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In this research, adaptive Two-Dimensional Multilayer Neural Network (TDMNN) 

architecture is proposed, designed and implemented for image compression and 

decompression. The adaptive TDMNN architecture performs image compression and 

decompression by automatically choosing one of the three (linear, nonlinear and hybrid) 

TDMNN architectures based on input image entropy and required compression ratio. The 

architecture is two-dimensional, 2D to 1D reordering of input image is avoided, as the 

TDMNN architecture is implemented using hybrid neural network, analog to digital 

conversion of image input is eliminated.  The architecture is trained to reconstruct images 

in the presence of noise as well as channel errors.  

Abstract 
 

Software reference model for Adaptive TDMNN architecture is designed and 

modeled using Matlab. Modified backpropagation algorithm that can train two-

dimensional network is proposed and is used to train the TDMNN architecture. 

Performance metrics such as Mean Square Error (MSE) and Peak Signal to Noise Ratio 

(PSNR) are computed and compared with well established DWT-SPIHT technique. There 

is 10% to 25% improvement in reconstructed image quality measured in terms of MSE 

and PSNR compared to DWT-SPIHT technique. Software reference model results show 

that the compression and decompression time for TDMNN architecture is less than 25 ms 

for image of size 256 x 256, which is 60 times faster than DWT-SPIHT technique.  

Based on weights and biases of the network obtained from the software reference 

model VLSI implementation of adaptive TDMNN architecture is carried out.  A new 

hybrid multiplying DAC is designed that multiplies current intensities (analog input) with 

digital weights. The hybrid multiplier is integrated with adder and network function to 

realize a hybrid neuron cell. The hybrid neuron cell designed using 1420 transistors works 

at 200 MHz, consuming less than 232 mW of power, with full scale current of 65.535 µA.  

Multiple hybrid neurons are integrated together to realize the 2-D adaptive multilayer 

neural network architecture.  
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Nomenclature 

 
C  Capacitance, F 
Ibias  Bias current, A 

  Drain current MOSFET (Ampere), A 

sI   Static Current (Ampere), A 

L  Inductance, H 
Lchannel  Channel length, m 
P               Power gain in dB, output power, dBm 
Q  Quality Factor 
R  Resistance, Ω 
Vbias          Bias voltage, V 
Vgs  Gate-to-source voltage, V 
Vt  Threshold voltage, V 
W  Channel width, m 
X  Reactance, Ω 
Z  Impedance, Ω 
α  Closed Loop Gain 
ω  Angular frequency, rad/s 
φn  Phase noise, dBc/Hz 
f  Frequency, Hz 
gm  Transconductance, Ω-1 
rds  Drain-to-source resistance, Ω 
µA  microampere 
µs       micro (10-6) sec 
ns     nano (10-9) sec 
mm  millimeter 
MHz   Mega Hertz (Frequency) 
mW     milli (10-3) Watt 
W                    Watts 

ii vp ,   Input to NN (Volt) 

it   Target input (Volt) 

gv   Gate voltage with respect to bulk (Volt), V 

sv   Source voltage with respect to bulk (Volt), V 
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Abbreviations 
 
1-D  One-dimensional  
2-D  Two-Dimensional 
ADC  Analog to Digital Converter  
AI  Artificial Intelligence 
ANN  Artificial Neural Network 
ASIC  Application Specific Integrated Circuit 
BP  Backpropagation 
BPNN  Backpropagation Neural Network 
CCD  Charge Coupled Device  
CMOS  Complementary MOS 
CR  Compression Ratio 
DAC  Digital to Analog Converter 
DWT             Discrete Wavelet Transform 
DRC  Design Rule Check 
EDA  Electronic Design Automation  
EP  Error Propagation 
FFN  Feed Forward Network  
FPGA   Field Programmable Gate Array 
GB  Giga Byte 

  GDSII  Graphical Data Source Interchange 
  IDWT  Inverse Discrete Wavelet Transform 

JPEG  Joint Pictures Experts Group 
LAN  Local Area Network 
LVQ  Learning Vector Quantization 
LVS  Layout versus Schematic 
MATLAB Matrix Lab 

  MaxError Maximum Error 
Mbps  Mega bits per second 
ML  Multilayer 
MLP  Multilayer Perceptron 
MPEG  Motion Pictures Experts Group  
MSE  Mean Square Error 
MOS  Metal Oxide Semiconductor 

  MOSFET MOS Field Effect Transistor 
MVBP  Modified Vogl Back Propagation 
NA  Neural Architecture 

  NN  Neural Network 
Op  Output of NN 
PCA  Principal Component Analysis  
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PSNR  Peak Signal to Noise Ratio 
RRANN Reconfigurable Neural Network  

  SNR  Signal to Noise Ratio  
SPIHT  Set Partitioned Integer Hierarchical Tree  
SOM  Self Organizing Map 

  T  Target for Learning 
TDMNN Two-Dimensional Multilayer Neural Network 

  TSMC  Taiwan Semiconductor Manufacturing Company 
  TV  Television 

VBP  Vogl Back Propagation 
VLSI  Very Large Scale Integration  
VSSC  Vikram Sarabhai Space Centre 
W/L  Width / Length 
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Chapter 1 - Introduction 
 
Today’s technological development has intruded into human lifestyle to such an extent 

that we feel uncomfortable without the use of electronic gadgets, information systems, 

household electronic equipments and display systems. We have started adopting and have 

got used to the latest electronic gadgets without which we feel isolated from rest of the 

world. The main reason to this is that, new products developed are sophisticated and 

addresses the needs of common man and these products are user-friendly and reliable. 

The electronic equipment available interacts with us and assists us in our day to day 

activities. Most of the commercially available electronics equipments have graphical 

display interfaces. Data in the form of images, motion pictures, icons and text displays on 

graphical displays assist humans and hence language or speech does not pose a barrier for 

the use of these gadgets worldwide. Visual representation tends to be perceived as being 

more efficient than the spoken or written word. As the demand for user-friendly 

equipment keeps increasing, image processing finds utmost importance. New 

applications based on image processing are being invented.  Image processing of 

biomedical signal assist doctors and technicians to diagnose and treat patients, similarly 

processing of satellite images assist scientists to monitor and predict climate changes. In a 

time critical application such as launching of satellites, image processing assists in 

monitoring the launch of satellite using the launch vehicle from the base station. 

Controlling of launch vehicle is monitored based on image signal received at the base 

station.  One of the major challenges working with image data is the size of image, or the 

number of bits required to represent visual information. A typical color image of size 512 

x 512 consists of 6.5 Mega bits. Real time processing of image data, storage and 

transmission of image signals always pose a challenge for designers. Image enhancement, 

image restoration, image segmentation and image compression are the major image 

processing operations. In this work, compression of images based on neural network 

architectures for launch vehicle applications are addressed.  
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1.1 Preamble 

Images that we see with our visual system are captured using image sensors in digital 

form and stored in memory banks. As the storage space for these digital samples 

consumes large space, cost increases. For example, a natural image captured from a 

sensor when digitized is converted to a 2-D matrix of size 256 x 256 pixels, each pixel 

representing intensity level of the natural image. Image sensors capture pixel intensities. 

