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Abstract 

In this paper derivation of an analytical formula for the leg 

voltage THD is presented. The considered system is a leg of a 

multilevel pulse width modulated (PWM) voltage source 

inverter (VSI). The solution is based on the Parseval’s 

theorem. The assumption throughout the derivations is that 
the ratio of the switching to the fundamental frequency is 

high. Derivations are based on the integration of the power of 

the PWM signal in a single switching period over the 

fundamental period of the signal. Only an ideal sinusoidal 

reference leg voltage is analysed. Analytical expression for 

the leg voltage THD is given for any number of levels. 

Validity of the derived analytical equations is confirmed by 

simulations and experiments. 

1 Introduction 

THD is a common parameter for evaluation of the quality of 
different PWM techniques and the importance of it is 

highlighted in [1]. However, it is possible that two totally 

different waveforms that differently distribute energy in the 

spectrum can have the same THD. This is explained in [1]. 

Hence, one has to be aware of the fact that the THD is just a 

global parameter and that there is a risk in taking a THD 

indiscriminately as a figure of merit. 

 
The problem of finding analytical formula for the THD of the 

leg voltage created by a PWM multilevel inverter has been 

analysed in the past, but no pure analytical general solution 

has been given. It should be also noted that there are some 

papers that analysed THD of the multilevel inverters that are 

not operating in PWM mode, and where the output is of a 

quasi-square-wave form [1-4] – this is not of interest here. 

The case analysed in the paper is as in [5] where an analytical 
solution for the leg voltage THD and the weighted THD of 

the PWM multilevel inverter is given. The solution has been 

developed for the most typical numbers of levels, two, three 

and five, individually for each. The research of [5] was 

extended in [6] with an attempt at generalisation for an 

arbitrary number of levels. However, the generalisation is 

given in a piece-wise integral form and the integrals are not 

solved analytically, since this is a difficult problem due to the 
dependence of the borders of integration on the modulation 

index value. Numerical solution of the problem is rather 

simple, so it appears that the curves given for the multilevel 

cases in [6] were obtained by a computer program that does 

the integration. In this paper, the research of [6] is advanced 

and the integrals are solved analytically. A general analytical 

formula for the leg voltage THD is thus derived. The results 

are obtained and expressed in a simple meaningful way and 

some important conclusions are given. Circumstances when 
results are valid are explained. The same idea of integration 

and for obtaining general formulae has been used in [7-9]. 

However, the results in [7-9] are unfortunately not valid for 

the shape of the voltage that they were aimed for. 

2 Signal power and definition of THD 

One of the common approaches in signal processing is to 

obtain spectrum of the periodical signal and then perform 

analysis in the frequency domain. For obtaining spectrum, 
Fourier analysis is commonly in use. Fourier transformation 

is closely related to the definition of the energy and the power 

of the signal. The instantaneous power p(t) and the energy W 

of the real continuous signal x(t) can be defined as [10]: 
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where t1  and t2 represent instants in time between which the 

energy is calculated. The average (active) power of the 
continuous periodical signal, with period T, is defined as: 
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All signals measured in practice are discrete (e.g. sampled by 

oscilloscope), thus discrete forms of (1) and (2) are 

convenient for the signal processing. They have practically 

the same form in the discrete domain, but x(t) should be 

replaced with x[k], integrals becomes sums, and averaging is 
obtained by division with the number of samples per period 

K, rather than division with the fundamental period T. 

 

The equation that links energy in the time domain and in the 

frequency domain is known as the Parseval’s theorem. The 

theorem for the periodical signal states that the energy in one 

period of the signal in the time domain, i.e. power P, is equal 

to the energy (power) in the spectrum [10]. For a discrete 
periodical signal, spectrum is also discrete and periodical, and 

Parseval’s theorem has the following form: 
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where 
hX  are complex values of the Fourier series of the 

signal x[k]. 
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The usual method of the THD determination is in practice 

based on the signal spectrum and on the FFT calculation. 

THD of an arbitrary real periodic signal can be calculated as: 
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where Xrms,h represents RMS value in the single-sided 

(asymmetrical) spectrum of the hth component. One can see 

that the THD is a square root of the ratio of the distorting 

power over the useful power. Dc voltage can be easily filtered 

out; hence it is not considered as a distortion, and is excluded 
in (4). THD in (4) can be expressed in a different way, if 

Parseval’s theorem (3) for RMS values of the asymmetrical 

spectrum and the fact that PX rms =  from (2) are applied: 

           2

1,

22

1,

2)(THD rmsdcrmsrms XXXXx                      (5) 

From (5) THD can be easily numerically calculated from the 

time domain without full spectrum calculation. 

