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Abstract  

The OASIS standard Devices Profile for Web Services (DPWS) enables the use of Web services for service-oriented and 

event-driven Internet of Things (IoT) applications. DPWS has been proven to be an appropriate technology for 

implementing services on resource-constrained devices. However, the performance of these services has not been well 

investigated to realize DPWS features such as dynamic discovery and eventing mechanisms for IoT scenarios. Moreover, 

DPWS introduces considerable overhead due to the use of Simple Object Access Protocol (SOAP) envelopes in exchange 

messages. We extend the DPWS standard by using a Representational State Transfer (REST) proxy to tackle these 

problems, creating RESTful Web APIs to pave the way for developers to invest more in this technology.  
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1. Introduction 

We are witnessing the next major evolution of the Internet where millions of devices become connected to the Internet to 

create a new ecosystem called Internet of Things (IoT). IoT has recently gained momentum with the advancement in 

technology and the arrival of many commercial products that are penetrating our daily life. When it comes to IoT 

applications, especially for the integration into the Web, standards such as CoAP [1] and DPWS [2] are being developed to 

support the creation of a new generation of applications. The OASIS standard DPWS enables secure Web service 

capabilities on resource-constrained devices, which can be used for service-oriented and event-driven applications in the 

area of networked devices, the Internet of Things (IoT). DPWS has an architectural concept similar to World Wide Web 

Consortium (W3C) Web Service Architecture [3] but different in several ways to better fit in resource-constrained 

environments (constrained nodes and low-power, lossy networks) and event-driven scenarios. DPWS is based on Web 

Service Description Language
1
 (WSDL) and Simple Object Access Protocol

2
 (SOAP) to describe and communicate device 

services, but it does not require any central service registry such as Universal Description, Discovery and Integration
3
 

(UDDI) for service discovery. Instead, it relies on SOAP-over-UDP
4
 binding and UDP multicast to dynamically discover 

device services. DPWS offers a publish/subscribe eventing mechanism, WS-Eventing
5
, for clients to subscribe for device 

events, e.g., a device switch is on/off or sensing when temperature reaches a predefined threshold. When an event occurs, 

notifications are delivered to subscribers via separate TCP connections.  

These features, secure Web services, dynamic discovery, and eventing, are the main advantages of DPWS for event-driven 

IoT applications. Nevertheless, in fact, developers would face several problems when applying DPWS for Web-based IoT 

applications. The main concern is about the dynamic discovery in which the network range of UDP multicast messages is 

limited to the local subnet. Therefore, it is impossible to carry out this mechanism in a large network such as the Internet. 

With WS-Eventing, the establishment of separate TCP connections in case of delivering the same event notification to many 

different subscribers will generate a global mesh-like connectivity between all devices and subscribers (see Figure 1b). This 

requires high memory, processing power, and network traffic and thus consumes a considerable amount of energy in 

devices. Another issue is the overhead due to the data representation in XML format and multiple bidirectional message 

exchanges. It is not a problem when most DPWS devices currently communicate locally, but in a mass deployment of 

devices, these messages would generate heavy Internet traffic and increase the latency in device/application communication. 

Furthermore, W3C Web services use WSDL for service description and SOAP for service communication; the former, 

despite the fact that it is a W3C standard, requires much effort from developers to process poorly-structured XML data; the 

                                                           
1 http://www.w3.org/TR/wsdl 
2 http://www.w3.org/TR/soap/ 
3 http://uddi.org/pubs/uddi_v3.htm 
4 http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html 
5 http://www.w3.org/Submission/WS-Eventing/ 
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latter is mostly common in stateful enterprise applications, whereas recent Web applications are moving toward the core 

Web concepts referred as Representational State Transfer (REST) [4] by offering stateless, unified, and simple interfaces of 

RESTful Web APIs. 

We propose the extension of DPWS standard using a REST proxy to solve these problems by providing the following 

features: (1) global dynamic discovery using WS-Discovery
6

 in local networks; (2) proxy-based topology for 

publish/subscribe eventing mechanism; (3) dynamic REST addressing for DPWS devices; (4) RESTful Web APIs; and (5) 

WSDL caching. This REST proxy extension of DPWS unburdens Internet traffic by processing the main load in local 

networks. Also, the proxy can extend the dynamic discovery from locally to globally through RESTful Web APIs. 

Developers do not have to parse complex WSDL documents to get access to service descriptions; they can use RESTful 

Web APIs to control devices. Experiment results show a plain topology and substantial reductions in the overhead and 

latency when using our proposed proxy. 

