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Abstract 

Traffic analysis and anomaly detection have been extensively used to 

characterize network utilization as well as to identify abnormal 

network traffic such as malicious attacks. However, so far, techniques 

for traffic analysis and anomaly detection have been carried out 

independently, relying on mechanisms and algorithms either in edge 

or in core networks alone. In this paper we propose the notion of 

multi-level network resilience, in order to provide a more robust 

traffic analysis and anomaly detection architecture, combining 

mechanisms and algorithms operating in a coordinated fashion both 

in the edge and in the core networks. This work is motivated by the 

potential complementarities between the research being developed at 

IIT Madras and Lancaster University. In this paper we describe the 

current work being developed at IIT Madras and Lancaster on traffic 

analysis and anomaly detection, and outline the principles of a multi-

level resilience architecture. 
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1. INTRODUCTION 

Traffic analysis and anomaly detection are extensively used 

to understand and characterize network traffic behaviour, as well 

as to identify abnormal operational conditions such as malicious 

attacks. However, techniques for traffic analysis and anomaly 

detection are typically carried out independently in different 

parts of the network, either in the edge or in the core networks 

alone. In fact, different traffic characteristics and anomalies can 

normally be better observed in a specific part of the network, 

although they affect the network as a whole. In this paper, we 

advocate that a comprehensive architecture for network 

resilience must combine traffic analysis and anomaly detection 

mechanisms and algorithms deployed both in the core and edge 

networks, thus introducing the notion of multi-level network 

resilience. 

This work is motivated by the potential complementarities 

between the research being developed at IIT Madras and 

Lancaster University. On the one hand, researchers at IIT 

Madras have concentrated on traffic analysis and anomaly 

detection at the edge of the network, monitoring and measuring 

Internet traffic at web server proxies. In addition to prediction of 

network attacks based on SYN flooding, overall traffic and 

individual user’s traffic behaviour is also monitored, in order to 

classify, predict and control user bandwidth using ARIMA 

timeseries models of network usage. On the other hand, 

Lancaster University has focused on the classification of attack-

related traffic in core networks, in terms of volume-based 

detection of anomalies. The applicability of energy Time-

Frequency distributions alongside the use of Renyi information 

has been utilized for distinguishing malicious traffic from the 

rest of application-layer protocols as seen on the transport layer 

of a core network. 

Both Lancaster and IIT Madras are looking at similar 

machine-learning algorithms for anomaly detection, traffic 

shaping and prediction. IIT Madras’ approach is interesting 

since there are computational resources available at the edge of 

the network to perform efficiently algorithms for anomaly 

detection. However, considering anomaly detection only at the 

end node is limiting since it only observes the effects on 

particular end-systems at the edge of the network but does not 

consider the effects on the network itself. Particularly with 

multiple, coordinated attacks the network might be the actual 

target of the attacker rather than any specific services. Therefore, 

detection should be done as early as possible, alongside the 

network, to increase the evidence and to detect anomalies in a 

more coordinated manner. This is in line with recent trends in 

network-wide and backbone anomaly detection research.  

Hence the proposed joint work on multi-level resilience is 

timely and current. There is a good potential for collaboration in 

investigating the effects, results and benefits of both approaches 

combined. This papers presents an initial investigation on an 

integrated anomaly detection infrastructure, combining metrics 

and mechanisms from both edge and core networks. 

This paper is organised as follows: Section 2 describes our 

independent work in traffic analysis and anomaly detection, both 

in the core and in the edge networks, presenting the mechanisms 

and the algorithms that we intend to integrate in order to realise 

the notion of multi-level network resilience. Section 3 outlines 

the simulation platform that will permit the evaluation of multi-

level network resilience strategies. Section 4 briefly describes a 

case study scenario that is used to illustrate the ideas presented 

in this paper. Finally, Section 5 presents our concluding remarks. 

2. CORE NETWORKS AND EDGE 

NETWORKS OBSERVATIONS  

2.1 TRAFFIC ANALYSIS IN CORE NETWORKS 

Network backbone link traffic exhibits dynamic 

characteristics which are classified as highly non-stationary due 

to their non-constant instantaneous frequency and group delay 

on the Time-Frequency (TF) plane [7]. Under the intention of 

characterizing these dynamics we found as most appropriate to 

exploit the capabilities provided by energy distributions and we 
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have particularly employed formulations belonging in the Cohen 

class of distributions [8]. In particular, we assessed the task of 

application-layer classification with the utilization of 

meaningful, discriminative metrics extracted from the Choi-

Williams distribution [9].  These metrics were used as the 

numerical features for our tree-based classification as being 

provided within the treefit() and classregtree() MATLAB utility 

functions.  

 Our analysis was based upon the independent evaluation and 

observation of the transport protocol’s (i.e. TCP, UDP) volume-

wise behaviour (i.e. counts of packets and bytes per 

unidirectional flow) with respect to their utilization from the 

application protocols/clients. The operational network trace used 

was an hour long sample captured at the Samplepoint-B 

backbone link of the WIDE network and provided by the Mawi 

working group [10]. 

