
 

  1 

Fair Signature Exchange via Delegation on Ubiquitous Networks 

Q. Shi1 (Corresponding Author), N. Zhang2, and M. Merabti1 

1 School of Computing & Mathematical Sciences 

Liverpool John Moores University 

Byrom Street, Liverpool L3 3AF, UK 

Email: {Q.Shi, M.Merabti}@ljmu.ac.uk 

Tel: +44 (0) 151 231 2272 

Fax: +44 (0) 151 207 4594 

2 School of Computer Science 

The University of Manchester 

Oxford Road, Manchester M13 9PL, UK 

Email: ning.zhang@manchester.ac.uk 

  

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/42476724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

  2 

Abstract 

This paper addresses the issue of autonomous fair signature exchange in emerging ubiquitous (u-) commerce 

systems, which require that the exchange task be delegated to authorised devices for its autonomous and secure 

execution. Relevant existing work is either inefficient or ineffective in dealing with such delegated exchange. To 

rectify this situation, this paper aims to propose an effective, efficient and secure solution to the delegated 

exchange to support the important autonomy feature offered by u-commerce systems. The proposed work includes 

a novel approach to symmetric-key based verifiable proxy encryption to make the exchange delegation flexible, 

efficient and simple to implement on resource-limited devices commonly used in u-commerce systems. This 

approach is then applied to design a new exchange protocol. An analysis of the protocol is also provided to confirm 

its security and fairness. Moreover, a comparison with related work is presented to demonstrate its much better 

efficiency and simplicity. 

Key words: Ubiquitous computing, Fair exchange, Signature, Communication protocol. 

1. Introduction 

The advance of ubiquitous computing technology enables everyday objects such as refrigerators and toasters to 

be augmented with information processing capabilities to offer ubiquitous network platforms on which to build 

smart integrated applications and services. This opens up great opportunities for pressing current electronic or 

mobile (e/m-) commerce technologies forward to provide seamless and intelligent business services from 

anywhere at anytime, which is also called ubiquitous (u-) commerce. While u-commerce greatly enhances the 

quality of life for individuals and families, its systems typically involve distributed and autonomous operations 

running on much open, dynamic and resource-diversified ubiquitous networks. These features are making the 

system security protection very challenging. Without proper security assurance, the wide acceptance and 

deployment of u-commerce would not become reality. 

One of the important security challenges for u-commerce systems is about how to fulfil fair signature exchange. 

Such exchange means that two parties (e.g. individuals, companies or systems) can exchange their valuable digital 

signatures for agreed commercial transactions such as contract signing over networks without one party being 

disadvantaged by the other during the exchange process. More specifically, the fairness requires that either each 

party, or neither of them, can get the expected signature from the other party at the end of the exchange, which is 

also referred to as strong fairness [1]. This requirement is essential for preventing one party from deceptively 



 

  3 

gaining business or financial advantages over the other.  

To conduct a fair signature exchange, the existing work normally simplifies the exchange settings by assuming 

that decision making responsibilities for the exchange rest with the parties involved in the exchange and trusted 

computing devices are employed to execute the exchange. This simplification leads to a more focused issue of 

how to exchange the agreed signatures fairly without concerns about the environment in which the exchange is 

conducted. Accordingly the solutions developed under such assumptions are applicable to less intelligent e/m-

commerce systems with fairly static exchange scenarios and settings. 

However, emerging u-commerce systems are posing new challenges to fair signature exchange owing to their 

more complex features such as high autonomy, distributability and heterogeneity. To illustrate such features, we 

present the following example about a potential u-commerce setting for a user Alice and her smart home, which 

is derived from the example given in [20]: 

 Alice is informed at work that her request for changing to a more rewarding job within her organisation has 

been granted. She is delighted with the news, and decides to invite her parents for dinner in her house in the 

evening to tell them the good news at the dinner table.  

 She uses her smart phone to prepare a list of groceries needed for the dinner and sends it to her home manager 

- a software agent running on one of her home computing devices. 

 The home manager responds to the request by initiating the following tasks: 

 Checks the RFID (radio frequency identification) enabled fridge and cupboards in the kitchen in reference 

to the received grocery list to decide what to buy, asks price quotations from nearby supermarkets, and 

sends a purchase order to the supermarket, offering the best deal, for home delivery in the afternoon; 

 Inspects the networked heating facilities fuelled by either solar power or gas controlled by a “pay as you 

go” meter, finds that the fuel supply is insufficient to keep the house warm due to cold weather, and thus 

decides to buy additional credits on-line from a gas supplier to top up the gas meter.  

 Alice arrives at home after work, prepares the dinner with the delivered groceries, and shares the good news 

and nice meal with her parents in the warm house.  

This application scenario involves the following signature exchanges: 

(1) Alice’s payment authorisation signature on the grocery order is exchanged for the supermarket’s signature on 

a digital receipt for the paid groceries; 



 

  4 

(2) Alice’s payment authorisation signature on the gas credit purchase is exchanged for the gas supplier’s 

signature on a digital ticket of the purchased credits. 

Clearly, the above example demonstrates that Alice’s home system is autonomous in deciding what, from whom, 

when and how purchases should be made with regard to given policies or requests. In this case, it is crucial for 

Alice to delegate the signature generation and exchange to her agent - home manager. Otherwise, she would have 

to make herself available for signing signatures when they are required, as she often does not know beforehand 

what to sign, e.g. the gas credit purchase mentioned above. This would seriously hinder the system’s efficiency 

and effectiveness, especially when a signature is needed but Alice is unavailable to sign it.  

Additionally, the system makes use of heterogeneous computing facilities ranging from small microprocessors 

embedded in devices such as a gas meter to a big home computer. The system operations are highly distributed 

among home appliances, mobile devices and the Internet for collaborative smart decision-making and autonomous 

execution. Clearly these capabilities are essential for the provision of smart services, which are much more 

beneficial to users than those offered by the existing e/m commerce applications. However, such benefit also 

brings complication into the u-commerce system. Particularly, its operations are much more open, dynamic, inter-

operative and autonomous. This does not match the assumptions mentioned earlier for the development of existing 

signature exchange solutions, as exchange decision is no longer directly made by a user and computing devices 

used for the exchange could be vulnerable to security attacks. Consequently the existing solutions are either 

ineffective or inefficient to properly handle signature exchange in u-commerce settings, as will be discussed 

further later. Hence more research is needed to devise more suitable solutions. 

The focus of this paper is on how to delegate the signature exchange task to an autonomous agent(s) and ensure 

the exchange fairness and security, which are essential for the exchange in u-commerce settings. So far, a large 

number of protocols have been developed for fair exchange [1-5, 7-8, 14, 18-20, 22-25]. Nevertheless, they are 

hardly intended for the emerging autonomous exchange scenarios of u-commerce. These protocols are mainly 

based on verifiable signature encryption to achieve the exchange fairness. They can be divided into two categories 

in terms of the types of encryption. The majority of the protocols fall in the first category that employs public-key 

based verifiable signature encryption (e.g. [2-5]). The other category comprises the protocols built on symmetric-

key based verifiable signature encryption (e.g. [19-20, 25]).  

The public-key based verifiable signature encryption allows its task to be delegated to a chosen agent(s), namely, 

it is applicable to u-commerce systems. The reason for this is that a public key is used to verifiably encrypt a 



 

  5 

signature, so the public key can be directly given to the agent for performing the signature encryption. However, 

the symmetric-key based verifiable signature encryption is unsuitable for its direct delegation to a chosen agent, 

i.e., it is not directly applicable to u-commerce systems. Since a secret key is employed for a verifiable symmetric 

encryption of a signature in this case, the delegation of the encryption task to a chosen agent would require directly 

assigning the secret key to the agent. This is undesirable because such assignment could increase the risk of the 

key being compromised in vulnerable u-commerce operating environments. 

Although the public-key based verifiable signature encryption is applicable to u-commerce systems, it is 

mathematically much more complex and computationally less efficient than the symmetric-key based verifiable 

signature encryption [25], which will be discussed further in Section 7. On the other hand, while the symmetric-

key based verifiable encryption offers much better simplicity and efficiency, most of its solutions do not support 

the delegation capability, which makes them ineffective for u-commerce systems. A recent effort has been made 

to rectify the problem [20], but the approach proposed is complex and inefficient, which diminishes the simplicity 

and efficiency advantages of the symmetric-key based encryption.  

The above weaknesses of the existing protocols have motivated us to propose a novel approach to symmetric-key 

based verifiable proxy encryption for the whole family of discrete logarithm based signature schemes [16] (e.g., 

DSA [12], ElGamal [6] and Schnorr [17]) in this paper. The approach is then utilised to formulate a new 

autonomous fair signature exchange protocol for u-commerce systems. The symmetric proxy encryption here 

means that given a long-term symmetric key kA, a party PA generates a short-term symmetric encryption key κA 

from kA and then delegates its task of verifiable symmetric encryption with κA to a chosen agent AA running on a 

device connected to PA’s ubiquitous network. Such delegation must ensure that the possession of κA by AA does 

not permit AA to discover kA. This assurance enables AA to execute the encryption on PA’s behalf while averting 

the disclosure of kA in case AA is compromised.  

Another important feature of the new approach is the verifiable symmetric encryption of a signature key to be 

used for the generation of a signature on PA’s behalf by a designated party. Normally the construction of a key is 

mathematically simpler than that of a signature generated using the key. It should therefore be easier to build the 

verifiability of an encrypted signature key than that of an encrypted signature. This feature helps to simplify the 

new approach and improve its efficiency, which will become clear later in the paper.  

However, the signature key could be subject to abuse if it is disclosed, as the key can be used illegitimately to 

yield any signature with PA bearing the responsibility. To prevent the key abuse, the new approach incorporates a 



 

  6 

one-time property into the formation of the key so that the key is only valid for one specified document. In other 

words, the key is invalid for signing any other documents. By combining the one-time key with its verifiable 

symmetric encryption, the new approach is able to secure the signature exchange in a simple and efficient manner, 

as will be detailed in Section 4.  