Each pixel can be represented by 1 bit, 8 bit or 24 bit for black and white, gray scale and 

color image respectively. A color image of size 256 x 256 represented using 24 bit 

requires a storage space of 1.5 mega bits (256*256*24 = 1.5 Mb). A motion picture 

captured at 30 frames per second requires a storage space of 45 Mbps (1.5 Mb*30 = 45 

Mbps). The storage space for a three hour movie requires 486 Giga bits (4.5 

Mb*60*60*3 = 486 Giga bits). Table 1.1 present’s bandwidth, transmission delay of 

three major communication links and transmission delay of uncompressed video signal.  

Table 1.1 Data rate of communication channels 
Communication 
Channel 

Data Rate  Round Trip 
Time (RTT) or 
Transmission 
Delay 

Transmission delay 
for uncompressed 
video = Data Size 
(486 Gb)/Data Rate 

DSL/ADSL 
(William Stallings 2010) 

256 Kbps 
to 40 Mbps 

50 ms 202 minutes 

Mobile broad band - 
HSDPA (Martin Sauter 
2006) 

1.2 Mbps 
to 84 Mbps 

100 ms 96 minutes 

High-speed terrestrial 
network (Kai Chen et al. 
2003) 

1 Gbps 1 ms 8 minutes 

Compression of raw video data thus makes it possible for transmission of data 

through existing communication links with minimum delay. Compressed images are 

transmitted through communication channels and are decompressed on the receiver side, 

without affecting the quality of picture. However, an image or video data being 

transmitted in real time have a minimum amount of delay of few milli seconds (Stuart 
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Cheshire 1996). This delay is mainly due to three factors. Firstly, huge data need to be 

compressed to the available channel bandwidth. This compression is accomplished using 

sophisticated software’s and hardware’s executing complex algorithms on high speed 

architectures, and this constitutes the maximum delay (Schaphorst and Richard 1999). 

Secondly, the compressed data is further encoded with security bits and parity bits for 

security and to avoid noise as they travel through the channel. In order to ensure that the 

data reaches the destination, they are also padded with specific bits to guide the encoded 

information through the channel and reach the destination. This processing of the 

compressed data using software and hardware devices introduces delay (Stuart Cheshire 

1996). Thirdly, the transmitted data traveling through the channel also introduces delay 

and is called as the channel delay (Stuart Cheshire 1996). Delay in a communication 

system of few micro seconds to few milliseconds (Umashankar 2003) is negligible and 

usually not observed and is accepted. On the other hand, in crucial applications such as 

satellite launching where necessary control actions needs to taken based on visual 

information, a small amount of delay causes a major impact on the system and decision 

making. For example, if the trajectory path of the launch vehicle carrying a satellite is 

being monitored using visual information being captured and down linked in real time by 

onboard video processing systems, guiding the launch vehicle and launching of the 

satellite to appropriate destination requires critical and time bound control system. Based 

on the received visual information at the base station if suitable control actions have to 

take place, the delay in decompressing the compressed data has its impact, as the entire 

application is time critical. In this case the delay in signal reception has a major impact. 

Channel noise affecting the decompressed image is another major challenge. In a 

personal interview conducted by the author, Ms. Sarojini, Head, Digital Signal Design, 

Avionics Group, VSSC, Trivandrum, mentioned about the draw backs of the system that 

they had which was used to monitor the launch vehicle. In the discussion she emphasized 

on the need for a system that can work at 40 frames per second and also is immune to 

channel noise (Sarojini 2004).  Information in an image when compressed, any error due 
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to noise in the channel affecting the compressed bits significantly affects the 

decompressed images. This research work carried out is an approach to firstly, minimize 

the system delay in compression and decompression of image applicable to time critical 

applications with novel architectures being proposed, designed, implemented and 

validated for image compression. Secondly, with the compressed data traveling through 

noisy channel, noise interference on the compressed data impacts the decompressed 

output, hence it is required to improve image quality at the receiver even in the presence 

of channel noise or error.  

1.2 Need for Multidimensional Neural Network Architecture  

Many practical solutions have been designed by eminent scientists and researchers 

adopting conventional techniques for compression and decompression of still and motion 

pictures. These systems are interoperable worldwide as they support uniform standards 

such as JPEG and MPEG (Chrysafis and Ortega 1998, Frescura, F., Giorni, M., Feci, C. 

and Cacopardi, S. 2003, Lian et al. 2003 and Mitchell and Pennebaker 1993, Signoroni, 

Lazzaroni and Leonardi 2003). JPEG and MPEG standards recommend guidelines for 

compressing and encoding the image signals, frame formats for transmission of 

compressed data and hardware requirements. These standards assume that the input 

image is digitized raw data represented in bmp, png or tiff formats (William and Joan 

2004, JPEG 2000 image coding system 2000).  

Natural images are captured using either Charged Coupled Devices (CCD) 

sensors (Tompsett, M. F. Amelio, G. F. Bertram, W. J., Jr. Buckley, R. R. McNamara, W. 

J. Mikkelsen, J. C. and Jr. Sealer, D.A. 1971) or Complementary Metal Oxide 

Semiconductor (CMOS) sensors (D. Renshaw, P. B. Denyer, G. Wang, and M. Lu 1990). 

Light intensity that is reflected from the object(s) is focused through the lens and strikes 

array of image sensors as shown in Fig. 1.1.  Photo detectors that form the sensor array 

capture the light intensities and convert into voltage levels. Both type of sensors capture 

light intensities and convert into electrical signals. Interfacing circuit reads the electrical 
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signals from sensor arrays and processes the captured light intensities. Interfacing circuits 

for CCDs and CMOS sensor have different configuration (Dave Litwiller 2001). In a 

CCD sensor, light intensity reflected from the object(s) is focused through the lens that 

energizes the CCD that is arranged in 2-D array (Spatial). CCD sensors capture the light 

intensity of the image being focused. The image data captured is read out of the CCD 

array in the form of voltage or current equivalents.  

                    
Figure 1.1 Image sensor 

Fig. 1.2 demonstrates the read out operation of these intensities stored on the 

CCD devices (Karim Nice, Tracy V. Wilson and Gerald Gurevich 2004). Energized CCD 

array elements that accumulate charge corresponding to light intensity is read out serially 

and amplified by a gain factor (e.g. 10 µA/e).  This way of serially reading out the data 

from the array reduces the complexity of drawing multiple wires from the array elements 

and also ensures the serialization of the data samples. The analog intensities read out 

from the matrix are further digitized to equivalent binary values in the Analog to Digital 

Converter (ADC) and stored in memory.  

In a CMOS imaging sensor, arrays of active pixel sensors (Dickinson Alexander 

G., Eid El-Sayedi and Inglis Davida 1997) are placed at every pixel location that consists 

of a photo diode and active amplifier. Photo sensor captures light intensity and converts 

to voltage levels, which is converted to digital samples using ADC as shown in Fig. 1.3. 

