the distributed data would also be lost. An ideal visual 
representation would be one with few, short blue lines. 

Considering the coordinates for the nodes’ initial position, 
the virtual topology can be tested using simulation to 
determine the total key space imbalance. This metric provides 
a measure of fitness that can be used to draw comparisons 
against attempts to create an improved topology. However, the 
balance is not the only important measure; the topology must 
also be evaluated to ensure that data items are reachable by 
corresponding nodes using greedy forwarding. Importantly, if 
greedy forwarding fails, routes can still be evaluated using the 
techniques discussed in GPSR [21]. Device longevity can be 
increased by reducing the requirement for nodes in the 
network to perform the calculation required to identify a route 
when greedy forwarding fails.  

Therefore, it can be stated that a good candidate topology is 
one that that nodes are provided with an address relative to its 
position in the network. This will maintain the ability to use 
simple greedy forwarding of data and provide nodes with an 
even share of the total distributed storage requirement of the 
network.  

To solve this multi-criteria problem, the use of Genetic 
Algorithms will be evaluated to provide a better solution than 
is provided by the Fruchterman-Reingold algorithm in 
isolation.  

A. The role of Genetic Algorithms 

The search for an optimal state through self-organisation is 
distinct from any higher system intent or goal. Genetic 
Algorithms are reliant on a) a properly specified fitness 
function, and b) the environment to dictate the fitness of 
individuals to thrive and prosper.  

Global optimisation looks to find the best possible elements 
within the set of all possibilities evaluated by a set of criteria; 
this is referred to as the set of objective functions. The 
objective function evaluates the current genome population of 
the model. Genomes can then be ordered by their fitness, 
identifying those candidates that are closer to the optimum. 
Once ordered by fitness, individual genomes can be selected 
to reproduce through the application of crossover and 
mutation. This process continues bound by time, evolution 
limit, improvement heuristic measure or through the genomes 
reaching a certain optimisation threshold.  

The solution is therefore deemed the best possible subject to 
the bounding criterion, which does not necessarily result in the 
best solution. Usually, evolutionary algorithms are used when 
the search space is large, and it would therefore be unfeasible 
to use an analytical solution or there exists no analytical 
solution to the problem space. This work therefore examines 
the use of genetic algorithms, themselves a type of 
evolutionary algorithm; with the objective to solve the address 
space balancing problem seen in position-relative identity 
spaces where identity is mapped to a coordinate space. 

Genetic Algorithms can utilise multiple objective functions 
that might specify naturally opposing criteria. In the case of 
this work – and Wireless Localisation for distributed storage - 
these functions concern a) the distribution of data relative to 
their intended location and, b) the ability to successfully use 
greedy forwarding to locate and retrieve data.  

B. EBL-GHT  

This section details our novel address localisation scheme. It 
utilises Genetic Algorithms to generate optimised position-
relative topologies for use in GHT.  
 EBL-GHT is a centralised algorithm; individual nodes 
distribute neighbour information to a central node that has 
access to the computational resource that is sufficient to 
execute the GA. Once the topology has been generated, nodes 
are provided with a position-relative identity by this central 
node. The reasoning behind a centralised approach is twofold; 
firstly due to the need for global knowledge, and secondly the 
computational overhead of the algorithms involved. 
 
1) Initialisation 
EBL–GHT is intended to run alongside existing IoT protocols, 
e.g. 6LowPAN; providing a redundancy mechanism for M2M 
communications, or as an alternative to the client-server model 
found in 6LowPAN. When running alongside Internet 
Protocol schemes, nodes will utilise the IP address/service 
identifier tuple to access services distributed within the GHT. 
Initially, nodes will be identified by a random number that is 
used for topology construction. Following the position-relative 
(PR-DHT) construction phase, nodes will be assigned a 
position-relative two-dimensional GHT address.  

In order to start the initialisation procedure, nodes on the 
network will receive a broadcast from a central coordinating 

 

Fig. 3. Address space and key distance. Blue lines approximate the 
direction and distance between a key’s notional location in address 
space, and the actual node where it is stored. Many long lines, as 
here, indicate non-optimal placement and node overloading.    



node. For redundancy, there could be multiple coordinating 
nodes, with individual nodes only responding to a single 
coordinator. This can be achieved by nodes selecting the 
coordinating node with the largest ID. The broadcast will be 
re-sent by each node in the network where a depth counter will 
be incremented and forwarded by each node in the network; 
this will create a distributed tree rooted at the coordinator 
node. Individual nodes will have generated a random identity 
and transmit initial “HELLO” messages to their connected 
neighbours, which will facilitate each node building an 
immediate neighbour table. Nodes will transmit their 
neighbour table back to the coordinating node. Upon the 
coordinating node receiving the neighbour maps from all 
nodes in the network, it can then reconstruct the entire 
topology. This completes Stage 1 of the protocol.  

