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REVIEW Open Access

Applications of soft computing models for
predicting sea surface temperature: a
comprehensive review and assessment
Masoud Haghbin1, Ahmad Sharafati2,3,4* , Davide Motta5, Nadhir Al-Ansari6 and
Mohamadreza Hosseinian Moghadam Noghani1

Abstract

The application of soft computing (SC) models for predicting environmental variables is widely gaining popularity,
because of their capability to describe complex non-linear processes. The sea surface temperature (SST) is a key
quantity in the analysis of sea and ocean systems, due to its relation with water quality, organisms, and
hydrological events such as droughts and floods. This paper provides a comprehensive review of the SC model
applications for estimating SST over the last two decades. Types of model (based on artificial neural networks, fuzzy
logic, or other SC techniques), input variables, data sources, and performance indices are discussed. Existing trends
of research in this field are identified, and possible directions for future investigation are suggested.

Keywords: Soft computing, Sea Surface Temperature, Prediction

1 Introduction
1.1 Background on sea surface temperature (SST)
In the last five decades, several studies have been con-
ducted to estimate the sea surface temperature (SST) for
assessing thermal exchanges between oceans and atmos-
phere, behavior patterns of aquatic species, and ocean or
sea currents (Anding and Kauth 1970). Identifying SST
anomalies (departures from average conditions) has been
an active area of research in oceanography and atmos-
pheric studies (Corchado 1995). These anomalies are
caused by the dynamic behavior of oceans, which con-
tain many water masses interacting with each other at
their boundaries (Corchado and Aiken 2002). These in-
teractions directly affect the SST anomalies (Corchado
et al. 2001) and make it difficult to develop mathemat-
ical expressions to estimate SST. SST anomalies signifi-
cantly affect sea surface salinity, precipitation, and ocean
circulation (Amouamouha and Badalians Gholikandi

2017; Gupta and Malmgren 2009; Huang et al. 2008a).
In addition, SST plays an important role in the occur-
rence of the El Niño Southern Oscillation (ENSO)
phenomenon (Annamalai et al. 2005; Gordon 1986;
Nicholls 1984). There is strong evidence that SST anom-
alies directly influence extreme hydrological events such
as droughts (Amouamouha and Gholikandi 2018; Salles
et al. 2016), and multiple studies have indicated a strong
correlation between SST anomalies and hurricanes
(Gholikandi et al. 2018; Jiang et al. 2018a; Kahira et al.
2018; Patil and Deo 2018).
Historically, linear regression and statistical methods,

such as the Autoregressive Integrated Moving Average
(ARIMA) models, have been extensively applied for esti-
mating SST. Floating buoys and satellite observations
are the two main sources of data to evaluate SST in seas
and oceans. The statistical methods attempt to identify
relations between different parameters and SST. For in-
stance, for satellite-based datasets, statistical models
map satellite data, such as thermal infrared radiation, to
SST. When data is gathered from buoys, these methods
attempt to find appropriate relations between SST and
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surface heat flux, wind stress and other factors (Anding
and Kauth 1970; Corchado 1995; McMillin 1975; Prab-
hakara et al. 1974).
In general, the complex nature of the SST anomalies,

as well as the intrinsic uncertainties on the conditions of
sea or ocean systems (Corchado and Fyfe 1999; De Paz
et al. 2012), make the SST prediction in space and time
with mathematical or statistical models very challenging.
The progressive increase in computing power has led to
the development of techniques to investigate ocean sys-
tems such as case-based reasoning (CBR), which is based
on the solution of similar previous problems. However,
this kind of approach is limited when applied to complex
problems because of its high dependence to human
judgment (Corchado and Aiken 2002).

1.2 Soft computing (SC) models for SST Prediction
Soft computing (SC) methods, often indicated with the
term artificial intelligence (AI), are increasingly being
adopted to solve complex problems, due to lower cost of
computation and higher flexibility and accuracy in com-
parison with physically based numerical models (Konar
2018; Yaseen et al. 2019; Sharafati et al. 2020; Tung and
Yaseen 2020). SC models are capable of recognizing
meaningful patterns in complex problems (Sharafati
et al. 2019a) and often adopt nature-inspired techniques
(Barzegar et al. 2016; Corchado and Aiken 2002; Konar
2018). There are several categories of SC models, such
as artificial neural networks (ANN), adaptive neuro-
fuzzy inference systems (ANFIS), and evolutionary
methods inspired by animals or plants.
Generally, two types of SC approaches have been uti-

lized. The first type of approach entails the combination
of SC methods and numerical models (e.g., CBR) to en-
hance the numerical model results. In this case, the SC
techniques are applied to eliminate the dependency on
human judgment. The second type of approach involves
the use of a standalone SC model; from a review of the
past studies on SST, this approach is more commonly
adopted than the first.
There are strong evidences from literature that indi-

cate how SC standalone models can overcome the com-
mon limitations of other predictive models in different
fields, such as prediction of precipitation, scour and frac-
tional coverage of melt ponds (Rösel et al. 2012; Shara-
fati et al. 2019b; Yaseen et al. 2019).

1.3 Scope of this study
This study aims to produce a comprehensive survey of
the previous applications of SC methods for SST predic-
tion, based on the last two decades of research, focusing
on the methods employed and the input variables and
data sources used. This study also highlights the issues
that are still unsolved and the possible future directions

of SC application for SST prediction. The goal is to pro-
vide an overarching reference for researchers and practi-
tioners in the field.
Figure 1 shows the general sequence of steps used for

predicting SST using SC methods: (i) the variables for
prediction are obtained from field or remote sensing
sources, such as buoys, vessels, and satellites; (ii) the SC
model’s parameters are initialized and tuned; and (iii)
the SC model’s results are compared with the observed

Fig. 1 Conceptual workflow of SC models for SST prediction
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SST data to quantify the prediction performance using
appropriate metrics.

2 Literature review
2.1 Input variables and data sources for SST prediction
Several types of input variables have been used to pre-
dict SST in seas and oceans using SC models. Informa-
tion on fossil remains of phytoplankton and zooplankton
from surface marine sediment samples has been used to
estimate SST in past periods (Pflaumann et al. 1996).
In other models, values of SST itself at previous times

(lagged SST values) were used to estimate later values of
SST, with an approach that is often adopted in hydro-
logical time series prediction applications.
In a few studies, other variables related to SST, such as

net surface heat flux, wind stress, and dynamic wave
height, have been used as input variables, although this
is not very common because information on these vari-
ables is often lacking.
Figure 2 shows that lagged SST values is the most fre-

quently adopted input variable type (55%), while the
sediment surface samples have been occasionally
employed (8%) to estimate SST.

2.1.1 Data from buoys
Marine buoys are floating devices for in situ observa-
tions of marine environments, measuring parameters
such as SST, turbidity, conductivity, and sea surface sal-
inity (SSS). Historically, these objects were initially de-
signed for vessel navigation and warning purposes, since
at least 285 BC (Soreide et al. 2001). The modern type
of buoys has been utilized along the US coasts since
1940. These buoys are equipped with sensors to gather
data on various hydrodynamic and atmospheric quan-
tities. The first modern buoy of the US navy, with boat
shape and 6-meter long, is called Navy Oceanographic
Meteorological Automated Device (NOMAD). NOMAD
buoys can transfer marine and ocean information every
3 h (Soreide et al. 2001). A smaller type of buoys, named
Autonomous Temperature Line Acquisition System
(ATLAS), has been employed to collect data on ocean
currents and other parameters such as temperature in

the North Pacific Ocean and to investigate El Niño re-
lated events.
Several programs led by various institutions around

the world investigate ocean behaviors using buoy data.
One of the most well-known and successful is the Argo
program, which has been operational since the early
2000s. The seminal work by (Davis et al. 1992; Davis
1991) established the basis for this research program,
which is conducted as part of the World Climate Re-
search Program (WCRP) to investigate temperature, sal-
inity and ocean hydrodynamic properties such as
circulation in the Atlantic, Indian, Pacific and Southern
oceans. More than 3200 floating buoys are used, and
most data are gathered at depths between 1000 and
2000 meters. The Argo program employs a satellite sys-
tem called Argos and Iridium satellite communication
system to transfer the observed data. The outputs of this
program are widely used for estimating SST or verifying
predicted results in studies using satellite data (Argo
2020).