Image Sensor 
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CMOS sensors have advantages compared to CCD sensors in terms of speed, 

responsivity, windowing, anti-blooming and reliability (Dave Litwiller 2001).   

 
Figure 1.2 CCD based image sensor with analog readout 

     

Figure 1.3 CMOS sensor based imaging unit 

ADC 

Light intensity to 
electron conversion 

Electron to voltage 
conversion (photo diode) 

Frame grabber 
and storage 

device 

ADC 

Frame grabber 
and storage 

device 

CCD devices 
Light intensity to electron 

conversion 

Electron to voltage conversion 

Input image 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

27 

CCDs are superior to CMOS in terms of image quality and flexibility (Dave Litwiller 

2001). Both technologies for imaging offer unique advantage, one common limitation is 

that, the voltage samples are read out serially to avoid number of wires from each sensor 

and additional electronic circuitry is required to convert analog to digital samples. Digital 

data read out of imaging unit which is in uncompressed form is stored in a digital 

memory.  

Digital samples are in uncompressed form and occupy more space. Compression 

of these samples is performed using the classical techniques as per the guidelines 

recommended by JPEG or MPEG. Two observations are made at this point, which leads 

to the scope of this research work. First, the time involved in reading out the 2-D array 

elements into 1-D elements can be avoided if a 2-D architecture that can accept the 2-D 

samples and can process the 2-D signals and perform compression. Second, instead of 

processing the 1-D data in digital domain, what if we process the 2-D analog data directly 

read from CCD devices or CMOS sensors using 2-D architectures. In a CMOS sensor 

array, the output of photo diodes which is current (I) can be processed using the 2-D 

architecture proposed in this work. In case of CCD sensor array, it is required to add 

additional circuits at every pixel location to convert charge to voltage samples, these 

voltage samples can be directly interfaced to the 2-D architecture. These two 

observations are the motivating factors to carry out this work.  

The 2-D architecture shown in Fig. 1.4 consists of image sensor array capturing 

brightness or intensity levels of image. These intensities are amplified and converted to 

equivalent current or voltage values. These N x N arrays of electrical samples are directly 

fed into a two dimensional architecture that processes the analog values and reduce the 

array dimension to M x M array elements. Since M < N, the number of pixel elements 

representing the image is compressed from N2 to M2 elements, which can be further 

encoded using 2-D techniques for storage and transmission. The advantage of 2-D 

architecture is that as the analog samples or pixel intensities are captured in the analog 

domain and processed using 2-D architecture, this avoids use of Analog to Digital 
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Converter (ADC) at the input side hence reduction in hardware complexity and also 

further reduces the delay.  

 
Figure 1.4 2-D architecture for image capture and process 

1.3 Need for Neural Networks for Image Compression 

Classical techniques for image compression based on the recommendations from JPEG 

standards have been implemented on hardware and software, and these techniques have 

been used in electronic products and applications (Andra, Chakrabati and Acharya 2003, 

Chiang, J. S., Lin, Y. S and Hsieh, C. Y. 2002, Fang et al. 2003, Iain 2002 and Ong et al. 

2002). Fig. 1.5 shows the basic block diagram of image compression and decompression 

unit.   

The major blocks for image compression are transform coding, quantization and 

entropy coding (David and Michael 2001). Input to the system is image data with N1 bits 

per pixel, encoded data is the compressed out with N2 bits per pixel. As N2 is less than 

N1, only N2 bits are required to represent N1 bits achieving compression. The compressed 

data N2 that consists of the entire information of N1 packed using N2 bits is transmitted 

through the channel. On the receiver side, N2 bits received is decompressed to N1 bits. 

However, during the transmission, if the compressed data gets corrupted due to noise in 
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Figure 1.5 Block diagram of image compression unit (David and Michael 2001) 

Fig. 1.6 shows the block diagram of JPEG 2000 standard based image compression and 

decompression unit, the transmitter is on the launch vehicle and the receiver is at the base 

station. It is required to capture the image sequences on board and compress the captured 

data and transmit to the base station, at the base station, the image is decompressed and 

used to track launch vehicle movement and satellite launch activity from the base station.  

           

        
Figure 1.6 JPEG based image compression and decompression unit for launch 

vehicle applications 
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Launch Vehicle (LV) travels at a speed of 2 – 11 km/sec, launching the satellite into the 

orbit takes 10 minutes to 30 minutes (Chang IS 2007), thus it is required to monitor the 

satellite launch and onboard monitoring of launch vehicle trajectory. Camera mounted on 

the launch vehicle captures images, compresses and transmits to the base station. Based 

on the received visual information it is requried to take corrective feedback from the base 

station. Due to noise in the channel if compressed data is corrupted, reconstructed image 

at the base station is distorted. Fig. 1.10 to Fig. 1.14 demonstrates the results for image 

compression using Discrete Wavelet Transform (DWT) and Set Partitioned Integer 

Hierarchical Tree (SPIHT) encoding techniques. This work was carried out as part of 

research work sponsored by Vikram Sarabhai Space Centre (VSSC), Trivandrum, India. 

The aim of this work was to identify the impact of bit errors due to channel noise on the 

reconstruction of compressed image.   Noise in the channel causes a bit ‘1’ to become ‘0’ 

or vice versa.  If the compressed bit information is corrupted due to channel noise, 

decompressing the image from the corrupted packets of received information affects the 

quality of the image.  

 

              

 

 

 

 

 

Figure 1.7 Input image (pictorial representation) 
Image shown in Fig. 1.7 is of size 512 x 512 is compressed using DWT and 

SPIHT technique and is used as a test case to illustrate the impact of channel noise on 

reconstructed image. Fig. 1.8 shows the pixel representation of the input image shown in 

Fig. 1.7 (only a part of the 512 x 512 image is presented in Fig. 1.8). Every pixel is 
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represented using 8 bits or expressed as 8 bits per pixel (bpp) or in general N1 bits per 

pixel.  

 
Figure 1.8 Input image (pixel representation) represented using N1 bpp 
Image of size 512 x 512 represented using 8 bpp (N1 bpp) consists of 512*512*8 

(M1) bits is represented using 512*512*0.1 (M2) bits after compression. Compression of 

0.1 bpp (N2 bits per pixel) implies that every 10 pixels of the input image are represented 

using 1 bpp. The compressed image is binary stream of data 

(10101010101010101101011010101……) that represents 512 x 512 images in 

compressed form with N2 bpp. The compressed M2 bits that contain the information of 

M1 bits, when transmitted may get corrupted in the channel due to channel noise. Fig. 1.9 

to Fig. 1.13 presents the reconstructed images with channel noise affecting the 

compressed data. In this work, channel noise is introduced by complementing the binary 

values at randomly chosen bit positions in the compressed binary stream (hence forth 

called as bit errors).                                             

 
 

Figure 1.9 Reconstructed image after error being introduced at 1st and 100th bit 
positions [Max. Error = 167, MSE = 219.13, PSNR = 24.72] 
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Figure 1.10 Reconstructed image after error being introduced at 10th and 30th bit 

positions [Max. Error = 232, MSE = 12404, PSNR = 7.19] 
 