In Stage 2, the graph is processed by the Fruchterman-
Reingold algorithm to establish the physical node positions. 
The implementation utilises the Fruchterman-Reingold 
algorithm from the igraph library [20] as it provides a good 
representation of the original network.  

In Stage 3, the layout is rotated through 360 degrees to find 
the minimum bounding box. Subsequently, a border is added 
based on the average distance between neighbours and 
transposes the layout to the required key size. At this point, the 
virtual unbalanced topology has been constructed, with each 
node assigned an address within the key boundary. In an effort 
to balance the topology, it will be passed into the genetic 
algorithm where it will be evolved to provide a better balance. 
The resulting topology will provide no worse reachability than 
is provided by the topology at Stage 3. 

 
2) GA-directed evolution of a force-directed topology 
This section will detail the application of Genetic Algorithms 
to balance the localised topology created in Stage 3. This 
research has shown that genetic algorithms can be used to find 
a better solution than the worst case in large search spaces 
within a bounded search time. Another important aspect of 
Genetic Algorithms is their ability to fuse multiple metrics to 
find an optimum that satisfies multiple vectors. The important 
metrics in this case are the reachability count and the total key 
space distance imbalance. 
 The reachability metric I, as shown in (2), is defined as the 
difference between the expected total number of keys � to be 
stored by each node and the actual return count �� from each 
node in the topology querying each saved state of every other 
node n in the topology.  
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The key space imbalance metric, as detailed in (3), is the total 
displacement D of the virtual two-dimensional coordinates of 
all data items d(x,y), currently stored in the DHT at nodes 
n(X,Y) from the virtual node coordinate that each of the data 
items are being stored. 
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It is normal practice that a Genetic Algorithm is seeded 
using a random population; however, through 
experimentation, it has been determined that a random 
population fails to evolve and form a network that meets the 
fitness and reachability of the initial layout algorithm provided 
at the end of Stage 3. The approach taken in this work seeds 
the Genetic Algorithm with the coordinates provide by Stage 
3, which provides the population with a better than random 
starting point. In Stage 4, the x and y coordinates of the Stage 
3 topology are encoded into the population P chromosome of 
ten candidates. Two chromosomes (� �  ) are treated as 
parents and 8 (� . . �  ) as children, applying mutations to 
each of the 8 in pairs (. . 5 ) using the following mutation: 
levels = �  ^2 .  

The mutations are limited to a random co-ordinate within 
four radius levels surrounding the existing coordinate in the 
chromosome; this allows the search space to be gradually 
expanded. The candidate co-ordinates are then copied into the 
simulator model. The model initialises, enabling the nodes to 
form a PR-DHT. Each node then saves its own state using a 
three-position replication strategy, utilising the rotation 
algorithm shown previously in (1). Once all save operations 
have been completed, each node is requested to retrieve every 
saved state within the system. Once this is complete, each 
genome is scored using the key displacement metric and 
sorted with the lowest key displacement score being awarded 
position 1 and the highest being placed in position 10. Any 
chromosome that has a saved key return metric any worse than 
the best will not be processed; this helps to ensure that the 
reachability of the topology improves or remains constant for 
each evolution. 

Children (� . . �  ) are subsequently populated using 
genomes (� �  ), applying an interleaving crossover, as shown 
in Fig. 4, that alternates with an even-and-odd-node position 

 

Fig. 4. Crossover and mutation – This shows the mutation strategy for 
the evolution of the topology. Note the crossover of the node 
coordinates and application of mutation to coordinate sets. 



as the starting chromosome entry. Mutation is applied, and the 
process evolves for a set number of generations. The mutation 
function generates a random coordinate within a fixed radius 
of the original coordinate, which reduces the opportunity for 
the network to get stuck in a local optimum. This could 
otherwise occur by finding a poor candidate that satisfies an 
initial low reachability metric and improves on the key space 
distance metric. Upon completion of the mutation phase, the 
process of testing the topology starts again, which is repeated 
until the expiration of the time constraints placed upon the 
process, or until the topology reaches a steady state; that is, no 
improvement on the score for a set number of evolutions. 