3 Average power and THD of the PWM signal 

obtained by l-level PWM VSI during Ts 

In this section, using the Parseval’s theorem and the idea from 
[7, 8], the average power of the obtained PWM signal for a 

constant reference (i.e. for the sampled reference signal 

during one switching period Ts) is determined. Consider a 

general case when the PWM output is obtained using a 

multilevel modulator with l  levels. Normalisation is used, so 

that the signal is in the range from 0 to 1 (0 to dcV ). For 

obtaining real values in Volts, normalised values u should be 

multiplied by Vdc, i.e. dcuVv  . In this way comparison of 

obtained results is made easier. If a natural sampling is used, 

normalised reference leg voltage, )(* tuLEG , is sampled and 

held as constant )(*

sLEG kTu  during the whole switching period 

Ts. PWM process is shown in Fig. 1a. The obtained PWM 

signal ][tuLEG  takes discrete values in time and is within a 

particular switching period skT  denoted as ][ sLEG kTu . 

 

Let us introduce parameters i and f as: 
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Integer parameter i takes values 2)( , 2, 1, 0, l , while the 

fractional part f is in the range 1<0 f . 

 

The average power of the PWM signal ][ sLEG kTu  during the 

switching period Ts can be calculated using the integration in 

time as in (2). The process of integration is represented 

graphically in Fig. 1b. One gets that the average power of the 

produced PWM signal ][ sLEG kTu , which corresponds to the 

dc reference signal )(*

sLEG kTu , is: 
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Fig. 1: a. Multilevel PWM for a constant signal )(*

sLEG kTu  

during one switching period, Ts. b. Graphical determination of 

the active power of the multilevel PWM signal ][tuLEG . 

 

where ))(( *
sLEGT kTuP

s

2* ))(( sLEG kTu , and it represents the 

average power of the reference leg voltage )(*
sLEG kTu  within 

one switching period. Symbol Ts in subscript is used to 

highlight that the calculation of the average power takes place 

during the period of Ts. 

 
Representation in (7) shows that the power of the obtained 

PWM signal is equal to the sum of the power of the reference 

dc voltage plus power that is the consequence of the PWM. 

This additional power in the multilevel PWM signal 

][ sLEG kTu  is contained in the square waveform in order to get 

)(*
sLEG kTu  on average, and is manifested through the 

additional harmonics in spectrum. 

 

The variation of the average power (7) of the multilevel (2, 3, 

4 and 5 level) PWM produced signal ][ sLEG kTu , using 

adjacent levels, for dc reference value )(*
sLEG kTu , is shown in 

Fig. 2. Because of the introduced normalisation, )(*
sLEG kTu  is 

in the range from 0 to 1. The average power of the reference 

signal )(*

sLEG kTu  is shown with thick grey dashed line. 

 

Note that the average power of the PWM signal ][ sLEG kTu  is 

independent of the PWM strategy, i.e. position and number of 

pulses inside Ts, which can be different. This will not affect 

the value of the average power ])[( sLEG
s

T kTuP , i.e. the 

shaded area kS  in Fig. 1b remains the same. 

4 Average power and THD of the PWM signal 

obtained by l-level PWM VSI for sinusoidal 

reference signal 

The assumed reference in this section is a sinusoidal signal 

and the results from the previous section will be used for 

determination  of  the  average  power  of      the PWM generated 



3 
 

u kTLEG s( )*

P u kTTs LEG s( ( ))*

P
u

kT
T

s
L

E
G

s
(

[
])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2-level

3-level

4-level

5-level

 
Fig. 2: The average power of the signal ][ sLEG kTu , created 

using a multilevel PWM, whose average value is )(*

sLEG kTu . 

 

sinusoidal signal. As in Section 3, output leg voltage is 

examined, but now the whole fundamental period of the 

sinusoidal reference is considered rather than just one 

switching period. Average power is obtained by integration of 
the PWM signal squared value in each switching period, 

throughout the whole fundamental period. The same idea and 

the same result as in this section have already been used and 

reported in [5], individually for 2, 3 and 5 level single-phase 

PWM inverter. As noted, the work of [5] was extended and 

generalised in [6]. However, the final integrals were actually 

not solved analytically, in contrast to the situation here. 

Hence the analytical results obtained in this section are much 
more convenient for use and they also encompass results of 

[5] in a generalised manner. 

 

Normalised leg voltage, used as the reference for production 

of the PWM signal, is defined as: 

         )cos(
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m
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where m is a modulation index ( 10  m ), and dc value of 

1/2 is used to centre reference signal between dc bus rails (0 

and 1 in normalised form). 