 
Figure 1.11 Reconstructed image after error being introduced at 10th and 50th bit 

positions [Max. Error = 187, MSE = 230, PSNR = 24.5] 
 

 
 

Figure 1.12 Reconstructed image after error being introduced at 1st and 2000th bit 
positions [Max. Error = 74, MSE = 120.78, PSNR = 27.31] 
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Figure 1.13 Reconstructed image after error being introduced at 1st and 10000th bit 

positions [Max. Error = 61, MSE = 116, PSNR = 27.48] 
 

Observations made based on the simulation results illustrate that MSE and PSNR 

of the reconstructed image is affected due to bit errors. Bit errors in the initial part of the 

compressed data (within 30 bits in this example) can have significant effect on the 

reconstructed image. Fig. 1.10 showing the error in the 10th and 30th bit position having 

catastrophic effect on the reconstructed image.   This is due to the fact that the DWT 

decomposes image into high frequency and low frequency components. As low 

frequency components of the decomposed image having significant information 

compared to high frequency components, encoding the decomposed image using SPIHT, 

low frequency components are arranged first in the encoded bit stream (Fang et al. 2003).   

Bit errors at the first few bits affect the quality of the image, because more information is 

stored in low frequency (Cyril 2005).  Mean Square Error (MSE), Maximum Error and 

Peak Signal to Noise Ratio (PSNR) is calculated to estimate the quality of image. Poor 

quality image has higher MSE and lower PSNR.  

The solution to this problem is to request for retransmission of the compressed 

image. MPEG and JPEG standards recommend use of channel encoding and 

retransmission schemes based on image quality at the receiver (Turner and Peterson 

1992).  
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The technique proposed in this research does not require the need for error coding and 

retransmission schemes. This is achieved by use of neural network architectures for 

image compression and decompression. The objectives of this work are: 

1. To prove the effectiveness of neural network architecture in reconstructing 

the image from the compressed data with noise in the transmission 

channel.  

2. To propose, design, model and implement neural network architectures for 

image compression and decompression in analog VLSI.  

1.4 Motivation to this Work 

Vikram Sarabhai Space Centre (VSSC), Trivandrum an entity of Indian Space Research 

Organization (ISRO), under their RESPOND Scheme awarded the research project 

entitled “High speed DWT architectures for image compression for launch vehicle 

applications”. The objective was to realize image compression algorithms on FPGA 

working at speed greater than 25 frames per second. This research work finds application 

in launch vehicles. As the launch vehicle carrying the satellite has to guide the satellite to 

the corresponding destination along the predefined path traveling at a speed of 11000 

meters per second, monitoring this movement is very critical. Once the destination is 

reached i.e. the required orbit, the launch vehicle should eject satellite and place it into 

the corresponding orbit. High speed cameras are mounted to capture images to monitor 

and guide the launch vehicle to follow a trajectory path. This allows real time monitoring. 

The images are down linked to the base station from the launch vehicle. Since this is in 

real time and requires feedback from the base station for guidance of launch vehicle and 

successful launch of the satellite, high speed architectures are required to compress the 

images captured and down linked to the base station. The system is time critical as 

suitable action should be invoked observing the images being received at the base station. 

During transmission of compressed data channel error on the compressed data affects the 

quality of the decompressed image. One of the objectives was to find out the impact of 
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bit error on the decompressed data. During the experimentation, synthetic bit errors 

(change of ‘1’ to ‘0’ and ‘0’ to ‘1’) were randomly introduced at multiple positions in the 

compressed stream of data. Corrupted bit stream was decompressed to reproduce the 

images. It was observed that the bit errors on the first 30 bits of the compressed data had 

significant impact and reconstruction was impossible with the required information. 

Schemes recommended by JPEG and MPEG standards adopt retransmission of the 

frames. Also channel coding schemes are adopted to reduce the impact of error on signal 

during transmission.  For launch vehicle applications as they are time critical 

retransmission of images may not be a possible solution. Hence, this motivated to 

investigate use of neural networks for image compression, as neural network techniques 

have been adopted for signal processing applications (Greenhil and Davies 1994, Guan, 

Anderson and Sutton 1997, Hanek and Ansari 1996, Lee and Degyvez 1996, Matsumoto, 

Kobayashi and Togawa 1992, Garris, Wilson and Blue 1998, and Paik and Katsaggelos 

1993). Fig. 1.15 depicts simple neural network architecture with input and output 

neurons. As the network is trained with known set of input and outputs, neural network 

architectures are immune to noisy environment (Lampinen, J., Laaksonen, J. and Oja, E. 

1997). Neural network architectures for image processing are flexible, reconfigurable and 

can work in noisy environment (Mitra and Yang 1999).  

Multiple neurons in multiple layers include weight and bias elements. Weight and 

bias elements of the neuron decide the functionality of the network. Input image fed into 

the network, is processed by weight and bias elements of the network.  Image processing 

functions like compression, enhancement, edge detection and segmentation can be 

executed by the neural network based on the type of weight and bias elements (Koh, Suk 

and Bhandarkar 1995, Kotropoulos, Magnisalis and Pitas 1994, Le, Thoma and Wechsler 

1995, Lin, Tsao and Chen 1992, Manjunath, Simchony and Chellappa 1990, Marshall 

1990, Ngan and Hu 1999, Opara and Worgotter 1996 and Ozkan, Dawant and Maciunas 

1993).  Functionality of neural network architecture depends on number of neurons and 
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neuron function, interconnection of neurons, and number of layers, weights and bias 

values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.14 Neural networks for image compression 

1.5 Need for Analog VLSI  

As the input captured from image sensors are analog samples, analog neural network 

architecture designed using multipliers, adders and network functions are required to 

process analog samples. The advantage of processing signals in analog domain is that the 

number of transistors required realizing neural network architecture is much less than 

digital implementation (Andreou 1992).  

1.6 Thesis Contributions 

Image sensors capture light intensities of objects with frame rate varying from 30 frames 

per second to 1000 frames per second, with the time interval between frames are 33 ms 

and 1 ms respectively. Every frame of image which is in analog form is digitized and 

compressed using high speed architectures that perform complex digital signal processing 

algorithms. Hardware implementation of such algorithms consumes power and area, thus 

increasing the cost of the hardware.  
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Image conversion from analog to digital, (2-D analog discrete interval to 1-D digital 

space) introduces delay due to varied reasons. Conventional techniques use powerful 

transform and efficient encoding techniques for compression and decompression. This 

research work carried out addresses the issues such as image reordering and image 

compression together with the proposed architecture eliminating the bottleneck in image 

acquisition and compression. New techniques for compression and decompression based 

on neural networks are proposed, realized and validated.  

This thesis work investigates the design, modelling, analog VLSI implementation 

and validation of multidimensional neural network architecture for image compression. 

The architecture processes image samples stored as current equivalents in 2-D matrix 

form for testing of the proposed design. Results obtained from this work are compared 

with digital implementation and software reference models for validation. Techniques 

and circuits proposed in this thesis are derived based on the references reported in the 

literature. Validations of the circuits designed and use of them for image compression are 

carried out based on the results obtained using software and firmware models.  