When the genetic balancing phase is complete, the new 
identities are distributed to the devices in the network. In order 
to reduce the overhead associated with broadcasting each ID, a 
minimum spanning tree is drawn over the topology and 
traversed, transmitting the ID of the node and the required 
neighbour IDs to complete the tree. Neighbours will populate 
the remaining neighbours using local neighbour broadcasts; 
enabling the protocol to limit the packet size required. 

  
3) Alternating fitness functions to improve performance 

As described in the previous section, two metrics have been 
defined to evaluate the suitability of the evolved network. 
They each provide a fitness evaluation in terms of a) 
reachability and b) key displacement/imbalance, respectively. 
It is difficult to combine parameters that are not coincident. 
For example a company’s profitability is not usually 
coincident with its employee wellbeing metric. To provide a 
suitable topology we evolve, alternating between different 
fitness functions, testing for reachability for ff generations and 
then key displacement for ff generations. This provides an 
equal timeslot for each function to influence the topology as 
well as limiting the effect that any individual function has 
within a single evolutionary phase. 

V. EVALUATION  

This section will evaluate the application of Genetic 
Algorithms to the localisation of nodes within a wireless 
sensor network. This section begins with a brief overview of 
the simulation environment used for all evaluative data-
gathering runs. The following two sub-sections then provide 
empirical justification for two defining features of this work; 
the non-random approach to GA seeding, and the application 
of an alternating-target fitness function influencing the GA’s 
evolutionary path. 

This section concludes with a review of the capability of 
the EB-GHT to create balanced position-relative identity 
spaces across a range of test topologies, followed by a brief 
evaluation of the execution time implications of this approach. 

A. Simulation Environment Overview 

The results presented in this section have been generated by a 
Python Discrete Event Distributed system simulator developed 
for this work. Simulation runs were executed on Ubuntu 12.04 
running on an Intel i5-4200U (Haswell-ULT) 1.6 GHz 
machine, with 4GB of DDR3 RAM. 
 The simulator permits us to simulate the networked 
environment where nodes are placed physically, 

corresponding to five different layouts in two different sizes. 
Nodes operate independently with their own isolated state 
machines; there is no global knowledge provided to devices. 
Communication between nodes is achieved through input 
packet buffers. Where the simulator identifies nodes in the 
communication range, a buffer relationship is established, thus 
enabling them to communicate. 

The simulator is able to drive a genetic algorithm through a 
series of evolutions where a population of 10 test networks are 
created, made up as follows:  

To test the robustness of the approach, 5 different topology 
types have been created with 2 size variations for each 
topology. These topologies are shown across Fig.5 (Triangle, 
H, Square, and Hole Shapes) and Fig. 6 (L-shaped). The 
topology types have been chosen due to their range of local-
minimum-inducing features. The square grid pattern is 
intended to give ideal results, both in terms of the geographic 
node dispersion, and the opportunity for the Fruchterman-
Reingold algorithm to produce a topology with excellent 
characteristics. 

This serves as both a benchmark and a mechanism to 
validate the simulator. The square topology provides a 
comparative measure for the other topology types; a source of 
exemplar results for reachability, balance and key distance. 
Each topology is evolved through a total of 200 cycles. These 
networks simulate the storage of 9 keys per node, then retrieve 
the entire key space. In each evolution step, the coordinates of 
the nodes are mutated according to the method described in 
the previous section.  

 

Fig. 5. Simulation topologies used (clockwise from top left) Triangle, 
H, Hole, and Square. The square topology acts as a reference, 
whereas the other topologies have local-optimum-inducing features 



B. Using Fruchterman-Reingold to Seed the GA 

It is common to populate an open-search-space genetic 
algorithm with a random initial distribution and then evolve to 
an optimum; however, in this work, the genetic algorithm is 
seeded with a Fruchterman-Reingold graph layout of the 
topology. The use of graph-drawing to address the problem of 
localisation for nodes without GPS devices has been shown to 
be effective in other work on sensor localisation [22].  

However, in order to validate this decision for this work, 
comparative experiments were undertaken with random 
seeding against layout algorithm seeded GAs. Firstly, the GA 
is seeded with a randomly-arranged 16 nodes. The network is 
then evolved for 100 cycles and its fitness measured. This 
experiment is then repeated under the same conditions but 
seeded using the Fruchterman-Reingold (FR) layout. The 
results in Table 1 identify the advantages of using the FR 
approach.  