2.1.1. Cohen-Based Energy Distribution and the Choi-

Williams Formulation: 

One of the main problems occurring in TF energy 

representations is that many functions developed under the 

”energy” concept generating such distributions include complex 

and negative values. Even though authors in [8] support the 

incentive of employing a TF energy distribution function by 

having a signal under its analytical form they argue that the 

resulting distributions cannot be considered as proper 

probabilities for real valued signals. Due to the aforementioned 

drawback, Cohen in [11] complementing the work by Wigner 

formulated an initial generic method to generate a range of 

functions which can satisfy the marginal properties which 

enabled the acquisition of positive distributions. 

If we let our signal be s(t) and its analytical form be s(u), the 

representation of the Cohen class of distributions is formulated 

as: 
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where (,), is a two-dimensional kernel function determining 

the specific distribution on a given signal and should satisfy: 

1)0,()0,(                               (2) 

 Under their intention of attenuating cross and self terms 

initiated by a signal on the TF plane Choi and Williams in 

devised a Cohen-based distribution which intuitively (and in 

many cases in practice) satisfies up to a high level of accuracy 

the description of a signal’s energy concentration on the TF 

plane. The initial approach by Choi and Williams was to 

consider a signal s(t) constructed by a number of components:  
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By substituting the above definition in the general Cohen 

class of distributions equation (i.e. formula 1) we obtain a 

resulting distribution which is composed by the sum of self and 

cross terms as naturally evolved by frequency scaling on the 

signal itself alongside the cross-scaling triggered by the 

individual signal components. 
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The sum of cross terms Mai(t,) always under the general 

Cohen equation (formula 1) is represented as: 




  ddudususetM ia
ujjtj

ai )
2

1
()

2

1
(),(

4

1
),(

2
 



 
(5)  

In parallel with their intention of exploring distributions 

under the notions of self and cross terms, Choi and Williams 

realized that interference terms would be greatly reduced with a 

choice of a particular kernel function for (,). This kernel 

function would minimize the cross terms and at the same time 

retain the desirable properties of the self terms.  By investigating 

the local autocorrelation function as well as using the ambiguity 

concept their finalized kernel method was derived as: 
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where  is a constant and is the core variable for controlling the 

suppression of the signal’s cross terms and frequency resolution. 

Using formulas 1, 4, 5, 6 and after per- integration the resulting 

Choi-Williams distribution is:   
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The Choi-Williams (CW) distribution was the mean for 

mapping the measurements obtained for the packet/byte time 

series as seen from each transport protocol. In parallel they 

constituted towards the generation of the Renyi information 

which it was used as the basic discriminative feature for 

classifying our application-signals. 

2.1.2. Renyi Information: 

According to generic information-theoretical principles, the 

extraction and measurement of information on the TF plane can 

be easily achieved with the utilization of the (always positive) 

spectrogram and the well known Shannon entropy. Nevertheless, 

in virtue of the resolution trade-off [12] and bias of the 

spectrogram it is quite disadvantageous to employ it on any of 

the Cohen-based TF distributions. In parallel, due to the negative 

values present in some of these distributions it is also quite 

inefficient to apply the Shannon’s entropy for gaining valuable 

information with respect with the complexity of a given signal 

on the TF plane.    

However, information-theoretic and signal processing 

literature [14], suggest the 3
rd

 order Renyi entropy (in some 

cases also called as dimension) as one of the most accurate 

methods for interpreting a signal’s complexity. The notion of 

complexity is mapped as the number of elementary components 

composing the main signal and is measured in bits. In our 

elementary independent components in our signal are 

corresponding to large deviations from the average packet/byte 

count. Therefore, a large positive-valued Renyi information 

value in bits shows that our signal has high complexity and it is 

composed by a number of components which significantly differ 

numerically from the average byte/pkts count on the TF plane. 
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Fig.1. Tree-based application classification under the CW distribution for WIDE on TCP-packets 

The generalized Renyi information in contrast with the 

Shannon entropy information is a formulation that accepts 

negative values within the under analysis energy TF distribution 

and is defined as: 
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As shown in formula 8, the generalized Renyi information is 

dependent upon the tuning variable a that determines the order 

of the Renyi entropy. In the case of 1
st
 order Renyi entropy, we 

recover the Shannon entropy and the Kullback-Leibler 

divergence and as mentioned earlier it is inefficient to use it 

particularly on any Cohen-based TF distribution. Furthermore, 

the case of a = 2 is ruled out since according to [1]a.[11] the 
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Formula 9 enabled our experimentation to determine distinct 

complexity measurements for particular Internet applications 

and alongside the TF moments we were able to construct a 

feature set for each of the observational datasets and use them 

within our tree-based categorization.  The evaluation presented 

within this document describes mainly the packet-based 

application-classification.  

