
 Coventry University

DOCTOR OF PHILOSOPHY

VLSI design and implementation of adaptive two-dimensional multilayer neural
network architecture for image compression and decompression

Raj, P. Cyril Prasanna

Award date:
2010

Awarding institution:
Coventry University
M S Ramaiah University of Applied Sciences

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. Dec. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/vlsi-design-and-implementation-of-adaptive-twodimensional-multilayer-neural-network-architecture-for-image-compression-and-decompression(4d07cc77-1647-4bc5-a7f7-7fdf6321aaf3).html

VLSI DESIGN AND
IMPLEMENTATION OF ADAPTIVE

TWO-DIMENSIONAL MULTILAYER
NEURAL NETWORK

ARCHITECTURE FOR IMAGE
COMPRESSION AND

DECOMPRESSION

P. Cyril Prasanna Raj

A thesis submitted in partial fulfillment
of the University’s requirements

for the Degree of Doctor of Philosophy

APRIL 2010

Coventry University

Research work carried out at
M. S. RAMAIAH SCHOOL OF ADVANCED STUDIES,

BANGALORE

Coventry University – Doctoral Programme (PhD)

ii

Doctoral Programme

Certificate

This is to certify that the PhD dissertation titled “VLSI Design and

Implementation of Adaptive Two-Dimensional Multilayer Neural

Network Architecture for Image Compression and Decompression” is a

bonafied record of the work carried out by P. Cyril Prasanna Raj in

partial fulfillment of requirements for the award of Degree of Doctor of

Philosophy, Coventry University.

April – 2010

COVENTRY UNIVERSITY

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression iii

VLSI Design and Implementation of Adaptive Two-Dimensional
Multilayer Neural Network Architecture for Image Compression

and Decompression

The thesis dissertation is submitted in partial fulfillment of academic requirements for
Doctor of Philosophy Degree of Coventry University in Electronics and Computer
Engineering. This dissertation is a result of my own investigation. All sections of the text
and results, which have been obtained from other sources, are fully referenced. I
understand that cheating and plagiarism constitute a breach of University regulations and
will be dealt with accordingly.

Declaration

SSiiggnnaattuurree ::

NNaammee ooff tthhee SSttuuddeenntt :: PP.. CCyyrriill PPrraassaannnnaa RRaajj

DDaattee :: AApprriill,, 22001100

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression iv

The successful completion of any task will be incomplete without complementing those

who made it possible and whose guidance and encouragement made my efforts

successful. The right way to express my gratitude is this section of my research work. I

take immense pleasure and am overwhelmed at this point of time to express my sincere

and heartfelt gratitude to all who were involved with me in successful completion of my

research work.

With deep sense of gratitude I acknowledge the help and encouragement rendered

by my President, Dr. S. R. Shankapal, Director, MSRSAS, Bangalore, for his valuable

suggestions, support, encouragement and guidance. His advice has been my inspiration

throughout my work at MSRSAS. I am grateful for his valuable feedback and suggestions

throughout my career at MSRSAS and also successful completion of this work. I am and

will always be indebted to him.

This research work has benefited from the help of many individuals. The

discussion sessions and guidance of Dr. S. L. Pinjare, was key in realizing and

improving this research work. I would like to thank him for his advice, guidance and

support during the course of research. His timely support and motivation has been one of

the most important aspects towards successful completion of this research work.

I am thankful to Dr. Y. A. Vershinin, Professor, Coventry University, U.K, for

accepting to be my CU supervisor, his thought provoking suggestions and also key inputs

provided during my thesis writing have helped me in successfully completing this work.

I would like to thank Dr. M. D. Deshpande, Head Research, MSRSAS, and Dr.

Govind R. Kadambi, Dean (Academics), MSRSAS, Bangalore for providing necessary

resources, facilities and excellent environment necessary for successful completion of this

research. Their politeness in conduction of research reviews has really benefited me to

complete the research work successfully.

Acknowledgement

I take this opportunity to express my gratitude to Dr. Peter White, Professor -

Coventry University. During the review meetings his suggestions and directions have

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression v

helped me a lot in understanding the purpose of research. I am ever grateful to him for his

kindness and patience listening during review meetings.

I also take great pleasure in expressing my thanks to Dr. A. G. Ananth, Respond

Office, ISRO, Bangalore, Shri. E. Devadoss, Deputy Director, Respond Office, VSSC,

and Prof. Krishna Prasad and his team, Bangalore for their support throughout the

research work.

I take this opportunity to thank my colleagues at EEE department faculty

members and students who have assisted me in carrying out this research and helped me

in validating the results.

I would like to thank the following distinguished members who have constantly

supported and helped me in completing the research work:

1. Ms. Sarojini, Head DSD, VSSC, Trivandrum

2. Shri. B. G. Suresh, Director, VSSC Trivandrum

3. Dr. T. V. Ananthapadmanabhan, MSRSAS

I wish to express my warm and sincere thanks to all my teaching staff, non-

teaching staff at MSRSAS who directly or indirectly have been of great help for the

successful completion of the thesis.

I would also thank my parents (my mother Mrs. G. Shanthy) for their

unconditional love and support without which nothing would have been possible.

I take this opportunity to express my deepest and unconditional love to my wife

Sujatha Cyril and my daughters Advika C. Sana and Arshia C. Sana without their support

my research work would have not been able to see the light. I am always indebted to them

and very sincerely acknowledge their patience exhibited during this period. Their support

has motivated me in successful completion of my research work.

Above all I thank the almighty, for giving me strength and an opportunity to

pursue my research work. It is his blessings that have guided and encouraged me all

through my difficulties in successfully completing this work.

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression vi

In this research, adaptive Two-Dimensional Multilayer Neural Network (TDMNN)

architecture is proposed, designed and implemented for image compression and

decompression. The adaptive TDMNN architecture performs image compression and

decompression by automatically choosing one of the three (linear, nonlinear and hybrid)

TDMNN architectures based on input image entropy and required compression ratio. The

architecture is two-dimensional, 2D to 1D reordering of input image is avoided, as the

TDMNN architecture is implemented using hybrid neural network, analog to digital

conversion of image input is eliminated. The architecture is trained to reconstruct images

in the presence of noise as well as channel errors.

Abstract

Software reference model for Adaptive TDMNN architecture is designed and

modeled using Matlab. Modified backpropagation algorithm that can train two-

dimensional network is proposed and is used to train the TDMNN architecture.

Performance metrics such as Mean Square Error (MSE) and Peak Signal to Noise Ratio

(PSNR) are computed and compared with well established DWT-SPIHT technique. There

is 10% to 25% improvement in reconstructed image quality measured in terms of MSE

and PSNR compared to DWT-SPIHT technique. Software reference model results show

that the compression and decompression time for TDMNN architecture is less than 25 ms

for image of size 256 x 256, which is 60 times faster than DWT-SPIHT technique.

Based on weights and biases of the network obtained from the software reference

model VLSI implementation of adaptive TDMNN architecture is carried out. A new

hybrid multiplying DAC is designed that multiplies current intensities (analog input) with

digital weights. The hybrid multiplier is integrated with adder and network function to

realize a hybrid neuron cell. The hybrid neuron cell designed using 1420 transistors works

at 200 MHz, consuming less than 232 mW of power, with full scale current of 65.535 µA.

Multiple hybrid neurons are integrated together to realize the 2-D adaptive multilayer

neural network architecture.

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression vii

Contents

CHAPTER 1 - INTRODUCTION .. 21

1.1 PREAMBLE ... 22

1.2 NEED FOR MULTIDIMENSIONAL NEURAL NETWORK ARCHITECTURE 24

1.3 NEED FOR NEURAL NETWORKS FOR IMAGE COMPRESSION .. 28

1.4 MOTIVATION TO THIS WORK ... 34

1.5 NEED FOR ANALOG VLSI .. 36

1.6 THESIS CONTRIBUTIONS .. 36

1.7 ASSUMPTIONS AND TERMINOLOGIES ... 38

1.8 HYPOTHESIS .. 39

1.9 THESIS OVERVIEW ... 40

CHAPTER 2 - NEURAL NETWORKS FOR IMAGE COMPRESSION: LITERATURE

REVIEW ... 41

2.1 IMAGE COMPRESSION USING NEURAL NETWORKS .. 41

2.2 LITERATURE REVIEW ON NEURAL NETWORKS FOR IMAGE COMPRESSION 46

2.3 ARTIFICIAL NEURAL NETWORK .. 55

2.4 NEURAL NETWORK ARCHITECTURES .. 57

2.4.1 Single Layer Neuron ... 57

2.4.2 Multiple Layer of Neurons .. 58

2.5 BACKPROPAGATION ALGORITHM .. 59

2.6 NEURAL NETWORKS IN ANALOG VLSI ... 60

2.6.1 Modular T-Mode Design .. 61

2.7 DIGITAL IMPLEMENTATION OF NEURAL NETWORK ARCHITECTURES 67

2.8 FPGA IMPLEMENTATION OF NEURAL NETWORK ARCHITECTURE 68

2.9 LITERATURE REVIEW SUMMARY ON VLSI IMPLEMENTATION OF NEURAL NETWORK ... 70

CHAPTER 3 - PROBLEM DEFINITION ... 72

3.1 AIM ... 72

3.2 OBJECTIVES ... 73

3.3 METHODS AND METHODOLOGIES TO CARRY OUT THE OBJECTIVES 73

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression viii

CHAPTER-4 2-D MULTILAYERED NEURAL NETWORK: DESIGN AND

IMPLEMENTATION ... 77

4.1 DESIGN OVERVIEW .. 77

4.2 DESIGN REQUIREMENTS .. 78

4.2.1 Two-Dimensional Multilayer Neural Network Architecture 79

4.2.2 Two-DMNN Parameters ... 80

4.3 NEURAL NETWORK TRAINING ... 87

4.4 TWO-DIMENSIONAL NETWORK TRAINING USING BACKPROPAGATION 88

4.5 DESIGN, MODELING AND ANALYSIS OF TDMNN ARCHITECTURE 93

4.6 DESIGN OF SOFTWARE REFERENCE MODEL ... 98

4.7 RESULTS AND ANALYSIS ... 100

4.7.1 Linear Network for Compression and Decompression .. 101

4.7.2 Hybrid Network for Compression and Decompression .. 105

4.7.3 Performance Comparison of all Three Network Architectures 109

4.7.4 Comparison of TDMNN with DWT-SPIHT Technique .. 113

4.8 ANALYSIS OF VARIATIONS IN NETWORK SIZE .. 123

4.8.1 Block Size Influences on Performance Metrics .. 124

4.8.2 Impact of Multiple Layers on Network Performance ... 126

4.9 NOISE ANALYSIS AND ERROR ANALYSIS ... 128

4.9.1 Noise Analysis .. 128

4.9.2 Error Analysis .. 132

4.10 ADAPTIVE TDMNN ARCHITECTURE FOR IMAGE COMPRESSION AND DECOMPRESSION 144

4.10.1 Linear Correlation in Spatial Domain .. 144

4.10.2 Adaptive TDMNN ... 147

CHAPTER 5 – VLSI IMPLEMENTATION OF ADAPTIVE TDMNN ARCHITECTURE

 ... 155

5.1 INTRODUCTION .. 155

5.2 DESIGN ANALYSIS ... 155

5.3 NEURAL NETWORK DESIGN AND IMPLEMENTATION .. 157

5.4 ANALOG COMPONENTS FOR NEURAL NETWORK ARCHITECTURE 158

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression ix

5.4.1 Multiplier Design ... 158

5.4.2 Design of Multiplier Block .. 160

5.4.3 Adders .. 162

5.4.4 Neuron Activation Function (NAF) ... 162

5.4.5 Differential Amplifier Design as a Neuron Activation Function 162

5.5 REALIZATION OF NEURAL ARCHITECTURE USING ANALOG COMPONENTS 166

5.5.1 Backpropagation Algorithm ... 166

5.5.2 Validation for Digital Operation .. 168

5.6 IMAGE COMPRESSION AND DECOMPRESSION USING NN ARCHITECTURE 169

5.6.1 2-D multilayered Neural Network Architecture Design and Implementation 172

5.6.2 Hybrid Neural Network Architecture .. 177

5.7 CURRENT STEERING DAC ... 179

5.7.1 Novel Hybrid Current Steering DAC Multiplier .. 181

5.7.2 Proposed MDAC Architecture .. 181

5.7.3 MDAC Architecture - R-ßR Ladder Network ... 183

5.8 LAYOUTS OF PROPOSED MDAC .. 187

5.9 TOP-LEVEL BLOCK DIAGRAM OF SINGLE NEURON USING HYBRID MULTIPLIER 193

5.10 TEST SETUP TO EVALUATE PERFORMANCE OF 2-D NETWORK ARCHITECTURE............. 195

CHAPTER 6 – CONCLUSION .. 200

6.1 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK ... 200

LIST OF PUBLICATIONS .. 204

NATIONAL CONFERENCES: .. 204

INTERNATIONAL CONFERENCES: ... 204

JOURNAL PUBLICATION: .. 204

REFERENCES .. 206

APPENDIX-A BACKPROPAGATION ALGORITHM ... 220

A.1 INTRODUCTION ... 220

A.2 SOFTWARE REFERENCE MODEL FOR NETWORK TRAINING: ... 223

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression x

APPENDIX-B .. 227

B.1 DIGITAL IMPLEMENTATION OF NEURAL NETWORK ARCHITECTURE 227

APPENDIX – C ENTROPY ... 240

APPENDIX – D SPICE CODE MODEL FOR ANALOG NEURAL NETWORK 241

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xi

List of Figures
Figure 1.1 Image sensor ... 25

Figure 1.2 CCD based image sensor with analog readout ... 26

Figure 1.3 CMOS sensor based imaging unit ... 26

Figure 1.4 2-D architecture for image capture and process ... 28

Figure 1.5 Block diagram of image compression unit (David and Michael 2001) 29

Figure 1.6 JPEG based image compression and decompression unit for launch vehicle

applications .. 29

Figure 1.7 Input image (pictorial representation) ... 30

Figure 1.8 Input image (pixel representation) represented using N1 bpp 31

Figure 1.9 Reconstructed image after error being introduced at 1st and 100th bit positions

[Max. Error = 167, MSE = 219.13, PSNR = 24.72] .. 31

Figure 1.10 Reconstructed image after error being introduced at 10th and 30th bit

positions [Max. Error = 232, MSE = 12404, PSNR = 7.19] 32

Figure 1.11 Reconstructed image after error being introduced at 10th and 50th bit

positions [Max. Error = 187, MSE = 230, PSNR = 24.5] 32

Figure 1.12 Reconstructed image after error being introduced at 1st and 2000th bit

positions [Max. Error = 74, MSE = 120.78, PSNR = 27.31] 32

Figure 1.13 Reconstructed image after error being introduced at 1st and 10000th bit

positions [Max. Error = 61, MSE = 116, PSNR = 27.48] 33

Figure 1.14 Neural networks for image compression ... 36

Figure 2.1 Neural network architecture for image compression 42

Figure 2.2 Trained neural network to minimize channel noise 43

Figure 2.3 Compression and decompression block diagram using neural network 44

Figure 2.4 Image segmentation to sub-blocks and reordering ... 46

Figure 2.5 Back propagation based neural network architecture 49

Figure 2.6 SNR vs. CR for NN and JPEG codec (Ivan Vilovic 2006:26) 52

Figure 2.7 Two layer neuron with 2 hidden layers and 1 output layer 55

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xii

Figure 2.8 Different types of neural network architectures (Bose and Liang 2006) 57

Figure 2.9 Single neuron (Bose and Liang 2006) ... 58

Figure 2.10 Single layer of neuron (Bose and Liang 2006) .. 59

Figure 2.11 Multiple layers neural network (Bose and Liang 2006) 59

Figure 2.12 Neuron interconnections using transconductance devices (Bernabe 1992) ... 61

Figure 2.13 Building blocks of analog neural network (Bernabe and Barranco 1992) 62

Figure 2.14 Neuron in the output layer (Hussein 1997) .. 63

Figure 2.15 Analog neuron circuit diagram (Hussein 1997) ... 64

Figure 2.16 Amplifier and adder circuit (Roy 1994) ... 65

Figure 2.17 Neuron circuit (Chun, Bing-xue and Lu 2002) .. 66

Figure 2.18 Analog accumulator (Chun, Bing-xue and Lu 2002) 66

Figure 4.1 2-D Architecture for image compression and decompression 78

Figure 4.2 2-Dimensional multilayer neural network ... 79

Figure 4.3 2-D neural network architecture .. 85

Figure 4.4 Single neuron structure ... 87

Figure 4.5 Image data sets selected for training the neural network 88

Figure 4.6 Image reordering from 2-D to 1-D .. 90

Figure 4.7 Modified reordering scheme to improve correlation between pixels 90

Figure 4.8 Two-dimensional neural network architecture (Compressor unit) 92

Figure 4.9 level block diagram of neural network architecture for software model 94

Figure 4.10 Network functions Tansig, Pure linear and Logsig 95

Figure 4.11 Software reference model flow chart ... 99

Figure 4.12 Linear neural network for compression and decompression 102

Figure 4.13 Bpp vs. quality metrics for linear network for selected images 104

Figure 4.14 Neural network for compression and decompression 105

Figure 4.15 Bpp vs. Quality metrics for hybrid network for selected images 107

Figure 4.16 Decompressed output using linear network ... 111

Figure 4.17 Decompressed output using nonlinear network (a) baboon (b) Peppers 112

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xiii

Figure 4.18 Decompressed output using hybrid network (a) baboon (b) peppers 113

Figure 4.19 Comparison of quality metrics for all three techniques for baboon 117

Figure 4.20 Comparison of quality metrics for all three networks for Image1 118

Figure 4.21 Comparison of quality metrics for all three networks for peppers 119

Figure 4.22 Computation time vs. bpp (a) baboon (b) testim (c) image1 122

Figure 4.23 Results of 2-D multilayered neural network architecture 123

Figure 4.24 Input block size vs. performance parameters for trees 125

Figure 4.25 Input block size vs. performance parameters for pears 125

Figure 4.26 Input block size vs. performance parameters for peppers 125

Figure 4.27 Performance metrics for multiple hidden layers .. 127

Figure 4.28 Performance metrics for multiple hidden layers .. 127

Figure 4.29 Error analysis for Baboon image with 0.5 bpp, and error at 60th bit position

 .. 132

Figure 4.30 Error analysis for Testim image with 0.5 bpp, and error at 60th bit position

 .. 133

Figure 4.31 Error analysis for Testim image with 0.5 bpp, and error at 60th bit position

 .. 134

Figure 4.32 Error analysis for Test image with 0.5 bpp, and error at 60th bit position .. 134

Figure 4.33 Compressed output ... 136

Figure 4.34 Reconstructed output at 1bpp using linear network 137

Figure 4.35 Reconstructed output at 0.5 bpp using linear network 138

Figure 4.36 Reconstructed output at 1 bpp using hybrid network 138

Figure 4.37 Reconstructed output at 0.5 bpp using hybrid network 139

Figure 4.38 Linear correlations between adjacent image pixels 146

Figure 4.39 Adaptive TDMNN architecture ... 148

Figure 4.40 Flow chart for adaptive TDMNN architecture ... 150

Figure 4.41 Entropy distributions of different images .. 151

Figure 5.1 2-D multilayered neural network architecture ... 156

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xiv

Figure 5.2 Block diagram for 2:3:1 neuron .. 157

Figure 5.3 Gilbert cell multiplier ... 158

Figure 5.4 Gilbert cell multiplier results .. 161

Figure 5.5 DC characteristics of Gilbert cell multiplier .. 161

Figure 5.6 Simple differential amplifier ... 163

Figure 5.7 Graph showing y = tanh(x) ... 165

Figure 5.8 Circuit output for neuron activation function block (tan) 165

Figure 5.9 Implementation of the neural architecture using analog blocks 166

Figure 5.10 Block diagram for weight update scheme for the output neuron 167

Figure 5.11 Block diagram for weight update scheme for hidden layer neuron 168

Figure 5.12 AND operation learned by 2:3:1 NN architecture 168

Figure 5.13 Image compression and decompression simulation 169

Figure 5.14 Limitation of 2:3:1 neuron for XOR operation .. 170

Figure 5.15 Weight update and initialization scheme ... 171

Figure 5.16 Hybrid neuron model for image compression .. 173

Figure 5.17 2-D architecture of neural network (Hidden Layer) 175

Figure 5.18 Block diagram of single neuron with input and hidden layer 176

Figure 5.19 Mathematical operation performed by the neural network 176

Figure 5.20 DAC ports .. 177

Figure 5.21 Input-output transfer curve for ideal 2-bit DAC (Tiilikainen 2001) 178

Figure 5.22 Binary weighted current string DAC ... 179

Figure 5.23 Weighted current steering circuit .. 182

Figure 5.24 Weighted current steering circuit schematic from Virtuoso 183

Figure 5.25 R- βR ladder network .. 184

Figure 5.26 Layouts for MDAC from Virtuoso .. 187

Figure 5.27 GDSII Extracted view of proposed MDAC architecture 188

Figure 5.28 2D-multilayered architecture (hidden layer) .. 191

Figure 5.29 2D-multilayered architecture (output layer) ... 192

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xv

Figure 5.30 Neuron Cell .. 193

Figure 5.31 Single neuron using hybrid cell multiplier (hidden layer) 194

Figure 5.32 Hidden layer test setup .. 195

Figure 5.33 Simulated results of single neuron cell .. 197

Figure 5.34 Comparison of simulated results with software reference results 198

Figure A.1 Multilayer neural network architecture ... 220

Figure B.1 NN architecture for image compression ... 227

Figure B.2 Single neuron architecture of hidden layer .. 229

Figure B.3 Output Layer neural network architecture (2 neurons) 230

Figure B.4 Images for training and testing neural network architecture 232

Figure B.5 Matlab and ModelSim results of decompressed image 233

Figure B.6 Results of image reconstruction using neural network architecture 236

Figure B.7 Hybrid architecture for image compression and decompression 237

Figure B.8 Modified reordering scheme of sub-bands for NN training 238

Figure B.9 Simulation results of hybrid architecture .. 239

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xvi

List of Tables
Table 1.1 Data rate of communication channels ... 22

Table 4.1 TDMNN design parameters ... 81

Table 4.2 Neural network classification based on transfer function 95

Table 4.3 Compression ratio vs. Quality metrics for linear network 102

Table 4.4 Compression ratio vs. Quality metrics for hybrid network 106

Table 4.5 Comparison of Hybrid and Linear Network .. 109

Table 4.6 Quality metric for all three networks .. 110

Table 4.7 Comparison of quality metrics for linear, hybrid and DWT-SPIHT techniques

 .. 114

Table 4.8 Computation time with variation in bpp ... 120

Table 4.9 Input block size vs. Performance parameters for tree image 124

Table 4.10 Performance parameters for 16:8:4:8:16 network 126

Table 4.11 Performance parameters for 16:8:4:2:8:16 network 126

Table 4.12 Results of noise analysis (Salt and Pepper) ... 129

Table 4.13 Results of noise analysis (Poisson) ... 130

Table 4.14 Results of noise analysis (Gaussian) ... 131

Table 4.15 Error analysis for DWT-SPIHT technique .. 133

Table 4.16 Error analysis for linear network .. 139

Table 4.17 Error analysis for hybrid network ... 140

Table 4.18 Adaptive TDMNN selection guide ... 152

Table 4.19 Comparison of adaptive TDMNN with TDMNN .. 152

Table 4.20 Comparison of adaptive TDMNN with TDMNN .. 153

Table 4.21 Adaptive TDMNN architecture comparison ... 153

Table 5.1 Binary equivalents of weight matrix ... 172

Table 5.2 Theoretical, practical outputs with the error of the reference architecture 180

Table 5.3 MDAC Transistors widths Tabulation for Proposed Architecture 185

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xvii

Table 5.4 Comparisons of theoretical, simulation outputs for proposed architecture 186

Table 5.5 Comparisons of various multiplier cells designed ... 189

Table 5.6 Simulation results of single neuron cell .. 196

Table 5.7 Image size and performance parameters ... 198

Table 5.8 Compression ratio and MSE ... 199

Table B.1 Complexity of neural network architecture .. 233

Table B.2 Comparison of multiplier architectures .. 234

Table B.3 Synthesis results of 64-4-64 neural network architecture 235

Table B.4 Single neuron comparison ... 235

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xviii

dsI

Nomenclature

C Capacitance, F
Ibias Bias current, A

 Drain current MOSFET (Ampere), A

sI Static Current (Ampere), A

L Inductance, H
Lchannel Channel length, m
P Power gain in dB, output power, dBm
Q Quality Factor
R Resistance, Ω
Vbias Bias voltage, V
Vgs Gate-to-source voltage, V
Vt Threshold voltage, V
W Channel width, m
X Reactance, Ω
Z Impedance, Ω
α Closed Loop Gain
ω Angular frequency, rad/s
φn Phase noise, dBc/Hz
f Frequency, Hz
gm Transconductance, Ω-1
rds Drain-to-source resistance, Ω
µA microampere
µs micro (10-6) sec
ns nano (10-9) sec
mm millimeter
MHz Mega Hertz (Frequency)
mW milli (10-3) Watt
W Watts

ii vp , Input to NN (Volt)

it Target input (Volt)

gv Gate voltage with respect to bulk (Volt), V

sv Source voltage with respect to bulk (Volt), V

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xix

Abbreviations

1-D One-dimensional
2-D Two-Dimensional
ADC Analog to Digital Converter
AI Artificial Intelligence
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
BP Backpropagation
BPNN Backpropagation Neural Network
CCD Charge Coupled Device
CMOS Complementary MOS
CR Compression Ratio
DAC Digital to Analog Converter
DWT Discrete Wavelet Transform
DRC Design Rule Check
EDA Electronic Design Automation
EP Error Propagation
FFN Feed Forward Network
FPGA Field Programmable Gate Array
GB Giga Byte

 GDSII Graphical Data Source Interchange
 IDWT Inverse Discrete Wavelet Transform

JPEG Joint Pictures Experts Group
LAN Local Area Network
LVQ Learning Vector Quantization
LVS Layout versus Schematic
MATLAB Matrix Lab

 MaxError Maximum Error
Mbps Mega bits per second
ML Multilayer
MLP Multilayer Perceptron
MPEG Motion Pictures Experts Group
MSE Mean Square Error
MOS Metal Oxide Semiconductor

 MOSFET MOS Field Effect Transistor
MVBP Modified Vogl Back Propagation
NA Neural Architecture

 NN Neural Network
Op Output of NN
PCA Principal Component Analysis

Coventry University – Doctoral Programme (PhD)

 Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression xx

PSNR Peak Signal to Noise Ratio
RRANN Reconfigurable Neural Network

 SNR Signal to Noise Ratio
SPIHT Set Partitioned Integer Hierarchical Tree
SOM Self Organizing Map

 T Target for Learning
TDMNN Two-Dimensional Multilayer Neural Network

 TSMC Taiwan Semiconductor Manufacturing Company
 TV Television

VBP Vogl Back Propagation
VLSI Very Large Scale Integration
VSSC Vikram Sarabhai Space Centre
W/L Width / Length

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

21

Chapter 1 - Introduction

Today’s technological development has intruded into human lifestyle to such an extent

that we feel uncomfortable without the use of electronic gadgets, information systems,

household electronic equipments and display systems. We have started adopting and have

got used to the latest electronic gadgets without which we feel isolated from rest of the

world. The main reason to this is that, new products developed are sophisticated and

addresses the needs of common man and these products are user-friendly and reliable.

The electronic equipment available interacts with us and assists us in our day to day

activities. Most of the commercially available electronics equipments have graphical

display interfaces. Data in the form of images, motion pictures, icons and text displays on

graphical displays assist humans and hence language or speech does not pose a barrier for

the use of these gadgets worldwide. Visual representation tends to be perceived as being

more efficient than the spoken or written word. As the demand for user-friendly

equipment keeps increasing, image processing finds utmost importance. New

applications based on image processing are being invented. Image processing of

biomedical signal assist doctors and technicians to diagnose and treat patients, similarly

processing of satellite images assist scientists to monitor and predict climate changes. In a

time critical application such as launching of satellites, image processing assists in

monitoring the launch of satellite using the launch vehicle from the base station.

Controlling of launch vehicle is monitored based on image signal received at the base

station. One of the major challenges working with image data is the size of image, or the

number of bits required to represent visual information. A typical color image of size 512

x 512 consists of 6.5 Mega bits. Real time processing of image data, storage and

transmission of image signals always pose a challenge for designers. Image enhancement,

image restoration, image segmentation and image compression are the major image

processing operations. In this work, compression of images based on neural network

architectures for launch vehicle applications are addressed.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

22

1.1 Preamble

Images that we see with our visual system are captured using image sensors in digital

form and stored in memory banks. As the storage space for these digital samples

consumes large space, cost increases. For example, a natural image captured from a

sensor when digitized is converted to a 2-D matrix of size 256 x 256 pixels, each pixel

representing intensity level of the natural image. Image sensors capture pixel intensities.

Each pixel can be represented by 1 bit, 8 bit or 24 bit for black and white, gray scale and

color image respectively. A color image of size 256 x 256 represented using 24 bit

requires a storage space of 1.5 mega bits (256*256*24 = 1.5 Mb). A motion picture

captured at 30 frames per second requires a storage space of 45 Mbps (1.5 Mb*30 = 45

Mbps). The storage space for a three hour movie requires 486 Giga bits (4.5

Mb*60*60*3 = 486 Giga bits). Table 1.1 present’s bandwidth, transmission delay of

three major communication links and transmission delay of uncompressed video signal.

Table 1.1 Data rate of communication channels
Communication
Channel

Data Rate Round Trip
Time (RTT) or
Transmission
Delay

Transmission delay
for uncompressed
video = Data Size
(486 Gb)/Data Rate

DSL/ADSL
(William Stallings 2010)

256 Kbps
to 40 Mbps

50 ms 202 minutes

Mobile broad band -
HSDPA (Martin Sauter
2006)

1.2 Mbps
to 84 Mbps

100 ms 96 minutes

High-speed terrestrial
network (Kai Chen et al.
2003)

1 Gbps 1 ms 8 minutes

Compression of raw video data thus makes it possible for transmission of data

through existing communication links with minimum delay. Compressed images are

transmitted through communication channels and are decompressed on the receiver side,

without affecting the quality of picture. However, an image or video data being

transmitted in real time have a minimum amount of delay of few milli seconds (Stuart

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

23

Cheshire 1996). This delay is mainly due to three factors. Firstly, huge data need to be

compressed to the available channel bandwidth. This compression is accomplished using

sophisticated software’s and hardware’s executing complex algorithms on high speed

architectures, and this constitutes the maximum delay (Schaphorst and Richard 1999).

Secondly, the compressed data is further encoded with security bits and parity bits for

security and to avoid noise as they travel through the channel. In order to ensure that the

data reaches the destination, they are also padded with specific bits to guide the encoded

information through the channel and reach the destination. This processing of the

compressed data using software and hardware devices introduces delay (Stuart Cheshire

1996). Thirdly, the transmitted data traveling through the channel also introduces delay

and is called as the channel delay (Stuart Cheshire 1996). Delay in a communication

system of few micro seconds to few milliseconds (Umashankar 2003) is negligible and

usually not observed and is accepted. On the other hand, in crucial applications such as

satellite launching where necessary control actions needs to taken based on visual

information, a small amount of delay causes a major impact on the system and decision

making. For example, if the trajectory path of the launch vehicle carrying a satellite is

being monitored using visual information being captured and down linked in real time by

onboard video processing systems, guiding the launch vehicle and launching of the

satellite to appropriate destination requires critical and time bound control system. Based

on the received visual information at the base station if suitable control actions have to

take place, the delay in decompressing the compressed data has its impact, as the entire

application is time critical. In this case the delay in signal reception has a major impact.

Channel noise affecting the decompressed image is another major challenge. In a

personal interview conducted by the author, Ms. Sarojini, Head, Digital Signal Design,

Avionics Group, VSSC, Trivandrum, mentioned about the draw backs of the system that

they had which was used to monitor the launch vehicle. In the discussion she emphasized

on the need for a system that can work at 40 frames per second and also is immune to

channel noise (Sarojini 2004). Information in an image when compressed, any error due

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

24

to noise in the channel affecting the compressed bits significantly affects the

decompressed images. This research work carried out is an approach to firstly, minimize

the system delay in compression and decompression of image applicable to time critical

applications with novel architectures being proposed, designed, implemented and

validated for image compression. Secondly, with the compressed data traveling through

noisy channel, noise interference on the compressed data impacts the decompressed

output, hence it is required to improve image quality at the receiver even in the presence

of channel noise or error.

1.2 Need for Multidimensional Neural Network Architecture

Many practical solutions have been designed by eminent scientists and researchers

adopting conventional techniques for compression and decompression of still and motion

pictures. These systems are interoperable worldwide as they support uniform standards

such as JPEG and MPEG (Chrysafis and Ortega 1998, Frescura, F., Giorni, M., Feci, C.

and Cacopardi, S. 2003, Lian et al. 2003 and Mitchell and Pennebaker 1993, Signoroni,

Lazzaroni and Leonardi 2003). JPEG and MPEG standards recommend guidelines for

compressing and encoding the image signals, frame formats for transmission of

compressed data and hardware requirements. These standards assume that the input

image is digitized raw data represented in bmp, png or tiff formats (William and Joan

2004, JPEG 2000 image coding system 2000).

Natural images are captured using either Charged Coupled Devices (CCD)

sensors (Tompsett, M. F. Amelio, G. F. Bertram, W. J., Jr. Buckley, R. R. McNamara, W.

J. Mikkelsen, J. C. and Jr. Sealer, D.A. 1971) or Complementary Metal Oxide

Semiconductor (CMOS) sensors (D. Renshaw, P. B. Denyer, G. Wang, and M. Lu 1990).

Light intensity that is reflected from the object(s) is focused through the lens and strikes

array of image sensors as shown in Fig. 1.1. Photo detectors that form the sensor array

capture the light intensities and convert into voltage levels. Both type of sensors capture

light intensities and convert into electrical signals. Interfacing circuit reads the electrical

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

25

signals from sensor arrays and processes the captured light intensities. Interfacing circuits

for CCDs and CMOS sensor have different configuration (Dave Litwiller 2001). In a

CCD sensor, light intensity reflected from the object(s) is focused through the lens that

energizes the CCD that is arranged in 2-D array (Spatial). CCD sensors capture the light

intensity of the image being focused. The image data captured is read out of the CCD

array in the form of voltage or current equivalents.

Figure 1.1 Image sensor

Fig. 1.2 demonstrates the read out operation of these intensities stored on the

CCD devices (Karim Nice, Tracy V. Wilson and Gerald Gurevich 2004). Energized CCD

array elements that accumulate charge corresponding to light intensity is read out serially

and amplified by a gain factor (e.g. 10 µA/e). This way of serially reading out the data

from the array reduces the complexity of drawing multiple wires from the array elements

and also ensures the serialization of the data samples. The analog intensities read out

from the matrix are further digitized to equivalent binary values in the Analog to Digital

Converter (ADC) and stored in memory.

In a CMOS imaging sensor, arrays of active pixel sensors (Dickinson Alexander

G., Eid El-Sayedi and Inglis Davida 1997) are placed at every pixel location that consists

of a photo diode and active amplifier. Photo sensor captures light intensity and converts

to voltage levels, which is converted to digital samples using ADC as shown in Fig. 1.3.

Image Sensor

Lens

Image

CCD or CMOS

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

26

CMOS sensors have advantages compared to CCD sensors in terms of speed,

responsivity, windowing, anti-blooming and reliability (Dave Litwiller 2001).

Figure 1.2 CCD based image sensor with analog readout

Figure 1.3 CMOS sensor based imaging unit

ADC

Light intensity to
electron conversion

Electron to voltage
conversion (photo diode)

Frame grabber
and storage

device

ADC

Frame grabber
and storage

device

CCD devices
Light intensity to electron

conversion

Electron to voltage conversion

Input image

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

27

CCDs are superior to CMOS in terms of image quality and flexibility (Dave Litwiller

2001). Both technologies for imaging offer unique advantage, one common limitation is

that, the voltage samples are read out serially to avoid number of wires from each sensor

and additional electronic circuitry is required to convert analog to digital samples. Digital

data read out of imaging unit which is in uncompressed form is stored in a digital

memory.

Digital samples are in uncompressed form and occupy more space. Compression

of these samples is performed using the classical techniques as per the guidelines

recommended by JPEG or MPEG. Two observations are made at this point, which leads

to the scope of this research work. First, the time involved in reading out the 2-D array

elements into 1-D elements can be avoided if a 2-D architecture that can accept the 2-D

samples and can process the 2-D signals and perform compression. Second, instead of

processing the 1-D data in digital domain, what if we process the 2-D analog data directly

read from CCD devices or CMOS sensors using 2-D architectures. In a CMOS sensor

array, the output of photo diodes which is current (I) can be processed using the 2-D

architecture proposed in this work. In case of CCD sensor array, it is required to add

additional circuits at every pixel location to convert charge to voltage samples, these

voltage samples can be directly interfaced to the 2-D architecture. These two

observations are the motivating factors to carry out this work.

The 2-D architecture shown in Fig. 1.4 consists of image sensor array capturing

brightness or intensity levels of image. These intensities are amplified and converted to

equivalent current or voltage values. These N x N arrays of electrical samples are directly

fed into a two dimensional architecture that processes the analog values and reduce the

array dimension to M x M array elements. Since M < N, the number of pixel elements

representing the image is compressed from N2 to M2 elements, which can be further

encoded using 2-D techniques for storage and transmission. The advantage of 2-D

architecture is that as the analog samples or pixel intensities are captured in the analog

domain and processed using 2-D architecture, this avoids use of Analog to Digital

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

28

Converter (ADC) at the input side hence reduction in hardware complexity and also

further reduces the delay.

Figure 1.4 2-D architecture for image capture and process

1.3 Need for Neural Networks for Image Compression

Classical techniques for image compression based on the recommendations from JPEG

standards have been implemented on hardware and software, and these techniques have

been used in electronic products and applications (Andra, Chakrabati and Acharya 2003,

Chiang, J. S., Lin, Y. S and Hsieh, C. Y. 2002, Fang et al. 2003, Iain 2002 and Ong et al.

2002). Fig. 1.5 shows the basic block diagram of image compression and decompression

unit.

The major blocks for image compression are transform coding, quantization and

entropy coding (David and Michael 2001). Input to the system is image data with N1 bits

per pixel, encoded data is the compressed out with N2 bits per pixel. As N2 is less than

N1, only N2 bits are required to represent N1 bits achieving compression. The compressed

data N2 that consists of the entire information of N1 packed using N2 bits is transmitted

through the channel. On the receiver side, N2 bits received is decompressed to N1 bits.

However, during the transmission, if the compressed data gets corrupted due to noise in

Sensor Array-
Image

2-D
Architecture
(Compressor) Compressed Image

2-D

Architecture
(Decompressor)

Decompressed
Image

N

N

M

M

N

N

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

29

Figure 1.5 Block diagram of image compression unit (David and Michael 2001)

Fig. 1.6 shows the block diagram of JPEG 2000 standard based image compression and

decompression unit, the transmitter is on the launch vehicle and the receiver is at the base

station. It is required to capture the image sequences on board and compress the captured

data and transmit to the base station, at the base station, the image is decompressed and

used to track launch vehicle movement and satellite launch activity from the base station.

Figure 1.6 JPEG based image compression and decompression unit for launch

vehicle applications

Channel

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

30

Launch Vehicle (LV) travels at a speed of 2 – 11 km/sec, launching the satellite into the

orbit takes 10 minutes to 30 minutes (Chang IS 2007), thus it is required to monitor the

satellite launch and onboard monitoring of launch vehicle trajectory. Camera mounted on

the launch vehicle captures images, compresses and transmits to the base station. Based

on the received visual information it is requried to take corrective feedback from the base

station. Due to noise in the channel if compressed data is corrupted, reconstructed image

at the base station is distorted. Fig. 1.10 to Fig. 1.14 demonstrates the results for image

compression using Discrete Wavelet Transform (DWT) and Set Partitioned Integer

Hierarchical Tree (SPIHT) encoding techniques. This work was carried out as part of

research work sponsored by Vikram Sarabhai Space Centre (VSSC), Trivandrum, India.