2.1.2 Data from satellite sensors
Data from satellite sensors have been used for evaluating
SST since 1981. Satellite observations are recognized as
a tool for indirect measurement that can provide the
spatio-temporal SST distribution around the world
(Merchant et al. 2019). To estimate SST using SC
models, data from different satellite sensors are used,
with the most commonly used in this field being the
Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Advanced Very High Resolution Radi-
ometer (AVHRR).
The MODIS (Dou et al. 2020) is a device that was in-

stalled on the Terra satellite in 1999 (Kwon et al. 2020)
by NASA (Gao and Kaufman 2003). This instrument
was also installed on the Aqua satellite in 2002. It can
receive data in 36 bands in the wavelength range of 0.4
microns to 4.14 microns with variable spatial resolution
(two, five and 29 bands at 250 m, 500 m, and 1 kilo-
meter resolution, respectively) (Barnes et al. 1998; Chen
et al. 2020). The MODIS is designed to measure large-
scale changes in the land cover (Kwon et al. 2020) as
well as cloud cover and ground radiation. This sensor
includes three tools for onboard calibration, namely a
solar diffuser (SD) (Angal et al. 2020) with a solar dif-
fuser stability monitor, a spectral radiation calibration
package (Yu et al. 2020a), and a black body MODIS sen-
sor data are presented in four groups (atmosphere,
ocean, earth, and ice), splitting the Earth in 35 sectors
from west to east and 17 sectors from north to south.
The AVHRR (Akkermans and Clerbaux 2020) is a ra-

diation detector that can be used to remotely determine
cloud cover and ground temperature. The AVHRR col-
lects data in different bands of radiation wavelength

Fig. 2 Frequency of use of the various types of inputs for
SST prediction
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(Mouginis-Mark et al. 1994), using six detectors. The
first AVHRR was a 4-channel radiometer first deployed
on the TIROS-N satellite (Xue et al. 2017). Then, it was
upgraded to a 5-channel instrument (AVHRR/2) (Zhu
et al. 2019) and installed on the NOAA-7 satellite (Wang
et al. 2020b). The latest version was the 6-channel radi-
ometer (AVHRR/3) launched on the NOAA-15 satellite
(Tao et al. 2020). The AVHRR/3 weighs about 72
pounds (Ilčev 2017; Jyothirmai et al. 2018), measures
11.5 inches by 14.4 inches by 31.4 inches, and has 28.5
watts power (Jyothirmai et al. 2018). The satellite orbit
on which the sensor is installed is between 833 and 870
kilometers above the Earth’s surface (Brown et al. 1985)
and the sensor has been continuously collecting data
since 1981 (Pinzon and Tucker 2014). The wavelength
information collected by the AVHRR allows, through
processing, to perform a multi-spectrum analysis to esti-
mate hydrological, oceanographic, and meteorological
parameters, to support, among others, climate change
and environmental pollution studies.

2.1.3 Frameworks for SST mapping
The Optimum Interpolation Sea Surface Temperature
(OISST) framework by the US National Oceanic and At-
mospheric Administration (NOAA) uses different data
sources, such as satellites, vessels, buoys, and Argo data,
for estimating SST at global scale. The use of multiple
data sources allows for complementing data and redu-
cing possible errors. This framework includes data from
1 September 1981 until present. The OISST framework
is widely accepted by the research community for asses-
sing SST using AI-based models ((NOAA) 2020).
The Hadley Centre Sea Ice and Sea Surface

Temperature (HadISST) framework is another valuable
data bank (National Center for Atmospheric Research
Staff (Eds) 2020) containing monthly SST and Sea Ice
Concentration (SIC) data from around the world since
1871. Like the OISST framework, the HadISST

framework uses different data sources including buoys,
ships and AVHRR.

2.2 Most commonly investigated regions
Our literature review has revealed the Pacific Ocean to
be the most extensively investigated for SST prediction
using SC methods in the last two decades, with more
than 10 papers. Another region that has attracted signifi-
cant attention is the Indian Ocean, with eight different
studies. Research groups also focused on Atlantic Ocean,
Bohai Sea, East China Sea and Arabian Sea, respectively
ranking third, fourth, fifth, and sixth. Several studies (13
studies) conducted in other regions. The details are pro-
vided in Fig. 3.

2.3 Soft computing models for SST prediction
For the purposes of this review, we categorized the SC
models in two groups: models based on ANN (charac-
terized by different kinds of train function) and other
models based on different SC techniques. The frequency
application of these two SC model categories for SST
prediction is shown in Fig. 4. The ANN-based models
(88%) are by far the most commonly used in comparison
to the other SC models (12%).
The following sections review the various applications

in literature of the different types of SC model for SST
prediction.

2.4 ANN-based models for SST prediction
2.4.1 Brief background on ANN-based models
ANN methods are inspired by brain processes and solve
problems by establishing non-linear relations between
multiple inputs and outputs. From our overview of the
related literature regarding SST prediction, ANNs can
be categorized as classic neural networks, improved
neural networks, long short-term memory (LSTM), con-
volutional neural networks (CNN), and their improved
versions which are developed by combining them with
other soft computing approaches.

Fig. 3 Number of SST prediction studies per region
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2.4.1.1 Classic neural networks Feedforward neural
networks (FFNNs) have the simplest ANN structure
(Fig. 5a) and can be categorized in two main types:
single-layer perceptron (SLP) and multi-layer perceptron
(MLP). The latter is more suitable to solve complex
problems, due to its ability to include loops in the com-
putation process. The backpropagation neural network
(BPNN) is the most widely used type of MLP algorithm
and iteratively uses different backward and forward
loops to establish relations between inputs and outputs.
In general, the relations are described through different
activation functions (e.g. hyperbolic tangent sigmoid)
and the type of activation function defines the type of
ANN algorithm. For instance, the radial basis function
(RBF) is a type of ANN algorithm that adopts different
activation functions (thin plan spline, harmonic spline,
Gaussian) than MLP.

2.4.1.2 Improved neural networks Research on enhan-
cing the capabilities of neural network algorithms is in
continuous development (Haghbin et al. 2020). For in-
stance, different types of machine learning techniques
such as Wavelet or Kalman filter are combined with
standalone neural networks models, which can lead to
more accurate results (Grosan and Abraham 2007). In
this review, we consider these types of neural networks
as a category of its own.

2.4.1.3 Long short-term memory (LSTM) The LSTM
is one of the most popular types of recurrent neural net-
works (RNN). Recurrent neural networks (RNNs) are
different from the FFNNs. In the latter, the information
just passes forward, whereas in the former the output
feeds into the input (Fig. 5b). RNN algorithms also have
a different neuron architecture, with self-neuron connec-
tions that make RNNs more dynamic than FFNNs.
RNNs may have vanishing and exploding gradient issues
(Karim and Rivera 1992; Lukoševičius and Jaeger 2009;

Sak et al. 2014): to solve them, Hochreiter and Schmid-
huber (1997) presented an RNN model called long
short-term memory (LSTM), which uses a chain struc-
ture for its computations. The cell state is regulated with
three different gates (input, output, and forget gates),
and the role of these gates is to control the amount of
information passed between layers. The LSTM network
has been notably applied in speech-to-text transcription,
machine translation, process forecasting, and language
modeling (Peng et al. 2018; Sherstinsky 2020; Somu
et al. 2020).

Fig. 4 Frequency of application of the different types of SC model
for SST prediction

Fig. 5 Schematic structure of a feed forward neural networks
(FFNNs), b long–short-term memory (LSTM), and c convolutional
neural networks (CNN)

Haghbin et al. Progress in Earth and Planetary Science             (2021) 8:4 Page 5 of 19



A LSTM algorithm can learn how to connect minimal
time lags of more than 1000 discrete time steps. This so-
lution uses constant error carousels (CEC) (Ganesh and
Kamarasan 2020), which apply a constant error flow to
specific cells (Staudemeyer and Morris 2019). Unlike a
traditional RNN, which calculates only the sum of the
input signals and then passes through an activation
function, each LSTM unit uses a Ct cell memory at time
t. The output of ht or the activation of the LSTM unit is

ht ¼ Γ0 � tanh Ctð Þ ð1Þ
where Γ0 is the output gate that controls the amount

of content expressed through memory. The output gate
is calculated by the expression as bellow:

Γ0 ¼ σ W 0 � ht − 1 � Xt½ � þ b0ð Þ ð2Þ
where σ is the sigmoid activation function, W0 is a

matrix andb0 represents bias vector. The Ct cell memory
is also updated as

Ct ¼ Γ f � Ct − 1 þ Γu � Ĉt ; ð3Þ
with relative forgetting of the current memory and

addition of new memory content as cCt , where the new
memory content is obtained as

Ĉt ¼ tanh WC � ht − 1 � Xt½ � þ bcð Þ: ð4Þ
The amount of current memory to be forgotten is con-

trolled by the forget gate Γf, expressed by the equation

Γ f ¼ σ W f � ht − 1 � Xt½ � þ bf
� � ð5Þ

and the amount of new memory content to be added
to the memory cell is expressed by the equation (Graves
2013).

