
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

345

MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY

DETECTION AND SIMULATION

Angelos Marnerides
1
, Cyriac James

2
, Alberto Schaeffer-Filho

3
, Saad Yunus Sait

4
, Andreas Mauthe

5
 and

Hema Murthy
6

1, 3, 5
School of Computing and Communications, Lancaster University, United Kingdom

E-mail:
1
a.marnerides@lancaster.ac.uk,

3
asf@comp.lancs.ac.uk,

5
andreas@comp.lancs.ac.uk

2,4,6
Department of Computer Science and Engineering, Indian Institute of Technology Madras, India

E-mail:
2
cyriac@lantana.tenet.res.in,

4
saad@lantana.tenet.res.in,

6
hema@lantana.tenet.res.in

Abstract

Traffic analysis and anomaly detection have been extensively used to

characterize network utilization as well as to identify abnormal

network traffic such as malicious attacks. However, so far, techniques

for traffic analysis and anomaly detection have been carried out

independently, relying on mechanisms and algorithms either in edge

or in core networks alone. In this paper we propose the notion of

multi-level network resilience, in order to provide a more robust

traffic analysis and anomaly detection architecture, combining

mechanisms and algorithms operating in a coordinated fashion both

in the edge and in the core networks. This work is motivated by the

potential complementarities between the research being developed at

IIT Madras and Lancaster University. In this paper we describe the

current work being developed at IIT Madras and Lancaster on traffic

analysis and anomaly detection, and outline the principles of a multi-

level resilience architecture.

Keywords:

Traffic Analysis, Core and Edge Networks, Network Resilience,

Anomaly Detection

1. INTRODUCTION

Traffic analysis and anomaly detection are extensively used

to understand and characterize network traffic behaviour, as well

as to identify abnormal operational conditions such as malicious

attacks. However, techniques for traffic analysis and anomaly

detection are typically carried out independently in different

parts of the network, either in the edge or in the core networks

alone. In fact, different traffic characteristics and anomalies can

normally be better observed in a specific part of the network,

although they affect the network as a whole. In this paper, we

advocate that a comprehensive architecture for network

resilience must combine traffic analysis and anomaly detection

mechanisms and algorithms deployed both in the core and edge

networks, thus introducing the notion of multi-level network

resilience.

This work is motivated by the potential complementarities

between the research being developed at IIT Madras and

Lancaster University. On the one hand, researchers at IIT

Madras have concentrated on traffic analysis and anomaly

detection at the edge of the network, monitoring and measuring

Internet traffic at web server proxies. In addition to prediction of

network attacks based on SYN flooding, overall traffic and

individual user’s traffic behaviour is also monitored, in order to

classify, predict and control user bandwidth using ARIMA

timeseries models of network usage. On the other hand,

Lancaster University has focused on the classification of attack-

related traffic in core networks, in terms of volume-based

detection of anomalies. The applicability of energy Time-

Frequency distributions alongside the use of Renyi information

has been utilized for distinguishing malicious traffic from the

rest of application-layer protocols as seen on the transport layer

of a core network.

Both Lancaster and IIT Madras are looking at similar

machine-learning algorithms for anomaly detection, traffic

shaping and prediction. IIT Madras’ approach is interesting

since there are computational resources available at the edge of

the network to perform efficiently algorithms for anomaly

detection. However, considering anomaly detection only at the

end node is limiting since it only observes the effects on

particular end-systems at the edge of the network but does not

consider the effects on the network itself. Particularly with

multiple, coordinated attacks the network might be the actual

target of the attacker rather than any specific services. Therefore,

detection should be done as early as possible, alongside the

network, to increase the evidence and to detect anomalies in a

more coordinated manner. This is in line with recent trends in

network-wide and backbone anomaly detection research.

Hence the proposed joint work on multi-level resilience is

timely and current. There is a good potential for collaboration in

investigating the effects, results and benefits of both approaches

combined. This papers presents an initial investigation on an

integrated anomaly detection infrastructure, combining metrics

and mechanisms from both edge and core networks.

This paper is organised as follows: Section 2 describes our

independent work in traffic analysis and anomaly detection, both

in the core and in the edge networks, presenting the mechanisms

and the algorithms that we intend to integrate in order to realise

the notion of multi-level network resilience. Section 3 outlines

the simulation platform that will permit the evaluation of multi-

level network resilience strategies. Section 4 briefly describes a

case study scenario that is used to illustrate the ideas presented

in this paper. Finally, Section 5 presents our concluding remarks.

2. CORE NETWORKS AND EDGE

NETWORKS OBSERVATIONS

2.1 TRAFFIC ANALYSIS IN CORE NETWORKS

Network backbone link traffic exhibits dynamic

characteristics which are classified as highly non-stationary due

to their non-constant instantaneous frequency and group delay

on the Time-Frequency (TF) plane [7]. Under the intention of

characterizing these dynamics we found as most appropriate to

exploit the capabilities provided by energy distributions and we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/42476768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ANGELOS MARNERIDES et al.: MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

346

have particularly employed formulations belonging in the Cohen

class of distributions [8]. In particular, we assessed the task of

application-layer classification with the utilization of

meaningful, discriminative metrics extracted from the Choi-

Williams distribution [9]. These metrics were used as the

numerical features for our tree-based classification as being

provided within the treefit() and classregtree() MATLAB utility

functions.

 Our analysis was based upon the independent evaluation and

observation of the transport protocol’s (i.e. TCP, UDP) volume-

wise behaviour (i.e. counts of packets and bytes per

unidirectional flow) with respect to their utilization from the

application protocols/clients. The operational network trace used

was an hour long sample captured at the Samplepoint-B

backbone link of the WIDE network and provided by the Mawi

working group [10].