The aim of this work was to identify the impact of bit errors due to channel noise on the

reconstruction of compressed image. Noise in the channel causes a bit ‘1’ to become ‘0’

or vice versa. If the compressed bit information is corrupted due to channel noise,

decompressing the image from the corrupted packets of received information affects the

quality of the image.

Figure 1.7 Input image (pictorial representation)
Image shown in Fig. 1.7 is of size 512 x 512 is compressed using DWT and

SPIHT technique and is used as a test case to illustrate the impact of channel noise on

reconstructed image. Fig. 1.8 shows the pixel representation of the input image shown in

Fig. 1.7 (only a part of the 512 x 512 image is presented in Fig. 1.8). Every pixel is

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

31

represented using 8 bits or expressed as 8 bits per pixel (bpp) or in general N1 bits per

pixel.

Figure 1.8 Input image (pixel representation) represented using N1 bpp
Image of size 512 x 512 represented using 8 bpp (N1 bpp) consists of 512*512*8

(M1) bits is represented using 512*512*0.1 (M2) bits after compression. Compression of

0.1 bpp (N2 bits per pixel) implies that every 10 pixels of the input image are represented

using 1 bpp. The compressed image is binary stream of data

(10101010101010101101011010101……) that represents 512 x 512 images in

compressed form with N2 bpp. The compressed M2 bits that contain the information of

M1 bits, when transmitted may get corrupted in the channel due to channel noise. Fig. 1.9

to Fig. 1.13 presents the reconstructed images with channel noise affecting the

compressed data. In this work, channel noise is introduced by complementing the binary

values at randomly chosen bit positions in the compressed binary stream (hence forth

called as bit errors).

Figure 1.9 Reconstructed image after error being introduced at 1st and 100th bit
positions [Max. Error = 167, MSE = 219.13, PSNR = 24.72]

aa0682
Typewritten Text

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

32

Figure 1.10 Reconstructed image after error being introduced at 10th and 30th bit

positions [Max. Error = 232, MSE = 12404, PSNR = 7.19]

Figure 1.11 Reconstructed image after error being introduced at 10th and 50th bit

positions [Max. Error = 187, MSE = 230, PSNR = 24.5]

Figure 1.12 Reconstructed image after error being introduced at 1st and 2000th bit
positions [Max. Error = 74, MSE = 120.78, PSNR = 27.31]

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

33

Figure 1.13 Reconstructed image after error being introduced at 1st and 10000th bit

positions [Max. Error = 61, MSE = 116, PSNR = 27.48]

Observations made based on the simulation results illustrate that MSE and PSNR

of the reconstructed image is affected due to bit errors. Bit errors in the initial part of the

compressed data (within 30 bits in this example) can have significant effect on the

reconstructed image. Fig. 1.10 showing the error in the 10th and 30th bit position having

catastrophic effect on the reconstructed image. This is due to the fact that the DWT

decomposes image into high frequency and low frequency components. As low

frequency components of the decomposed image having significant information

compared to high frequency components, encoding the decomposed image using SPIHT,

low frequency components are arranged first in the encoded bit stream (Fang et al. 2003).

Bit errors at the first few bits affect the quality of the image, because more information is

stored in low frequency (Cyril 2005). Mean Square Error (MSE), Maximum Error and

Peak Signal to Noise Ratio (PSNR) is calculated to estimate the quality of image. Poor

quality image has higher MSE and lower PSNR.

The solution to this problem is to request for retransmission of the compressed

image. MPEG and JPEG standards recommend use of channel encoding and

retransmission schemes based on image quality at the receiver (Turner and Peterson

1992).

aa0682
Typewritten Text

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

34

The technique proposed in this research does not require the need for error coding and

retransmission schemes. This is achieved by use of neural network architectures for

image compression and decompression. The objectives of this work are:

1. To prove the effectiveness of neural network architecture in reconstructing

the image from the compressed data with noise in the transmission

channel.

2. To propose, design, model and implement neural network architectures for

image compression and decompression in analog VLSI.

1.4 Motivation to this Work

Vikram Sarabhai Space Centre (VSSC), Trivandrum an entity of Indian Space Research

Organization (ISRO), under their RESPOND Scheme awarded the research project

entitled “High speed DWT architectures for image compression for launch vehicle

applications”. The objective was to realize image compression algorithms on FPGA

working at speed greater than 25 frames per second. This research work finds application

in launch vehicles. As the launch vehicle carrying the satellite has to guide the satellite to

the corresponding destination along the predefined path traveling at a speed of 11000

meters per second, monitoring this movement is very critical. Once the destination is

reached i.e. the required orbit, the launch vehicle should eject satellite and place it into

the corresponding orbit. High speed cameras are mounted to capture images to monitor

and guide the launch vehicle to follow a trajectory path. This allows real time monitoring.

The images are down linked to the base station from the launch vehicle. Since this is in

real time and requires feedback from the base station for guidance of launch vehicle and

successful launch of the satellite, high speed architectures are required to compress the

images captured and down linked to the base station. The system is time critical as

suitable action should be invoked observing the images being received at the base station.

During transmission of compressed data channel error on the compressed data affects the

quality of the decompressed image. One of the objectives was to find out the impact of

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

35

bit error on the decompressed data. During the experimentation, synthetic bit errors

(change of ‘1’ to ‘0’ and ‘0’ to ‘1’) were randomly introduced at multiple positions in the

compressed stream of data. Corrupted bit stream was decompressed to reproduce the

images. It was observed that the bit errors on the first 30 bits of the compressed data had

significant impact and reconstruction was impossible with the required information.

Schemes recommended by JPEG and MPEG standards adopt retransmission of the

frames. Also channel coding schemes are adopted to reduce the impact of error on signal

during transmission. For launch vehicle applications as they are time critical

retransmission of images may not be a possible solution. Hence, this motivated to

investigate use of neural networks for image compression, as neural network techniques

have been adopted for signal processing applications (Greenhil and Davies 1994, Guan,

Anderson and Sutton 1997, Hanek and Ansari 1996, Lee and Degyvez 1996, Matsumoto,

Kobayashi and Togawa 1992, Garris, Wilson and Blue 1998, and Paik and Katsaggelos

1993). Fig. 1.15 depicts simple neural network architecture with input and output

neurons. As the network is trained with known set of input and outputs, neural network

architectures are immune to noisy environment (Lampinen, J., Laaksonen, J. and Oja, E.

1997). Neural network architectures for image processing are flexible, reconfigurable and

can work in noisy environment (Mitra and Yang 1999).

Multiple neurons in multiple layers include weight and bias elements. Weight and

bias elements of the neuron decide the functionality of the network. Input image fed into

the network, is processed by weight and bias elements of the network. Image processing

functions like compression, enhancement, edge detection and segmentation can be

executed by the neural network based on the type of weight and bias elements (Koh, Suk

and Bhandarkar 1995, Kotropoulos, Magnisalis and Pitas 1994, Le, Thoma and Wechsler

1995, Lin, Tsao and Chen 1992, Manjunath, Simchony and Chellappa 1990, Marshall

1990, Ngan and Hu 1999, Opara and Worgotter 1996 and Ozkan, Dawant and Maciunas

1993). Functionality of neural network architecture depends on number of neurons and

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

36

neuron function, interconnection of neurons, and number of layers, weights and bias

values.

Figure 1.14 Neural networks for image compression

1.5 Need for Analog VLSI

As the input captured from image sensors are analog samples, analog neural network

architecture designed using multipliers, adders and network functions are required to

process analog samples. The advantage of processing signals in analog domain is that the

number of transistors required realizing neural network architecture is much less than

digital implementation (Andreou 1992).

1.6 Thesis Contributions

Image sensors capture light intensities of objects with frame rate varying from 30 frames

per second to 1000 frames per second, with the time interval between frames are 33 ms

and 1 ms respectively. Every frame of image which is in analog form is digitized and

compressed using high speed architectures that perform complex digital signal processing

algorithms. Hardware implementation of such algorithms consumes power and area, thus

increasing the cost of the hardware.

 1

2

16

1

2

3

64

x1

x2

x3

x64

Received Data with
Noise

Input Data Compressed Data Output Data

Quantized &
Transmitted

Received &
Decoded

z16

z2

z1

z2

z16

z1

Channel
Noise

y1

y2

y3

y64

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

37

Image conversion from analog to digital, (2-D analog discrete interval to 1-D digital

space) introduces delay due to varied reasons. Conventional techniques use powerful

transform and efficient encoding techniques for compression and decompression. This

research work carried out addresses the issues such as image reordering and image

compression together with the proposed architecture eliminating the bottleneck in image

acquisition and compression. New techniques for compression and decompression based

on neural networks are proposed, realized and validated.

This thesis work investigates the design, modelling, analog VLSI implementation

and validation of multidimensional neural network architecture for image compression.

The architecture processes image samples stored as current equivalents in 2-D matrix

form for testing of the proposed design. Results obtained from this work are compared

with digital implementation and software reference models for validation. Techniques

and circuits proposed in this thesis are derived based on the references reported in the

literature. Validations of the circuits designed and use of them for image compression are

carried out based on the results obtained using software and firmware models.

This thesis work demonstrates the need for neural networks for image

compression in certain critical application areas like satellite launch applications. The

techniques discussed can also be extended to other applications by appropriately

choosing network architecture and network functions according to the functionality and

the network is trained to realize the functionality. This work uses parameters such as

compression ratios, MSE, PSNR and hardware complexities in terms of power, delay and

area as a measuring factor to estimate neural network performance. The thesis explores

the tradeoff between classical techniques and the neural network techniques for image

compression.

VLSI implementation of 2-D architecture for image compression using

multilayered neural networks is also discussed in this thesis. This research work proposes

two-dimensional multilayered neural network architecture for image compression, thus

avoiding rearrangement of 2D image samples to 1D. As the compressed data is in the 2-D

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

38

space, two dimensional coding techniques can be adopted to quantize and encode the

compressed image. Auto associative neural network uses backpropagation training

algorithm for image compression (Sicuranzi, Ramponi, and Marsi 1990, Anthony, D.,

Taylor, E., D. and Barham, J. (1989), Kohno, Arai, and Imai 1990, Ivan Vilvonic 2006,

Omer, M., Farhat, A., Momoh and Salami (2007), Hadi and Mansour 2009). Literature

review shows that most of the training algorithm is aimed at training either a single or

multilayered neuron. Training a multidimensional network for image compression has

not been reported. This thesis work proposes a simplified backpropagation algorithm

based training technique for the proposed Two-dimensional Multilayer Neural Network

(TDMNN) architecture. Another contribution in this thesis is the design of hybrid

architectures for implementation of TDMNN architecture for image compression. The

architecture is called as hybrid as it multiplies analog input with digital weights and

produces analog outputs. The digital weights (obtained during training) are stored in

memory, the hybrid architectures perform multiplication of analog inputs with digital

weights. Hybrid architecture is reconfigurable to realize different image processing

functionalities by changing the digital weights of the network.

Software reference model for the proposed TDMNN architecture is designed,

modeled and simulated using MATLAB. The reference model is trained using image data

sets. The weights and biases for the network after training are used to model the

compressor and the decompressor. The network is analyzed for its performance using

multiple data sets.

1.7 Assumptions and Terminologies

This research work has the following assumptions made:

 Image sensors are not interfaced to the proposed hardware for image compression,

instead input reference model equivalent to the natural image is created using

MATLAB for software simulations and Cadence Virtuoso for hardware

simulations. Test images provided by the standard software are used for

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

39

simulation purpose assuming that the properties of these images are identical to a

natural image captured from the camera.

 CMOS Technology files for hardware design and verification of the proposed

architecture are of industry standard, as they have been obtained from reliable

sources www.cadence.com.

 EDA tools for simulation and verification of the circuit behavior are as per the

industry standards and are considered as signoff tools. MOS transistors used for

realization of the proposed network have been characterized for its performances

and have assumed to meet the required functionality. Any other assumptions

made within this thesis have been indicated at appropriate places.

1.8 Hypothesis

Image compression using neural networks have been taken as research subject by many

of the scientists and engineers. Many new algorithms, architectures, implementation

techniques have been extensively reviewed for image compression (Jiang 1999).

Literature used as reference for this thesis report multilayered linear or nonlinear network

for image compression. Analog VLSI implementation of neuron for general signal

processing applications has been reported in the literature, and has been successfully

adopted for image segmentation and edge detection. The hypothesis is TDMNN

architecture proposed for image compression eliminates the need for digitization of

image and reordering of the image to 1-D hence increases the speed of image

compression and reduces hardware complexity. This hypothesis will be proved in this

thesis by designing the TDMNN architecture using analog building blocks, training the

network for different test images evaluating the performances of the network for image

compression and optimizing the hardware for area, power and speed performances.

The network performance is compared with DWT-SPIHT technique for image

compression. The comparison is only based on the images used for training the network.

http://www.cadence.com/�

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

40

Images that were not part of training sets are also used to analyze the network

performance.

1.9 Thesis Overview

The thesis is organized as follows. Chapter 2 presents an in-depth literature analysis of

neural network for image compression and analog VLSI implementation of neural

network architectures. Chapter 3 formally describes the problem statement,

methodologies and resources required for carrying out objectives of the proposed work.

Chapter 4 presents the software reference model development of TDMNN architecture.

Design and analysis of TDMNN model is discussed in detail. Performance of the network

based on MSE, PSNR, and Compression ratio is presented. Error analysis and noise

analysis is also discussed. Variations in network parameters such as, input size, number

of layers, transfer function and training iterations are discussed. Adaptive TDMNN

architecture is proposed and results of this architecture is compared with TDMNN and

DWT-SPIHT technique. Chapter 5 discusses the hardware implementation of the

TDMNN architecture. New architecture for realizing hybrid multiplier is designed and

analyzed. Building blocks of the design are integrated to design the neuron model.

Detailed discussion of the results obtained based on the experimental work carried out in

this research, is presented in this chapter. The thesis concludes in chapter 6 by presenting

limitations and directions for further extending this work for video signals.

Appendix – A discusses backpropagation algorithm, Appendix – B presents

FPGA implementation of neural network architecture, Appendix – C presents discussion

on Entropy, Appendix – D presents the SPICE codes for the designed analog neural

network architecture.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

41

Chapter 2 - Neural Networks for Image Compression:
Literature Review

Neural networks, image compression, analog VLSI are three unique and distinguishable

domains. Image processing is an application, neural network a technique and analog

VLSI an implementation domain. This research work is a combination of all the three

domains. Neural network architectures are developed for image compression and

decompression. The proposed architectures are implemented using analog VLSI circuits.

Thus the literature survey in this chapter has two sections. Exhaustive literature review is

carried out on neural network architectures for image compression. Secondly, survey on

neural network architectures for VLSI implementation is presented. Independent

literature analysis is carried out in all the above mentioned topics and a cohesive

approach is made to build hybrid architecture.

2.1 Image Compression Using Neural Networks

The study of image compression methods has been an active area of research since the

inception of digital image processing. Since images can be regarded as two-dimensional

signals with the independent variables being the coordinates of a two-dimensional space,

many digital compression techniques for one-dimensional signals can be extended to

images with relative ease. As a result, a number of approaches to the problem are well

established. Traditional techniques that have already been identified for data compression

include (Iain 2002):

a) Predictive Coding

b) Transform coding and

c) Vector Quantization

Traditional techniques for image compression, have been successfully

implemented, it is also found that some of the more recent techniques for data

compression using artificial neural networks have been reported but commercially are not

viable (Russo, Real 1992). Artificial Neural Networks (ANNs) have been applied to

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

42

z1

x1
x2

y1

y2

y63

x64
y64

Input [8 x 8] image

Hidden Layer
Output Layer [8 x 8] image

z2

z16

y1

y2

y64

y63

many problems, and have demonstrated their superiority over traditional methods when

dealing with noisy or incomplete data. One such application is for image compression.

Neural Networks seem to be well suited to this particular purpose, as they have the ability

to preprocess input patterns to produce simpler patterns with fewer components. This

compressed information (stored in a hidden layer) preserves the full information of a

given image. There have already been an exhaustive number of papers published

applying ANNs to image compression (Costa and Fiori 2001, Dony and Haykin 1995,

and Jiang, W.W., Kiang, S.Z., Hakim, N.Z. and Meadows, H.E. 1993).

Figure 2.1 Neural network architecture for image compression
The basic architecture for image compression using neural network is shown in

Fig. 2.1. The network has input layer, hidden layer and output layer. Inputs from the

image are fed into the network through the input layer. The input to the network is the

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

43

original image and the output obtained is the reconstructed image. The output obtained at

the hidden layer is the compressed output.

The network is used for image compression by breaking it in two parts as shown

in the Fig. 2.2. 64 inputs in the input layer are processed to 16 outputs by the hidden

layer. The transmitter encodes and transmits the output of the hidden layer (z1, z2

…….z16) values instead of (x1, x2 …… x64) values of the original image. The receiver

decodes the received 16 inputs and reproduces 64 outputs (y1, y2 ……… y64). Since the

network is implementing an identity map, the output at the receiver is an exact

reconstruction of the original image. The compressed data is quantized and coded into bit

stream.

Figure 2.2 Trained neural network to minimize channel noise
Fig. 2.3 shows compression and decompression block diagram using neural

network. The compressor block shown in Fig. 2.3(a) consists of 64 data samples that are

mapped to 16 data samples. Fig. 2.3(b) shows the decompression unit, which maps 16

input data samples to 64 data samples, thus reconstructing the input data. Appropriate

weight and bias elements are required to be determined for the compressor and

decompressor unit. Identifying appropriate weights and biases for a given input image is

carried out during training phase. Multiple images are used to train the network.

x1

x2

x3

x64

1

2

16

1

2

3

64

y1

y2

y3

y64

z16

z2

z1

z2

z16

z1

Noisy
channel

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

44

Figure 2.3 (a): Compression block diagram

Figure 2.3 (b): Decompression block diagram
Figure 2.3 Compression and decompression block diagram using neural network

The network needs to be trained to reproduce the desired targets, optimum

weights and bias elements for the compressor and the decompressor unit is determined

during the training phase. A detailed discussion on neural network training is presented in

Appendix - A.

As shown in Fig. 2.3, 64 data samples at the input of the compressor are mapped

to 16 data samples at the output, and at the receiver section 64 data samples are

reconstructed from 16 data samples available at the input of the decompression unit. For

the network to process, data inputs are provided in a column matrix. The image which is

two dimensional having N rows and N columns need to be rearranged into a column

matrix, as the neural network accepts only column inputs. The rearrangement of input

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

45

image is to divide the image matrix into multiple blocks of fixed size. Each sub-block is

reorganized into column matrix; all the sub-blocks that are rearranged into column matrix

are combined into one matrix and are set as input. The same matrix is also set as the

target (Becker and Plumbley 1996). Multiple images with varying properties are

considered for training, so that the network learns to reconstruct the required image once

it is trained.

Fig. 2.4 illustrates the rearrangement process which is required to set the input

and targets for the network. Training data sets are produced from the image by extracting

small (n x n) blocks of the image. Image of size [N x N] is first sub-divided into (n x n)

sub-blocks, each of the (n x n) sub-blocks are further rearranged into (m x 1) elements,

where m = n2. For example, an image of size [32 x 32] is sub-divided into (8 x 8) blocks

of sub-images. There are 16 sub images of size (8 x 8) in [32 x 32] image. Each of the

sub-blocks are rearranged to (64 x 1), hence for the [32 x 32] image, after rearrangement

the matrix size is [64 x 16] as shown in Fig. 2.4. If there are 10 images of size [32 x 32],

each of them are rearranged into [64 x 16]. All the 10 images are combined into a training

data matrix of size [64 x 160]. The network gets trained using the rearranged image

matrix. The network shown in Fig. 2.3 processes one column at a time from the

rearranged matrix. As illustrated in Fig. 2.3, (64 x 1) input data is multiplied with a

weight matrix of size [16 x 64] that compresses input into (16 x 1) matrices. (16 x 1) data

is added with a bias element and passed through network function which is either linear

or nonlinear. The compressed data (16 x 1) matrix is decompressed to (64 x 1) at the

receiver by a weight matrix of size [64 x 16] and further biased and passed through

network function. The decompressed output is rearranged into its original form. The error

between the original image and the decompressed image is computed. Until the error is

minimized the network is trained a detailed discussion on network training is discussed in

Appendix - A.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

46

Figure 2.4 Image segmentation to sub-blocks and reordering

2.2 Literature Review on Neural Networks for Image Compression

Oja (1982) proposed simple neural network architectures that can perform image

compression based on principal component analysis. Since then several algorithms and

architectures for neural network based image compression have been proposed. Oja

(1982) proposed a one-unit learning rule to find the first principal component direction

vector, i.e. the first eigenvector, such that:

 Z = W * X (2.1)

Where, Z denotes the output of the linear neuron, W denotes the weight element of the

neuron and X denotes the input. Oja proved that the weight vector W will asymptotically

converge to the first normalized Eigen vector.

Sanger T. D. (1989) extended the work of Oja (1982) to compute more than one

Eigen vector leading to principal components. In other words, Oja (1982) had used one

neuron to find one Eigen vector representing the principal component of the image matrix

X. Sanger extended the single neuron to a network of multiple single linear networks to

compute many Eigen vectors representing the principal components of the matrix X. The

basic principle of image compression using neural network is to identify the weight

matrix of the trained neural network architecture, where the rows of the weight matrix are

the principal components of the matrix X. For performance evaluation, Sanger (1989)

implemented the algorithm using (8 x 8) input blocks and an output of (8 x 1) vectors.

The network was trained using (512 x 512) image using non-overlapping blocks. Mean

square error (MSE) of 0.043 at 0.36 bits per pixel (bpp) was achieved on images that

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

47

were used for training. Retaining the weight matrix, image that was not part of the

training set were compressed and decompressed. MSE of 0.023 was achieved at 0.55 bpp.

This led to the generalization of neural network architectures for image compression.

Multiple images need to be used as training samples to ensure higher performance of the

network in terms of MSE. Sanger’s method uses only feed forward neural network

architecture. Cottrell and Munro (1988) have proposed direct neural network architecture

for image compression. They view the problem of image compression as a mapping

issue, where (8 x 8) (arranged as 64 x 1) input is mapped to (64 x 1) outputs at the output

layer, the compression is achieved by having 16 hidden layers. In such scheme all the

neurons are fully connected. In their work backpropagation training technique was

adopted to train the network to obtain the weight matrix representing the principal

components of the image. Each sub-block of the image is presented at the input and

output of the network simultaneously, and the weights of the hidden layers and output

layer are adjusted using backpropagation algorithm. Linear networks were used and were

shown to produce comparable results to nonlinear networks. Images tend to span the first

M principal components of the image, where M is the number of hidden layers. Sonehara

et al. (1989) propose a three layer Backpropagation Neural Network (BPNN). The

compression is achieved using three layer network the input layer, hidden layer and

output layer. The hidden layer has less number of neurons compared to the input and

output layer, which achieves compression. In their method the original image was divided

into sub-blocks and fed to the input layer, the output layer restores the original sub-block.

This implementation was done on the NCUBE parallel computer and the simulation

results showed that this network achieved poor image quality. Carrato and Ramponi

(1991) modified the direct architecture proposed by Cottrell and Munro (1988) by

introducing nonlinear transfer functions. It is reported that nonlinear network have higher

compression ratios than linear network. Instead of mathematically analyzing the

performances of nonlinear network, their work considers use of multiple image data

samples for training the network built using nonlinear functions. Based on the results

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

48

obtained the performances are evaluated. Definite proof for use of nonlinear network for

better image quality is not reported in this work. Mougeot, Azencott and Angeniol (1991)

prove the nonlinear network proposed by Carrato and Ramponi (1991) suffer from poor

quality, but achieves better compression. In order to improve the quality metrics of the

decompressed image, they used overlapped block samples from the image for training

and simulation. This achieves improvement in quality and compression at the cost of

training time. Carrato (1992) has reported the use of neural network for image

compression which performs better than transform coding techniques. Direct neural

network architecture shown in Fig. 2.5 with linear functions is used to prove his claim.

Backpropagation neural network was used for training the network for image

compression and decompression. The input layer and output layer are fully connected to

the hidden layer.

Image compression is achieved by training the network in such a way that the

coupling weights, {wji}, scale the input vector of N-dimension into a narrow channel of

K-dimension (K < N) at the hidden layer and produce the optimum output value which

makes the quadratic error between input and output minimum. In accordance with the

neural network structure shown in Fig. 2.5, the operation of a linear network can be

described as in equation (2.2)

 ∑
=

≤≤=
N

i
ijij Kjxwz

1
1, (2.2)

Where, 0 ≤x i ≤ 1 denotes the normalized pixel values for grey scale images with grey

levels {0 to 255} and equation (2.3) for decoding,

∑
=

≤≤=
K

j
jiji Nizwy

1
1, (2.3)

The reason for using normalized pixel values is due to the fact that neural

networks can operate more efficiently when both their inputs and outputs are in the range

{0 to 1} Carrato (1992).

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

49

Figure 2.5 Back propagation based neural network architecture

Neural network algorithms and architectures for image compression exists in

many types such as Multi Layered Perceptron (MLP) (Qiu, Varley and Terrel 1993),

Hopfield (Lin and Liu 1999), Self Organizing Map (SOM) (Amerijckx, Legaty and

Verleysen 2003), Learning Vector Quantization (LVQ) (Pavlidis et al. 2001) and

Principal Component Analysis (PCA) (Costa and Fiori 2001).

Namphol, Chin and Arozullah (1996) propose hierarchical neural network

architecture in order to improve the compression ratio. Image is classified into multiple

sub-images, based on these sub-images the network gets trained. This approach achieved

better compression and also improved quality of reconstructed image. The number of

hierarchies and number of layers are decided based on the image quality. The idea was to

exploit correlation between image pixels and correlation between blocks of pixels in the

 z1

x1

x2

y1

y2

y63

x64
y64

Input [8 x 8] image

Hidden Layer
Output Layer [8 x 8] image

z2

z16

y1

y2

y64

y63
{wji}

 {wij}

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

50

inner hidden layer and outer hidden layer respectively. From the input layer to the hidden

layer and from the hidden layer to the output layer, local connections are designed which

have the same effect as several fully connected neural sub-networks. The total number of

neurons for the hidden layer and the output layer is the same as that of the hidden layer

and the input layer, respectively. Benbenesiti (1997) modified the multilayer network

proposed by Namphol, Chin and Arozullah (1996) to achieve better quality. Inputs,

weight elements and outputs are normalized to the range 0 to 1. This results in

improvement in performance of neural network architecture in terms of higher

compression and image quality.

Jiang (1999) discussed various architectures for image compression using neural

networks. Jiang (1999) classified neural network architectures into three different

categories. These include direct neural network architecture, traditional neural network

approaches and indirect neural network approaches. In his work architectures are

compared based on their performances, the major bottleneck is the training time required

for the neural network architecture. Parallel processing with programming capability is

recommended for hardware implementation of neural network architectures for image

compression. Implementing neural network architectures on hardware is one of the major

challenges identified by Jiang (1999).

Benbenesiti et al. (1999) have also used linear network for compression, with

backpropagation training algorithms, and reordering of the image to 1-D. They have also

implemented nonlinear network based image compression and have obtained better

results, with 70% improvement in compression ratio. Lewicki and Olshausen (1999) have

used multilayer networks with nonlinear components to achieve compression and have

proven that nonlinear networks are better than linear networks in compression with

improved image quality, but nonlinear networks increases complexity and training time.

In their work, multilayer networks have only nonlinear nodes. A two layer perceptron

network forms unbounded, convex region in the space spanned by the inputs. A three

layer perceptron network forms arbitrarily complex decision regions. A three layer

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

51

perceptron network could thus be used to create any continuous likelihood function

required in a classifier. The above discussion on the classification and approximation

capabilities of the multilayer neural network is based on the fact that all the layers are

trained simultaneously. It is important to emphasize here that training each layer

separately, does not share the proven capabilities of the standard multilayer neural

network. In their work, a four layer nonlinear network is proposed to further enhance the

compression ratio. Using four layer nonlinear networks, MSE was 47.36 where as for two

layer linear networks MSE was 86.49.

Ivan Vilovic (2006) uses nonlinear networks for image compression. He has taken

images in to overlapping sub-blocks for training. Training time is more in this case.

Circuit complexity increases with nonlinear elements. He has compared the results of NN

with JPEG technique. Feed forward networks with backpropagation technique are

adopted for the analysis. Sub-divided images of various sizes such as (4 x 4), (8 x 8) and

(16 x 16) have been considered and transformed into column matrix as discussed earlier

and is used for compression and decompression. Results obtained based on his work is

shown in Fig. 2.6, SNR for JPEG is found to be better compared with NN based

technique. Use of new algorithms and techniques to overcome deficiencies of NN

technique is recommended by Ivan Vilovic (2006). Most of the results reported do not

show significant advantage in terms of SNR over JPEG.

Steven and Mario (1998) have realized neural network for image compression

using Field Programmable Gate Array (FPGA). They used backpropagation technique for

training the network. Linear networks have been considered for compression of images.

Linear neural networks are well suited for FPGA implementation as the complexity of the

hardware is reduced. The uniform nature of the model permits a single circuit to be

configured and used to calculate the outputs of the network. Due to the complexity

involved in mapping architecture on FPGA, only a single neuron is realized.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

52

Figure 2.6 SNR vs. CR for NN and JPEG codec (Ivan Vilovic 2006:26)

From the review carried out it is significant that neural network approaches for image

compression have been extensively used and many authors have achieved good

performances in terms of MSE and PSNR. Some of the common factors among the

reported architectures are: Image compression using neural network is achieved using

multilayer network. Neural network architecture consisting of input layer, hidden layer

and output layer that are fully connected are used for compression. Compression is

achieved by selecting the hidden layer size less than the input and output layer. Nonlinear

and linear functions have been used as network functions. Training of the network with

multiple images achieves better results. Images are sub-divided into sub-blocks

(Overlapping and non-overlapping) and rearranged prior to training. Hierarchical

networks are also used. All the work reported in the literature have realized and proven

the network performances based on software models. From the above discussion, the

following are conclusions:

1. Multilayer neural networks have been adopted and recommended by many of the

work reported.

2. Backpropagation algorithms have been used by most of the work reported for

training the network.

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

53

3. Direct feed forward backpropagation neural network architectures are simple are

successfully used for compression and decompression.

4. Training of the network is a very important phase; image sets selected also plays

an important role in identifying optimum weight elements for the network.

5. The transfer function used in neural network classifies the network as linear or

nonlinear network. Results presented in most of the literature are inconclusive on

the performances of linear and nonlinear networks for compression and image

qua lity.

6. There is no mathematical proof showing the efficiency of nonlinear network over

the linear network for image compression.

7. SNR is observed to be less for neural network technique in comparison with

conventional JPEG as per Ivan Vilovic (2006).

8. Most of the NN architecture work reported in the literature is based on image

compression using multilayered network and hierarchical network Jiang (1999).

9. Although significant work has been done towards neural network development for

image compression, and strong competition can be forced on conventional

techniques, it is premature to say that neural network technology can provide

better solutions for practical image coding problems Jiang (1999). For real-time

applications, efficient hardware’s are required to implement NN architectures.

10. Coordinated efforts world-wide are required to assess the neural networks

developed on practical applications in which the training set and image samples

should be standardized. In this way, every algorithm proposed can go through the

same assessment with the same test data set as per Jiang (1999).

11. The full potential of neural network approaches will not be realized until they are

implemented in their true parallel form. Most of the implementations used in the

above research have been based on simulations on computers. With the

development of VLSI implementations for many neural network architectures, the

speed for both training and coding will dramatically increase.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

54

12. Hardware implementation of NN architecture for higher image sizes is not

reported, most of the techniques reported in the literature are only software

simulation and the hardware implementation is only for a very small image size.

13. Flexibility in compression ratio is one of the major limitations in NN based

architectures for image compression.

14. All the neural network techniques reported use image samples that are reordered

to column matrix from the original sub-image blocks. Processing images or

compressing images without reordering is not reported in the literature.

From the above observations made, major and specific gaps in the literature are:

1. Image reordering is carried out and there are no claims reported on two-

dimensional multilayer neural network architecture for image compression.

2. Nonlinear and linear neural networks have been used for image compression and

decompression. However, their performances when compared with conventional

technique are not very significant Ivan Vilovic (2006).

3. Highly powerful and computationally intensive parallel architectures are required

for neural network architectures to be realized on hardware.

4. New techniques and architectures are required to improve the SNR of NN based

techniques over traditional techniques for image compression.

Given that there is a viable solution for image compression using neural networks, the

next step is to build the neural network hardware. The hardware implementation of any

concept should be cost effective, feasible and reliable. Also, the hardware should be area,

power and speed efficient. A fully digital approach using RISC processor is one possible

solution. Such processors are designed to execute simple instructions, preferably one

instruction every cycle. For realizing the massively parallel and computational intensive

neural network architecture analog VLSI design is considered in this work. VLSI

technology is well matched to realize neural network architectures for two basic reasons:

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

55

1> VLSI technology permits implementation of large number of identical,

concurrently operating neurons on single chip, thus exploiting the parallelism

property required for neural networks.

2> Well defined arithmetic operations and relatively small and reliable circuits

greatly simplify VLSI implementation complexities.
Next section discusses analog VLSI implementation of neural network architectures.

2.3 Artificial Neural Network

Biological neurons are artificially modeled as shown in Fig. 2.7. The basic building

blocks of a single neuron are multipliers, adders and network function. Other than these

building blocks data storage elements are required to store the input, output, weights and

bias elements. The neural network shown Fig. 2.7, can be classified in terms of their

implementation into three categories: Digital, Analog or Hybrid. Digital network is

realized using logic gates. Network inputs, weight, bias and output are all represented in

binary format.

Figure 2.7 Two layer neuron with 2 hidden layers and 1 output layer
In analog network, transistors and passive components are used to realize the

network. Input, weight, bias and output are all in analog form. In hybrid network a

combination of digital blocks and analog blocks are used to realize the network. Hybrid

Input 1

Input 2
Weight 2

Output 1
Multiplier

Multiplier

Adder

w1

w2

x1

x2

Network
Function

n z

b

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

56

also implies that, the input, weight, bias and output can be in either analog or digital. The

implementation of the neural network architecture (NA) in all these categories requires

learning capability to be integrated in the design. This learning capability or learning

rules are based on the mathematical algorithms that are unique for a given network. The

focus of this research work is to implement the neural network architecture with

backpropagation learning/training algorithm for image compression realized using hybrid

technique.

Neuron comprises of multiplier and adder along with the network function (Jiang

1995). Fig. 2.7 can be expressed mathematically as in equation (2.4) and equation (2.5),

 bwxwxn ++= 2211 ** (2.4)

)(nfz = (2.5)

 Where, z is the neuron output and n is the intermediate output for the inputs x and

neuron weights w. Bias b is optional.

 Training of the network to realize a given functionality is achieved by setting a

target for a given input. The initial weights and bias of the network is assumed. The input

vectors are presented to the network, based on the initial weights and bias elements the

outputs are computed. The error between the target and the obtained output is used to

update the weight and bias elements. This process is continued until the error converges

to minimum. The error is backpropagated to update the weight and the bias elements

hence the algorithm is named as backpropagation. The use of analog computation is

attractive for neural network due to its compactness, potential speed, absence of

quantization effects and reading analog samples without the need for digital conversion.

The use of digital techniques on the other hand is preferred due to its robustness, easy

transmission and regeneration, simplicity and flexible. Hybrid circuits are a combination

of both digital and analog blocks has the merits of both analog and digital

implementation. In this research work, new hybrid schemes are proposed for image

compression using neural network architectures. Next section, reviews various schemes

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

57

for realizing neural network architecture that forms a platform to develop new hybrid

architectures for image compression.

2.4 Neural Network Architectures

The neural networks are broadly classified as feed forward and recurrent networks (Bose

and Liang 2006). In Fig. 2.8 (a) the feed forward network is shown. The first layer is the

input layer, from which the neuron gets the input from sensors or data storage units. The

last layer is called the output layer. The intermediate layer is called the hidden layer. As

can be seen there is no feedback of the outputs again to the inputs. In Fig. 2.8(b) a

recurrent neural network is shown. They have a kind of direct cycles in their connection

graphs. As shown in Fig. 2.8(b), the outputs are going back to the output layer as inputs.

The outputs are recurrent, as they have the effect on the next outputs. In this thesis only

the feed forward networks are considered and designed using hybrid architecture.

Figure 2.8(a): Feed forward network Figure 2.8(b): Recurrent network

Figure 2.8 Different types of neural network architectures (Bose and Liang 2006)
2.4.1 Single Layer Neuron

In Fig. 2.9 single neuron is shown. The x input matrix multiplied with the weights (w)

and modified using bias (b) is summed (n) and passed through the network function f,

mathematically it can be shown as in equation (2.6) and equation (2.7),

 ∑
=

+=
R

i
ii bwxn

1
1 (2.6)

)(nfz = (2.7)

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

58

Where, n is the summed output of the multipliers and z is neuron output.

Figure 2.9 Single neuron (Bose and Liang 2006)
In Fig. 2.10 a single layer of neuron network is shown. The input matrix x is now

connected to layer of neurons. Each neuron receives x inputs and is processed to one

output from each neuron. Each output of neuron is further passed through a network

function to compute s number of outputs as shown in Fig. 2.10. The equation (2.6) and

equation (2.7) are modified to equation (2.8) and equation (2.9) for single layer neuron

network and is given as,

 ∑
=

+=
R

i
jijij bwxn

1
 (2.8)

)(jj nfz = (2.9)

2.4.2 Multiple Layer of Neurons

The set of single layer neurons connected with each other is called the multiple layer

neurons, as shown in the Fig. 2.11. The inputs (input layer) are connected to the layer 1

which in turn is connected to the layer 2 which in turn is connected to the output layer 3.

Layer 2 is the hidden layer, and layer 3 is the output layer. Inputs (X) is taken into hidden

layer for processing, the output of hidden layer is further processed by the output layer to

produce outputs (Z) of the network. As the input is processed by more than one layer of

network, this architecture is called as multilayered neural network architecture.

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

59

Figure 2.10 Single layer of neuron (Bose and Liang 2006)

Figure 2.11 Multiple layers neural network (Bose and Liang 2006)

2.5 Backpropagation Algorithm

The essence of the neural network lies in the way the weights are updated. The updating

of the weights is through a definite algorithm. In this thesis, Backpropagation (BP)

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

60

algorithm is modeled and implemented. The algorithm is applied for the supervised

learning that is a desired output will be applied to neural architecture. The target is

represented as di (desired output) for the ith output unit. The actual output of the layer 2 is

given by z2
i.

Thus, the error or cost function is given by equation 2.10 (Bose and Liang 2006)

 ∑ =
−=

S

i idzE
i1

22)(
2
1

 (2.10)

This process of computing the error is called a forward pass. How the output unit affects

the error in the ith layer is given by differentiating equation (2.11) by

 2
i

z
E

∂
∂

 (2.11)

The equation (2.12) can be written in the other form as

)()(22
ii

zddz ii −=∂ (2.12)

where, d(zi) is the differentiation of zi. The weight update is given by

 1
iziijw ∂=∆ η (2.13)

Where z1
i is the output of the hidden layer or input to the output neuron and η is the

learning rate (Bernabe and Barranco 1992). This error propagates backwards from the

output to the input. The δ for the hidden layer is calculated as

 iijrhiddenlaye wzd
i

∂=∂ ∑)(1 (2.14)

Weight update for the hidden layer with new δ, is computed using equation (2.14).

Equation (2.10) – (2.14) depend on the number of the neurons present in the layer and the

number of layers present in the network. Appendix – A discusses backpropagation

algorithm.

2.6 Neural Networks in Analog VLSI

Neural network described so far is a multilayer feed forward network with

backpropagation algorithm. The basic building blocks in the neural networks are the

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

61

multipliers, summers and tan-sigmoid function. Multiplier is an essential component in

the neural network. Commonly known as the synapse, the multiplier performs the

multiplication of the input with the weight function. Reviews of different analog VLSI

architectures for neural network are presented in this section.

2.6.1 Modular T-Mode Design

Bernabe Linares (1992) came up with the modular transconductance-mode approach

shown in Fig. 2.12. x1, x2 ….. xN are the inputs that are multiplied by the network weights

w1i, w2i...……wNi. Current output of transconductance amplifier is summed up at the node

xi and is processed by the translinear amplifier (f()) as shown in Fig. 2.12. As the neuron

size increases, the transconductance amplifiers connected to the node xi also increases.

