
1

Extending the Device Profile for Web Services (DPWS) standard using a REST Proxy

Son N. Han, Soochang Park, Gyu Myoung Lee, and Noel Crespi

Abstract

The OASIS standard Devices Profile for Web Services (DPWS) enables the use of Web services for service-oriented and

event-driven Internet of Things (IoT) applications. DPWS has been proven to be an appropriate technology for

implementing services on resource-constrained devices. However, the performance of these services has not been well

investigated to realize DPWS features such as dynamic discovery and eventing mechanisms for IoT scenarios. Moreover,

DPWS introduces considerable overhead due to the use of Simple Object Access Protocol (SOAP) envelopes in exchange

messages. We extend the DPWS standard by using a Representational State Transfer (REST) proxy to tackle these

problems, creating RESTful Web APIs to pave the way for developers to invest more in this technology.

Keywords: Internet of Things, DPWS, REST.

1. Introduction

We are witnessing the next major evolution of the Internet where millions of devices become connected to the Internet to

create a new ecosystem called Internet of Things (IoT). IoT has recently gained momentum with the advancement in

technology and the arrival of many commercial products that are penetrating our daily life. When it comes to IoT

applications, especially for the integration into the Web, standards such as CoAP [1] and DPWS [2] are being developed to

support the creation of a new generation of applications. The OASIS standard DPWS enables secure Web service

capabilities on resource-constrained devices, which can be used for service-oriented and event-driven applications in the

area of networked devices, the Internet of Things (IoT). DPWS has an architectural concept similar to World Wide Web

Consortium (W3C) Web Service Architecture [3] but different in several ways to better fit in resource-constrained

environments (constrained nodes and low-power, lossy networks) and event-driven scenarios. DPWS is based on Web

Service Description Language
1
 (WSDL) and Simple Object Access Protocol

2
 (SOAP) to describe and communicate device

services, but it does not require any central service registry such as Universal Description, Discovery and Integration
3

(UDDI) for service discovery. Instead, it relies on SOAP-over-UDP
4
 binding and UDP multicast to dynamically discover

device services. DPWS offers a publish/subscribe eventing mechanism, WS-Eventing
5
, for clients to subscribe for device

events, e.g., a device switch is on/off or sensing when temperature reaches a predefined threshold. When an event occurs,

notifications are delivered to subscribers via separate TCP connections.

These features, secure Web services, dynamic discovery, and eventing, are the main advantages of DPWS for event-driven

IoT applications. Nevertheless, in fact, developers would face several problems when applying DPWS for Web-based IoT

applications. The main concern is about the dynamic discovery in which the network range of UDP multicast messages is

limited to the local subnet. Therefore, it is impossible to carry out this mechanism in a large network such as the Internet.

With WS-Eventing, the establishment of separate TCP connections in case of delivering the same event notification to many

different subscribers will generate a global mesh-like connectivity between all devices and subscribers (see Figure 1b). This

requires high memory, processing power, and network traffic and thus consumes a considerable amount of energy in

devices. Another issue is the overhead due to the data representation in XML format and multiple bidirectional message

exchanges. It is not a problem when most DPWS devices currently communicate locally, but in a mass deployment of

devices, these messages would generate heavy Internet traffic and increase the latency in device/application communication.

Furthermore, W3C Web services use WSDL for service description and SOAP for service communication; the former,

despite the fact that it is a W3C standard, requires much effort from developers to process poorly-structured XML data; the

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/TR/soap/
3 http://uddi.org/pubs/uddi_v3.htm
4 http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.html
5 http://www.w3.org/Submission/WS-Eventing/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/42476733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

latter is mostly common in stateful enterprise applications, whereas recent Web applications are moving toward the core

Web concepts referred as Representational State Transfer (REST) [4] by offering stateless, unified, and simple interfaces of

RESTful Web APIs.

We propose the extension of DPWS standard using a REST proxy to solve these problems by providing the following

features: (1) global dynamic discovery using WS-Discovery
6

 in local networks; (2) proxy-based topology for

publish/subscribe eventing mechanism; (3) dynamic REST addressing for DPWS devices; (4) RESTful Web APIs; and (5)

WSDL caching. This REST proxy extension of DPWS unburdens Internet traffic by processing the main load in local

networks. Also, the proxy can extend the dynamic discovery from locally to globally through RESTful Web APIs.