2. Web Services for the Internet of Things 

The IoT is an ecosystem where all smart things or networked devices (i.e., sensors and actuators, embedded devices, 

electronic appliances, and digitally enhanced everyday objects) are connected using IP protocols to facilitate 

interoperability. It envisions an era of pervasive applications that are built on top of these networked devices. IoT scenarios 

require not only to have devices connected to the Internet but also seamlessly integrated into existing Internet infrastructure 

in which Web applications are predominant. The IoT could benefit from the Web service architecture like today's Web does 

by using the DPWS standard. DPWS brings W3C Web service technology into the era of networked devices by defining a 

set of specifications to provide a secure and effective mechanism for describing, discovering, messaging, and eventing of 

services for resource-constrained devices. DPWS uses WSDL to describe the device, Web Services Metadata Exchange
7
 to 

define metadata about the device, and WS-Transfer
8
 to retrieve the service description and metadata information about the 

device. Messaging is done by using SOAP, WS-Addressing
9
, and MTOM/XOP

10
 with SOAP-over-HTTP and SOAP-over-

UDP bindings. It uses WS-Discovery for discovering a device (hosting service), WS-Eventing for setting up and managing 

subscriptions to the device events, and Web Services Policy
11

 to define a policy assertion to indicate compliance of the 

device with DPWS. 

Since its debut in 2004 by a consortium led by Microsoft, DPWS has become part of Microsoft's Windows Vista and 

Windows Rally (a set of technologies from Microsoft intended to simplify the setup and maintenance of wired and wireless 

networked devices), and has been developed in several research and development projects under the European Information 

Technology for European Advancement (ITEA) and Framework Programme (FP): SIRENA (02014 ITEA2), SODA (05022 

ITEA2), SOCRATES (FP6), and on-going IMC-AESOP (FP7) and WOO (10028 ITEA2). Many technology giants such as 

ABB, SAP, Schneider Electric, Siemens, and Thales have been participating in these projects. As they have large market 

shares in electronics, power, automation technologies as well as enterprise solutions, their promotion of the DPWS 

technology promise a wide range of the future DPWS/IoT products. Schneider Electric and Odonata pioneered the 

implementation of DPWS leading to the early and open-source release of software stacks implementing DPWS in C and 

Java available at Service-Oriented Architecture for Device Website (SOA4D.org). Web Services for Devices initiative 

(WS4D.org) reinforces the implementation by providing and maintaining a repository to host several open-source stacks 

and toolkits for DPWS. In addition, many researches have been recently carried out to complete the technology. Experiment 

results show that DPWS is able to be implemented into (even) highly resource-constrained devices such as sensor nodes 

with reasonable ROM footprints [5]. Other technical issues of DPWS have also been explored such as encoding and 

compression [6], the integration with IPv6 infrastructure and 6LoWPAN [7, 8], the scalability of service deployment [9], 

and the security in the latest release of WS4D DPWS stacks. 

                                                           
6 http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01 
7 http://www.w3.org/TR/ws-metadata-exchange/ 
8 http://www.w3.org/Submission/WS-Transfer/ 
9 http://www.w3.org/Submission/ws-addressing/ 
10 http://www.w3.org/TR/soap12-mtom/ 
11 http://www.w3.org/Submission/WS-Policy/ 
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DPWS thus far has been widely used in automation industry, home entertainment, and automotive systems [10] and also 

applicable for enterprise integrations [11]. It satisfies many requirements for IoT applications such as resource-constrained, 

event-driven, and dynamic discovery; In the meantime, it can maintain the integration with the Internet and enterprises 

infrastructures. In addition, the strong support from the community is another reason to make it a promising technology for 

the future IoT. However, IoT systems containing a huge number of devices, in contrast to small numbers in industrial and 

home applications, cause some features of DPWS such as dynamic discovery and publish/subscribe eventing impossible in a 

global and mass deployment of devices. It is therefore necessary to extend DPWS to fit to IoT scenarios with several 

problems need to be resolved before DPWS can successfully arrive in the IoT domain. In the following sections, we are 

going to analyze DPWS problems with IoT and propose the extension of DPWS standard by using a REST proxy. 

3. Use case 

In the new ecosystem of networked devices, many IoT platforms are provided to build a new generation of Web-based 

applications aggregating these services. Peter, an IoT user, chooses a DPWS platform for his Web-based home automation 

system. He would like to make a module for controlling a newly-purchased DPWS heater. The heater is equipped with a 

temperature sensor, a switch, memory, a processor, and networking media, and is implemented with a hosted Heater 

service. Heater service consists of seven operations: (1) check the heater status (GetStatus), (2) switch the heater on/off 

(SetStatus), (3) get room temperature (GetTemperature), (4) adjust the heater temperature (SetTemperature), (5) add 

(AddRule), (6) remove (RemoveRule), and (7) get (GetRules) available policy rules for defining automatic operation of the 

heater. 