Γu ¼ σ Wu: ht − 1 � Xt½ � þ buð Þ ð6Þ

2.4.1.4 Improved LSTM algorithms Similarly, to the
case of other ANN algorithms, researchers have
attempted to enhance the LSTM algorithm performance
by combining it with ensemble techniques such as
adaBoost.

2.4.1.5 Convolutional neural networks The convolu-
tional neural network (CNN) algorithms are one of the
best learning options for understanding image content
(Zhou 2020) and show good performance in image pro-
cessing and computer vision (Khan et al. 2020). CNN al-
gorithms reduce the number of learning parameters due
to the use of spatial relationships, which improves the
training performance (Krizhevsky et al. 2012; Wang
et al. 2020a).

In general, a CNN consists of three main layers: the
pooling layer, the convolutional layer, and the fully con-
nected layer (Shin et al. 2016). A pooling layer is usually
placed after a convolution layer and can be used to re-
duce network parameters (Boureau et al. 2010) and
spatial dimension of the feature maps (Singh et al. 2020).
Like convolutional layers, pooling layers are stable over
translation due to the consideration of neighboring
pixels in their calculations. The convolutional layer ap-
plies a convolution operation on the inputs. The average
pool layer computes the average value for each neuron
cluster in the previous layer, and the fully connected
layer connects each neuron in one layer to a neuron in
the other layer (Zhou et al. 2018).

2.4.1.6 Improved convolutional neural networks As
seen for classic neural and LSTM algorithms, also for
the CNN algorithms, efforts have been undertaken to
modify them and enhance their performance. Improved
CNNs are considered as a category of their own in this
review.

2.4.1.7 Overview of ANN-based models for SST
prediction The following is a summary of previous in-
vestigations that have employed ANN-based models to
predict SST. A summary list is also presented in Table 1.
Pioneering work on this topic has been carried out by

Corchado and Fyfe (1999). They compared the capabil-
ities of Finite Impulse Response-Neural Network (FIR-
NN), Linear Regression (LR), and ARIMA models for es-
timating the SST at the Falkland Islands, UK. They used
the water temperature at a fixed depth, measured by ves-
sels, as input variable for prediction. Their results
showed that the FIR-NN model provided a better per-
formance than the LR and ARIMA models.
Following up the previous study, Corchado et al.

(2001) used a different approach and source of data for
SST prediction. Specifically, they assessed the perform-
ance of an Instance-Based Reasoning-Radial Basis Func-
tion (IBR-RBF) model for SST prediction at the Falkland
Islands. They used the satellite-based water temperature,
provided by the Plymouth Marine Laboratory, as pre-
dictive input variable. Their research findings showed
that the IBR-RBF model produced the highest prediction
performance among several employed predictive models.
Malmgren et al. (2001) applied BPNN, modern analog

technique with similarity index (SIMMAX), Revised
Analog Method (RAM), Modern Analog Technique
(MAT), Imbrie-Kipp Transfer Function (IKTF), and
modified Artificial Neural Network (ANND) models to
estimate SST in the Caribbean Sea and Atlantic Ocean.
A fossil (planktonic) dataset was used as input and the
BPNN model was found to provide the best prediction
performance. This study inspired other researchers to
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https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
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conduct SST estimation studies in different regions. A
similar investigation was carried out by Peyron and Ver-
nal (2001) to compare BPNN and MAT models for pre-
dicting SST in the Bering Sea, North Atlantic Ocean,
and Arctic Sea. Again, information on sediment fossil
samples was used as input and results showed that the
BPNN model provided a better SST prediction perform-
ance than the MAT model.
There are few studies in the literature that used ocean

and marine currents to predict SST, such as in the work
by Ali et al. (2004), who evaluated the SST in the Ara-
bian Sea using a Multi-Layer Perceptron-Back Propaga-
tion (MLP-BP) model, with input variables such as net
surface heat flux, net radiation, wind stress, SST at pre-
vious times, and dynamic height. They found that MLP-
BP offers more accurate estimates than classic regression
methods.
A study similar to the one by Malmgren et al. (2001)

and Peyron and Vernal (2001) was carried out to fore-
cast SST using sediment fossil sample (plankton) data by
(Chen et al. 2005), who employed BPNN, IKTF, SIMM
AX, RAM, and MAT models for SST prediction in the
Western Pacific Ocean. The outcome of their study con-
firmed the better performance of the BPNN model in es-
timating SST.
In line to assess the capability of neural networks,

Garcia-Gorriz and Garcia-Sanchez (2007) utilized FFNN
to assess SST in the Mediterranean Sea. They used sev-
eral input parameters associated to climate and marine
conditions; their findings reveal that FFNN is a reliable
technique in this research area.
There have been several attempts to find appropriate

models to predict SST, and in order to do that, Gupta
and Malmgren (2009) used different models with similar
types of input variables employed for assessing SST.
They compared ANN, IKTF, Weighted Averaging Partial
Least Squares (WAPLS) regression, MAT, and Max-
imum Likelihood (ML) models for identifying SST
trends in the Pacific and Antarctic Oceans. Surface sedi-
ment data were selected as input variable. Again, the
ANN model showed the best agreement with the ob-
served field data among all models considered.
Since 2010, a large body of studies has been carried out

to compare neural networks’ performance with that of
statistical models for predicting SST. For instance, Bhas-
karan et al. (2010) predicted SST using MLP and LR in
the Indian Ocean, using as input variables water depth,
longitude, and latitude. Their findings confirmed the
higher prediction performance of MLP compared to LR.
One of the open problems has been the selection of

the appropriate type(s) of neural network algorithm for
SST prediction. In this regard, Mahongo and Deo (2013)
set out to identify the best neural network model, by
comparing FFNN, RBF, Generalized Regression Neural

Network (GRNN), and ARIMAX models for forecasting
SST in the western Indian Ocean. They used lagged SST
values as input for their predictions, and their results
showed the FFNN model to be the superior one.
In line with the previous study, Piotrowski et al. (2015)

compared the performance of different soft computing
models. They simulated streamwater temperature (not
SST) using MLP, ANFIS, K-Nearest Neighbors (KNN),
and Wavelet ANN models in two catchments in Poland,
using air temperature, river runoff, and declination of
the Sun as input variables. They employed wavelet tech-
nique for preprocessing of the input data for the neural
network model. The Wavelet ANN model provided the
better estimates of streamwater temperature. The ap-
proach that combines wavelet technique and neural net-
work models was also adopted by Patil et al. (2016), who
estimated SST using a Wavelet ANN model in the Ara-
bian Sea, Bay of Bengal, African Coast, and Indian
Ocean, with SST values known at previous times as in-
put variable. Their results showed that the Wavelet
ANN model provided more accurate predictions than
the standalone ANN model. The impact of SST variation
on streamflow is currently an open question, which was
investigated by a unique study by Modaresi et al. (2016).
They specifically used a GRNN model to forecast the
spring streamflow for the Karkheh Basin in Iran, using
SST data from the Persian Gulf and the Mediterranean
Sea as input, obtaining adequate predictions.
In a study by Liao et al. (2017), a new approach named

Reynolds Optimum Interpolation (OI) was developed
and applied for the first time in the field of SST predic-
tion, and compared to an ANN RBF model for the case
of the Pacific Ocean, using lagged SST values as input.
The study confirmed the superior performance of the
ANN RBF model. In an attempt to use wavelet models
for forecasting SST, this approach is combined with
auto-regression model by Patil and Deo (2017). They an-
alyzed the SST using Wavelet ANN and Wavelet auto-
regression models for the Indian Ocean, using the SST
transformed by Wavelet functions as model input. Better
results were obtained with the Wavelet ANN model. A
similar study was conducted to evaluate the influence of
wavelet technique for assessing SST by Patil and Deo
(2017), who compared Wavelet ANN and Regional
Ocean Modeling System (ROMS) to estimate SST. They
entered Wavelet transform values of SST as input vari-
able to their model. Also in this case, the Wavelet ANN
model provided the better results.
A close look to the literature reveals that deep

learning-based models such as LSTM and CNN have
attracted progressively more attention in the research
community since 2017. In this regard, a large body of in-
vestigations has been carried out to employ this type of
neural networks or to improve existing models. In their
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pioneering work on this topic, Zhang et al. (2017) exam-
ined the LSTM-RNN, MLP, and Support Vector Regres-
sion (SVR) models to forecast the SST in the coastal
seas of China, observing that the LSTM-RNN model
provided the better prediction performance. In line with
the previous study, Yang et al. (2017) investigated the
capabilities of Combined Fully Connected
Convolutional-Long Short-Term Memory-Recurrent
Neural Networks (CFCC-LSTM-RNN), Support Vector
Machine (SVM), SVR and Fully Connected-Long Short-
Term Memory (FC-LSTM) models to simulate SST in
the Bohai Sea on the east coast of China. Spatio-
temporal parameters related to SST were selected as in-
puts for simulation, and their outcomes showed the
most accurate predictions to be provided by the CFCC-
LSTM-RNN model.
A different direction of investigation was taken by Guo

et al. (2017), who assessed, for the first time, the per-
formance of self-organizing map (SOM) to estimate the
SST in the Pacific Ocean. The input variable considered
was SST data obtained from different sources as shown
in Table 1. The authors found that SOM provided excel-
lent SST forecast performance.
Aparna et al. (2018) studied the capability of a FFNN-