The initial FR approach has a total state loss of 0; after 100 
cycles, the Random topology still has a total loss of 44, having 
started with a total loss of 74. The individual key loss shows 0 
at the end of 100 cycles for the FR layout, with 1,355 
individual keys for the Random topology. Key displacement 
and key deviation both show similar properties, being worse in 
the random initialisations over the FR approach. Such results 
provide justification for the decision to start with a topology 
that is pre-localised rather than a random one. 

C. Evaluation of the Alternating Fitness Function 

To recap; the joint aims of EBL–GHT are a) to create an 
identity scheme that improves the reachability of nodes using 
greedy forwarding as this will require fewer devices to employ 
a routing algorithm to circumvent local minimum, whilst b) at 

the same time improving the topology balance so that items 
that are saved into the topology are evenly distributed.  

The approach taken in this work is thus centred on using 
two fitness functions; one to evaluate the total distance that 
keys are saved from their ideal location and one to measure 
reachability. The latter is calculated as the total number of 
nodes that are able to see every state from every device on the 
network.  

In the simulated environment, the performance of the GA is 
measured with the 2 fitness functions applied separately, 
jointly, and finally applied alternatively – switched each ff 
generations. For the purposes of the latter experiment, ff was 
5; such that the fitness function alternated every 5 generations. 
The simulations in this section were carried out using the L-
shaped topology pattern, shown in Fig.6. Each test was carried 
out across 200 generations. 

Table 2 shows the resulting performance of these 
approaches. Alternating fitness on key loss and distance 
provides the greatest reduction in key loss, and also the 
greatest reduction in key displacement. Accumulating key loss 
and distance provides the worst key loss difference but also 
provides good maximum deviation values for data-store 
displacement.  

Testing key loss alone provides poor results in all tests, 
whereas testing key distance fails to complete with the 
alternating approach. Accumulating key loss and distance 
provides a better deviation but, owing to the comparatively 
poor reachability score (i.e. lost keys), the results show that 
alternating between key loss and distance provides the better 
approach.  

Fig. 7 shows the network’s performance during the 
alternating fitness evolution; the bottom plot represents key 
loss, while the top plot represents data displacement. The 
network’s current fitness measure is shown by the blue over-
plot: 

 

Fig. 6. L-shaped topology used in GA seeding and fitness function 
simulations. 

TABLE 1 
FRUCHTERMAN-REINGOLD VS RANDOM SEEDING 

 Fruchterman-Reingold Random 

Start State Loss  0 74 
End State Loss 0 44 
Start KL 244 1457 
End KL 0 1355 
Start KD 4282.97 4726.81 
End KD 2291.41 4138.56 
Start MSD 4.63 5.13 
End MSD 3.5 4.75 

KL = Individual Key Loss, KD = Key Displacement, MSD = Maximum 

Store Deviation; (Values to 2dp; lower values are better) 

TABLE 2 
FITNESS FUNCTIONS TEST 

 
Alternating 

KL / KD 
Fitness 

Accumulated 
KL/ KD  
Fitness 

KL 
Fitness 

KD 
Fitness 

Start KL 244 184 189 314 
End KL 0 145 97 215 

KL Difference 244 39 92 99 
Start KD 4282.97 3563.14 4036.78 3968.01 
End KD 2291.41 2259.01 3350.73 2341.93 

KD Difference 1991.56 1304.13 686.06 1626.08 
Start MSD 4.63 4.75 5 5.25 
End MSD 3.5 2.86 4.63 4.75 

MSD difference 1.13 1.88 0.38 0.5 

KL = Key Loss, KD = Key Displacement, MSD= Max Store Deviation 

(Values to 2dp; lower values are better). 



D. Alternating fitness function effects 

This section discusses the evaluated capability of EBL–GHT 
in creating position-relative identities for devices in 
Geographic Hash Tables. Each generated topology is assessed 
to measure how well it fulfils the following requirements: 
Reachability / Key Loss (KL). Reduce the total number of 

states that devices in the network are unable to retrieve. To 
provide an assessment of reachability, each node saves a 
set number of keys into the topology. Following the 
completion of the save operation, each node on the network 
retrieves each of the save states from every other device in 
the topology. Upon receipt, each node keeps track of the 
number of returned states. Following the completion of the 
save and retrieval steps, the number of keys that have been 
distributed and the number that should have been returned 
are calculated. The network score is based on the number 
of missing keys.  