2.1.3. Classifying Applications on WIDE Based Upon the TCP 

Packet-Based Utilization: 

The hour long trace from WIDE was broken in to 4 equal 

bins (i.e. WIDE-I, II, III and IV) of 13.75 minutes each.   

Using the behavioral and port-based extraction scheme 

provided by the work done in BLINC [1]a.[12] we initially 

extracted the counts of packets associated with TCP and then 

associated each application with its packet-based utilization. A 

subsequent process was to compute the CW distribution for each 

distinct application and further estimate the Renyi information 

provided by each. Specifically we used the sample of WIDE-I as 

a training set and the remaining samples as the testing sets in our 

classification.   

As Fig.1 illustrates our simple tree-based classification 

provided ranks for every application present within the WIDE 

trace and assigned complexity ranks to each.  

Apparently, from a bytes and packets perspective, the most 

complex signal which is structured by intensive flows is the 

traffic triggered by unknown applications (i.e. R<527.135). Even 

though this particular traffic category didn’t exhibit the largest 

amount of unidirectional flows it contained unknown 

applications that were frequently observed throughout the whole 
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WIDE trace and most of them consumed a considerable portion 

of TCP from a packets perspective. Following the lead of 

unknown traffic and second in rank was as anticipated the HTTP 

protocol. As being the dependency for the most commonly used 

applications (e.g. WWW), HTTP had volume-wise the biggest 

amount of flows but its transmissions on average were not 

largely intensive from a packets and bytes perspective. We argue 

that one of the main reasons of being ranked as highly complex 

in this case is due to its enormously big sample size in 

comparison with the rest of the extracted application protocols. 

Apart from that, there were obviously transmissions associated 

with certain applications (e.g. Apache HTTP servers) that 

demonstrated extremely high TCP utilization from a packets 

perspective. However, we can generally conclude that HTTP-

based applications throughout the WIDE trace exhibited 

individually a higher number of packets per flow rather than 

being flows with fewer packets determined by big byte sizes.   

SMB resides as well in the high valued Renyi branches (i.e. 

R<107.763) indicating its frequent appearance in the WIDE 

trace overall. Its placement in this level of complexity indicates 

that SMB-related applications are volume-wise consuming in 

both TCP packets and bytes. In addition, as similarly observed in 

the Keio networks, this high SMB utilization is supportive 

evidence in the argument that the majority of users in the WIDE 

network were running MS-Windows.  Leaving aside SMB, we 

also noticed high packet-wise utilization from SMTP-based mail 

as well as with SSH. Based upon the byte-based rankings, SMTP 

was expected to be categorized as highly complex and intensive 

but on the other it was intriguing the classification achieved for 

SSH. Via this packet-based categorization we could get an 

insight related with SSH-related transmissions and summarize 

that SSH unidirectional flows are much more intensive from a 

packets perspective. Subsequent intensive application protocols 

in the branches where R<70.5613 were expected protocols 

involved with network operations (i.e. NetBIOS), DNS, attack-

related traffic particularly on ports 135 and 1025, as well as 

secured HTTP connections (i.e. HTTPS). 

Possessing a noteworthy amount of TCP packet-wise traffic 

was a TCP utility protocol that of Ident (R<15.1322) which was 

followed by intensive chat applications such as Yahoo! 

Messenger and MSN. Furthermore, file transfers through FTP 

alongside P2P distribution platforms like Bittorrent, PeerEnabler 

and DirectConnect were noticed to use a significant amount of 

TCP packets in each of their flows.  Going to lower branches we 

see rankings of medium complexities (i.e. R<11.4406) to be 

assigned in a variety of applications dealing with P2P (eDonkey, 

FastTrack), live streaming with QuickTime and POP-based mail. 

Relatively having slightly less volume and complexity-wise 

significance were applications in the even lower branch (i.e. 

R<9.0609) indicating their occasional utilization such as IMAP-

based mail, chat through AOL’s Messenger (i.e. AIM), 

encrypted IMAP `mail, P2P traffic via Gnutella and Limewire as 

well as internet live streaming through Shoutcast and MMS.  Of 

lesser importance with respect to their Renyi estimates (i.e. 

R<7.40135) were traditionally UDP-based applications such as 

P2P distribution platforms such as OpenNapster, GoBoogy and 

SoulSeek and Yahoo! Messenger’s video utilities. Similarly with 

the byte-based analysis, Trojans initiated in various TCP 

destination ports indicated an insignificant traffic impact with 

low packet complexity. In fact, the majority of identified Trojans 

and malicious flows carrying worms were associated with well 

known vulnerable TCP ports (e.g. 16, 27, 30, 68). Specifically 

the Trojans identified were those of Skunk, Backboor.Trojan and 

Assassin [1]a.[14].   