The main novel contribution of this paper comes from the verifiable symmetric proxy encryption of one-time 

signature keys, which is efficient, easy to implement, and flexible for application to a range of discrete logarithm 

based signature schemes. The new encryption preserves the good efficiency and simplicity attributes of existing 

verifiable symmetric encryption while adding the capability of encryption delegation. The one-time signature keys 

not only prevent their misuse for unauthorised purposes but also offer strong application flexibility. The existing 

work on verifiable encryption introduces different ways for different signature schemes, which complicates its 

implementation. The encryption of signature keys instead of signatures significantly weakens its dependency on 

signature schemes. This enables the new approach to be implemented for the family of discrete logarithm based 

signature schemes rather than just one of them. The above merits make the approach more suitable for operating 

on small resource-limited devices, which is essential for u-commerce systems. 

In the rest of the paper, we will state the exchange settings for the proposed proxy encryption in Section 2. An 

introduction to the signatures to be used in this paper will be provided in Section 3. The new approach to the proxy 

encryption will be defined in Section 4. Based on this approach, Section 5 will propose the design of the protocol 

mentioned earlier for autonomous fair signature exchange in u-commerce. The protocol will be analysed to 

demonstrate its security strength in Section 6, and compared with related work to show its merits in Section 7. 

Finally, Section 8 will conclude the paper and point out future work. 

2. Required Signature Exchange 

In this section, we present the exchange scenario and assumptions on which our proposed approach is based, the 

fairness requirement which the approach needs to meet for the given exchange, and a summary of notations to be 

used for the presentation of the approach. 

2.1. Exchange Settings and Assumptions 

The case of fair signature exchange covered in this paper is described below: 

 Signature exchange agreement: Let a party PA be a user (or owner) of a private ubiquitous computing network 

and run a u-commerce system on the network. This means that the system has its software components 



 

  7 

distributed on various devices connected to the network. For simplicity, these components will be termed 

agents hereafter. Ideally the system should provide a decision-making capability for approving exchange cases 

with regard to given policies and/or requests from PA, and then offer effective solutions for executing the 

approved exchanges autonomously. The focus of this paper is only on the design of such a solution, since the 

development of the decision-making capability itself is an area requiring further research.  

To devise the exchange solution, we assume that PA has appointed an agent AA, called a proxy exchanger, in 

charge of performing all the tasks of an agreed exchange except for the generation of PA’s signatures. PA has 

also designated the authority of its signature generation to a group of different agents, named proxy signers, 

which are distributed on various devices and only permitted to jointly produce signatures on PA’s behalf. This 

means that AA has to request these signers for the creation of necessary signatures for an exchange.  

The reason for separating the signature generation from the other tasks of the exchange is to avoid a single 

agent being able to perform the entire exchange. Since ubiquitous networks are susceptible to security attacks, 

the use of such an agent would make the proposed solution vulnerable in case the agent is compromised. For 

the same reason, the responsibility of signature generation is shared among the chosen proxy signers to prevent 

the private signature key from being misused by an adversary to produce PA’s signatures for fraudulent 

purposes with PA facing the consequences. A threshold signature scheme (e.g. [21]) can be adopted for the 

joint signature generation. Such a scheme can strengthen both security and reliability, because it is much harder 

to compromise multiple agents or devices and the scheme still works even when some agents fail to 

collaborate.  

However, for simplicity, we only employ one agent AA to play the proxy exchanger role in this paper. As will 

be made clear in Section 4, AA only holds a short-term key for signature encryption. The key is not as important 

as the private signature key. The work presented in this paper can be extended to allow multiple agents to 

jointly serve the exchanger role for better security and reliability. Such extension will be considered in our 

future work. 

As the focus of this paper is on the proposed verifiable encryption, the details of the aforementioned joint 

signature generation will not be presented in this paper. We simply assume that AA can receive PA’s signatures 

from the signers for approved signature exchanges.  

For a signature exchange, we suppose that AA is informed by PA’s decision-making agent(s) that an agreement 



 

  8 

has been reached with another party PB to exchange a signature of PA on a document DA for a signature of PB 

on a document DB. Here, the design of the decision-making agent is beyond the scope of this paper. Also the 

agent passes the information on DA to the signers, so they know what document they should sign when AA 

makes a request for the signature.  

Using the gas credit purchase discussed in Section 1 as an example, the above exchange means that an 

appointed agent (i.e. AA) of Alice (i.e. PA) obtains a payment authorisation signature on the gas credit purchase 

request (i.e., DA) from the signers, and then exchanges it for a signature of the gas supplier (i.e. PB) on a digital 

ticket (i.e., DB). 

Additionally, PB normally represents an online merchant or service provider with more centralised powerful 

computing facilities to run its business, although PB could delegate its tasks to chosen agents. For easy 

presentation, this paper assumes that PB directly carries out the agreed signature exchange. The work to be 

presented later is equally applicable to the case where PB uses the delegation, which will become clear later. 

 Agreed trusted third party (TTP): Suppose that AA and PB do not trust each other to perform the agreed 

exchange honestly. In this case, we assume that they have agreed to employ an off-line TTP PT for helping 

them to complete the exchange fairly when required. The off-line PT means that PT is not needed when the 

exchange is completed correctly, and it is activated otherwise to recover necessary information for the fair 

exchange completion. 

 Public key certification: Let each party PI  {PA, PB, PT} involved in the exchange possess a pair of public 

and private keys, (uI, rI), to be defined in Section 3.2. To ensure the authenticity of signatures signed with 

private key rI, we assume that public key uI has been certified by a certification authority (or CA) and known 

by all the other parties.  

 Security threats: Suppose that there is an adversary keen on breaking the security of the agreed signature 

exchange for various purposes such as financial fraud. The adversary has sufficient resources to intercept AA’s 

communications with the signers and PB and even compromise some of these agents. If an agent is 

compromised, we assume that all the information possessed by the agent is exposed to the adversary. The main 

security threat considered in this paper is that the adversary attempts to utilise the intercepted information and 

compromised agents to obtain PA’s private/secret keys.  

In the event where some agents including AA are compromised, we assume (a) there is no collusion between 



 

  9 

compromised AA and any other party involved in an exchange with AA (or PA), and (b) in any case, the adversary 

cannot gain PA’s private key from any compromised signers and does not have enough compromised signers 

to jointly generate PA’s signatures by themselves.  

Assumption (a) above is essential because no fair exchange approach would work if the host used by one party 

for an exchange colludes with the other party involved in the same exchange. More specifically, since the 

compromised host handles necessary signatures for the exchange, the other party could directly manipulate 

the host to obtain wanted signatures, regardless of the security of the exchange approach employed. The 

assumption can be relaxed by utilising multiple agents to jointly play the role of AA as mentioned earlier. 

Assumption (b) is achievable by employing sufficient signers for private key distribution and joint signature 

generation.   

2.2. Exchange Fairness Requirement 

The signature exchange case described in the previous sub-section needs to satisfy the following requirement: 

At the end of the exchange, if agent AA (or party PA) has obtained a signature of party PB on agreed document 

DB or can obtain the signature through TTP PT, then PB has obtained a signature of PA on agreed document 

DA from AA or can obtain the signature through PT, and vice versa.  

In other words, the above requirement ensures that either each of AA and PB, or neither of them, can obtain the 

other’s valid signature on the agreed document. This is equivalent to the strong fairness stated in [1]. Such fairness 

is preferable because any dispute about the exchange can be resolved among AA (or PA), PB and PT themselves. 

This can avoid the use of external legal means such as a court of justice for the dispute resolution, which is not 

only costly but also infeasible in many cases, particularly when PA and PB are in different countries. 

2.3. Notation List 

To facilitate the understanding of the proposed approach, Table 1 provides a list of main variables and functions 

to be used for its specification.  

3. Signatures 

As pointed out in Section 1, the work proposed in this paper is targeted at the family of discrete logarithm based 

signature schemes [16], rather than a particular signature scheme, for better applicability. To present the work, it 

is necessary in this section to provide an introduction to the concept of proxy signatures [10] and also an overview 



 

  10 

of the Schnorr signature scheme [17]. The proxy signatures will be used by party PA’s designated agents to sign 

agreed documents on PA’s behalf. The Schnorr scheme will be adopted to construct proxy keys for the generation 

of discrete logarithm based proxy signatures.  

Item Description 

PI, uI, rI Party PI  {PA, PB, PT}, and its public & private keys (see Sections 2.1 & 3.2) 

q, p, g Public parameters for discrete logarithm based signatures (see 3.2) 

H(x) Generate a hash of data item x (see 3.2) 

DA, DB, dA, dB Documents of PA and PB, and their hashes dA = H(DA) and dB = H(DB) (see 2.1) 

AA An agent of party PA, appointed as a proxy exchanger (see 2.1) 

S = Sign(d, r) Generate a signature S on hash d with private key r (see 3.1) 

v = Verify(S, d, u) Verify S on d using public key u, with outcome v = yes / no (see 3.1) 

x || y Denote the concatenation of data items x and y (see 3.2) 

kA, A = gkA mod p PA’s long-term key shared with PT and its public parameter (see 4.2) 

CA = (A, A, sT) PA’s certificate issued by PT for key kA (see 4.2) 

xA, yA = gxA mod p PA’s random number (< q) and its public parameter (see 4.2) 

A = (kA + xA) mod q PA’s proxy encryption key assigned to AA (see 4.2) 

wA, нA, hA = H(нA) PA’s warrant, session header and its hash (see 4.2 & 5)  

A, A PA’s Schnorr signature with random A < q: A = gA mod p, A = H(hA||dA||A||yA||wA), 

and A = (ArA+A) mod p, with A as a private proxy signature key for AA (see 4.3) 

A = (A + xA) mod q PA’s private proxy signature key for PT (see 4.3) 

eA = (A + kA) mod q Encryption of A with kA (see 4.3) 

KA = (eA, A, yA, wA) Verifiable encryption of A (see 4.3) 

o=Check(hA,dA,KA,CA) Check KA and CA using hA and dA with outcome o = yes / no (see 4.4) 

SA, A PA’s proxy signatures yielded by AA and PT respectively (see 5) 

SB PB’s signature (see 5) 

Table 1.  List of main variables and functions used in this paper. 