Key Distance (KD). As described in Section IV and Fig. 3, 
the notional available key space can be represented by a 2-
dimensional space. The actual assigned or persisted 
location of a key is likely to, owing to the topological 
properties and available key space, differ from its ideal 
notional location. As such, the EBL-GHT should reduce the 
total distance that all keys in the network rest from their 
intended destination in the key space. Initially, nodes are 
provided with an identity that is relative to their position in 
the network. Data will then route to a point that is closer to 
the target, eventually reaching a node that is closest (best 
case) or hitting local minimum and saving on a device that 
is not the closest to the destination coordinate (worse 
case). If a node has a disproportionate quantity of the 
address space, more keys will be placed on this node. Some 
keys will have been intended for the location that the node 
occupies, whereas other data would have been destined for 
coordinates that are distant from the device. The 
probability that a network has zero key space distance is 
extremely low. It would require an infinite number of 
devices spread out equally across a square area or the data 
items keying exactly to the address of nodes in the topology 
evenly.  

Maximum data store deviation. Reduce the storage 
imbalance in the network. This is achieved by calculating 
the mean store size across the nodes, and then calculating 
the maximum deviation. We look to reduce the maximum 

deviation to distribute data more evenly across the 
network.  

These criteria are first assessed in the smaller set of reference 
topologies. The results from these experiments are shown in 
Table 3. The small topology patterns shown earlier in Fig. 5 
and Fig. 6 have limited node counts and operate within a 
smaller network boundary of 100x100 metres. Experiments 
showed that this limits their opportunity to improve storage 
balance, and a small change can have a very pronounced effect 
(positive or negative) on this balance.  

However, the results of our experiments show that all 
topologies do still improve their reachability, with the 15-node 
triangle topology achieving full reachability. The L-shape 
topology with 16 nodes, the H-shape topology network with 
19 nodes and the Hole topology with 21 nodes are all missing 
a number of states. The topologies still suffering missing 
states are those most likely to exhibit local-minimum-inducing 
features. Notably, however, they do show excellent 
improvements over the use of Fruchterman-Reingold alone, 
with an improvement in the reachability of 559 states for the H 
topology, 276 for the Hole-shaped topology and 213 for the L-
shaped topology. This would reduce the number of route 
calculations required to identify alternative paths to 
establishing those data elements not accessible by greedy 
forwarding alone.  

The final key deviation for the square topology with 25 
nodes is worse that the initial topology. However, at evolution 
118, the results show a maximum deviation of 1.3 with no 
missing keys. The circular hole-shaped topology with 21 
nodes also has a worse maximum deviation. However, as with 
the square topology, a previous generation had a better 
deviation with a score of 1.8 with an equivalent missing key 
count. 

Therefore, in order to obtain the best results, it is possible 
that saving historical best deviation and missing key count and 
comparing that to the final evolved topology may be the best 
approach. 

  The results in Table 4 show the effect of EBL-GHT on 
larger topologies bound by an area of 160x160 metres. As was 
seen in the small topology, the square with 64 nodes provides 
excellent reachability and storage balance. The square 
topology provides a reachability loss count of 0 before and 
after the 200 evolution steps. The topology also exhibits a 
slight improvement in storage balance. The L-shaped topology 

Fig. 7. Alternating fitness function and effect on network score; the 

current fitness selection, (the blue line), is shown to switch between 

key displacement and key loss. 

TABLE 3 
SMALL TOPOLOGY RESULTS 

 
Square 

(25) 
L Shape 

(16) 
H Shape 

(19) 
Triangle 

(15) 
Hole 
(21) 

Starting KL 0 244 562 132 458 
Ending KL 0 31 3 0 182 

KL difference 0 213 559 132 276 
Starting KD 1759.9 4282.9 2338.1 2323.2 2384.6 
Ending KD 1508.7 2291.4 1787.9 1367.9 1906.3 

KD difference 251.2 1991.6 550.1 955.3 478.3 
Starting MSD 1.8 4.6 3.3 5.9 2.5 
Ending MSD 2.5 3.5 2.4 3.2 3.1 

MSD  
difference 

-0.64 1.1 0.8 2.7 -0.6 

KL = Key Loss, KD = Key Displacement, MSD= Max Store Deviation; 

(Values to 1dp; lower values are better). 



with 48 nodes shows an improvement but an increase in key 
imbalance.  

As was observed through the small topologies, a previous 
evolution had improved balance characteristics, achieving a 
balance of 4.4. However, this time, the key loss is slightly 
higher with a loss of 14,000 keys at evolution 107. There is 
also a deviation of 4.05 with a key loss of 2,000, which leads 
to decisions as to the importance of reducing key balance 
against the cost of key reachability. The H-shaped topology 
with 54 nodes, the Triangle topology with 36 nodes and the 
Hole topology with 52 nodes all improve their key counts. The 
H, Triangle and Hole topology also improve their key 
imbalance. 