Developers do not have to parse complex WSDL documents to get access to service descriptions; they can use RESTful

Web APIs to control devices. Experiment results show a plain topology and substantial reductions in the overhead and

latency when using our proposed proxy.

2. Web Services for the Internet of Things

The IoT is an ecosystem where all smart things or networked devices (i.e., sensors and actuators, embedded devices,

electronic appliances, and digitally enhanced everyday objects) are connected using IP protocols to facilitate

interoperability. It envisions an era of pervasive applications that are built on top of these networked devices. IoT scenarios

require not only to have devices connected to the Internet but also seamlessly integrated into existing Internet infrastructure

in which Web applications are predominant. The IoT could benefit from the Web service architecture like today's Web does

by using the DPWS standard. DPWS brings W3C Web service technology into the era of networked devices by defining a

set of specifications to provide a secure and effective mechanism for describing, discovering, messaging, and eventing of

services for resource-constrained devices. DPWS uses WSDL to describe the device, Web Services Metadata Exchange
7
 to

define metadata about the device, and WS-Transfer
8
 to retrieve the service description and metadata information about the

device. Messaging is done by using SOAP, WS-Addressing
9
, and MTOM/XOP

10
 with SOAP-over-HTTP and SOAP-over-

UDP bindings. It uses WS-Discovery for discovering a device (hosting service), WS-Eventing for setting up and managing

subscriptions to the device events, and Web Services Policy
11

 to define a policy assertion to indicate compliance of the

device with DPWS.

Since its debut in 2004 by a consortium led by Microsoft, DPWS has become part of Microsoft's Windows Vista and

Windows Rally (a set of technologies from Microsoft intended to simplify the setup and maintenance of wired and wireless

networked devices), and has been developed in several research and development projects under the European Information

Technology for European Advancement (ITEA) and Framework Programme (FP): SIRENA (02014 ITEA2), SODA (05022

ITEA2), SOCRATES (FP6), and on-going IMC-AESOP (FP7) and WOO (10028 ITEA2). Many technology giants such as

ABB, SAP, Schneider Electric, Siemens, and Thales have been participating in these projects. As they have large market

shares in electronics, power, automation technologies as well as enterprise solutions, their promotion of the DPWS

technology promise a wide range of the future DPWS/IoT products. Schneider Electric and Odonata pioneered the

implementation of DPWS leading to the early and open-source release of software stacks implementing DPWS in C and

Java available at Service-Oriented Architecture for Device Website (SOA4D.org). Web Services for Devices initiative

(WS4D.org) reinforces the implementation by providing and maintaining a repository to host several open-source stacks

and toolkits for DPWS. In addition, many researches have been recently carried out to complete the technology. Experiment

results show that DPWS is able to be implemented into (even) highly resource-constrained devices such as sensor nodes

with reasonable ROM footprints [5]. Other technical issues of DPWS have also been explored such as encoding and

compression [6], the integration with IPv6 infrastructure and 6LoWPAN [7, 8], the scalability of service deployment [9],

and the security in the latest release of WS4D DPWS stacks.

6 http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01
7 http://www.w3.org/TR/ws-metadata-exchange/
8 http://www.w3.org/Submission/WS-Transfer/
9 http://www.w3.org/Submission/ws-addressing/
10 http://www.w3.org/TR/soap12-mtom/
11 http://www.w3.org/Submission/WS-Policy/

3

DPWS thus far has been widely used in automation industry, home entertainment, and automotive systems [10] and also

applicable for enterprise integrations [11]. It satisfies many requirements for IoT applications such as resource-constrained,

event-driven, and dynamic discovery; In the meantime, it can maintain the integration with the Internet and enterprises

infrastructures. In addition, the strong support from the community is another reason to make it a promising technology for

the future IoT. However, IoT systems containing a huge number of devices, in contrast to small numbers in industrial and

home applications, cause some features of DPWS such as dynamic discovery and publish/subscribe eventing impossible in a

global and mass deployment of devices. It is therefore necessary to extend DPWS to fit to IoT scenarios with several

problems need to be resolved before DPWS can successfully arrive in the IoT domain. In the following sections, we are

going to analyze DPWS problems with IoT and propose the extension of DPWS standard by using a REST proxy.