Quasi Newton BPNN model to predict the SST in the
Northeastern Arabian Sea, using the Sea Surface
Temperature Average (SSTA) at previous times as input.
They obtained SST prediction with satisfactory agree-
ment with the observed data. In an attempt to find an
appropriate approach for estimating STT, Foroozand
et al. (2018) compared ANN, Ensemble Entropy (Bag-
ging), Multiple Linear Regression (MLR), and Bayesian
Neural Networks as predictive models for SST in the
Tropical Pacific Sea, finding all models to provide close
prediction performance. Foroozand et al.’s (2018) study
was the first to use an ensemble model for predicting
SST.
Another study evaluating the capabilities of LSTM

models for estimating SST was the one by Liu et al.
(2018), who applied LSTM, Multi-Layer Perceptron Re-
gression (MLPR), and SVR for modelling the SST in
oceans and found LSTM to provide the most accurate
estimates among the models considered.
In the first study on SST prediction in the Hawaii re-

gion, Nodoushan (2018) estimated SST using FFNN and
a Bayesian Network (BN), specifically for Honolulu, Ha-
waii Coast. The BN model reproduced the observed data
better than the FFNN model.
To add to the studies trying to find appropriate predic-

tion models by combination of different techniques,
Ouala et al. (2018) discussed the application of Bi-NN-
based Kalman filter, ensemble Kalman filter, and Bi-NN-
NNKF-EOF for predicting the SST in South Africa, find-
ing the better prediction performance with Bi-NN-

NNKF-EOF. This work shed light on the benefits of
combining Kalman filter, ensemble methods, and neural
networks. The same approach was undertaken in the
Red Sea.
Patil and Deo (2018) used an ANN model for forecast-

ing the SST in the Red Sea and Indian Ocean, finding
general consistency of the ANN model’s results with the
field observed data.
Using appropriate input variables for estimating SST is

a known challenge in this area. A recent study con-
ducted by Quilodrán Casas (2018) explored the benefits
of using new types of input variables for SST prediction.
Specifically, he assessed the performance of Dimensional
Reduction Analysis Neural Networks (DA-NN) and En-
semble Kalman filter in simulating the SST in the Atlan-
tic Ocean. Sea Surface Height (SSH), SST, and Eastward
and Northward horizontal velocities were employed as
predictive variables. The DA-NN resulted in the most
accurate SST predictions.
To assess and compare the predictive capabilities of

neural networks, ensemble, and statistical models, Davies
(2018) forecasted SST in the Pacific Ocean using ANN,
Bootstrap, and Ordinary Least Squares (OLS) methods,
using SST values at previous times as input data. Over-
all, the Bootstrap model provided the best results among
the models considered.
All previous investigations focused on specific regions.

Broni-Bedaiko et al. (2019) analyzed the performance of
LSTM and Multiple Input-Multiple Output (MIMO)
models in predicting the SST, for the first time across the
whole world. They found that the LSTM model better re-
produces the observed data. In another study, using a simi-
lar concept, Wei et al. (2019) applied MLP to simulate the
SST in the South China Sea, showing accurate predictions.
In another study focusing on combining different tech-

niques, Wu et al. (2019) compared the performance of
Complementary Ensemble Empirical Mode Decompos-
ition–Backpropagation Neural Networks (CEEMD-
BPNNs) and Ensemble Empirical Mode Decomposition–
Backpropagation Neural Networks (EEMD-BPNN) for
forecasting the SST in the northeastern region of the
North Pacific Ocean, reporting a better performance for
CEEMD-BPNNs.
A further investigation with LSTM models was pro-

duced by Xiao et al. (2019b), who compared convolu-
tional LSTM, LSTM, and SVR to estimate the SST in
the East China Sea. Their results showed that the convo-
lutional LSTM model provided the best prediction per-
formance among the models considered.
Xiao et al. (2019a) combined ensemble approach with

LSTM: they simulated SST using LSTM-AdaBoost, SVR,
BPNN, and LSTM models and found significant
consistency between predicted and observed SST values
by using the LSTM-AdaBoost model.
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An additional study involving LSTM models was car-
ried out by Xie et al. (2019), who employed LSTM, SVR,
and GED for SST modeling in the Bohai Sea and South
China Sea. Results showed that the LSTM model pro-
vided the most accurate SST predictions.
As mentioned earlier, deep learning based models such

as “classic” LSTM, CNN and their improved versions
have attracted significant attention lately within the re-
search community in this field, with studies comparing
classic LSTM and CNN for predicting SST in different
regions (Han et al. 2019; Wolff et al. 2020) and other re-
searchers focusing on enhancing the performance of
classic CNN and comparing it with other soft computing
models (Barth et al. 2020; Saha and Chauhan 2020; Yu
et al. 2020b; Zhang et al. 2020b).

2.4.2 Trends in ANN-based model applications for SST
prediction
In the last two decades, the use of ANN-based models
has significantly advanced the SST prediction study field.
A timeline summarizing the various types of models
adopted is presented in Fig. 6. The Finite Impulse Re-
sponse model was the first one used in this area, and
then, models such as Backpropagation and Multi-Layer
Perceptron became widely adopted. In the last two years,
deep learning-based models such as conventional neural
networks and self-organized maps, which have excellent
visual capabilities, have been used successfully for SST
prediction.
Our systematic review revealed that most of the previ-

ous studies focused on using classic neural network al-
gorithms such as MLP and RBF. Improved versions of
these models, through combination with other ap-
proaches such as wavelet technique, have been progres-
sively attracting attentions in this area. Based on the
available literature, it was found that 20 papers were
published which employed classic types of neural net-
work algorithms for estimating SST, while 9 papers used
improved model versions. As discussed earlier, several
investigations employed neural network based deep
learning algorithms such as LSTM or CNN (16 studies
used standalone or improved versions of LSTM or

CNN). Figure 7 summarizes the popularity of each type
of ANN-based approaches in the last two decades.

2.4.3 ANN-based models for SST prediction compared to
other models
The SST prediction performance of ANN-based models
has been compared in the literature with that of other
methods, such as ARIMA, SVM, and ensemble ap-
proaches (e.g., bagging and adaBoost). The ARIMA
model was the first “traditional” model to compare the
capabilities of ANN-based model with. The ARIMA
model uses several assumptions such as associating lin-
ear relationships between previous observations to esti-
mate future values. In all the studies from literature, the
performance of the ANN-based models was significantly
better than ARIMA’s. ANN-based models have also been
compared with SVM models, which are suitable for clas-
sification and estimation problems. In most of the stud-
ies from literature, especially when deep learning-based
models such as LSTM were employed, SVM models
showed a lower performance than the ANN-based
models.

2.5 Other soft computing models for SST prediction
2.5.1 Brief background on the other available soft
computing models
There are different types of SC models, other than
ANN-based models, such as ANFIS and SVM, for esti-
mating SST or other parameters (Awan and Bae 2016;
Sharafati et al. 2020). Fuzzy logic-based models origi-
nated from Zadeh (1965), who introduced the fuzzy
logic (FL) rules to describe non-linear relations between
inputs and outputs. These rules are expressed mathem-
atically through a Fuzzy Inference System (FIS), which
includes three main steps: (i) definition of fuzzy If-Then
rules, (ii) definition of Membership Functions (MFs),
and (iii) tuning of the MF parameters. The fuzzy If-Then
rules are expressed using Membership Functions (to
map the relations between inputs and outputs) and a set
of designed parameters. Jang (1993) presented a new FIS
system implementing an automatic approach for param-
eter tuning, named Adaptive Neuro-Fuzzy Inference

Fig. 6 Timeline of application of the various ANN-based models for SST prediction
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System (ANFIS): this model applies neural networks for
tuning both designed and MF’s parameters. To achieve
this aim, ANFIS is linked to several heuristic algorithms
such as Genetic Algorithms and Particle Swarm
Optimization (Sharafati et al. 2020).
Other SC models, as well as common statistical

models, have been applied for SST prediction. Among
them, there are the support vector regression and sup-
port vector machines: these models attempt to address
the relations between variables using different kernel
functions such as exponential, rational quadratic, Lapla-
cian, polynomial, and Gaussian sigmoid.
The Auto Regressive Integrated Moving Average

(ARIMA) is another model based on time series model-
ling that has been employed to predict the SST. This
model comprises the both autoregressive and moving
average terms to predict stationary series (Box and Jen-
kins 1976).