3.1. Proxy Signatures 



 

  11 

To achieve the exchange autonomy discussed in Section 1, it is essential for PA to delegate its power for signature 

generation and exchange to chosen agents. To enforce the signing delegation, proxy signature techniques can be 

applied to enable the designated agents to generate signatures on PA’s behalf.  

Proxy signatures are classified into full delegation, partial delegation and delegation by warrant [10]. The full 

delegation allows a proxy signer to share a private key of an original signer, namely, a proxy or original signature 

can be produced by either of the two signers. In partial delegation, an original signer yields a private proxy key 

from its original private key and assigns the proxy key to a proxy signer so that signatures generated by the proxy 

and original signers are different. The delegation by warrant lets an original signer issue a warrant to a proxy 

signer for the generation of proxy signatures on its behalf with a designated key different from the original signer’s 

private key. 

Proxy signatures can also be further divided into two types: proxy-unprotected and proxy-protected [10]. A proxy-

unprotected signature means that it can be produced by either of the original and proxy signers. A proxy-protected 

signature implies that it can be yielded only by the proxy signer. To achieve this, the proxy signer normally 

incorporates its own private key in the generation of the proxy signature so that the original signer is unable to 

produce the same signature.  

In this paper, we will only consider proxy-unprotected signatures with partial delegation due to the following 

reasons. Firstly, the full delegation allows an original private key of a party to be shared with its chosen agent (or 

device), which increases the risk of the key being compromised in vulnerable u-commerce environments. 

Secondly, the delegation by warrant is less efficient than the partial delegation [10]. Finally, it is unnecessary to 

adopt proxy-protected signatures. As will be shown in Section 4, a proxy signer is either exchanger AA chosen by 

party PA, or TTP PT introduced in Section 2.1. Since AA runs within PA’s own system, the responsibility for its 

protection rests with PA. Although PT can be protected via its own signatures, it is undesirable to do this in order 

to avoid the validity of PA’s proxy signatures replying on PT’s signatures as argued in [3]. However, the approach 

proposed in Section 4 offers a different way for PA to distinguish between proxy signatures generated by AA and 

those produced by PT, which is useful in case PA needs to identify the signer of an improperly yielded proxy 

signature. 

For simplicity, proxy signatures will mean proxy-unprotected signatures with partial delegation hereafter. One 

way to produce such signatures is to let PA determine a private proxy signature key A based on its original private 

signature key rA, and assign A to its chosen exchanger AA as a proxy signer. Here, the method must ensure that it 



 

  12 

is hard for any other party to derive rA from A. This means that even if A is compromised, rA is still secure for PA 

to use. AA will apply A to generate a proxy signature on a given document on PA’s behalf. To minimise any abuse 

or misuse of A, its validity is normally restricted to a particular purpose specified in an associated warrant. 

Similarly, another private proxy signature key A can be created for PT. 

As mentioned earlier, the work presented in this paper is focused on the family of discrete logarithm signature 

schemes rather than a particular one. Thus, in the rest of the paper, we will not mention any specific scheme for 

proxy signatures and only use the following two functions to signify an agreed scheme for the generation and 

verification of a signature, respectively:  

S = Sign(d, r), and v = Verify(S, d, u). 

Here, Sign() yields a signature S signed on a document hash d with a private key r. Verify() checks the correctness 

of signature S on hash d using a public key u. It assigns v = yes if S is correct, and v = no otherwise. 

Although no specific signature scheme will be mentioned for proxy signatures, the next sub-section will provide 

an overview of the Schnorr signature scheme [17] as it will be utilised for the creation of proxy signature keys in 

Section 4.  

3.2. Schnorr Signatures 

Let p, q and g be three public parameters. p is a large prime, q is a large prime factor of p - 1, and g is a number 

between 1 and p such that g
q
 mod p = 1. To generate a pair of private and public keys, a party PA chooses a random 

number rA < q as its private key, and calculates uA = g
rA mod p as the corresponding public key.  

To produce signatures, a secure one-way hash function such as SHA-2 [13] is needed, which is denoted as H(x). 

It should possess the following properties: (a) for any x, it is easy to compute H(x); (b) given x, it is hard to find 

x’ ( x) such that H(x) = H(x’); and (c) given H(x), it is hard to compute x.  

To yield a signature on an agreed document DA, PA picks a random number aA < q to compute: 

bA = gaA mod p, mA = H(H(DA) || bA), and sA = (mA  rA + aA) mod q. 

Here, “x || y” signifies the concatenation of data items x and y.  

The signature on DA is defined as (sA, mA). Additionally, other items such as a time stamp could be added into H() 

for the signature generation if necessary. 



 

  13 

Given document DA and signature (sA, mA) together with PA’s public key uA, a signature verifier can calculate: 

b’A = (g
sA  uA

-mA) mod p. 

If mA = H(H(D) || b’A), then the signature is valid for D. 

The Schnorr signature scheme can also be used to generate threshold signatures [21]. As stated in Section 2.1, the 

focus of this paper is on verifiable proxy encryption, so we simply assume that a secure threshold scheme is 

available for the joint generation of Schnorr signatures, without further discussions on its details. 

4. Proposed Verifiable Symmetric Proxy Encryption 

This section will define the details of the proposed new approach to verifiable proxy encryption based on the 

Schnorr signature scheme introduced earlier in Section 3.2.  

4.1. An Overview of the New Approach 

The proposed approach consists of the following stages: 

1. Short-term proxy encryption key creation: For symmetric encryption, it is essential for two parties to share a 

secret key so that one party can use the key to encrypt sensitive data and the other party can utilise the same 

key to decrypt the encryption for the recovery of the original data. Thus we require that party PA and TTP PT 

have such a shared secret key kA, which is for long-term use with a defined expiration date. kA will be used 

by PA to encrypt signatures or keys and by PT to decrypt them, and the need for this will become clear in the 

subsequent sub-sections.  

As explained in Section 2.1, PA’s encryption task should be delegated to its exchanger agent AA due to the 

nature of autonomous u-commerce operations. This implies that AA has to get hold of kA or its altered form. 

Since AA may operate in a vulnerable ubiquitous network environment, there is a risk of security compromise 

to AA, so it is undesirable to allow AA to directly possess kA. Alternatively, an altered form of kA can be created 

for AA, which is for specified short-term use and with restricted validity for security reasons. This is the option 

adopted by our proposed approach, which will be described in detail in Section 4.2. The altered key will be 

called a proxy encryption key and signified as A. Obviously, the formation of A must ensure that any 

encryption with A can still be decrypted by PT with kA, and A cannot be used to derive kA, so that kA is still 

secure even when AA is compromised to cause the disclosure of A. The introduction of A enables AA to 

perform the encryption on PA’s behalf while protecting PA’s long-term key kA. 



 

  14 

2. One-time proxy signature key generation: As stated in Section 2.1, PA needs to delegate its signing power to 

a group of signers for the joint generation of its signatures. However, the approach proposed in this paper 

does not directly use such a signature for an exchange. Instead, the signature is utilised to construct two 

different private proxy signature keys, denoted as A and A, for AA and PT respectively, which will be fully 

specified in Section 4.3. Note that these two proxy keys cannot be processed to derive PA’s original private 

key rA. A allows AA to yield a proxy signature of PA based on an agreed signature scheme for a direct exchange 

of PB’s signature in normal situations. A is used by PT to produce another proxy signature of PA for PB only 

in an abnormal case where AA and PB are unable to complete their exchange properly. For accountability, 

each of AA and PT should not know the other’s private proxy key so that PA can identify which proxy signature 

is produced by whom. This helps PA to investigate the conduct of AA or PT in case a dispute about a proxy 

signature occurs. 

To prevent the proxy keys from being abused for illegitimate purposes, the keys need to possess the one-time 

property discussed in Section 1. In other words, the creation of the proxy keys must ensure that they are valid 

only for a specified exchange. Thus what AA and PT can do with the keys is to simply generate the expected 

proxy signatures. This reduces the reliance of our approach on the security of AA and PT.  

3. Verifiable symmetric proxy encryption: For the agreed exchange, private proxy signature key A discussed 

above needs to be delivered securely to PT for its generation of PA’s proxy signature for PB when needed. 

However, PB must be assured that PT indeed has the possession of A, before PB can release its signature to 

AA (or PA). Otherwise, having transferred its signature to AA, PB would not be able to obtain PA’s proxy 

signature from PT if AA refuses to send PB its proxy signature yielded with proxy signature key A. An effective 

way to provide the assurance to PB is to pass A to PB in such a way that A is encrypted to stop PB getting A, 

but PB can verify the encryption to confirm that correct A is indeed in the encryption and PT is in the 

possession of the right decryption key for the recovery of A. Such encryption is named verifiable encryption. 

Only when PB requests PT to recover a proxy signature of PA, PB passes encrypted A to PT. Clearly PT has no 

need to know A in a normal exchange with no signature recovery. 

Note that PB is unable to abuse the above signature recovery process to gain advantages over AA (or PA), as 

will be discussed in Sections 6. 