3. Use case

In the new ecosystem of networked devices, many IoT platforms are provided to build a new generation of Web-based

applications aggregating these services. Peter, an IoT user, chooses a DPWS platform for his Web-based home automation

system. He would like to make a module for controlling a newly-purchased DPWS heater. The heater is equipped with a

temperature sensor, a switch, memory, a processor, and networking media, and is implemented with a hosted Heater

service. Heater service consists of seven operations: (1) check the heater status (GetStatus), (2) switch the heater on/off

(SetStatus), (3) get room temperature (GetTemperature), (4) adjust the heater temperature (SetTemperature), (5) add

(AddRule), (6) remove (RemoveRule), and (7) get (GetRules) available policy rules for defining automatic operation of the

heater.

Peter connects the heater to the network and tries to control it from his IoT application. We will follow Peter’s development

process to understand what challenges he can encounter when developing, deploying, and consuming the device from his

IoT application and how the extended DPWS helps him to solve these problems. This use case illustrates a common case in

several consumer applications when a new device joins the network.

4. REST Proxy Design

4.1. Global Dynamic Discovery

When an application tries to locate a device in a network, it sends a UDP multicast message (using the SOAP-over-UDP

binding) carrying a SOAP envelope that contains a WS-Discovery Probe message with search criteria, e.g., the name of the

device. All the devices in the network (local subnet) that match the search criteria will respond with a unicast WS-

Discovery Probe Match message (also using the SOAP-over-UDP binding). In our use case, it is the heater that sends Probe

Match message containing network information. The application can send a series of other messages by the same means to

invoke a required operation. At this point, Peter would realize that it is impossible for his IoT application to dynamically

discover the heater because of the network range limit to local subnet of multicast messages.

If a REST proxy is applied, it allows the application to suppress multicast discovery messages and send a unicast request to

the proxy instead. Then, the proxy can representatively send Probe and receive Probe Match messages to and from the

network while the behavior of devices remains unmodified; they still answer to Probe message arriving via multicast. In

networks with many changes in the device structure, where many Probe messages appear, the proxy can significantly

unburden the Internet traffic.

REST proxy provides two RESTful Web APIs to handle the discovery as follows:

1) PUT http://123.456.789.1:8080/discovery: update the discovery with search criteria (e.g., name of device)

2) GET http://123.456.789.1:8080/discovery: get the list of discovered devices

(123.456.789.1 is the IP address, 8080 is the port number of the proxy)

4

We also propose a repository in the proxy to maintain the list of active devices. The repository is updated when devices join

and leave the network. In addition, the proxy performs a routine to periodically check the consistency of the repository, says

every 30 minutes. For a proxy with 100 devices, the size of the repository is about 600 kb, so it is feasible for unconstrained

machines used to host a proxy.

4.2. Publish/subscribe Eventing

To receive event notifications, Peter can subscribe his application directly to the heater by sending a SOAP envelope

containing a WS-Eventing Subscribe message (using the SOAP-over-HTTP binding). The heater responds by sending a

WS-Eventing SubscribeResponse message via the HTTP response channel. When an event occurs, the heater establishes a

new TCP connection and sends an event notification to the subscriber. Therefore, in scenarios with many subscribers, it

generates high level of traffic, requiring high resources, and causing devices to consume more energy. However, this

publish/subscribe mechanism can be done through REST proxy to reduce the overhead of SOAP message exchanges and

resource consumption, replacing global mesh-like connectivity by proxy-based topology (see Figure 1). One RESTful Web

API is dedicated for event subscription; instead of sending a WS-Eventing Subscribe message, the application sends an

HTTP POST request to the subscription resource as follows:

- POST http://123.456.789.1:8080/heater/event (parameter: application endpoint): subscribe to an event

The proxy, on behalf of applications, receives the event notification from the device and then disseminates these messages

to the applications.