This thesis work demonstrates the need for neural networks for image 

compression in certain critical application areas like satellite launch applications. The 

techniques discussed can also be extended to other applications by appropriately 

choosing network architecture and network functions according to the functionality and 

the network is trained to realize the functionality. This work uses parameters such as 

compression ratios, MSE, PSNR and hardware complexities in terms of power, delay and 

area as a measuring factor to estimate neural network performance. The thesis explores 

the tradeoff between classical techniques and the neural network techniques for image 

compression.  

VLSI implementation of 2-D architecture for image compression using 

multilayered neural networks is also discussed in this thesis. This research work proposes 

two-dimensional multilayered neural network architecture for image compression, thus 

avoiding rearrangement of 2D image samples to 1D. As the compressed data is in the 2-D 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

38 

space, two dimensional coding techniques can be adopted to quantize and encode the 

compressed image.  Auto associative neural network uses backpropagation training 

algorithm for image compression (Sicuranzi, Ramponi, and Marsi 1990, Anthony, D., 

Taylor, E., D. and Barham, J. (1989), Kohno, Arai, and Imai 1990, Ivan Vilvonic 2006, 

Omer, M., Farhat, A., Momoh and Salami (2007), Hadi and Mansour 2009). Literature 

review shows that most of the training algorithm is aimed at training either a single or 

multilayered neuron. Training a multidimensional network for image compression has 

not been reported. This thesis work proposes a simplified backpropagation algorithm 

based training technique for the proposed Two-dimensional Multilayer Neural Network 

(TDMNN) architecture. Another contribution in this thesis is the design of hybrid 

architectures for implementation of TDMNN architecture for image compression. The 

architecture is called as hybrid as it multiplies analog input with digital weights and 

produces analog outputs. The digital weights (obtained during training) are stored in 

memory, the hybrid architectures perform multiplication of analog inputs with digital 

weights. Hybrid architecture is reconfigurable to realize different image processing 

functionalities by changing the digital weights of the network.  

Software reference model for the proposed TDMNN architecture is designed, 

modeled and simulated using MATLAB. The reference model is trained using image data 

sets. The weights and biases for the network after training are used to model the 

compressor and the decompressor. The network is analyzed for its performance using 

multiple data sets.  

1.7 Assumptions and Terminologies 

This research work has the following assumptions made:  

 Image sensors are not interfaced to the proposed hardware for image compression, 

instead input reference model equivalent to the natural image is created using 

MATLAB for software simulations and Cadence Virtuoso for hardware 

simulations. Test images provided by the standard software are used for 
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simulation purpose assuming that the properties of these images are identical to a 

natural image captured from the camera. 

 CMOS Technology files for hardware design and verification of the proposed 

architecture are of industry standard, as they have been obtained from reliable 

sources www.cadence.com.   

 EDA tools for simulation and verification of the circuit behavior are as per the 

industry standards and are considered as signoff tools. MOS transistors used for 

realization of the proposed network have been characterized for its performances 

and have assumed to meet the required functionality. Any other assumptions 

made within this thesis have been indicated at appropriate places.   

1.8 Hypothesis 

Image compression using neural networks have been taken as research subject by many 

of the scientists and engineers. Many new algorithms, architectures, implementation 

techniques have been extensively reviewed for image compression (Jiang 1999). 

Literature used as reference for this thesis report multilayered linear or nonlinear network 

for image compression. Analog VLSI implementation of neuron for general signal 

processing applications has been reported in the literature, and has been successfully 

adopted for image segmentation and edge detection. The hypothesis is TDMNN 

architecture proposed for image compression eliminates the need for digitization of 

image and reordering of the image to 1-D hence increases the speed of image 

compression and reduces hardware complexity. This hypothesis will be proved in this 

thesis by designing the TDMNN architecture using analog building blocks, training the 

network for different test images evaluating the performances of the network for image 

compression and optimizing the hardware for area, power and speed performances.  

The network performance is compared with DWT-SPIHT technique for image 

compression. The comparison is only based on the images used for training the network. 

http://www.cadence.com/�
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Images that were not part of training sets are also used to analyze the network 

performance.  

1.9 Thesis Overview 

The thesis is organized as follows. Chapter 2 presents an in-depth literature analysis of 

neural network for image compression and analog VLSI implementation of neural 

network architectures. Chapter 3 formally describes the problem statement, 

methodologies and resources required for carrying out objectives of the proposed work. 

Chapter 4 presents the software reference model development of TDMNN architecture. 

Design and analysis of TDMNN model is discussed in detail. Performance of the network 

based on MSE, PSNR, and Compression ratio is presented. Error analysis and noise 

analysis is also discussed. Variations in network parameters such as, input size, number 

of layers, transfer function and training iterations are discussed. Adaptive TDMNN 

architecture is proposed and results of this architecture is compared with TDMNN and 

DWT-SPIHT technique. Chapter 5 discusses the hardware implementation of the 

TDMNN architecture. New architecture for realizing hybrid multiplier is designed and 

analyzed. Building blocks of the design are integrated to design the neuron model. 

Detailed discussion of the results obtained based on the experimental work carried out in 

this research, is presented in this chapter. The thesis concludes in chapter 6 by presenting 

limitations and directions for further extending this work for video signals.  

Appendix – A discusses backpropagation algorithm, Appendix – B presents 

FPGA implementation of neural network architecture, Appendix – C presents discussion 

on Entropy, Appendix – D presents the SPICE codes for the designed analog neural 

network architecture.   
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Chapter 2 - Neural Networks for Image Compression: 
Literature Review 
 

Neural networks, image compression, analog VLSI are three unique and distinguishable 

domains. Image processing is an application, neural network a technique and analog 

VLSI an implementation domain. This research work is a combination of all the three 

domains. Neural network architectures are developed for image compression and 

decompression. The proposed architectures are implemented using analog VLSI circuits. 

Thus the literature survey in this chapter has two sections. Exhaustive literature review is 

carried out on neural network architectures for image compression. Secondly, survey on 

neural network architectures for VLSI implementation is presented. Independent 

literature analysis is carried out in all the above mentioned topics and a cohesive 

approach is made to build hybrid architecture.  

2.1 Image Compression Using Neural Networks 

The study of image compression methods has been an active area of research since the 

inception of digital image processing. Since images can be regarded as two-dimensional 

signals with the independent variables being the coordinates of a two-dimensional space, 

many digital compression techniques for one-dimensional signals can be extended to 

images with relative ease. As a result, a number of approaches to the problem are well 

established. Traditional techniques that have already been identified for data compression 

include (Iain 2002):       

a) Predictive Coding 

b) Transform coding and  

c) Vector Quantization 

Traditional techniques for image compression, have been successfully 

implemented, it is also found that some of the more recent techniques for data 

compression using artificial neural networks have been reported but commercially are not 

viable (Russo, Real 1992). Artificial Neural Networks (ANNs) have been applied to 
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many problems, and have demonstrated their superiority over traditional methods when 

dealing with noisy or incomplete data. One such application is for image compression. 