Peter connects the heater to the network and tries to control it from his IoT application. We will follow Peter’s development 

process to understand what challenges he can encounter when developing, deploying, and consuming the device from his 

IoT application and how the extended DPWS helps him to solve these problems. This use case illustrates a common case in 

several consumer applications when a new device joins the network. 

4. REST Proxy Design 

4.1. Global Dynamic Discovery 

When an application tries to locate a device in a network, it sends a UDP multicast message (using the SOAP-over-UDP 

binding) carrying a SOAP envelope that contains a WS-Discovery Probe message with search criteria, e.g., the name of the 

device. All the devices in the network (local subnet) that match the search criteria will respond with a unicast WS-

Discovery Probe Match message (also using the SOAP-over-UDP binding). In our use case, it is the heater that sends Probe 

Match message containing network information. The application can send a series of other messages by the same means to 

invoke a required operation. At this point, Peter would realize that it is impossible for his IoT application to dynamically 

discover the heater because of the network range limit to local subnet of multicast messages. 

If a REST proxy is applied, it allows the application to suppress multicast discovery messages and send a unicast request to 

the proxy instead. Then, the proxy can representatively send Probe and receive Probe Match messages to and from the 

network while the behavior of devices remains unmodified; they still answer to Probe message arriving via multicast. In 

networks with many changes in the device structure, where many Probe messages appear, the proxy can significantly 

unburden the Internet traffic. 

REST proxy provides two RESTful Web APIs to handle the discovery as follows: 

1) PUT http://123.456.789.1:8080/discovery: update the discovery with search criteria (e.g., name of device) 

2) GET http://123.456.789.1:8080/discovery: get the list of discovered devices 

(123.456.789.1 is the IP address, 8080 is the port number of the proxy) 
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We also propose a repository in the proxy to maintain the list of active devices. The repository is updated when devices join 

and leave the network. In addition, the proxy performs a routine to periodically check the consistency of the repository, says 

every 30 minutes. For a proxy with 100 devices, the size of the repository is about 600 kb, so it is feasible for unconstrained 

machines used to host a proxy. 

4.2. Publish/subscribe Eventing 

To receive event notifications, Peter can subscribe his application directly to the heater by sending a SOAP envelope 

containing a WS-Eventing Subscribe message (using the SOAP-over-HTTP binding). The heater responds by sending a 

WS-Eventing SubscribeResponse message via the HTTP response channel. When an event occurs, the heater establishes a 

new TCP connection and sends an event notification to the subscriber. Therefore, in scenarios with many subscribers, it 

generates high level of traffic, requiring high resources, and causing devices to consume more energy. However, this 

publish/subscribe mechanism can be done through REST proxy to reduce the overhead of SOAP message exchanges and 

resource consumption, replacing global mesh-like connectivity by proxy-based topology (see Figure 1). One RESTful Web 

API is dedicated for event subscription; instead of sending a WS-Eventing Subscribe message, the application sends an 

HTTP POST request to the subscription resource as follows: 

- POST http://123.456.789.1:8080/heater/event (parameter: application endpoint): subscribe to an event 

The proxy, on behalf of applications, receives the event notification from the device and then disseminates these messages 

to the applications. 

4.3. Dynamic REST Addressing 

DPWS uses WS-Addressing to assign a unique identification for each device (endpoint address), independent from transport 

specific address. This unique identification is used with a series of message exchanges Probe/ProbeMatch, 

Resolve/ResolveMatch to get a transport address and then another series of messages are sent back and forth to invoke an 

operation. This process creates the overhead on the Internet. We define a mapping between a pair of DPWS 

endpoint/transport addresses and a single proxy URI, and thus replace several SOAP messages by simpler HTTP 

request/response messages. The mapping is carried out dynamically when a device is discovered. For example, in our use 

case of the DPWS heater: 

Endpoint address:  urn:uuid:800fa0d0-f5c0-11e2-80de-911c7defef4c 

Transport address: http://123.456.789.10:4567/Heater 

mapped to  

URI:   http://123.456.789.1:8080/Heater 

The mapping is unique for each device service, and data are stored in the device repository of the proxy. The repository is 

also updated when there is a change in device status and/or periodically when the proxy runs its routine to check all the 

active devices. 