2.1.1. Cohen-Based Energy Distribution and the Choi-

Williams Formulation:

One of the main problems occurring in TF energy

representations is that many functions developed under the

”energy” concept generating such distributions include complex

and negative values. Even though authors in [8] support the

incentive of employing a TF energy distribution function by

having a signal under its analytical form they argue that the

resulting distributions cannot be considered as proper

probabilities for real valued signals. Due to the aforementioned

drawback, Cohen in [11] complementing the work by Wigner

formulated an initial generic method to generate a range of

functions which can satisfy the marginal properties which

enabled the acquisition of positive distributions.

If we let our signal be s(t) and its analytical form be s(u), the

representation of the Cohen class of distributions is formulated

as:




  ddudususetM ujjtj)
2

1
()

2

1
(*),(

4

1
),(

2
   







, (1)

where (,), is a two-dimensional kernel function determining

the specific distribution on a given signal and should satisfy:

1)0,()0,(  (2)

 Under their intention of attenuating cross and self terms

initiated by a signal on the TF plane Choi and Williams in

devised a Cohen-based distribution which intuitively (and in

many cases in practice) satisfies up to a high level of accuracy

the description of a signal’s energy concentration on the TF

plane. The initial approach by Choi and Williams was to

consider a signal s(t) constructed by a number of components:





N

a

a tsts
1

)()((3)

By substituting the above definition in the general Cohen

class of distributions equation (i.e. formula 1) we obtain a

resulting distribution which is composed by the sum of self and

cross terms as naturally evolved by frequency scaling on the

signal itself alongside the cross-scaling triggered by the

individual signal components.

 






N

a

N

ai
ia

aiaa tMtMtM
1 1,

),(),(),(

 (4)

The sum of cross terms Mai(t,) always under the general

Cohen equation (formula 1) is represented as:




  ddudususetM ia
ujjtj

ai)
2

1
()

2

1
(),(

4

1
),(

2
 



(5)

In parallel with their intention of exploring distributions

under the notions of self and cross terms, Choi and Williams

realized that interference terms would be greatly reduced with a

choice of a particular kernel function for (,). This kernel

function would minimize the cross terms and at the same time

retain the desirable properties of the self terms. By investigating

the local autocorrelation function as well as using the ambiguity

concept their finalized kernel method was derived as:

 /22

),( e , (6)

where  is a constant and is the core variable for controlling the

suppression of the signal’s cross terms and frequency resolution.

Using formulas 1, 4, 5, 6 and after per- integration the resulting

Choi-Williams distribution is:

    
 

















  


  dudususetCW ju

2

1

2

1

/

1

4

1
),(/4/

22/3

22

 (7)

The Choi-Williams (CW) distribution was the mean for

mapping the measurements obtained for the packet/byte time

series as seen from each transport protocol. In parallel they

constituted towards the generation of the Renyi information

which it was used as the basic discriminative feature for

classifying our application-signals.

2.1.2. Renyi Information:

According to generic information-theoretical principles, the

extraction and measurement of information on the TF plane can

be easily achieved with the utilization of the (always positive)

spectrogram and the well known Shannon entropy. Nevertheless,

in virtue of the resolution trade-off [12] and bias of the

spectrogram it is quite disadvantageous to employ it on any of

the Cohen-based TF distributions. In parallel, due to the negative

values present in some of these distributions it is also quite

inefficient to apply the Shannon’s entropy for gaining valuable

information with respect with the complexity of a given signal

on the TF plane.

However, information-theoretic and signal processing

literature [14], suggest the 3
rd

 order Renyi entropy (in some

cases also called as dimension) as one of the most accurate

methods for interpreting a signal’s complexity. The notion of

complexity is mapped as the number of elementary components

composing the main signal and is measured in bits. In our

elementary independent components in our signal are

corresponding to large deviations from the average packet/byte

count. Therefore, a large positive-valued Renyi information

value in bits shows that our signal has high complexity and it is

composed by a number of components which significantly differ

numerically from the average byte/pkts count on the TF plane.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

347

Fig.1. Tree-based application classification under the CW distribution for WIDE on TCP-packets

The generalized Renyi information in contrast with the

Shannon entropy information is a formulation that accepts

negative values within the under analysis energy TF distribution

and is defined as:

1.0),(log
1

1
2 
















  









a ,a dtdtM
a

R aa
M 

(8)

As shown in formula 8, the generalized Renyi information is

dependent upon the tuning variable a that determines the order

of the Renyi entropy. In the case of 1
st
 order Renyi entropy, we

recover the Shannon entropy and the Kullback-Leibler

divergence and as mentioned earlier it is inefficient to use it

particularly on any Cohen-based TF distribution. Furthermore,

the case of a = 2 is ruled out since according to [1]a.[11] the

term  








1),(2  dtdtM resulting to 02 MR for any

type of signal. Thus, for the specific case of Cohen-based TF

distributions it suggested for a  3 and by employing it on

formula 8 we obtain:

.),(log
2

1 3
2

3














  









 dtdtMRM

(9)

Formula 9 enabled our experimentation to determine distinct

complexity measurements for particular Internet applications

and alongside the TF moments we were able to construct a

feature set for each of the observational datasets and use them

within our tree-based categorization. The evaluation presented

within this document describes mainly the packet-based

application-classification.

2.1.3. Classifying Applications on WIDE Based Upon the TCP

Packet-Based Utilization:

The hour long trace from WIDE was broken in to 4 equal

bins (i.e. WIDE-I, II, III and IV) of 13.75 minutes each.