Neural Networks seem to be well suited to this particular purpose, as they have the ability 

to preprocess input patterns to produce simpler patterns with fewer components. This 

compressed information (stored in a hidden layer) preserves the full information of a 

given image.  There have already been an exhaustive number of papers published 

applying ANNs to image compression (Costa and Fiori 2001, Dony and Haykin 1995, 

and Jiang, W.W., Kiang, S.Z., Hakim, N.Z. and Meadows, H.E. 1993).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1 Neural network architecture for image compression 
The basic architecture for image compression using neural network is shown in 

Fig. 2.1. The network has input layer, hidden layer and output layer. Inputs from the 

image are fed into the network through the input layer.  The input to the network is the 
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original image and the output obtained is the reconstructed image. The output obtained at 

the hidden layer is the compressed output. 

The network is used for image compression by breaking it in two parts as shown 

in the Fig. 2.2. 64 inputs in the input layer are processed to 16 outputs by the hidden 

layer. The transmitter encodes and transmits the output of the hidden layer (z1, z2 

…….z16) values instead of (x1, x2 …… x64) values of the original image. The receiver 

decodes the received 16 inputs and reproduces 64 outputs (y1, y2 ……… y64). Since the 

network is implementing an identity map, the output at the receiver is an exact 

reconstruction of the original image. The compressed data is quantized and coded into bit 

stream. 

 

Figure 2.2 Trained neural network to minimize channel noise 
Fig. 2.3 shows compression and decompression block diagram using neural 

network. The compressor block shown in Fig. 2.3(a) consists of 64 data samples that are 

mapped to 16 data samples. Fig. 2.3(b) shows the decompression unit, which maps 16 

input data samples to 64 data samples, thus reconstructing the input data. Appropriate 

weight and bias elements are required to be determined for the compressor and 

decompressor unit. Identifying appropriate weights and biases for a given input image is 

carried out during training phase. Multiple images are used to train the network. 
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Figure 2.3 (a): Compression block diagram 
 

 
 

Figure 2.3 (b): Decompression block diagram 
Figure 2.3 Compression and decompression block diagram using neural network 

The network needs to be trained to reproduce the desired targets, optimum 

weights and bias elements for the compressor and the decompressor unit is determined 

during the training phase. A detailed discussion on neural network training is presented in 

Appendix - A.  

As shown in Fig. 2.3, 64 data samples at the input of the compressor are mapped 

to 16 data samples at the output, and at the receiver section 64 data samples are 

reconstructed from 16 data samples available at the input of the decompression unit. For 

the network to process, data inputs are provided in a column matrix. The image which is 

two dimensional having N rows and N columns need to be rearranged into a column 

matrix, as the neural network accepts only column inputs. The rearrangement of input 
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image is to divide the image matrix into multiple blocks of fixed size. Each sub-block is 

reorganized into column matrix; all the sub-blocks that are rearranged into column matrix 

are combined into one matrix and are set as input. The same matrix is also set as the 

target (Becker and Plumbley 1996). Multiple images with varying properties are 

considered for training, so that the network learns to reconstruct the required image once 

it is trained.  

Fig. 2.4 illustrates the rearrangement process which is required to set the input 

and targets for the network. Training data sets are produced from the image by extracting 

small (n x n) blocks of the image. Image of size [N x N] is first sub-divided into (n x n) 

sub-blocks, each of the (n x n) sub-blocks are further rearranged into (m x 1) elements, 

where m = n2. For example, an image of size [32 x 32] is sub-divided into (8 x 8) blocks 

of sub-images. There are 16 sub images of size (8 x 8) in [32 x 32] image. Each of the 

sub-blocks are rearranged to (64 x 1), hence for the [32 x 32] image, after rearrangement 

the matrix size is [64 x 16] as shown in Fig. 2.4. If there are 10 images of size [32 x 32], 

each of them are rearranged into [64 x 16]. All the 10 images are combined into a training 

data matrix of size [64 x 160]. The network gets trained using the rearranged image 

matrix. The network shown in Fig. 2.3 processes one column at a time from the 

rearranged matrix. As illustrated in Fig. 2.3, (64 x 1) input data is multiplied with a 

weight matrix of size [16 x 64] that compresses input into (16 x 1) matrices. (16 x 1) data 

is added with a bias element and passed through network function which is either linear 

or nonlinear. The compressed data (16 x 1) matrix is decompressed to (64 x 1) at the 

receiver by a weight matrix of size [64 x 16] and further biased and passed through 

network function. The decompressed output is rearranged into its original form. The error 

between the original image and the decompressed image is computed. Until the error is 

minimized the network is trained a detailed discussion on network training is discussed in 

Appendix - A.  
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Figure 2.4 Image segmentation to sub-blocks and reordering 

2.2 Literature Review on Neural Networks for Image Compression 

Oja (1982) proposed simple neural network architectures that can perform image 

compression based on principal component analysis. Since then several  algorithms and 

architectures for neural network based image compression have been proposed. Oja 

(1982) proposed a one-unit learning rule to find the first principal component direction 

vector, i.e. the first eigenvector, such that: 

                                                       Z = W * X                                         (2.1) 

Where, Z denotes the output of the linear neuron, W denotes the weight element of the 

neuron and X denotes the input. Oja proved that the weight vector W will asymptotically 

converge to the first normalized Eigen vector. 

Sanger T. D. (1989) extended the work of Oja (1982) to compute more than one 

Eigen vector leading to principal components.  In other words, Oja (1982) had used one 

neuron to find one Eigen vector representing the principal component of the image matrix 

X. Sanger extended the single neuron to a network of multiple single linear networks to 

compute many Eigen vectors representing the principal components of the matrix X. The 

basic principle of image compression using neural network is to identify the weight 

matrix of the trained neural network architecture, where the rows of the weight matrix are 

the principal components of the matrix X.  For performance evaluation, Sanger (1989) 

implemented the algorithm using (8 x 8) input blocks and an output of (8 x 1) vectors. 

The network was trained using (512 x 512) image using non-overlapping blocks. Mean 

square error (MSE) of 0.043 at 0.36 bits per pixel (bpp) was achieved on images that 
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were used for training. Retaining the weight matrix, image that was not part of the 

training set were compressed and decompressed. MSE of 0.023 was achieved at 0.55 bpp. 

This led to the generalization of neural network architectures for image compression. 

Multiple images need to be used as training samples to ensure higher performance of the 

network in terms of MSE. Sanger’s method uses only feed forward neural network 

architecture. Cottrell and Munro (1988) have proposed direct neural network architecture 

for image compression. They view the problem of image compression as a mapping 

issue, where (8 x 8) (arranged as 64 x 1) input is mapped to (64 x 1) outputs at the output 

layer, the compression is achieved by having 16 hidden layers. In such scheme all the 

neurons are fully connected. In their work backpropagation training technique was 

adopted to train the network to obtain the weight matrix representing the principal 

components of the image. Each sub-block of the image is presented at the input and 

output of the network simultaneously, and the weights of the hidden layers and output 

layer are adjusted using backpropagation algorithm. Linear networks were used and were 

shown to produce comparable results to nonlinear networks. Images tend to span the first 

M principal components of the image, where M is the number of hidden layers. Sonehara 

et al. (1989) propose a three layer Backpropagation Neural Network (BPNN). The 

compression is achieved using three layer network the input layer, hidden layer and 

output layer. The hidden layer has less number of neurons compared to the input and 

output layer, which achieves compression. In their method the original image was divided 

into sub-blocks and fed to the input layer, the output layer restores the original sub-block. 