The node current Ii is a function of xN and wNi represented mathematically as in

equation (2.15),

Ii = x1w1i + x2w2i + x3w3i + ………………….xNwNi + I1 (2.15)

Where, x1, x2 …xN are the inputs, w1i, w2i, wNi are the weights, I1 is the bias current.

Figure 2.12 Neuron interconnections using transconductance devices (Bernabe

1992)

Fig. 2.13 shows MOS transistor schematics for transconductance amplifier and

translinear amplifier. Gilbert cell is used as transconductance amplifier.

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

62

Figure 2.13(a): Transconductance amplifier

Figure 2.13(b): Nonlinear circuit or translinear amplifier

Figure 2.13 Building blocks of analog neural network (Bernabe and Barranco 1992)
The output current of the transconductance amplifier is Iout = gm xi wNi, where xi

is the input to the neuron, gm is the transconductance of the amplifier and wNi is the

network weight. As shown in Fig. 2.13(a) for a given neuron input x applied at the gate of

transistor M2 and M3, w input applied at the gate of transistor M5 controls the current

flow from VDD to VSS. The nonlinear network function shown in the Fig. 2.12 was

VSS

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

63

implemented using the circuit shown in the Fig. 2.13(b). This architecture was used to

implement the winner takes all network and the Hopfield networks. As the circuit

requires resistors, capacitors, and transconductance amplifier for realization, the circuit is

complex, and has less accuracy.

Figure 2.14 Neuron in the output layer (Hussein 1997)

Hussein (1997) in his PhD thesis designed neural network architecture with on-

chip supervised learning. He designed the multilayer perceptron architecture trained by

the Backpropagation algorithm. Fig. 2.14 shows the neuron in the output layer and the

neuron in the hidden layer. The block A is activation function. D is the derivative block

which performs the derivative of the input. R block generates the error signal that goes to

the other synapses to update the weights. The FC block takes in the outputs and calculates

the cost function described as in equation (2.5).

Multiplier block is implemented using the operational transconductance amplifier

shown in Fig. 2.15(a). The backpropagation algorithm used in the design is the modified

version of Vogl Back Propagation (MVBP). The author compared modified Vogl and

Vogl backpropagation (VBP) algorithms and concluded that the learning rate of MVBP is

faster than VBP. He successfully trained the network for logic functions like XOR, AND,

OR gates. It is observed that this circuit supports online training, the complexity of the

circuit is due to the number of transistors required to realize the blocks. The circuit for

the hyperbolic tangent function is shown in Fig. 2.15(b).

j

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

64

Figure 2.15 (a): Multiplier

Figure 2.15 (b): Hyperbolic tangent function

Figure 2.15 Analog neuron circuit diagram (Hussein 1997)

Roy (1994) in his thesis described the analog neural network with on chip

learning. He used the single ended inputs in his design and a modified transconductance

amplifier for multiplication purpose as shown in Fig. 2.16(a). The circuit has large linear

range. The author used the backpropagation algorithm for the training. The derivative

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

65

circuit is also shown in the Fig. 2.16(b). The Ibump current in the figure is the derivative

output of the Neuron activation function. The author designed a 4-3-2 neural network. He

had four inputs and two outputs, which required 2 target signals for training the network.

The design was validated for 4 input XOR function and an 8 input XOR function.

Figure 2.16(a): Transconductance amplifier

Figure 2.16 (b): Bump circuit

Figure 2.16 Amplifier and adder circuit (Roy 1994)
Chun Lu, Bing-xue Shi and Lu Chen (2002) in their paper presented a method of

implementing analog accumulator used in the Backpropagation (BP) algorithm. For the

usual BP algorithm the parallel approach is shown in the Fig. 2.17. As M increases the

hardware complexity for implementation also increases. The authors proposed the

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

66

structure where the inputs were given in the sequential manner as shown in the Fig. 2.17.

Even if M increases, the hardware complexity remains the same.

Figure 2.17 Neuron circuit (Chun, Bing-xue and Lu 2002)

Circuit realization of the accumulator in Fig. 2.17 is shown in Fig. 2.18. Cells A,

B and C are comparators. Clocks clk1 and clk2 are the non-overlapping clocks. Input a

from the accumulator and the output b are compared and the error is used to update the

weight matrix. Every time new inputs and targets are presented the network needs to be

trained and hence is time consuming.

Figure 2.18 Analog accumulator (Chun, Bing-xue and Lu 2002)

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

67

Shai, Cai-Qin, Geiger and Randy (1987) have designed a four quadrant multiplier using

Gilbert cell multiplier. The nonlinearity error calculated was less than 0.5% at 75% of

full-scale swing. The circuit complexity is four times the simple Gilbert cell multiplier.

Andreas, G. and Boahen, A. (1996) in their paper provided an overview of

translinear circuit design using MOS transistors working in sub threshold region. They

contrasted the bipolar and MOS sub threshold characteristics and extended the translinear

principle to the sub-threshold MOS Ohmic region through a drain source current

decomposition.

From the review carried out on VLSI implementation of neural network architectures,

the following are the conclusions drawn:

⇒ The basic building blocks for a neuron network are multipliers, adders and

network functions

⇒ Gilbert cell is used for realizing the multipliers in many circuits, transconductance

amplifier are also used for realizing multipliers

⇒ Most of the reviewed architectures generate current as circuit outputs, this

simplifies circuit complexities

2.7 Digital Implementation of Neural Network Architectures

In this section a brief review of digital implementation of neural network is discussed. As

the neural network architecture is massively parallel and hence computational intensive,

realizing the neural network architecture on processor platforms have their own merits

and demerits (Hammerstrom 1992). Dedicated high speed parallel processors are required

to realize neural network architectures. In this discussion, Application Specific Integrated

Circuits (ASIC) and Field Programmable Gate Array (FPGA) based implementations are

discussed. ASICs are the ideal choice when high performance is required. However, long

development time is needed and the complexity of the system could become unavoidable.

In this kind of designs, an area-flexibility trade-off is found (Kristian 2003). ASICs

cannot easily provide the flexibility demanded by NNs (diverse learning algorithms,

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

68

reconfigurability, etc.). Consequently, hardware sharing policies have to be used to

optimize the hardware resources. Different solutions regarding the implementation of

NNs on programmable digital devices (FPGAs and DSPs) can be found in the literature

(Backus 1978, Blelloch 1990, Cox and Blanz 1992, Hillis 1985, Auda and Kamel 1999

and Beuchat, Haenni, and Sanchez 1998). In these cases it is needed to employ many of

these devices increasing both price and power dissipation. As discussed in earlier

sections, the basic building blocks for implementation are the adders, multipliers, transfer

functions and memory. Training is another very important factor when working with

neural network architectures. The hardware realization should support both training and

functionality realization. Hence there is a need for reconfigurability of the hardware.

2.8 FPGA Implementation of Neural Network Architecture

Several architectures based on Field Programmable Gate Arrays (FPGAs) have recently

been introduced. These machines have demonstrated a high level of performance for a

variety of problems. Recently, several FPGA-based machines have been designed and

built. These machines have demonstrated supercomputer-level performance for a variety

of computationally intensive problems. In spite of these impressive demonstrations,

FPGA-based machines have not found widespread use. One limitation of these machines

is their programming environment. For the most part, these machines have been

programmed using hardware design tools. While this approach permits the most

flexibility and highest performance, it requires that the programmer be a skilled hardware

designer. Guccione and Gonzalez (1993) have proposed a more traditional programming

model for these machines based on the vector-based data-parallel model of computation.

This model takes algorithms described in a high-level C-like language and translates

them into high-performance digital circuits.

Backpropagation based neural networks currently stand out as the most popular

type of neural network used to date and have been successfully implemented on FPGAs

(Omondi and Rajapakse 2006, Pavlitov and Mancler 2004, Blake and McDaid 2005 and

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

69

Kwan, 1992). Eldridge (1994) successfully implemented the backpropagation algorithm

using a custom platform built out of Xilinx XC3090 FPGAs, called the Run-Time

Reconfiguration Artificial Neural Network (RRANN). This architecture could learn how

to approximate centroid of fuzzy sets. Results showed that RRANN converged on the

training set, once 92% of the training data came within two quantization errors (1/16) of

the actual value, also RRANN generalized well as 88% of approximations calculated by

RRANN (based on randomized inputs) came within two quantization values. Heavily

influenced by the Eldredge's (1994) RRANN architecture Beuchat, Haenni, and Sanchez

(1998) developed a FPGA platform, called RENCO-a Reconfigurable Network

Computer. As its name implies, RENCO contains four Altera FLEX 10K130 FPGAs that

can be reconfigured and monitored over any LAN (i.e. Internet or other) via an onboard

10 Base-T interface. RENCO's intended application was hand-written character

recognition. One challenge in implementing the backpropagation on FPGA is the

sequential nature of processing between layers. A major challenge is that pipelining of

the algorithm cannot occur during training. This problem arises due to the weight update

dependencies of backpropagation, and as a result, the utilization of hardware resources

dedicated to each of the neural network's layer is wasted. Aaron Ferrucci (1994) and

Marcelo H. Martin (1994) built a custom platform, called Adaptive Connectionist Model

Emulator (ACME) which consists of multiple Xilinx XC4010 FPGAs. ACME was

successfully validated by implementing a 3-input, 3-hidden unit, 1-output network used

to learn the 2-input XOR problem. Skrbek (1999) also used this problem to prove that his

own custom backpropagation based FPGA platform worked. Skrbek's (1999) FPGA

platform, called the ECX card, could also implement Radial Basis Function (RBF) neural

networks, and was validated using pattern recognition applications such as parity

problem, digit recognition, inside-outside test, and sonar signal recognition.

The type of neural network used in FPGA-based implementations is an important

feature used in classifying such architectures. The type of neural network applied

depends on the intended application used to solve the problem at hand. Current trends in

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

70

this field have shown that there have been very few attempts at implementing modular

neural networks on FPGA based platforms. In the past, this can be attributed to the fact

that FPGA densities and speeds were inadequate for supporting modular neural networks.

However, FPGA densities and speeds have now improved to the point where it's far more

feasible to support modular neural networks, and attempts at doing so should be re-

visited. The key advantage to the digital approach over analog approach is the ease of

design, manufacturability and flexibility. In analog approach, circuit reliability is always

a concern; also training the analog network is always a challenge. In digital approach,

with software controlling the hardware, both training and functionality is realizable.

However, the major disadvantage is that the digital implementation is very time

consuming, area hungry and power hungry. Also, digital implementation is driven by the

algorithm and the architecture selected.

To measure the computation complexity of digital implementation of neural

network architecture, feed forward neural network with 16 inputs, 4 hidden layer and 16

output neurons is designed (Cyril Prasanna Raj, P. and Pinjare S. L. 2005). The network

is trained using back propagation technique using multiple training data sets. Optimum

weights and biases are identified, Binary Canonic Sign Digit (BCSD) based multiplier

and Ripple Carry Adder is designed. HDL model for the 16:4:16 neural network

architecture is developed and synthesized using Xilinx ISE. FPGA based implementation

of neural network architecture for image compression and decompression is discussed in

Chapter 4. In this research work, we address the implementation issues of neural network

architectures for image compression based on hybrid architectures.

2.9 Literature Review Summary on VLSI Implementation of Neural
Network

From the above discussion, the conclusions drawn in this section based on the literature

review further lead to the scope of this research work, addressing the gaps in analog

neural networks for image compression. The following are the conclusions that can be

drawn:

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

71

• Analog neural network requires multiplier, adder and neuron activation function.

Training is also similar to the digital network. Analog neuron is able to execute

both digital and analog functions similar to the digital network. From the

literature analysis it is found that analog neural networks are on par with digital

neural networks, secondly analog neurons are faster, as training time is less when

compared with digital network training.

• Gilbert cell based transconductance multipliers have been used to implement

analog neural network. It requires less number of transistors compared with a

typical digital multiplier. Circuit complexities of analog implementation of neural

network architecture are much smaller than the digital implementation.

• There is need for two-dimensional multilayer neural network architecture.

• The inputs are analog intensities in spatial domain; the two-dimensional

multilayer network should be implemented in the analog domain. Analog

implementation minimizes circuit complexity and is faster.

• Two-dimensional multilayer analog neural network architecture should be trained,

and the trained weights should be stored for signal processing.

• The network should be used for image compression and decompression.

Next chapter discusses the aims and objectives of the research work, highlighting

methods and methodology.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

72

Chapter 3 - Problem Definition

From the literature review carried out in the previous chapter, feed forward multilayer

neural network architecture with backpropagation training has been adopted for image

compression. Many variations of this architecture have been proposed and realized for

improving the performance of the network with respect to image quality. Modifications

in backpropagation algorithm have also been suggested to improve the accuracy of the

network architecture. A very critical observation made during the literature review is that

the network works on one-dimensional image data. Image being 2-D, and captured in the

analog form is digitized into N-bit number by row-column read out as discussed in

chapter 1. Hence, analog pixel intensities of image captured using charge coupled device

can be taken in two-dimensional without converting into one-dimensional digital form.

Two-dimensional multilayer feed forward neural networks (TDMNN) architecture for

image compression is proposed. This avoids conversion from 2-D to 1-D as being carried

out in the conventional and neural network techniques reported. Also, analog data need

not be converted to digital data, and hence eliminates analog and digital conversion,

which further saves time involved in data preprocessing. Based on the literature review

and observations made, the aim and objectives for the research work is formulated and

discussed in this chapter. The methods and methodologies required to carry out the

objectives is also highlighted. Based on the objectives and methods, two-dimensional

multilayer neural network architecture is designed, modeled and implemented for image

compression and validated for its performances.

3.1 Aim

To design two-dimensional neural network architecture, implement and optimize for area,

power and speed, and validate its performance for image compression.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

73

3.2 Objectives

1. To explore the use of artificial neural networks for image compression with

existing architectures in literature.

2. To propose, analyze and validate two-dimensional neural network for image

compression.

3. To design and test analog building blocks suitable for realizing the 2-DMNN.

4. To train and optimize analog 2-DMNN for image compression.

5. To optimize the proposed architecture with available architectures for area, power

and speed performances.

6. To validate the proposed architecture performance for image compression and

image quality.

3.3 Methods and methodologies to carry out the objectives

• Literature review on artificial neural networks and architectures for image

compression, analog blocks required for NN implementation, image acquisition,

conventional compression techniques, image quality, hardware and software

platforms for implementation and compression metrics is carried out by referring

journals, conference papers, patents, books and related documents

• Literature review of existing algorithms and architectures for image compression

and decompression is carried out highlighting the major limitations and

advantages

• Identification of standard image data sets and standard test results is carried out

based on literature review

• The gaps in literature are identified for further investigation based on literature

review and experimental results

• Pilot studies on available techniques of image compression using NN is carried

out

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

74

• Software reference models for the algorithms and architecture reported in the

literature are developed. The algorithm performance is estimated for image

compression in terms of MSE, PSNR and hardware complexities

• Limitations of the neural network algorithms for image compression compared

with conventional techniques in terms of MSE, PSNR and maximum error are

identified

• Two dimensional neural network architecture for image compression is proposed

based on the source of data from camera and its operation to meet 2D

compression requirement

• 2-DMNN is modeled using MATLAB and trained using standard image data sets

• Performance of 2-DMNN is estimated and compared with the results of pilot

studies

• Mismatches in the results have been considered and suitable modifications is

incorporated to obtain better performance

• 2-DMNN is modified based on the results obtained to obtain better performances

• 2-DMNN model is validated using standard image data sets

• Adaptive 2-DMNN architecture is proposed, designed, simulated using MATLAB

• Performances of Adaptive 2-DMNN is compared with 2-DMNN

• Analog building blocks are identified to model the 2-DMNN based on the

literature review

• Suitable modifications are made in the design of analog blocks to suite the

requirements of 2-DMNN, multipliers and nonlinear transfer function

• Analog multiplier based on Gilbert cell, algorithm for neuron activation function

and backpropagation algorithm is proposed, designed simulated and implemented

using Cadence Virtuoso and Spectre

• Performances of 2-DMNN is analyzed and modifications are made

• Hybrid 2-DMNN architecture is designed, simulated and implemented using

Cadence Virtuoso and Spectre

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

75

• Image compression and decompression is performed for different compression

ratio and checked for MSE and PSNR using the test setup

• Hardware complexities are compared with existing architectures

• Schematic for the building blocks is drawn using Virtuoso Schematic Editor and

simulated using Spectre

• Layout of basic blocks is drawn using Virtuoso Layout Editor and Layout

validations (DRC & LVS) has been carried out for it using Assura

• Test setup is designed and implemented in Cadence Virtuoso and HSpice

• Schematic for the basic blocks is drawn using Virtuoso SE and layout is generated

using Virtuoso XL. The layout is validated using Assura

• Identified architectures of neural cell is designed in SPICE deriving transistor

sizes using design equations

• Designed neural cell is simulated and characterized using HSpice and the results

are compared with the specifications

• Neuron cell architecture best suited for reduced leakage power and enhanced data

stability is selected

• Schematics for two dimensional neural network architecture blocks are drawn in

Virtuoso Schematic Editor using 0.18 µm CMOS technology.

• Layouts of all the blocks of two-dimensional neural network architecture is

verified (LVS and DRC) using Assura

• Layouts for two dimensional neural network architecture is designed using

Virtuoso Layout Editor

• RC extraction of the implemented two dimensional neural network architecture is

performed using Assura

• Post-layout simulation for two-dimensional neural network architecture is carried

out using Spectre. Simulation results are verified for reduction in leakage power

and enhanced data stability

• GDSII is generated for the two dimensional neural network architecture

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

76

In the next chapter new architectures for image compression using neural network is

proposed, designed, modeled and implemented. Software models for the proposed model

are developed using MATLAB, test images are used to train the network. New algorithms

for training are proposed. Based on the trained network different images are used to test

the network performances with respect to image compression. MSE, PSNR and

maximum error is calculated for standard test images. The results are compared with

conventional and neural network techniques.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

77

Chapter-4 2-D Multilayered Neural Network: Design and
Implementation

4.1 Design Overview

The present research relates to neural networks for image compression, more particularly

design and development of two-dimensional multilayer neural network architecture for

image compression and decompression. A single chip solution which addresses

computational complexities, operates faster, consumes relatively low power, and

occupies less space is designed and implemented. This architecture can be scaled in a

planar or massively parallel, stacked arrangement to handle more data points achieving

greater processing rates. The programmability of the synaptic connections, through

binary weights that are obtained during offline training makes the design reconfigurable.

Image sensors arranged in 2-D matrix of size [256 x 256], [512 x 512] and [1024

x 1024] capture light intensities that fall on them from the image. Two-dimensional

multilayer neural network architecture proposed in this work captures this voltage or

current values for image compression. The advantage of the proposed architecture is that

it avoids image reordering (2-D to 1-D conversion as in conventional processing) and

also processes the image in analog form and hence avoids analog to digital conversion.

The architecture is first trained to learn the properties of images using training data sets

and this makes the proposed neural network more generic and achieves better

performance. Building blocks for proposed neural network architecture is identified,

designed, modeled and simulated. Test setup is developed to verify functionality of the

design as image compressor and decompressor. The hardware implementation of the

proposed architecture is optimized for area, power and speed performances.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

78

4.2 Design Requirements

The frame rate of a video signal captured using camera may be as slow as 30 Hz and fast

as 1000 Hz. Each frame may be represented using [256 x 256] CCD arrays. Each frame

of size [256 x 256] pixels with a frame rate of 30 Hz needs a processing time of 65536

pixels/33 ms. If the image is sub-divided into sub-blocks of (4 x 4) computation speed is

4096 sub-blocks/33 ms. Considering a fast motion picture at 1000 Hz the computational

speed required is 4096 sub-blocks/1ms. In case of 1024 x 1024 image with a frame rate

of 30 Hz requires a computational speed of 65536 sub-blocks per 33 ms and with frame

rate of 1000 Hz the computational speed required is 65536 sub-blocks per 1 ms. Neural

network architecture required to process images should be able to process data at this

required rate. Fig. 4.1 shows the block diagram of the proposed architecture here with

called as Two-Dimensional Multilayer Neural Network Architecture (TDMNN) for

image compression and decompression. The architecture shown in Fig. 4.1 is

implemented using VLSI technology.

Figure 4.1 2-D Architecture for image compression and decompression

CCD Array-
Image

2-D
Architecture

2-D Compressed
Image

2-D
Architecture

Decompressed
Image

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

79

4.2.1 Two-Dimensional Multilayer Neural Network Architecture

Two-dimensional multilayer neural network architecture consists of input layer, hidden

layer and output layer. The input layer consists of image pixels that are obtained from

CCDs. Hidden layer consists of multiple single layer neurons arranged as shown in Fig.

4.2. Each single layer of neuron consists of multiple neurons. The output layer consists of

multiple single layer neurons as shown in Fig. 4.2. In Fig. 4.2, an input image of size (8 x

8) consisting of 64 pixels is processed by a two-dimensional hidden layer consisting of

four single layer neurons. In the hidden layer there are 16 neurons, each single layer

neuron consisting of 4 neurons.

Figure 4.2 2-Dimensional multilayer neural network

x8

x16

x24

x64

Z8

Z16

Z4

x1

x9

x17

x57

Z5

Z13

Z1

x1

x9

x17

x57

Z13

Z5

Z1

x4

x12

x20

Z14

Z6

Z3

x8

x16

x24

Z16

Z8

Z4

X64

X60

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

80

As shown in Fig. 4.2, first row of inputs consists of pixels x1 to x8. First column of input

consists of 8 pixels as shown in Fig. 4.2. 8 x 8 input image processed by the 2-D hidden

layers compresses the input to 4 x 4 outputs. Compressed outputs are z1 to z16 obtained in

2-D form as shown in Fig. 4.2. The output layer consisting of eight single layer neurons

(each single layer neuron consists of 8 neurons), decompresses 16 compressed data to 64

outputs. The decompressed outputs are obtained in 2-D form as shown in Fig. 4.2. 2-

DMNN is trained with known image data sets. Once the network is trained the network

remembers the properties of different images that were used for training. The weights and

bias elements of the network obtained during training are responsible in compressing and

decompressing images without loss of data. Once training is accomplished, the hidden

layer and the output layer are separated and are used as compressor and decompressor as

shown in Fig. 4.2. The hidden layer compresses images received from image sensors,

compressed data is transmitted and the output layer decompresses the received data. This

research work focuses on design and development of compressor and decompressor unit

as shown in Fig. 4.2.

4.2.2 Two-DMNN Parameters

Image inputs consist of [256 x 256] pixel values are sub-divided into sub-blocks and are

processed by the two-dimensional network. The hidden layer compresses the sub-blocks

of image; the output layer decompresses the compressed sub-blocks. For a given image

the network functionalities are:

 Extracting sub-blocks from the image

 Compression of each sub-block

 Decompression of compressed sub-blocks

 Rearranging sub-blocks into image

The parameters for the 2-DMNN are as follows:

Image size: Size of input image considered for compression and decompression for

example [256 x 256], [512 x 512]. In general, image can be represented as [M x M],

where M is an integer.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

81

Image sub-block size: Images are divided into sub-blocks of images of smaller size.

Sub-block image size can be (16 x 16), (8 x 8), (4 x 4). In general sub-block image size

can be represented as (N x N). N is an integer. Size of N is always less than M.

Hidden layer size: Size of hidden layer decides the compression ratio. Image sub-blocks

are processed by the hidden layer. The number of neurons in each single layer of neuron,

and the number of single layers decides compression. For example, if the sub-block

image size is (8 x 8), selecting a hidden layer consisting (4 x 4) neurons achieves 75%

compression. If the sub-block size is increased to (16 x 16) and is compressed using 4 x 4

hidden layers, compression of 93.75% is achieved.

Output layer size: Number of neurons in the output layer is equivalent to the sub-block

image size. The compressed data at the output of hidden layer to be reconstructed to

original image of size N x N, the output layer should consist of N x N neurons.

Weights and biases of network: Hidden layer and output layer consists of weights and

biases that are obtained during training. Once the network is trained for various sets of

images during the training phase, optimum weights and biases obtained are used to

compress and decompress images. Number of weights and number of biases in the hidden

layer and output layer depends upon the number of neurons and the input size. For

example, if the input sub-block size is (8 x 8), and the number of hidden layer neurons is

(4 x 4), the hidden layer consists of 1024 weights and 16 biases. The output layer consists

of 1024 weights and 64 biases. Table 4.1 presents TDMNN parameters. For image size of

(256 x 256) TDMNN network parameters are presented.

Table 4.1 TDMNN design parameters
Image
size

Sub-
block
image
size
(number
of input
pixel)

Numbe
r of
sub-
blocks

Hidden
layer size
(i x j)
(number of
compressed
pixels)

Out-
put
layer
size

Compr
ession
ratio
(%)

Number of weights Number of
Biases

Hidden
layer
(Wij)

Out-put
layer
(Wji)

Hidden
layer

Out-
put
layer

256 x

32 x 32

0064

20 x 20
(400)

32 x

60.93 409600
(400 x 1024)

409600
(1024 x 400)

400 1024

16 x 16 75.00 262144
(256 x 1024)

262144
(1024 x 256)

256 1024

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

82

256 (1024) (256) 32
10 x 10
(100)

90.23 102400
(100 x 1024)

102400
(1024 x 100)

100 1024

8 x 8
(64)

93.75 065536
(64 x 1024)

065536
(1024 x 64)

064 1024

4 x 4
(16)

98.43 016384
(16 x 1024)

016384
(1024 x 16)

016 1024

2 x 2
(4)

99.60 004096
(4 x 1024)

004096
(1024 x 4)

004 1024

1 x 1
(1)

99.90 001024
(1 x 1024)

001024
(1024 x 1)

001 1024

256 x
256

16 x 16
(256)

0256

15 x 15
(225)

16 x
16

12.10 057600
(225 x 256)

057600
(256 x 225)

225 0256

12 x 12
(144)

43.75 036864
(144 x 256)

036864
(256 x 144)

144 0256

10 x 10
(100)

60.93 025600
(100 x 256)

025600
(256 x 100)

100 0256

8 x 8
(64)

75.00 016384
(64 x 256)

016384
(256 x 64)

064 0256

4 x 4
(16)

93.75 004096
(16 x 256)

004096
(256 x 16)

016 0256

2 x 2
(4)

98.43 001024
(4 x 256)

001024
(256 x 4)

004 0256

1 x 1
(1)

99.60 000256
(1 x 256)

000256
(256 x 1)

001 0256

256 x
256

8 x 8
(64)

1024

7 x 7
(49)

8 x 8

23.43 003136
(49 x 64)

003136
(64 x 49)

049 064

6 x 6
(36)

43.75 002034
(36 x 64)

002034
(64 x 36)

036 064

5 x 5
(25)

60.93 001600
(25 x 64)

001600
(64 x 25)

025 064

4 x 4
(16)

75.00 001024
(16 x 64)

001024
(64 x 16)

016 064

3 x 3
(9)

85.93 000576
(9 x 64)

000576
(64 x 9)

009 064

2 x 2
(4)

93.75 000276
(4 x 64)

000276
(64 x 4)

004 064

1 x 1
(1)

98.43 000064
(1 x 64)

000064
(64 x 1)

001 064

256 x
256

4 x 4
(16)

4096

5 x 3
(15)

4 x 4

06.25 000240
(15 x 16)

000240
(16 x 15)

015 016

4 x 3
(12)

25..00 000192
(12 x 16)

000192
(16 x 12)

012 016

4 x 2
(8)

50.00 000128
(8 x 16)

000128
(16 x 8)

008 016

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

83

3 x 2
(6)

62.50 000096
(6 x 16)

000096
(16 x 6)

006 016

2 x 2
(4)

75.00 000064
(4 x 16)

000064
(16 x 4)

004 016

2 x 1
(2)

87.50 000032
(2 x 16)

000032
(16 x 2)

002 016

1 x 1
(1)

93.75 000016
(1 x 16)

000016
(16 x 1)

001 016

In Table 4.1, a 256 x 256 image is considered as an example, and the network

parameters are presented for various compression ratios. Image is sub-divided into sub-

block of size (32 x 32), (16 x 16), (8 x 8) and (4 x 4). As the sub-block size is reduced the

number of sub-blocks increases and hence the network requires more time to process

data. As the input image is considered as 256 x 256, the sub-block size is chosen as even

integer only. Hidden layer sizes presented in Table 4.1 are randomly selected only to

demonstrate the network parameters. Hidden layer size is expressed as (i x j), which

implies that there is j number of single layer neurons, each single layer neurons consists

of i number of neurons. The value of i and j can be even or odd. Total number of neurons

in the hidden layer is i multiplied by j. Number of neurons in the output layer is

dependent on the sub-block image size. If the sub-block image size is 8 x 8, then the

output layer consists of 8 single layer neurons, each single layer consisting of 8 neurons.

Size of hidden layer decides the compression ratio. Table 4.1 also presents the number of

weights required in the hidden and output layer. The network architecture is feed forward

and fully connected architecture, every input reaches every hidden layer neuron. Every

input pixel is correspondingly multiplied by a weight value; the multiplied inputs are

added at the output of neuron. Every single neuron receiving 64 inputs are multiplied by

64 weights. If there are 16 neurons and 64 inputs than the total number of multiplications

are 1024. Number of weights and number of multiplications for hidden layer and output

layer are presented in Table 4.1. The arrangement of weights in the hidden layer and the

output layer is highlighted in yellow. Number of biases is dependent on number of

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

84

neurons. Compression Ratio (CR) is expressed in percentage and is defined as in equation

4.1,

 CR = (K1 – K2)/ K1 (4.1)

Where, K1 is number of data samples in the input and K2 is number of data samples in the

compressed output.

Table 4.1 presents the compression ratios for various hidden layer sizes. Images

sub-divided into sub-blocks of size (N x N) consists N2 pixels. 2-DMNN consisting of

hidden layer of size (M x M) compresses N2 pixels to M2 pixels. In Table 4.1 column 2

and column 3, highlighted values correspond to number of pixels in the compressed data

to input data. Based on the parameters provided in Table 4.1, network parameters can be

selected. In this work, two-dimensional multilayer neural network architecture with 4 x 4

input layers, 2 x 2 hidden layers and 4 x 4 output layer is chosen analyzed for its

performance. Fig. 4.3 shows the compression unit of two-dimensional multilayer neural

network architecture. Inputs from image sensor are represented as I denoting current (is

also represented as X). Hidden layer outputs are represented as Z. Inputs that are arranged

in 4 x 4 matrix form are fed into the hidden layer for compression. Every pixel in the

input layer is multiplied by weight values corresponding to the neuron. As shown in Fig.

4.3, hidden layer has two layers of neuron, each layer consisting 2 neurons represented by

Zn,k. Where n represents the neuron number and k represents the network layer. For

example, Z1,2 represents first neuron in the second layer. Every neuron has 16 weight

values and one bias element as per the network parameters data presented in Table. 4.1.

Hence every neuron requires 16 multipliers and one adder. Output of every adder is

further processed using network function.

The TDMNN architecture has 4 neurons arranged in two-dimensional structures

as shown in Fig. 4.3, to each of the 4 neurons, 16 input image pixels arranged in two-

dimensional format as (4 x 4) is applied in parallel. Each of the neurons produces one

output which is a function of 16 input values. Input image size of (4 x 4) is processed by

a (2 x 2) neuron producing (2 x 2) outputs. For simplicity and mathematical analysis, we

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

85

represent the input and the output matrix in (16 x 1) and (4 x 1) matrix form respectively.

However, for hardware implementation, 2-D input is considered. Each column of (16 ×

1) linear matrix of the (16 × M) matrix considered as the input layer is fed in to the two-

layered network as shown in Figure 4.1. The first stage has input layer of size (4 x 4),

hidden layer of size (2 x 2) (4 neurons) neurons. (4 x 4) image blocks is compressed to (2

x 2) image block at the hidden layer.

Figure 4.3 2-D neural network architecture

As illustrative example, let the input matrix be of size (4 x 4) arranged as (16 x 1),

is compressed to (2 x 2) and arranged as (4 × 1) by the first layer as per the equation

(4.1).

I2, 2

I3, 2

I4, 2

I2, 4

I3,1

I4,1

I2, 3

I3, 3

I4

Z2,1

Z1,1

Z1,2

Z2,2

I1, 1
I1, 2

I1, 3
I1, 4

I2, 1

I3, 1

I4, 1

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

86

 [Wf x i (4 × 16)] * [Xi x 1 (16 × 1)] = [Zf x 1 (4 × 1)] (4.1)

The compressed (4 × 1) matrix is decompressed to (16 × 1) by the output layer as shown

in equation (4.2). The output layer has 16 neurons.

 [Whi x f(16 × 4)]*[Zhf x 1(4 × 1)] = [Xhi x 1 (16 × 1)] (4.2)



































=





















































16

3

2

1

4

3

2

1

164163162161

34333231

24232221

14131211

.

.

.

.

.

....

....

....

....

....

Xh

Xh
Xh
Xh

Zh
Zh
Zh
Zh

WhWhWhWh

WhWhWhWh
WhWhWhWh
WhWhWhWh

Similarly at the receiver end, the 2 x 2 (4 x 1) matrix is reconstructed to 4 x 4 (16 x

1), by the weight matrix as shown in equation (4.2). Xi x 1 is the input matrix compressed

to Zf x 1 by the Wf x i matrix at the hidden layer. Zf x 1 compressed data is transmitted, due

to channel error Zhf x 1 is the received data. Zhf x 1 is decompressed to Xhi x 1 by the Whi x f

matrix at the output layer. Wf x i and Whi x f weight values are obtained during training of

the neural network using known image data sets.

Fig. 4.4 shows the detailed view of a single neuron. 16 synaptic weights are

multiplied with 16 inputs. The multiplied partial products are added as shown in equation

Input weight
matrix W

Input matrix X (4x4) represented as
16x1 for mathematical analysis

Output of Z hidden layer (2x2) represented
as 4x1for mathematical analysis



















=















































4

3

2

1

16

3

2

1

46434241

36333231

26232221

16131211

.

.

.

...

...

...

...

Z
Z
Z
Z

X

X
X
X

WWWW
WWWW
WWWW
WWWW

Weight matrix Wh

Compressed output Zh (2 x 2) represented as
4x1

Decompressed output
Xh (4 x 4) represented as

16x1

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

87

(4.3). At the adder stage a bias value is added and the result passed through a transfer

function as shown in Fig. 4.4. As there are four neurons each produces one output and

hence 4 outputs are generated from 16 inputs. Each neuron requires 16 multipliers, adders

and one network function to realize equation (4.4).

N1= W1,1 X1 + W1,2 X2 + W1,2 X3 + ----------+W1,16 X16 + Bias (4.3)

Z = Ғ(N1) (4.4)

Figure 4.4 Single neuron structure

4.3 Neural Network Training

The training of the network is a very important step and need to be carefully carried out

to get better performance of the network. The images shown in Fig. 4.5 are selected for

the purpose of training the network.

The training sets that are used should support in obtaining an optimum weight and

bias values of the network so that the image is reconstructed from the compressed data.

Any image data consists of edges, vertical lines, horizontal lines, curves, diagonal lines,

sharp discontinuities, intensity variation, contrast variation and random variations. Image

data sets selected for training the network and presented in Fig. 4.5 have this information.

Various images that have been chosen for training the network having some of the

properties mentioned have been presented in Appendix – B. Training the network using

these images would generalize the network and can be used for compression of any

image having the above features.

X

(16)
W (16)

Bias (1)

Adder

Purelin

Z = Ғ (N1)
N1 Z

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

88

Figure 4.5 Image data sets selected for training the neural network

4.4 Two-Dimensional Network Training using Backpropagation

Backpropagation training algorithm is adopted for training the network. Backpropagation

algorithm is used to find weights and bias elements of neural network architecture. In this

technique, the error between the desired output and the network output is used to

compute the new weights and bias elements. This process is carried out until the error

between the target and the output is zero or within threshold. Backpropagation technique

is discussed in Appendix - A works on 1-D inputs and produces 1-D output and the

network is multilayered. The network proposed in this work is two-dimensional and

multilayered, and the input-output is two-dimensional. Hence in this section, two

dimensional multilayered neural network training algorithm based on back propagation is

discussed. Fig. 4.8 shows the two-dimensional multilayered neural network architecture.

aa0682
Typewritten Text

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

89

In order to train two-dimensional architecture, a two-dimensional backpropagation

algorithm is required. As per the literature review carried out and summarized in chapter

2, two-dimensional training algorithm does not exist. Hence in this work two-

dimensional network is trained based on modified one-dimensional backpropagation

training algorithm. For multilayer neural network architecture, input image which is two-

dimensional is rearranged into one-dimension as shown in Fig. 4.6. The feed-forward

multilayer neural network is trained by setting the rearranged input as the target. The

network is trained to reproduce the target; the training is done iteratively by updating the

weights and biases based on error computed between actual output and the target. A

detailed discussion on backpropagation algorithm is presented in Appendix – A.

Fig. 4.6 shows the image reordering from 2-D to 1-D. Careful observation of the

reordering indicates that the adjacent pixels in every row when reordered are placed in

column. In the original matrix which is two-dimensional pixel 1 is adjacent to pixel 2,

pixel 2 is adjacent to pixel 3, and so on. In other words, neighboring pixels are adjacent to

each other. When the two-dimensional matrix is rearranged into one-dimension matrix as

shown in Fig. 4.6, pixel 5 that was adjacent to pixel 1 is actually moved down in this

column matrix. In an image neighboring pixels are highly correlated. Due to reordering

the correlation between pixels is lost. Hence the correlation between the pixels in

multiple rows is lost and hence the 1-D training algorithm cannot be used to train the

proposed two-dimensional network. In order to extend the one-dimensional training

algorithm to the proposed two-dimensional network, image reordering process is

modified and the training sets are created to maintain the pixel-pixel correlation.

Retaining the correlation between neighboring pixels in a given image, existing one

dimensional backpropagation training technique is used to train the two-dimensional

network. In Fig. 4.7, modified reordering scheme (Fisher, Perkins, Walker and Wolfart

2003) is demonstrated to increase the correlation between pixels. In this scheme, pixels 1,

2, 5 and 6 that are very close are reordered into column matrix. By doing so the pixels are

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

90

placed closer than the previous technique. Further, the correlations between pixels are

further retained by using overlapping sub-blocks as shown in Fig. 4.7.

Figure 4.6 Image reordering from 2-D to 1-D

Figure 4.7 Modified reordering scheme to improve correlation between pixels
Comparing the reordered outputs presented in Fig. 4.5 and Fig. 4.7, in Fig. 4.7

adjacent pixels in a sub-block are placed closer to each other and hence correlation

14 16 15 13

12 11 10 9

8 7 6 5

4 3 2 1

 1

 5

 4

 3

 2

 6

 10

 9

 8

 7

 11

 15

 14

 13

 12

 16

1 2 3 4

5 6 7 8

12 9 10 11

13 14 15 16

1

2

2

6

5

3

16

15

12

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

91

between pixels is retained to an extent. Training the two-dimensional network using

backpropagation algorithm based on this reordered matrix optimum weights and biases

are obtained for the network.

Since the reordering of the matrix ensures that the 2-D pixel-pixel correlation is

not affected by the modified reordering scheme. Backpropagation algorithm for feed-

forward multilayer network can be extended to 2-D multilayer network. Before training

the 2-D network the reordering of the matrix as shown in Fig. 4.7 is required. A software

reference model is developed for the proposed two-dimension multilayer neural network

is designed, modeled, simulated and results are verified for multiple test cases. The

network model is trained using the reordered data set, and simulated using different

image samples to validate its performances. Weights and biases obtained after training is

used to compress and decompress the network. In Fig. 4.8, the compressor unit is

presented.