Using the behavioral and port-based extraction scheme

provided by the work done in BLINC [1]a.[12] we initially

extracted the counts of packets associated with TCP and then

associated each application with its packet-based utilization. A

subsequent process was to compute the CW distribution for each

distinct application and further estimate the Renyi information

provided by each. Specifically we used the sample of WIDE-I as

a training set and the remaining samples as the testing sets in our

classification.

As Fig.1 illustrates our simple tree-based classification

provided ranks for every application present within the WIDE

trace and assigned complexity ranks to each.

Apparently, from a bytes and packets perspective, the most

complex signal which is structured by intensive flows is the

traffic triggered by unknown applications (i.e. R<527.135). Even

though this particular traffic category didn’t exhibit the largest

amount of unidirectional flows it contained unknown

applications that were frequently observed throughout the whole

ANGELOS MARNERIDES et al.: MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

348

WIDE trace and most of them consumed a considerable portion

of TCP from a packets perspective. Following the lead of

unknown traffic and second in rank was as anticipated the HTTP

protocol. As being the dependency for the most commonly used

applications (e.g. WWW), HTTP had volume-wise the biggest

amount of flows but its transmissions on average were not

largely intensive from a packets and bytes perspective. We argue

that one of the main reasons of being ranked as highly complex

in this case is due to its enormously big sample size in

comparison with the rest of the extracted application protocols.

Apart from that, there were obviously transmissions associated

with certain applications (e.g. Apache HTTP servers) that

demonstrated extremely high TCP utilization from a packets

perspective. However, we can generally conclude that HTTP-

based applications throughout the WIDE trace exhibited

individually a higher number of packets per flow rather than

being flows with fewer packets determined by big byte sizes.

SMB resides as well in the high valued Renyi branches (i.e.

R<107.763) indicating its frequent appearance in the WIDE

trace overall. Its placement in this level of complexity indicates

that SMB-related applications are volume-wise consuming in

both TCP packets and bytes. In addition, as similarly observed in

the Keio networks, this high SMB utilization is supportive

evidence in the argument that the majority of users in the WIDE

network were running MS-Windows. Leaving aside SMB, we

also noticed high packet-wise utilization from SMTP-based mail

as well as with SSH. Based upon the byte-based rankings, SMTP

was expected to be categorized as highly complex and intensive

but on the other it was intriguing the classification achieved for

SSH. Via this packet-based categorization we could get an

insight related with SSH-related transmissions and summarize

that SSH unidirectional flows are much more intensive from a

packets perspective. Subsequent intensive application protocols

in the branches where R<70.5613 were expected protocols

involved with network operations (i.e. NetBIOS), DNS, attack-

related traffic particularly on ports 135 and 1025, as well as

secured HTTP connections (i.e. HTTPS).

Possessing a noteworthy amount of TCP packet-wise traffic

was a TCP utility protocol that of Ident (R<15.1322) which was

followed by intensive chat applications such as Yahoo!

Messenger and MSN. Furthermore, file transfers through FTP

alongside P2P distribution platforms like Bittorrent, PeerEnabler

and DirectConnect were noticed to use a significant amount of

TCP packets in each of their flows. Going to lower branches we

see rankings of medium complexities (i.e. R<11.4406) to be

assigned in a variety of applications dealing with P2P (eDonkey,

FastTrack), live streaming with QuickTime and POP-based mail.

Relatively having slightly less volume and complexity-wise

significance were applications in the even lower branch (i.e.

R<9.0609) indicating their occasional utilization such as IMAP-

based mail, chat through AOL’s Messenger (i.e. AIM),

encrypted IMAP `mail, P2P traffic via Gnutella and Limewire as

well as internet live streaming through Shoutcast and MMS. Of

lesser importance with respect to their Renyi estimates (i.e.

R<7.40135) were traditionally UDP-based applications such as

P2P distribution platforms such as OpenNapster, GoBoogy and

SoulSeek and Yahoo! Messenger’s video utilities. Similarly with

the byte-based analysis, Trojans initiated in various TCP

destination ports indicated an insignificant traffic impact with

low packet complexity. In fact, the majority of identified Trojans

and malicious flows carrying worms were associated with well

known vulnerable TCP ports (e.g. 16, 27, 30, 68). Specifically

the Trojans identified were those of Skunk, Backboor.Trojan and

Assassin [1]a.[14].

2.2 TRAFFIC ANALYSIS IN EDGE NETWORKS

2.2.1. Detection of DoS Attacks:

Time series models are used for modeling and prediction of

network traffic. Most techniques assume stationarity and

predictability of the given series. In this paper, an attempt is

made to analyse network traffic at an edge router in the context

of TCP SYN based DoS (Denial of Service) attack, using linear

time series models. The network feature studied in this paper is

called the Half-Open Count discussed in Section 5.1. Earlier

work [24] on this feature modeled it using Auto-Regressive

(AR) technique, for detection of TCP SYN based DoS (Denial

of Service) attack at the victim server. But, some of the

drawbacks of this approach are: stationarity and predictability of

the time series data are not ensured, but rather assumed, as in the

case of other related work [4] – [6]. Further, model coefficients

are recomputed for every observation window of size 6 samples

(with sampling interval of 10s), which slides over the time series

one sample at a time. The recomputed coefficients are then used

for prediction of the attack. This perhaps takes care of the non-

stationarity in the data, but re-computation of coefficients for

every window of such small size may not be a good approach in

terms of practical implementation.

Internet being an extremely dynamic and constantly evolving

system, it is unlikely to find any feature that will be invariant

across all networks at all times. Hence the solution to traffic

modeling lies in performing suitable transformations on the half-

open time series. In particular, two transformations are discussed

in this paper, namely differencing and averaging. The effect of

these on the original series are studied and compared. Further,

from the analysis, predictability of the time series is found to

have strong correlation with Hurst exponent, Auto-correlation

and Smoothness of the series.