E. Execution Time and Performance Implications 

The previous sections have illustrated the quality of 
resulting localisation and position-relative identities generated 
by the proposed approach. This section will discuss some of 
the performance implications, starting with a review of the 
execution time for EBL-GHT by network size. The results 
over a variety of sizes are presented in Table 5: 

The GA execution time is bound by node count, rather than 
topology. The results shown in the table show an exponential 
increase in runtime against size; runtime can be affected by a 
reduction in candidates in each evolution. For the scenario 
given – a long term deployed network with infrequent or 
periodic changes – a lengthy predicted runtime such as this is 
not problematic. EBL-GHT could provide bootstrap / refresh 
functionality and used as a response to triggers such as 
growing key imbalance.    

However, in a rapidly changing or unstable system, a non-
trivial execution runtime is likely to be unsuitable. Whilst 
beyond the scope of this paper, optimisations and further 
localisations could minimise the execution times for changes 
to an existing network. For example, providing the boundary 
topology of the network is unchanged, addition or removal of 
nodes could be treated as an incremental change and identities 
allocated locally and in-network.  

 

The results provided in Table 6 show the number of packets 
transmitted during the initialisation phase. This includes the 
generation of each node’s neighbour table, the construction of 
the root anchored tree and the distribution of neighbour tables 
to the root node.  

The packet cost for position-relative address allocation 
quantifies the cost in the root node allocating every other node 
its address. As the resulting network requires routing, this 
includes the overhead of each multi-hop retransmission.  

This sort of overhead is typical of a multi-hop network, 
which relies on (or relays data to) a centralised co-ordinating 
node. This work has not considered optimising this overhead, 
but a degree of improvement could be attained by aggregating 
data when nodes transmit the neighbour map back, and in 
address allocation. However, in this case, care would have to 
be taken in managing neighbour map dimensions to avoid 
overrunning frame size. 

The following section identifies some further avenues for 
investigation regarding performance implications and 
optimisation in future work. 

VI.  SUMMARY , DISCUSSION AND FUTURE WORK 

This paper detailed a novel technique for generating 
balanced position-relative identities for use in Geographical 
Hash Tables in the IoT. The approach, EBL–GHT, utilises a 
novel alternating fitness function combining the benefits of 
two metrics to improve an initial topology. This work also 
introduces the novel technique of evolving based on the output 
of wireless network simulation to generate layer topology 
improvements. 

The simulation results have shown that the approach 
detailed improves on the initial Fruchterman-Reingold layout 
for all layout types; both for key loss and store-size deviation. 
This will reduce the total power consumed by the network 
when making greedy forwarding decisions, reducing the 

TABLE 4 
LARGE TOPOLOGY RESULTS 

 
Square 

(64)  
L Shape 

(48)  
H Shape 

(54) 
Triangle 

(36) 
Hole 
(52) 

Start KL 0 1972 4737 2626 5760 
End KL 0 1397 1921 576 3895 

KL  
difference 

0 575 2816 2050 1865 

Start KD 4118.3 7482.3 7602.3 6683.7 8679.5 
End KD 3756.4 5042.2 4850.9 4144.6 6455.1 

KD  
difference 

361.9 2440.2 2751.4 2539.1 2224.4 

Start MSD 3.0 4.9 5.1 6.4 4.7 
End MSD 2.8 5.3 4.5 4.2 3.7 

MSD  
difference 

0.3 -0.4 0.6 2.2 0.9 

KL = Individual Key Loss, KD = Key Displacement, MSD = Max Store 

Deviation; (Values to 1dp; lower values are better) 

TABLE 5 
GA EXECUTION TIMES 

Total Nodes 
Single 

Evolution 
Time 

Total Time (200 cycles) 

25 2.9s 580s (9’40”) 
36 7.4s 1480s (24’40”) 
49 16s 3200s (53’20”) 
64 31s 6200s (103’20”) 
81 56s 11200s (186’40”) 
100 95s 19000s (316’40”) 

(As described in Section IV, during a single evolution, 10 candidate networks 

are evaluated. ) 

TABLE 6 
GA PACKET OVERHEAD 

Nodes 
Initialisation / 

neighbour 
data (packets) 

Position 
relative 
address 

allocation 
(packets) 

Total overhead 
(packets) 

25 140 40 180 
36 244 100 344 
49 392 196 588 
64 592 336 928 
81 852 528 1380 
100 1180 780 1960 

(Initialisation and distribution packet cost quantifies the packet overhead in 

initialising and distributing neighbour data and the root anchored tree) 

 



requirement of the angle calculations needed by local 
minimum avoidance techniques. The reduction of imbalance 
in data-store size results in a fairer distribution of state 
amongst individual devices. 