As shown in Fig. 4.8, for the compressor unit consisting of 4 neurons in the

hidden layer arranged as 2 x 2 is fed with 16 inputs that are available as 4 x 4. The input

image pixels X1 – X16 are the pixels of a sub-image arranged as 4 x 4 matrixes. Every

neuron in the hidden layer receives these inputs but is correspondingly multiplied by the

weights. First neuron weight matrix W1,1 – W1,16 is multiplied by input image X1 – X16,

second neuron weight matrix W2,1 – W2,16 is multiplied by X1 – X16, similarly W3,1 –

W3,16 is multiplied by X1 – X16 and W4,1 – W4,16 is multiplied by X1 – X16. The partial

products are added and processed using the network function and Z1- Z4 the compressed

data is computed. During the training process the image pixels X1 – X16 are arranged in

one-dimensional matrix form. During implementation the input image pixels X1 – X16 are

arranged in 4 x 4 matrix forms. Hence modified one-dimensional training algorithm is

adopted for two-dimensional networks. Fig. 4.8 shows the input image sub-block

consisting of 4 x 4 pixels arranged in X-Y plane is compressed to 2 x 2 pixels represented

in X-Y plane.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

92

Figure 4.8 Two-dimensional neural network architecture (Compressor unit)

Weight matrix

 Ғ

Z4

W1, 1

W1, 5

W1, 9

W1, 13

W1, 2

W1, 6

W1, 10

W1, 14

W1, 3

W1, 7

W1, 11

W1, 15

W1, 4

W1, 8

W1, 12

W1, 16

+ (adder)

 Ғ

Z2

W2, 1

W2, 5

W2, 9

W2, 13
W3, 1

W3, 5

W3, 9

W3, 13
W4, 1

W4, 5

W4, 9

W4, 13

W2, 4

W2, 8

W2, 12

W2, 16
W2, 4

W2, 8

W2, 12

W2, 16

W2, 2

W2, 6

W2, 10

W2, 14

W1, 3

W1, 7

W1, 11

W1, 15

 Ғ

Z3

 Ғ

Z1

Two-dimensional input
(4 x 4)

B1 – B4

Bias

Output (2 x 2)

Network function

X -axis

Y
axis

 X – Image Inputs

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

93

As shown in Fig. 4.8, sub-block image of size 4 x 4 is compressed to 2 x 2 block. The

hidden layer has 4 neurons, 16 inputs to each neuron is multiplied by 16 weight values.

The multiplied partial products are added and processed by the network function. 2 x 2

neurons produce 4 outputs that are compressed image data set for an input image of size 4

x 4 sub-blocks. To compress each sub-block, multiplication, addition and network

function are the three major processing blocks required. Network functions used classify

the network as linear neural network and nonlinear network. Hardware realization of the

proposed architecture in VLSI requires designing multipliers, adders and network

function. Weight and biases need to be stored using on-chip memory. Training of the

network is required to find optimum weights and biases for the network. Test inputs are

required to validate the network performances.

4.5 Design, Modeling and Analysis of TDMNN Architecture

In this section, design and analysis of two-dimensional multilayer neural network

architecture is presented. In this section, for analyzing the performances of the network

software reference model is designed. Fig. 4.9 shows the top level architecture of the

software reference model of the proposed architecture. N x 1 pixel is processed to K x 1

pixel by the compression block. The compressed output is reconstructed to N x 1 pixels

by the decompressor unit as shown in Fig. 4.9.

The basic building blocks for the network are:

1. Weight matrix (required in hidden layer and output layer)

2. Bias (required in hidden layer and output layer)

3. Multipliers and Adders

4. Network function (required in hidden layer and output layer)

In this work, the following network functions have been used for the analysis of the

network:

1. Purelin or purely linear function

2. Tansig

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

94

Figure 4.9 level block diagram of neural network architecture for software model

Fig. 4.10 shows the input-output relation for the selected network functions. In a Purelin

function, there is a linear relationship between input and output. In Tansig and Logsig

functions input-output relationship is nonlinear. Network functions shown in Fig. 4.10 are

standard functions used to design neural network architectures. Based on the kind of

network function used, the neural network architecture can be classified as linear, non-

linear and hybrid network. Table 4.2 shows the types of networks and their classification.

The hidden layer has 4 neurons and output layer has 16 neurons, hence 4 network

functions are required in the hidden layer and 16 network functions are required in the

output layer. Choosing appropriate network functions for a given application is a very

Compressed data

N × 1
pixel X +

Network
Function

K × N
Weight
Matrix

K × 1
Bias

Matrix

[K × 1]

Figure 4.9(a): Compression block diagram

[K × 1] [K × 1]

K × 1

Compressed
data

X + Network
Function

N × K
Weight
Matrix

[N × 1]

Figure 4.9(b): Decompression block diagram

[N × 1]
[N × 1]

N × 1
Bias

Matrix

Decompressed
Output

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

95

important step. As per the literature review carried and presented in Chapter 2, linear and

nonlinear networks are used for image compression.

Figure 4.10 Network functions Tansig, Pure linear and Logsig
In this research work, network performance analysis is carried out using the

network functions shown in Table 4.2. A hybrid network is in which, the hidden layer

consists of nonlinear network function (tansig) and output layer consists of linear network

function (purelin).

Table 4.2 Neural network classification based on transfer function
Neural network type Network function

Hidden layer Output layer

Linear network Purelin Purelin

Nonlinear network Tansig or logsig Tansig or logsig

Hybrid network Tansig or logsig Purelin

In this work, performance analysis of all the three types of network is carried out.

Nine images have been selected for analyzing the performance of the network, the

training images are shown in Fig. 4.5. Performance metrics such as Mean Square Error

(MSE), Peak Signal to Noise Ratio (PSNR), Maximum Error and network delay (for

compression and decompression) are computed for all the nine images. Variation in

performance metrics for different compression ratio and bits per pixel is obtained and

analyzed for all the nine images. The performance of the three networks is carried out and

Input

Output

Input

Output

Input

Output

Tansig

Pure linear
Logsig

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

96

compared with JPEG standard compression technique. Based on the results obtained

suitable conclusions are drawn for hardware implementation.

Image quality metrics used for comparison are defined as follows:

⇒ Image quality metrics: Two of the image quality metrics used to

compare the various image compression techniques are the Mean

Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR)

(Huynh-Thu and Ghanbari 2008, Thomos, Boulgouris and Strintzis

1998 and Xiangjun and Jianfei 2007).

The MSE is the cumulative squared error between the compressed and the

original image, whereas PSNR is a measure of the peak error. The mathematical formulae

for the two are given in equation (4.5), (4.6) and (4.7),

 (4.5)

Equation (4.5) is a generic equation for mean square error, where e is the error between

two parameters t and a. Normalization factor Q represents the length of the sequence and

k is a variable.

For image,

 (4.6)

Where, I1(m,n) is the original image, and I2(m,n) is the decompressed image. M and N

represent the image size.

 (4.7)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

97

Where, R is the maximum fluctuation in the input image data type. For example, if the

input image has a double-precision floating-point data type, then R is 1. If it has an 8-bit

unsigned integer data type, R is 255.

A lower value of MSE means higher value of PSNR. Lower MSE means that the

decompressed image is same as the original image with minimum loss. Higher PSNR is

good for better image quality. Higher value of PSNR is good because it means that the

ratio of Signal to Noise is higher. Result analysis of the proposed work is based on these

quality metrics. Maximum error is another quality parameter that is also considered for

analyzing the performance of the network. This parameter determines the maximum error

between the original and the decompressed image. The error between the original input

signal and the decompressed signal is computed, and the absolute maximum error is

computed, which helps in identifying the maximum deviation between the original and

the decompressed image. Another factor that is also considered in for comparison is the

total time required to compress and decompress the image using the proposed neural

network architecture. As the network has to perform preprocessing operations on the

input image, compression and decompression using weights and biases, total delay would

help in estimating the complexity of the network. The quality metrics for variation in

compression ratio and bits per pixel are computed for analysis.

Bits per pixel (bpp) is calculated as follows: the input image is gray scale image

and each pixel is represented by 8-bit and hence the input image requires 8 bits per pixel

for representation. The compressed data is also represented using 8 bits. For example, if

we consider a 256 x 256 image each pixel represented by 8 bits, the total number of bits

required to represent the original image is 524288, the number of bits per pixel is 8

(524288/256*256) for the original image. The original image is sub-divided into 4 x 4

sub-block, for 256 x 256 images there are 4096 sub-blocks. Each of these sub-blocks is

compressed to 2 x 2 block. Hence the compressed image has 4096 compressed sub-

blocks of 2 x 2 sizes. Hence there would be 16384 pixels in the compressed data. If each

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

98

pixel is represented by 8 bits the total number of bits is 131072 bits. 131072 bits are

required to represent 256*256 pixels in the compressed form. Hence the number of bits

per pixel is 2 (131072/256*256).

Compression Ratio (CR) is calculated as follows: each sub-block of the 256 x

256 image consisting of 16 pixels (4 x 4) is compressed to 2 pixels (for example), the

compression ratio is given by: [(number of input pixels - number of compressed pixels)/

number of input pixels

4.6 Design of Software Reference Model

] %.

Design and development of software reference model using Matlab consists of four major

aspects:

1> Preprocessing:

a. Selection of training image data sets

b. Reordering of the image data sets suitable for 2D network

2> Network training:

a. Data sets arrangement for training the network

b. Setting of training goals

c. Setting of number of iterations

3> Compression and decompression

a. Compression of image using the trained network

b. Decompression of image using the trained network

4> Performance analysis

a. Visual analysis

b. Mean square error

c. Peak signal to noise ratio

d. Maximum error

e. Computation time

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

99

Figure 4.11 Software reference model flow chart

Read ten images

Divide images into sub blocks and
reorder

Image preprocessing
Size the images to 256 x 256

Define the network model

Set the training parameters

Train the network

Read image for testing the trained
network

Compress the image using the hidden
layer

Decompress the image using the output
layer

Stop

Calculate Max. Error, MSE, PSNR

Testing for images that are not
part of training

Calculate Max. Error, MSE, PSNR

 Start

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

100

The flow chart for the reference model is shown in Fig. 4.11. Training data sets are

selected, rearranged into one-dimensional and network architecture is modeled. Training

parameters for the proposed network is set; the network is trained based on back

propagation algorithm. The trained network is tested using new set of image data sets.

The quality metrics are measured to analyze the network performance.

4.7 Results and Analysis

This section discusses software simulation results obtained based on the proposed neural

network architecture. Gray scale images have been considered for analyzing the neural

network performances. Color images can also be compressed based on the proposed two-

dimensional network. The proposed method is implemented in MATLAB (R2006b)

Version 7.3. Software reference model developed is presented in Appendix – A. The

image is transformed, quantized, compressed using neural network and then

reconstructed. In order to analyze the performances of the proposed network, quality

metrics such as MSE, PSNR are considered for variations in bpp. The network is trained

using the selected nine images, further to test the generalization property of the network,

images that were not part of training data sets is used to analyze the network

performances. For the two-dimension multilayer neural network architecture model the

following are the results obtained and discussed:

1> Linear network:

i. Quality metrics vs. bpp

2> Hybrid network:

i. Quality metrics vs. bpp

ii. Quality metrics vs. bpp in graph form for three images

3> Comparison of linear, nonlinear and hybrid networks

i. Quality metrics vs. bpp

4> Comparison of hybrid, linear with JPEG technique

i. Quality metrics vs. bpp

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

101

ii. Quality metrics vs. bpp in graph form for three images

iii. Computation time for three images

5> Noise analysis

i. Quality metrics vs. bpp is presented

ii. Visual representation of reconstructed images

6> Error analysis

i. Quality metrics vs. bpp is presented

ii. Visual representation of reconstructed images

Results for three neural networks are discussed in detail. Based on the results and

observations new techniques are presented at the end of this section. Images that are not

part of training data sets are also used to identify network performances. This helps in

generalizing the network based on the optimum weights and bias obtained during

training. Various images that have been used for validating the neural network

performances are presented in Appendix-B.

4.7.1 Linear Network for Compression and Decompression

Fig. 4.12 shows the linear network architecture model, the input image is subdivide into 4

x 4 sub-blocks and reordered into 16 x 1 inputs. The input is set as the target for training

purpose. The hidden network and output network consists of Purelin function and hence

the network is linear.

Table 4.3 presents the quality metrics for nine different images. These images

have been randomly selected. For different bits per pixel values MaxError, MSE and

PSNR are computed using the neural network architecture and the results obtained are

given in Table 4.3.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

102

Figure 4.12 (a): Linear network for compression

Figure 4.12 (b) Linear network for decompression

Figure 4.12 Linear neural network for compression and decompression
 Table 4.3 Compression ratio vs. Quality metrics for linear network

Quality Metrics

Bits per pixel

0.5 2 4 5 7.5

Baboon
MaxError 12.0 10.0 15.0 23.0 24.0

MSE 1.0 1.4 2.9 4.4 6.3

PSNR 47.7 46.6 43.4 41.6 40.1

Image1

MaxError 15.0 23.0 33.0 27.0 28.0

MSE 2.4 5.6 7.2 6.5 8.8

PSNR 44.3 40.6 39.5 39.9 38.6

Peppers
MaxError 55.0 61.0 99.0 74.0 68.0

MSE 15.5 24.8 25.6 28.4 36.5

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

103

PSNR 36.2 34.1 34.0 33.5 32.4

Testim
MaxError 31.0 33.0 66.0 83.0 56.0

MSE 10.1 12.1 43.0 43.0 44.2

PSNR 38.0 37.2 31.7 31.7 31.6

Trees
MaxError 44.0 58.0 77.0 54.0 61.0

MSE 17.0 29.5 49.7 32.3 20.9

PSNR 35.8 33.4 31.1 33.0 34.9

Pears
MaxError 37.0 31.0 68.0 43.0 78.0

MSE 12.1 06.0 41.8 17.3 33.9

PSNR 37.2 40.3 31.9 35.7 32.8

Saturn
MaxError 28 61 57 50 42

MSE 2.6 10.3 6.1 10.0 8.6

PSNR 43.9 37.9 40.2 38.1 38.7

Kids
MaxError 61 42 57 60 45

MSE 19.2 15.3 20.3 20.0 17.2

PSNR 35.2 36.2 35.0 35.1 35.7

Rice
MaxError 19 32 29 32 32

MSE 8.5 17.8 22.0 21.8 24.6

PSNR 38.7 35.6 4.7 34.7 34.2

From the results obtained it is observed that MSE is not varying uniformly for

variations in bpp from 0.5 to 7.5 for all the images. Fig. 4.13 shows the plot of MSE vs.

bpp for selected images from Table 4.2. From the Fig. 4.13, it is observed that MSE

uniformly varies for baboon and image1, for pears and kids images MSE has random

variations. In case of Trees image, MSE increases to 50 at 4 bpp and falls back to 20 at

7.5 bpp. This is due to the fact that, the neural network architecture is trained to compress

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

104

and decompress all the images based on optimum weight and biases obtained during

training. Hence the weight and bias values need to be optimized for all possible images.

Figure 4.13 Bpp vs. quality metrics for linear network for selected images

From the results presented in Fig. 4.13 the following are the observations made:

1> For images baboon and trees, at 0.5 bpp and 2 bpp MSE is minimum, which

implies that due to compression information present in the images are not lost.

2> For pears and kids images, at 2 bpp MSE is minimum, which implies the

linear network, is able to reconstruct the original image at 2 bpp better than

any other bpp values.

3> For trees image MSE is lowest at 0.5 bpp.

From the results obtained, the following conclusions are made:

1> Linear network reconstructs images like baboon and image1 at 2 bpp

compression minimum MSE is obtained.

2> In baboon and image1, pixel-pixel correlation is very high (visual

observation) and hence the two-dimension training algorithm exploits this

property. In other images there are multiple edges and hence linear network

performance varies.

3> Highly correlated images when sub-divided into smaller sub-blocks would not

loose information. Images consisting of multiple edges when sub-divided into

bpp vs. mse

0
10
20
30
40
50
60

0.5 2 4 5 7.5

bpp

m
se

Baboon Image1 Trees Pears Kids

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

105

smaller sub-blocks and compressed and decompressed separately using the

TDMNN, when merged into original image size lose information due to

blocking artifacts. Images with multiple edges to obtain better MSE, larger

sub-block sizes are required.

4> Linear network performances are not same for all the images at different

values of bpp. This implies that the network performance depends on input

data.

In the next section, performances of hybrid neural network are discussed.

4.7.2 Hybrid Network for Compression and Decompression

Fig. 4.14 shows the hybrid network architecture model, the hidden network and output

network consists of Tansig function and Purelin function respectively and hence the

network is hybrid.

Figure 4.14 Neural network for compression and decompression

Compressed
Output

 N × 1
pixel

values
X +

Tansig

K × N
Weight
Matrix

K × 1
Bias

Matrix

[K × 1]

 Figure 4.14(a): Compression block diagram

[K × 1] [K × 1]

K × 1

Compressed
pixels X +

Purelin

N × K
Weight
Matrix

[N × 1]

Figure 4.14(b) : Decompression block diagram

[N × 1]
[N × 1]

N × 1
Bias

Matrix

Decompressed
Output

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

106

Input image is compressed using nonlinear network (hidden layer) consisting Tansig

network function. Compressed data is reconstructed using linear network (output layer).

In this architecture, Tansig and Purelin functions have been used in the hidden layer and

output layer respectively. Logsig with Purelin, Purelin with Logsig and Purelin with

Tansig function have also been used to analyze the network performance (results have

not been presented). The hybrid TDMNN is trained using the modified backpropagation

algorithm. Network is trained using nine test images for 100 epochs. The optimum

weights and biases obtained are used to design the network. Performances of the network

are obtained using multiple images and the results are presented in Table 4.4. Similar to

the analysis carried out for linear network, Table 4.4 presents the quality metrics for

hybrid network.

Table 4.4 Compression ratio vs. Quality metrics for hybrid network

Quality Metrics
Bits per pixel

0.5 2 4 5 7.5
Baboon

MaxError 5.00 8.00 12.00 45.00 46.00
MSE 0.06 0.10 2.50 4.70 4.70
PSNR 59.90 57.80 44.10 41.30 41.40

Image1
MaxError 3.00 4.00 47.00 48.00 64.00

MSE 0.15 00.42 15.72 18.42 19.80
PSNR 56.20 51.80 36.16 35.40 35.15

Peppers
MaxError 2.00 91.00 96.00 133.00 140.00

MSE 0.004 55.20 48.70 98.80 76.30
PSNR 72.00 30.70 31.20 28.10 29.30

Testim
MaxError 30.00 85.00 76.00 63.00 100.00

MSE 6.10 68.70 34.20 26.30 60.30
PSNR 40.23 29.70 32.70 33.90 30.30

Trees
MaxError 6.00 70.00 20.00 76.00 97.00

MSE 0.01 39.48 1.20 57.23 68.40

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

107

PSNR 66.50 32.10 47.30 30.50 29.70
Pears

MaxError 1 109 96 109 106
MSE 9.46E-04 57.05 58.19 67.17 67.18
PSNR 78.30 30.50 30.40 29.85 29.82

Saturn
MaxError 15 37 50 68 75

MSE 1.47 4.76 16.77 22.02 24.26
PSNR 46.40 41.30 35.80 34.70 34.20

Kids
MaxError 22.00 29.00 83.00 45.00 73.00

MSE 3.02 9.96 49.80 22.95 45.20
PSNR 43.30 38.14 31.15 34.52 31.57

Rice
MaxError 2.00 8.00 61.00 60.00 69.00

MSE 0.08 0.96 73.70 89.31 95.40
PSNR 58.76 48.27 29.45 28.62 28.33

Fig. 4.15 compares the quality metrics of hybrid network for three different

images.

Figure 4.15 Bpp vs. Quality metrics for hybrid network for selected images

It is found that PSNR and MSE are inversely proportional. For lower bpp MSE is

found to be very low and PSNR is very good. The maximum value of PSNR is 78 for

bpp vs. mse

0
10
20
30
40
50
60
70
80

0.5 2 4 5 7.5

bpp

m
se

Baboon Image1 Trees Pears Kids

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

108

pears image at 0.5 bpp, which is better than linear PSNR for the same image and bpp.

The minimum MSE is 0.009 for pears at 0.5 bpp. Fig. 4.15 presents the bpp vs. MSE for

selected images such as baboon, image1, Trees, pears and Kids. It is found that MSE for

Baboon and Image1 images vary similar to the linear network. In case of Trees, at 4 bpp

hybrid network achieves 1.2 MSE, but with linear network MSE is 49.7. This implies

that the network performance is image dependent.

From the results obtained it is found that hybrid network achieves better quality

metrics compared with linear network at lower bpp. Another very interesting observation

is that at higher bpp linear network perform better than hybrid networks. Based on the

experimental analysis carried out the following are the observations made:

1. MSE and PSNR values obtained at 0.5 bpp for both linear and hybrid network is

better than MSE and PSNR values at 7.5 bpp for all images. At 0.5 bpp, 16 pixels

are compressed to 1 pixel. Hence the network consists of 16 input layers, one

hidden layer and 16 output layers. At 7.5 bpp, 16 pixels are compressed to 15

pixels. This network consists of 16 input layers, 15 hidden layers and 16 output

layers.

2. 16 inputs are passed into one neuron in the hidden layer. The correlation or

redundancies among all the neighboring pixels are exploited and hence the

network reproduces the image with less MSE and higher PSNR. At 7.5 bpp, 15

neurons are used to compress 16 pixels, and hence the correlation properties

among the pixel values are not exploited. This achieves poor PSNR and MSE.

From the results obtained, the network performance is image dependent. Also training

the network is a very important phase. Optimum weights and biases obtained define the

network performance. Performance of nonlinear network is not presented. Comparison of

network performances of all three networks is presented in next section. Table 4.5,

compares the results of hybrid and linear network for the five selected images with

variation in bpp. MSE for selected five images are presented with variation in bpp.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

109

Table 4.5 Comparison of Hybrid and Linear Network

Quality Metrics
Bits per pixel

0.5 2 4 5 7.5
Baboon

Linear - MSE 1.00 1.40 2.90 4.40 6.30

Hybrid - MSE 0.06 0.10 2.50 4.70 4.70

Image1
Linear - MSE 2.40 5.60 7.20 6.50 8.80

Hybrid - MSE 0.15 0.42 15.72 18.42 19.80

Trees
Linear - MSE 17.00 29.50 49.70 32.30 20.90

Hybrid - MSE 0.01 39.48 1.20 57.23 68.40

Pears
Linear - MSE 12.10 6.00 41.80 17.30 33.90

Hybrid - MSE 9.46E-04 57.05 58.19 67.17 67.18

Kids
Linear - MSE 19.20 15.30 20.30 20.00 17.20

Hybrid - MSE 3.02 9.96 49.80 22.95 45.20

From the results obtained and presented in Table 4.5, hybrid network performs

better than linear network at 0.5 bpp. At higher values of bpp, linear network performs

better than hybrid network. At 4 bpp for trees image hybrid achieves very less MSE

compared with linear network. Form the results obtained it is concluded that the network

performance is a function of input. Next section compares the performance of all three

networks.

4.7.3 Performance Comparison of all Three Network Architectures

Quality metrics for all the three networks are presented in Table 4.6, the network

performances have been computed for 4 bpp. From the results obtained it is found that

the nonlinear network has very poor quality metrics compared with linear and hybrid

network and hence only linear and hybrid network is used for image compression and

decompression in this work.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

110

Table 4.6 Quality metric for all three networks
 Nonlinear Linear Hybrid

Baboon
MaxError 92.00 15.00 12.00

MSE 192.50 2.94 2.50
PSNR 25.28 43.44 44.14

Image1
MaxError 178.00 33.00 47.00

MSE 123.47 7.28 15.72
PSNR 17.21 39.50 36.16

Peppers
MaxError 161.00 99.00 96.00

MSE 127.44 25.63 48.73
PSNR 27.07 34.04 31.25

Testim
MaxError 103.00 66.00 76.00

MSE 121.39 43.06 34.22
PSNR 27.28 31.78 32.78

Trees
MaxError 193.00 77.00 20.00

MSE 310.79 49.75 01.20
PSNR 23.20 31.16 47.31

Pears
MaxError 172.00 68.00 96.00

MSE 151.57 41.86 58.19
PSNR 26.32 31.91 30.48

Saturn
MaxError 82.00 57.00 50.00

MSE 45.67 6.16 16.77
PSNR 31.53 40.23 35.88

Kids
MaxError 201.00 57.00 83.00

MSE 401.50 20.32 49.80
PSNR 22.09 35.04 31.15

Rice
MaxError 96.00 29.00 61.00

MSE 227.34 22.03 73.70
PSNR 24.50 34.70 29.45

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

111

From the results obtained the following are the observations made:

1. MSE and PSNR for all images are not the same. This shows that images don’t

have common information and the network has learnt to reproduce the images

based on information content

2. PSNR is best for images like trees, testim and baboon using Hybrid network, for

all other images linear network achieves best PSNR.

Form Table 4.6, it is found that linear and hybrid networks achieve higher PSNR and

lower MSE compared with nonlinear network performances. Also it is found that, hybrid

network outperforms linear network for certain images. Hence, it is concluded that hybrid

and linear networks can be used depending upon the image used for compression.

Figure 4.16 Decompressed output using linear network

In order to understand the performances of all the three networks, decompressed

images using all the three networks for four different images are presented in Fig. 4.16 to

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

112

Fig. 4.18. From the visual images presented in Fig. 4.16 to Fig. 4.18, it is very clear that,

linear network and hybrid network have better results compared to nonlinear network.

Fig. 4.16 presents the result of linear network, form the images we find that linear

network has reproduced the images with minimum distortions.

Fig. 4.17 presents the decompressed images using nonlinear network. All the four

images have distortions compared to the decompressed image using linear network. From

the results shown in Fig. 4.18, the decompressed results using hybrid network have better

visual quality compared to nonlinear network, but not better than linear networks. The

same results were also observed and discussed using graphs and tables presented.

Figure 4.17 (a) Figure 4.17 (b)

Figure 4.17 (c) Figure 4.17 (d)

Figure 4.17 Decompressed output using nonlinear network (a) baboon (b) Peppers

aa0682
Typewritten Text

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

113

Figure 4.18 (a) Figure 4.18 (b)

Figure 4.18 (c) Figure 4.18 (d)

Figure 4.18 Decompressed output using hybrid network (a) baboon (b) peppers
4.7.4 Comparison of TDMNN with DWT-SPIHT Technique

The results obtained for the TDMNN are compared with JPEG (DWT-SPIHT)

compression technique. In this work software model for JPEG technique is also

developed. Discrete Wavelet Transforms (DWT) and Set Partitioned Integer Hierarchical

Tree (SPIHT) encoder techniques have been used to develop JPEG compression and

decompression model. Images that have been considered for linear and hybrid networks

have been considered for JPEG technique. Table 4.7 presents the results obtained and

comparison of all the three techniques discussed.

aa0682
Typewritten Text

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

114

Quality metrics for three different techniques have been compared and Fig. 4.19 is used

for detailed analysis and observations. In Fig 4.19(a) bpp vs. MSE for baboon is

presented for all the three techniques. Lower bpp implies the number of neurons in the

hidden layer is less than the number neurons in the output layer. In this example, 16

pixels are compressed to 1 pixel which is 0.5 bpp, 16 pixels compressed to 2 pixels is 1

bpp. In the network compression data from 16 pixels to 1 pixel, is achieved by a single

neuron in the hidden layer, hence all the 16 inputs are multiplied by the weight matrix of

the single neuron network, thus exploiting the pixel to pixel correlation. As the number of

neurons in the hidden layer increases, pixel to pixel dependency reduces and hence

affects the MSE and PSNR. Thus it is observed that lower the bpp better is the network

performance in case on neural network architecture.

Table 4.7 Comparison of quality metrics for linear, hybrid and DWT-SPIHT
techniques

bpp 0.5 2 4 5 7.5
baboon MSE

DWT-SPIHT 715.9 183.8 46.80 14.62 1.97

NN- Hybrid 0.06 0.10 2.50 4.79 4.70

NN- Linear 1.09 1.41 2.94 4.47 6.33

baboon PSNR
DWT-SPIHT 19.58 25.48 31.42 36.47 45.17

NN- Hybrid 59.95 57.85 44.14 41.32 41.40

NN- Linear 47.73 46.62 43.44 41.61 40.11

image1 MSE
DWT-SPIHT 11.31 1.93 0.91 1.09 1.22

NN- Hybrid 0.15 0.42 15.72 18.40 19.84

NN- Linear 2.41 5.64 7.28 6.52 8.87

image1 PSNR
DWT-SPIHT 37.59 45.26 48.53 47.75 47.26

NN- Hybrid 56.2 51.82 36.16 35.4 35.15

NN- Linear 44.30 40.61 39.50 39.98 38.65

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

115

testim MSE
DWT-SPIHT 136.05 21.41 4.36 1.37 1.76

NN- Hybrid 6.16 68.73 34.22 26.30 60.38

NN- Linear 10.16 12.13 43.06 43.02 44.24

testim PSNR
DWT-SPIHT 26.79 34.80 41.73 46.75 45.65

NN- Hybrid 40.23 29.75 32.78 33.93 30.32

NN- Linear 38.0 37.29 31.78 31.79 31.67

peppers MSE
DWT-SPIHT 44.31 12.16 4.12 1.25 1.64

NN- Hybrid 0.10 27.09 47.06 47.25 53.02

NN- Linear 9.95 26.08 32.79 38.23 34.82

peppers PSNR
DWT-SPIHT 31.66 37.27 41.97 47.14 45.97

NN- Hybrid 57.83 33.80 31.40 31.38 30.80

NN- Linear 38.15 33.96 32.97 32.30 32.71

trees MSE
DWT-SPIHT 130.62 32.01 4.57 1.66 1.70

NN- Hybrid 0.01 39.48 1.20 57.23 68.40

NN- Linear 17.05 29.56 49.75 32.38 20.96

trees PSNR
DWT-SPIHT 26.97 33.07 41.52 45.90 45.82

NN- Hybrid 66.55 32.10 47.31 30.55 29.77

NN- Linear 35.81 33.42 31.16 33.02 34.91

pears MSE
DWT-SPIHT 33.70 9.40 1.48 0.62 1.71

NN- Hybrid 9.46E-04 57.05 58.19 67.17 67.18

NN- Linear 12.14 6.03 41.86 17.35 33.90

pears PSNR
DWT-SPIHT 32.84 38.37 46.41 50.17 45.78

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

116

NN- Hybrid 78.37 30.56 30.48 29.85 29.82

NN- Linear 37.28 40.32 31.91 35.73 32.82

Saturn MSE
DWT-SPIHT 2.43 0.40 0.70 0.71 0.71

NN- Hybrid 1.47 4.76 16.77 22.02 24.26

NN- Linear 2.61 10.31 6.16 10.03 8.63

Saturn PSNR
DWT-SPIHT 44.26 52.10 49.67 49.60 49.59

NN- Hybrid 46.44 41.34 35.88 34.70 34.28

NN- Linear 43.95 37.99 40.23 38.11 38.76

kids MSE
DWT-SPIHT 9.97 2.40 0.41 0.81 1.24

NN- Hybrid 3.02 9.96 49.80 22.95 45.20

NN- Linear 19.20 15.30 20.32 20.02 17.20

kids PSNR
DWT-SPIHT 38.14 44.31 51.99 49.03 47.16

NN- Hybrid 43.33 38.14 31.15 34.52 31.57

NN- Linear 35.29 36.27 35.04 35.11 35.75

rice MSE
DWT-SPIHT 199.70 44.37 13.70 4.31 1.57

NN- Hybrid 0.08 0.96 73.70 89.31 95.40

NN- Linear 8.59 17.80 22.03 21.80 24.60

rice PSNR
DWT-SPIHT 25.12 31.65 36.74 41.77 46.16

NN- Hybrid 58.76 48.27 9.45 28.60 28.33

NN- Linear 38.78 35.62 4.70 34.74 34.20

From Fig. 4.19(b), proposed technique outperforms JPEG technique at lower bpp, and

also it is found that hybrid network achieves better PSNR compared to linear network. At

higher bpp, JPEG based technique outperforms neural network techniques.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

117

Figure 4.19 (a) bpp vs. MSE

Figure 4.19 (b) bpp vs. PSNR

Figure 4.19 Comparison of quality metrics for all three techniques for baboon

Figure 4.20 (a) bpp vs. MSE

bpp vs. MSE

0

100

200

300

400

500

600

700

800

0.5 2 4 5 7.5

bpp

M
S

E

DWT-SPIHT
NN-L-NL
NN-L-L

bpp vs. PSNR

0

10

20

30

40

50

60

70

0.5 2 4 5 7.5

bpp

P
S

N
R DWT-SPIHT

NN-L-NL
NN-L-L

bpp vs. MSE

0

5

10

15

20

25

0.5 2 4 5 7.5

bpp

M
S

E

DWT-SPIHT
NN-L-NL
NN-L-L

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

118

Figure 4.20 (b) bpp vs. PSNR

Figure 4.20 Comparison of quality metrics for all three networks for Image1
From Fig. 4.20(a), hybrid network achieves better MSE at low bpp, at higher bpp JPEG

techniques achieves better results. For bpp 0.5 and 2 hybrid achieves better MSE. From

Fig. 4.20(b), PSNR is higher for hybrid network for 0.5 bpp and 2 bpp compared with

linear and JPEG based techniques. From Fig. 4.21, it is found that hybrid network

performs better at lower bpp, at higher bpp JPEG is better than the other two techniques.

Another very important observation made is that at higher bpp, linear networks perform

better than hybrid networks. Also the PSNR is better for hybrid techniques only at lower

bpp (≤ 4 bpp). JPEG is better compared to the other two techniques at higher bpp (> 4

bpp). Similarly, from the Table 4.7, we find that at lower bpp hybrid technique performs

better than JPEG technique. As our focus is on use of neural network architecture,

comparing hybrid and linear neural network technique, at higher bpp linear network

architecture perform better than hybrid network. In table 4.7, MSE and PSNR for various

bpp are highlighted. For each of the images considered in this work, best MSE and best

PSNR for various bpp are highlighted using yellow color. From the results it is found that

for 0.5 bpp hybrid networks achieves better PSNR and MSE compared to linear network.

For 7.5 bpp, linear network performs better than hybrid network. For bpp between 2 and

5, for few of the images hybrid achieves better performance compared to linear network.

bpp vs. PSNR

0

10

20

30

40

50

60

0.5 2 4 5 7.5

bpp

P
S

N
R DWT-SPIHT

NN-L-NL
NN-L-L

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

119

Figure 4.21 (a) bpp vs. MSE

Figure 4.21 (b) bpp vs. PSNR

Figure 4.21 Comparison of quality metrics for all three networks for peppers
Computation time is another very important factor required to analyze network

performance, which is discussed in the next section.

4.7.5 Comparison of Computation Time

MSE and PSNR have been used to compare the performances of the neural network

architectures proposed in this work. Another very important factor that needs to be

compared is the computation time of the network. The total time taken in compression

and decompressing the image is considered as the computation time. In the proposed

architecture, the input image is sub-divided, reordered and compressed using the hidden

layer, and the compressed image is further decompressed using the output layer. The

decompressed data is reordered and regrouped to the original image size. The total time

taken to perform this process is considered as the computation time. The computation

time for the proposed network is also compared with the total computation time using

bpp vs. MSE

0

10

20

30

40

50

60

0.5 2 4 5 7.5

bpp

M
SE

DWT-SPIHT
NN-L-NL
NN-L-L

bpp vs. PSNR

0

10

20

30

40

50

60

70

0.5 2 4 5 7.5

bpp

PS
NR

DWT-SPIHT
NN-L-NL
NN-L-L

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

120

JPEG technique. In JPEG technique, the input image is transformed using DWT and the

transformed data is encoded using SPIHT technique. The encoded data is decoded and

inverse transformed to decompress the compressed image. Table 4.8 presents the

computation time for three different images with varying bpp. The results presented in

the table are plotted in graphical form and is presented in Fig. 4.22. Computation time is

measure in terms of the CPU time required to perform the operation. Computation time

of DWT-SPIHT is higher compared to the time required by the network architectures

proposed in this work. For bpp from 0.5 to 7.5 the computation time using the proposed

technique is almost remaining constant.

Table 4.8 Computation time with variation in bpp

Time in seconds bpp 0.5 2 4 5 7.5

Baboon

DWT-SPIHT 48.520 83.660 167.390 203.950 228.600
NN - Linear 0.026 0.031 0.031 0.035 0.042

NN - Hybrid 0.029 0.030 0.042 0.044 0.044

 bpp
 0.5 2 4 5 7.5

Testim

DWT-SPIHT 57.240 95.600 189.360 192.560 191.880

NN - Linear 0.027 0.027 0.028 0.030 0.030

NN - Hybrid 0.027 0.030 0.30 0.037 0.037

 bpp 0.5 2 4 5 7.5

Image1

DWT-SPIHT 64.750 104.170 121.430 121.480 122.160

NN - Linear 0.025 0.027 0.028 0.030 0.030

NN - Hybrid 0.020 0.029 0.034 0.040 0.040

Computation time for JPEG is higher for increase in bpp. Fig. 4.22 depicts the

variation of computation time with bpp for three different images. Computation time is

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

121

the total time required to compress and decompress the input image. Network training

time is not considered, as the network is trained first and with the optimum weight and

bias values TDMNN is constructed and is used for compression and decompression.

Hybrid network is slower than linear network by almost 10 ms. In a linear network,

network function is linear and hence there is no network function required. In a hybrid

network, network function is Tansig, hence this introduces delay.

Figure 4.22 (a)

Figure 4.22 (b)

Computation time for baboon

0

50

100

150

200

250

0.5 2 4 5 7.5

bpp

tim
e

un
its DWT-SPIHT

NN-L-L
NN-NL-L

COmputation time

0

50

100

150

200

250

0.5 2 4 5 7.5

bpp

ti
m

e
u

n
it

s

DWT-SPIHT
NN-L-L
NN-NL-L

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

122

Figure 4.22 (c)

Figure 4.22 Computation time vs. bpp (a) baboon (b) testim (c) image1
Next section discusses the network performance for various images that were not

part of training data sets. This analysis helps in generalizing the network architecture for

image compression and decompression.

4.7.6 Network Performances for General Images

In this section images that were not part of the training sets have been used to compare

the network performance. Fig. 4.23 shows the results of compression and decompression

of test images. These images are not part of the training samples. These pictures have

been taken as a test case to verify the network performance.

In order to understand the network architecture and its performance better, the

following experiments have been carried out:

1. Impact of sub-block size on the network performance

2. Impact of multiple layers on network performance

In the next section the above two factors are discussed in detail based on the results

obtained using software models developed.

COmputation time

0

20

40

60

80

100

120

140

0.5 2 4 5 7.5

bpp

tim
e

un
its DWT-SPIHT

NN-L-L
NN-NL-L

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

123

Figure 4.23 Results of 2-D multilayered neural network architecture

4.8 Analysis of Variations in Network Size

As discussed in previous sections, neural network architecture consists of multiple layers

and each layer has multiple neurons. Number of layers and number of neurons in each

layer influences the network performance for image compression. The number of weights

and biases required to process data depends upon the network architecture. Analysis of

optimum network size is presented in this section. Another analysis discussed in this

section is the influence of image block size on the network performance. As discussed in

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

124

previous sections, images are sub-divided in smaller blocks and are compressed. The

optimum block size that can give better quality metrics is analyzed.

4.8.1 Block Size Influences on Performance Metrics

Original image of size 256 x 256 was sub-divided into 4 x 4 sub-block and was

compressed to 2 x 2 block using the two-dimensional multilayer network discussed in the

previous section. In this section, network with various other input sub-block sizes are

considered for analysis. Block sizes varying from 8 x 8 to 3 x 3 are considered for

analysis. Table 4.9 presents the performance metrics variations with respect to input

block size. The hidden layer size is fixed to 2 x 2, input layer and output layer sizes are

varied as shown in Table 4.9. Compression Ratio (CR) is expressed in percentage.

Table 4.9 Input block size vs. Performance parameters for tree image
Block

size

Maximum

CR%

MaxError MSE PSNR

Tree Pears Peppers Trees Pears Peppers Tree Pears Peppers

8 x 8 98.43 127 165 97 394.50 267.90 100.00 22.17 23.80 28.13

7 x 7 97.95 136 134 100 258.38 155.70 81.26 24.00 26.20 29.03

5 x 5 96.00 123 149 86 203.50 112.97 58.43 25.04 27.60 30.46

4 x 4 93.75 109 131 78 147.80 79.00 38.74 26.43 29.14 32.24

3 x 3 88.88 93 106 75 111.35 60.68 32.47 27.66 30.30 33.01

From the results obtained and presented in Table 4.9 it is found that the MSE is

best for block size of 4 x 4 and less. Hence in this work the block size selected is 4 x 4

block. The 2-D network designed also takes 4 x 4 matrixes and compresses the same to 2

x 2 sizes. Block size less than 4 x 4 has better MSE and PSNR, but affects the maximum

compression ratio.