Data Set Used

Network trace was collected over a period of three months

from July 15th 2010 to September 30th 2010, from the TENET

gateway of IIT Madras, using TCPDUMP tool [25]. The

gateway connects TENET network to the Internet. The

bandwidth of the link connecting the gateway to the service

provider is currently 4Mbps. From this trace, the difference in

number of incoming (traffic entering from outside network)

SYN packets and number of outgoing (traffic leaving to outside

network) SYN-ACK packets, called half-open count, are

extracted at equally spaced time intervals of 10s. For the

analysis, three data sets are created, each consisting of 5 days

(i.e 24 hrs x 5 days) data, from Monday to Friday. These data

sets are checked for any existing TCP SYN DoS attack, by

verifying whether all the connection requests are valid. This is

done to demonstrate the effectiveness of our approach in the

context of TCP SYN based DoS attack detection, discussed in

Section 5.7. Since the detection algorithm works on the number

of half-open connections, it will scale for different network

sizes.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

349

Transformations of Time Series

Three different time series of half-open feature are compared

in this paper: (a) original, (b) difference and (c) average. To

generate the difference series, absolute value of the difference

for consecutive samples is computed. This is also called first

differencing [26], [27]. A moving average function of the

original time series using a sliding window of size 30 samples,

with a one-sample shift, is computed, to form the average time

series.

Fig.1 (a) – (c) show the original, difference and average time

series for the data set-1 for Monday and Thursday respectively.

Similar trend is observed for other days. Couple of observations

are worth mentioning: First, the short time variations (spikes)

can be seen in the original and difference series, but are absent in

the average series. Such frequent spikes hints that any threshold

based techniques, like the ones discussed in [28], [29], to detect

DoS attacks, may not work for these two cases. This is because

it is highly unlikely that a model can be built which can predict

frequent spikes accurately. Second, long term variations or trend

present in the original series are removed in the difference series

but retained in the average series.

(a)

(b)

(c)

Fig.2. (a) Original (b) Difference (c) Average time series for

data set 1

Stationarity Test

A process is said to be wide-sense stationary if the mean and

autocorrelation of the process are invariant over time. This is

also called weak stationarity [26], [27]. The intuitive idea of

checking stationarity is to ensure whether the model parameters

estimated are time invariant. Table.1, Table.2 and Table.3 show

the mean for the original, difference and average series

respectively. It can be observed that the means vary across three

data sets, for all the three time series. But the means within each

data set, for all the three series, does not show much variation.

Table.1. Mean of Original Series

Day I II III

Mon 13.41 7.89 8.16

Tue 11.43 8.15 6.7

Wed 14.09 8.41 4.99

Thur 14.37 8.44 4.71

Fri 13.39 8.26 6.01

Avg. 13.34 8.23 6.11

Table.2. Mean of Difference Series

Day I II III

Mon 5.54 5.04 4.84

Tue 5.01 5.09 4.21

Wed 5.64 5.18 3.78

Thur 5.74 5.04 3.67

Fri 5.37 5.27 3.99

Avg. 5.46 5.12 4.1

Table.3. Mean of Average Series

Day I II III

Mon 13.43 7.89 8.16

Tue 11.43 8.15 6.71

Wed 14.1 8.41 4.99

Thur 14.37 8.44 4.71

Fri 13.39 8.26 6.01

Avg. 13.34 8.23 6.11

Fig.3.(a)-(c) show ACF graphs for data set-2, plotted for

original, difference and average series respectively, which

doesn't show much variation across different days for each

series. Similar observations are seen for the other two data sets

also. This indicates that, though all three series are non-

stationary across data sets, it appears that all are quasi-stationary

with window size of 5 days or perhaps a week.

ANGELOS MARNERIDES et al.: MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

350

(a)

(b)

(c)

Fig.3. ACF for (a) Original (b) Difference (c) Average series for

data set 2

Smoothness Factor

Matthew Roughan et al in their work on modeling backbone

traffic [30] have quantified the smoothness of the time series in

terms of relative variance (variance divided by the mean). If the

relative variance is low, series is said to be smooth or less

bursty. Table.4 shows the smoothness computed for all the three

transformations. Average series is found to be smooth compared

to the other two series.

Table.4. Smoothness

Data Set
Original

Series

Difference

Series

Average

Series

I 8.41 12.26 3.55

II 14.72 19.38 2.15

III 10.61 17.14 2.42

Hurst Exponent Estimation

Hurst exponent (H) [31], [32] is a measure of the burstiness

of the time series. Time series can be classified based on the H

value as (1) H = 0.5, for white Gaussian noise, (2) 0 < H < 0.5, is

a mean reverting and less bursty series and (3) 0.5 < H < 1, is a

bursty and trend reinforcing series. None of the Hurst estimators

give correct value and often give conflicting results as indicated

in [31], [32], [33]. For the analysis described in this paper, a

software package called SELFIS [34] is used for estimating

Hurst exponent. Out of the several estimators that were tried out,

apart from the rescaled range estimator (r/s method), other

estimators show conflicting results and sometimes Hurst values

outside the range, 0 to 1. Hence, Hurst estimation based on r/s

method is used along with smoothening factor discussed in

Section 5.4, to arrive at a meaningful conclusion. Details of r/s

estimation are discussed in [33]. Table.5 shows the Hurst

exponent values for the original, difference and average series. It

can be observed that the Hurst values for the original and

difference series are higher than the average series. This shows

that the average series is less bursty and smoother than the other

two series. Also, there is no significant difference between Hurst

exponent of original and difference series.