 

Process of PWM for the sinusoidal reference signal of (8) is 

shown in Fig. 3a. Graphical calculation of the average power 

of the obtained leg voltage is shown in Fig. 3b. According to 

(2), ])[( tuP LEGT  can be calculated as a shaded area in Fig. 3c, 

divided by the period of the signal T. Thus: 
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K is the number of samples during one period of the signal, 

K=[T/Ts]. Replacing the value of )][( sLEG
s

T kTuP  with (7), and 

using =)(*

sLEG kTu  )(cos)2/(2/1 skTm  , one gets: 
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Fig. 3: a. Normalised reference leg voltage )(* tuLEG  and 

l-level VSI generated output leg voltage ][tuLEG . b. Graphical 

determination of the average power of the obtained leg 

voltage. c. Reference fractional part )(tf . Five-level case for 

7.0m  is shown. 

 

If the sampling period Ts is much smaller than the period of 
the signal T, then (9) i.e. (10) can be written in integral form: 
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Here 
T

LEG ttuT
0

* d)(/1  has been already replaced with 

))(( * tuP LEGT , where reference leg voltage )(* tuLEG  is as in (8) 

and its fractional part )(tf  can be calculated using (6).     

 

Reference leg voltage )(* tuLEG  and )(tf  are shown in Fig. 3a 

and c. It is obvious that (11) has to be solved in a piece-wise 

manner. Note that (11) is valid for any shape of the reference 

leg voltage )(* tuLEG  whose PWM signal ][tuLEG  is obtained 

using adjacent levels, as explained in Section 3. It is easy to 

conclude that the position of the pulse inside the switching 

period sT  is still unimportant. This practically means that if in 

an l-level inverter modulation strategy uses only adjacent 

voltage levels to switch, and if the step of the output voltage 

is constant, then power of the obtained leg voltage will be the 

same regardless of the particular applied modulation strategy. 

Of course, this only holds true if the ratio of fs/f  is high. 

 
To simplify calculations, one can see in Fig. 3c that quarter-

wave symmetry exists. Thus the integration will be done in 

the first quarter of the signal period, T/4. If t  is denoted 
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with , that means that integration will be done between 0 and 

/2. The value of ))(( * tuP LEGT
 in (11) can be determined 

directly by using (2) for reference of (8) and it comes to: 

         8/4/1))(( 2* mtuP LEGT                                          (12) 

For the determination of the second part of (11) Fig. 4 can be 

used, where seven-level case for 8.0m  is shown. One can 

see that the borders of integration are not constant and depend 

on the value of m. If l is an odd number, the borders between 

these integration segments, for example in the seven-level 

case, are when modulation index becomes greater than 

1/3=1m  and when it becomes greater than 2/3=2m . 

Generally, this means that these borders for odd l appear at 

1)/(2= lkmk , and similarly for even l at =km  

1)1)/((2  lk . Value of index k is in the range from k = 1 to 

  1/2 l . One can see that when 1 kmm  angles for piece-

wise integration k  can be expressed as )/arccos( mmkk  . 

 

Detailed derivation for the seven-level case is given in 

Appendix. The solution for the even number of levels differs 

only in the first term. One gets that a general analytical 

solution for the power of the leg voltage signal ])[( tuP LEGT , 

created by an l-level PWM inverter, is: 
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where introduced variables are defined as: 
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and )/(arccos= mmkk  and ksin  can be expressed using a 

basic trigonometry as 2)/(1 mmk . 

 

Plot of the ])[( tuP LEGT  for sinusoidal reference voltage (8) 

versus m, obtained by analytical formula (13), is given in 

Fig. 5. 
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Fig. 4: The first quarter of the period for calculation of the 

integral in (11). Seven-level case is used as an example. 

One can see that the expression (13) is general and applicable 

to any number of levels. This is in contrast to [5] where only 

particular solutions for two, three and five levels were given. 

In [6] the analytical derivations ended with integral equation, 

with defined borders for piece-wise integration k, so that no 
general analytical expression of the form of (13) was derived. 

 

Note that, for an even number of levels l, the term A0 that 

represents ])[( tuP LEGT  for small modulation index values 

(less than )1/(1=1 lm ) is independent of m (Fig. 5, four-

level case for 3/1m ). This is expected since the signal stays 

in the two-level zone, and, as shown for the two-level case, it 

has the constant value that is now <1/2, since the two level 

zone is 1/(l1). 
 

THD can be expressed using (5). Since dead-time effect is not 

considered, one can say that 1,rmsX  is equal to the 

fundamental RMS value )2/(2/1 m . Dc value of the signal 

is 1/2, (8). 2

rmsX  is defined by (13). Using (13) and (12), the 

THD can also be expressed as: 

   1,,

* ))((])[(])[(THD rmsLEGLEGTLEGTLEGT UtuPtuPtu   (15) 

where /2)(21/=1,, mU rmsLEG  . Plot of ])[(THD tuLEGT  

versus modulation index m is shown in Fig. 6 (solid lines). 