2.5.2 Overview of the other available soft computing
models for SST prediction
Below is a summary of previous investigations that have
employed SC techniques, other than ANN-based, to pre-
dict SST. A summary list is also presented in Table 2.
Regarding fuzzy logic-based models, a pioneering work

was conducted by Huang et al. (2007), who assessed the
potential of an ANFIS model for prediction of the SST
in the Taiwan Sea, using various input variables such as
salinity, temperature time, angle, and radius which iden-
tify the direction and distance to reference points. They
obtained predictions with satisfactory agreement with
the observed data. In a similar study, Huang et al.
(2008b) examined the application of a FIS model to
simulate the SST in the Taiwan Sea. Salinity and
temperature were used as input parameters, and results
showed that the FIS model provided accurate SST pre-
dictions. In line with the previous study but with differ-
ent input variables and case studies, Awan and Bae
(2016) employed an ANFIS model to forecast the SST in
East Asia (Indian and Pacific Oceans), using values of
Standardized Precipitation Index (SPI), SST, and Sea
Surface Temperature Anomalies (SSTA) as input data
for prediction. Their findings confirmed that ANFIS can

provide predictions with significant agreement with the
observed field data.
ARIMA models have also been used for SST predic-

tion (Table 2). Shirvani et al. (2015) focused for the first
time on the Persian Gulf, using ARIMA and Autoregres-
sive Moving-Average (ARMA) models to forecast SST.
The results of the former showed a significant agree-
ment with the observed data. In another study by Salles
et al. (2016), a similar approach was employed to assess
SST using ARIMA and Random Walk models in the
tropical Atlantic Ocean. They found the ARIMA model
to provide sufficiently accurate predictions.
In line with studies focusing on the combination of

different techniques, Li et al. (2017) assessed the ability
of a Support Vector Machine-Complementary Ensemble
Empirical Mode Decomposition (SVM-CEEMD) model
for estimating the SST in the northeast Pacific Ocean.
This is a seminal work for combination of SVM with en-
semble approaches in this field of research and their
proposed technique returned excellent performance in
comparison with classic regression techniques.
In another study, Jiang et al. (2018b) evaluated the

SVR and LR performance for SST prediction in the Can-
adian Berkley Canyon. Latitude, longitude, and water
depth were used as input variables. These input variables
have been seldom used to assess SST. The results re-
vealed that SVR provided estimates closer to the ob-
served data, compared with LR.
Although so far the majority of SST prediction studies

based on SC techniques adopted neural network algo-
rithms, a few studies employed fuzzy logic-based model
and its hybrid versions, for instance ANFIS, or SVM.
Figure 8 shows the number of contributions using tech-
niques other than ANN algorithms to predict SST.

3 Conclusions
In the last two decades, SC models have attracted consid-
erable attention in the SST study field due to their capabil-
ities to solve complex and non-linear problems. More
than 50 papers have been reviewed in this study, to assess
the trends of SC model application for SST estimation.
The key findings of this review are the following:

i. SC models have been used either to estimate past
values of SST (using marine sediment samples) or
to predict SST (using data from buoys or satellites).

ii. An increasing trend in utilizing satellite-based infor-
mation for predicting SST is observed over the last
five years, although the measurements obtained
from buoys are still the most important data source
for SST prediction.

iii. The most widely adopted type of input variable for
SST prediction is the SST itself observed at
previous times.

Fig. 7 Number of investigations for the different types of ANN-
based models for SST prediction
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iv. The ANN-based models (i.e., MLP) have been
widely used to predict SST for the last two decades,
with RNNs, especially LSTM, gaining popularity in
the last 2 years.

v. Models with high visual capabilities, such as CNN
and SOM, are also becoming increasingly adopted.
CNN models in particular have shown a better
performance than other available numerical models
for assessing SST. This technique is also extremely
useful approach for estimating ENSO phenomena
or prediction of sub-surface temperature or filling
missing Argo data (Ham et al. 2019; Han et al.
2019).

vi. In recent years, the deep learning-based models
have gained popularity, although the findings from
literature show that classic neural network models
such as FFBP or RBF can produce reliable predic-
tions of SST or other marine and climate indices
(Ratnam et al. 2020).

vii. To evaluate the performance of the various SC
models, different indices were used. Correlation
coefficient and root mean square error are the most
common metrics adopted (Tables 1 and 2).

viii.Pacific and Indian oceans are the most common
study areas, and the China Sea has been
increasingly studied in recent years.

ix. Several studies used SC models alongside numerical
methods (i.e., CEEMD) to improve on the SST
prediction performance.

The following are a few considerations about possible
future directions in the field:

i. Most of the previous studies on SST prediction
have used observed SST values at previous times as
input variable for prediction. Use of alternative
input variables, such as heat surface net flux, ocean
front, and eddy recognition, should be investigated.
These variables are essential to demonstrate the

thermal interaction between atmosphere, ocean and
different water masses which causes significant
uncertainty when assessing SST especially in the
Arctic and Antarctica regions (Ali et al. 2004;
Gautam and Panigrahi 2003).

ii. The prediction of SST using SC models could be
enhanced in further investigations by involving
approaches such as Gamma Test or Mutual
Information Theory to optimize the number of
input variables in regions with highly variable
conditions. As discussed earlier, for more reliable
predictions, it would be useful to consider
variables associated with ocean and marine
conditions but predictions could be even more
accurate if parameters associated with solar
variabilities and cloudiness were considered in
future studies.

iii. Most of the predictive models from previous
studies are based on ANN algorithms. The potential
of either machine learning (e.g. Decision Trees) or
ensemble machine learning (e.g. Ada Boost
Regression) models should be assessed in future
studies. As mentioned earlier, in the last 5 years,
deep learning-based neural network models have
shown potential due to their visual capabilities and
flexibility with large datasets. In particular, LSTM
and CNN models provide high speed calculation
and more flexibility for fitting large input datasets
to outputs and require less memory during the pre-
diction process.

iv. Satellite-based information will increasingly be the
major source of input data for SST prediction in
future studies; bias correction for satellite-based in-
formation will be of critical importance.

v. Beyond considering the effects of El Niño and La
Niña on SST (Broni-Bedaiko et al. 2019; Foroozand
et al. 2018; LI et al. 2017), indices such as Southern
Oscillation Index (SOI) and North Atlantic
Oscillation (NAO) should be included in the input
variable combinations for SST prediction.

vi. Assessing the uncertainty associated with SST
prediction due to different factors such as input
data measuring error, data handling, model
structure, and combination of input variables for
prediction should be evaluated in future studies.

vii. SC models should be used to address open
questions such as the impact of abrupt changes of
SST on coral reefs (Wei et al. 2019) and melting
ponds and rapid changes in ice thickness in cold
regions such as the Arctic and Antarctica (Ressel
et al. 2015; Ressel and Singha 2016).

viii.A closer look at the previous studies has revealed
that there is a number of regions where models for
SST prediction have not been applied yet and

Fig. 8 Number of investigations for the different types of models,
other than ANN-based, for SST prediction

Haghbin et al. Progress in Earth and Planetary Science             (2021) 8:4 Page 16 of 19



would be useful: for instance, the regions affected
by the Aghulas current occurring near the
southeast coast of Africa or the regions affected by
the Kuroshio-Oyashio extension current along the
coast of Japan.

Acknowledgments
Not applicable.

Authors’ contributions
Masoud Haghbin proposed the topic and carried out the investigation and
participated in drafting the manuscript. Ahmad Sharafati carried out the
review analysis and paper editing. Davide Motta carried out the investigation
and paper editing. Nadhir Al-Ansari participated in the coordination, aided in
the interpretation of results, and helped in the editing of the manuscript.
Mohamadreza Hosseinian Moghadam Noghani participated in drafting the
manuscript and in the review analysis. The authors read and approved the
final manuscript.

Funding
No funding.

Availability of data and materials
Please contact corresponding author for data requests.

Competing interests
The authors declare that they have no competing interests.

Author details
1Young Researchers and Elites Club, Science and Research Branch, Islamic
Azad University, Tehran, Iran. 2Institute of Research and Development, Duy
Tan University, Da Nang 550000, Vietnam. 3Faculty of Civil Engineering, Duy
Tan University, Da Nang 550000, Vietnam. 4Department of Civil Engineering,
Science and Research Branch, Islamic Azad University, Tehran, Iran.
5Department of Mechanical and Construction Engineering, Northumbria
University, Wynne Jones Building, Newcastle upon Tyne NE1 8ST, UK. 6Civil,
Environmental and Natural Resources Engineering, Lulea University of
Technology, 97187 Lulea, Sweden.