Fig. 4.24 to Fig. 4.26 compares the variations in block size with quality metrics

for three different images. Sub-block size of 4 x 4 is recommended as it achieves better

PSNR and MSE compared to block sizes greater than 4 x 4. Smaller the sub-block size

better is the network performance, but the number of sub-blocks for a given image

increases with smaller sub-block size. From the results obtained and presented in this

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

125

section, sub-block of size 4 x 4 is chosen as a trade-off between network performance and

computation time.

Figure 4.24 Input block size vs. performance parameters for trees

Figure 4.25 Input block size vs. performance parameters for pears

Figure 4.26 Input block size vs. performance parameters for peppers

Next section discusses the selection process for number of hidden layer to achieve

better compression.

Input size vs. parameters

0
50

100
150
200
250
300
350
400
450

8 x 8 7 x 7 5 x 5 4 x 4 3 x 3 2 x 2 1 x 1

block size

Pa
ra

m
et

er
s

Max Error
MSE
PSNR

Input block size vs. parameters

0

50

100

150

200

250

300

8 x 8 7 x 7 5 x 5 4 x 4 3 x 3 2 x 2 1 x 1

block size

pa
ra

m
et

er
s

Max Error
MSE
PSNR

Input block size vs. parameters

0

20

40

60

80

100

120

8 x 8 7 x 7 5 x 5 4 x 4 3 x 3 2 x 2 1 x 1

Input block size

pa
ra

m
et

er
s

Max Error
MSE
PSNR

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

126

4.8.2 Impact of Multiple Layers on Network Performance

Another very important analysis that was necessary to carry out was the influence of

number of layers on the performance parameters. In this section, the impact on

performance parameters is analyzed by increasing the number of hidden layers. In this

analysis input block size is fixed to 4 x 4, hence the numbers of inputs at the hidden layer

is 16. Instead of compressing the input using one hidden layer, multiple hidden layers can

also be used to compress the data. In this analysis, 16 inputs are compressed to 8 and then

to 4, instead of 16 to 4 using one hidden layer. Table 4.10 and Table 4.11 show the

performance parameters for three different images with multiple hidden layers. Values in

brackets are for two layer network (hidden layer and output layer) network.

Comparing the results obtained for multiple hidden layers with single hidden

layer presented in Table 4.6, the results clearly show that the network consisting of one

hidden layer has better performance metrics. Hence in this research work, 2-D network

with single hidden layer is selected for implementation.

Table 4.10 Performance parameters for 16:8:4:8:16 network

Parameters Trees Pears Peppers

MSE 93.94 (49) 47.83(1.12) 25.59(0.06)

PSNR 28.00 (47) 31.00(49.00) 34.00(52.00)

Table 4.11 Performance parameters for 16:8:4:2:8:16 network

 Trees Pears Peppers

MSE 185(49) 115(01.12) 47(0.06)

PSNR 25(47) 27(49.00) 31(52.00)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

127

Figure 4.27 Performance metrics for multiple hidden layers

Fig. 4.27 and Fig. 4.28 presents the comparison of performance metrics for three images.

From the simulations study carried out, another interesting observation is that the

performance parameters of the network are not same for different images. There is a

variation in MSE, PSNR and Maximum error with variation in input image properties.

The performance of the network architecture is a function of image properties, unlike

conventional techniques. In order to understand the network performance better

(discussed in section 4.10), image properties are analyzed based on which the network

architecture is modified to improve performances.

Figure 4.28 Performance metrics for multiple hidden layers

16:8:4:8:16

0

20

40

60

80

100

120

Trees Pears Peppers

Images

P
er

fr
om

an
ce

 p
ar

am
et

er
s

Max Error
MSE
PSNR

16:8:4:2:4:8:16

0
20
40
60
80

100
120
140
160
180
200

Trees Pears Peppers

Images

P
er

fr
om

an
ce

 p
ar

am
et

er
s

Max Error
MSE
PSNR

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

128

4.9 Noise Analysis and Error Analysis

One of the major objectives of this research work is to analyze the network performance

under the influence of noise and error. Noisy image is given as input to the network, and

the network performance is analyzed. Different noise sources such as Gaussian noise,

Poisson noise and Salt & pepper noise with SNR of 10 dB are added to the image prior to

compression and decompression. Error analysis is also carried out by introducing error in

the compressed data.

4.9.1 Noise Analysis

TDMNN is trained to reproduce images even in the presence of noise. Test images are

added with noise and set as input. Network needs to reproduce images without noise.

Hence the target is set to images without noise. The network is trained for 100 epochs.

The network learns to reproduce the original image from the noisy input data during the

training phase. Optimum weight and biases are identified during the training phase. The

network performance metrics such as MSE and PSNR are obtained for 0.5 and 1 bpp for

four different images. The results obtained are compared with DWT-SPIHT technique.

Images corrupted with noise (Gaussian, Poisson, and Salt & Pepper) are compressed and

decompressed using TDMNN architecture and DWT-SPIHT technique. The results are

tabulated in Table 4.12 to Table 4.14.

Table 4.12 presents the MSE and PSNR results obtained for four images with 0.5 bpp

and 1 bpp compression. The results are obtained on images of size 256 x 256. From the

results obtained the following are the observations made:

1. Without noise hybrid neural network architecture and linear neural network

architecture achieve better MSE and PSNR. With salt and pepper noise added to

the image, MSE and PSNR achieved using DWT-SPIHT technique have large

variations as compared with hybrid and linear neural network architectures.

2. Neural network technique (hybrid and linear) achieve good MSE and PSNR even

when the image is corrupted with noise.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

129

Table 4.12 Results of noise analysis (Salt and Pepper)

Bpp = 1, Salt & Pepper Noise
Mean Square Error

 Hybrid Linear DWT-SPIHT

 Without noise With Noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 619.07 687.93 482.46 627.34 868.21 1.40E+03
Testim 189.00 262.07 112.74 275.90 213.34 1.01E+03
Peppers 142.01 212.22 96.68 244.47 189.37 946.31
Image1 33.87 96.20 18.24 160.17 46.78 882.80

PSNR
 Hybrid Linear DWT-SPIHT

Without
noise

With
noise

Without
noise

With
noise

Without
noise

With
noise

Baboon 20.21 19.75 21.29 20.15 18.78 16.68
Testim 25.36 23.94 27.60 23.72 21.28 18.09
Peppers 26.60 24.86 28.27 24.24 24.53 18.37
Image1 32.83 28.29 35.51 26.08 22.61 18.67

Bpp = 0.5, Salt & Pepper Noise
Mean Square Error

 Hybrid Linear DWT-SPIHT

 Without noise With Noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 640.76 859.96 611.52 685.15 721.08 1.73E+03
Testim 177.60 438.96 171.82 251.67 194.90 1.44E+03
Peppers 139.74 383.19 132.75 206.78 145.50 1.20E+03
Image1 33.12 241.57 30.11 95.76 46.15 1.01E+03

PSNR
 Hybrid Linear DWT-SPIHT

 Without noise
With
noise

Without
noise

With
noise

Without
noise

With
noise

Baboon 20.06 18.78 20.26 19.77 19.55 15.75
Testim 25.63 21.70 25.78 24.12 22.82 16.55
Peppers 26.67 22.29 26.90 24.97 21.50 17.33
Image1 32.92 24.30 33.34 28.31 30.90 18.07

Table 4.13 and Table 4.14 present the results obtained with Poisson and Gaussian noise.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

130

Table 4.13 Results of noise analysis (Poisson)

Bpp = 1, Poisson Noise
Mean Square Error

 Hybrid Linear DWT-SPIHT

 Without noise With Noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 619.07 628.18 482.46 500.11 868.21 928.65
Testim 189.00 195.36 112.70 127.34 213.34 247.44
Peppers 142.00 150.29 96.60 113.90 189.37 200.51
Image1 33.87 44.90 18.24 39.10 46.78 183.01

PSNR
 Hybrid Linear DWT-SPIHT

Without
noise With noise

Without
noise

With
noise

Without
noise

With
noise

Baboon 20.21 20.15 21.29 21.14 18.78 18.94
Testim 25.36 25.22 27.60 27.08 21.28 20.75
Peppers 26.60 26.36 28.27 27.56 24.53 22.10
Image1 32.83 31.60 35.51 32.20 22.61 20.50

Bpp = 0.5, Poisson Noise
Mean Square Error

 Hybrid Linear DWT-SPIHT

 Without noise With Noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 640.76 668.61 608.70 616.04 721.08 832.01
Testim 177.69 200.69 171.14 176.77 194.90 221.62
Peppers 139.74 169.53 132.20 139.19 145.50 200.46
Image1 33.12 66.47 30.04 38.70 46.15 185.71

PSNR
 Hybrid Linear DWT-SPIHT

 Without noise With noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 20.06 19.87 20.28 20.23 19.55 18.92
Testim 25.63 25.10 25.79 25.65 22.82 24.67
Peppers 26.67 25.83 26.91 26.69 21.55 25.11
Image1 32.92 29.90 33.30 32.24 30.95 25.44

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

131

Table 4.14 Results of noise analysis (Gaussian)

Bpp = 1, Gaussian
Mean Square Error

 Hybrid Linear DWT-SPIHT

 Without noise With Noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 619.07 666.81 482.46 582.99 868.21 1.30E+03
Testim 189.00 233.42 112.74 212.65 213.34 861.29
Peppers 142.01 188.17 96.68 199.33 189.37 804.83
Image1 33.87 86.23 18.24 119.16 46.78 743.92

PSNR
 Hybrid Linear DWT-SPIHT

Without
Noise

With
noise

Without
noise

With
noise

Without
noise

With
noise

Baboon 20.21 19.89 21.29 20.47 18.78 16.97
Testim 25.36 24.44 27.60 24.80 21.28 18.77
Peppers 26.60 25.38 28.27 25.13 24.53 19.07
Image1 32.83 28.77 35.51 27.36 22.60 19.41

Bpp = 0.5, Gaussian
Mean Square Error

 Hybrid Linear DWT-SPIHT

 Without noise With Noise
Without
noise

With
noise

Without
noise

With
noise

Baboon 640.76 808.32 608.70 649.61 721.08 1.55E+03
Testim 177.6 328.80 171.14 211.97 194.90 870.02
Peppers 139.7 300.99 132.20 175.05 145.50 812.92
Image1 33.12 196.99 30.04 71.69 46.15 744.18

PSNR
 Hybrid Linear DWT-SPIHT

 Without noise
With
noise

Without
noise

With
noise

Without
noise

With
noise

Baboon 20.06 19.05 20.28 20.00 19.55 16.22
Testim 25.63 22.96 25.79 24.80 22.82 18.73
Peppers 26.67 23.34 26.91 25.69 21.55 19.03
Image1 32.92 25.18 33.35 29.576 30.95 19.40

Neural network is trained with the images without noise, and the training is

carried out until the error is 0.001 of 100 epochs are carried out. In order to further

increase the efficiency of the network, the training parameters can be changed. PSNR and

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

132

MSE are dependent on image. Hence, the network needs to be trained efficiently to meet

the requirements of all the images.

4.9.2 Error Analysis

In this work, error analysis is also carried out to analyze the network performance. Error

refers to bit errors occurring on the compressed stream of data. In DWT-SPIHT

technique, the input image having 8 bpp is compressed to less than 8 bpp achieving

compression. For analysis purpose, 0.5 bpp and 1 bpp is selected. The compressed stream

of data using DWT-SPIHT technique is achieved in two steps. First image is transformed

using DWT into sub-bands and in the second stage the sub-bands are encoded into bit

stream using SPIHT. The compressed data is assumed to be transmitted, and due to

transmission, bit error occurs. In this work, error is introduced randomly on the

compressed data at various positions. For an image of size 256 x 256 selected for analysis

the compressed bit stream size at 0.5 bpp is 32,768. The bit stream consisting of ‘1s’ and

‘0s’ are corrupted by changing the values at various bit positions. For example, at bit

position 60, if the value is ‘1’, it is changed to ‘0’ or if ‘0’ is changed to ‘1’. Fig. 4.29

presents the visual pictures of reconstructed output with and without bit errors. Original

image of size 256 x 256 consisting of 524,288 bits are compressed to 32, 768 bits and is

further decompressed to 524,288. The decompressed image is shown in Fig. 4.29(b).

 Figure 4.29 (a) Input Figure 4.29 (b) Without Error Figure 4.29 (c) With error

Figure 4.29 Error analysis for Baboon image with 0.5 bpp, and error at 60th bit
position

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

133

MSE and PSNR for this image is 721.08 and 19.55. Bit error is introduced randomly at

the 60th bit position, at 60th bit position the bit value was ‘1’, this was changed to ‘0’,

based on this error the image was reconstructed and is shown in Fig. 4.29 (c). The error at

the 60th bit position introduces complete distortion in the decompressed data. MSE and

PSNR for the decompressed image with error in 60th bit position is 14860 and 6.4107

respectively. Similar observations were made by introducing errors at various bit

positions, every image was found to be distorted. Bit errors had larger influence on the

reconstructed image. The results for other images are also presented in Table 4.15, MSE

and PSNR have been obtained by introducing errors at 60th bit position only. Fig. 4.30 to

Fig. 4.32 presents the results obtained using DWT-SPIHT technique for four different

images. Images have been compressed at 0.5 bpp and error is introduced at the 60th bit

position.

Table 4.15 Error analysis for DWT-SPIHT technique

DWT-SPIHT Technique, 0.5 bpp, Error at 60th bit position
 Baboon Testim Peppers Image1

Without
Error

With
error

Without
Error

With
error

Without
Error

With
error

Without
Error

With
error

MSE 721.08 14860 134.93 8860 45.5 10500 26.15 2050
PSNR 19.55 6.4100 26.82 8.6531 31.5 7.89 33.96 15.01

Figure 4.30 (a) Input Figure 4.30 (b) Without Error Figure 4.30 (c) With error

Figure 4.30 Error analysis for Testim image with 0.5 bpp, and error at 60th bit
position

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

134

Figure 4.31 (a) Input Figure 4.31 (b) Without Error Figure 4.31 (c) With error

Figure 4.31 Error analysis for Testim image with 0.5 bpp, and error at 60th bit
position

Figure 4.32 (a) Input Figure 4.32 (b) Without Error Figure 4.32 (c) With error

Figure 4.32 Error analysis for Test image with 0.5 bpp, and error at 60th bit
position

From the results obtained and shown in Table 4.15 and Fig. 4.30 to Fig. 4.32, the

following are the observations made:

1. Without error in the compressed data, MSE and PSNR for all the images have

different values, this is due to the fact that all the images have different

information and hence the compression scheme exploits this information and

compress data.

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

135

2. PSNR for Image1 is higher compared to PSNRs for other images at 0.5 bpp. This

is due to the fact that Image1 does not have large variations in the background. At

0.5 bpp, reconstructed images have lost sharpness and are blurred.

3. Error at the 60th bit position corrupts the reconstructed image completely. Only in

case of Image1, the distortion is not very severe and visual information is

retained. This is due to the fact that, the DWT output transposes the temporal

information into multiple sub-bands and each sub-band holds the low frequency

and high frequency components of the original image at different band levels. The

significant components in the different sub-bands are encoded using SPIHT

encoding scheme. Bit error occurring at any bit positions influences the decoding

of the significant values at various sub-band levels and hence the image gets

distorted. As there is interdependency between various sub-band levels which is

captured by the SPIHT technique, any bit error affects the reconstructed image.

4. Reconstructed images with and without error have very large variations in MSE

and PSNR as shown in Table 4.15. For example, for baboon image PSNR of

19.55 changes to 6.4107, similar changes are observed in all other images.

5. From the results obtained, it is concluded that bit errors impact reconstruction

process in DWT-SPIHT technique. Similar, observations were for other images,

by inserting errors at various other positions.

In case of neural network based approach, input pixels are multiplied by the weight

elements and added with bias to compress the data. In this work, image of size 256 x 256

is sub-divided into 4 x 4 block. Each 4 x 4 block is rearranged to 16 x 1 matrix sizes, for

the entire 256 x 256 image the rearrangement matrix size is 16 x 4096. The network after

training consists of 2 x 16 weight matrix and 2 bias values to achieve 1 bpp. To achieve

0.5 bpp, the weight matrix is 16 x 1 and 1 bias value. The decompressor unit in case of 1

bpp consists of 2 x 16 weights and 16 bias values. For 0.5 bpp, the weight matrix is 16 x

1 and has 16 bias values. Four different images are considered for error analysis. The

reordered image is compressed using the compressor unit. Compressed data is of size 2 x

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

136

4096 and 1 x 4096 for 1 bpp and 0.5 bpp respectively. In the neural network approach,

compression is achieved in one step, there is no encoding stage. Error is introduced by

changing the compressed data values. Fig. 4.33 shows the snap shot of a compressed

image data. Only a partial data is presented for the sake of understanding the procedure of

error analysis. In order to introduce error on this compressed data, the decimal values at

different positions are modified. For example, in Fig. 4.33 the compressed data is stored

in a variable name atest41, this consists of 4096 pixels. The decimal value at 3rd position

having a value -1.2351 is modified and changed to 0. In this work, the compressed data is

modified at positions 200 to 210. 11 decimal positions from 200 to 211 are changed to 0.

The modified compressed data is presented to the decompressor unit for reconstruction.

Figure 4.33 Compressed output

Fig. 4.33 presents the reconstructed output for all four images compressed at 0.5

bpp using linear network. Fig 4.34 presents the reconstructed output for all four images

with 1 bpp using hybrid network. For all the images the error is introduced between 200th

decimal positions to 210th decimal position. From the obtained results if is observed that

the error introduced at the given positions corrupt the data only at appropriate positions as

highlighted in yellow circles. The errors do not corrupt the entire image as in DWT-

SPIHT technique. Image quality is not affected and most of the information in the

original image is retained in the reconstructed image, even in the presence of error. Errors

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

137

positions have been changed and analysis is carried out. It is observed that errors

introduced at any decimal positions do not corrupt the entire image but introduce

disturbance only at specific locations. Multiple images were used for error analysis and

results obtained are not presented. It is observed that error introduced on the compressed

data does not impact the information content in the reconstructed data. Fig. 4.34 to Fig.

4.37 presents the reconstructed images using linear and hybrid network. Table 4.16 and

Table 4.17 presents the image quality metrics for linear and hybrid network.

Figure 4.34 Reconstructed output at 1bpp using linear network

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

138

Figure 4.35 Reconstructed output at 0.5 bpp using linear network

Figure 4.36 Reconstructed output at 1 bpp using hybrid network

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

139

Figure 4.37 Reconstructed output at 0.5 bpp using hybrid network
Table 4.16 Error analysis for linear network

MSE, 1 bpp Linear Network
 Baboon Testim Peppers Image1

Without error 473.59 107.05 102.35 18.99
With error 502.19 125.95 121.46 39.54

PSNR, 1 bpp Linear network
 Baboon Testim Peppers Image1

Without error 21.37 27.83 28.02 35.34
With error 21.12 27.12 27.28 32.16

MSE, 0.5 bpp Linear Network
 Baboon Testim Peppers Image1

Without error 610.9 171.12 132.47 30.07
With error 616 176.89 140.01 33.73

PSNR, 1 bpp Linear network
 Baboon Testim Peppers Image1

Without error 20.27 25.78 26.9 33.34
With error 20.17 25.69 26.81 32.85

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

140

Table 4.17 Error analysis for hybrid network
MSE, 1 bpp Hybrid network

 Baboon Testim Peppers Image1
Without error 624.39 176.53 136.34 31.36
With error 648.49 195.07 154.36 50.24

1 bpp Hybrid network
 Baboon Testim Peppers Image1
Without error 20.17 25.66 26.78 33.16
With error 20.01 25.22 26.24 31.11

MSE, 0.5 bpp Hybrid network
 Baboon Testim Peppers Image1
Without error 610.30 172.80 133.51 30.69
With error 611.52 174.41 133.67 31.07

PSNR, 0.5 bpp Hybrid network
 Baboon Testim Peppers Image1
Without error 20.27 25.75 26.87 33.25
With error 20.26 25.71 26.87 33.20

In order to minimize the impact of channel error on the reconstructed image, error

control codes are used to encode the compressed data.

After compression of image using DWT-SPIHT, the compressed data can be

encoded using error control codes. Error control codes are used to detect errors and

correct errors when the compressed data is transmitted in a communication channel that

has noise. In order to detect and correct errors, the encoder transmits redundant

information along with compressed data. At the receiver, the decoder uses the redundant

information to detect and correct the errors that has occurred during transmission. There

are two types of error-control coding techniques, block codes and convolution codes.

Block coding techniques map a fixed number of message symbols to a fixed number of

code symbols. A block coder treats each block of data independently and is a memoryless

device. Bose-Chaudhuri-Hocquenghem (BCH), Low-density parity-check (LDPC),

cyclic, hamming and Reed Solomon (RS) are different types of block codes (Wicker, S.

B 1995). In this work, RS encoder is used as error control codes to detect and correct

errors. Reed-Solomon codes use m-bit symbols instead of bits. A message for an [n, k]

Reed-Solomon code must be a k-column Galois array in the field GF(2m). Each array

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

141

entry must be an integer between 0 and 2m-1. The code corresponding to that message is

an n-column Galois array is GF(2m). The codeword length n must be between 3 and 2m-1.

The quantities n and k are input parameters for Reed-Solomon code. In RS encoder, m is

number of bits per symbol (3 to 16), n is number of symbols per codeword, k is number

symbols per message and t is error correction capability ((n-k)/2).

In this work, [255,239] RS encoder is used to encode the compressed data and

error is introduced on the encoded data. At the receiver, the encoded data along with

noise is decoded using RS decoder. The compressed bits were converted to symbols of

each 8-bit, and symbols were grouped into frames of 225 symbols. Each block of

symbols were encoded using RS encoder, error were introduced on the encoded data.

From the simulation results obtained, it is found that due to introduction of error control

codes, maximum of 4 symbol errors were corrected by [255,239] RS encoder. Errors

occurring on more than 4 symbols, were not be corrected by the RS encoder. Thus, for

burst error correction of compressed data RS encoder would improve the image quality

for a maximum of (n-k)/2 errors. DWT-SPIHT based image compression algorithm along

with RS encoder is capable of detecting and correcting error, however, the processing

time is increased by 9 seconds due to RS encoder logic.

From the results obtained and presented in Table 4.16 and Table 4.17 the following

are the observations made:

1. Linear network are better than hybrid network in reconstructing the images

considered from the compressed data.

2. MSE and PSNR variations with and without error are very less, as compared with

DWT-SPIHT technique.

3. At 0.5 bpp hybrid network exhibits better performance in terms of MSE and

PSNR compared with 1 bpp.

4. Use of error control codes to minimize channel errors in DWT-SPIHT gives

improvement in image reconstruction at the cost of processing delay. TDMNN

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

142

technique is capable of reconstructing image even in the presence of channel error

and is faster compared with DWT-SPIHT.

5. Careful observation of the reconstructed data, it is found that checker blocks

occur in the reconstructed image. This is due to the fact that in the software

reference model, image is sub-divided into 4 x 4 blocks and hence this introduces

checker block error. This is one of the major limitations of NN based compression

technique as compared with DWT-SPIHT technique. The checker block error can

be minimized by combining DWT with Neural Network.

A paper titled TDMNN architecture for image compression and decompression is

prepared based on the results obtained and is submitted to International Journal on

Signal Processing.

The disadvantage of DWT with TDMNN is that the DWT decomposes the images

into sub-bands, image information are represented in terms of low frequency and high

frequency components and are available in each sub-band of the transformed data. SPIHT

encoder encodes the significant and insignificant pixels using hierarchical approach

(Rabbani, M and Joshi, R 2002). Every encoded bit has information of the original

image; hence any error on the compressed data significantly affects the reconstructed

image. In TDMNN due to the training process, the network is trained to reproduce

original image even in the presence of noise or error, this advantage of TDMNN achieves

better performance for the network as compared with DWT-SPIHT technique. However,

in TDMNN technique, as the input image is sub-divided into sub-blocks, the

reconstructed images have checker blocks as observed in Fig. 4.34 to Fig. 4.37. This is

one of the limitations of TDMNN. In order to over-come this limitation, image is first

transformed into sub-bands using DWT and the transformed sub-bands are compressed

using the TDMNN architecture. DWT transformation extracts frequency components

present in a given images at various sub-bands. The network is trained to learn this

information content. Weights and biases are obtained for the network based on the image

features. Also, as the TDMNN compresses 4 x 4 sub-bands to 2 x 2 outputs, compression

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

143

is achieved. Errors in channel do not impact the reconstruction process as TDMNN is

trained to work in such environments. Further, the checker block error in the

reconstructed output is eliminated as the images are not sub-divided into smaller sub-

blocks. This technique not only eliminates checker block error, but also reproduces

images even in the presence of error. DWT with neural networks have been proposed and

used for image compression and decompression (Szu, Telfer and Garcia 1996, Szu,

Telfer and Kadambe 1992, Veronin et al. 1992, Zhang 1996, Robinson and Kecman 2003

and Barni, Bartolini and Piva 2001). DWT combined with TDMNN architecture is

designed, modeled and analyzed for image compression and decompression. DWT-

combined with TDMNN architecture for image compression is further extended to 3D-

DWT and TDMNN architecture. This architecture is documented by the author and is

sent for patent review process. Based on the results and analysis carried out on TDMNN

architecture the following are the conclusions:

1. Hybrid, linear and nonlinear TDMNN architecture have been designed, modeled

and simulated.

2. 1-D backpropagation training algorithm have been modified and used to train

TDMNN architecture.

3. Performances of TDMNN (Hybrid and Linear) architecture are compared with

DWT-SPIHT technique for various images and compression ratios (bpp).

4. TDMNN network performance is a function of image. Based on the image

properties, hybrid or linear TDMNN architecture is used for achieving better

results.

5. Computation time is another metric that is computed for TDMNN and compared

with DWT-SPIHT technique. TDMNN architecture is faster compared to DWT-

SPIHT.

6. Two-layered network with sub-block size of 4 x 4 is the selected TDMNN

architecture.

7. TDMNN architecture is immune to noise and also immune to channel errors.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

144

Based on the conclusion presented above, next section discusses adaptive TDMNN

architecture for image compression and decompression.

4.10 Adaptive TDMNN Architecture for Image Compression and

Decompression

Based on the results obtained and presented in previous sections, as the network

performance is image dependent, it is evident that use of hybrid or linear or nonlinear

network would not be a viable solution for image compression and decompression that

can be used to compress any image. Compression ratio (bpp) and computation time plays

another important factor to be considered for image compression and decompression.

Hence in this section, an adaptive TDMNN architecture is proposed, designed and

analyzed for image compression and decompression. TDMNN performance is a function

of input image and bpp, next section discusses the very basics of images and its

properties. This discussion helps in understanding the need for adaptive image processing

technique. Adjacent pixels in an image are highly correlated, this redundancy between

pixels in spatial domain need to analyzed and compared with multiple images.

4.10.1 Linear Correlation in Spatial Domain

In order to understand the pixel to pixel correlation property, multiple images are

considered. For convenient illustration, the image is cut into blocks of two pixels, in

order to find the linear correlation between adjacent pixels, pixels blocks of size two is

ordered into Cartesian coordinates. The results of this pixel-pixel relation are presented in

this section for discussion. Fig. 4.38 shows the linear correlation between two adjacent

pixels for multiple images. It is very clear that the every image has linear correlation

between adjacent pixels. This correlation is exploited for image compression. If a straight

line is drawn linking maximum number of pixels, the points on straight lines represents

the approximation matrix using which the image properties can be represented. The

weight matrix obtained during training tends to move toward this optimum point. From

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

145

the results presented in Fig. 4.38(a) to 4.38(h), it is clear that for most of the image

maximum number of pixels are closer to this straight line. The slope of the straight line

may vary, or the number of points available may spread across the straight line depending

upon the information in the image.

Figure 4.38 (c) Printer

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

146

Figure 4.38 Linear correlations between adjacent image pixels

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

147

From the results presented in Fig. 4.38, there exists high correlation among adjacent

pixels in a given image. Images consisting of multiple edges and large variation in

intensities in the spatial domain, as seen in Fig 4.38(e) to Fig. 4.38(h), there is a wide

spread of pixel values. This spread in pixels defines the amount of information in a given

image. Hadi and Jamzad (2009) have classified the information content in an image based

on three parameters:

 1. Entropy

2. Activity and

3. Pattern trajectory in blocks

Rahman and Rahman (2003) have proposed new architectures for image

compression based on variations in neural network architectures. Based on the work

reported by Hadi and Jamzad (2009) and Rahman and Rahman (2003), in this research

adaptive TDMNN architecture is proposed for image compression and decompression.

From the results obtained and analysis carried out, network performance is a function of

image input and bpp. Hence, adaptive 2-D multilayered network is proposed for

implementation.

4.10.2 Adaptive TDMNN

Hadi and Jamzad (2009) in their paper have reported that activity and pattern trajectory

for a given image given accurate results in classifying images, but they consume more

time. In this work, entropy factor is considered for classifying images. Entropy is

calculated for every image before compression. Based on the entropy computed for a

given image, compression ratio or bpp and required computation time, a suitable

TDMNN architecture is selected for compression and decompression of images. In this

architecture, computation time is also used to select the TDMNN architecture. Bpp and

computation time are user inputs that needs to be defined during the compression and

decompression process. A detailed discussion on Entropy is presented in Appendix- C.

Fig. 4.39 presents the adaptive TDMNN architecture.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

148

Figure 4.39 Adaptive TDMNN architecture

Hybrid

(hidden)
TDMNN

Nonlinear
(hidden)
TDMNN

Linear

(hidden)
TDMNN

4

Image Sub-
block of 4 x 4

Control unit to adaptive select TDMNN architecture based on input
image entropy, bpp and required computation time

User input:
Bpp

User input: Required
computation time

Compressor unit Decompressor unit

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

149

As shown in Fig. 4.39, input image of size 4 x 4 is given as input to any of the TDMNN

architecture. The architecture consists of three different TDMNN architecture (hybrid,

linear and nonlinear), based on user defined inputs (bpp and computation time) the

control unit selects one of the TDMNN architecture for compression. For every sub-block

of the input image entropy is computed, based on the entropy value and user defined

inputs provided the control unit adaptively selects the TDMNN architecture. Entropy can

be calculated for entire image or can be computed for every sub-block of the image.

Entropy calculated for every sub-block of an image would be more accurate in choosing

TDMNN architecture. The software reference model developed computes entropy for

image which is used to adaptively select the required TDMNN. At the decompressor unit,

the compressed data is decompressed by one of the TDMNN architecture

correspondingly selected by the control unit. As the system is capable of choosing

different TDMNN architectures to achieve better performance this architecture is called

as Adaptive TDMNN architecture. Fig. 4.40 represents the flow chart for the proposed

adaptive TDMNN architecture. Based on experimental results carried out the flow chart

for the adaptive TDMNN architecture is designed and is presented in Fig. 4.40.

Entropy for a given image is computed, entropy values are classified into three classes.

⇒ Class 1: Entropy value - 6 to 7.5.

⇒ Class 2: Entropy value - 5 to 6.

⇒ Class 3: Entropy value - 4 to 5.

Higher the entropy, information content is high. From the discussion carried out

from the previous section, for lower values of bpp hybrid TDMNN performance was

found to be better than linear TDMNN. For higher values of bpp linear or nonlinear is

better. Based on the results discussed in the previous section, flow chart for adaptive

TDMNN is designed. Software reference model is developed and the network

performance is analyzed for different test images.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

150

Figure 4.40 Flow chart for adaptive TDMNN architecture

Yes

Yes

Yes

No

No

No

Select hybrid TDMNN

If
0.2 < B ≤ 4

Yes

No
Select hybrid

TDMNN

If
4 < B ≤ 7.5

Yes
No

Select Linear
TDMNN Select hybrid

TDMNN

Select
nonlinear
TDMNN

If
0.2 < B ≤ 2

Select Hybrid
TDMNN

Select Linear
TDMNN

Yes

No

Input image
of size N x N

Entropy
computation (E)

Wait for user defined
input

Enter bits per pixel (B)

If
6 < E ≤ 7.5

If
4 < E ≤ 5

If
5 < E ≤ 6

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

151

Adaptive TDMNN architecture is developed based on the algorithm presented in Fig.

4.40. The default architecture for the proposed system is hybrid TDMNN. Depending

upon user defined input, the network automatically selects corresponding architecture for

compression and decompression of input image. Fig. 4.41 presents the entropy for 18

images. From the selected set of images, for which entropy is computed based on the

equation in Appendix-C, entropy for given images vary from 4 to 8. Also based on the

results presented in section 4.7, a control unit is designed to adaptively select the required

TDMNN architectures based on image entropy and bpp.

Figure 4.41 Entropy distributions of different images

Fig. 4.41 presents the entropy of multiple images considered for analysis in this

work. The adaptive TDMNN architecture is analyzed for its performance for 9 different

images. Entropy is calculated first based on the entropy and required bpp corresponding

TDMNN architecture is selected for image compression as shown in Table 4.15. The

compressed data is transmitted along with network code to the receiver, so that

corresponding TDMNN is chosen for reconstruction. In this research work, hybrid, linear

and nonlinear networks are designed to compress the image data. The network is trained

using the software reference model. As shown in Table 4.18, based on results presented

Entropy distribution

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Images

En
tro

py

Entropy

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

152

in section 4.7, and entropy values are computed for each of the images, control unit is

designed for adaptive TDMNN.

Table 4.18 Adaptive TDMNN selection guide

Images Entropy
Selected Network

Bpp < 4 Bpp = 4 Bpp > 4
Baboon 7.4 Hybrid Hybrid Linear
Image1 6.4 Hybrid Linear Linear
Testim 7.1 Hybrid Hybrid Linear
Peppers 6.5 Hybrid Linear Linear
Trees 5.5 Hybrid Linear Linear
Pears 6.9 Hybrid Hybrid Linear
Rice 7.0 Hybrid Hybrid Linear

Saturn 5.6 Hybrid Linear Linear
Kids 4.8 Hybrid Linear Linear

Table 4.19 and Table 4.20, presents the results of MSE and PSNR for adaptive

TDMNN architecture and is compared with TDMNN architecture. The compression

ratio is fixed at 75%. The adaptive TDMNN computes entropy for the given image, and

based on this information appropriate network is selected for compression and

decompression. From the results presented in Table 4.19, MSE is better in case of

adaptive TDMNN. Due to network adaptability, there is improvement in network

performance compared to TDMNN architecture.

Table 4.19 Comparison of adaptive TDMNN with TDMNN

Images Network Selected
PSNR

(Adaptive TDMNN)
PSNR

(TDMNN)
Trees Nonlinear 30.9 27.4
Board Hybrid 32.9 28.7
Circuit Hybrid 37.8 33.0
Greens Linear 46.3 36.0

Football Hybrid 35.4 29.8
Cameraman Hybrid 33.5 26.4

Tape Hybrid 31.0 27.0
Fabric Linear 33.9 26.8
Pears Linear 32.0 29.0

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

153

Saturn Nonlinear 28.3 24.0
Peppers Linear 25.7 22.0

Tier Hybrid 32.3 28.3
Kids Nonlinear 23.5 18.4
Rice Hybrid 27.5 24.6
Cell Nonlinear 26.9 16.7

Table 4.20 Comparison of adaptive TDMNN with TDMNN

Images Network Selected
MSE

(Adaptive TDMNN)
MSE

(TDMNN)
Trees Nonlinear 21.0 22.9
Board Hybrid 18.0 21.2
Circuit Hybrid 16.9 18.0
Greens Linear 12.7 14.7
Football Hybrid 18.0 21.3

Cameraman Hybrid 17.0 21.2
Tape Hybrid 19.8 22.6

Fabric Linear 15.0 16.2
Pears Linear 14.3 17.8
Saturn Nonlinear 27.0 32.0

Peppers Linear 22.0 25.0
Tier Hybrid 27.0 29.3
Kids Nonlinear 38.0 42.0
Rice Hybrid 25.4 26.0
cell Nonlinear 45.7 71.0

Table 4.21 Adaptive TDMNN architecture comparison

Quality metrics
Barbara

DWT-SPIHT Adaptive TDMNN
Max Error 139 168

MSE 736 447
PSNR 19 21

Quality metrics
Lena

DWT-SPIHT Adaptive TDMNN
Max Error 125 123

MSE 562 202
PSNR 20 25

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

154

The results presented in Table 4.19 and Table 4.20 was for images that were part of

training data set. In order to analyze the network performance for generic images, two

images Lena and Barbara were considered. These images have been considered as they

form the standard images for any image processing activity. The results obtained for

these images are presented in Table 4.21, and are compared with DWT-SPIHT technique.

From the results obtained, it is concluded that proposed adaptive TDMNN is

superior to DWT-SPIHT technique in compressing and decompressing images. For bpp 4

and less than 4 adaptive TDMNN architecture is recommended for image compression.

Further, proposed architecture is immune to noise and also immune to channel errors.

Superiority of the proposed network is due to the adaptability of the network as per the

entropy of the input image and required bpp. Further, the network performance can be

explored with variations in block size and make the network adaptable to input block

size. Instead of computing entropy for the entire image, entropy for sub-blocks can be

computed and the network can be made adaptable. This would further increase the

accuracy of the network. However, the scope of this research is to realize the proposed

adaptive TDMNN using VLSI technology. Chapter 5 presents a detailed discussion on

VLSI implementation of proposed adaptive TDMNN architecture. The 2-D adaptive

network proposed in this chapter achieves better results compared with the conventional

technique. The adaptive network architecture consists of three types of 2-D network

(Tansig-Purelin for hybrid networks, Tansig-Tansig for nonlinear networks and Purelin-

Purelin for linear networks). The basic building blocks for the three architectures are

multipliers, adders and network functions (Tansig function and Purelin function).

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

155

Chapter 5 – VLSI Implementation of Adaptive TDMNN
Architecture

5.1 Introduction

This chapter discusses design, modeling and simulation of the adaptive two-dimensional

multilayer neural network architecture proposed for image compression and

decompression. This chapter also discusses implementation results and analysis of the

proposed architecture for compression and decompression of images. The adaptive

TDMNN architecture achieves better performance than the 2-D network and the

conventional technique. The network is trained using multiple image data sets. The

optimum weight matrix and bias elements obtained after training are used to compress

images using adaptive approach. The network estimates the entropy for the given image

and selects a suitable TDMNN for compression and decompression. Linear network,

nonlinear network or hybrid network is selected based on entropy of image. The weight

matrix and bias elements obtained during offline training process is converted into digital

data and stored in memory. As per the analysis carried out in the previous chapters,

image is sub-divided into 4 x 4 block size and is fed into the network. For every 4 x 4

blocks to be processed by the network, 4 x 16 weight matrix and 4 bias elements are

required. For every 4 x 4 block to be compressed to 2 x 2 block, 64 multipliers (4 x 16),

64 adders (15 x 4 + 4) are required for the compressor block. Similarly, the decompressor

requires 64 multipliers and 64 adders. Linear networks have Purelin functions and hence

network functions are not required for hardware implementation. To realize nonlinear

transfer function used in nonlinear network and hybrid network translinear circuits are

required for hardware realization. Fig. 5.1 shows the top level architecture of the

proposed network for hardware implementation.

5.2 Design Analysis

Video sequences are captured at a frame rate of 30 frames per second; every image

consisting of 256 x 256 pixels would be captured and will be available on image sensors

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

156

for time duration of 33ms. The total amount of time available to process every frame is

33ms, within this time the proposed architecture should compute the entropy of the

image, based on the entropy particular network need to be selected. Based on the network

selected the image is sub-divided into 4 x 4 blocks. Assuming that the total time to

preprocess the data requires 10 ms, for every 4 x 4 block to be processed the total amount

of time available is 5.6 µs (256 x 256 has 4096 4 x 4 blocks, 23 ms is the processing

time, this implies for 4 x 4 block total time is 23 ms / 4096). Within this time the network

has to perform 64 multiplications and 64 additions at the compressor end and same

number of computations at the decompressor end. Hence the circuit designed should meet

the timing requirement, and the hardware circuits designed should be able to have a

maximum delay of 5.6 µs.