This implementation was done on the NCUBE parallel computer and the simulation 

results showed that this network achieved poor image quality. Carrato and Ramponi 

(1991) modified the direct architecture proposed by Cottrell and Munro (1988) by 

introducing nonlinear transfer functions. It is reported that nonlinear network have higher 

compression ratios than linear network. Instead of mathematically analyzing the 

performances of nonlinear network, their work considers use of multiple image data 

samples for training the network built using nonlinear functions. Based on the results 
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obtained the performances are evaluated. Definite proof for use of nonlinear network for 

better image quality is not reported in this work. Mougeot, Azencott and Angeniol (1991) 

prove the nonlinear network proposed by Carrato and Ramponi (1991) suffer from poor 

quality, but achieves better compression. In order to improve the quality metrics of the 

decompressed image, they used overlapped block samples from the image for training 

and simulation. This achieves improvement in quality and compression at the cost of 

training time. Carrato (1992) has reported the use of neural network for image 

compression which performs better than transform coding techniques.  Direct neural 

network architecture shown in Fig. 2.5 with linear functions is used to prove his claim. 

Backpropagation neural network was used for training the network for image 

compression and decompression. The input layer and output layer are fully connected to 

the hidden layer.  

Image compression is achieved by training the network in such a way that the 

coupling weights, {wji}, scale the input vector of N-dimension into a narrow channel of 

K-dimension (K < N) at the hidden layer and produce the optimum output value which 

makes the quadratic error between input and output minimum. In accordance with the 

neural network structure shown in Fig. 2.5, the operation of a linear network can be 

described as in equation (2.2) 

                                 ∑
=

≤≤=
N

i
ijij Kjxwz

1
1,                                            (2.2) 

Where, 0 ≤x i ≤ 1 denotes the normalized pixel values for grey scale images with grey 

levels {0 to 255} and equation (2.3) for decoding, 

                          
∑
=

≤≤=
K

j
jiji Nizwy

1
1,                                         (2.3) 

The reason for using normalized pixel values is due to the fact that neural 

networks can operate more efficiently when both their inputs and outputs are in the range 

{0 to 1} Carrato (1992). 
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Figure 2.5 Back propagation based neural network architecture 

Neural network algorithms and architectures for image compression exists in 

many types such as Multi Layered Perceptron (MLP) (Qiu, Varley and Terrel 1993), 

Hopfield (Lin and Liu 1999), Self Organizing Map (SOM) (Amerijckx, Legaty and 

Verleysen 2003), Learning Vector Quantization (LVQ) (Pavlidis et al. 2001) and 

Principal Component Analysis (PCA) (Costa and Fiori 2001).  

Namphol, Chin and Arozullah (1996) propose hierarchical neural network 

architecture in order to improve the compression ratio. Image is classified into multiple 

sub-images, based on these sub-images the network gets trained. This approach achieved 

better compression and also improved quality of reconstructed image. The number of 

hierarchies and number of layers are decided based on the image quality. The idea was to 

exploit correlation between image pixels and correlation between blocks of pixels in the 
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inner hidden layer and outer hidden layer respectively. From the input layer to the hidden 

layer and from the hidden layer to the output layer, local connections are designed which 

have the same effect as several fully connected neural sub-networks. The total number of 

neurons for the hidden layer and the output layer is the same as that of the hidden layer 

and the input layer, respectively. Benbenesiti (1997) modified the multilayer network 

proposed by Namphol, Chin and Arozullah (1996) to achieve better quality. Inputs, 

weight elements and outputs are normalized to the range 0 to 1. This results in 

improvement in performance of neural network architecture in terms of higher 

compression and image quality.  

Jiang (1999) discussed various architectures for image compression using neural 

networks. Jiang (1999) classified neural network architectures into three different 

categories. These include direct neural network architecture, traditional neural network 

approaches and indirect neural network approaches. In his work architectures are 

compared based on their performances, the major bottleneck is the training time required 

for the neural network architecture. Parallel processing with programming capability is 

recommended for hardware implementation of neural network architectures for image 

compression. Implementing neural network architectures on hardware is one of the major 

challenges identified by Jiang (1999).  

Benbenesiti et al. (1999) have also used linear network for compression, with 

backpropagation training algorithms, and reordering of the image to 1-D. They have also 

implemented nonlinear network based image compression and have obtained better 

results, with 70% improvement in compression ratio. Lewicki and Olshausen (1999) have 

used multilayer networks with nonlinear components to achieve compression and have 

proven that nonlinear networks are better than linear networks in compression with 

improved image quality, but nonlinear networks increases complexity and training time. 

In their work, multilayer networks have only nonlinear nodes. A two layer perceptron 

network forms unbounded, convex region in the space spanned by the inputs. A three 

layer perceptron network forms arbitrarily complex decision regions. A three layer 
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perceptron network could thus be used to create any continuous likelihood function 

required in a classifier. The above discussion on the classification and approximation 

capabilities of the multilayer neural network is based on the fact that all the layers are 

trained simultaneously. It is important to emphasize here that training each layer 

separately, does not share the proven capabilities of the standard multilayer neural 

network. In their work, a four layer nonlinear network is proposed to further enhance the 

compression ratio. Using four layer nonlinear networks, MSE was 47.36 where as for two 

layer linear networks MSE was 86.49.  

Ivan Vilovic (2006) uses nonlinear networks for image compression. He has taken 

images in to overlapping sub-blocks for training.  Training time is more in this case. 

Circuit complexity increases with nonlinear elements. He has compared the results of NN 

with JPEG technique. Feed forward networks with backpropagation technique are 

adopted for the analysis. Sub-divided images of various sizes such as (4 x 4), (8 x 8) and 

(16 x 16) have been considered and transformed into column matrix as discussed earlier 

and is used for compression and decompression. Results obtained based on his work is 

shown in Fig. 2.6, SNR for JPEG is found to be better compared with NN based 

technique. Use of new algorithms and techniques to overcome deficiencies of NN 

technique is recommended by Ivan Vilovic (2006). Most of the results reported do not 

show significant advantage in terms of SNR over JPEG.  

Steven and Mario (1998) have realized neural network for image compression 

using Field Programmable Gate Array (FPGA). They used backpropagation technique for 

training the network. Linear networks have been considered for compression of images. 