4.4. RESTful Web APIs 

As it is based on the above dynamic REST addressing mechanism, our REST proxy can generate a set of RESTful Web 

APIs associated with each device. It means that, instead of sending several SOAP-over-HTTP binding messages involving 

strict and large data formats, Peter can take advantage of the simple, familiar Web interfaces. The APIs consist of functions 

for discovery, subscription and service calls in REST architectural style. In order to generate these RESTful Web APIs from 

DPWS operations, we propose a design constraint on DPWS devices’ implementation. It is based on the fact that most 

device services provide simple operations compared to normal Web services with complex input/output data structure. Our 

proposed constraint follows a simplified CRUD model ("create", "read", "update", "delete") to map between these services 
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and HTTP methods: DPWS Operation Prefix  CRUD Action  HTTP Method. Specifically, four CRUD actions are 

applied to map DPWS operations to HTTP methods as follows: 

Get_  READ  GET 

Set_  UPDATE  PUT 

Add_  CREATE  POST 

Remove_  DELETE  DELETE 

Table 1 shows a list of RESTful Web APIs provided by a REST proxy for the heater device mapping with DPWS 

operations. Listing 1 is an example of request and response messages to get and return the status of the heater by using the 

proxy API GET http://123.456.789.1:8080/heater. 

GET /heater HTTP/1.1 

Host: 123.456.789.1:8080 

Accept: text/html 

Accept-Language: en-US,en;q=0.5 

Accept-Encoding: gzip, deflate 

Connection: keep-alive 

 

HTTP/1.1 200 OK 

Server: Apache-Coyote/1.1 

Content-Type: text/html 

Transfer-Encoding: chunked 

Listing 1. Request and response messages for obtaining the status of the heater. 

4.5. WSDL Caching  

When an application knows a device hosted service (representing device functionalities) endpoint address, it can ask that 

service for its interface description by sending a GetMetadata Service message. The service may respond with a 

GetMetadata Service Response message including a WSDL document. The WSDL document describes the supported 

operations and the data structures used in the device service. Some DPWS implementations (such as WS4D JMEDS
12

) 

provide a cache repository to store the WSDL document at runtime. After the application retrieves the WSDL file for the 

first time, the file can be cached for local usage in the subsequent occurrences within the life cycle of the DPWS framework 

(start/stop). This kind of caching mechanism would significantly reduce both the latency and the message overhead. Our 

DPWS proxy can provide WSDL caching not only at runtime but also permanently in a local database. The cache is updated 

along with the routine to maintain the device repository in proxy described in the dynamic discovery section. 

5. Evaluation 

5.1. Experiment Setup 

We set up an experiment to evaluate the latency and overhead in two different scenarios: one uses our proposed REST 

proxy (Figure 1) and the other uses the original DPWS (Figure 1b). In both cases, there is an IoT application 

communicating with a DPWS device (a heater) to carry out the tasks of invoking the device hosted service. To replicate a 

realistic deployment of the IoT application, it is deployed on a server running the Tomcat
13

 application server, using public 

Internet connection, and locating about 30 km away from the local network of the devices. The DPWS heater is 

implemented with a hosted service providing seven operations as shown in Table 1 (DPWS operations 3 to 9). These 

operations use simple command line messages to indicate the effect of each operation such as “current status: on” and 

“new status updated: off”. A REST proxy is implemented in Java using the Jersey
14

 library on Tomcat for handling the nine 

RESTful Web APIs of the heater as shown in the Table 1. The IoT application uses RESTful Web APIs provided by the 

                                                           
12 http://ws4d.org/jmeds/ 
13 http://tomcat.apache.org/ 
14 http://jersey.java.net/ 
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REST proxy (Figure 1a) and the WS4D JMEDS library (Figure 1b) to carry out four functionalities provided by the DPWS 

heater: get heater status, set heater status, add new rule, and delete a rule. 

5.2. Features Comparison 

For the original DPWS communication, we exclude the preprocessing phase to discover the device information (endpoint 

and transport addresses). Round-trip time (RTT) and message size are measured for invoking operations only. It should be 

noted that the actual time of the whole process would be higher and varies according to implementation strategies. One can 

choose to have a device discovered and its services invoked in real-time; one can have the information about device stored 

and then only send requests to invoke the device service. The real RTTs and message sizes would be always higher than the 

ones using our proposed REST proxy. 