AA is assigned the responsibility of performing the above verifiable encryption using its proxy encryption key 



 

  15 

A introduced earlier. The main challenges here are that AA is not allowed to know A as discussed earlier but 

it needs to encrypt A, i.e. AA has to encrypt A without seeing it, and also that the encryption has to be verifiable 

by PB. To address the first challenge, our approach splits A into two parts, one generated jointly by the signers 

and the other hidden as a factor of A. This means that AA cannot assemble the two parts to form A but can 

encrypt it by combining the first part with A, as will be detailed in Section 4.3. To tackle the second challenge, 

our approach constructs the encryption of A in a style similar to a Schnorr signature, but the encryption itself 

is not a valid signature of PA. This helps to simplify the accomplishment of the verifiability of encrypted A 

without disclosing A and A to PB.  

In addition to the simplicity of the above encryption, the use of key A instead of a proxy signature for the 

encryption makes our approach applicable to the whole family of discrete logarithm based signature schemes. 

This is because public and private keys used by these schemes share the key style defined in Section 3.2. 

Hence, the verifiable key encryption allows our approach to be independent of the individual signature 

schemes, and given such a scheme agreed by AA and PB, it can be directly utilised to generate a proxy signature 

with A. Otherwise, these different schemes would require different methods for verifiable signature 

encryption, which could be costly to implement, particularly on resource-limited computing devices 

employed by u-commerce systems. 

To facilitate a better understanding of the aforementioned keys, Fig. 1 shows these keys, their generators and 

recipients. For example, PA creates its private signature key rA and assigns its shares to the chosen signers for joint 

proxy signature production using a threshold signature scheme adopted by PA.  

In the rest of this section, we will elaborate the approach described above, including encryption key generation, 

verifiable proxy signature key encryption, encrypted key verification and signature recovery. 

4.2. Encryption Key Generation 

For long-term key kA shared between PA and PT discussed in the previous sub-section, kA needs to be certified by 

PT. The certification serves two purposes. First, it will be used by PB to verify the encrypted proxy signature key 

A of PA to confirm that PT has the right key to decrypt it, which will be detailed in the next sub-section. Secondly, 

the certificate allows PT to re-calculate kA when needed, so there is no need for PT to store kA so as to reduce 

resource demand on PT.  



 

  16 

To issue the certificate, PT defines a certificate header or label A including PA’s identity, public key and a valid 

period for the certificate. PT then uses its private key rT to compute: 

kA = H(rT || A) mod q, and A = gkA mod p. 

Here, public parameters p, q and g were defined in Section 3.2. 

 

Fig. 1. Relationships among keys, their generators and recipients for the proposed approach. 

kA and A appear like a pair of private and public Schnorr keys introduced in Section 3.2. However, they are not 

valid for the generation of PA’s signatures and used only for verifiable proxy signature key encryption to be 

presented in the next sub-section. From the formation of kA, it is clear that given A, PT can easily re-produce kA, 

so PT does not keep any information about kA. Also kA is reusable for different exchanges within the specified 

valid period. A will be applied by PB to check that the verifiable encryption involves kA in the form which PT can 

decrypt to recover the signature key. Obviously the integrity of A must be guaranteed. Otherwise, the use of a 

wrong ’A together with its associated k’A would mean that PT could not get a right key for the decryption. 

To ensure the integrity of A, PT certifies it as follows: 

CA = (A, A, sT), with its signature sT = Sign(H(A || A), rT). 

The above function Sign() was introduced in Section 3.1. It represents PT’s signature on items A and A. This 

indicates that any alteration to certificate CA would lead to a verification failure of signature sT, namely, the 

certificate including A is invalid.  

Finally, PT transfers key kA and certificate CA to PA securely by encryption, and deletes both of them afterwards.  

Pass encrypted A if recovery is needed 

Send encrypted A 

PT 

Create kA 

Signers 

Create signatures 

jointly on request 

PA 

Create rA 

Create shares of rA 

Create A from kA 

AA 

Create A and A from signature 

Encrypt A with A 

Issue signature Issue key shares 

Issue A Issue kA 
PT 

Create kA 

PB 

Verify encrypted A 

 



 

  17 

Having received kA and CA from PT, PA can confirm their correctness by checking that A and A in CA are correctly 

signed by sT, A is equal to gkA mod p, and A contains right information.  

Based on kA received, PA needs to generate a proxy encryption key A discussed earlier in Section 4.1 for the 

delegation of its verifiable encryption task to its exchanger agent AA without disclosing kA to AA. To prevent the 

delegation from being misused for illegitimate purposes, PA has to clearly define a warrant wA that sets out terms 

and conditions for the delegation including the proxy signature generation outlined in the previous sub-section. 

wA includes information such as PA’s identity and public key, a valid period and permitted uses of the delegation, 

and acceptable forms of proxy signatures to be discussed further in Section 4.5. If the delegation goes beyond the 

scope stated in wA, PA will not take any responsibility for the misbehaviour. Evidently wA must be embedded in 

each proxy signature of PA to confine its validity to the purposes specified in wA. 

After the definition of wA, PA creates proxy encryption key A by picking a random number xA < q to calculate: 

yA = gxA mod p, and A = (kA + xA) mod q. 

PA then assigns (A, yA, wA) together with certificate CA to AA securely. This allows AA to perform verifiable proxy 

encryptions with A for different exchanges, as long as wA is not expired. Since AA is not given xA and cannot get 

xA from yA, it is hard for AA to obtain kA from given A. This will be further justified by a detailed security analysis 

in Section 6. 

As assumed in Section 2.1, PA has a set of signers appointed for joint signature generation on PA’s behalf. PA also 

needs to pass (yA, wA) to each of these signers so that yA and wA can embedded in the generation of each signature. 

In other words, the signature is valid only for the purposes stated in wA. Moreover, the inclusion of yA in the 

signature is intended to deter AA from maliciously altering A. Since both kA and xA in A are now fixed via CA and 

the signature respectively, the alteration can be easily spotted, which will become clear in Section 4.4. Thus A, 

yA and wA are bond together. 

Note that A could take the form of a Schnorr signature, e.g. A = (H(wA || yA)  kA + xA) mod q, to bind A to 

warrant wA and number yA. However, it would add more computation, i.e. A
-H(wA || yA), to the verification to be 

presented in Section 4.4, because the verification would have to check that yA = (g
A  A

-H(wA || yA)) mod p. Hence 

the way discussed earlier for getting A, yA and wA bond together is more efficient. 

4.3. Verifiable Symmetric Proxy Encryption of Proxy Signature Keys 



 

  18 

We now propose methods for creating private proxy signature keys A and A discussed in Section 4.1 for the 

delegation of PA’s signing power to AA and PT for proxy signature generations respectively, and then getting A 

delivered to PT via PB by verifiable encryption. These methods are crucial for autonomous fair signature exchange. 

The signing delegation helps to achieve the autonomy, and the verifiable encryption to fulfil the fairness.  

To yield A and A for an agreed signature exchange, AA first gets hold of the hash dA of its agreed document DA 

(i.e. dA = H(DA)) and another hash hA of other information related to the current session of the exchange, which 

will be defined in Section 5. AA then passes hA and dA to the designated signers to request them for the generation 

of a Schnorr signature on hA and dA. Here we assume that upon receipt of AA’s request, the signers are able to 

assess its validity with respect to possessed warrant wA, and produce the signature for AA only if the request is 

valid. In the case of the valid request, the signers jointly generate a Schnorr signature (A, A) for AA on PA’s behalf, 

which is expressed as: 

A = gA mod p, A = H(hA || dA || A || yA || wA), and A = (A  rA + A) mod q. 

Here, A is a random number < q, and yA together with wA was assigned to each signer in Section 4.2.  

Having received signature (A, A) from the signers securely, AA keeps A as its own private proxy signature key 

for later proxy signature generation. The public proxy signature key A associated with A can be computed below 

with PA’s public key uA: 

A = (uA
A  A) mod p. 

This is because: 

A = gA mod p = gA  rA + A mod p = ((grA)A   gA) mod p = (uA
A  A) mod p. 

Additionally, AA applies A to construct another private proxy signature key A for TTP PT, which will be used by 

PT to yield a proxy signature on PA’s behalf when PT is requested for signature recovery in an abnormal case of 

exchange, as will be detailed in Section 4.5. A is defined below with xA and yA = gxA mod p introduced in Section 

4.2 for the creation of proxy encryption key A: 

A = (A + xA) mod q. 

Its corresponding public proxy signature key can be calculated as: 

A = (uA
A  A  yA) mod p. 



 

  19 

This is due to the following relationship: 

A = gA mod p = gA + xA mod p = gA  rA + A + xA mod p = (uA
A  A  yA) mod p. 

Obviously, AA is unable to directly produce A as AA does not know xA. Instead, AA generates an encrypted form of 

A with key A: 

eA = (A + A) mod q. 

Since eA can be expressed as eA = (A + A) mod q = (A + xA + kA) mod q = (A + kA) mod q with shared key kA 

defined via CA in Section 4.2, eA is in effect the encryption of A with kA. As will be shown in the subsequent sub-

sections, eA is verifiable by any party to confirm that it contains correct A, and A is recoverable from eA only by 

PT because given certificate CA, only PT can retrieve kA from CA and then decrypt eA with kA for A. In other words, 

eA along with its related items represents a verifiable symmetric proxy encryption of proxy signature key A with 

encryption key kA, and eA can be decrypted by PT using the same key kA. Note that eA itself cannot be used as a 

valid proxy signature key of PA, and it is hard for any other party to derive A from eA without knowing kA, which 

will be justified in Section 6. 

Recall the discussion in Section 4.1 that the two private proxy signature keys A and A defined above should be 

one-time keys. This will be explained in detail in Section 4.5. 

After the generation of eA, AA defines: 

KA = (eA, A, yA, wA) 

as its verifiably encrypted proxy signature key A. Here, AA received (yA, wA) along with encryption key A and 

certificate CA from PA in Section 4.2, and A together with signature key A from the signers earlier. 