4.3. Dynamic REST Addressing

DPWS uses WS-Addressing to assign a unique identification for each device (endpoint address), independent from transport

specific address. This unique identification is used with a series of message exchanges Probe/ProbeMatch,

Resolve/ResolveMatch to get a transport address and then another series of messages are sent back and forth to invoke an

operation. This process creates the overhead on the Internet. We define a mapping between a pair of DPWS

endpoint/transport addresses and a single proxy URI, and thus replace several SOAP messages by simpler HTTP

request/response messages. The mapping is carried out dynamically when a device is discovered. For example, in our use

case of the DPWS heater:

Endpoint address: urn:uuid:800fa0d0-f5c0-11e2-80de-911c7defef4c

Transport address: http://123.456.789.10:4567/Heater

mapped to

URI: http://123.456.789.1:8080/Heater

The mapping is unique for each device service, and data are stored in the device repository of the proxy. The repository is

also updated when there is a change in device status and/or periodically when the proxy runs its routine to check all the

active devices.

4.4. RESTful Web APIs

As it is based on the above dynamic REST addressing mechanism, our REST proxy can generate a set of RESTful Web

APIs associated with each device. It means that, instead of sending several SOAP-over-HTTP binding messages involving

strict and large data formats, Peter can take advantage of the simple, familiar Web interfaces. The APIs consist of functions

for discovery, subscription and service calls in REST architectural style. In order to generate these RESTful Web APIs from

DPWS operations, we propose a design constraint on DPWS devices’ implementation. It is based on the fact that most

device services provide simple operations compared to normal Web services with complex input/output data structure. Our

proposed constraint follows a simplified CRUD model ("create", "read", "update", "delete") to map between these services

5

and HTTP methods: DPWS Operation Prefix CRUD Action HTTP Method. Specifically, four CRUD actions are

applied to map DPWS operations to HTTP methods as follows:

Get_ READ GET

Set_ UPDATE PUT

Add_ CREATE POST

Remove_ DELETE DELETE

Table 1 shows a list of RESTful Web APIs provided by a REST proxy for the heater device mapping with DPWS

operations. Listing 1 is an example of request and response messages to get and return the status of the heater by using the

proxy API GET http://123.456.789.1:8080/heater.

GET /heater HTTP/1.1

Host: 123.456.789.1:8080

Accept: text/html

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: text/html

Transfer-Encoding: chunked

Listing 1. Request and response messages for obtaining the status of the heater.

4.5. WSDL Caching

When an application knows a device hosted service (representing device functionalities) endpoint address, it can ask that

service for its interface description by sending a GetMetadata Service message. The service may respond with a

GetMetadata Service Response message including a WSDL document. The WSDL document describes the supported

operations and the data structures used in the device service. Some DPWS implementations (such as WS4D JMEDS
12

)

provide a cache repository to store the WSDL document at runtime. After the application retrieves the WSDL file for the

first time, the file can be cached for local usage in the subsequent occurrences within the life cycle of the DPWS framework

(start/stop). This kind of caching mechanism would significantly reduce both the latency and the message overhead. Our

DPWS proxy can provide WSDL caching not only at runtime but also permanently in a local database. The cache is updated

along with the routine to maintain the device repository in proxy described in the dynamic discovery section.

5. Evaluation

5.1. Experiment Setup

We set up an experiment to evaluate the latency and overhead in two different scenarios: one uses our proposed REST

proxy (Figure 1) and the other uses the original DPWS (Figure 1b). In both cases, there is an IoT application

communicating with a DPWS device (a heater) to carry out the tasks of invoking the device hosted service. To replicate a

realistic deployment of the IoT application, it is deployed on a server running the Tomcat
13

 application server, using public

Internet connection, and locating about 30 km away from the local network of the devices. The DPWS heater is

implemented with a hosted service providing seven operations as shown in Table 1 (DPWS operations 3 to 9). These

operations use simple command line messages to indicate the effect of each operation such as “current status: on” and

“new status updated: off”. A REST proxy is implemented in Java using the Jersey
14

 library on Tomcat for handling the nine

RESTful Web APIs of the heater as shown in the Table 1. The IoT application uses RESTful Web APIs provided by the

12 http://ws4d.org/jmeds/
13 http://tomcat.apache.org/
14 http://jersey.java.net/

6

REST proxy (Figure 1a) and the WS4D JMEDS library (Figure 1b) to carry out four functionalities provided by the DPWS

heater: get heater status, set heater status, add new rule, and delete a rule.