2.2 TRAFFIC ANALYSIS IN EDGE NETWORKS 

2.2.1.  Detection of DoS Attacks: 

Time series models are used for modeling and prediction of 

network traffic. Most techniques assume stationarity and 

predictability of the given series. In this paper, an attempt is 

made to analyse network traffic at an edge router in the context 

of TCP SYN based DoS (Denial of Service) attack, using linear 

time series models. The network feature studied in this paper is 

called the Half-Open Count discussed in Section 5.1.  Earlier 

work [24] on this feature modeled it using Auto-Regressive 

(AR) technique, for detection of TCP SYN based DoS (Denial 

of Service) attack at the victim server. But, some of the 

drawbacks of this approach are: stationarity and predictability of 

the time series data are not ensured, but rather assumed, as in the 

case of other related work [4] – [6]. Further, model coefficients 

are recomputed for every observation window of size 6 samples 

(with sampling interval of 10s), which slides over the time series 

one sample at a time. The recomputed coefficients are then used 

for prediction of the attack. This perhaps takes care of the non-

stationarity in the data, but re-computation of coefficients for 

every window of such small size may not be a good approach in 

terms of practical implementation.  

Internet being an extremely dynamic and constantly evolving 

system, it is   unlikely to find any feature that will be invariant 

across all networks at all times. Hence the solution to traffic 

modeling lies in performing suitable transformations on the half-

open time series. In particular, two transformations are discussed 

in this paper, namely differencing and averaging. The effect of 

these on the original series are studied and compared. Further, 

from the analysis, predictability of the time series is found to 

have strong correlation with Hurst exponent, Auto-correlation 

and Smoothness of the series. 

Data Set Used 

Network trace was collected over a period of three months 

from July 15th 2010 to September 30th 2010, from the TENET 

gateway of IIT Madras, using TCPDUMP tool [25]. The 

gateway connects TENET network to the Internet. The 

bandwidth of the link connecting the gateway to the service 

provider is currently 4Mbps. From this trace, the difference in 

number of incoming (traffic entering from outside network) 

SYN packets and number of outgoing (traffic leaving to outside 

network) SYN-ACK packets, called half-open count, are 

extracted at equally spaced time intervals of 10s. For the 

analysis, three data sets are created, each consisting of 5 days 

(i.e 24 hrs x 5 days) data, from Monday to Friday. These data 

sets are checked for any existing TCP SYN DoS attack, by 

verifying whether all the connection requests are valid. This is 

done to demonstrate the effectiveness of our approach in the 

context of TCP SYN based DoS attack detection, discussed in 

Section 5.7. Since the detection algorithm works on the number 

of half-open connections, it will scale for different network 

sizes. 
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Transformations of Time Series 

Three different time series of half-open feature are compared 

in this paper: (a) original, (b) difference and (c) average. To 

generate the difference series, absolute value of the difference 

for consecutive samples is computed. This is also called first 

differencing [26], [27]. A moving average function of the 

original time series using a sliding window of size 30 samples, 

with a one-sample shift, is computed, to form the average time 

series. 

Fig.1 (a) – (c) show the original, difference and average time 

series for the data set-1 for Monday and Thursday respectively. 

Similar trend is observed for other days. Couple of observations 

are worth mentioning: First, the short time variations (spikes) 

can be seen in the original and difference series, but are absent in 

the average series. Such frequent spikes hints that any threshold 

based techniques, like the ones discussed in [28], [29], to detect 

DoS attacks, may not work for these two cases. This is because 

it is highly unlikely that a model can be built which can predict 

frequent spikes accurately. Second, long term variations or trend 

present in the original series are removed in the difference series 

but retained in the average series. 

 

(a) 

 

(b) 

 

(c) 

Fig.2. (a) Original (b) Difference (c) Average time series for 

data set 1 

Stationarity Test 

A process is said to be wide-sense stationary if the mean and 

autocorrelation of the process are invariant over time. This is 

also called weak stationarity [26], [27]. The intuitive idea of 

checking stationarity is to ensure whether the model parameters 

estimated are time invariant. Table.1, Table.2 and Table.3 show 

the mean for the original, difference and average series 

respectively. It can be observed that the means vary across three 

data sets, for all the three time series. But the means within each 

data set, for all the three series, does not show much variation.   

Table.1. Mean of Original Series 

Day I II III 

Mon 13.41 7.89 8.16 

Tue 11.43 8.15 6.7 

Wed 14.09 8.41 4.99 

Thur 14.37 8.44 4.71 

Fri 13.39 8.26 6.01 

Avg. 13.34 8.23 6.11 

Table.2. Mean of Difference Series 

Day I II III 

Mon 5.54 5.04 4.84 

Tue 5.01 5.09 4.21 

Wed 5.64 5.18 3.78 

Thur 5.74 5.04 3.67 

Fri 5.37 5.27 3.99 

Avg. 5.46 5.12 4.1 

Table.3. Mean of Average Series 

Day I II III 

Mon 13.43 7.89 8.16 

Tue 11.43 8.15 6.71 

Wed 14.1 8.41 4.99 

Thur 14.37 8.44 4.71 

Fri 13.39 8.26 6.01 

Avg. 13.34 8.23 6.11 

Fig.3.(a)-(c) show ACF graphs for data set-2, plotted for 

original, difference and average series respectively, which 

doesn't show much variation across different days for each 

series. Similar observations are seen for the other two data sets 

also. This indicates that, though all three series are non-

stationary across data sets, it appears that all are quasi-stationary 

with window size of 5 days or perhaps a week. 
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(a) 