AA then transfers (KA, CA) along with the other related information to PB in order to exchange for an expected 

signature SB of PB. If AA receives correct SB from PB as an acknowledgement to its acceptance of (KA, CA), AA 

applies private proxy signature key A to yield a required proxy signature SA on hA and dA for PB using the agreed 

signature scheme Sign() stated in Section 3.1, i.e. SA = Sign(H(hA || dA), A). Note that AA produces SA by itself 

without any involvement of the signers. AA then sends SA to PB. The reception of valid SA by PB indicates the 

successful completion of the exchange with no need for any involvement of PT. This process will be discussed 

further in Section 5. 



 

  20 

4.4. Encrypted Signature Key Verification 

Having received KA = (eA, A, yA, wA) and CA = (A, A, sT) together with agreed document hash dA and related 

information hash hA from AA, PB must examine the correctness of KA and CA. The examination of CA is intended 

to ensure that given valid CA, PT can recover key kA associated with A as described in Section 4.2. The verification 

of KA serves to confirm that eA is indeed the symmetric encryption of correct signature key A with the encryption 

key (i.e. kA) linked to A. Collectively, correct KA and CA assure PB that PT can recover kA from CA and then apply 

it to decrypt eA for A, in case a signature recovery is required. The possession of A enables PT to create a proxy 

signature of PA for PB. This proves AA’s commitment to the exchange. On the other hand, if either KA or CA is 

invalid, PB simply rejects them. 

To check the validity of CA, PB gets PT’s public key uT to verify that sT is a valid signature of PT on A and A. This 

is done via function Verify() defined in Section 3.1, i.e., PB confirms that Verify(sT, H(A || A), uT) = yes. PB must 

also make sure that the information in header A is valid to PA, e.g., PA’s identity and public key match those in A, 

and CA is not expired.  

After the successful validation of CA, PB proceeds to verify KA by performing the following calculation with the 

data items in KA and CA together with hashes hA and dA: 

’A = (geA  (uA
A  yA  A)-1) mod p, and ’A = H(hA || dA || ’A || yA || wA). 

PB then compares ’A with A  in KA. If A = ’A, KA is valid. This is due to the following relationship: 

’A = (geA  (uA
A  yA  A)-1) mod p 

= (gA + A  (gA  rA  gxA  gkA)-1) mod p 

= (gA  rA + A + kA + xA  g -(A  rA + kA + xA)) mod p 

= gaA mod p 

= A. 

The above verification of both CA and KA is signified by the following function in order to simplify the presentation 

of the exchange protocol to be proposed in Section 5: 

o = Check(hA, dA, KA, CA). 

The function has the result o = yes if both KA and CA are valid in relation to hA and dA, and o = no otherwise. 



 

  21 

The successful validation of KA and CA together with other checks to be detailed in Section 5 convinces PB that it 

is safe to release its agreed signature SB to AA. In return, AA should send its proxy signature SA yielded in Section 

4.3 to PB. To verify SA, PB computes public proxy signature key A = (uA
A  ’A) mod p as defined in Section 4.3. 

PB then verifies SA via function Verify() given in Section 3.1, namely, checking that Verify(SA, H(hA || dA), A) = 

yes. If SA is valid, the exchange is completed successfully with no need for any involvement of PT. 

In case PB fails to receive correct SA after handing over SB to AA, PB can request PT to recover a valid proxy 

signature A of PA on hA and dA from KA, which will be detailed in the next sub-section.  

4.5. Proxy Signature Recovery 

A signature recovery is needed only when PB is unable to obtain a valid proxy signature of PA from AA after 

releasing its own signature to AA. The recovery is intended to assure the fair completion of the exchange in 

abnormal circumstances. To achieve this, PT needs to decrypt encrypted proxy signature key A using long-term 

key kA shared with PA, and then generates a proxy signature of PA with A for PB.  

To request PT for a signature recovery, PB should pass hA, dA, KA and CA to PT. Upon receipt of the request, PT 

examines the validity of KA and CA in the same way used by PB in Section 4.4, i.e., confirming that Check(hA, dA, 

KA, CA) = yes. If the validation is successful and all the other conditions to be stated in Section 5 are satisfied, PT 

applies its private key rT and header A in received CA to compute: 

kA = H(rT || A), and A = (eA - kA) mod q. 

Here, eA = (A + kA) mod q was defined in Section 4.3. 

PT then uses A as a private proxy signature key to generate a proxy signature A on hA and dA for PB on PA’s behalf 

using the agreed signature scheme Sign() defined in Section 3.1, i.e. A = Sign(H(hA || dA), A).  

PB can validate A by forming the corresponding public proxy signature key A = (uA
A  ’A  yA) mod p, as 

defined in Section 4.3, from its possessed items to confirm that Verify(A, H(hA || dA), A) = yes. 

As mentioned in Section 4.2, warrant wA in KA specifies the acceptable forms of PA’s proxy signatures. Now we 

can explicitly state that these forms are restricted to those of SA and A. More specifically, for the given exchange, 

session and agreed document hashes hA and dA must appear in both private proxy signature key A (or A) and 

proxy signature SA (or A) in order for PA to accept SA (or A) as its valid proxy signature. In other words, any 



 

  22 

signature, which does not meet this restriction, is an invalid proxy signature of PA. This effectively turns A and 

A into the one-time keys for the specified exchange, which were discussed in Section 4.1. This is because AA can 

neither yield A by itself nor alter it without invalidating it, as introduced in Sections 4.3 and 4.4. Additionally, 

applying A to sign a different hash h’A ( hA) or d’A ( dA) from the one in A would violate the above restriction 

so that the proxy signature produced is invalid to PA. Hence AA can only use A to produce SA. The same discussion 

is also applicable to A and A as A is formed from A (see Section 4.3).  

Additionally, PA is able to distinguish a proxy signature yielded by AA from that by PT, because they use different 

private proxy signature keys for the signature generations and neither of AA and PT knows the other’s key. This is 

a useful feature, which allows PA to trace the producer of a proxy signature when resolving a dispute about its 

validity. 

It is worth emphasising that key kA shared between PA and PT is used only for the encryption and decryption of 

private proxy signature key A. kA is not a valid key for the generation of PA’s signatures, namely, PT cannot 

employ kA to produce any valid signature of PA.  

Since PB only receives signature A from PT, PB is unable to derive key A from A. This implies that PB cannot 

obtain any of the other keys A, A and kA either. The detailed analysis of this claim will be presented in Section 

6. Therefore, A is secure and reusable for further exchanges. 

5. Fair Signature Exchange Protocol 

Based on the verifiable proxy encryption approach proposed in Section 4, we now present a protocol for Proxy-

Led Efficient Autonomous Signature Exchange (PLEASE) in u-commerce systems. It offers a series of prescribed 

message transmissions for AA, PB and PT to follow in order to complete an agreed exchange fairly. The protocol 

is divided into two sub-protocols. One is for handing a normal case of exchange without signature recovery, which 

is denoted as PLEASE-E. The other is for processing signature recovery, which is represented as PLEASE-R, in 

case the normal exchange fails to complete properly. These two sub-protocols are illustrated in Fig. 2 and 3 

respectively. They are based on the assumption that there is a secure channel between any two communicating 

parties involved, e.g., the communications can be protected using SSL/TLS [9].  

The first sub-protocol PLEASE-E shown in Fig. 2 specifies a sequence of operations executed by each of proxy 

exchanger AA and party PB. The sub-protocol is initiated by AA. To form the first message, AA performs its top 



 

  23 

group of operations in Fig. 2. Specifically, AA gathers the relevant information about the current exchange to 

define a session header нA. It serves to indicate the identities of PA and PB involved in the exchange, their agreed 

document hashes dA = H(DA) and dB = H(DB) to be signed using the agreed signature scheme, a timestamp, and a 

completion deadline to prevent a party from purposely delaying the completion. AA also gets hold of the assigned 

key certificate, warrant and proxy encryption key introduced in Section 4.2. Based on these items, AA requests the 

designated signers to jointly produce a Schnorr signature (A, A) on hashes hA and dA, and then encrypts A with 

proxy encryption key A for the formation of KA as the verifiable encryption of proxy signature key A assigned to 

TTP PT, as defined in Section 4.3. AA then sends нA, KA and CA as its first message to PB. 

Note that there is no need to have an additional signature for the integrity protection of AA’s message. This is 

because нA, KA and CA in the message are linked together, as CA is associated with A used for the encryption eA 

of A in signature (A, A) on нA as well as parameter yA and warrant wA in KA. 

Moreover, the authenticity of the message is established by PB via the verification of KA. As shown in Section 4.4, 

the verification resembles to that of original signature (A, A) without revealing A to PB. This verifiable but hidden 

signature serves to assure PB that PT has been given a permission to recover a proxy signature of PA for PB, 

provided that the following conditions are met: 

(a) PB submits a valid signature SB on session hash hA = H(нA) and document hash dB to PT, and  

(b) the exchange satisfies all the conditions specified in нA and wA.  

Upon the reception of AA’s message, PB begins the execution of its top group of operations in Fig. 2. These include 

the validation of CA and KA via function Check() defined in Section 4.4 and the examination of the conditions in 

нA and wA to ensure the authenticity and integrity of AA’s message and the satisfaction of condition (b) stated 

above. A failure of the verification or examination leads to protocol termination as the message is invalid for the 

current exchange. In this case, neither of AA and PB has disclosed its signature to the other. Otherwise, the valid 

message convinces PB that PT can recover a valid proxy signature of PA from the message when PB meets the 

above condition (a). With this assurance, PB generates its signature SB using function Sign() defined in Section 

3.1, and then sends it to AA as the second message in Fig. 2. Here, hA in the message is used as an identifier to 

indicate which exchange session the message belongs to, as AA may run multiple exchange sessions concurrently. 



 

  24 

 
Fig. 2.  Signature exchange sub-protocol PLEASE-E. 

In response to the arrival of PB’s message, AA performs its bottom group of operations in Fig. 2. If received 

signature SB is proved to be invalid by function Verify() specified in Section 3.1, AA simply terminates the protocol 

run because SB is not the signature that AA can accept. In this situation, neither AA nor PB has released its valid 

signature to the other, although PB has got hold of encrypted proxy signature key A from AA via the first message. 