Received: 9 September 2020 Accepted: 15 December 2020

References
Akkermans T, Clerbaux N. Narrowband-to-broadband conversions for top-of-

atmosphere reflectance from the Advanced Very High Resolution Radiometer
(AVHRR). Remote Sens. 2020;

Ali MM, Swain D, Weller RA. Estimation of ocean subsurface thermal structure
from surface parameters: à neural network approach. Geophys. Res. Lett.
Wiley Online Library; 2004;31(20).

Amouamouha M, Badalians Gholikandi G. Characterization and antibiofouling
performance investigation of hydrophobic silver nanocomposite membranes:
a comparative study. Membranes (Basel). Multidisciplinary Digital Publishing
Institute; 2017;7(4):64.

Amouamouha M, Gholikandi GB (2018) Assessment of anaerobic nanocomposite
membrane bioreactor efficiency intensified by biogas backwash. Chem. Eng.
Process. Intensif. Elsevier 131:51–58

Anding D, Kauth R (1970/12). "Estimation of sea surface temperature from space."
Remote Sensing of Environment. 1(4):217-220. http://dx.doi.org/10.1016/
S0034-4257(70)80002-5.

Angal A, Geng X, Xiong X, Twedt KA, Wu A, Link DO, et al. On-orbit calibration of
Terra MODIS VIS bands using polarization-corrected desert observations. IEEE
Trans. Geosci. Remote Sens. 2020;

Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean
sea surface temperature on developing El Niño. J. Clim. 18(2):302–319

Aparna SG, D’Souza S, Arjun NB. Prediction of daily sea surface temperature using
artificial neural networks. Int. J. Remote Sens. Taylor & Francis; 2018;39(12):
4214–31.

Argo. Current Status of Argo. 2020.
Awan JA, Bae D. Drought prediction over the East Asian monsoon region using

the adaptive neuro-fuzzy inference system and the global sea surface

temperature anomalies. Int. J. Climatol. Wiley Online Library; 2016;36(15):
4767–77.

Barnes WL, Pagano TS, Salomonson V V. Prelaunch characteristics of the
moderate resolution imaging spectroradiometer (MODIS) on EOS-AMI. IEEE
Trans. Geosci. Remote Sens. 1998;

Barth A, Alvera Azcarate A, Licer M, Beckers J-M. DINCAE 1.0: a convolutional
neural network with error estimates to reconstruct sea surface temperature
satellite observations. Geosci. Model Dev. Copernicus Gesellschaften; 2020;
13(3):1609–22.

Barzegar R, Adamowski J, Moghaddam AA. Application of wavelet-artificial
intelligence hybrid models for water quality prediction: a case study in Aji-
Chay River, Iran. Stoch. Environ. Res. risk Assess. Springer; 2016;30(7):1797–
819.

Bhaskaran PK, Kumar RR, Barman R, Muthalagu R. A new approach for deriving
temperature and salinity fields in the Indian Ocean using artificial neural
networks. J. Mar. Sci. Technol. Springer; 2010;15(2):160–75.

Bond NA, Cronin MF, Freeland H, Mantua N. Causes and impacts of the 2014
warm anomaly in the NE Pacific. Geophys. Res. Lett. Wiley Online Library;
2015;42(9):3414–20.

Boureau YL, Ponce J, Lecun Y. A theoretical analysis of feature pooling in visual
recognition. ICML 2010-Proceedings, 27th Int. Conf. Mach. Learn. 2010.

Box GEP, Jenkins GM. Time series analysis: forecasting and control San Francisco.
Calif: Holden-Day. 1976;

Broni-Bedaiko C, Katsriku FA, Unemi T, Atsumi M, Abdulai J-D, Shinomiya N, et al.
El Niño-Southern Oscillation forecasting using complex networks analysis of
LSTM neural networks. Artif. Life Robot. Springer; 2019;1–7.

Brown OB, Brown JW, Evans RH (1985) Calibration of advanced very high
resolution radiometer infrared observations. J. Geophys. Res.

Chen JL, He L, Yang H, Chen Q, Ma MH, Wang XX, et al. Coupling meteorological
variables with moderate resolution imaging spectroradiometer atmospheric
products for estimating global solar radiation. Energy Convers. Manag. 2020;

Chen M-T, Huang C-C, Pflaumann U, Waelbroeck C, Kucera M (2005) Estimating
glacial western Pacific sea-surface temperature: methodological overview
and data compilation of surface sediment planktic foraminifer faunas. Quat.
Sci. Rev 24(7–9):1049–1062

Corchado JM. Hybrid cbr system for real-time temperature forecasting in the
ocean. IEEE Colloq. Knowl. Discov. LONDON, UK. 1995.

Corchado JM, Aiken J. Hybrid artificial intelligence methods in oceanographic
forecast models. IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev. IEEE;
2002;32(4):307–13.

Corchado JM, Fyfe C. Unsupervised neural method for temperature forecasting.
Artif. Intell. Eng. Elsevier; 1999;13(4):351–357.

Corchado JM, Lees B, Aiken J. Hybrid instance-based system for predicting ocean
temperatures. Int. J. Comput. Intell. Appl. World Scientific; 2001;1(01):35–52.

Davies G. Statistical modelling and analysis of Pacific Sea surface temperatures.
2018;

Davis RE. Observing the general circulation with floats. Deep Sea Res. Part A.
Oceanogr. Res. Pap. Elsevier; 1991;38:S531–71.

Davis RE, Regier LA, Dufour J, Webb DC (1992) The autonomous Lagrangian
circulation explorer (ALACE). J. Atmos. Ocean. Technol. 9(3):264–285

De Paz JF, Bajo J, González A, Rodríguez S, Corchado JM (2012) Combining case-
based reasoning systems and support vector regression to evaluate the
atmosphere–ocean interaction. Knowl. Inf. Syst. Springer 30(1):155–177

Dou Y, Huang R, Mansaray LR, Huang J. Mapping high temperature damaged
area of paddy rice along the Yangtze River using moderate resolution
imaging spectroradiometer data. Int. J. Remote Sens. 2020;

Foroozand H, Radić V, Weijs S. Application of entropy ensemble filter in neural
network forecasts of tropical Pacific sea surface temperatures. Entropy.
Multidisciplinary Digital Publishing Institute; 2018;20(3):207.

Ganesh V, Kamarasan M. Deep learning based long short term memory model
for emotions with intensity level sentiment classification for twitter texts. Int.
J. Adv. Sci. Technol. 2020;

Gao BC, Kaufman YJ. Water vapor retrievals using Moderate Resolution Imaging
Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. D Atmos.
2003;

Garcia-Gorriz E, Garcia-Sanchez J. Prediction of sea surface temperatures in the
western Mediterranean Sea by neural networks using satellite observations.
Geophys. Res. Lett. Wiley Online Library; 2007;34(11).

Gautam RK, Panigrahi S. Image processing techniques and neural network
models for predicting plant nitrate using aerial images. Proc. Int. Jt. Conf.
Neural Networks, 2003. IEEE; 2003. p. 1031–6.

Haghbin et al. Progress in Earth and Planetary Science             (2021) 8:4 Page 17 of 19

http://dx.doi.org/10.1016/S0034-4257(70)80002-5
http://dx.doi.org/10.1016/S0034-4257(70)80002-5


Gholikandi GB, Beklar BI, Amouamouha M. The technical and economical
assessment of the different electrode materials for pH recovery in the anaerobic
baffled reactor on a lab-scale. Desalin. Water Treat. (Under Press. 2018;

Gordon AL. Interocean exchange of thermocline water. J. Geophys. Res. Ocean.
Wiley Online Library; 1986;91(C4):5037–46.

Graves A. Generating sequences with recurrent neural networks. 2013;1–43.
Grosan C, Abraham A. Hybrid evolutionary algorithms: methodologies,

architectures, and reviews. Hybrid Evol. algorithms. Springer; 2007. p. 1–17.
Guo Y, Ting M, Wen Z, Lee DE (2017) Distinct patterns of tropical Pacific SST

anomaly and their impacts on North American climate. J. Clim. 30(14):5221–
5241

Gupta SM, Malmgren BA. Comparison of the accuracy of SST estimates by
artificial neural networks (ANN) and other quantitative methods using
radiolarian data from the Antarctic and Pacific Oceans. The society of Earth
Scientists; 2009;

Haghbin M, Sharafati A, Dixon B, Kumar V. Application of soft computing models
for simulating nitrate contamination in groundwater: comprehensive review,
assessment and future opportunities. Arch. Comput. Methods Eng. Springer;
2020;1–23.