5.2. Features Comparison

For the original DPWS communication, we exclude the preprocessing phase to discover the device information (endpoint

and transport addresses). Round-trip time (RTT) and message size are measured for invoking operations only. It should be

noted that the actual time of the whole process would be higher and varies according to implementation strategies. One can

choose to have a device discovered and its services invoked in real-time; one can have the information about device stored

and then only send requests to invoke the device service. The real RTTs and message sizes would be always higher than the

ones using our proposed REST proxy.

With our proposed design of the REST proxy, the DPWS standard is extended to have new features as shown in the Table 2

that doesn't exist in DPWS. These new features including Global Discovery, Global Addressing, and RESTful Web APIs

are required to realize the technology for IoT applications. The extension in the meantime preserves the publish/subscribe

eventing mechanism of DPWS even with better messaging format.

5.3. Latency and Message Overhead

Latency evaluation presents the mean RTTs (Figure 2a) for an application to send requests and receive responses to

consume four operations of the heater hosted service by using RESTful Web APIs from the proxy (PROXY) and by original

DPWS operations in two situations when WSDL is cached (WSDL) and not cached (DPWS). The use of the proxy

significantly improves the latency compared to the both cases of DPWS communication with WSDL cached and not

cached, about 75% and 20% respectively. In many pervasive IoT scenarios requiring high responsiveness, reasonable delay

would improve system performance and the user experiences.

Figure 2b shows the message sizes of requests (REQUEST) and responses (RESPONSE) in four RESTful Web APIs

(PROXY) and their counterpart DPWS operations (DPWS) to fulfill the same tasks. In DPWS operations, the messages do

not include WSDL documents as we assume that developers choose to cache these documents when designing their

applications (real-time processing WSDL documents generates more messages). It shows a great improvement of message

overhead when applying REST proxy. Especially when we consider real deployments of applications and devices in original

DPWS communication, it is inevitable to avoid almost full-mesh connectivity (Figure 1b) compared to the simple and linear

increments of HTTP traffic in the REST proxy scenario (Figure 1a).

6. Conclusion

DPWS was designed to be an appropriate technology for use in event-driven IoT applications thanks to features such as

eventing and dynamic discovery, which cannot be supported natively with HTTP protocol. The key of these features is their

use of SOAP-over-UDP multicast and SOAP-over-HTTP binding, which are, in practice, limited in network range and

introduce considerable overhead by using SOAP envelopes. We have proposed the design of the REST proxy to extend the

DPWS standard to better integrate it into the IoT applications and the Web world while maintaining its advantages. The

experiment results show a significant improvement in reducing the latency and overhead as well as simplifying the global

topology of using RESTful Web APIs. For the future usage of our REST proxy design, it will be necessary to establish a

standard in designing DPWS device services for a variety of devices and to be used in the dynamic generation of RESTful

Web APIs. Also, its adoption in many other scenarios with real-time constraints or highly dynamicity, such as in military

applications and disaster monitoring, should be further investigated.

7

Figure 1. Experiment setup in two cases showing that original DPWS communication configures global mesh-like connectivity of HTTP/SOAP binding

while our proposed scheme only configures proxy-based topology with local HTTP/SOAP binding. Consequently, the original DPWS introduces higher

latency and overhead.

Figure 2. Mean round-trip time of 100 tests and /response message sizes when using REST proxy (Proxy) and original DPWS (DPWS) in four cases: GET

/heater - GetStatus(), PUT /heater - SetStatus(), POST /rules – AddRule(), DELETE /rules/2 - RemoveRule().