Otherwise, AA proceeds to yield a proxy signature SA with its private proxy signature key A, and then transfers SA 

to PB as the third message in Fig. 2 to complete its exchange process.  

Having received SA from AA, PB executes its bottom group of operations in Fig. 2. If the validity of SA is confirmed 

with public proxy signature key A defined in Section 4.3, the exchange has been completed successfully. 

Otherwise, PB cannot accept SA as a valid signature of PA. In this case, PB has already handed over its valid 

signature SB to AA but failed to get a valid signature from AA. Thus it is essential for PB to activate sub-protocol 

PLEASE-R in Fig. 3 to request PT for the recovery of a valid signature of PA.  

To run PLEASE-R, PB gathers its signature SB and AA’s first message received via PLEASE-E and then sends 

them to PT as the first message in Fig. 3.  

Upon the receipt of the message from PB, PT executes its sequence of operations defined in Fig. 3. These include 

extracting relevant information from the message, e.g. document hashes dA and dB in header нA, and verifying the 

validity of SB and AA’s message in the ways discussed for the first two messages of PLEASE-E in Fig. 2. PT accepts 

PB’s signature recovery request only if all the verifications are passed successfully. To proceed for the recovery 

of a signature of PA for PB, PT decrypts encrypted private proxy signature key A using the information in AA’s 

 

нA || KA || CA 

Define session header нA including hash dA 

Calculate hA = H(нA)  

Get assigned cert. CA and items (A, yA, wA) 

Ask singers to create signature (A, A)  

Encrypt A with A for eA = (A+A) mod q 

Define KA = (eA, A, yA, wA) 

hA || SA 

Yield public proxy signature key A 

Complete if Verify(SA, H(hA || dA), A) = yes 

Initiate PLEASE-R otherwise 

hA || SB 

Get PB’s public key uB and hash dB 

Abort if Verify(SB, H(hA || dB), uB) = no  

Yield signature SA = Sign(H(hA || dA), A) 

PB 

Get hash dA and also calculate hA = H(нA) 

Abort if Check(hA, dA, KA, CA) = no  

Abort if any condition in нA and wA is not met 

Get PB’s private key rB and hash dB  

Yield signature SB = Sign(H(hA || dB), rB) 

AA 



 

  25 

message forwarded from PB, and applies decrypted A to create a proxy signature A on PA’s behalf, as presented 

in Section 4.5. PT then sends A to PB, and forwards SB to AA, as the second and third messages in Fig.3 respectively.  

Similar to the last two messages of PLEASE-E in Fig. 2, each of PB and AA validates the signature received from 

PT. There is no need for AA to verify SB again if AA already got correct SB via PLEASE-E. When both PB and AA 

have obtained their expected signatures, the exchange is completed.  

Note that PB or AA may not receive its message from PT correctly due to communication or system failures. In this 

case, PB or AA can request PT for the message re-transmission. Hence, PT should keep A and SB for a specified 

period to serve such a re-transmission purpose. Of course, PB can re-run PLEASE-R if necessary. 

 

Fig. 3.  Signature recovery sub-protocol PLEASE-R. 

6. Security Analysis  

We now evaluate the security assurance of the approach to the verifiable proxy encryption of proxy signature keys 

proposed in Section 4. This includes analysing the security strength of the approach, its signature recoverability 

and exchange fairness. We begin with the following claim about the approach’s security strength: 

Claim 1: The approach to the verifiable encryption KA of private proxy signature key A presented in Section 4.3 

is as secure as the Schnorr signature scheme introduced in Section 3.2. 

Analysis: As shown in Section 4.3, the encrypted item eA in KA can be expressed as: 

eA = (A + A) mod q = (A + xA + kA) mod q = (kA + A) mod q. 

Here, A and A are the two private proxy signature keys created for AA and PT, respectively. kA is the key shared 

 

нA || KA || CA || SB 

Yield public proxy signature key A 

Complete if Verify(A, H(hA||dA), A)  

                    = yes 

Repeat recovery otherwise 

Complete if Verify(SB, H(hA||dB), uB) = yes  

Ask PT to re-send SB otherwise 

hA || SB 

AA PB 

hA || A 

PT 

Get public key uB  

Get hashes dA and dB in нA and item eA in KA 

Calculate hA = H(нA) 

Abort if Verify(SB, H(hA||dB), uB) = no 

Abort if Check(hA, dA, KA, CA) = no  

Abort if any condition in нA and wA is not met 

Get private key rT and label A in CA 

Calculate kA=H(rT||A) and A=(eA-kA) mod q 

Yield signature A = Sign(H(hA||dA), A) 



 

  26 

between PA and PT. A is the symmetric proxy encryption key produced from a random number xA (< q) and key 

kA for AA. 

Moreover, an original Schnorr signature (sA, mA) on a document hash d’A is yielded with a random number aA < q 

and PA’s private key rA in the following way introduced in Section 3.2:  

bA = gaA mod p, mA = H(d’A || bA), and sA = (mA  rA + aA) mod q. 

By comparing eA = (kA + A) mod q with sA, it is evident that the form of eA is a special case of the form of sA with 

mA = 1, where kA corresponds to rA, which both remain unchanged, and A matches aA, which both vary, for 

different encryptions and signatures, respectively. Note that the variation of A = (A + xA) mod q for different 

exchanges is owing to the inclusion of a new random number A < q in the formation of each A = (A  rA + A) 

mod q as shown in Section 4.3. Thus, deriving kA or A from eA is as hard as obtaining rA or aA from sA. 

Similarly, kA embedded in proxy encryption key A = (kA + xA) mod q is as secure as rA in sA, and also A is only 

known by PA and AA. Note that AA cannot change A without invalidating it. This is because kA in A is attached to 

A = gkA mod p in certificate CA = (A, A, sT) issued by PT in Section 4.2, and xA is fixed via yA = gxA mod p in hash 

A in Schnorr signature (A, A) produced jointly by the appointed signers for AA in Section 4.3. For example, if 

AA is compromised, it may attempt to maliciously alter A and yA to get different values ’A = (A + ) mod q = 

(kA + xA + ) mod q and y’A = (yA  g) mod p = gxA+ mod p with a random number  < q, and apply ’A and y’A 

to the formation of verifiably encrypted proxy signature key K’A, which is then sent to PB. Although the 

relationship between ’A and y’A appears to be right, the verification of K’A performed by PB in Section 4.4 will 

fail due to A  H(hA || dA || ’A || y’A || wA), where A = H(hA || dA || A || yA || wA), A = ’A but yA  y’A. Consequently, 

PB rejects K’A, so AA gains no benefit from its misbehaviour.  

Note that AA itself is unable to generate any valid signature of PA, and no adversary could compromise enough 

signers to obtain a valid signature of PA illegitimately, as assumed in Section 2.1. This implies that AA cannot get 

enough signers to sign altered value y’A illicitly. 

Additionally, since A in signature (A, A) is directly used by AA as a private proxy signature key for the generation 

of proxy signature SA, A inherits the security of the Schnorr signature scheme. This also applies to private proxy 

signature key A = (A + xA) mod q passed to PT using eA, because the only difference from A is that A contains 

extra random number xA with yA = gxA mod p included in A, namely, (A, A) can also be seen as a Schnorr 



 

  27 

signature of PA. 

Recall that AA is only permitted to hold A and A. As analysed above, deriving kA or xA from A by AA is as hard 

as breaking the security of the Schnorr scheme. Thus, it is hard for AA to construct A from A and A. On the other 

hand, PT is only allowed to get A and kA, so it cannot compute A without knowing xA or A. Moreover, since each 

of A and A together with A is a Schnorr signature of PA on given session and document hashes hA and dA, A and 

A cannot be altered without invalidating them. They are acceptable by PA if and only if they are used to sign both 

hA and dA that must also appear in A, as discussed about warrant wA in Section 4.5. In other words, A and A are 

invalid for signing any hashes other than hA and dA. Here, no adversary could illegitimately obtain a signature of 

PA from its appointed signers, as assumed in Section 2.1. These features enable PA to distinguish proxy signatures 

produced by AA from those by PT. 

It is worth pointing out that the security of proxy signatures SA and A signed with keys A and A respectively as 

illustrated in Fig. 2 and 3 relies completely on the agreed signature scheme signified by functions Sign() and 

Verify() specified in Section 3.1, because the work proposed in this paper makes no change to the scheme. 

There is also a possibility that party PB tries to illicitly obtain key kA from certificate CA = (A, A, sT) defined in 

Section 4.2. As kA = H(rT || A), it is hard for PB to directly compute kA without knowing PT’s private key rT. 

Moreover, recovering kA from A = gkA mod p (i.e., kA and A actually form a pair of private and public keys) is 

equivalent to deriving a private key from its associated public key, under the Schnorr signature scheme. This is 

hard to achieve. Otherwise, the Schnorr scheme would not be secure.  

Furthermore, any other party ( {PA, PB, PT}) cannot even get KA and CA, as they are sent from AA to PB via sub-

protocol PLEASE-E, or forwarded from PB to PT via PLEASE-R, over a secure channel, as stated in Section 5.  

It is evident from the above analysis that the security of encryption KA is as strong as that of the Schnorr signature 

scheme.   

We now proceed to confirm the recoverability of the proposed approach with the following claim: 

Claim 2: Given valid certificate CA and encryption KA, only PT apart from PA can certainly recover correct private 

proxy signature key A for the generation of a required proxy signature of PA without any involvement of AA and 

PA.  