 
(b) 

 
(c) 

Fig.3. ACF for (a) Original (b) Difference (c) Average series for 

data set 2 

Smoothness Factor 

Matthew Roughan et al in their work on modeling backbone 

traffic [30] have quantified the smoothness of the time series in 

terms of relative variance (variance divided by the mean).  If the 

relative variance is low, series is said to be smooth or less 

bursty. Table.4 shows the smoothness computed for all the three 

transformations. Average series is found to be smooth compared 

to the other two series. 

Table.4. Smoothness 

Data Set 
Original 

Series 

Difference 

Series 

Average 

Series 

I 8.41 12.26 3.55 

II 14.72 19.38 2.15 

III 10.61 17.14 2.42 

Hurst Exponent Estimation 

Hurst exponent (H) [31], [32] is a measure of the burstiness 

of the time series. Time series can be classified based on the H 

value as (1) H = 0.5, for white Gaussian noise, (2) 0 < H < 0.5, is 

a mean reverting and less bursty series and (3) 0.5 < H < 1, is a 

bursty and trend reinforcing series.  None of the Hurst estimators 

give correct value and often give conflicting results as indicated 

in [31], [32], [33]. For the analysis described in this paper, a 

software package called SELFIS [34] is used for estimating 

Hurst exponent. Out of the several estimators that were tried out, 

apart from the rescaled range estimator (r/s method), other 

estimators show conflicting results and sometimes Hurst values 

outside the range, 0 to 1. Hence, Hurst estimation based on r/s 

method is used along with smoothening factor discussed in 

Section 5.4, to arrive at a meaningful conclusion. Details of r/s 

estimation are discussed in [33]. Table.5 shows the Hurst 

exponent values for the original, difference and average series. It 

can be observed that the Hurst values for the original and 

difference series are higher than the average series.  This shows 

that the average series is less bursty and smoother than the other 

two series. Also, there is no significant difference between Hurst 

exponent of original and difference series. 

Table.5. Hurst Values 

Data Set 
Original 

Series 

Difference 

Series 

Average 

Series 

I 0.71 0.62 0.44 

II 0.59 0.56 0.42 

III 0.62 0.57 0.42 

Modeling and Prediction 

In order to study the predictability of the series, each data set 

is considered stationary since the mean and auto- correlation are 

relatively constant within each data set as discussed in Section 

5.3. Auto-Regressive model discussed in [26], [27], is used to 

build the model using traffic on 1st day and predict the 5th day’s 

traffic. It is observed experimentally that model order of 2 is a 

good value for prediction. Note that, for each transformation, 

three models need to be built, one for each data set. Estimation 

of AR model coefficients are done by Yule-Walker method 

discussed in [26], [27].  Average relative prediction error is 

shown in Table.6. Relative error is computed by normalising 

prediction error with the actual value for every sample value 

predicted. 

Fig.4 shows the actual and predicted time series for all the 

three transformations of data set-1. It shows larger prediction 

error for the original and difference series compared to the 

average series. Similar behaviour is observed for other two data 
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sets as well. It can be concluded from Table.6 and Fig.4 that the 

average series, which has retained the trend and removed the 

short-term variations or spikes from the original series, is more 

predictable than the other two.  Also, it may be noted that the 

relative error for the difference series is more than the original 

series, which means that differencing has made the original 

series less predictable. 

Table.6. Average Relative Error 

Data Set 
Original 

Series 

Difference 

Series 

Average 

Series 

I 0.46 0.90 0.01 

II 0.78 0.85 0.02 

III 0.77 0.87 0.03 

 

 

Fig.4. Actual vs Predicted for Original, Difference and Average 

Series for data set 1 

Detection of Attack 

A trace driven low rate TCP SYN based DoS attack is 

simulated by generating SYN packets with spoofed unreachable 

IP addresses to a victim server. Rate of the attack is varied 

uniformly from 10 to 20 SYN/second. Duration of the attack is 5 

minutes. Traffic trace at the victim server is collected and is 

mixed with normal traffic of 5th day of each data set to generate 

the attack traffic. The experiment is repeated for 10 times. 

Model is built on the average time series and tested to predict the 

attack traffic.  The relatively large prediction error during an 

attack can be utilised for detecting the attack by fixing a 

threshold on the prediction error. Fig.5 shows the probability of 

wrongly detecting an attack called False Positive (FP) and the 

probability of not detecting an attack called False Negative (FN) 

for various threshold values.  It is found that for a threshold 

value as 0.4, there is 0% FN and 3% FP. The worst-case 

detection delay is 5 minutes taking into account the window size 

of 30 samples for building the average series and sampling 

interval of 10s. 