8

Table 1. Proxy RESTful Web APIs for the heater device

No. RESTful Web APIs DPWS Operations Parameters Functionalities

1 GET http://123.456.789.1:8080/discovery

PUT http://123.456.789.1:8080/discovery

Discovery

deviceName

List of devices

Search for device(s)

2 POST http://123.456.789.1:8080/heater/event Subscription Subscribe to an event

3 GET http://123.456.789.1:8080/heater GetStatus() Get heater status

4 PUT http://123.456.789.1:8080/heater SetStatus(String) status Set heater status

5 GET http://123.456.789.1:8080/heater/temp GetTemp() Get room temperature

6 PUT http://123.456.789.1:8080/heater/temp SetTemp(int) temperature Adjust heater temperature

7 POST http://123.456.789.1:8080/heater/rules AddRule(String) rule Add new rule

8 GET http://123.456.789.1:8080/heater.rules GetRules() List of rules

9 DELETE http://123.456.789.1:8080/heater/rules/{ruleID} RemoveRule(int) ruleID Delete a rule

Table 2. Features comparison between DPWS and the proxy extended

Features DPWS Proxy

Global Discovery NO YES

Publish-subscribe Eventing YES YES

Global Messaging SOAP messages HTTP methods

Global Topology Mesh-like Proxy-based

RESTful Web API NO YES

Configuration Module NO YES

9

Acknowledgement

This work is supported by two European ITEA2 projects: 10028 “Web of objects” (WoO) and 11020 “Social Internet of

Things: Apps by and for the Crowd” (SiTAC).

References

[1] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application Protocol (CoAP),” IETF Internet Draft, Jun. 2013.

[2] “Devices profile for web services version 1.1,” OASIS Standard, Jul. 2009.

[3] “Web services architecture,” W3C, W3C Working Group Note, Feb. 2004.

[4] R. T. Fielding, “Architectural styles and the design of network-based software architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[5] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Timmermann, “Implementing powerful web services for highly resource-constrained

devices,” in 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2011, pp. 332–335.

[6] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski, “Encoding and compression for the devices profile for web services,” in 2010 IEEE 24th

International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2010, pp. 514–519.

[7] G. Moritz, F. Golatowski, D. Timmermann, and C. Lerche, “Beyond 6LoWPAN: Web services in wireless sensor networks,” IEEE Transactions

onIndustrial Informatics, vol. 9, no. 4, pp. 1795–1805, Nov. 2013.

[8] I. Samaras, G. Hassapis, and J. Gialelis, “A modified DPWS protocol stack for 6LoWPAN-based wireless sensor networks,” IEEE Transactions

onIndustrial Informatics, vol. 9, no. 1, pp. 209–217, Feb. 2013.

[9] X. Yang and X. Zhi, “Dynamic deployment of embedded services for dpws-enabled devices,” in 2012 International Conference on

Computing,Measurement, Control and Sensor Network (CMCSN), 2012, pp. 302–306.

[10] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo and F. Rusina, “A Real-Time Service-Oriented Architecture for

Industrial Automation,” IEEE Transactions on Industrial Informatics, vol. 5, no. 3, pp. 267-277, 2009.

[11] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and V. Trifa, “Soa-based integration of the internet of things in enterprise

services,” in IEEE International Conference on Web Services (ICWS 2009), 2009, pp. 968 –975.

Biographies

Son N. Han, Student Member, IEEE, is a Ph.D. student at Institut Mines-Telecom, Telecom SudParis. His research focuses

on Internet of Things. He has a M.Sc. in Computer Science from The University of Seoul. Contact him at son.han@it-

sudparis.eu.

Soochang Park, Member, IEEE, is a research associate at Institut Mines-Telecom, Telecom SudParis. His research focuses

on Networking. He has a Ph.D. from Chungnam National University. Contact him at soochang.park@telecom-sudparis.eu.

Gyu Myoung Lee, Senior Member, IEEE, is a Senior Lecturer at Liverpool John Moores University and an Adjunct

Professor at the Korea Advanced Institute of Science and Technology (KAIST). His research focuses on future networks

and services. He has a Ph.D. from KAIST. Contact him at g.m.lee@ljmu.ac.uk.

Noel Crespi, Senior Member, IEEE, is a professor at Institut Mines-Telecom, Telecom SudParis. His research focuses on

Web-Next Generation Network (Web-NGN) convergence and SaaS. He has a Ph.D. from Paris VI University. Contact him

at noel.crespi@mines-telecom.fr.