Ham Y-G, Kim J-H, Luo J-J. Deep learning for multi-year ENSO forecasts. Nature.
Nature Publishing Group; 2019;573(7775):568–72.

Han M, Feng Y, Zhao X, Sun C, Hong F, Liu C. A convolutional neural network
using surface data to predict subsurface temperatures in the Pacific Ocean.
IEEE Access. IEEE; 2019;7:172816–29.

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput. 9:
1735–1780.

Huang Y-P, Hsu W-T, Sandnes FE. Association analysis of ocean salinity and
temperature variations. 2008 Third Int. Conf. Converg. hybrid Inf. Technol.
IEEE; 2008a. p. 680–5.

Huang Y-P, Kao L-J, Sandnes FE. Discriminating important ocean salinity and
temperature patterns in argo data. 2008 IEEE Int. Conf. Syst. Man Cybern.
IEEE; 2008b. p. 2677–82.

Huang Y-P, Kao L-J, Sandnes F-E. Predicting ocean salinity and temperature
variations using data mining and fuzzy inference. Int. J. Fuzzy Syst. 2007;9(3).

Ilčev SD. Global satellite meteorological observation (GSMO) theory. Glob. Satell.
Meteorol. Obs. Theory. 2017.

Jang J-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst.
Man. Cybern. IEEE; 1993;23(3):665–85.

Jiang G, Xu J, Wei J. A deep learning algorithm of neural network for the
parameterization of typhoon-ocean feedback in typhoon forecast models.
Geophys. Res. Lett. Wiley Online Library; 2018a;45(8):3706–16.

Jiang Y, Zhang T, Gou Y, He L, Bai H, Hu C. High-resolution temperature and
salinity model analysis using support vector regression. J. Ambient Intell.
Humaniz. Comput. Springer; 2018b;:1–9.

Jyothirmai A, Reddy SN, Jagadamba P. Automatic classification for NOAA-AVHRR
data using k-means algorithm. 2018;4(5):755–62.

Kahira A, Gomez LB, Badia RM. Training deep neural networks with low precision
input data: a hurricane prediction case study. Int. Conf. High Perform.
Comput. Springer; 2018. p. 562–9.

Karim MN, Rivera SL (1992). Comparison of feed-forward and recurrent neural
networks for bioprocess state estimation. Comput Chem Eng. 16:S369–S377.

Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of
deep convolutional neural networks. Artif. Intell. Rev. 2020;

Konar A. Artificial intelligence and soft computing: behavioral and cognitive
modeling of the human brain. Boca Raton: CRC press; 2018.

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012.

Kwon YJ, Ryu S, Cho J, Lee YW, Park NW, Chung CY, et al. Infrared soil moisture
retrieval algorithm using temperature-vegetation dryness index and
moderate resolution imaging spectroradiometer data. Asia-Pacific J. Atmos.
Sci. Asia-Pacific Journal of Atmospheric Sciences; 2020;56(2):275–89.

Li Q-J, Zhao Y, Liao H-L, Li J-K (2017) Effective forecast of Northeast Pacific sea
surface temperature based on a complementary ensemble empirical mode
decomposition–support vector machine method. Atmos Ocean Sci Lett.
2017;10(3):261–267.

Liao Z, Dong Q, Xue C, Bi J, Wan G. Reconstruction of daily sea surface
temperature based on radial basis function networks. Remote Sens.
Multidisciplinary Digital Publishing Institute; 2017;9(11):1204.

Liu J, Zhang T, Han G, Gou Y. TD-LSTM: Temporal dependence-based LSTM
networks for marine temperature prediction. Sensors. Multidisciplinary Digital
Publishing Institute; 2018;18(11):3797.

Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent
neural network training. Comput Sci Rev. 3:127–149.

Mahongo SB, Deo MC. Using artificial neural networks to forecast monthly and
seasonal sea surface temperature anomalies in the Western Indian Ocean.
Int. J. Ocean Clim. Syst. SAGE Publications Sage UK: London, England; 2013;
4(2):133–50.

Malmgren BA, Kucera M, Nyberg J, Waelbroeck C. Comparison of statistical and
artificial neural network techniques for estimating past sea surface
temperatures from planktonic foraminifer census data. Paleoceanography.
Wiley Online Library; 2001;16(5):520–30.

McMillin LM. Estimation of sea surface temperatures from two infrared window
measurements with different absorption. J. Geophys. Res. Wiley Online
Library; 1975;80(36):5113–7.

Merchant CJ, Embury O, Bulgin CE, Block T, Corlett GK, Fiedler E, et al. Satellite-
based time-series of sea-surface temperature since 1981 for climate
applications. Sci. data. Nature Publishing Group; 2019;6(1):1–18.

Modaresi F, Araghinejad S, Ebrahimi K. The combined effect of Persian Gulf and
Mediterranean Sea surface temperature on operational forecast of spring
streamflow for Karkheh Basin, Iran. Sustain. Water Resour. Manag. Springer;
2016;2(4):387–403.

Mouginis-Mark PJ, Garbeil H, Flament P. Effects of viewing geometry on AVHRR
observations of volcanic thermal anomalies. Remote Sens. Environ. 1994;

National Center for Atmospheric Research Staff (Eds). The Climate Data Guide:
SST data: HadiSST v1.1. 2020.

Nicholls N (1984) The Southern Oscillation and Indonesian sea surface
temperature. Mon. Weather Rev. 112(3):424–432

(NOAA) NO and AA. Optimum Interpolation Sea Surface Temperature (OISST) v2.
1. 2020.

Nodoushan EJ. Monthly forecasting of water quality parameters within Bayesian
networks: a case study of Honolulu, Pacific Ocean. Civ. Eng. J. 2018;4(1):188–
99.

Ouala S, Fablet R, Herzet C, Chapron B, Pascual A, Collard F, et al. Neural network
based Kalman filters for the spatio-temporal interpolation of satellite-derived
sea surface temperature. Remote Sens. Multidisciplinary Digital Publishing
Institute; 2018;10(12):1864.

Patil K, Deo MC. Prediction of daily sea surface temperature using efficient neural
networks. Ocean Dyn. Springer; 2017;67(3–4):357–68.

Patil K, Deo MC (2018) Basin-scale prediction of sea surface temperature with
artificial neural networks. J. Atmos. Ocean. Technol. 35(7):1441–1455

Patil K, Deo MC, Ravichandran M (2016) Prediction of sea surface temperature by
combining numerical and neural techniques. J. Atmos. Ocean. Technol. 33(8):
1715–1726

Peng L, Liu S, Liu R (2018) Wang L. Effective long short-term memory with
differential evolution algorithm for electricity price prediction, Energy

Peyron O, de Vernal A. Application of artificial neural networks (ANN) to high-
latitude dinocyst assemblages for the reconstruction of past sea-surface
conditions in Arctic and sub-Arctic seas. J. Quat. Sci. Publ. Quat. Res. Assoc.
Wiley Online Library; 2001;16(7):699–709.

Pflaumann U, Duprat J, Pujol C, Labeyrie LD. SIMMAX: a modern analog
technique to deduce Atlantic sea surface temperatures from planktonic
foraminifera in deep-sea sediments. Paleoceanography. Wiley Online Library;
1996;11(1):15–35.

Pinzon JE, Tucker CJ. A non-stationary 1981-2012 AVHRR NDVI3g time series.
Remote Sens. 2014;

Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Osuch M. Comparing various
artificial neural network types for water temperature prediction in rivers. J.
Hydrol. Elsevier; 2015;529:302–15.

Prabhakara C, Dalu G, Kunde VG. Estimation of sea surface temperature from
remote sensing in the 11-to 13-μm window region. J. Geophys. Res. Wiley
Online Library; 1974;79(33):5039–44.

Quilodrán Casas CA. Fast ocean data assimilation and forecasting using a neural-
network reduced-space regional ocean model of the north Brazil current.
Imperial College London; (2018)

Ratnam J V, Dijkstra HA, Behera SK. A machine learning based prediction system for
the Indian Ocean Dipole. Sci. Rep. Nature Publishing Group; 2020;10(1):1–11.

Ressel R, Frost A, Lehner S. A neural network-based classification for sea ice types
on X-band SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. IEEE;
2015;8(7):3672–80.

Ressel R, Singha S. Comparing near coincident space borne C and X band fully
polarimetric sar data for arctic sea ice classification. Remote Sens. MDPI AG;
2016;8(3):198.