 

  28 

Analysis: As presented in Section 4.4, valid CA = (A, A, sT) means that it is indeed PA’s certificate issued by PT, 

namely, PT can recover shared key kA from CA, which is guaranteed to be the exponent in A = gkA mod p. Moreover, 

valid KA = (eA, A, yA, wA) indicates that it meets the condition A = H(hA || dA || ’A || yA || wA) with ’A = (geA  

(uA
A  yA  A)-1) mod p, where uA = grA mod p is PA’s public key associated with its private key rA. This verification 

resembles to that of Schnorr signature (A, A) created in Section 4.3, with extra numbers yA and A fixed by A 

and CA, respectively. The validity of KA implies that ’A is equal to A = gA mod p included in A. 

By re-arranging A = (geA  (uA
A  yA  A)-1) mod p, we have: 

(uA
A  A  yA) mod p = (geA  A

-1) mod p. 

This leads to: 

gA  rA + A + xA mod p = geA - kA mod p. 

Since private proxy signature key A was defined as A = (A + xA) mod q = (A  rA + A + xA) mod q in Section 

4.3, the above equation can be expressed as: 

gA mod p = geA - kA mod p. 

This is equivalent to: 

A = (eA - kA) mod q. 

The above result means that given valid KA and CA, PT can certainly regain kA from CA as discussed in Section 4.5, 

and then use eA in KA to calculate (eA - kA) mod q for A. Recovered key A enables PT to create a required proxy 

signature on hA and dA for PB, provided that all the conditions discussed in Section 5 are satisfied. Clearly, the 

recovery of A by PT does not need any involvement of AA and PA.  

It is clear from the above analysis that PT can certainly obtain a valid proxy signature of PA from correct KA and 

CA independently of AA and PA.   

The two claims analysed above can be applied to support the following claim: 

Claim 3: The protocol PLEASE presented in Section 5 can satisfy the fairness requirement stated in Section 2.2. 

Analysis:  To confirm the validity of this claim, we need to demonstrate two cases of signature acquirement 

according to the fairness requirement. The first case is to prove that if AA has obtained the valid signature SB of 



 

  29 

PB, then PB has gained or can get a valid proxy signature of PA. The second case swaps the positions of AA and PB, 

i.e., showing that if PB has got a valid proxy signature of PA, AA has obtained or can get the valid signature SB of 

PB. Collectively, the two cases confirm that either each of AA and PB or neither of them has gained the other’s 

valid signature at the end of the exchange, which is required for the exchange fairness. 

We start with the analysis of the first case. This means that AA is supposed to have obtained valid signature SB 

from PB or through PT, as there is no other way for AA to acquire SB, assuming that PB’s private signature key is 

not compromised. We then must show that PB has gained or can get a valid proxy signature of PA. In this case, the 

attainment of SB by AA indicates that PB has certainly received the correct items from AA in the first message of 

sub-protocol PLEASE-E in Fig. 2. Otherwise, PB would not have released SB to AA. According to Claim 2 

discussed earlier, the possession of AA’s correct message guarantees PB that PT can certainly recover PA’s proxy 

signature A for PB, when PB makes a valid signature recovery request to PT as discussed in Section 5. More 

specifically, PB could have received PA’s proxy signature SA directly from AA in the third message of PLEASE-E, 

or PB can definitely obtain A indirectly from PT by activating PLEASE-R in Fig. 3. Hence, PB can certainly get 

one of SA and A, which are equally valid for given session and document hashes hA and dA.  

For the second case stated earlier, suppose that PB have obtained a valid proxy signature of PA. In other words, PB 

has received either SA from AA in the third message of PLEASE-E or A from PT in the second message of PLEASE-

R, as there is no illicit way for PB to obtain the signature according to the analysis of Claim 1. We now show that 

AA has gained or can get PB’s signature SB. Since PB obtained either SA via PLEASE-E or A through PLEASE-R, 

AA is able to get SB via one of these two sub-protocols as well. If PB gained SA, AA had certainly received SB from 

PB via the second message of PLEASE-E. Otherwise, AA would not have released SA to PB through the third 

message of PLEASE-E. If PB got A, AA should have received SB from PT, because PT passed A to PB, while 

forwarding SB to AA,  via PLEASE-R. AA can also request PT for the re-transmission of SB in case AA failed to 

receive SB from PT, as discussed in Section 5. Thus, AA can obtain SB. 

Additionally, PB may not follow PLEASE-E properly after the reception of the first message from AA. Instead PB 

uses the message to activate PLEASE-R for signature recovery. However, PB cannot get PA’s signature unfairly 

in this case. According to PLEASE-R defined in Fig. 3, PB has to provide its valid signature for the signature 

recovery, and PT recovers PA’s signature for PB while forwarding PB’s signature to AA, in order to ensure that the 

signature recovery is fair to both PA and PB. 



 

  30 

The above analysis demonstrates that either each of AA (or PA) and PB, or neither of them, can get the expected 

signature from the other at the end of the exchange, namely, protocol PLEASE satisfies the fairness requirement 

stated in Section 2.2.   

7. Comparison with Related Work 

The issue of fair signature exchange between two distrusted parties over networks has been well studied, e.g. [2-

5, 7, 14, 18-20, 22-25]. As pointed out in Section 1, the existing approaches to such exchange can be classified 

into the public-key and symmetric-key based categories in terms of the types of verifiable signature encryption 

employed to achieve the exchange fairness. A common way for public-key based verifiable signature encryption 

(e.g. [3]) is to require that one party PA apply a public key of a TTP PT to encrypt its signature SA, and the other 

party PB can verify that the encryption contains correct SA and PT has the associated private key to decrypt the 

encryption for the recovery of SA. Evidently, such public-key based encryption can be delegated by PA to its 

agent(s) because the agent only needs to know the public key to perform the encryption. While the approaches in 

this public-key based category offer the benefits of assuring the exchange fairness and enabling the signature 

exchange delegation, they are in general mathematically complex and computationally expensive to operate.  

On the other hand, the symmetric-key based category of approaches to verifiable signature encryption has also 

been proposed (e.g. [19, 25]). They exhibit better simplicity and efficiency in comparison with any public-key 

based solutions. For instance, the modular exponentiations (the most expensive computations) needed by the 

symmetric-key based approach for a verifiable RSA [15] signature encryption and its verification given in [25] 

are about one quarter of those needed by a well-known public-key based method presented in [3].  

However, as pointed out in Section 1, the existing symmetric-key based approaches do not normally offer the 

capability of delegating the task of verifiable signature encryption to a selected agent, which are ineffective for u-

commerce systems. A recently proposed approach [20] attempts to address the problem by offering such 

delegation capability for signature exchange. Nevertheless, this approach utilises two separate signatures for one 

verifiable encryption. As discussed in Section 2.1, the joint signature generation is important for u-commerce 

systems to achieve better security and reliability, but it requires much more computation and communication than 

the signature generation only by one signer. Hence, the use of two signatures instead of one for a single verifiable 

encryption significantly weakens the efficiency of the approach in u-commerce settings. 

The above discussion on the related work highlights that the public-key based approaches to fair signature 



 

  31 

exchange are usable for u-commerce systems but inefficient, and that the existing symmetric-key based 

approaches are ineffective or inefficient in u-commerce settings. 

Comparing with the related work, the new protocol PLEASE presented in this paper not only achieves the 

exchange fairness as analysed in the previous section but also shows the following novel characteristics: 

(a) The approach proposed in Section 4 is the first one offering verifiable symmetric proxy encryption based on 

the Schnorr signature scheme.  

(b) The proxy encryption of private proxy signature keys instead of proxy signatures, which differs from existing 

approaches, helps to achieve a better level of simplicity, efficiency and flexibility. Our approach is simpler 

and more efficient because it is built solely on the Schnorr signature scheme itself, which will be justified 

further later. It also uses only one signature (i.e. (A, A)) for each verifiable encryption, which overcomes 

the weakened efficiency problem discussed earlier about the existing symmetric-key based approaches. 

These make our approach easier to implement on small resource-limited devices normally used in u-

commerce systems. This advantage is important, particularly when the approach will be extended to allow 

joint proxy encryption by multiple agents for better security and reliability. The approach is also flexible as 

the private proxy signature keys proposed in Section 4 are applicable to the whole family of discrete 

logarithm based signature schemes for proxy signature generations [16]. In other words, the approach is 

suited to fair exchanges of any such signatures. 

(c) The proxy encryption is supported by the issuance of a short-term purpose-restricted proxy encryption key 

A from a long-term key kA shared between PA and PT with a warrant wA. This enables party PA to delegate 

the verifiable encryption to its exchanger AA while still keeping kA secure from AA. Thus our approach 

resolves the encryption delegation problem, experienced by the existing symmetric-key based approaches, 

in a simple way. 

(d) The proposed private proxy signature keys for proxy signature generations are also augmented with the one-

time property, which permits each signature key to be valid only for one specific exchange signified by a 

pair of session and document hashes. This feature prevents the signature keys from being used for any 

illegitimate purposes. 

To support the above claim on the better simplicity and efficiency of our approach, we compare it with the well-

known public-key based approach to the verifiable encryption of Schnorr signatures, which was proposed by 



 

  32 

Ateniese in [3] and could be applied to fair signature exchange in u-commerce. The simplicity of our approach 

lies in the fact that it is based solely on the Schnorr signature scheme itself, as analysed in Section 6. However, 

Ateniese’s approach requires two additional techniques, the Naccache-Stern cryptosystem [11] for signature 

encryption and a proof-of-knowledge scheme for encrypted signature verification, so our approach is 

mathematically much simpler. 

To compare the efficiency of the two approaches, we consider the generation, verification and recovery of a 

verifiably encrypted key or signature with regard to the number of the most expensive computations, i.e. modular 

exponentiations. As listed in Table 2, our approach needs 2, 2 and 3 modular exponentiations for the generation, 

verification and recovery of a verifiably encrypted signature key, respectively. Here, the generation and recovery 

include the production of proxy signatures SA and A by AA and PT, respectively. Also we only count one 

exponentiation for the joint generation of Schnorr signature (A, A) in Section 4.3 as such joint signature 

generation should also be used by Ateniese’s approach for u-commerce systems. Moreover, the creation of 

encryption key A in Section 4.2 is excluded because A is used for multiple exchanges, and the verification of 

certificate CA defined in Section 4.2 is not counted as Ateniese’s approach needs a similar verification as well.  