In summary, the following conclusions have been 
established through this study and experimentation: 

Force-directed layouts and topology balance. The 
Fruchterman-Reingold graph layout used in isolation produces 
a good representation of a target topology given the neighbour 
relationships of all devices. However, the topology alone 
provided poor balance and reachability when using 
rendezvous on top of a Geographical Routing Protocol using 
Greedy Forwarding.  

Evolution of force-directed layouts. Using a Genetic 
Algorithm, it is possible to evolve the initial coordinates 
provided by the Fruchterman-Reingold algorithm. This 
improves balance and reachability using rendezvous 
communications on top of Geographical Routing. 

Alternating fitness functions. Adopting an alternating 
fitness function approach can improve the ability of the GA to 
find an optimal solution, when compared to those metrics 
being used alone or through aggregation of metrics. 

This research study opens up a rich seam of potential future 
work. There is scope for immediate future work in terms of 
further improving the efficiency and efficacy of the GA 
approach. Clear performance gains have been achieved by the 
use of an alternating fitness function, over a crude aggregation 
of both fitness metrics. However, there is work to do in terms 
of analysing the ff variable tuning, and in turn, the fitness 
“switchover”.  

Furthermore, in terms of performance, while the GA can 
easily be bounded by the number of generations it will 
evaluate; it is still a time consuming process. Building each 
test network and evaluating it is computationally costly. As 
such, while the process has use in terms of an initialisation or 
periodic network (re)structuring operation, it is not realistic to 
consider it a mechanism for real-time adaptation. Future work 
will investigate these issues of timeliness; including further 
efficiency improvements and parallelisation approaches. 
Specifically we will look to add stochastic network planning 
capabilities to low power devices using hybrid integrated SOC 
+ FPGA technology. The authors believe that the many 
billions of devices that will be deployed to the Internet of 
Things will require in-network/on-silicon solutions to 
stochastic network planning and operations.  

VII.  REFERENCES 
[1] P. Maué and J. Ortmann, “Getting across information communities,” 

Earth Sci. Informatics, vol. 2, no. 4, pp. 217–233, Nov. 2009. 
[2] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application 

Protocol (CoAP),” IETF, 2012. 
[3] T. Winter and P. Thubert, “RPL: IPv6 Routing Protocol for Low power 

and Lossy Networks.,” Internet Draft Draft. Work Prog., 2010. 
[4] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. 

Shenker, “GHT: a geographic hash table for data-centric storage,” in 
Proceedings of the 1st ACM international workshop on Wireless sensor 
networks and applications - WSNA ’02, 2002, p. 78. 

[5] A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord 
Protocol (VCP): A flexible DHT-like routing service for sensor 
networks,” in 2008 5th IEEE International Conference on Mobile Ad 
Hoc and Sensor Systems, 2008, pp. 133–142. 

[6] A. A.-B. Al-Mamou and H. Labiod, “ScatterPastry: An Overlay Routing 
Using a DHT over Wireless Sensor Networks,” in The 2007 
International Conference on Intelligent Pervasive Computing (IPC 
2007), 2007, pp. 274–279. 

[7] H. Pucha, S. M. Das, and Y. C. Hu, “Ekta: an efficient DHT substrate 
for distributed applications in mobile ad hoc networks,” in Mobile 
Computing Systems and Applications, 2004. WMCSA 2004. Sixth IEEE 
Workshop on, 2004, pp. 163–173. 

[8] D. A. Bader, V. Agarwal, and K. Madduri, “On the Design and Analysis 
of Irregular Algorithms on the Cell Processor : A Case Study of List 
Ranking - Georgia Institute of Technology,” Cell, 2007. 

[9] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and 
F. Yu, “Data-Centric Storage in Sensornets with GHT, a Geographic 
Hash Table,” Mob. Networks Appl., vol. 8, no. 4, pp. 427–442, Aug. 
2003. 

[10] M. Albano, S. Chessa, F. Nidito, and S. Pelagatti, “Dealing with 
Nonuniformity in Data Centric Storage for Wireless Sensor Networks,” 
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1398–1406, Aug. 
2011. 

[11] C. E. Perkins and P. Bhagwat, “Highly dynamic Destination-Sequenced 
Distance-Vector routing (DSDV) for mobile computers,” ACM 
SIGCOMM Comput. Commun. Rev., vol. 24, no. 4, pp. 234–244, Oct. 
1994. 