 

Fig.5. False Positive Vs False Negative 

Discussion 

Most time series analysis of network data assumes 

stationarity and predictability of the given series. But the 

analysis has shown that such assumptions may not be valid at all 

times. Also, various transformations on the time series are 

studied and compared. It is found that appropriate 

transformations on the series can lead to linear models and good 

prediction. Predictability of a series is found to have increased 

with slowly decaying ACF, low Hurst exponent value and low 

relative variance. Detection of low rate TCP SYN DoS attack is 

demonstrated with 3% false positive for detecting all the attacks. 

Since the solution is applied at the edge router of the victim 

server and is based on the number of half-open connections, it is 

scalable to Distributed DoS attack as well. 

2.2.2. Prediction and Control of Bandwidth: 

A frequent and commonly occurring phenomenon in any 

network is the excessive use of bandwidth by a select group of 

users. Analysis of IITM proxy server logs shows that (Fig.6) 

upper band users who constitute less than 10% of users consume 

about 40% of the traffic, roughly following the Pareto 

distribution. It is commonly observed that even though the LAN 

has a dedicated high-speed link to the ISP, during peak hours, 

poor response times are observed by Internet users. Abnormal 

use may be treated as a special case of an anomaly. We therefore 
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propose the framework shown in Fig.7 for detection and control 

of excessive bandwidth usage.  We first monitor user activity, 

and based on this we generate models for predicting bandwidth 

usage for each user. The training of the models may be done 

once a month, while prediction may be performed on a daily 

basis. Then, we predict bandwidth usage, which may be used to 

categorize each user as belonging to one of three categories – 

high, middle or low bandwidth users. A suitable control 

algorithm may be implemented in order to control abnormal 

usage. 

 

 

Fig.6. Distribution of users (top) and traffic generated by each 

category (bottom) 

 

Fig.7. Framework for Bandwidth Prediction and Control 

Time series models have to offer many benefits for 

predicting values at discrete intervals of time. Firstly, they 

handle well sudden (erroneous) spikes in the data and prevent 

them from affecting the forecast. Secondly, they automatically 

adjust to the current trend in the values – which may be caused 

by changes in the environment – for example – the unavailability 

of a link to the ISP, which may in turn affect bandwidth usage. 

Thus, we have chosen time series models for modeling 

bandwidth usage.  

Predicting Bandwidth Usage 

A plot of the autocorrelation and partial autocorrelation 

functions (Fig.8(a) and (b)) for the original series as well as the 

first and second difference show that the plots tail off quickly, 

suggesting that the data is stationary, and so time series models 

may be used. 

All our experiments were carried out using Squid Proxy 

Server logs for the month of January and February 2009. 

January data was used for training – i.e. computing model 

coefficients, and February data was used during the testing phase 

to compute the error between the forecast and actual values. The 

features we have considered are number of HTTP requests and 

number of bytes received for a particular user. Each sample data 

point in our case consists of the value of a feature (e.g. number 

of HTTP requests) accumulated over a period of two hours.  We 

performed the following experiments: 

1. Static Coefficients: Coefficients computed during the 

training phase were kept constant right through the testing 

phase. 

2. Dynamic Coefficients:  Coefficients were re-computed each 

time for forecasting the next value in the testing phase. 

3. Common Model for each Category:  Common model 

coefficients were computed for each category (e.g. high 

band users) and forecasting performed using this common 

model for all users. 

 
(a) 

 
(b) 

Fig.8(a) Auto-correlation function and (b) Partial Auto-

correlation function 
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These experiments were carried out using AR, ARI, 

ARMA and ARIMA time series models for the same data set. 

The average relative error was computed as the error in 

prediction normalized by the actual data value. This was used to 

compare the predictive capability of the different models. 

The results indicate that there is no substantial difference 

between the performance of the static coefficients model and 

dynamic coefficients model. However, the static coefficients 

model performed better than the common model. The results for 

static coefficients across different models have been shown in 

Table.7. Best forecasting is obtained for ARI and ARIMA 

models. 

Table.7. Comparison of Different Time Series Models 

Model 

Average relative 

error for no of 

bytes 

Average relative 

error for no of 

requests 

AR 2.06 0.86 

ARI 0.52 0.51 

ARMA 1.6 0.88 

ARIMA 0.49 0.49 

Entropy-Based Scheme for Classification 

Entropy also seems to be a promising alternative means of 

analysing user access patterns. We may define for example the 

normalized entropy as 

    

  U

uPuP

=H Uu

log

log 
  

where U is the set of URLs accessed by a user. If the user 

typically has few frequently accessed sites, his normalized 

entropy value would be low, whereas if he typically accesses a 

large number of URLs as in the case of a high band user, his 

normalized entropy value would be high. Fig.9 shows the 

distribution of users for different values of normalized entropy. 

 

Fig.9. Distribution of Users for Different Normalized Entropy 

Ranges 

We would like to propose as a future direction the use of 

information-theoretic criteria to design a full-fledged classification 

scheme. 