Figure 5.1 2-D multilayered neural network architecture

For every computation the input collected from the image sensor need to be

multiplied by the weight matrix and bias elements, hence weight and bias elements need

to be stored. The compressed data can be further compressed using suitable 2-D encoding

techniques. Hence storage space is required to store the compressed data. At the

CCD Array-
Image

2-D
Architecture

2-D Compressed
Image

2-D
Architecture

Decompressed
Image

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

157

decompressor stage, storage space is required to store the weight, bias, compressed data

and decompressed data. As this research focuses on only compression and

decompression, data encoding and decoding of the compressed data is not within the

scope of this work. The objective of this chapter is to design, model, simulate, implement

and test an optimum neural network architecture optimizing area, power and speed. The

speed, area and power performances are tested for 4 x 4 input size, the results obtained

can be extended to image sizes larger than 4 x 4.

5.3 Neural Network Design and Implementation

As discussed in chapter 2, neural network architectures can be realized using digital

circuits, analog circuits and hybrid circuits. The basic building blocks required for neuron

implementation are multiplier, adder, and network function and storage elements. During

initial stages of research work, analog implementation was found to be suitable for

hardware implementation. To analyze performances of analog neuron, a simple

multilayered neural network is considered. A 2:3:1 neuron is considered for analysis. The

network architecture is shown in Fig. 5.2. The neuron has two input layers three hidden

layers and one output layer. Two inputs V1 and V2 are connected to the neurons in the

hidden layer through weights W11 to W16. The outputs of the hidden layer are connected

to the output layer through weights W21 to W23. The final output is a21.

Figure 5.2 Block diagram for 2:3:1 neuron

∑

∑

∑

∑
V1

V2

W11
W12

W13

W14
W15

W16

n11

n12

n13

W21

W22

W23

a11

a12

a13

n a21

Translinear function

b1
1

b2
1

b4
1

NAF

Multiplier
Adder

b3
1

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

158

5.4 Analog components for Neural network Architecture

The architecture shown in the Fig. 5.2 multiplies the input V1 and V2 with the weights

W11 to W16 and the multiplied outputs are accumulated in the adder along with the bias b.

The accumulated output n is then passed through the Neuron Activation Function (NAF)

to produce the intermediate output a. The output layer processes the intermediate output

and produces the final output. Analog blocks required to realize the network shown in

Fig. 5.2 are:

1. Multiplication block (Gilbert cell)

2. Adders (with output of multiplier being current, currents from various

multipliers are accumulated at a node, thus realizes a adder)

3. NAF block (nonlinear function)

5.4.1 Multiplier Design

The Gilbert cell is used as the multiplier block. The schematic of the Gilbert cell is as

shown in the Fig. 5.3.

Figure 5.3 Gilbert cell multiplier

M9(W/L=44)
Vbias1

Vbias2

Vbias2

Vin2
+

Vin2
-

Vin1
+

Vin1
-

Vout
- Vout

+

M1(W/L=120) M2(W/L=120)

M3(W/L=2) M4(W/L=2) M5(W/L=2) M6(W/L=2)

M7(W/L=4) M8(W/L=4)

Vdd

CL

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

159

Vin1 and Vin2 are two analog inputs that are multiplied by the Gilbert cell, the output

current flows through the output node Vout, into the adder circuit, which is a current node.

In order to verify the functionality of the Gilbert cell a load capacitance CL is connected

at the output node Vout to measure the output voltage. Thus the load capacitance converts

current to voltage. Design of Gilbert cell multiplier is discussed in the next section. The

Gilbert cell works in the sub threshold region. The current expression for NMOS

transistor to work in the sub threshold region is given by the following equations (Razavi

2002, Eric A. Vittoz 2006):

)1(

][

nKT
dsqV

enKT
snVgVq

eoIdsI
−

−

−

= (5.1)

Where, all the voltages Vg, Vs and Vd are taken with respect to the bulk voltage Vb.

KT/q= 25mV at room temperature.

n = 1.2 to 1.6 slope factor. (5.2)

K- boltzmans constant, T – Temperature, q-electron charge

q

nKT
tV

e
L

W
q

KT
oxCnI

)0(2
20

−








= µ (5.3)

Cox- capacitance per unit area, µ-mobility of electron, W-width of transistor, L-length of

transistor, Vto-threshold voltage

The current equation for PMOS is same as equation (5.1), but all the voltages have

opposite signs so equation (5.1) will change to

)1(

][

nKT
dsqV

enKT
snVgVq

eoIdsI −

+−

= (5.4)

When 4/ ≥KTdsqV , or in other words Vds is equal to 100mV, the term
KTdsqV

e
/−

 is

approximately zero. Equation (5.1) becomes

nKTsnVgVq

eoIdsI
/][−

= (5.5)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

160

Equation (5.5) is the saturation current in the sub-threshold region and Ids is independent

of Vds.

5.4.2 Design of Multiplier Block

In the neural network architecture when the voltage specified to the Gilbert cell is 3.5 V

(considering the worst case for non subthreshold operation of the MOS transistors for a

Vdd of 5 V), the outputs should not exceed 3.5 V as it should be limited to less than the

threshold voltage. The bias current for the Gilbert cell is assumed to be 2 µA (Ali Naderi

et. al 2008, Burcu Kapanoglu and Tulay Yildirim 2003, Navin Saxena and James J. Clark

1994). Now considering each transistor in the saturation region one can design circuit for

the Gilbert cell multiplier. For 0.35 micron technology, and calculating for geometries of

transistor M9 (Fig. 5.3) with Io=3.863 nA and VDS = 150 mV, using equation (5.1)

(W/L)9 = 44.5 for Vgs = 1 V. Now this current is divided into two paths one from M7 and

other from transistor M8. Ids for both the paths are 1 µA. Substituting this value in

equation (5.5) while considering the output swing as 0.5 V, geometries for M7 and M8 are

(W/L)7-8 = 4.

Further, the current through each branch is divided into two branches containing

M3, M4 and M5, M6. The current through each branch is now 0.5 µA. considering

transistor M3, again same condition is seen as was for M7, since both will have same

maximum inputs in the threshold region, (W/L) 3,4,5,6 = 2. For PMOS operating in sub

threshold region, Io = 2.66 nA. Current carried by each PMOS is 1 µA. Designing for this

current using equation (5.4) (W/L) 1-2=120.7. The designed Gilbert cell is simulated using

HSPICE.

The simulation result shown in the Fig. 5.4 is for the multiplication of two

voltages Vin1 and Vin2. Vin1 is 0.2 V pp and 10 MHz frequency and Vin2 is 0.2 V pp and 1

MHz frequency is applied as the input to the multiplier to test its performances. Fig. 5.4

shows the results for the multiplier, first and second signals are the inputs, third signal is

the actual output, fourth is the theoretical output. The results show that the theoretical and

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

161

practical values match, but the signal strength of practical and theoretical results vary by

a factor of 10 (Matlab results are compared with Spice).

Figure 5.4 Gilbert cell multiplier results

Figure 5.5 DC characteristics of Gilbert cell multiplier

V

Vin1

Vin2

Vout(practical)

Vout(Theoretical)

Vin1

Vin2

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

162

Theoretical results are obtained by multiplying two input voltages, in Matlab and are

imported to Spice for comparison with practical values. Vout is the multiplication of Vin1

and Vin2 voltage computed by the circuit. The output amplitude is 1.5 mV pp. The Vout

obtained matches with the theoretical output. Fig. 5.5 shows the result for the DC

characteristics for the Gilbert cell multiplier, which is a plot of Vin1* Vin2.

The input voltages Vin1 and Vin2 are varied from -0.4 V to 0.4 V. The

characteristic shows a maximum of 2 mV output. For gray scale image having pixel

values between 0-255, requires voltage values between -2 mV to +2 mV. Transistors M7

and M8 are matched, similarly transistors M3 and M6, M4 and M5 are matched thus

minimizing the effect of temperature leading to non linear behaviour (Andreas G.

Andreou et al. 1991). In this work, current is assumed to be 2 µA, based on the

discussions provided in Razavi 2002. From the simulation results, it is observed that there

is non-symmetrical response in the DC characteristics of Gilbert cell multiplier. In order

to overcome these nonlinear effects in analog multiplier cell, hybrid multiplier is realized.

Operating region of Gilbert cell multiplier is limited to +0.2 V to -0.2 V.

5.4.3 Adders

The output of the Gilbert cell is in the form of current (transconductance). The node

connecting the respective outputs of the Gilbert cell, act as adder itself. The load

capacitance (0.1 pF) connected at the output is used to convert output current to voltage

at the output node.

5.4.4 Neuron Activation Function (NAF)

Neuron activation function designed here is Tansig. The circuit that can exhibit Tansig

relation between output and input is the differential amplifier.

5.4.5 Differential Amplifier Design as a Neuron Activation Function

Differential amplifier when designed to work in the sub-threshold region acts as a neuron

activation function. Consider a simple differential pair shown in the Fig. 5.6. Differential

pair consists of five transistors, inputs differential V1 and V2 control the output current

Iout.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

163

Figure 5.6 Simple differential amplifier
The currents in the sub-threshold region are given by equation (5.5) and assuming

source and bulk to be shorted and both transistors have same W/L, the currents in M1 and

M2 transistor is given by (Bose N. K., Liang P, 2002),

 nKT
Vq

eoKII

]1[

1 = (5.6)

 nKT
Vq

eoKII

]2[

2 = (5.7)

Also I1+I2 = Ib.

Where Ib is bias current for the differential amplifier. Combining equation (5.6) and (5.7)

 nKT
Vq

eoKInKT
Vq

eoKIbI

]2[]1[

+= (5.8)

Implying that

nKT
Vq

eoInKT
Vq

eoI

bI
K

]2[]1[

+

= (5.9)

Now differentiated output current is defined as I1-I2=Iout or in other words

V1 V2

Vb M5

Ib

M3 M4

M1 M2

I1 I2
Iout

VSS

VDD

Vout

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

164

nKT
Vq

eoInKT
Vq

eoI

nKT
Vq

eoInKT
Vq

eoI
IoutI b]2[]1[

]2[]1[

+

−
= (5.10)

Trigonometric function tanh(x) is given by

xe

xex
21

21)tanh(
−+

−−
= (5.11)

Thus equation (5.10) can be transformed to be in the form

nKT
VVq

e

nKT
VVq

eIoutI b

2
]12[

2
1

2
]12[

2
1

−
−

+

−

−
= (5.12)

Thus

 





 −

=
nKT

VVqIoutI b 2
][tanh 12 (5.13)

Equation (5.13) proves the functionality of the differential amplifier as a tan

sigmoid function generator. As is evident from equation (5.13) Iout is the combination of

bias current and the voltage input. Thus this can also be used as a multiplier when one

input is current and the other is voltage. For the bias current Ib of 150 nA, M5 transistor

is first designed for gate voltage of 0.1 V. Thus using equation (5.5) (W/L)5 value is

calculated as 3.3. This current is divided into two branches with each branch carrying 75

nA of current. The maximum voltage for transistors M3 and M4 is 0.5V. The (W/L) value

calculated for M3 and M4 is 2. The PMOS M1 also carries the same current as M3, gate

voltage is considered for the 0.1 V (minimum voltage to keep it in saturation in sub

threshold conduction region) the (W/L)1-2 is calculated to be 1.5. The neuron activation

function is basically a tanh(x) function. The theoretical value of y = tanh (x) is shown in

Fig. 5.7.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

165

Figure 5.7 Graph showing y = tanh(x)

Figure 5.8 Circuit output for neuron activation function block (tan)

The simulation results of the designed nonlinear function are shown in Fig. 5.8.

The results match with the theoretical values. To verify the results, the input is varied

from -3 V to +3 V, the output is measured and it varies from +3 V to -3 V. The basic

building blocks for the network are designed and are verified for its performance and

functionality. The results show that the multiplier has output voltage swing of 3 mV peak

to peak for an input range of 0.5 V. This ensures that the network performance should be

limited to these voltage extremes. As the output of Gilbert cell multiplier is current, the

adder circuit is a node. The current at a given node gets added as per Kirchhoff’s current

law. The activation function is either Purelin or Tansig; Purelin does not require any

circuit. Tansig is realized using the neuron activation function. The Gilbert cell multiplier

requires 6 transistors, activation function requires 5 transistors, and hence to realize a

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

166

neuron in analog domain, minimum of 11 transistors are required. Hence analog

implementation requires less number of transistors compared to digital counterpart.

Based on the building blocks analog neural network is realized.

5.5 Realization of Neural Architecture using Analog Components

The components designed are used to implement the neural network architecture. Fig.

5.9 shows the neural network architecture using analog components. This block is used as

the neuron activation function as well as for the multiplication purpose. The mult is the

Gilbert cell multiplier, the fun is the neuron activation function circuit.

The hidden layer is connected to the input layer by weights in the first layer

named as w1i. The output layer is connected to input layer through weights w2j. The op is

the output of 2:3:1 neural network.

Figure 5.9 Implementation of the neural architecture using analog blocks

5.5.1 Backpropagation Algorithm

The training is an important part in the neural network architecture. Back propagation

algorithm is used to train the network Chun Lu, Bing-xue Shi and Lu Chen (2002).

a) Updating the Output Layer Weights

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

167

In equation (5.12) Iout is the multiplication of the input applied to the differential

amplifier and the bias current of the amplifier. On the same basis the differentiation

current is multiplied to the target (di) and output (ai) difference, implementing

)()(iiii adda −=∂ . Next step is to calculate the weight update using the term

iaiijw ∂=∆ η . The obtained ∂ , is then multiplied with the outputs of the hidden layer

(input for the output layer) as shown in the Fig. 5.10. The output from the mult blocks is

used as weight update for the weights in the output layer.

Figure 5.10 Block diagram for weight update scheme for the output neuron

b) Updating the Hidden Layer Weights

The hidden layer weights in the architecture are updated from the errors propagating from

the output layer. This update requires the realization of iijirhiddenlaye wad ∂=∂ ∑)(, which

deals with the ∂ formation for the hidden layer, ∂ is to be formed for each neuron in

hidden layer. 3,2,1∂ is formed considering the weight and ∂ output of neuron as shown in

the Fig. 5.11. The output of the multiplication is then given to the differential amplifier

with the bias current as the differentiation of the respective neuron output in the hidden

layer. The ∂ formed is then used to update the weights in the hidden layer as implied by

inputaiijw ∂=∆ η . The ainput is the input to the hidden layer, in this case the inputs v1 and

v2. The network designed is trained using back propagation algorithm and is tested for

both analog and digital functions.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

168

Figure 5.11 Block diagram for weight update scheme for hidden layer neuron

5.5.2 Validation for Digital Operation

The neural network architecture was verified for logic gates like AND, OR, XOR and

NOT. Fig. 5.12 shows the AND operation learned by the 2:3:1 Neural Architecture. The

input voltages v1 and v2 are given to the architecture along with the target. The input

voltages swing form 1 V to –1 V. Target given to the circuit also varies from 1 V to –1 V.

The output generated by the neuron, as shown in Fig. 5.12, clearly follows the target.

Figure 5.12 AND operation learned by 2:3:1 NN architecture

The output of the neural architecture swings from –0.726 V to –3.26 V (1.23 V swing).

The weights are initialized to the value 1 V. Similarly the network was tested for other

digital functions.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

169

5.6 Image Compression and Decompression using NN Architecture

The neural network architecture is extended for the application of image compression and

decompression. The simulation result for image compression and decompression are

shown in the Fig. 5.13. The input v1 is a sine wave with 1 Vpp voltage and 5 MHz

frequency, and v2 is a sine wave with 0.5 Vpp voltage and 10 MHz frequency. The

compressed output is a DC signal of 233.63 nV. The decompressed output is shown in

the same window Fig. 5.13. The decompressed output v1 is 1.2 Vpp with 5 MHz

frequency and v2 is a 0.51 Vpp with 10 MHz frequency. As there is one output for 2

inputs there is a 50% compression.

Figure 5.13 Image compression and decompression simulation

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

170

a) Limitations of the 2:3:1 neural network

Fig 5.14 shows the simulation results of XOR gate using the neuron designed. The

network is trained to meet the functionality of XOR operation. The network is trained

online, the training of the network automatically takes place once the inputs and outputs

are presented. The trained network stores the weights using the parasitic capacitances in

the neuron. The capacitances storing the weights are not capable of storing the weights

for longer duration and hence, the functionality does not get realized as observed in Fig.

5.14. In Fig. 5.14, inputs applied to the network realizes XOR operation only for a short

interval, if the inputs are held constant for some time, instead of realizing the required

functionality, the network produces erroneous results. This is due to the fact that the

parasitic capacitance discharges very quickly; hence to overcome this disadvantage,

frequent training is required. This further adds to circuit complexity.

Figure 5.14 Limitation of 2:3:1 neuron for XOR operation

b) Weight storage and update mechanism

In order to make the network reliable, new circuit is proposed and is shown in Fig. 5.16.

In this circuit, two capacitors are introduced into the circuit controlled by switches. The

switches are controlled by two clocks clkI and clkW having complementary phase. The

weights for the proposed neural architecture are stored on a capacitor. Fig. 5.15 shows the

update mechanism and initialization of the weights.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

171

Figure 5.15 Weight update and initialization scheme

Cw is used to store the weight and Cwd is used to store the weight update. Clock signal

clkW, is used for updating the weight. Whenever the clock is high the weight is updated,

else there is no update and previous value of the weight is maintained. The weight

initialization can also be done external to the chip, using clock ClkI. Whatever voltage is

applied to weight initialization line, it is given to the Cw when clkI is high. One has to

make clkI low before starting to train chip. This mechanism eliminates the limitations of

the circuit designed earlier. The results of analog neural network architectures for image

compression and decompression are presented in Cyril and Pinjare (2009). However, the

complexity in this circuit is that, the network consumes power, due to the fact that the

network continuously getting trained, whenever the weight values reduces below a

threshold, the trained weights need to be transferred from the main capacitor. This not

only adds to circuit complexity but also has power loss. In order to overcome these

limitations and a new architecture is required for efficient hardware implementation. The

weight and bias elements obtained after training are converted to its digital equivalent

and stored in external memory. Input to the network is directly fed from image sensors

and hence the inputs are analog, as the weights are binary. Multiplication of analog

inputs with digital weights is required to be performed. Hence, there is a need for a circuit

that can perform this functionality with minimum cost overheads, reduced circuit

complexity and also should be optimized with respect to area, time and power

Cw

Clock for weight
Initialization

Clock for weight
Update

clkI

clkW

Weight
Initialization

+

-

+ -
Weight

Weight storage

Weight update
storage

Cwd

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

172

consumption. The next section discusses the 2-D multilayered architecture in detail, and

new hybrid architecture is proposed for hardware realization.

5.6.1 2-D multilayered Neural Network Architecture Design and Implementation

In chapter 4, the 2-D multilayered neural network was trained to obtain the weight and

bias elements. In order to overcome the storage problem of the weight matrix, offline

training is chosen. The software reference model developed in the previous section,

computes the weights for the network. These weights are converted to binary values and

stored in memory. The weight matrix is converted to a 7-bit binary number and is shown

in Table 5.1. The weight matrix for the hidden layer is given in column 1 and the binary

equivalent of the weight matrix is given in column 2. Column 3 and column 4 gives the

output weight matrix and its binary representation. As the size of input weight matrix is 4

x 16 (64), each weight being represented by 7 bit number, a memory of size 64 x 7 = 448

bit memory is required. Similarly on the receiver section, 448 bit memory is required to

store the weight matrix. As there are three networks, the total number of weight matrix

required at the transmitter side is 448 * 3 = 1344 bits. The number of bias elements is 4

and 16. The total number of bits required to represent the weight and bias elements at the

transmitter is 448*3 + 28*3 = 1428 bits. Nonlinear functions are realized using

translinear principle. A detailed discussion on network implementation is presented in the

next chapter.

Table 5.1 Binary equivalents of weight matrix

Input weight Equivalent binary(Input
weight * 32)

Output weight Equivalent
binary

-0.1348 (-04) 1000100 -25.9764 (-25) 1011001

0.0718 (+02) 0000010 -3.2596 (-03) 1000011

-0.3272 (-10) 1001010 +4.3240 (+04) 0001100

-0.3331 (-10) 1001010 -59.6807 (-59) 1111011

-0.4078 (-12) 1001100 -36.7612 (-36) 1100100

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

173

+0.1711 (+05) 0000101 -0.2085 (-00) 0000000

-0.0401 (-01) 1000001 +18.2802 (+18) 0010010

-0.2914 (-09) 1001001 -58.9398 (-09) 1001001

+0.5041 (+16) 0010000 -55.8463 (-55) 1110111

+0.2509 (+08) 0001000 -1.6886 (-01) 1000001

-0.1108 (-03) 1000011 +23.4713 (+23) 0010111

-0.2488 (-07) 1000111 -47.1475 (-47) 1101111

+0.3174 (+09) 0001001 -50.6820 (-50) 1110010

-0.7168 (-22) 1010110 -16.0312 (-16) 1010000

The input matrix captured from image sensors is analog in nature, for software

reference model, the digital equivalents of analog intensities have been considered for

training and testing the performances of the network. The adaptive 2-D network is trained

offline. The weight matrix and bias elements calculated during training in digital. Hence

can be easily stored using digital memory. As the input is analog, and weight is digital,

there is a need for a hybrid architecture to multiply analog input with digital weights.

Figure 5.16 Hybrid neuron model for image compression

Analog
input
4 x 4

Multiplier unit
multiplying

analog input with
digital weight

Digital weight

matrix

Neuron output in
analog

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

174

Hybrid architecture is proposed for implementation of 2-D multilayered neural network

architecture. Figure 5.16 shows the top level block diagram of the proposed work. The

major focus of this research work is the design and development of this hybrid

architecture for image compression. Array of 4 x 4 analog intensities are multiplied by 4

x 16 digital weight matrixes to produce 2 x 2 analog outputs. Since the input is in spatial

domain, output is also in spatial domain. This reduces the computational time and also

leads to a new feature of 2-D coding technique. Table 5.1 shows the weight matrix

represented in digital form. The total number of bits required to be stored in external

memory representing the weights for the 2-D adaptive network (16:4:16) is calculated

below:

As there are three networks each having 128 weights at the hidden layer and

output layer, total number of bits per network is 896 bits (7 bits per weight, 128 weights

* 5 bits). Total number of bits for three layers is 2688 bits. As there are 20 biases, each

requires 7 bits hence the total number of bits to be stored are 2828 bits. Instead of using 7

bits for representing weights and biases, for reducing the circuit complexity of the

network architecture 5 bits are used to represent the weights and biases. This introduces

loss in data representation, the amount of error or loss occurring due to reduction in bit

width is discussed in next section.

At the hidden layer digital representation of the weight matrix is multiplied with

the 2-D input image intensities (analog) that are captured using the image sensors. The

top level architecture of the 2-D multilayered neural network architecture is shown in Fig.

5.17. 256 x 256 image sub-divided into 4 x 4 block size is considered every time interval

for compression and decompression. Input pixels I1,1 to I4,4 are first multiplied by the

weight matrix and then added to from Z1,1 to Z2,2 compressed output. The weight matrix

is digital, input and output is analog. Hence a hybrid circuit is required to multiply analog

inputs with digital weights.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

175

Figure 5.17 2-D architecture of neural network (Hidden Layer)

I2,2

I3,2

I4,2

I2,4

I3,1

I4,1

I2,3

I3,3

I4,1

Z2,1

Z1,1

Z1,2

Z2,2

I1,1
I1,2

I1,3

I1,4

I2,1

I3,1

I4,1

Analog intensities of 4x4
representing image pixels

Array of 4 neurons each

accepting 4x4 inputs

2x2 compressed

outputs

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

176

Figure 5.18 Block diagram of single neuron with input and hidden layer

Figure 5.19 Mathematical operation performed by the neural network
Fig. 5.19 shows the mathematical representation of the proposed architecture. As

shown in Fig. 5.18, the network performs the mathematical operation as shown in Fig.

5.19. The multiplier stage is hybrid, adder and transfer function stage is analog, hence the

name hybrid network architecture.

Compressed Output

16×1 pixel
values X + Purelin Function

4x16
Weight

Matrixes
4×1 Bias
Matrix

[4×1]

Compression Stage

[4×1] [4×1]

4×1 compressed

pixel values X + PURELIN Function

16x4
Weight

Matrixes

[16×1]

Decompression Stage

[16×1]
[16×1]

64×8 Bias
Matrix



















=















































4

3

2

1

16

3

2

1

164342414

163332313

162322212

161312111

.

.

.

...

...

...

...

Z
Z
Z
Z

I

I
I
I

WWWW
WWWW
WWWW
WWWW



































=





















































16

3

2

1

4

3

2

1

416316216116

43332313

42322212

41312111

.

.

.

.

.

....

....

....

....

....

X

X
X
X

Z
Z
Z
Z

WWWW

WWWW
WWWW
WWWW

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

177

 5.6.2 Hybrid Neural Network Architecture

The proposed design requires a circuit that can multiply analog inputs with digital

weights. This is realized using the data converters. Data converters are most important

building blocks of analog and mixed signal circuits for data conversion and

communication applications as well. Digital to Analog also known as DAC’S, convert a

digital or discrete signal into an analog signal or continuous timing signal, there are

different types of digital to analog converters (Tiilikainen 2001, Wang, Fukatsu, and

Watanabe 2001, Bugeja and Song 2000, Chi-Hung and Klaas 1998, Jacob and Nianxiong

1999 and Hyun-Ho and Cheong-Yong 2004).

a) Ideal Digital to Analog Converters

Digital to Analog converters convert digital signals into analog signal. The ideal block

diagram of a DAC is shown in Fig. 5.20.

Figure 5.20 DAC ports

The input–output transfer curve for an ideal digital to analog data converter is

shown in Fig. 5.21. Here, Bin is defined to be an N-bit digital signal (Wang, Fukatsu, and

Watanabe 2001). Such that,

 Bin = b12-1 + b22-2+…… +bN2-N (5.14)

Where, b1 is the most significant bit and bN is least significant bit. Vout represents the

output of the digital to analog converter.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

178

Figure 5.21 Input-output transfer curve for ideal 2-bit DAC (Tiilikainen 2001)

The relation between output voltage and reference voltage is given by equation (5.15),

 Vout = Vref (b1.2-1 + b2.2-2+…… +bN.2-N) = Vref Bin (5.15)

It is useful to define the value of VLSB to be the voltage change when one LSB

changes or mathematically is given by,

 VLSB = Vref / 2N (5.16)

Equation (5.15) relates Vref, Bin and Vout. This forms the basis for the hybrid

neural network architecture. The requirement is that the analog inputs are to be multiplied

by digital weights; hence equation (5.15) can be modified to work as hybrid multiplier.

Every charge coupled device produces an analog intensity equivalent to the image pixel.

If this is taken as reference voltage Vref, this can be multiplied by the binary inputs Bin

as per equation (5.15). The multiplier stage is realized using DAC architecture. The

output of DAC is analog. Multiple partial products computed by the DAC, need to be

added, hence an analog adder circuit is required. The output of adder should flow through

the transfer function. If the network is linear, transfer function can be avoided, else the

neuron activation function discussed earlier is used to realize the Tansig function. Output

of each neuron is analog. This compressed output is also analog. In the output layer, the

analog compressed samples are decompressed to analog output with the help of digital

weights. Since DAC logic is identified to work as hybrid multiplier, there are multiple

DAC architectures, hence a through literature review is conducted on various DAC

architectures. Based on the literature review and design specifications, suitable DAC

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

179

architecture is selected, designed and verified for its performance. DAC is used as hybrid

multiplier, it is important to know the limitations of the converter and how they affect the

performance of the entire system. The outputs of image sensors are usually current,

which get converted into voltage. Since the input pixels are current intensities, only

current reference DAC are considered. A detailed study of different current steering DAC

architectures is required to find the suitable architecture.

5.7 Current Steering DAC

The general architecture of a binary weighted current-steering DAC (Wang and Wey

1998, Anne et al. 1998) is shown in Fig. 5.22.

Figure 5.22 Binary weighted current string DAC

The switches are controlled by the input bits b0 – bN-1, where, N is the number of bits.

The output current, of the DAC shown in Fig. 5.22 is given by,

 Iout (K) = 20 ILSB.b0 + 21 ILSB.b1 +……+ 2N-1 ILSB.bN-1 = ILSB.K (5.17)

Where K is the digital input is given by,

 K = 20 b0 + 21 b1 +…… 2N-1 b N-1 (5.18)

 Depending upon the input bits, the switches are set to ON/OFF condition, that

allows the current flow and at the node all the currents are added to give the analog

output. The analog output of the circuit depends on the status of the binary switches.

DAC circuits are used as hybrid multipliers in this work. The work proposed by Ryan et

Iout

bo bN-2 bN-1

2N-1ILSB=IMSB 2N-2ILSB ILSB

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

180

al. (2004) is a multiplying DAC. The MDAC architecture is modeled using Spice and the

results are tabulated in Table 5.2.

Table 5.2 Theoretical, practical outputs with the error of the reference architecture

Digital Inputs

S0,S1,S2,S3

Theoretical

Outputs in Amps

Practical Outputs in

Amps

Error

0000 0 28e-15 28e-15

0001 3µ 2.0µ 1.0

0010 7µ 5.2µ 1.8

0011 11µ 7.2µ 3.8

0100 15µ 13.0µ 2.0

0101 18µ 15.5µ 2.5

0110 20µ 18.7µ 1.3

0111 22µ 20.7µ 1.3

1000 30µ 29.2µ 0.8

1001 33µ 30.7µ 2.3

1010 37µ 33.01µ 3.9

1011 41µ 34.5µ 6.5

1100 45µ 38.3µ 6.7

1101 48µ 39.4µ 8.6

1110 52µ 41.7µ 10.3

1111 56µ 61.0µ 5.0

The circuit is modeled using Spice, simulated using HSpice using 180nm technology. Vref

is set to 1.8 V. Out of 5-bit input, MSB bit is used for sign representation. The direction

of current through the multiplier defines the sign of the weight matrix and hence the

Table 5.2 shows the multiplication operation for 4-bit only, assuming all the weight

inputs being positive.

 Table 5.2 shows the output currents for different values of digital inputs ranging

from 0000 to 1111 where S0 is the LSB and S3 is the MSB. The MDAC is working as a

hybrid multiplier circuit. The digital inputs of the DAC are multiplied by the Current

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

181

references. The analog output of the DAC is the multiplied output in terms of current. In

Table 5.2, input data 0001 multiplied by the corresponding current reference gives an

output of 3 µA. The practical value obtained is 2 µA. The errors are calculated and are

also tabulated. The results show that the maximum current is 61 µA and minimum

current is 2 µA. From the result obtained the difference in output between expected and

obtained is 10 µA maximum. This clearly indicates that the circuit has limited accuracy.

In order to overcome the limitations, a new MDAC architecture is designed to meet the

accuracy. The next section discusses the novel MDAC architecture.

 5.7.1 Novel Hybrid Current Steering DAC Multiplier

In this section, a modified MDAC synapse is designed and demonstrated for different

values of input current and the digital weights. The hybrid multiplier is designed and

checked for its performance. The multiplier architecture is optimized for power, area and

results are reported.

5.7.2 Proposed MDAC Architecture

The proposed MDAC architecture has a NMOS transistors connected in the form of R –

βR, whereas the referred architecture consists of PMOS current mirror transistors

connected, wherein a control is given to the circuit to either pass the outputs directly or

through the current mirror circuit, The proposed MDAC has a better accuracy than the

referred architecture. It has two main blocks:

1) Weighted Current Steering Circuit

2) MDAC Architecture

The current mirror used here is the folded cascoded current mirror. The main purpose

of this current mirror here is to replicate the reference current irrespective of the load.

The designed weighted current steering circuit produces current of 32 µA for an input

reference current of 16 µA. This is achieved by doubling the widths of the successive

transistors. This is based on the current equation of the MOS transistors in saturation

region which states current is directly proportional to the width. This current is given as

the input for the MDAC. Because of the heavy short-channel effect on a simple current

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

182

mirror, the weighted current steering circuit is realized with the cascoded configuration

that can provide an accurate current with higher output impedance. The circuit as shown

in Fig. 5.23 receives the input current IREF and produces three output currents Iin1, Iin2, and

Iin3 that will be injected into the R-βR ladder networks. In this design, Iin1, Iin2, and Iin3 are

designed to be 16 (24) μA, 128 (27) μA, and 512 (29) μA, respectively. These values are

selected as an example representing the input pixel samples.

Figure 5.23 Weighted current steering circuit
The schematic of the current steering network for the proposed MDAC

architecture is as shown in the Fig. 5.24. The input voltages required is at 1.8 V, the

current source can be replaced by a transistor of the required width calculating the input

and output characteristics to determine the region of the transistor which produces the

required current at the output. The calculated voltage is given as the gate to source

voltage. Fig. 5.24 shows the schematic of the circuit realized using Cadence Virtuoso.

The design is carried out targeting 180 nm technology and the schematic capture of the

IREF

VDD

Iin1 Iin2 Iin3

Output currents

Supply Voltage

Reference input current

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

183

MDAC circuit matches with the theoretical circuit designed. Fig. 5.24 is circuit schematic

of Fig. 5.23 captured using Virtuoso Spectre for simulation.

Figure 5.24 Weighted current steering circuit schematic from Virtuoso
5.7.3 MDAC Architecture - R-ßR Ladder Network

The R-ßR ladder network is modified from the R-2R ladder network such that a more

accurate current-divider circuit can be obtained under the following condition as

 ()21
12

ε
εβ

−
+

> (5.19)

Where ε denotes the error on the resistance resulted from the effect of device mismatch.

For a TSMC 0.18 μm technology, the error range is

 0

0
0

0 55 ≤≤ ε (5.20)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

184

Substituting ε = 5% into Equation 5.19, β is 2.3. Fig. 5.25 shows the transistor-level R-βR

ladder network. Each resistor in the R-βR ladder network is implemented by an NMOS

transistor biased in triode region.

Figure 5.25 R- βR ladder network

An NMOS transistor operated at triode region can be characterized by equation (5.21)

 () 







−−=

2

2
DS

DSTnGSoxnD
VVVV

L
WCI µ (5.21)

The channel resistance Rn of an NMOS transistor biased in triode region can be derived

as shown in equation (5.22)

() W

L

VV
L

WCV
IR

TnGSoxn
DS

D
n α

µ −
=








∂
∂

=
−

1
1

 (5.22)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

185

Apparently, the channel resistance is inversely proportional to the aspect ratio of the

transistor. Therefore, the R-βR ladder network can be easily implemented by specifying

the aspect ratios of the transistors satisfying the relationship as shown in equation (5.23)

RR L

W
L

W
β






=






 3.2 (5.23)

Where (W/L)R and (W/L)βR represent the aspect ratios of the NMOS transistors

implementing the resistances R and βR, respectively.

The transistors which form the R- βR structure have widths of 400 nm, 520 nm.

The voltage controlled current switch has width of 400 nm each. The current mirror used

has two top PMOS transistors of widths 2 µm each and bottom 2 transistors have widths

of 2.8 µm each. The length used is 180nm. The values of W/L for transistors used in

MDAC circuit are tabulated in Table 5.3.

Table 5.3 MDAC Transistors widths Tabulation for Proposed Architecture
Transistors Widths for 180nm technology with length equals 180nm

MN1 to MN4 400.0 nm

MN5 to MN9 520.0 nm

M10 to M18 400.0 nm

MP19 to MP20 2.0 µm

MP21 to MP22 2.8 µm

MDAC architecture proposed by (Ryan Kier, J., Reid Harrison, R. and Randall

Beer, D., 2004) is modified to design new MDAC architecture. From the size of the

widths the total comes to 920 nm which is the R-βR realization of the circuit. The

resolution of referred architecture and proposed architecture is 4-bit, 1-bit for sign

representation. The offset error of MDAC synapse proposed by Anne et al. (2001) is

28e10-15 and offset error for proposed MDAC synapse is 2.4e10-12. The error gain for the

MDAC synapse proposed by Anne et al. (2001) is 4 LSB and gain error for the MDAC

synapse proposed is 0.5 LSB.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

186

The proposed architecture has better results compared with the reference model. The

error between the theoretical and practical is reduced from 10 µA to 0.9 µA. The voltage

swing of the proposed network is less compared to the reference model. However, the

error between the theoretical and simulation values is maximum of +/- 0.9. Hence this

circuit has good accuracy.

Table 5.4 gives the table of the different values of the output currents for the

different digital inputs which are known as the weights, the digital weights is changed

from 0000 to 1111 for this 4 bit architecture, the D0 is the MSB and the D3 is the LSB,

the differential error is also calculated and tabulated in the Table 5.4.

Table 5.4 Comparisons of theoretical, simulation outputs for proposed architecture
Digital Inputs
D0,D1,D2,D3

Theoretical Outputs in
Amps

Simulation Outputs in
Amps

Error

0000 0.00 2.3e-12 2.3e-12
0001 01.30µ 01.7 µ 0.4
0010 03.02µ 03.6 µ 0.5
0011 04.30µ 05.2 µ 0.9
0100 06.90µ 07.5 µ 0.6
0101 08.25µ 08.7 µ 0.4
0110 09.96µ 10.5 µ 0.5
0111 11.30µ 12.1 µ 0.8
1000 16.00µ 16.0 µ 0
1001 17.30µ 16.7 µ 0.6
1010 19.02µ 18.8µ 0.1
1011 20.30µ 20.0µ 0.2
1100 22.90µ 23.0µ 0.1
1101 23.80µ 23.9µ 0.1
1110 25.90µ 26.8µ 0.9
1111 28.20µ 28.6µ 0.4

The layout for the proposed MDAC architecture is captured using Cadence Virtuoso and

the post layout simulations are carried out to analyze the area, timing and power

performances.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

187

5.8 Layouts of Proposed MDAC

MDAC layout is designed using Virtuoso tool. The design is developed using 0.18μ

technology. The MDAC layout is shown as in Fig. 5.26. After designing layout first step

is design rule check. When there are no DRC errors the design is checked for Layout

versus Schematic check i.e. the layout is verified with respect to the schematic whether

the connections made in the layout are same and correct compared to schematic. For the

schematic shown in Fig. 5.25, layout is drawn using Cadence Virtuoso is shown in Fig.

5.26.

Figure 5.26 Layouts for MDAC from Virtuoso

After LVS, compare warnings and extract warnings are removed and the RC

extraction is carried out. The RC extraction file is used for post layout simulation. The

GDSII extracted view of the proposed MDAC is as shown in the Fig.5.27, this is carried

out using the Cadence Virtuoso tool. The GDS II file extracted represents or shows that

the proposed MDAC architecture is physically realizable in the form of a chip. Typically

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

188

extraction from the layout is done after the post layout simulations wherein the circuit is

checked for its functionality after the interconnect resistance and capacitances are added.

Figure 5.27 GDSII Extracted view of proposed MDAC architecture
Proposed MDAC architecture consists of 22 transistors. It is capable of computing

the multiplication of analog samples with digital weights. The total area required for the

hybrid network is 28 µm2. This area excluded the storage space of the weight matrix.

Every multiplier realized using hybrid architecture requires area of 28 µm2 and 22

transistors. Total number of multipliers for the 2-D adaptive network is 128 multipliers

per network (hidden layer and output layer). Total number of transistors for the multiplier

stage is 2816 transistors. The area for the multiplier is 7884 µm2. Partial product output

computed need to be added in the adder circuit. As the partial products current outputs,

there is no need for adder circuit. Partial product outputs are added using Kirchhoff’s

current law, by collecting the currents at a particular node. The current output is taken

across a load to convert the compressed data into voltage samples. This is further fed into

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

189

the output layer to reconstruct the original samples. Table 5.5 compares three different

multiplier cells designed in this work.

 Table 5.5 Comparisons of various multiplier cells designed
Parameters Gilbert cell Modified Gilbert cell New hybrid cell

Convergence time
(10 MHz)

200 ns 200 ns Not applicable

Refresh time <20ns <10ms Not applicable
Power on Training Required (5ns) Required (8ns) Not applicable
Circuit complexity
Single cell neuron

480T, 8SW, 4C 960T, 4SW, 4C 1420T, digital memory

Storage cell Capacitor Capacitor Digital memory
Accuracy ±0.3 V ±0.35 V ±0.08 V

Parameters Gilbert cell Modified Gilbert cell New hybrid cell
Technology 0.18µm 0.18µm 0.18 µm
Resolution Not applicable Not applicable N bit

INL Not applicable Not applicable < 0.5 LSB
DNL Not applicable Not applicable <0.5 LSB

Supply voltage 3.3 V 3.3 V 2.5V
Power consumption 865 mW 631 mW 232 mW
Full scale current /

voltage
±1.8 V ±1.8 V 65.535 µA

Operating frequency 50 MHz 50 MHz 200 MHz

Gilbert cell multiplier presented in Fig. 5.3, modified Gilbert cell with weight

updating scheme and the new hybrid cell. Gilbert cell and modified Gilbert cell multiply

analog inputs with analog weights and produce analog output. The weight and bias for

the network is computed during online training, and stored on a capacitor for processing

the analog input samples. In the new hybrid cell multiplier, the input is analog, and the

weight matrix is digital. Weights and biases obtained during training phase is digitized

and stored in ROM. The performances of all the three multiplier blocks are compared.