Table.5. Hurst Values

Data Set
Original

Series

Difference

Series

Average

Series

I 0.71 0.62 0.44

II 0.59 0.56 0.42

III 0.62 0.57 0.42

Modeling and Prediction

In order to study the predictability of the series, each data set

is considered stationary since the mean and auto- correlation are

relatively constant within each data set as discussed in Section

5.3. Auto-Regressive model discussed in [26], [27], is used to

build the model using traffic on 1st day and predict the 5th day’s

traffic. It is observed experimentally that model order of 2 is a

good value for prediction. Note that, for each transformation,

three models need to be built, one for each data set. Estimation

of AR model coefficients are done by Yule-Walker method

discussed in [26], [27]. Average relative prediction error is

shown in Table.6. Relative error is computed by normalising

prediction error with the actual value for every sample value

predicted.

Fig.4 shows the actual and predicted time series for all the

three transformations of data set-1. It shows larger prediction

error for the original and difference series compared to the

average series. Similar behaviour is observed for other two data

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

351

sets as well. It can be concluded from Table.6 and Fig.4 that the

average series, which has retained the trend and removed the

short-term variations or spikes from the original series, is more

predictable than the other two. Also, it may be noted that the

relative error for the difference series is more than the original

series, which means that differencing has made the original

series less predictable.

Table.6. Average Relative Error

Data Set
Original

Series

Difference

Series

Average

Series

I 0.46 0.90 0.01

II 0.78 0.85 0.02

III 0.77 0.87 0.03

Fig.4. Actual vs Predicted for Original, Difference and Average

Series for data set 1

Detection of Attack

A trace driven low rate TCP SYN based DoS attack is

simulated by generating SYN packets with spoofed unreachable

IP addresses to a victim server. Rate of the attack is varied

uniformly from 10 to 20 SYN/second. Duration of the attack is 5

minutes. Traffic trace at the victim server is collected and is

mixed with normal traffic of 5th day of each data set to generate

the attack traffic. The experiment is repeated for 10 times.

Model is built on the average time series and tested to predict the

attack traffic. The relatively large prediction error during an

attack can be utilised for detecting the attack by fixing a

threshold on the prediction error. Fig.5 shows the probability of

wrongly detecting an attack called False Positive (FP) and the

probability of not detecting an attack called False Negative (FN)

for various threshold values. It is found that for a threshold

value as 0.4, there is 0% FN and 3% FP. The worst-case

detection delay is 5 minutes taking into account the window size

of 30 samples for building the average series and sampling

interval of 10s.

Fig.5. False Positive Vs False Negative

Discussion

Most time series analysis of network data assumes

stationarity and predictability of the given series. But the

analysis has shown that such assumptions may not be valid at all

times. Also, various transformations on the time series are

studied and compared. It is found that appropriate

transformations on the series can lead to linear models and good

prediction. Predictability of a series is found to have increased

with slowly decaying ACF, low Hurst exponent value and low

relative variance. Detection of low rate TCP SYN DoS attack is

demonstrated with 3% false positive for detecting all the attacks.

Since the solution is applied at the edge router of the victim

server and is based on the number of half-open connections, it is

scalable to Distributed DoS attack as well.

2.2.2. Prediction and Control of Bandwidth:

A frequent and commonly occurring phenomenon in any

network is the excessive use of bandwidth by a select group of

users. Analysis of IITM proxy server logs shows that (Fig.6)

upper band users who constitute less than 10% of users consume

about 40% of the traffic, roughly following the Pareto

distribution. It is commonly observed that even though the LAN

has a dedicated high-speed link to the ISP, during peak hours,

poor response times are observed by Internet users. Abnormal

use may be treated as a special case of an anomaly. We therefore

ANGELOS MARNERIDES et al.: MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

352

propose the framework shown in Fig.7 for detection and control

of excessive bandwidth usage. We first monitor user activity,

and based on this we generate models for predicting bandwidth

usage for each user. The training of the models may be done

once a month, while prediction may be performed on a daily

basis. Then, we predict bandwidth usage, which may be used to

categorize each user as belonging to one of three categories –

high, middle or low bandwidth users. A suitable control

algorithm may be implemented in order to control abnormal

usage.

Fig.6. Distribution of users (top) and traffic generated by each

category (bottom)

Fig.7. Framework for Bandwidth Prediction and Control

Time series models have to offer many benefits for

predicting values at discrete intervals of time. Firstly, they

handle well sudden (erroneous) spikes in the data and prevent

them from affecting the forecast. Secondly, they automatically

adjust to the current trend in the values – which may be caused

by changes in the environment – for example – the unavailability

of a link to the ISP, which may in turn affect bandwidth usage.

Thus, we have chosen time series models for modeling

bandwidth usage.

Predicting Bandwidth Usage

A plot of the autocorrelation and partial autocorrelation

functions (Fig.8(a) and (b)) for the original series as well as the

first and second difference show that the plots tail off quickly,

suggesting that the data is stationary, and so time series models

may be used.

All our experiments were carried out using Squid Proxy

Server logs for the month of January and February 2009.

January data was used for training – i.e. computing model

coefficients, and February data was used during the testing phase

to compute the error between the forecast and actual values. The

features we have considered are number of HTTP requests and

number of bytes received for a particular user. Each sample data

point in our case consists of the value of a feature (e.g. number

of HTTP requests) accumulated over a period of two hours. We

performed the following experiments:

1. Static Coefficients: Coefficients computed during the

training phase were kept constant right through the testing

phase.

2. Dynamic Coefficients: Coefficients were re-computed each

time for forecasting the next value in the testing phase.

3. Common Model for each Category: Common model

coefficients were computed for each category (e.g. high

band users) and forecasting performed using this common

model for all users.