Results for THD (Fig. 6) are in very good agreement with 

those presented in [6]. 
 

The five-level case for different carrier-based modulation 

strategies was covered in [11]. The THD values given in [11] 

are slightly lower than in Fig. 6, which could be a 

consequence of not taking all the harmonics into 

consideration. Also, a low fs/f ratio was analysed, so for some 

values of fs/f the difference between analysed leg voltage 

THDs appears. However, it is confirmed here that if the ratio 
of fs/f  is high enough, the same THD will be produced by any 

PWM strategy that uses two nearest levels. 
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Fig. 5: Average power of the leg voltage ][tuLEG , created by 

an ideal PWM l-level VSI, for sinusoidal reference of (8). 
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Fig. 6: THD of the leg voltage ][tuLEG , generated by an ideal 

PWM l-level VSI, for sinusoidal reference leg voltage of (8): 

analytical curves (solid lines) and simulation results from 

PLECS scope (values shown with markers). 

5 Comparison of the theoretical curves with 

simulation and experimental results  

To validate the theoretically obtained analytical results, 

simulations and experiments have been done. Simulation 
software PLECS has been used. Scope in this software has a 

built-in function for RMS and THD calculation. The built-in 

functions use exact numerical approach for calculation of (5), 

which is also adapted to work with a variable simulation step 

time [12]. 

 

Theoretical curves for the leg voltage THD, for the two- to 

five-level cases for pure sinusoidal references, are compared 
with the values obtained by simulation using PLECS scope 

(discrete markers) in Fig. 6. Simulations are done for the 

constant fV/  ratio (m/f = 1/50), and for the switching 

frequency of fs = 2 kHz. Excellent agreement between 

simulation and analytical results is obvious. This means that 

the used switching frequency, i.e. ratio fs/f, is high enough for 

all the modulation indices. Also, one can see that the different 
carrier-based dispositions (PD, POD and APOD) do produce 

the same THD in a leg voltage. 

 

Theoretical (analytical) curves for the leg voltage THD of 

Fig. 6 are compared next with the experimentally obtained 

THD values in Fig. 7. Because of the lack of availability of 

the hardware for more than three-level operation, only results 

for the two-level and three-level cases are shown. As in 
simulations, V/f ratio was kept constant and equal to m/f = 

1/50. Custom-made two-level and three-level NPC inverters 

were supplied from Sorensen SGI 600/25 dc source. Dc bus 

voltage was set to 600 V. To obtain the THD from the 

experimental results, spectrum has been calculated first. The 

THDs when full spectrum has been used and when only 

components from the first ten side-bands (up to 21kHz) are 

taken into consideration were calculated using (4), and are 

shown in Fig. 7. One can see that, because of the dead time, 

which is 6μs for both inverters, the THD from the 

experiments is very slightly higher (worse) than the one 

predicted by the theoretical curves. This is visible in Fig. 7 

only for low modulation indices, where the dead-time effect is 

more pronounced. Also, if the finite number of samples is 

taken into consideration (the value used here is 21kHz and is 

much higher than many that are usually in use in practice), the 
calculated THD can be easily lower than the correct analytical 

value, Fig. 7. This problem is well known and has also been 

analysed in [2, 3]. 
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Fig. 7: Comparison of the analytical curves for the leg voltage 

THD of Fig. 6 (continuous lines) with experimental results 
using full and up to 21kHz spectrum for the THD calculation 

(discrete values labelled with corresponding markers) for the 

two-level and three-level operation. 

6 Conclusion 

Analytical expression for the average power and THD for the 

PWM produced leg voltage is derived in this paper. 

Considered reference voltage is purely sinusoidal. Derived 

analytical formulae for the leg voltage average power (RMS2) 
and THD are for any number of levels. It is shown that the 

average power (RMS2) and THD are independent of the 

modulation strategy if the nearest levels are used and if fs/f is 

high enough. Analytical curves are compared with simulation 

and experimental results, and an excellent agreement is 

demonstrated. 
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Appendix 

Derivation of (13) is shown here for a seven-level case for 

high value of modulation index, 13/2  m . Fig. 4 has been 

used for the derivation. Values of k are )/arccos( mmk  while 

)1/(2  lkmk  since l = 7 is an odd number. Using values 

for fractional parts 0f , 1f , 2f  (given in Fig. 4), and quarter-

wave symmetry, starting with (11), one can write: 
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Value of ])[( tuP LEGT  is here denoted just with LEGTP , . Using 

x  )cos()1(2/  lm  and after simplifications one gets: 
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After replacing x with )cos()1(2/  lm , subsequent 

integration, and after replacing underlined values of 2 ,1k  

with )1( lmk , one finally gets: 
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This expression is of the general form of (13) for 

13/2  m . 
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