With our proposed design of the REST proxy, the DPWS standard is extended to have new features as shown in the Table 2 

that doesn't exist in DPWS. These new features including Global Discovery, Global Addressing, and RESTful Web APIs 

are required to realize the technology for IoT applications. The extension in the meantime preserves the publish/subscribe 

eventing mechanism of DPWS even with better messaging format. 

5.3. Latency and Message Overhead 

Latency evaluation presents the mean RTTs (Figure 2a) for an application to send requests and receive responses to 

consume four operations of the heater hosted service by using RESTful Web APIs from the proxy (PROXY) and by original 

DPWS operations in two situations when WSDL is cached (WSDL) and not cached (DPWS). The use of the proxy 

significantly improves the latency compared to the both cases of DPWS communication with WSDL cached and not 

cached, about 75% and 20% respectively. In many pervasive IoT scenarios requiring high responsiveness, reasonable delay 

would improve system performance and the user experiences. 

Figure 2b shows the message sizes of requests (REQUEST) and responses (RESPONSE) in four RESTful Web APIs 

(PROXY) and their counterpart DPWS operations (DPWS) to fulfill the same tasks. In DPWS operations, the messages do 

not include WSDL documents as we assume that developers choose to cache these documents when designing their 

applications (real-time processing WSDL documents generates more messages). It shows a great improvement of message 

overhead when applying REST proxy. Especially when we consider real deployments of applications and devices in original 

DPWS communication, it is inevitable to avoid almost full-mesh connectivity (Figure 1b) compared to the simple and linear 

increments of HTTP traffic in the REST proxy scenario (Figure 1a). 

6. Conclusion 

DPWS was designed to be an appropriate technology for use in event-driven IoT applications thanks to features such as 

eventing and dynamic discovery, which cannot be supported natively with HTTP protocol. The key of these features is their 

use of SOAP-over-UDP multicast and SOAP-over-HTTP binding, which are, in practice, limited in network range and 

introduce considerable overhead by using SOAP envelopes. We have proposed the design of the REST proxy to extend the 

DPWS standard to better integrate it into the IoT applications and the Web world while maintaining its advantages. The 

experiment results show a significant improvement in reducing the latency and overhead as well as simplifying the global 

topology of using RESTful Web APIs. For the future usage of our REST proxy design, it will be necessary to establish a 

standard in designing DPWS device services for a variety of devices and to be used in the dynamic generation of RESTful 

Web APIs. Also, its adoption in many other scenarios with real-time constraints or highly dynamicity, such as in military 

applications and disaster monitoring, should be further investigated. 

 

 

 



7 
 

 

Figure 1. Experiment setup in two cases showing that original DPWS communication configures global mesh-like connectivity of HTTP/SOAP binding 

while our proposed scheme only configures proxy-based topology with local HTTP/SOAP binding. Consequently, the original DPWS introduces higher 

latency and overhead. 

 

Figure 2. Mean round-trip time of 100 tests and /response message sizes when using REST proxy (Proxy) and original DPWS (DPWS) in four cases: GET 

/heater - GetStatus(), PUT /heater - SetStatus(), POST /rules – AddRule(), DELETE /rules/2 - RemoveRule(). 
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Table 1. Proxy RESTful Web APIs for the heater device 

No. RESTful Web APIs DPWS Operations Parameters Functionalities 

1 GET        http://123.456.789.1:8080/discovery 

PUT        http://123.456.789.1:8080/discovery 

Discovery  

deviceName 

List of devices 

Search for device(s) 

2 POST      http://123.456.789.1:8080/heater/event Subscription  Subscribe to an event 

3 GET        http://123.456.789.1:8080/heater GetStatus()  Get heater status 

4 PUT        http://123.456.789.1:8080/heater SetStatus(String) status Set heater status 

5 GET        http://123.456.789.1:8080/heater/temp GetTemp()  Get room temperature 

6 PUT        http://123.456.789.1:8080/heater/temp SetTemp(int) temperature Adjust heater temperature  

7 POST      http://123.456.789.1:8080/heater/rules AddRule(String) rule Add new rule 

8 GET         http://123.456.789.1:8080/heater.rules GetRules()  List of rules 

9 DELETE http://123.456.789.1:8080/heater/rules/{ruleID} RemoveRule(int) ruleID Delete a rule 

 

Table 2. Features comparison between DPWS and the proxy extended 

Features DPWS Proxy 

Global Discovery NO YES 

Publish-subscribe Eventing YES YES 

Global Messaging SOAP messages HTTP methods 

Global Topology Mesh-like Proxy-based 

RESTful Web API NO YES 

Configuration Module NO YES 
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