(a)

(b)

Fig.8(a) Auto-correlation function and (b) Partial Auto-

correlation function

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

353

These experiments were carried out using AR, ARI,

ARMA and ARIMA time series models for the same data set.

The average relative error was computed as the error in

prediction normalized by the actual data value. This was used to

compare the predictive capability of the different models.

The results indicate that there is no substantial difference

between the performance of the static coefficients model and

dynamic coefficients model. However, the static coefficients

model performed better than the common model. The results for

static coefficients across different models have been shown in

Table.7. Best forecasting is obtained for ARI and ARIMA

models.

Table.7. Comparison of Different Time Series Models

Model

Average relative

error for no of

bytes

Average relative

error for no of

requests

AR 2.06 0.86

ARI 0.52 0.51

ARMA 1.6 0.88

ARIMA 0.49 0.49

Entropy-Based Scheme for Classification

Entropy also seems to be a promising alternative means of

analysing user access patterns. We may define for example the

normalized entropy as

    

  U

uPuP

=H Uu

log

log 


where U is the set of URLs accessed by a user. If the user

typically has few frequently accessed sites, his normalized

entropy value would be low, whereas if he typically accesses a

large number of URLs as in the case of a high band user, his

normalized entropy value would be high. Fig.9 shows the

distribution of users for different values of normalized entropy.

Fig.9. Distribution of Users for Different Normalized Entropy

Ranges

We would like to propose as a future direction the use of

information-theoretic criteria to design a full-fledged classification

scheme.

3. SIMULATION PLATFORM

It is difficult to evaluate complex multi-level resilience

strategies that involve the interplay between a number of

detection and remediation mechanisms both at the core and edge

networks, which must be activated on demand according to

events observed in the network (as opposed to hardcoded

protocols). In order to evaluate such resilience strategies we

have previously proposed the notion of a policy-driven resilience

simulator [1], based on the integration of a network simulator

and a policy management framework. The toolset allows the use

of policies to specify the required management actions to be

performed, according to conditions observed during run-time in

the simulation. The use of policies for the specification of

resilience strategies was previously described in [2]. For

example, the policy shown Fig.10 can be used to reconfigure a

rate-limiting component based on the occurrence of a high risk

event (raised, for example, by an anomaly detection component)

and additional contextual information, e.g. the current utilisation

on a specific link.

on AnomalyDetectorMO . highRisk (link , src , dst)

if (LinkMonitorMO. getUtilisation () >= 75%)

 do RateLimiterMO . limit (link , 60%)

Fig.10. Management policy for reconfiguring a rate limiter

component based on a high-risk event

One of the direct benefits of integrating a network simulator

with a policy framework is that we can understand how real

policies dynamically affect the operation of resilience

mechanisms running within the simulation environment, and

then evaluate resilience strategies before they are deployed in the

network infrastructure. This permits the evaluation of complex

resilience strategies without the need of a real testbed

deployment of mechanisms, which typically involves high costs

of hardware and effort. The next sections briefly outline the

design of the simulation platform and give details about our

prototype implementation.

3.1 DESIGN ISSUES

The resilience simulation platform is primarily based on the

integration between a network simulator and a policy

management framework. In [16], a number of techniques for

integrating a network simulator environment and external third

party applications were compared: (a) socket connection relies

on proxies within the simulation that maintain connections to

third party applications, without incurring major changes to the

third party application. This technique, however, may suffer

from CPU scheduling problems because simulations typically

run faster than the integrated third-party application; (b) source

code integration can be straightforward for simple applications,

but it is difficult to be implemented for larger applications

because of build dependencies that must be resolved.

Furthermore, threads in the third party application can still suffer

from CPU scheduling issues and cause problems such as access

violations; finally, (c) shared libraries is similar to source code

integration, but is based on the integration between the simulator

and the binary code of the third party application. This avoids

the problems related to the building process, however, it still

suffers from the threading and timing problems.

ANGELOS MARNERIDES et al.: MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

354

The integration technique used in our prototype

implementation is based on proxies, similar to the socket

connection method, but using RMI/RPC objects instead.

Typically, this technique can be used if data from lower layer

protocols is not exchanged with the external application [16].

For the resilience simulation platform, it is expected that CPU

scheduling and synchronisation issues can be minimised because

packet-level information is not exchanged with the policy

framework. Instead, exchanges are limited to selected control

events and the corresponding management commands alone.

We have considered the use of the most popular network

simulators, including NS-2 [18], NS-3 [19], OMNeT++ [20],

SSFNet [21] and OPNET [22]. The choice of a network

simulator was driven by a number of requirements, including (i)

the ability to extend and instrument the simulation tool, (ii) the

availability of a large number of network models, (iii) the

scalability and performance of the simulator, and (iv) the ability

of the simulator to model different types of networks. After an

initial evaluation we discarded OPNET as it is a commercial tool

and the source code for its simulation kernel is not publicly

available, and NS-2 due to recurring reports of its poor

scalability. We considered NS-3, OMNeT++ and SSFNet

equally suitable for our requirements, but due to our previous

experience with SSFNet and familiarity with its API the initial

implementation described in [1] is based on this simulator.

Recently, we have ported this prototype to an OMNeT++

implementation, since OMNeT++ is considered one of the most

popular simulators for research in communication networks.

3.2 PROTOTYPE IMPLEMENTATION

The prototype is based on the integration between the

network simulator and the Ponder2 policy framework [23].

Ponder2 implements a policy execution framework that supports

the enforcement of event-condition-action (ECA) and

authorisation policies. Policies are written in terms of managed

objects programmed in Java, which are stored in a local domain

service. Based on our previous investigations [17], Ponder2 was

considered to be more extensible and with better infrastructure

support when compared to other policy frameworks.