Number of Modular Exponentiations 

Approach Generation Verification Recovery 

Ateniese’s Approach  5 5 4 

Our Approach 2 2 3 

Table 2: Computation comparison between our and Ateniese’s approaches for the generation, 

verification and recovery of a verifiably encrypted key and signature. 

In contrast, Ateniese’s approach requires 5, 5 and 4 modular exponentiations for the generation, verification and 

recovery of a verifiably encrypted Schnorr signature, respectively. Since Ateniese did not define the recovery 

details in [3], we assume that the encrypted signature is decrypted first and the recovered signature is then verified, 

which is more efficient than verifying the encrypted signature and then decrypting it. Also we count only 2 

modular exponentiations for the decryption as mentioned in [3].  

Additionally, Table 3 provides a comparison between our and Ateniese’s approaches in terms of the numbers of 

data items produced for a verifiably encrypted key and signature. Here, a q-size, p-size or hash-size data item 

means that its length is not longer than that of q, p or a hash, respectively, with one exception that one of the 2 p-



 

  33 

size data items for Ateniese’s approach can be larger than p due to the use of the Naccache-Stern cryptosystem 

for signature encryption [3]. Also, warrant wA specified in Section 4.2 is not counted as it should also be adopted 

by Ateniese’s approach in u-commerce settings. Moreover, certificate CA is not considered because a similar 

certificate is used by Ateniese’s approach as well. From Table 3, it is evident that our approach yields less data 

than Ateniese’s approach.  

Number of Data Items 

Approach q-size p-size Hash-size 

Ateniese’s Approach 1 2 2 

Our Approach 1 1 1 

Table 3: Data comparison between our and Ateniese’s approaches in terms of the numbers of data items 

generated for a verifiably encrypted key and signature. 

The above comparisons clearly illustrate that our approach is much more efficient and simpler than Ateniese’s 

approach. This indicates that our approach is much easier to implement and more efficient to run on small 

computing devices used in u-commerce systems. 

8. Conclusions and Future Work 

We have identified the shortcomings of the existing work on fair signature exchange in relation to the emerging 

exchange scenarios of u-commerce. This has motivated us to propose a novel approach to the verifiable symmetric 

proxy encryption of one-time proxy signature keys in Section 4 to rectify the identified weaknesses. Such proxy 

encryption enables the task of verifiable encryption to be delegated to a chosen agent without disclosing any long-

term key to the agent, whilst retaining the simplicity and efficiency of the symmetric-key based encryption. The 

use of proxy signature keys instead of proxy signatures for their verifiable encryption makes the approach flexible 

for its application to the whole family of discrete logarithm based signature schemes with no need for any 

modification. Also the one-time property of the proxy signature keys prevents them from being abused for 

illegitimate purposes.  

In addition, the proposed approach has been applied to the design of a new protocol suited to emerging 

autonomous fair signature exchange in u-commerce in Section 5. The aforementioned characteristics of the 

approach distinguish the protocol from other existing ones, and help to bridge a critical gap in the security 



 

  34 

protection of u-commerce. The protocol analysis conducted in Section 6 has confirmed that it can assure the 

security and fairness of signature exchanges. The comparison with related work presented in Section 7 has justified 

that the new approach is much simpler and more efficient than the relevant existing ones.  

For the future work, we intend to extend the approach for joint verifiable proxy encryption using multiple 

distributed agents for better security and reliability. 

Acknowledgement 

We would like to thank the paper reviewers for their valuable suggestions, which have led to improvements to the 

paper. 

References 

[1] N. Asokan, V. Shoup, M. Waidner, Asynchronous protocols for optimistic fair exchange, in: Proceedings of 

the IEEE Symposium on Security and Privacy, Oakland, USA, 1998, IEEE CS, pp. 86-100. 

[2] N. Asokan, V. Shoup, M. Waidner, Optimistic fair exchange of digital signatures, IEEE Journal on Selected 

Areas in Communications 18 (4) (2000) 593-610. 

[3] G. Ateniese, Verifiable encryption of digital signatures and applications, ACM Transactions on Information 

and Systems Security 7 (1) (2004) 1-20.  

[4] F. Bao, R. Deng, W. Mao, Efficient and practical fair exchange protocols with off-line TTP, in: Proceedings 

of the IEEE Symposium on Security and Privacy, Oakland, USA, 1998, IEEE CS, pp. 77-85. 

[5] J. Camenisch, V. Shoup, Practical verifiable encryption and decryption of discrete logarithms, in: 

Proceedings of CRYPTO 2003, California, USA, 2003, LNCS, vol. 2729, Springer, Berlin, pp. 126-144.  

[6] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE 

Transactions on Information Theory IT-31 (4) (1985) 469-72. 

[7] P.D. Ezhilchelvan, S.K. Shrivastava, A family of trusted third party based fair-exchange protocols, IEEE 

Transactions on Dependable and Secure Computing 2 (4) (2005) 273-86. 

[8] Q. Huang, G. Yang, D.S. Wong, W. Susilo, Ambiguous optimistic fair exchange, in: Proceedings of the 

ASIACRYPT 2008, Melbourne, Australia, 2008, Springer, Berlin, pp. 74-89. 

[9] IETF, The Transport Layer Security (TLS) Protocol - Version 1.2, RFC 5246, 2008. 

[10] M. Mambo, K. Usuda, E. Okamoto, Proxy signatures: delegation of the power to sign messages, IEICE 

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E79-A (9) (1996) 



 

  35 

1338-54. 

[11] D. Naccache, J. Stern, A new public key cryptosystem based on higher residues, in: Proceedings of the 5th 

ACM Conference on Computer and Communications Security, San Francisco, USA, 1998, pp. 59-66. 

[12] NIST, Digital Signature Standard, Federal Information Processing Standards Publication, vol. 186, 1994. 

[13] NIST, Secure Hash Standard, Federal Information Processing Standards Publication, vol. 180-2, 2002. 

[14] Y. Okada, Y. Manabe, T. Okamoto, An optimistic fair exchange protocol and its security in the universal 

composability framework, International Journal of Applied Cryptography 1 (1) (2008) 70-7. 

[15] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-key 

cryptosystems, Communications of the ACM 26 (1) (1983) 96-9.  

[16] B. Schneier, Applied Cryptography, John Wiley & Sons, 1996. 

[17] C.P. Schnorr, Efficient signature generation by smart-cards, Journal of Cryptology 4 (3) (1991) 161-174. 

[18] Z. Shao, Fair exchange protocol of signatures based on aggregate signatures, Computer Communications 31 

(10) (2008) 1961-9. 

[19] Q. Shi, N. Zhang, M. Merabti, Fair exchange of valuable information: A generalised framework, Journal of 

Computer and System Sciences 77 (2) (2011) 348-71. 

[20] Q. Shi, N. Zhang, M. Merabti, R. Askwith, Achieving autonomous fair exchange in ubiquitous network 

settings, Journal of Network and Computer Applications 34 (2) (2011) 653-67. 

[21] D.R. Stinson, R. Strobl, Provably secure distributed Schnorr signatures and a (t, n) threshold scheme for 

implicit certificates, in: Proceedings of Australasian Conference on Information Security and Privacy 

(ACISP 2001), Sydney, Australia, 2001, LNCS, vol. 2119, Springer, Berlin, pp. 417-34. 

[22] G. Wang, An abuse-free fair contract-signing protocol based on the RSA signature, IEEE Transactions on 

Information Forensics and Security 5 (1) (2010) 158-68. 

[23] D.H. Yum, P.J. Lee, Efficient fair exchange from identity-based signature, IEICE Transactions on 

Fundamentals of Electronics, Communications and Computer Sciences E91-A (1) (2008) 119-26. 

[24] J. Zhang, C. Liu, Y. Yang, An efficient secure proxy verifiably encrypted signature scheme, Journal of 

Network and Computer Applications 33 (1) (2010) 29-34. 

[25] N. Zhang, Q. Shi, A. Nenadic, M. Merabti, R. Askwith, Efficient fair exchange based on misbehaviour 

penalisation, IEE Proceedings – Communications 152 (3) (2005) 257-61. 



 

  36 

Author Biographies 

 

 

Q. Shi is a Professor in Computer Security in the School of Computing & Mathematical 

Sciences at Liverpool John Moores University in the UK. He received his PhD in 

Computing from the Dalian University of Technology, P.R. China. Prior to joining the 

Liverpool John Moores University, he worked as a Research Associate for the 

Department of Computer Science at the University of York in the UK. His research 

interests include security protocol design, ubiquitous computing security, formal 

models, sensor network security, computer forensics, and intrusion detection. He has 

published extensively, and is supervising several projects, in these research areas. 

 

N. Zhang is a Senior Lecturer in the Department of Computer Science, University of 

Manchester, UK. She received her PhD in Electronic Engineering from the University 

of Kent at Canterbury, UK. Her research interests include information and e-commerce 

security, computer networks, and mobile computing. She is supervising a number of 

research projects on these subjects, which are funded by various funding sources. She is 

also actively engaging in other academic activities including serving as a journal editor, 

a conference chair, and a member of journal editorial boards and conference program 

committees for a number of international journals and conferences. 

 

M. Merabti is a Professor in the School of Computing & Mathematical Sciences at 

Liverpool John Moores University in the UK. He is a graduate of Lancaster University 

in the UK. His research interests include computer security, distributed multimedia 

systems, computer networks, and mobile computing. Prof. Merabti is widely published 

in these areas and has a number of government and industry supported research projects. 

He is a program chair for many international conferences and also serves as an editor 

and an editorial board member for a number of international journals.  

 