3. SIMULATION PLATFORM 

It is difficult to evaluate complex multi-level resilience 

strategies that involve the interplay between a number of 

detection and remediation mechanisms both at the core and edge 

networks, which must be activated on demand according to 

events observed in the network (as opposed to hardcoded 

protocols). In order to evaluate such resilience strategies we 

have previously proposed the notion of a policy-driven resilience 

simulator [1], based on the integration of a network simulator 

and a policy management framework. The toolset allows the use 

of policies to specify the required management actions to be 

performed, according to conditions observed during run-time in 

the simulation. The use of policies for the specification of 

resilience strategies was previously described in [2]. For 

example, the policy shown Fig.10 can be used to reconfigure a 

rate-limiting component based on the occurrence of a high risk 

event (raised, for example, by an anomaly detection component) 

and additional contextual information, e.g. the current utilisation 

on a specific link. 

on AnomalyDetectorMO . highRisk ( link , src , dst )  

if (LinkMonitorMO. getUtilisation () >= 75%) 

                do RateLimiterMO . limit ( link , 60%) 

Fig.10. Management policy for reconfiguring a rate limiter 

component based on a high-risk event 

One of the direct benefits of integrating a network simulator 

with a policy framework is that we can understand how real 

policies dynamically affect the operation of resilience 

mechanisms running within the simulation environment, and 

then evaluate resilience strategies before they are deployed in the 

network infrastructure. This permits the evaluation of complex 

resilience strategies without the need of a real testbed 

deployment of mechanisms, which typically involves high costs 

of hardware and effort. The next sections briefly outline the 

design of the simulation platform and give details about our 

prototype implementation. 

3.1  DESIGN ISSUES 

The resilience simulation platform is primarily based on the 

integration between a network simulator and a policy 

management framework. In [16], a number of techniques for 

integrating a network simulator environment and external third 

party applications were compared: (a) socket connection relies 

on proxies within the simulation that maintain connections to 

third party applications, without incurring major changes to the 

third party application. This technique, however, may suffer 

from CPU scheduling problems because simulations typically 

run faster than the integrated third-party application; (b) source 

code integration can be straightforward for simple applications, 

but it is difficult to be implemented for larger applications 

because of build dependencies that must be resolved. 

Furthermore, threads in the third party application can still suffer 

from CPU scheduling issues and cause problems such as access 

violations; finally, (c) shared libraries is similar to source code 

integration, but is based on the integration between the simulator 

and the binary code of the third party application. This avoids 

the problems related to the building process, however, it still 

suffers from the threading and timing problems. 
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The integration technique used in our prototype 

implementation is based on proxies, similar to the socket 

connection method, but using RMI/RPC objects instead. 

Typically, this technique can be used if data from lower layer 

protocols is not exchanged with the external application [16]. 

For the resilience simulation platform, it is expected that CPU 

scheduling and synchronisation issues can be minimised because 

packet-level information is not exchanged with the policy 

framework. Instead, exchanges are limited to selected control 

events and the corresponding management commands alone. 

We have considered the use of the most popular network 

simulators, including NS-2 [18], NS-3 [19], OMNeT++ [20], 

SSFNet [21] and OPNET [22]. The choice of a network 

simulator was driven by a number of requirements, including (i) 

the ability to extend and instrument the simulation tool, (ii) the 

availability of a large number of network models, (iii) the 

scalability and performance of the simulator, and (iv) the ability 

of the simulator to model different types of networks. After an 

initial evaluation we discarded OPNET as it is a commercial tool 

and the source code for its simulation kernel is not publicly 

available, and NS-2 due to recurring reports of its poor 

scalability. We considered NS-3, OMNeT++ and SSFNet 

equally suitable for our requirements, but due to our previous 

experience with SSFNet and familiarity with its API the initial 

implementation described in [1] is based on this simulator. 

Recently, we have ported this prototype to an OMNeT++ 

implementation, since OMNeT++ is considered one of the most 

popular simulators for research in communication networks. 

3.2 PROTOTYPE IMPLEMENTATION 

The prototype is based on the integration between the 

network simulator and the Ponder2 policy framework [23]. 

Ponder2 implements a policy execution framework that supports 

the enforcement of event-condition-action (ECA) and 

authorisation policies. Policies are written in terms of managed 

objects programmed in Java, which are stored in a local domain 

service. Based on our previous investigations [17], Ponder2 was 

considered to be more extensible and with better infrastructure 

support when compared to other policy frameworks. 

Resilience mechanisms are represented by instrumented 

components in the simulation environment. They provide 

callback functions for management operations, and run 

alongside standard simulated objects. These instrumented 

components are implemented as OMNeT++ modules, and at the 

moment most are extensions of the standard Router module (we 

plan to instrument additional modules at the upper layers of the 

protocol stack as part of our future work). 

FlowExporterMO and IntrusionDetectionMO are positioned 

above the network layer, and receive duplicate packets. 