Resilience mechanisms are represented by instrumented

components in the simulation environment. They provide

callback functions for management operations, and run

alongside standard simulated objects. These instrumented

components are implemented as OMNeT++ modules, and at the

moment most are extensions of the standard Router module (we

plan to instrument additional modules at the upper layers of the

protocol stack as part of our future work).

FlowExporterMO and IntrusionDetectionMO are positioned

above the network layer, and receive duplicate packets.

RateLimiterMO is placed in-line between the network and

physical layers. Finally, LinkMonitorMO was implemented by

modifying an existing channel type, allowing us to place it at

any position within the network topology.

Fig.11. Integration between a network simulator and Ponder2

Such components export their callback functions through

management interfaces, which are made accessible by the policy

decision point (PDP). Communication between simulated

objects and the external policy framework is implemented via

adapter objects, which abstract invocation details using the

XMLRPC protocol. An event broker resolves and maps event

notifications from inside the simulation (e.g., anomaly

detections, link utilization, etc) to the policy framework, which

according to a dynamic set of policies invokes adaptive actions

in the instrumented components running within the simulation

(Fig.11).

This platform permits the implementation of detection and

remediation components both in core or edge networks. It can be

used to explicitly model the interactions between these

mechanisms and observe how they can dynamically impact the

operation of the network. As part of our future work we intend

to build a library of instrumented resilience components

implementing detection and remediation mechanisms at both the

core and the edge portions of the simulated network.

4. MULTI-LEVEL RESILIENCE STRATEGIES

4.1 MULTI-LEVEL WORM DETECTION

Ultimately, multi-level resilience architecture would involve

explicit interactions between edge and core mechanisms. We

anticipate, for example, the exchanges of “hints” between edge

and core detection mechanisms to assist in the more effectively

gathering of evidence for particular types of anomalies. These

hints may, for example, cause the modification of the set of

management policies enforced by the components operating in a

specific segment of the network. Likewise, we envisage also the

collaboration between remediation mechanisms at different

levels to mitigate an anomaly.

In order to demonstrate the feasibility of a multi-level

resilience strategy we propose a case study based on a worm

propagation scenario. In this scenario, a collaborative core/edge

methodology would employ cross-layering early detection and

remediation of worm propagation before its full effect is

achieved. Computer worms can quickly propagate in the Internet

due to their self-replication capability, and severely disrupt the

operation of the network in particular due to the increased

network traffic. Therefore it is needed to detect worm

propagations as early as possible in order to allow sufficient

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY: SPECIAL ISSUE ON NEXT GENERATION WIRELESS NETWORKS AND

APPLICATIONS, JUNE 2011, VOLUME – 2, ISSUE – 2

355

warning time for reaction before the whole network is

compromised. Examples of particularly disruptive worms

include Code Red [3], Blaster [4], Sasser [5] and Slammer [6].

Fig.12. Multi-level architecture for worm detection

Worms typically spread through the exploitation of

vulnerabilities in the operating systems. Typically, a worm

presents simple attack behaviours, and all computers infected by

this worm will send malicious traffic with statistically similar

behaviour. It differs from other challenges to network operation,

such as a DDoS, in the sense that a DDoS has only one or a

small number of targets, whereas a worm has no specific target

in the network.

Our proposed multi-level architecture for addressing worm

detection includes both transport layer mechanisms operating at

the core network as well as application layer mechanisms in the

edge network. On the one hand, the transport layer analysis will

use entropy distributions (of src/dst ports, src/dst IP addresses,

payload, or byte and packet sizes) as input to the Bispectrum

analysis. On the other hand, application layer analysis will

perform time series analysis on application-layer protocols and

use machine learning techniques for storing worm behaviour.

The conceptual multi-level architecture for the worm scenario is

depicted in Fig.12. This architecture relies on the cooperation

between transport and application layer mechanisms to share and

correlate information for identifying and predicting worm

propagation. We intend to refine this architecture and simulate

the interactions between core and edge mechanisms as part of

our future work.

5. CONCLUSIONS

In this paper, we proposed the notion of multi-level network

resilience. This work is motivated by the potential

complementarities between the research being developed at IIT

Madras and Lancaster University, in order to provide a

collaborative traffic analysis and anomaly detection, combining

mechanisms and algorithms deployed both in the core and edge

networks. We described in this paper the current work developed

at IIT Madras and Lancaster on traffic analysis and anomaly

detection, which will form the basis of a multi-level resilience

architecture. We also outlined the simulation platform we intend

to use to evaluate our joint work, as well as a worm propagation

case study scenario that illustrates how mechanisms from the

two realms can be combined.

As part of our future work, we are going to refine the ideas

presented in this paper and, based on the case study scenario,

propose a multi-level architecture using a combination of traffic

classification and detection techniques operating both at the core

and edge networks. The simulation platform will allow us to

evaluate how network-, transport- and application-layer

mechanisms can exchange information and operate together.

Moreover, as part of the work on the multi-level resilience

architecture we also intend to develop a joint data-set analysis

and validation of anomaly detection methods and time series

models. Both IIT Madras and Lancaster use time series models

on different datasets, the former focusing on application and

packet data from the network edge and the latter focusing on

network flows at the network core. Although the approaches are

sound, promising and have established similar ground truths, it

is still necessary to validate these approaches on common data

sets.

ACKNOWLEDGEMENTS

This work has been supported by the EPSRC funded India-

UK Advance Technology Centre in Next Generation

Networking.

REFERENCES

[1] Schaeffer-Filho, P. Smith, and A. Mauthe, “Policy-driven

network simulation: a resilience case study”, in

Proceedings of the 26th ACM Symposium on Applied

Computing (SAC 2011), ACM. Taichung, Taiwan.