Convergence time is the time taken by the network to converge to achieve zero error

during the training phase. This is the total time required to obtain the optimum weight.

Refresh time is the time has be refreshed to weights, as the weights are stored on

capacitor, capacitor needs to be refreshed every time to hold the optimum weight

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

190

obtained during training phase. Whenever the network is power on, it requires some time

to refresh; this time is power on training. Number of transistors, number of capacitors and

number of switches are used to express the complexity of the switch. Accuracy defines

the minimum voltage the circuit can produce.

New hybrid cell (modified DAC) designed using NMOS transistors work at

200MHz of clock frequency, consumes power of 232mW, maximum full scale current of

65.535 µA and requires 1420 transistors (T) with digital memory storage unit. The

training is done offline and the weights are stored in ROM and hence the network

consumes very less power. The only limitation of this network is that every time new

weights and biases have to be used for the network to achieve better performance. New

hybrid architecture is realized and the results obtained have good performances as

expected. The proposed neural network architecture is realized using the hybrid cell

multiplier (MDAC), adder and translinear functions. Fig. 5.28 is the proposed 2D-

multilayered architecture for compression. This architecture is realized using the

designed hybrid neuron cell.

Fig. 5.29 shows the output layer of the 2D multilayered neural network

architecture. Using the hybrid cell multiplier, adder and translinear function the 2D-

multilayered network architecture is realized. The compressor network or the hidden

layer requires four neurons, and the output layer requires 16 neurons. Each neuron in the

hidden layer consists of 16 multipliers, one adder and one transfer function (Tansig).

Each neuron in the output layer consists of 16 multipliers, one adder and one transfer

function (Purelin). Since Purelin is a linear function this is not used in the output layer.

Hybrid multipliers or MDAC circuit is used to realize the multiplier, as the output of

hybrid cell multiplier is current, the adder block is not required both at the hidden layer

and output layer. The adder block is a node that sums all the current coming out form the

multiplier circuit. The current flows through a load capacitance and thus voltage is

measured across the load capacitance.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

191

Figure 5.28 2D-multilayered architecture (hidden layer)

Weight matrix

 Ғ

Z4

W1, 1

W1, 5

W1, 9

W1, 13

W1, 2

W1, 6

W1, 10

W1, 14

W1, 3

W1, 7

W1, 11

W1, 15

W1, 4

W1, 8

W1, 12

W1, 16

+ (adder)

 Ғ

Z2

W2, 1

W2, 5

W2, 9

W2, 13
W3, 1

W3, 5

W3, 9

W3, 13
W4, 1

W4, 5

W4, 9

W4, 13

W2, 4

W2, 8

W2, 12

W2, 16
W2, 4

W2, 8

W2, 12

W2, 16

W2, 2

W2, 6

W2, 10

W2, 14

W1, 3

W1, 7

W1, 11

W1, 15

 Ғ

Z3

 Ғ

z1

Two-dimensional input
(4 x 4)

B1 – B4

Bias

Output (2 x 2)

Transfer function

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

192

Figure 5.29 2D-multilayered architecture (output layer)

The output of the current to voltage converter at the hidden layer is given to the

transfer function which is realized using the circuit (NAF) shown in Fig. 5.6 having the

transfer function shown in Fig. 5.8. In the next section, design of single neuron cell is

presented. Properties of this cell are analyzed based on simulation results. Multiple single

neurons are integrated to model the 2D-multilayered neural network architecture.

zh1

zh3

zh2

zh4

16 16 16 16

Weight multiplication matrix
16 x 4

4 x 4
decompressed

output

Compressed
input

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

193

5.9 Top-level Block Diagram of Single Neuron using Hybrid Multiplier

In this section, top level architecture of single neuron using the hybrid cell multiplier,

adder and the neuron activation function is presented. The p-inputs of neuron, X0, X1…

Xp-1 shown in Fig. 5.30, are multiplied by the p number of synaptic weights, W0, W1…,

Wp-1. The weighted sum is then forwarded to the neuron output via a nonlinear activation

function S (.). Neuron output Y is then given by equation (5.1).

 (5.1)

Multiplication operation of XiWi and the addition Σ XiWi are the two arithmetic

operations performed by the neuron. The implementation of the addition is easy if outputs

of the synapse are currents. It is performed when synapse outputs are connected together

according to Kirchhoff’s Current law (KCL).

Figure 5.30 Neuron Cell
The hybrid cell (MDAC) synapse designed performs the multiplication of the

analog input with the digital weights W1 to Wp-1 , The analog input is in the form of the

current and is multiplied accordingly with the value of the digital weights represented by

D3 to D0 and the current as Iin. The current Iin is given through the current mirror circuit, a

cascoded current mirror circuit for the higher output impedance, so that it can drive large

circuits for the same current values. The weighted current steering approach along with

the current mirror circuit acts as the input for the DAC. The neuron circuit performs the

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

194

summation of the outputs of the different MDAC outputs, the neuron converts the

currents back into voltages and this is given as the inputs for the next layer of synapses,

in this proposed design of MDAC there is no need of this conversion. The digital inputs

commonly known as the digital weights are stored in a memory unit from where it is

loaded to the inputs of the MDAC. Fig. 5.31 shows the top level architecture of single

neuron using hybrid cell multiplier, adder and neuron activation function. Hybrid

multiplier is integrated with other building blocks such as adder and transfer function to

form a single neuron. Weight matrix is assumed to be positive, and hence the sign bit is

neglected, the hybrid multiplier has only 4-bits for weight matrix. Every hybrid cell is

required to perform multiplication operation of input Xi with the weight matrix Wi. Input

Xi is analog input representing pixel intensities. In order to simulate the circuit, different

values of current samples are used from a current reference circuit shown in Fig. 5.22.

Figure 5.31 Single neuron using hybrid cell multiplier (hidden layer)

Iref Iref Iref

+

Ғ
Network
Function

Vout

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

195

The single neuron cell shown in Fig. 5.31 is modeled using Cadence Virtuoso and

simulated using Spectre targeting 180nm Technology. The binary inputs for all the

multipliers have been considered from 0000 to 1111. The output of the hybrid multiplier

is added and transferred using the nonlinear transfer function i.e. the NAF function. For

different values of input weights varying from 0000 to 1111 and using the reference

current of 16 µA, the network is simulated. The maximum current form each hybrid cell

is measured is found to be 28.2 µA, the outputs of all the 16 cells are added and the

maximum output current is found to be 451.2 µA. The activation function requires a

voltage input in the range -3 V to +3 V, hence the current output is converted to voltage

using a current to voltage converter realized using a current mirror load circuit (Appendix

D describes the spice code for measuring output voltage).

5.10 Test Setup to Evaluate Performance of 2-D Network Architecture

Image pixels used to test the software reference model is equivalently represented using

current equivalents. The weight matrix obtained from the software reference model is

represented in digital form to test the hardware designed. Current mirrors are modeled as

pixel intensities. Current mirrors are connected to the designed 2-D network architecture

to compress the pixels to 2 x 2 and to further decompress to 4 x 4. The experimental

setup is shown in Fig. 5.32.

Figure 5.32 Hidden layer test setup

Z1

Z3 Z4

Z2

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

196

The pixel intensities used in the software reference model have values varying from 0 to

255; these values are normalized and are scaled from 0 to 1. To represent each of these

pixel values in terms of current values, different current mirror circuits are designed that

are driven from current references. The current mirror circuits provide current values

varying from 0 to 1275 µA. To simulate the image sensor values, these current mirrors

are arranged in 4 x 4, 8 x 8, 16 x 16, 32x 32 and 64 x 64. Same sized images were used in

software reference model. Based on the test setup shown in Fig. 5.32, simulation of the

proposed single neuron network shown in Fig. 5.31, the results are tabulated in Table 5.6.

Table 5.6 Simulation results of single neuron cell
1 2 3 4 5 6 7 8
Binar
y
input

Pixel
Equival
ent

Hybrid
multiplier
output in µA

Adder
output
in µA

Neuron output
in mV
(Simulated)

Neuron
output in mV
(Theoretical)

Equivalen
t pixel
values

Software
reference
results

0000 0 0 0 0 0 0 0

0001 008 01.7 027.2 0070.20 0081 112 116

0010 016 03.6 057.6 0149.76 0172 134 140

0011 024 05.2 083.2 0216.32 0749 142 152

0100 032 07.5 120.0 0312.00 0360 149 153

0101 040 08.7 139.2 0361.92 0417 153 161

0110 048 10.5 168.0 0436.80 0501 160 166

0111 056 12.1 193.6 0503.36 0579 168 174

1000 072 16.0 256.0 0665.60 0768 174 180

1001 080 16.7 267.2 0694.72 0802 182 191

1010 088 18.8 300.8 0782.08 0906 191 201

1011 096 20.0 320.0 0832.00 0960 198 207

1100 104 23.0 368.0 0956.80 1101 206 216

1101 112 23.9 382.4 0994.24 1140 213 221

1110 120 26.8 428.8 1114.88 1286 225 232

1111 128 28.6 451.2 1173.12 1314 236 245

The results obtained are compared with expected results and software reference

model presented in chapter 4. For the circuit shown in Fig. 5.31, the input to the hybrid

cells is varied from 0000 to 1111, and the outputs obtained are tabulated. In Table 5.6,

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

197

column 1 represents the binary input applied to the entire hybrid cell (16 multipliers).

Column 2 is the pixel values used as test case. Column 3 is the output of the hybrid cell

and column 4 is the output of the adder. The output of the adder is converted to voltage

using a current mirror load designed as a load circuit having resistance of 3K Ohm

(column 5). Column 6 is the expected voltage output of the single neuron cell. Column 7

is the equivalent pixel values for the simulated results and column 8 is the pixels values

obtained using software reference model.

Fig. 5.33 presents the comparison of the simulated single neuron cell with

theoretical values for inputs varying from 0 to 16. From the results, it is found that the

single neuron cell out variation matches with the expected results. The maximum

expected output when all the inputs applied to the inputs of the neuron are at maximum

value of 16 is 1.31 V. Simulated results show that the maximum output voltage is 1.26 V.

The error difference of 0.04 V is acceptable, and can be minimized.

Figure 5.33 Simulated results of single neuron cell

Fig. 5.34 shows the comparison of expected pixel values and the simulated

output. As the network produces voltage output, in order to compare with the software

reference results, the outputs have been converted to its equivalent pixel representation

and are compared with the results obtained using software reference results.

Neuron output

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inputs

O
ut

pu
t i

n
m

V

Neuron output in
mV(simulated)
Neuron output in
mV(theoretical)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

198

Figure 5.34 Comparison of simulated results with software reference results

Hardware simulations of the proposed design are used to test image compression

and decompression of various image sizes. MSE is calculated, the results show that the

hardware simulated results are very satisfactory as they achieve very less MSE. However,

the complexity is that due to limitations in test setup, performance of the network is not

evaluated for large size images. The decompressed network output producing current

values were compared with input current values; using mathematical equation MSE and

PSNR were numerical calculated. The results of the same are shown in Table 5.7.

Table 5.7 Image size and performance parameters
Image size MSE CR

64X64 21.2 50
32x32 18.6 50
16x16 19.2 50
8x8 14.3 50

From the results obtained, it is found that the network had less MSE for smaller

size images; this is due to the fact that smaller size images have minimum number of 4 x

4 blocks and hence numbers of boundaries are less between these blocks. Large image

sizes having more boundaries, affects the MSE. This can be avoided by taking

simulated results vs. software reference results

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

Pi
xe

l o
ut

pu
t

Equivalent pixel values
Software reference results

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

199

overlapping blocks of 4 x 4. This avoids boundaries and hence good MSE. The network

is also tested for various compression ratios. 4 x 4 blocks of image or current mirrors

were used to test the network. Different network sizes were chosen to achieve different

compression ratios. The results obtained were matching the software response curve for

the same compression ratios.

Table 5.8 Compression ratio and MSE

Network size Size of
hidden layer BPP MSE

16-8-16 8 4 12.43
16-6-16 6 3 18.4
16-5-16 5 2.5 19.8
16-4-16 4 2 14.6
16-2-16 2 1 15.7
16-1-16 1 0.5 17

Table 5.8 shows the results of compression ratio vs. MSE for the software simulated

hardware reference model. At higher compression, MSE is 17, and at lower compression

it is 12.43.

 In this chapter, the hardware model for the proposed network is designed,

modelled, simulated using Cadence Virtuoso and Synopsys HSpice EDA tools. The basic

building blocks for the neuron model is first modelled using spice coding, spice models

are verified using 180nm and 130nm library. The spice results are set as reference

models. Based on the designed schematic, schematic capture of the proposed neuron is

carried out using Virtuoso schematic editor. Simulation results are verified with spice

models. Finally, layouts for the neuron cell are designed using Virtuoso Layout Editor,

layouts are verified for LVS, DRC violations. Parasitic extraction of the layout is

performed using RC-XT and spice simulations of the extracted model are carried out.

Results obtained are verified with spice model results. As industry standard tools that are

termed as signoff tools used to verify the design, the results presented in this chapter are

almost hardware worthy. The next chapter summarizes the research work and highlights

the major conclusions and scope for future work.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

200

Chapter 6 – Conclusion

6.1 Conclusion and Recommendations for Future Work

In this research work, adaptive two-dimensional multilayer neural network architecture

has been proposed, designed, modelled, simulated and verified using both the software

and hardware models. The adaptive architecture proposed automatically selects one of the

three 2-D multilayered neural network architectures based on image entropy and Bits Per

Pixel (bpp). This architecture eliminates the need for 2-D to 1-D reordering of image

samples and also eliminates the need for analog to digital conversion of image intensities.

A modified backpropagation algorithm that is suitable to train the 2-D multilayer network

architecture is proposed and is used to train the TDMNN architecture. Software reference

model for Adaptive TDMNN architecture is developed. MSE, PSNR and Maximum

Error for various images are computed using the developed software reference model.

Network parameters such as the number of hidden layers, number of neurons in each

layer, input sub-block image size, network functions and compression ratio are estimated

based on results obtained. Based on the experimental results it is concluded that a two

layered network with sub-block of image size 4 x 4 is optimum in terms of network

performance and computation time. Input block size restricted to 4 x 4 was selected as a

tradeoff between complexity and quality. Noise analysis carried out on TDMNN shows

that the network has 2 to 25 times improvement compared to DWT-SPIHT technique.

Error analysis of the TDMNN architecture reveals 10 to 30 times improvement over

DWT-SPIHT technique.

Initially TDMNN architecture was designed for image compression and

decompression. Performances of three TDMNN architectures (Linear, Nonlinear and

Hybrid) were analyzed. From the results it was found that for 0.5 bpp hybrid networks

achieves better PSNR and MSE compared to linear network. At 7.5 bpp, linear network

performs better than hybrid network. For bpp between 2 and 5, the hybrid network

achieves better performance compared to linear network. Also the nonlinear network

was able to achieve better results compared to the linear and hybrid networks. Based on

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

201

the results, it was concluded that the network performance is a function of the image.

Hence, in order to achieve better performance compared to the conventional techniques,

adaptive TDMNN architecture is proposed. In this architecture, Entropy of input image is

computed. Based on the Entropy and the required compression ratio, the control unit

automatically selects appropriate TDMNN architecture for image compression and

decompression. Adaptive TDMNN architecture is three to ten times better than TDMNN

in terms of quality metrics such as MSE and PSNR. MSE and PSNR results obtained for

adaptive TDMNN architecture for 4 bpp and less than 4 bpp reveals three times better

compared with DWT-SPIHT results. Software simulation results show that Adaptive

TDMNN architecture is 60 times faster than DWT-SPIHT. Network is trained with

multiple image data sets to generalize the network for compression of various images.

Based on the software reference model developed, basic building blocks for

Adaptive TDMNN architecture are identified for VLSI implementation. Multipliers,

adders and network functions are the three major building blocks for adaptive TDMNN

architecture. VLSI implementation of TDMNN building blocks are carried out using

industry standard tools. Analog network architecture is designed and implemented for

image compression and decompression. Three different neuron cells (Gilbert cell based

neuron, modified Gilbert cell based neuron and hybrid neuron cell) have been designed

and analyzed for its area, timing and power performances. Hybrid neuron cell is selected

as it is found to be more suitable for VLSI implementation. Hybrid cell multiplies analog

samples with digital weights and hence called as hybrid neuron cell. Hybrid neuron cell

consists of multiplier, adder and network function. There is a need of 128 multipliers per

network for adaptive TDMNN architecture (hidden layer and output layer). A modified

Multiplying DAC architecture based multiplier is designed involving a total number of

2816 transistors. The area for the multiplier is 7884 µm2. Hybrid cell (based on modified

MDAC) is designed using NMOS transistors work at 200 MHz of clock frequency. It

consumes 232 mW of power at the maximum full scale current of 65.535 µA. Weights

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

202

and biases obtained during training are stored in Read only Memory (ROM). Test setup

for verifying the TDMNN architecture as compressor and decompressor is designed.

Image sizes 64 x 64 to 8 x 8 were used to test the network performance. MSE computed

for different image sizes varies from 21 to 14. These results were validated against the

software reference model and the difference between hardware and software models was

less than 10%. The network was tested for various compression ratios and the results

obtained were found to agree with software reference model. A full chip design of the

proposed architecture was implemented using Cadence Virtuoso, and the physical

verification was carried out using Assura. DRC and LVS checks were performed and

then GDSII was generated for chip fabrication.

Recommendations for Future Work:

1. Network performances of Adaptive TDMNN can be further improved by

identifying the entropy of sub-images and selecting the required network. Based

on image entropy, bpp and computation time, sub-image size can be selected for

compression using Adaptive TDMNN.

2. The network performances can be further improved by having multiple two-

dimensional network architectures supporting multiple image properties. Also,

robust classification algorithms can be identified to select the required network

for specified compression and decompression.

3. Two-dimensional training algorithms can be identified to train two-dimensional

network, as this research while extends the 1-D training algorithm to 2-D network

by rearrangement of the input image.

4. The proposed network can be further extended to perform image segmentation,

edge detection and restoration replacing the digital weight matrix and hence can

achieve reconfigurabilty.

5. Hardware blocks designed can be further optimized my minimizing the weight

matrix by exploiting the redundancy in the weight matrix.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

203

6. Hardware realization on silicon and real time testing of the proposed model would

be a very good scope for future work.

7. The compressed analog data being analog can be further converted to digital and

two dimensional encoding schemes and can be used compress the images and

higher compression can be achieved. The recommendations lead to two-

dimensional signal processing techniques that are slowly finding prominence for

next generation communication technologies.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

204

List of Publications

National Conferences:
• Cyril Prasanna Raj, P. and Pinjare, S.L. (ed.) (2005) NN for image compression

On FPGA. ‘National Conference on IMS’. held 26 March 2005 at Sona Institute
of Technology. Salem (Won the best paper award)

• Cyril Prasanna Raj, P. and Pinjare, S.L. (ed.) (2005) Multilayered Neural Network
on FPGA. ‘IEEE National Conference on VLSI, Embedded, DSP applications
(VEDAS)’. held 3-4 June 2005. Salem (Won the best Paper award)

International Conferences:
• Cyril Prasanna Raj, P. and Pinjare, S.L. (ed.) (2005) Pipelined and Parallel

Architectures for MLNN on FPGA. ‘International Conference on Advances in
Computer Vision and Information Technology’. held 16-17 October 2005 at
NIT(Trichy). Cochin

• Cyril Prasanna Raj, P. and Ramanaiah, K.V. (ed.) (2008) FPGA Implementation
of DWT and Neural Network Hybrid Architecture for Image Compression. ‘IEEE
conference on Biomedical Signal Processing’. held 3-6 December 2008.
Singapore

• Cyril Prasanna Raj, P. and Pinjare, S.L. (ed.) (2009) ASIC Implementation of
Nonlinear Neural Networks for Image Compression Optimizing Area and Power.
‘International Conference on Intelligent Systems and Control’. held 6-7 February
2009 at Karpagam University. Coimbatore

• Cyril Prasanna Raj, P. and Pinjare, S.L. (ed.) (2009) Analog VLSI Implementation
of Novel Hybrid Neural Network Multiplier Architecture. ‘International
Conference on Intelligent Systems and Control’. held 6-7 February 2009 at
Karpagam University. Coimbatore

• Cyril Prasanna Raj, P. and Pinjare, S.L. (ed.) (2009) Analog VLSI Implementation
of 2-D Multidimensional Architecture for Image Compression. ‘International
Conference on Intelligent Systems and Control’. held 6-7 February 2009 at
Karpagam University. Coimbatore

Journal Publication:
• Cyril Prasanna Raj, P. and Pinjare, S.L. (2009) ‘Design and Analog VLSI

Implementation of Neural Network Architecture for Signal Processing’.
European journal of scientific research 27 (2)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

205

Papers Submitted:
• Cyril Prasanna Raj, P. and Pinjare, S.L. Vershinin, Y.A. (2009) ‘Analog Neural

Architecture with Gilbert Cell Supporting Large Voltage Swing’. I-Managers
Journal for Nano sciences, India

• Cyril Prasanna Raj, P. and Pinjare, S.L. Vershinin, Y.A. (2009) ‘Analog VLSI
Implementation Of Neural Networks For Signal Processing And Image
Compression’. Australian Journal for Electrical and Electronics

• Cyril Prasanna Raj, P. and Pinjare, S.L. Vershinin, Y.A. (2010) ‘2-D Multilayered
Analog Neural Network Architecture for Image Compression’. European Journal
of Scientific Research

• Cyril Prasanna Raj, P. and Pinjare, S.L. Vershinin, Y.A. (2010) ‘2-D Multilayered
Neural Network Architecture for Image Compression’. WSEAS Transactions on
Signal Processing

Patents Submitted for Review:

• Multiplierless hybrid neural network architecture for image compression and
decompression

• Two-dimensional Training for 2-D multilayered neural network architecture for
image compression and decompression

• Two-dimensional multilayered neural network architecture for image
compression and decompression for telemedicine applications

• Two-dimensional reconfigurable neural network based image processing unit
using Multicore architectures

• 3D-DWT and TDMNN architecture for Image Processing
• Adaptive TDMNN architecture for video processing

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

206

REFERENCES
Aaron Ferrucci (1994) A field-programmable gate array implementation of a self

adapting and scalable connectionist network. Unpublished Master's thesis. Santa
Cruz: University of California

Adnan and Dimililer (2008) ‘Image compression using neural networks and harr

wavelet’. WSEAS Transactions on Signal Processing 4, 330 – 339

Ali Naderi, Adbollah Koehi, Khayrollah Haidi and Hadi Ghasemzadeh (2008) ‘A new
high speed and low power four-quadrant CMOS analog multiplier in current
mode’. Int. Journal of Electronic Communication 63, 769-775

Amerijckx, C., Legaty, J. D. and Verleysenz, M. (2003) ‘Image Compression Using Self-

Organizing Maps’. Systems Analysis Modeling Simulation 43 (11), 4230-4235

Andra, K., Chakrabati, C. and Acharya, T. (2003) ‘A High-Performance JPEG2000
Architecture’. IEEE Trans. on Circuit and Systems for Video Technology13 (3)
209-218

Andreas, G. and Boahen, A. (1996) ‘Translinear Circuits in Sub threshold MOS’. Analog

Integrated Circuits and Signal Processing 9,141-166

Anne Vanden Bosh , Marc Borremans, A. F., Michel, S. J and Willy Sasen

(2001) ‘A 10-bit 1-Gsample/s Nyquist Current-Steering CMOS D/A Converter’.
IEEE Journal of Solid State of circuits 36 (3), 315-323

Anthony, D., Taylor, E., D. and Barham, J. (1989) ‘A study of data compression
using neural networks and principal component analysis’. Colloquium on
Biomedical Applications of Digital Signal Processing, 1–5

Arthur, E. B. and Yu-Chi, H., (1968) Applied optimal control: optimization, estimation,

and control. Blaisdell Publishing Company or Xerox College Publishing, 481

Auda, G. and Kamel, M. (1999) ‘Modular neural networks: a survey’. International

Journal of Neural Systems 9 (2), 129-151

Backus, J. (1978) ‘Can programming be liberated from the von Neumann style’.

Communications of the ACM 21 (8), 613-641

Barni, M., Bartolini, F. and Piva, A. (2001) ‘Improved Wavelet-Based Watermarking
Through Pixel-Wise Masking’. IEEE Trans. on Image Processing 10 (5), 783-791

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

207

Becker, S. and Plumbley, M. (1996) ‘Unsupervised neural network learning procedures

for feature extraction and classification’. International Journal of Applied
Intelligence 6 (3), 185-203

Bernabe, L. (1992) ‘A Modular T-Mode Design Approach for Analog
Neural Network Hardware Implementations’. IEEE Journal of Solid-state
Circuits 27 (5), 701-713

Beuchat, J.-L., Haenni, J.-O. and Sanchez, E. ‘Hardware Reconfigurable Neural

Networks’. Parallel and Distributed Processing IPPS/SPDP'98, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 1388, pp. 91-98, 1998.

Blake, J. and McDaid, L. (2005) ‘Using Xilinx FPGAs to Implement Neural Networks

and Fuzzy Systems’. Faculty of Engg, Univ. of Ulster, Magel College, Northland
Rd. Derry

Blelloch, G. E. (1990) Vector Models for Data-Parallel Computing. Cambridge: MIT

Press

Benbenesiti, Y. (1997) ‘New simple three-layer neural network for image compression’.

Optical Engineering 36, 1814-1817

Benbenesiti, Y., Kornreich, D., Mitchell, H.B., Schaefer, P.A. (1999) ‘Fixed

bit-rate image compression using a parallel-structure multilayer neural network’.
IEEE Trans. on Neural Networks 10, 1166 – 1172

Bogdan, W., Serdar, I., Okyay, K and Onder, M. (1997) ‘An Algorithm for Fast

Convergence in Training Neural Networks’. 3, pp.345-351

Bose, N. K. and Liang, P. (2002) Neural Network Fundamentals with graphs, algorithms

and application. New Delhi: Tata McGraw hill

Bugeja, R. and Song, B. S. (2000) ‘A self-trimming 14-b 100-MS/s CMOS DAC’. IEEE

Journal of Solid-State Circuit 35, 1841-1852

Burcu Kapanogulu and Tulay Yildirim (2003) A novel four quadrant analog multiplier

for artificial neural networks. ‘International Turkish Symposium on Artificial
Intelligence and Neural Networks’. held 2003 at Turkey

Carrato, S. (1992) ‘Neural networks for image compression’. In Neural Networks:

Advances and Applications. Gelenbe Publications, 177-198

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

208

Carrato, S. Ramponi, G. (1991) Improved structures based on neural networks for

image compression. ‘IEEE Workshop on Neural Networks for Signal Processing’.
held Sept.29-Oct.2, 1991 at New Jersey, USA, 493-502

Chang, IS (2007) Space launch vehicle reliability [online] available from
<www.aero.org/publications/crosslink/winter2001/03.html> [Feb 2009]

Chi-Hung Lin and Klaas Bult (1998) ‘A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2’.

IEEE journal of solid-state circuits 33, 1948-1958

Chiang, J. S., Lin, Y. S and Hsieh, C. Y. (2002) ‘Efficient Pass-Parallel Architecture For

EBCOT in JPEG2000’. IEEE International Symposium on Circuits and Systems
1, 773-776

Chrysafis, C. and Ortega, A. (1998) ‘Line based, reduced memory, wavelet image

compression’. Proceedings of Data Compression Conference, 398–407

Chun Lu, Bing-xue Shi and Lu Chen (2002) Hardware Implementation of an Analog

Accumulator for On-chip BP Learning Neural Networks, Institute of
Microelectronics, Tsinghua University Beijing, China

Conforto, S. (1995) ‘High-quality compression of echo graphic images by neural

networks and vector quantization’. Medical and Biological Eng. Computation 33,
695-698

Cottrell, G. W. and Metcalfe, J. (1996) ‘EMPATH: Face, emotion, and gender
recognition using holons’. Advances in Neural Information Processing Systems 3,
564–571

Costa, S. and Fiori, S. (2001) ‘Image compression using principal component neural

Networks’. Image and Vision Computing 19, 649-668

Cottrell, G. W. and Munro, P. (1988) ‘Principal components analysis of images via back

Propagation’. SPIE, Visual Comm. and Image Processing 1001, 1070–1077

Cox, C. E. and Blanz, Ganglion, W. E. (1992) ‘A fast field-programmable gate array
implementation of a connectionist classifier’. IEEE Journal of Solid State Circuits
27, 288-299

David, T. and Michael, M. (2001) ‘Image Compression Fundamentals: Standards and

Practice’. The Kluwer International Series in Engineering and Computer Science

http://www.aero.org/publications/crosslink/winter2001/03.html�

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

209

Dony, R. D. and Haykin, S. (1995) ‘Neural Network Approaches to Image Compression’.

In Proceedings of IEEE 83 (2), 288-303

Eldridge, J. G. and Hutchings, B. L. (1994) FPGA density enhancement of a neural

network through run-time reconfiguration. Unpublished Master's thesis. Brigham:
Young University

Eldridge, J. G. and Hutchings, B. L. (1994a) Density enhancement of a neural network

using FPGAs and run-time reconfiguration, IEEE Workshop on FPGAs for
Custom Computing Machines, (Apr. 10-13), pp.180-188

Eldridge, J. G. and Hutchings, B. L. (1994b) Rann: A hardware implementation of the

backpropagation algorithm using reconfigurable FPGAs. ‘IEEE International
Conference on Neural Networks’. held Jun 26-Jul 2. Orlando: FL

Encyclopedia (2001) Error analysis in lossy compressed image transmission algorithms
[online] available from <http://www.encyclopedia.com/doc/1G1-
146892300.html> [24 July 2005]

Egmont, P., Ridder and Handels (2002) ‘Image Processing with Neural

Networks – a review’. Pattern Recognition 35, 2279- 2301

Eric Vittoz, A. (2003) ‘Weak Inversion in Analog and Digital Circuits’. CCCD
Workshop, Lund

Fang, H. C., Wang, T. C., Lian, C. J., Chang, T. H. and Chen, L. G. (2003) ‘High Speed

Memory Efficient EBCOT Architecture for JPEG2000’. IEEE International
Symposium on Circuits and Systems 2, 736-739

Fethi, B., Gokcen, I. and Qidwai, U. (2001) Chaotic gray-level image

transformation, Journal of Electronic Imaging, 14 (04)

Fisher, R., Perkins, S., Walker, A. and Wolart, E. (2003) Pixel connectivity [online]
available from <http://homepages.inf.ed.ac.uk/rbf/HIPR2/> [May 2011]

Frescura, F., Giorni, M., Feci, C. and Cacopardi, S (2003) ‘JPEG2000 and MPEG2000

transmission in 802.11 wireless local area networks’. IEEE Trans. on Consumer
Electronics 9 (4), 861–871

Garris, M. D., Wilson, C. L. and Blue, J. L. (1998) ‘Neural network based systems for

Hand print OCR applications’. IEEE Trans. On Image Processing 7, 1097–1112

http://homepages.inf.ed.ac.uk/rbf/HIPR2/�

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

210

Golomb, B. A., Lawrence, D. T. and Sejnowski, T. J. (1996) ‘SEXNET: A neural

network identifies sex from human faces’. Advances in Neural Information
 Processing Systems 3, 572– 577

Greenhil, D., Davies, E. R. (1994) ‘Relative effectiveness of neural networks for image

noise suppression’. In Proceedings of the Pattern Recognition 4, Vlieland, 367–
378

Guccione, S. A. and Gonzalez, M. J. (1993) ‘A data parallel programming model for

reconfigurable architectures’. IEEE workshop on FPGAs for custom computing
machines, 78-79

Guan, L., Anderson, J. A. and Sutton, J. P. (1997) ‘A network of networks processing

model for image regularization’. IEEE Trans. Neural Networks 8, 169–174

Hadi and Mansour (2009) ‘A complexity based approach in image compression using

neural networks’. International Journal on Signal Processing 5 (2), 82–92

Hanek, H. and Ansari, N. (1996) ‘Speeding up the generalized adaptive neural filters’.

IEEE Trans. on Image Processing 5, 705–712

Hahn-Ming Lee, Chih-Ming Cheb and Tzong-Ching Huang (2001) Learning

improvement of back propagation algorithm by error saturation prevention
method, International Joint Conference on Neural Networks 3, 1737 – 1742 Washington DC

Heinrich, N. and Wu, J. K. (1993) ‘Neural network adaptive image coding’. IEEE Trans.

On Neural Networks 4 (4), 605-627

Hillis, W. D. (1985) The Connection Machine. Cambridge: MIT Press

Hussein, C. (1997) ‘Analysis and Design Of Analog Microelectronic Neural Network

Architectures With On-Chip Supervised Learning’. Unpublished PhD Thesis.
University of Genoa

Huynh-Thu, Q., Ghanbari, M. (2008) ‘Scope of validity of PSNR in image/video quality

Assessment’. Electronics Letters 44, 800–801

Hyun-Ho Cho, Cheong-Yong Park, Gun-Shik Yune and Kwang-Sub Yoon (2004) ‘A

10-Bit 210MHz CMOS D/A Converter for WLAN’. IEEE Asia-Pacific
Conference on Advanced System Integrated Circuits 5, 106-109

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

211

Iain, E. G. (2002) ‘Video Codec Design, Developing Image and Video
Compression Systems’. John Wiley & Sons

Ikegami, T. (2008) Amphion IP to decode MPEG2 HDTV (4:2:2) on FPGA [online]

available from <http://www.amphion.com/cs6510.html> [Jan 2009]

Ivan, V. (2006) ‘An experience in image compression using neural networks’. 48th

international symposium, ELMAR, 95-98

Jacob Wikner and Nianxiong Tan (1999) ‘Modeling of CMOS Digital-to-Analog
Converters for Telecommunication’. IEEE Trans. on Circuits and Systems,
Analog and Digital Signal Processing 46 (5), 489-499

Jiang, J. (1999) ‘Image Compression with Neural Networks - A Survey’. IEEE Trans. On

Signal Processing and Image Communication 14, 737- 760

Jianxun and Huang (2004) ‘Image Compression Using Principal Component

Neural Network’. 8th International Conference on Control, Automation, Robotics
and Vision 1, 698-701

Jiang, J. (1995) ‘Algorithm design of an image compression neural network’. Proc. Of

World Congress on Neural Networks, 1792-1798

Jiang, J. (1995a) ‘A novel design of arithmetic coding for data compression’. IEEE Proc.

On Computer and Digital Techniques, 419-424

 Jiang, J. (1996) ‘A neural network based lossless image compression’. In Proc. Visual'

96: International Conference on Visual Information Systems, 192-201

Jiang, J. (1996a) ‘Design of neural networks for lossless data compression’. Optical

Engineering 35, 1837-1843

Jiang, J. (1996b) ‘Fast competitive learning algorithm for image compression neural

Networks’. Electronic Letters 32, 1380-1381

Jiang, W.W., Kiang, S.Z., Hakim, N.Z. and Meadows, H.E. (1993) Lossless compression

for medical imaging systems using linear/nonlinear prediction and arithmetic
coding, Proceedings of IEEE International Symposium on Circuits and Systems 1,
283-286

JPEG2000 Final Committee Draft (FCD), JPEG2000 Committee Drafts. [Online]

http://www.amphion.com/cs6510.html�

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

212

Joe Burns (2003) Image Formats [online] available from
<http://www.htmlgoodies.com/tutorials/web_graphics/article.php/3479931> [3
June 2004]

Kai Chen, Yuan Xue, Samarth H. Shah and Klara Nahrstedt (2001) ‘Understanding

Bandwidth-Delay Product in Mobile Ad Hoc Networks’. Elsevier Publications

Karayiannis, N. B. and Pai, P. I. (1995) ‘Fuzzy vector quantization algorithms and their
application in image compression’. IEEE Trans. Image Processing 4, 1193-1201

Karayiannis, N. B. and Pai, P. I. (1996) ‘Fuzzy algorithms for learning vector
Quantization’. IEEE Trans. On Neural Networks 7, 1196-1211

Karim Nice, Tracy V. Wilson and Gerald Gurevich (2003) How digital cameras work

[online] available from <www.howstuffworks.com/digital-camera.htm> [3 June
2005]

Kohno, R., Arai, M. and Imai, H. (1990) ‘Image compression using a neural network

with learning capability of variable function of a neural unit’. SPIE Visual
Communications and Image Processing 1360, 69–75

Koh, J., Suk, M. S. Bhandarkar, S. M. (1995) ‘A multilayer self organizing feature map

for range image segmentation’. IEEE Trans. on Neural Networks 8, 67–86

Kohonen, T. (1984) Self-Organization and Associative Memory, Springer

Kornreich, D., Benbenisti, Y., Mitchell, H.B., Schaefer, P. (1997) ‘Normalization

schemes in a neural network image compression algorithm’,
SPIC 10, (4), 269-278

Kornreich, D., Benbenesiti,Y., Mitchell, H.B., Schaefer, P. (1997) ‘A high performance

single-structure image compression neural network’. IEEE Trans. On Aerospace
Electronic Systems 33, 1060-1063

Kotropoulos, C., Magnisalis and X. Pitas, I. (1994) ‚Nonlinear ultrasonic image

processing based on signal-adaptive filters and self-organizing neural networks’.
IEEE Trans. On Image Processing 3, 65–77

Kristian, R. N. (2003) ‘A Reconfigurable Computing Architecture For
Implementing Artificial Neural Networks on FPGA’. Unpublished M.Sc. Thesis,
The University of Guelph

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

213

Kuroki, N. (1992) ‘Lossless image compression by two dimensional linear predictions
with variable coefficients’. IEICE Trans. On Fund., 882-889

Kwan, H. K.(1992) ‘Simple sigmoid. like activation function suitable for digital

hardware implementation’. Electronic Letters 28, 1379 – 1380

Lee, C. C. and Degyvez, J. P. (1996) ‘Color image processing in a cellular neural

network environment’, IEEE Trans. Neural Networks 7, 1086–1098

Le, D. X., Thoma, G. R. and Wechsler, H. (1995) ‘Classification of binary document

images into textual or nontextual data blocks using neural network models’.
Machine Vision Applications 8, 289–304

Lewicki, W. C. and Olshausen, B. A. (1999) ‘Probabilistic framework for the adaptation

and comparison of images codes’. Journal of Optical Society of America A. 16
(7), 1587-1601

Lian, C. J., Chen, K. F., Chen, H. H., and Chen, L. G. (2003) ‘Analysis and Architecture

Design of Block-Coding Engine for EBCOT in JPEG2000’. IEEE Trans. on
Circuit and Systems for Video Technology 13 (3), 219-230

Lin, J. S. and Liu, S. H. (1999) ‘A competitive continuous Hopfield neural network for

vector quantization in image compression’. Engineering Applications of Artificial
Intelligence 12 (2), 111-118

Lin, S. and Yu, P. S. (1982) ‘A Hybrid ARQ Scheme with Parity Retransmission for
Error Control of Satellite Channels’. IEEE Trans. on Communications 30 (7),
1701-1719

Lin, W.C., Tsao, E. C. and Chen, C.T. (1992) ‘Constraint satisfaction neural networks for

image segmentation’. IEEE Trans. on Pattern Recognition 25, 679–693

Lippmann, R. P. (1987) ‘An introduction to computing with neural nets’. IEEE ASSP
Magazine 4, 4-21

Manjunath, B. S., Simchony, T. and Chellappa, R. (1990) ‘Stochastic and deterministic
networks for texture segmentation’. IEEE Trans. On Acoustics, Speech Signal
Processing 38, 1039–1049

Marshall, J. A. (1990) ‘Self-organizing neural networks for perception of visual motion’.
IEEE Trans. On Neural Networks 3, 45–74

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

214

Martin Sauter (2011) ‘From GSM to LTE: AN introduction to Mobile Networks and
Mobile Broadband’ Wiley Publications

Matsumoto, T., Kobayashi, and Togawa, Y. (1992) ‘Spatial versus temporal stability

issues in image processing neuro chips’. IEEE Trans. On Neural Networks 3,
540–569

Marcelo, H. (1994) ‘A reconfigurable hardware accelerator for back-
propagation connectionist classifiers’. Unpublished M.Sc. Thesis, Santa Cruz:
University of California

Mitchell, J. L. and Pennebaker, W. B. (1993) ‘JPEG Still Image Data Compression
Standard’. New York: Van Nostrand

Mitra, Majid and William (2005) ‘Design and implementation of multilayer mixed
signal on chip neural network’. IEEE trans. on Neural Networks 5, 413-416

Mitra, S. and Yang, S. Y. (1999) ‘High fidelity adaptive vector quantization at very low
bit rates for progressive transmission of radiographic images’. Journal of
Electronic Imaging 8, 23–35

Mougeot, M., Azencott, R. and Angeniol, B. (1991) ‘Image compression with back
propagation: improvement of the visual restoration using different cost functions’.
IEEE Trans. On Neural Networks 4, 467-476

Mohammed, A. and Salameh, A. (2005) ‘Speeding up Back-propagation Neural
Networks’. In Proceedings of the Informing Science and IT Education Joint
Conference Flagstaff, Arizona, 16-19

Nachtergaele, Lafruit, L., Bormans, J., Engels, M. and Bolsens, I. (1999) ‚Optimal
memory organization for scalable texture codecs in MPEG-4’. IEEE Trans. on
Circuits Systems for Video Technology 9, 218–243

Namphol, A. Chin, S. and Arozullah, M. (1996) ‘Image Compression with Hierarchical

Neural Network’. IEEE Trans. Aerospace and Electronic Systems 32 (1), 326-
338

Navin Saxena and James J. Clark (1994) ‘A four quadrant CMOS analog multiplier for
analog neural networks’. IEEE Journal of Solid Sate Circuits 29 (6), 746-749

Ngan, S. C. and Hu, X. (1999) ‘Analysis of functional magnetic resonance imaging data
using self-organizing mapping with spatial connectivity’. Magazine on Resonance

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

215

Medicals 41, 939–946

Nossek, J. A. and Roska, T. (1993) ‘Special issue on Cellular Neural Networks’. IEEE

Trans. On Circuits and Systems

Qiu, G., Varley, M. and Terrel, T. (1993) Image compression by edge pattern learning

using multilayer perception, Electronic letters 29 (7), 601–603

Oja, E. (1988) ‘A simplified neuron model as a principal component analyzer’. Journal of
Mathematics. Biology 15 (3), 1432-1436

Lampinen, J., Laaksonen, J. and Oja, E. (1997) ‘Neural Network Systems, Techniques
 and Applications in Pattern Recognition’, Report B1, Laboratory of

Computational Engineering, Helsinki University of Technology, 1997.
(PostScript) Also published as Pattern Recognition, in C. T. Leondes (Ed.), Image
Processing and Pattern Recognition, Vol. 5. in series Neural Network Systems
Techniques and Applications, Academic Press, pp. 1-59, 1998.