[12] D. Niculescu and B. Nath, “Ad hoc positioning system (APS),” in 
GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. 
No.01CH37270), 2001, vol. 5, pp. 2926–2931. 

[13] S. H. Chagas, J. B. Martins, and L. L. de Oliveira, “Genetic Algorithms 
and Simulated Annealing optimization methods in wireless sensor 
networks localization using artificial neural networks,” in 2012 IEEE 
55th International Midwest Symposium on Circuits and Systems 
(MWSCAS), 2012, pp. 928–931. 

[14] A. Efrat, D. Forrester, A. Iyer, S. G. Kobourov, C. Erten, and O. Kilic, 
“Force-directed approaches to sensor localization,” ACM Trans. Sen. 
Netw., vol. 7, no. 3, pp. 27:1–27:25, Oct. 2010. 

[15] T. Kamada and S. Kawai, “An algorithm for drawing general undirected 
graphs,” Inf. Process. Lett., vol. 31, no. 1, pp. 7–15, Apr. 1989. 

[16] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Softw. Pract. Exp., vol. 21, no. 11, pp. 1129–1164, 
Nov. 1991. 

[17] S. Nawaz and S. Jha, “A Graph Drawing Approach to Sensor Network 
Localization,” IEEE Int. Conf. Mob. Adhoc Sens. Syst. Conf., vol. 0, pp. 
1–12, 2007. 

[18] Q. Zhang, J. Wang, C. Jin, J. Ye, C. Ma, and W. Zhang, “Genetic 
Algorithm Based Wireless Sensor Network Localization,” in 2008 
Fourth International Conference on Natural Computation, 2008, vol. 1, 
pp. 608–613. 

[19] A. Attwood, O. Abuelma’atti, and P. Fergus, “M2M Rendezvous 
Redundancy for the Internet of Things,” in Sixth International 
Conference on Developments in e-Systems Engineering - DeSE2013 
(DeSE2013), 2013. 

[20] G. Csardi and T. Nepusz, “The igraph Software Package for Complex 
Network Research,” InterJournal Complex Syst., p. 1695, 2006. 

[21] B. Karp and H. T. Kung, “GPSR,” in Proceedings of the 6th annual 
international conference on Mobile computing and networking - 
MobiCom ’00, 2000, pp. 243–254. 

[22] S. Nawaz and S. Jha, “A Graph Drawing Approach to Sensor Network 
Localization,” in 2007 IEEE Internatonal Conference on Mobile Adhoc 
and Sensor Systems, 2007, pp. 1–12.  

 
Andrew Attwood gained his PhD in 2014 from 
LJMU, and an MSc in Advanced Computer Science 
from the University of Manchester in 2010. He has 
worked in education and training, providing services 
to International Telecommunications companies. 
Andrew has also been successful in a recent UK TSB 
(SBRI) grant funding application for Future Cities 
data platforms.  
He is presently employed as a Lecturer in the School 
of Computing, Mathematics and Digital Technology, 

Manchester Metropolitan University. His research interests include 
Distributed and Parallel Computing, Evolutionary Algorithms and Wireless 
IoT technology. 
  
 
 



David Lamb gained his PhD in 2009, and a BSc 
(Hons) in Software Engineering in 2005, both from 
LJMU. Before academia, David  worked as a Software 
Engineer for several large UK-based software houses, 
and progressed on to providing development and 
consultancy services directly to organization in the 
public and private sectors. He is presently a Senior 
Lecturer in the School of Computing and Mathematical 
Sciences at LJMU. David presently serves on the TPC 
for the IEEE Conference Developments in eSystems 
engineering, and his research interests include work in 

Distributed Software Engineering and support for large-scale software.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Omar Abuelmaatti received a PhD in Network 
Communication from LJMU in 2006 and an MSc in 
Data Telecommunications and Networking from Salford 
University in 2000. He has been with LJMU since 2001 
where he is now a Programme Leader and a member of 
the Department of Networked Systems and Security and 
the Distributed Multimedia Systems and Security 
Research Group. He has participated in a number of 
successful research and development projects. He has 
extensive expertise in wireless and mobile 
communication systems, including Bluetooth, ZigBee 

and WLAN, GSM, UMTS and WiMAX. His current research interests 
include; Critical Infrastructure and Smart Networks; Wireless and Mobile 
Computing; Wireless Sensor Networks and the Internet of Things; and 
Distributed and  
Cloud Computing. 
 
 
 
 
 
 