[2] P. Smith, A. Schaeffer-Filho, A. Ali, M. Schöller, N. Kheir,

A. Mauthe, D. Hutchison, “Strategies for Network

Resilience: Capitalising on Policies”, in: Proceedings of

the 4th International Conference on Autonomous

Infrastructure, Management and Security (AIMS 2010),

ser. LNCS. Zurich, Switzerland. Springer, pp.118-122.

[3] eEye Digital Security, .ida March 2011, “Code Red”

Worm. Available online at:

http://www.eeye.com/Resources/Security-

Center/Research/Security-Advisories/AL20010717. Access

March 2011.

[4] eEye Digital Security, Blaster Worm. Available online at:

http://www.eeye.com/Resources/Security-

Center/Research/Security-Advisories/AL20030811. Access

March 2011.

[5] eEye Digital Security, Sasser Worm. Available online at:

http://www.eeye.com/Resources/Security-

Center/Research/Security-Advisories/AD20040501. Access

March 2011.

[6] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,

and N. Weaver, “Inside the Slammer worm”, IEEE

Security and Privacy Magazine, Vol. 1, No. 4, pp. 33-39,

2003.

[7] A. K. Marnerides, “Traffic Deomposition and

Characterization”, In Proceeding of Multi-Service

Networks (MSN’10), Cosener’s House, Abingdon, Oxford,

UK, 2010.

[8] L. Cohen, “Time-Frequency Distributions – A Review”,

Proceedings of the IEEE, Vol. 77, No. 7, pp.941-981,

1989.

ANGELOS MARNERIDES et al.: MULTI-LEVEL NETWORK RESILIENCE: TRAFFIC ANALYSIS, ANOMALY DETECTION AND SIMULATION

356

[9] H. Choi, W.J.Williams, “Improved Time-Frequency

Representation of MultiComponent Signals Using

Exponential Kernels”, in IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. 37, No. 6, 1999.

[10] The MAWI working group : http://mawi.wide.ad.jp/mawi/

[11] L. Cohen, T. E. Posch, “Positive Time-Frequency

Distribution Functions”, in IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol ASSP-33,

No. 1, 1985.

[12] R. Baraniuk, P. Flandrin and O. Michel, “Information and

Complexity on the Time-Frequency Plane”, ICASSP,

Vol.6, IEEE International Conference on Acoustics,

Speech and Signal Processing, 1994.

[13] T. Karagiannis, K. Papagiannaki, M. Faloutsos, “BLINC:

Multilevel Classification in the Dark”, in ACM SIGCOMM

2005, Philadelphia, Pensylvania.

[14] F. Auger, P. Flandrin, P. Concalves, O. Lemoine, “Time-

Frequency Toolbox for use with MATLAB”.

[15] SpeedNet Internet Ports Guide:

http://www.speedguide.net/ports_sg.php.

[16] C. P. Mayer and T. Gamer, “Integrating real world

applications into OMNeT ”, Telematics Technical Report

TM-200 -2, Institute of Telematics, Universita t Karlsruhe,

2008.

[17] A. Schaeffer-Filho, “Supporting Management Interaction

and Composition of Self-Managed Cells”, PhD thesis,

Imperial College London, 2009.

[18] NS-2 Website. The Network Simulator - NS-2.

http://www.isi.edu/nsnam/ns/. Accessed March 2010.

[19] NS-3 Website. The NS-3 network simulator.

http://www.nsnam.org/. Accessed March 2010.

[20] OMNeT++ Website. OMNeT++.

http://www.omnetpp.org/. Accessed March 2010.

[21] SSFNet Website. Modeling the Global Internet.

http://www.ssfnet.org/. Accessed March 2010.

[22] OPNET Website. OPNET Modeler Accelerating Network

R&D (Network Simulation).

http:// www.opnet.com/solutions/network rd/modeler.html.

Accessed March 2010.

[23] K. Twidle, E. Lupu, N. Dulay, and M. Sloman, “Ponder2 -

a policy environment for autonomous pervasive systems”,

IEEE Workshop on Policies for Distributed Systems and

Networks, pp.245–246, 2008.

[24] D. M. Divakaran, H. A. Murthy, and T. A. Gonsalves,

“Detection of SYN flooding attacks using linear prediction

analysis”, ICON’06, Vol. 1, pp. 1 – 6.

[25] “Tcpdump,” http://www.tcpdump.org/.

[26] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, “Time

Series Analysis:Forecasting and Control”, Pearson

Education, 1994.

[27] G. Kirchgassner and J. Wolters, “Introduction to Modern

Time SeriesAnalysis”, Springer, 2007.

[28] H. Wang, D. Zhang, and K. G. Shin, “Detecting syn

flooding attacks,” in Proceedings of the IEEE INFOCOM,

2002.

[29] H. Wang, D. Zhang, and K. Shin, “Syn-dog: Sniffing syn

floodingsources,” in ICDCS, 2002.

[30] M. Roughan and J. Gottlieb, “Large Scale Measurement

and Modelingof Backbone Interent Traffic,” in Internet

Performance and Control of Network Systems, 2002.

[31] T. Karagiannis, M. Faloutsos, and R. H. Riedi, “Long-

range dependence: Now you see it, now you dont!” in

GLOBECOM, 2002.

[32] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-range

dependence ten years of internet traffic modeling,” in IEEE

Internet Computing, Vol. 8, pp. 57–64, 2004.

[33] B. Qian and K. Rasheed, “Hurst Exponent And Financial
MarketPredictability,” in IASTED conference on Financial

Engineering and Applications, 2004.

[34] “University of california riverside,”

www.cs.ucr.edu/∼tkarag.