RateLimiterMO is placed in-line between the network and 

physical layers. Finally, LinkMonitorMO was implemented by 

modifying an existing channel type, allowing us to place it at 

any position within the network topology. 

 

 

Fig.11. Integration between a network simulator and Ponder2 

Such components export their callback functions through 

management interfaces, which are made accessible by the policy 

decision point (PDP). Communication between simulated 

objects and the external policy framework is implemented via 

adapter objects, which abstract invocation details using the 

XMLRPC protocol. An event broker resolves and maps event 

notifications from inside the simulation (e.g., anomaly 

detections, link utilization, etc) to the policy framework, which 

according to a dynamic set of policies invokes adaptive actions 

in the instrumented components running within the simulation 

(Fig.11). 

This platform permits the implementation of detection and 

remediation components both in core or edge networks. It can be 

used to explicitly model the interactions between these 

mechanisms and observe how they can dynamically impact the 

operation of the network. As part of our future work we intend 

to build a library of instrumented resilience components 

implementing detection and remediation mechanisms at both the 

core and the edge portions of the simulated network. 

4. MULTI-LEVEL RESILIENCE STRATEGIES 

4.1 MULTI-LEVEL WORM DETECTION 

Ultimately, multi-level resilience architecture would involve 

explicit interactions between edge and core mechanisms. We 

anticipate, for example, the exchanges of “hints” between edge 

and core detection mechanisms to assist in the more effectively 

gathering of evidence for particular types of anomalies. These 

hints may, for example, cause the modification of the set of 

management policies enforced by the components operating in a 

specific segment of the network. Likewise, we envisage also the 

collaboration between remediation mechanisms at different 

levels to mitigate an anomaly.  

In order to demonstrate the feasibility of a multi-level 

resilience strategy we propose a case study based on a worm 

propagation scenario. In this scenario, a collaborative core/edge 

methodology would employ cross-layering early detection and 

remediation of worm propagation before its full effect is 

achieved. Computer worms can quickly propagate in the Internet 

due to their self-replication capability, and severely disrupt the 

operation of the network in particular due to the increased 

network traffic. Therefore it is needed to detect worm 

propagations as early as possible in order to allow sufficient 
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warning time for reaction before the whole network is 

compromised. Examples of particularly disruptive worms 

include Code Red [3], Blaster [4], Sasser [5] and Slammer [6].  

 

Fig.12. Multi-level architecture for worm detection 

Worms typically spread through the exploitation of 

vulnerabilities in the operating systems. Typically, a worm 

presents simple attack behaviours, and all computers infected by 

this worm will send malicious traffic with statistically similar 

behaviour. It differs from other challenges to network operation, 

such as a DDoS, in the sense that a DDoS has only one or a 

small number of targets, whereas a worm has no specific target 

in the network. 

Our proposed multi-level architecture for addressing worm 

detection includes both transport layer mechanisms operating at 

the core network as well as application layer mechanisms in the 

edge network. On the one hand, the transport layer analysis will 

use entropy distributions (of src/dst ports, src/dst IP addresses, 

payload, or byte and packet sizes) as input to the Bispectrum 

analysis. On the other hand, application layer analysis will 

perform time series analysis on application-layer protocols and 

use machine learning techniques for storing worm behaviour. 

The conceptual multi-level architecture for the worm scenario is 

depicted in Fig.12. This architecture relies on the cooperation 

between transport and application layer mechanisms to share and 

correlate information for identifying and predicting worm 

propagation. We intend to refine this architecture and simulate 

the interactions between core and edge mechanisms as part of 

our future work. 

5. CONCLUSIONS 

In this paper, we proposed the notion of multi-level network 

resilience. This work is motivated by the potential 

complementarities between the research being developed at IIT 

Madras and Lancaster University, in order to provide a 

collaborative traffic analysis and anomaly detection, combining 

mechanisms and algorithms deployed both in the core and edge 

networks. We described in this paper the current work developed 

at IIT Madras and Lancaster on traffic analysis and anomaly 

detection, which will form the basis of a multi-level resilience 

architecture. We also outlined the simulation platform we intend 

to use to evaluate our joint work, as well as a worm propagation 

case study scenario that illustrates how mechanisms from the 

two realms can be combined. 

As part of our future work, we are going to refine the ideas 

presented in this paper and, based on the case study scenario, 

propose a multi-level architecture using a combination of traffic 

classification and detection techniques operating both at the core 

and edge networks. The simulation platform will allow us to 

evaluate how network-, transport- and application-layer 

mechanisms can exchange information and operate together. 

Moreover, as part of the work on the multi-level resilience 

architecture we also intend to develop a joint data-set analysis 

and validation of anomaly detection methods and time series 

models. Both IIT Madras and Lancaster use time series models 

on different datasets, the former focusing on application and 

packet data from the network edge and the latter focusing on 

network flows at the network core. Although the approaches are 

sound, promising and have established similar ground truths, it 

is still necessary to validate these approaches on common data 

sets. 
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