Haghbin et al. Progress in Earth and Planetary Science             (2021) 8:4 Page 18 of 19



Rösel A, Kaleschke L, Birnbaum G. Melt ponds on Arctic sea ice determined from
MODIS satellite data using an artificial neural network. Cryosph. 2012;6:431–46.

Saha G, Chauhan NC. Week ahead time series prediction of sea surface
temperature using nonlinear autoregressive network with and without
exogenous inputs. Appl. Mach. Learn. Springer; 2020. p. 235–56.

Sak H, Senior AW, Beaufays F (2014) Long short-term memory recurrent neural
network architectures for large scale acoustic modeling.

Salles R, Mattos P, Iorgulescu A-MD, Bezerra E, Lima L, Ogasawara E. Evaluating
temporal aggregation for predicting the sea surface temperature of the
Atlantic Ocean. Ecol. Inform. Elsevier; 2016;36:94–105.

Sarkar PP, Janardhan P, Roy P. Prediction of sea surface temperatures using deep
learning neural networks. SN Appl. Sci. Springer; 2020;2(8):1–14.

Sharafati A, Haghbin M, Haji Seyed Asadollah SB, Tiwari NK, Al-Ansari N, Yaseen
ZM. Scouring depth assessment downstream of weirs using hybrid
intelligence models. Appl. Sci. Multidisciplinary Digital Publishing Institute;
2020;10(11):3714.

Sharafati A, Haghbin M, Motta D, Yaseen ZM. The application of soft computing
models and empirical formulations for hydraulic structure scouring depth
simulation: a comprehensive review, assessment and possible future research
direction. Arch. Comput. Methods Eng. Springer; 2019a;:1–25.

Sharafati A, Tafarojnoruz A, Shourian M, Yaseen ZM. Simulation of the depth
scouring downstream sluice gate: the validation of newly developed data-
intelligent models. J. Hydro-environment Res. Elsevier; 2019b;.

Sherstinsky A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020;

Shin M, Kim M, Kwon DS. Baseline CNN structure analysis for facial expression
recognition. 25th IEEE Int. Symp. Robot Hum. Interact. Commun. RO-MAN
2016. 2016.

Shirvani A, Nazemosadat SMJ, Kahya E. Analyses of the Persian Gulf sea surface
temperature: prediction and detection of climate change signals. Arab. J.
Geosci. Springer; 2015;8(4):2121–30.

Singh P, Raj P, Namboodiri VP. EDS pooling layer. Image Vis. Comput. 2020;
Somu N, MR GR, Ramamritham K. A hybrid model for building energy

consumption forecasting using long short term memory networks. Appl.
Energy. 2020;

Soreide NN, Woody CE, Holt SM. Overview of ocean based buoys and drifters:
present applications and future needs. MTS/IEEE Ocean. 2001. An Ocean
Odyssey. Conf. Proc. (IEEE Cat. No. 01CH37295). IEEE; 2001. p. 2470–2.

Staudemeyer RC, Morris ER. Understanding LSTM—a tutorial into long short-term
memory recurrent neural networks. 2019;(September).

Tao M, Li R, Wang L, Lan F, Wang Z, Tao J et al (2020) A critical view of long-
term AVHRR aerosol data record in China: retrieval frequency and heavy
pollution. Atmos. Environ.

Tung TM, Yaseen ZM (2020). A survey on river water quality modelling using
artificial intelligence models: 2000-2020. J Hydrol. 124670.

Wang J, Deng Z. Development of MODIS data-based algorithm for retrieving sea
surface temperature in coastal waters. Environ. Monit. Assess. Springer; 2017;
189(6):286.

Wang L, You ZH, Huang YA, Huang DS, Chan KCC. An efficient approach based
on multi-sources information to predict circRNA-disease associations using
deep convolutional neural network. Bioinformatics. 2020a;.

Wang Z, Lu Z, Cui G (2020b) Spatiotemporal variation of land surface
temperature and vegetation in response to climate change based on NOAA-
AVHRR data over China. Sustainability. 12(9):3601

Wei L, Guan L, Qu L. Prediction of sea surface temperature in the South China
Sea by artificial neural networks. IEEE Geosci. Remote Sens. Lett. IEEE; 2019;

Wei L, Guan L, Qu L, Guo D. Prediction of sea surface temperature in the China
seas based on long short-term memory neural networks. Remote Sens.
Multidisciplinary Digital Publishing Institute; 2020;12(17):2697.

Wolff S, O’Donncha F, Chen B. Statistical and machine learning ensemble
modelling to forecast sea surface temperature. J. Mar. Syst. Elsevier; 2020;
103347.

Wu Z, Jiang C, Conde M, Deng B, Chen J. Hybrid improved empirical mode
decomposition and BP neural network model for the prediction of sea
surface temperature. Ocean Sci. Copernicus GmbH; 2019;15(2):349–60.

Xiao C, Chen N, Hu C, Wang K, Gong J, Chen Z. Short and mid-term sea surface
temperature prediction using time-series satellite data and LSTM-AdaBoost
combination approach. Remote Sens. Environ. Elsevier; 2019a;233:111358.

Xiao C, Chen N, Hu C, Wang K, Xu Z, Cai Y, et al. A spatiotemporal deep learning
model for sea surface temperature field prediction using time-series satellite
data. Environ. Model. Softw. Elsevier; 2019b;120:104502.

Xie J, Zhang J, Yu J, Xu L. An adaptive scale sea surface temperature predicting
method based on deep learning with attention mechanism. IEEE Geosci.
Remote Sens. Lett. IEEE; 2019;

Xu L, Li Y, Yu J, Li Q, Shi S. Prediction of sea surface temperature using a
multiscale deep combination neural network. Remote Sens. Lett. Taylor &
Francis; 2020;11(7):611–9.

Xue Y, He X, de Leeuw G, Mei L, Che Y, Rippin W, et al. Long-time series aerosol
optical depth retrieval from AVHRR data over land in North China and
Central Europe. Remote Sens. Environ. 2017;

Yang Y, Dong J, Sun X, Lima E, Mu Q, Wang X (2017) A CFCC-LSTM model for
sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. IEEE
15(2):207–211

Yaseen Z, Ebtehaj I, Kim S, Sanikhani H, Asadi H, Ghareb M et al (2019) Novel
hybrid data-intelligence model for forecasting monthly rainfall with
uncertainty analysis. Water. 11(3):502

Yu S, Rosenberg R, Bruegge C, Chapsky L, Fu D, Lee R et al (2020a) Stability
assessment of OCO-2 radiometric calibration using aqua MODIS as a
reference. Remote Sens. 12(8):1–18

Yu X, Shi S, Xu L, Liu Y, Miao Q, Sun M. A novel method for sea surface
temperature prediction based on deep learning. Math. Probl. Eng. Hindawi;
2020b;2020.

Zadeh LA (1965) Fuzzy sets. Inf. Control. Elsevier 8(3):338–353
Zhang K, Geng X, Yan X-H. Prediction of 3-D ocean temperature by multilayer

convolutional LSTM. IEEE Geosci. Remote Sens. Lett. IEEE; 2020a;.
Zhang Q, Wang H, Dong J, Zhong G, Sun X (2017) Prediction of sea surface

temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett.
IEEE 14(10):1745–1749

Zhang Z, Pan X, Jiang T, Sui B, Liu C, Sun W. Monthly and quarterly sea surface
temperature prediction based on gated recurrent unit neural network. J. Mar.
Sci. Eng. Multidisciplinary Digital Publishing Institute; 2020b;8(4):249.

Zhou DX (2020) Universality of deep convolutional neural networks. Appl.
Comput. Harmon. Anal.

Zhou M, Tian C, Cao R, Wang B, Niu Y, Hu T, et al. Epileptic seizure detection
based on EEG signals and CNN. Front. Neuroinform. 2018;

Zhu J, Shang G, Cao S, Chen G. Elimination of clouds in AVHRR/2 images of
Qinghai-Tibet Plateau. Int. J. Remote Sens. Taylor & Francis; 2019;40(5–6):
2427–34.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Haghbin et al. Progress in Earth and Planetary Science             (2021) 8:4 Page 19 of 19


	Abstract
	Introduction
	Background on sea surface temperature (SST)
	Soft computing (SC) models for SST Prediction
	Scope of this study

	Literature review
	Input variables and data sources for SST prediction
	Data from buoys
	Data from satellite sensors
	Frameworks for SST mapping

	Most commonly investigated regions
	Soft computing models for SST prediction
	ANN-based models for SST prediction
	Brief background on ANN-based models
	Trends in ANN-based model applications for SST prediction
	ANN-based models for SST prediction compared to other models

	Other soft computing models for SST prediction
	Brief background on the other available soft computing models
	Overview of the other available soft computing models for SST prediction


	Conclusions
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