Omer, M., Farhat, A., Momoh and Salami (2007) ‘Learning algorithm effects on
multilayer feed forward artificial neural network performance in image coding’.
Journal of Engg. Science and Technology 2 (2), 88-199

Omondi, R. and Rajapakse, C. (2006) ‘FPGA Implementation of Neural Networks’.
U.S. :Springer

Ong, K. K., Chang, W. H., Tseng, Y. C., Lee, Y. S. and Lee, C. Y. (2002) ‘A high
throughput low cost context-based adaptive arithmetic codec for multiple
standards’. IEEE International Symposium on Image Processing 1, 872-875

Opara, R. and Worgotter, F. (1996) ‘Using visual latencies to improve image

Segmentation’. Neural Computation 8, 1493–1520

Otair, M. A., Salameh , W. A. (2006) ‘An Improved Back-Propagation Neural

Networks using a Modified Non-linear function’. The IASTED Conference on
Artificial Intelligence and Applications. Austria: Innsbruck

Ozkan, M., Dawant, B. M. and Maciunas, R. J. (1993) ‘Neural network- based
segmentation of multi-modal medical images—a comparative and prospective
study’. IEEE Trans. Medical Imaging 12, 534–544

Paik, J. K. and Katsaggelos, A. K. (1993) ‘Image restoration using a modi1ed Hopfield

Network’. IEEE Trans. On Image Processing 1, 49–63

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

216

Pavlidis, G., Tsompanopoulos, A., Atsalakis, A., Papamarkos, N. and Chamzas, C.

(2001) ‘A Vector Quantization – Entropy Coder Image Compression System’. IX
Spanish Symposium on Pattern Recognition and Image Processing

Pavlitov, K. and Mancler, O. (2004) ‘FPGA Implementation of Artificial Neurons’.
Electronic Letters 9, 22-24

Rabbani, M and Joshi, R (2002) ‘An overview of the JPEG 2000 still image compression

standard’. Signal Processing: Image Communication Elsevier Science B.V.17, 3-
48

Rahman and Chowdhury, M. R. (2003) ‘A New Approach for Compressing

Color Images using Neural Network’. Proceedings of International Conference
on Computational Intelligence for Modeling, Control and Automation – CIMCA
Vienna: Austria

Razavi Behzad (2002) ‘Design of Analog CMOS Integrated Circuits’. New Delhi:
Tata McGraw-Hill

Robinson, J. and Kecman, V. (2003) ‘Combining Support Vector Machine Learning With
the Discrete Cosine Transform in Image Compression’. IEEE Trans. on
Neural Networks 14 (4), 950-958

Roy, L. S. (1994) ‘An Analog Neural Network with On-Chip Learning’.
Unpublished M.Sc. Thesis. University of Oslo

Russo, L. E. and Real, C. E. (1992) ‘Image Compression Using Outer Product Neural
Network’. Proc. IEEE International Conference on Acoustic Speech and Signal
Processing 2, 377-380

Rumelhart, D. E. and McClelland, J. L. (1986) ‘Parallel Distributed Processing’.

Cambridge: MIT Press

Ryan Kier, J., Reid Harrison, R. and Randall Beer, D. (2004) ‘An MDAC Synapse for,

Analog Neural Networks’. IEEE Proc. On Circuits and Systems 5 (1), 752-755

Sanger, T.D. (1989) ‘Optimal unsupervised learning in a single layer linear feed forward

neural network’. IEEE Trans. On Neural Networks 2, 459-473

Sarojini, S.M. (2001) Image Compression using DWT-SPIHT [Interview by P. Cyril
Prasanna Raj] Trivandrum, Kerala, 10 March 2001

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

217

Schaphorst and Richard (1999) ‘Videoconferencing and Videotelephony: Technology

and Standards’. Norwood: Artech House Inc.

Shai, Cai-Qin, Geiger and Randy, L. (1987) ‘A 5-v CMOS Analog Multiplier’. IEEE

Journal of solid state circuits 22 (6), 1143-1146

Siaud, I., Morin B. (1999) ‘Investigation on radio propagation channel measurements at
2.2 GHz and 3.5 GHz for the fixed wireless access in an urban area’. Annual
Telecommunication journal 54 (9-10), 464-478

Sicuranzi, G. L., Ramponi, G. and Marsi, S. (1990) ‘Artificial neural network for image

Compression’. Electronics Letters 26, 477–479

Simon Haykin (2004) ‘Neural Networks – A Comprehensive foundation’. Pearson

Education

Signoroni, A., Lazzaroni, F. and Leonardi, R. (2003) ‘Exploitation and extension of the
region-of-interest coding functionalities in JPEG2000’. IEEE Trans. on Consumer
Electronics 49 (4), 818– 823

Stuart Cheshire (1996) It's the Latency, Stupid [online] available from
http://rescomp.stanford.edu/~cheshire/rants/Latency.html [24 Feb 2002]

Skrbek, M. (1999) ‘Fast neural network implementation’. Neural Network World 9 (5),

375-391

Sonehara, N., Kawato, M., Miyake, S., Nakane, K. (1989) ‘Image compression using a

neural network model’. International Joint Conf. on Neural Networks,
Washington DC

Steven, A.G. and Mario, J. G. (1993) ‘Neural network implementation using
reconfigurable architectures’. Selected papers from the Oxford 1993 international
workshop on field programmable logic and applications on More FPGAs United
Kingdom: Oxford. 443-451

Stuart, R. and Peter, N. (1980) ‘Artificial Intelligence A Modern Approach’. Prentice Hall

Szu, H., Telfer, B. and Garcia, J. (1996) ‘Wavelet transforms and neural networks for

compression and recognition’. IEEE Trans. on Neural Networks 9 (4), 695-798

Szu, H., Telfer, B. and Kadambe, S. (1992) ‘Neural network adaptive wavelets for signal

http://rescomp.stanford.edu/~cheshire/rants/Latency.html�

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

218

representation and classification’. Optical Engineering 31, 1907-1916

Thomas, M. C., Joy, A. T. (2006) ‘Elements of Information Theory’. John Wiley &

Sons

Thomos, N., Boulgouris, N. V., and Strintzis, M. G. (1992) ‘Optimized Transmission of
JPEG2000 Streams over Wireless Channel’. IEEE Trans. on Image Processing 15
(1), 54-67

Tiilikainen, M. P. (2001) ‘A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC’. IEEE Journal of
Solid-State Circuit 36, 1144-1147

Tomi Engdahl (2001) ‘Telephone line audio interface circuits’. [online]. Available from
<http://www.epanorama.net/circuits/teleinterface.html> [20 July 2005]

Turner, C. and Peterson, L. (1992) ‘Image Transfer: An End-to-End Design’.

Proceedings of ACM SIGCOMM Computer Communication 22 (4), 258-269

Tzovaras, D. and Strintzis, M. G. (1998) ‘Use of nonlinear principal component analysis
and vector quantization for image coding’. IEEE Trans. On Image Processing 7,
1218– 1223

Veronin, C. P. and Priddy (1992) ‘Optical image segmentation using neural based
wavelet filtering techniques’. Optical Engineering 31, 287-294

Wallace, G. K. (1990) ‘Overview of the JPEG (ISO/CCITT) still image compression

Standard’. Proceedings of the SPIE 1244, 220–233

Wang, L. C., Rizvi, S. A. and Nasrabadi, N. M. (1998) ‘A modular neural network vector

predictor for predictive image coding’. IEEE Trans. On Image Processing 7,
1198– 1217

Wang, L., Fukatsu, Y. and Watanabe, K. (2001) ‘A CMOS R-2R ladder digital-to-analog

converter and its characterization’. Proc. IMTC, 1026-1031

Wang, J. S. and Wey, C. L. (1998) ‘A 10-b, 100 MS/s, 2.8 mW CMOS switched-current

DAC for low-power/low-voltage signal processing applications’. IEEE Trans. On
Circuit and Systems, 526-529

Weingessel, A., Bischof, H. and Hornik, K. (1997) ‘Adaptive combination of PCA and
VQ networks’. IEEE Trans. on Neural Networks 8, 1208–1211

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

219

William, B. P., Joan, L. M. (2004) ‘JPEG’. Springer Publications

William Stallings (2007) ‘Data and Computer Communications’, Prentice Hall

Wicker, S. B. (1995) ‘Error Control Systems for Digital Communication and Storage’,

Upper Saddle River, NJ, Prentice Hall

Xiangjun, L. and Jianfei, C. (2007) ‘Robust Transmission of JPEG2000 Encoded Images

over Packet Loss Channels’. ICME 2007, 947-950

Zhang, L. (1996) ‘Generating and coding of fractal graphs by neural network and

mathematical morphology methods’. IEEE Trans. On Neural Networks 7 (2),
400-407

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

220

Appendix-A Backpropagation Algorithm

A.1 Introduction
Backpropagation is the generalization of the Widrow-Hoff learning rule to multiple-layer

networks and nonlinear differentiable transfer functions. Input vectors and the

corresponding target vectors are used to train a network until it can approximate a

function, associate input vectors with specific output vectors, or classify input vectors in

an appropriate way as defined by you. Networks with biases, a sigmoid layer, and a linear

output layer are capable of approximating any function with a finite number of

discontinuities. Standard backpropagation is a gradient descent algorithm, as is the

Widrow-Hoff learning rule, in which the network weights are moved along the negative

of the gradient of the performance function. The term backpropagation refers to the

manner in which the gradient is computed for nonlinear multilayer networks.

Figure A.1 Multilayer neural network architecture

There are a number of variations on the basic algorithm that are based on other standard

optimization techniques, such as conjugate gradient and Newton methods. The discussion

presented in this chapter is taken from Matlab Help and from Neural Network Design by

a1
1

∑

∑

∑

f1

f1

f1

P1

p2

n1

p3

pR

n2

ns

1

1

1

b1
1

b1
2

b1
s1

iW1,1

iWS, R

a1
2

a1
s

a 1= f 1(W1,1p+b1)

Input
Hidden Layer

∑

∑

∑

1

1

1

b2
1

b2
2

b2
s2

f1

f1

f1

n2
1

n2
2 a2

2

a2
s n2

s2

a1
2

a 2= f 2(W2,1p+b2)

Output Layer

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

221

Hagan Demuth. To illustrate backpropagation training algorithm, the multilayered neural

network (MLNN) shown in Fig. A.1 is considered, the MLNN consists of input layer,

hidden layer and output layer.

Output of each layer is given by equation (A.1)

 (A.1)
Where a is output of each layer, W is the weight matrix, bi is the bias, m represents

network layer. Input layer has m = 0, output layer has m = M.

Network Training consists of following steps:

Step 1: Network Initialization

Inputs and targets are initialized along with initial weights and biases.

Step 2: Forward Propagation

Input p is set as a0, using the equation below, output of each layer is computed. The

output of the final output layer is computed and is denoted as a. Equation A.2 presents

these equations.

 (A.2)
This is called as the forward propagation technique.

Step 3: Error calculation

am 1+ f m 1+ Wm 1+ am bm 1+
+()= m 0 2 … M 1–, , ,=

a
0 p =

a aM=

a
m 1 + f

m + W
m 1 + a

m b
m 1 + + () = m 0 2 … M 1–, , ,=

p1 t 1{ , } p2 t2{ , } … pQ t Q{ , }, , ,

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

222

The difference in network output a and expected target t is computed as in equation A.3,

based on this error, the weight matrix gets updated.

 (A.3)

Step 4: Error sensitivity calculations and backpropagation

The sensitivities are computed by starting at the last layer, and then propagating

backwards through the network to the first layer, as given in equation A.4.

 (A.4)

Above equations compute gradient and Jacobian matrix of the error matrix.

 (A.5)
Sensitivity of each layer is computed as per equation A.4. Based on the computed

sensitivity in the reverse direction i.e. from output to input layer, the weight matrix gets

updated.

Step 5: Weight update

Based on the sensitivity factor, weight and bias values are update in every layer of the

network as per equation A. 6.

 (A.6)

F x() E e2][= E t a–()2][=

sM s M 1–
… s2 s1

→ → → →

si
M F̂∂

ni
M∂

---------- t a–()
T t a–()∂

ni
M∂

tj a j–()
2

j 1=

SM

∑∂

ni
M∂

----------------------------------- 2 ti a i–()–
a i∂

ni
M∂

----------= = = =

() ()M
i

M
ii

M
i nfats −−= 2

Wm k 1+() W m k() αsm a m 1–
()

T
–= bm k 1+() bm k() αsm

–=

()()atnFs −−= MMM 2

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

223

A.2 Software Reference Model for Network Training:
% image is read for compression
I1 = imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\trees.tif');
I2 = imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\pears.png');
I3=imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\peppers.png');
I4 = imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\trees.tif');
%size(I)
image(I1);
image(I2);
image(I3);
image(I4);
in1=I1(1:64,1:64);
in2=I2(1:64,1:64);
in3=I3(1:64,1:64);
in4=I4(1:64,1:64);
in1e=entropy(in1);
in2e=entropy(in2);
in3e=entropy(in3);
in4e=entropy(in4);
% image is displayed
% read part of the image for training
% in1=I1(65:128,129:192);
% in2=I2(65:128,129:192);
% in3=I3(1:64,1:64);
% in4=I4(1:64,1:64);
rr=64;
figure
r=4;
% part image is displayed
imshow(in1)
figure
imshow(in2)
figure
imshow(in3)
figure
imshow(in4)
% Image rearrangement
in1_rearrange=blkM2vc(in1,[r r]);
in2_rearrange=blkM2vc(in2,[r r]);
in3_rearrange=blkM2vc(in3,[r r]);
in4_rearrange=blkM2vc(in4,[r r]);

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

224

in_combined = [in1_rearrange in2_rearrange in3_rearrange in4_rearrange in1_rearrange
in2_rearrange in3_rearrange in4_rearrange];
%in_combined = [in1_rearrange in1_rearrange in1_rearrange in1_rearrange
in1_rearrange in1_rearrange in1_rearrange in1_rearrange];
% normalizing the input to less than and equal to 1
in_combined_normalised=in_combined/255;
% input is set as the target
target=in_combined_normalised;
% creating a neural network having 4 input layer and 16 output layer,
% tansig is input layer transfer function
% purelin is output layer transfer function
% to train the network use train rp function which is backpropagation
% technique
net_c=newcf(minmax(in_combined_normalised),[8 7 8
16],{'tansig','tansig','purelin','purelin'},'trainrp');
% training constraints
net.trainparam.show=5;
net.trainparam.epochs=100;
net.trainparam.goal=1e-5;
% train the network
[net_s,tr]=train(net_c,in_combined_normalised,target);
% first image for testing
image1test= in1_rearrange/255;
a=sim(net_s,image1test);
% rearrange the matrix for display
a4=vc2blkM(a,r,64);
% scale the output to original size
asc=a4*255;
% convert to unsigned number
az=uint8(asc);
% display the output
figure
imshow(az);

%second image for testing
image2test= in2_rearrange/255;
a2=sim(net_s,image2test);
% rearrange the matrix for display
a42=vc2blkM(a2,r,64);
% scale the output to original size
asc2=a42*255;
% convert to unsigned number

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

225

az2=uint8(asc2);
% display the output
figure
imshow(az2);

%third image for testing
image3test= in3_rearrange/255;
a3=sim(net_s,image3test);
% rearrange the matrix for display
a43=vc2blkM(a3,r,64);
% scale the output to original size
asc3=a43*255;
% convert to unsigned number
az3=uint8(asc3);
% display the output
figure
imshow(az3);

%fourth image for testing
image4test= in4_rearrange/255;
a4=sim(net_s,image4test);
% rearrange the matrix for display
a44=vc2blkM(a4,r,64);
% scale the output to original size
asc4=a44*255;
% convert to unsigned number
az4=uint8(asc4);
% display the output
figure
imshow(az4);

%first image
imageMaxError1 = max(max(abs(double(in1)-double(az))))
imageMSE1 = sum(sum((double(in1)-double(az)) .^ 2)) / size(in1,1) / size(in1,2)
psnr1 = 10*log10(255*255/imageMSE1)

%second image
imageMaxError2 = max(max(abs(double(in2)-double(az2))))
imageMSE2 = sum(sum((double(in2)-double(az2)) .^ 2)) / size(in2,1) / size(in2,2)
psnr2 = 10*log10(255*255/imageMSE2)

%third image

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

226

imageMaxError3 = max(max(abs(double(in3)-double(az3))))
imageMSE3 = sum(sum((double(in3)-double(az3)) .^ 2)) / size(in3,1) / size(in3,2)
psnr3 = 10*log10(255*255/imageMSE3)

%fourth image
imageMaxError4 = max(max(abs(double(in4)-double(az4))))
imageMSE4 = sum(sum((double(in4)-double(az4)) .^ 2)) / size(in4,1) / size(in4,2)
psnr4 = 10*log10(255*255/imageMSE4)

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

227

Appendix-B

B.1 Digital implementation of neural network architecture

In this section, discussion on FPGA implementation of neural network architecture for

image compression and decompression is presented. Input image of size 128 x 128 is sub

divided into 8 x 8 blocks of sub images. Each 8 x 8 block is rearranged to 64 x 1 inputs.

The neural network architecture selected for digital implementation is hybrid

architecture, the hidden layer has tansig as the network function and the output layer has

purelin as the network function. The hidden layer consists of 4 neurons with 4 bias

elements and the output layer consists of 64 neurons with 64 bias elements. 64 x 1 input

is compressed to 4 x 1 at the hidden layer, and the 4 x 1 output is decompressed to 64 x 1

at the output layer. The hidden layer and the output layer consist of 256 weights each that

have been obtained after training. Fig. B.1 shows the neural network architecture that is

implemented using FPGA.

Figure B.1 NN architecture for image compression

64 IN
PU

Ts

4 Neurons
(Compression)

64 Neurons for

(Decompression)

64 O
U

TPU
Ts

 4

4 x 64
Hidden Layer

Weight

64 x 4
Output Layer

Weight

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

228

To generalize the network for compression and decompression of any image, 20 sets of

image samples are considered having all the properties of an image such as vertical lines,

horizontal lines, diagonals, curves, edges, plain surfaces and sharp edges. The network is

trained using these data sets, so that the weight matrix obtained can be used to compress

and decompress with any unknown image. FPGA implementation of neural network

architecture shown in Fig. B.2, it is requried to identify the building blocks of the

architecture. The hidden layer consists of 4 neurons, with each neuron computing one

output (z) as in equation B.1,

 n1 = x1w1,1 + x2w2,1 + x3w3,1 + …………………..x64w64,1 + b1h (B.1)

z1= f(n1) = tansig(n1)

x is the input pixel, w is the weight, b1h is the bias in the hidden layer, n is the

intermediate output and z is the final output of hidden layer neuron.

The output layer consists of 64 neurons, with each neuron computing one output as in

equation B.2,

 m1 = z1w1,1 + z2w2,1 + z3w3,1 + z4w4,1 + b1o (B.2)

x1= f(m1) = purelin(m1) = m1

b1o is the bias in the output layer, m is the intermediate output, x is the output at the

output layer of the neuron.

Fig. B.2 shows the architecture of single neuron in the hidden layer and Fig. B.3 shows

the architecture of two neurons in the output layer.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

229

Figure B.2 Single neuron architecture of hidden layer

9

x1

W1,1

X

x2

W2,1

X

x3

W3,1

X

x63

W63,1

X

x64

W64,1

X

+

+

+

+

+

b1h

Look up
table

(256 x 9)
z1

n1

8

8

8

8

8

9

9

9

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

230

Figure B.3 Output Layer neural network architecture (2 neurons)

z2

z1

m2 x2

9

9

9

9

9 9 9 +

+

+

b2o

m1 x1 +

z1

W1,1

X

z2

W2,1

X

z3

W3,1

X

z4

W4,1

X

+

+

+

b1o

9

9

9

9

9

9 9 9

+
W1,2

X

W2,2

X

W3,2

X
z3

W4,2

X
z4

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

231

Based on the discussion presented in Appendix-A, the network is trained with various images as

shown in Fig. B.4. Various possible images that consists of vertical lines, horizontal lines, curves,

diagonal lines and circles have been used for training. Also general images that have been

adopted for validating image processing algorithms have also been used for training the network.

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

232

Figure B.4 Images for training and testing neural network architecture

The weights and biases for the neural network architecture are obtained after training in

Matlab and are presented in Table 5.1. The weights and biases are scaled to integer

values and represented using 2’s complement number system and stored in memory. For

FPGA implementation, the input operand size is 8-bit, weights and biases are represented

using 8-bit 2’s complement number representation. The hidden layer consists of network

function that is realized using tansig. In this work, tansig function is realized using look

up table approach. The outputs of tansig function for various values of input in the range

+/- 127 is computed and stored in ROM. The sum of product output of each neuron is

used to access corresponding memory content of ROM. The sum of product output is

used as address to the ROM. The output layer does not require look up table as the

network function is a linear function. Due to scaling and rounding of weights and biases

using 8-bit number representation, the quantization leads to a maximum loss in weight

values of +/-(1/27). From the simulation results obtained using ModelSim, it is observed

that due to scaling of weights, biases in the hidden layer and output layer, there is a

maximum difference of +/- 10. This is observed based on the Matlab simulation results

and ModelSim simulation results considering individual pixel values. Randomly chosen

pixels values from Matlab and ModelSim results have been compared to find the

mismatches between software and FPGA implementation. The image quality measured in

terms of MSE and PSNR are also compared Fig. B.5 shows the results of Matlab and

ModelSim simulation. For functional verification of HDL model, HDL co-simulation is

carried out by interfacing Matlab with ModelSim.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

233

Figure B.5 Matlab and ModelSim results of decompressed image

The architecture complexity of input layer, hidden layer and output layer are presented in

Table B.1. The architecture shown in Fig. B.2 and Fig B.3 requires sub blocks such as

multipliers, adders, look-up table, registers and control unit for realization. Table B.1

presents the complexity of neural network architecture in terms of number of sub blocks

required for hardware realization.

Table B.1 Complexity of neural network architecture

Number
of

neurons

Number
of

multiplier

Number
of

adders

Number
of look
up table

Number of
registers in the

input layer
(x+ w+ b+ z)

Number of
registers in the

output layer
(z+ w+ b+ x)

Hidden
layer

4 256 256 4 64 + 64 +4 + 4 =
136

Output
layer

64 256 256 0 -------- 4 + 64 + 64 + 64 =
196

Multipliers and adders are the major building blocks of neural network architecture, in

this work various multipliers and adders are modeled using Verilog and synthesized using

Xilinx ISE targeting Spartan IIIE FPGA. In general multiplication involves two basic

operations:

 1. Generation of partial products

 2. Accumulation of partial products

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

234

Performance and speed depends on how we generate partial products, techniques we use

to reduce the partial products and accumulate them. Based on these points a number of

researches are in progress. Multipliers can be basically classified into two three

categories

1. Sequential multiplier – This involves generating partial products sequentially

and adds each newly generated product to previously accumulated partial product

2. Parallel multiplier – It generates partial products in parallel, accumulates using

a fast multi-operand adder

3. Array multiplier - array of identical cells generating new partial products;

accumulating them simultaneously

∗ No separate circuits for generation and accumulation

∗ Reduced execution time but increased hardware complexity

FPGA implementation involving translation, mapping, placement & routing as well as

device configuration are important steps in FPGA implementation. Implementation of

multiplier should deal with all the constraints like area, timing and power. The XST tools

of Xilinx automatically tries to optimize the design by removing unconnected or non

operational blocks, even though timing constraints cannot be optimized well using Xilinx

tools it provides the basic information of timing. The summary of implementation results

is presented in Table B.2.

Table B.2 Comparison of multiplier architectures

Multiplier type Number of Slices utilized out of 1920 Delay in ns
BCSD 156 11.76
Array 143 39.27

Modified Booths 91 24.21
Baugh Wooley 144 44.12
Wallace tree 186 18.46

From the results obtained and presented in Table B.1, BCSD and Wallace Tree

multipliers are selected for FPGA implementation as they are faster than other

multipliers. In case of BCSD multiplier, the input, output, weight and bias elements need

to be represented using BCSD number format, thus the entire neural network architecture

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

235

need to be represented using BCSD number system. This requires additional logic at the

input and output of neural network architecture to encode and decode inputs and outputs

respectively from 2’s complement to BCSD number format. For simplicity, Wallace tree

multiplier is used to realize the neural network architecture. There are various adder

circuits reported in literature for FPGA implementation, in this work Xilinx adder logic

that uses carry chain logic is adopted for architecture implementation.

A single neuron in the hidden layer is modeled using Verilog HDL and is

synthesized using Xilinx ISE tool. Based on the synthesize results obtained it is found

that the selected FPGA cannot support implementation of 64-4-64 neural network

architecture. Hence, Virtex-5 device from Xilinx has been chosen for FPGA

implementation. HDL modeling for the 64-4-64 neural network architecture is modeled

and synthesized using Xilinx ISE targeting Virtex-5 FPGA. The synthesized results are

summarized in Table B.3.

Table B.3 Synthesis results of 64-4-64 neural network architecture

Virtex-5 FPGA
 (XC5VLX110FF676)

Number of slices
out of 51840

Delay in ns Power consumption in
W

64-4-64 network 4132 4.406 0.013

Further ASIC implementation of single neuron is carried out targeting 130nm TSMC

technology file. HDL model for single neuron cell is synthesized using Design Compiler

and timing analysis is carried out using Prime Time. FPGA and ASIC synthesis results of

single neuron cell are presented in Table B.4.

Table B.4 Single neuron comparison

Parameter FPGA implementation(Spartan IIIE) ASIC results
Gate count

Number of 2 input NAND
gates

25520 1556

Maximum delay in ns 56 4
Dynamic power dissipation in

mW
35 2

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

236

ASIC implementation of 64-4-64 network architecture can be further attempted

optimizing area, power and speed performances. Low power techniques and area

optimization techniques can be attempted targeting 65nm CMOS technology. One of the

major observations made during functional verification of neural network architecture for

image compression and decompression is that, input image being sub-divided into 8x8

sub-blocks and is compressed and reconstructed at the output layer to its original size

checker box errors occur in the reconstructed image as shown in Fig. B.6.

Figure B.6 Results of image reconstruction using neural network architecture

In order to overcome checker box errors, Wilford Gillespie proposed still image

compression technique using Discrete Wavelet Transform (DWT) and Neural Networks.

In this architecture, images are decomposed into sub-band components using DWT,

based on the sub bands obtained image is grouped into multiple sub-bands and is used in

training the network. Due to decomposition of images into various sub-bands of

frequency components, and neural network compressing the regrouped sub band

components, checker block errors are minimized in the reconstructed image. The author

aa0682
Typewritten Text
This image has been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

237

compared the MSE of the results obtained that with JPEG based results, and was able

achieve very less improvement in MSE (MSE reduced from 2.9643 to 2.9586). This is

not a very significant improvement; hence to improve the MSE of the DWT-NN

architecture a modified DWT-NN architecture called as hybrid architecture is proposed

and implemented. Fig. B.7 shows the hybrid architecture for image compression and

decompression using DWT and NN.

Figure B.7 Hybrid architecture for image compression and decompression

In the modified architecture, the decomposed image after DWT is ordered such that the

sub band frequency components are arranged such that the corresponding frequency sub-

bands are placed adjacent prior to compression using neural networks. The reordered sub-

bands are used in raining the network, thus optimum weights and biases are obtained for

compression and decompression. This modified reordering of sub-band components has

improved the performance of the hybrid architecture. Fig. B.8 shows the modified

reordering scheme. Fig. B.9 presents the Matlab simulation results of hybrid architecture.

In the reordered scheme, the numbers indicate the arrangement matrix of sub-band

components.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

238

Figure B.8 Modified reordering scheme of sub-bands for NN training

1 2

3 4

1 1

1 1

2

3 4

2

3 4

2

3 4

2

3 4

1

1 1
2

3 4

2

3 4

2

3 4

1 1

1 1

2

3 4

2

3 4

2

3 4

2

3 4

1 1

1 1

2

3 4

2

3 4

2

3 4

2

3 4

1 1 2

3 4

2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

aa0682
Typewritten Text

aa0682
Typewritten Text

aa0682
Typewritten Text

aa0682
Typewritten Text

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

239

Figure B.9 Simulation results of hybrid architecture

The results obtained can be further improved by choosing appropriate wavelets and

training the network for various test images. FPGA implementation and ASIC

implementation of hybrid architecture is carried out, the results obtained have been

published in IEEE conference on Biomedical Signal Processing held in Singapore during

December 2008.

aa0682
Typewritten Text
These images have been removed

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

240

Appendix – C Entropy

In information theory, entropy is a measure of the uncertainty associated with a random

variable. The Shannon entropy is a measure of the average information content one is

missing when one does not know the value of the random variable. The concept was

introduced by Claude E. Shannon (1948) in his paper "A Mathematical Theory of

Communication". Based on the discussion provided by Shannon, the entropy H of a

discrete random variable X with possible values {x1, ..., xn} is given by:

 H(X) = E (I(X)) (C.1)

Where, E is the expected value function, and I(X) is the information content or self-

information of X. I(X) is random variable and p denotes the probability mass function of

X then the entropy can explicitly be given by:

)()()(
1

i

n

i
i xIxpXH ∑

=

= =)(log)(
1

ib

n

i
i xpxp∑

=

− (C.2)

Where, b is the base of the logarithm used. For digital applications, b is 2. The b-ary

entropy of a source S = {a1, ..., an} and discrete probability distribution P = {p1, ..., pn}

where pi is the probability of ai is defined by:

 i

n

i
bib ppSH ∑

=

−=
1

log)((C.3)

The discussion presented is taken from wikipedia.org.

In Matlab, there are inbuilt functions provided that can assist in calculating entropy of a

given matrix. The syntax for computing Entropy of a given input is

 E = entropy(I)

Where, E is the entropy, I is the input matrix. For a given input I, entropy(I) returns a

scalar value representing the entropy of gray scale image I. For a given image Entropy is

a statistical measure of randomness that can be used to characterize the texture of the

input image. To compute entropy using Matlab, histogram of the image is required.

Entropy is defined as:

E = -sum (p.*log2(p)), where p contains the histogram for a given image.

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

241

Appendix – D Spice Code Model for Analog Neural Network

Gilbert cell multiplier

.subckt mult v11 v1g v21 v2g 1 2 vb1 vdd vee
 m1 1 vb1 vdd vdd modp l=1u w=120.7u
 m2 2 vb1 vdd vdd modp l=1u w=120.7u
 m3 1 v11 3 3 modn l=1u w=4u
 m4 2 v1g 3 3 modn l=1u w=4u
 m5 1 v1g 4 4 modn l=1u w=4u
 m6 2 v11 4 4 modn l=1u w=4u
 m7 3 v21 5 5 modn l=1u w=2u
 m8 4 v2g 5 5 modn l=1u w=2u
 m9 5 vb1 vee vee modn l=1u w=44.5u
 m10 1 1 vdd vdd modp l=1u w=120u
 m11 2 2 vdd vdd modp l=1u w=120u
 .ends

Differential amplifier

 .subckt tan v1 v2 1 2 vb1 vdd vee
 m1 1 vb1 vdd vdd modp l=1u w=1.5u
 m2 2 vb1 vdd vdd modp l=1u w=1.5u
 m3 1 v2 3 3 modn l=1u w=2u
 m4 2 v1 3 3 modn l=1u w=2u
 m5 3 vb1 vee vee modn l=1u w=3.3u
 .ends
Neuron Activation function

 .subckt fun v1 v2 na1 na0 op1 vb1 vdd vee vsb
 m1 1 vb1 vdd vdd modp l=1u w=16u
 m2 2 vb1 vdd vdd modp l=1u w=16u
 m3 3 v1 1 1 modp l=1u w=2u
 m4 na1 v1 2 vsb modp l=1u w=4u
 m5 na0 v2 1 vsb modp l=1u w=4u
 m6 4 v2 2 2 modp l=1u w=2u
 m7 3 3 vee vee modn l=1u w=4u
 m8 na1 3 vee vee modn l=1u w=4u
 m9 na0 3 vee vee modn l=1u w=4u
 m10 4 4 op1 op1 modn l=1u w=4u
m11 op1 op1 vr4 vr4 modn l=1u w=2u
m12 vr4 vr4 vee vee modn l=1u w=2u
 .ends
Neural Architecture
*neurons in first layer
x1 v11 v10 w111 w110 1 2 vb vdd vee mult
x2 v21 v20 w121 w120 1 2 vb vdd vee mult
x3 1 2 o11 o10 d1 vb1 vdd vee vsb fun
x4 v11 v10 w131 w130 3 4 vb vdd vee mult
x5 v21 v20 w141 w140 3 4 vb vdd vee mult

Coventry University – Doctoral Programme (PhD)

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression

242

x6 3 4 o21 o20 d2 vb1 vdd vee vsb fun
x7 v11 v10 w151 w150 5 6 vb vdd vee mult
x8 v21 v20 w161 w160 5 6 vb vdd vee mult
x9 5 6 o31 o30 d3 vb1 vdd vee vsb fun
*output layer
x10 o11 o10 w211 w210 7 8 vb vdd vee mult
x11 o21 o20 w221 w220 7 8 vb vdd vee mult
x12 o31 o30 w231 w230 7 8 vb vdd vee mult
x13 7 8 op1 op0 d4 vb1 vdd vee vsb fun

	rajcover
	raj
	Chapter 1 - Introduction
	1.1 Preamble
	1.2 Need for Multidimensional Neural Network Architecture
	1.3 Need for Neural Networks for Image Compression
	1.4 Motivation to this Work
	1.5 Need for Analog VLSI
	1.6 Thesis Contributions
	1.7 Assumptions and Terminologies
	1.8 Hypothesis
	1.9 Thesis Overview

	Chapter 2 - Neural Networks for Image Compression: Literature Review
	Image Compression Using Neural Networks
	Literature Review on Neural Networks for Image Compression
	Artificial Neural Network
	Neural Network Architectures
	Single Layer Neuron
	Multiple Layer of Neurons

	Backpropagation Algorithm
	Neural Networks in Analog VLSI
	Modular T-Mode Design

	Digital Implementation of Neural Network Architectures
	FPGA Implementation of Neural Network Architecture
	Literature Review Summary on VLSI Implementation of Neural Network

	Chapter 3 - Problem Definition
	3.1 Aim
	3.2 Objectives
	3.3 Methods and methodologies to carry out the objectives

	Chapter-4 2-D Multilayered Neural Network: Design and Implementation
	4.1 Design Overview
	4.2 Design Requirements
	4.2.1 Two-Dimensional Multilayer Neural Network Architecture
	4.2.2 Two-DMNN Parameters

	4.3 Neural Network Training
	4.4 Two-Dimensional Network Training using Backpropagation
	4.5 Design, Modeling and Analysis of TDMNN Architecture
	4.6 Design of Software Reference Model
	4.7 Results and Analysis
	4.7.3 Performance Comparison of all Three Network Architectures
	4.7.4 Comparison of TDMNN with DWT-SPIHT Technique

	4.8 Analysis of Variations in Network Size
	4.8.1 Block Size Influences on Performance Metrics
	4.8.2 Impact of Multiple Layers on Network Performance

	4.9 Noise Analysis and Error Analysis
	4.9.1 Noise Analysis
	4.9.2 Error Analysis

	4.10 Adaptive TDMNN Architecture for Image Compression and Decompression
	4.10.1 Linear Correlation in Spatial Domain
	4.10.2 Adaptive TDMNN

	Chapter 5 – VLSI Implementation of Adaptive TDMNN Architecture
	5.1 Introduction
	5.2 Design Analysis
	5.3 Neural Network Design and Implementation
	5.4 Analog components for Neural network Architecture
	5.4.1 Multiplier Design
	5.4.2 Design of Multiplier Block
	5.4.3 Adders
	5.4.4 Neuron Activation Function (NAF)
	5.4.5 Differential Amplifier Design as a Neuron Activation Function

	5.5 Realization of Neural Architecture using Analog Components
	5.5.1 Backpropagation Algorithm
	5.5.2 Validation for Digital Operation

	5.6 Image Compression and Decompression using NN Architecture
	5.6.1 2-D multilayered Neural Network Architecture Design and Implementation
	5.6.2 Hybrid Neural Network Architecture

	5.7 Current Steering DAC
	5.7.1 Novel Hybrid Current Steering DAC Multiplier
	5.7.2 Proposed MDAC Architecture
	5.7.3 MDAC Architecture - R-ßR Ladder Network

	5.8 Layouts of Proposed MDAC
	5.9 Top-level Block Diagram of Single Neuron using Hybrid Multiplier
	5.10 Test Setup to Evaluate Performance of 2-D Network Architecture

	Chapter 6 – Conclusion
	6.1 Conclusion and Recommendations for Future Work

	List of Publications
	National Conferences:
	International Conferences:
	Journal Publication:

	REFERENCES
	Appendix-A Backpropagation Algorithm
	A.1 Introduction
	A.2 Software Reference Model for Network Training:

	Appendix-B
	B.1 Digital implementation of neural network architecture
	FPGA implementation involving translation, mapping, placement & routing as well as device configuration are important steps in FPGA implementation. Implementation of multiplier should deal with all the constraints like area, timing and power. The XST ...

	Appendix – C Entropy
	Appendix – D Spice Code Model for Analog Neural Network