Linear neural networks are well suited for FPGA implementation as the complexity of the 

hardware is reduced. The uniform nature of the model permits a single circuit to be 

configured and used to calculate the outputs of the network. Due to the complexity 

involved in mapping architecture on FPGA, only a single neuron is realized.  
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Figure 2.6 SNR vs. CR for NN and JPEG codec (Ivan Vilovic 2006:26) 

From the review carried out it is significant that neural network approaches for image 

compression have been extensively used and many authors have achieved good 

performances in terms of MSE and PSNR. Some of the common factors among the 

reported architectures are: Image compression using neural network is achieved using 

multilayer network. Neural network architecture consisting of input layer, hidden layer 

and output layer that are fully connected are used for compression. Compression is 

achieved by selecting the hidden layer size less than the input and output layer. Nonlinear 

and linear functions have been used as network functions. Training of the network with 

multiple images achieves better results. Images are sub-divided into sub-blocks 

(Overlapping and non-overlapping) and rearranged prior to training. Hierarchical 

networks are also used. All the work reported in the literature have realized and proven 

the network performances based on software models. From the above discussion, the 

following are conclusions:  

1. Multilayer neural networks have been adopted and recommended by many of the 

work reported.  

2. Backpropagation algorithms have been used by most of the work reported for 

training the network. 
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3. Direct feed forward backpropagation neural network architectures are simple are 

successfully used for compression and decompression. 

4. Training of the network is a very important phase; image sets selected also plays 

an important role in identifying optimum weight elements for the network.  

5. The transfer function used in neural network classifies the network as linear or 

nonlinear network. Results presented in most of the literature are inconclusive on 

the performances of linear and nonlinear networks for compression and image 

qua lity.  

6. There is no mathematical proof showing the efficiency of nonlinear network over 

the linear network for image compression. 

7. SNR is observed to be less for neural network technique in comparison with 

conventional JPEG as per Ivan Vilovic (2006). 

8. Most of the NN architecture work reported in the literature is based on image 

compression using multilayered network and hierarchical network Jiang (1999).   

9. Although significant work has been done towards neural network development for 

image compression, and strong competition can be forced on conventional 

techniques, it is premature to say that neural network technology can provide 

better solutions for practical image coding problems Jiang (1999). For real-time 

applications, efficient hardware’s are required to implement NN architectures.  

10. Coordinated efforts world-wide are required to assess the neural networks 

developed on practical applications in which the training set and image samples 

should be standardized. In this way, every algorithm proposed can go through the 

same assessment with the same test data set as per Jiang (1999). 

11. The full potential of neural network approaches will not be realized until they are 

implemented in their true parallel form. Most of the implementations used in the 

above research have been based on simulations on computers. With the 

development of VLSI implementations for many neural network architectures, the 

speed for both  training and coding will dramatically increase.  
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12. Hardware implementation of NN architecture for higher image sizes is not 

reported, most of the techniques reported in the literature are only software 

simulation and the hardware implementation is only for a very small image size.  

13. Flexibility in compression ratio is one of the major limitations in NN based 

architectures for image compression.  

14. All the neural network techniques reported use image samples that are reordered 

to column matrix from the original sub-image blocks. Processing images or 

compressing images without reordering is not reported in the literature.   

From the above observations made, major and specific gaps in the literature are:  

1. Image reordering is carried out and there are no claims reported on two-

dimensional multilayer neural network architecture for image compression.  

2. Nonlinear and linear neural networks have been used for image compression and 

decompression. However, their performances when compared with conventional 

technique are not very significant Ivan Vilovic (2006).  

3. Highly powerful and computationally intensive parallel architectures are required 

for neural network architectures to be realized on hardware.  

4. New techniques and architectures are required to improve the SNR of NN based 

techniques over traditional techniques for image compression.  

Given that there is a viable solution for image compression using neural networks, the 

next step is to build the neural network hardware. The hardware implementation of any 

concept should be cost effective, feasible and reliable. Also, the hardware should be area, 

power and speed efficient. A fully digital approach using RISC processor is one possible 

solution. Such processors are designed to execute simple instructions, preferably one 

instruction every cycle. For realizing the massively parallel and computational intensive 

neural network architecture analog VLSI design is considered in this work. VLSI 

technology is well matched to realize neural network architectures for two basic reasons: 
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1> VLSI technology permits implementation of large number of identical, 

concurrently operating neurons on single chip, thus exploiting the parallelism 

property required for neural networks.  

2>  Well defined arithmetic operations and relatively small and reliable circuits 

greatly simplify VLSI implementation complexities.  
Next section discusses analog VLSI implementation of neural network architectures.  

2.3 Artificial Neural Network 

Biological neurons are artificially modeled as shown in Fig. 2.7. The basic building 

blocks of a single neuron are multipliers, adders and network function. Other than these 

building blocks data storage elements are required to store the input, output, weights and 

bias elements. The neural network shown Fig. 2.7, can be classified in terms of their 

implementation into three categories: Digital, Analog or Hybrid. Digital network is 

realized using logic gates. Network inputs, weight, bias and output are all represented in 

binary format.  

 
 

Figure 2.7 Two layer neuron with 2 hidden layers and 1 output layer 
In analog network, transistors and passive components are used to realize the 

network. Input, weight, bias and output are all in analog form. In hybrid network a 

combination of digital blocks and analog blocks are used to realize the network. Hybrid 
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also implies that, the input, weight, bias and output can be in either analog or digital. The 

implementation of the neural network architecture (NA) in all these categories requires 

learning capability to be integrated in the design. This learning capability or learning 

rules are based on the mathematical algorithms that are unique for a given network. The 

focus of this research work is to implement the neural network architecture with 

backpropagation learning/training algorithm for image compression realized using hybrid 

technique. 

Neuron comprises of multiplier and adder along with the network function (Jiang 

1995). Fig. 2.7 can be expressed mathematically as in equation (2.4) and equation (2.5),  

                               bwxwxn ++= 2211 **                                    (2.4) 

                             )(nfz =                                              (2.5) 

 Where, z is the neuron output and n is the intermediate output for the inputs x and 

neuron weights w. Bias b is optional.  

 Training of the network to realize a given functionality is achieved by setting a 

target for a given input. The initial weights and bias of the network is assumed. The input 

vectors are presented to the network, based on the initial weights and bias elements the 

outputs are computed. The error between the target and the obtained output is used to 

update the weight and bias elements. This process is continued until the error converges 

to minimum. The error is backpropagated to update the weight and the bias elements 

hence the algorithm is named as backpropagation.  The use of analog computation is 

attractive for neural network due to its compactness, potential speed, absence of 

quantization effects and reading analog samples without the need for digital conversion. 

The use of digital techniques on the other hand is preferred due to its robustness, easy 

transmission and regeneration, simplicity and flexible. Hybrid circuits are a combination 

of both digital and analog blocks has the merits of both analog and digital 

implementation. In this research work, new hybrid schemes are proposed for image 

compression using neural network architectures. Next section, reviews various schemes 
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for realizing neural network architecture that forms a platform to develop new hybrid 

architectures for image compression.  

2.4 Neural Network Architectures 

The neural networks are broadly classified as feed forward and recurrent networks (Bose 

and Liang 2006). In Fig. 2.8 (a) the feed forward network is shown. The first layer is the 

input layer, from which the neuron gets the input from sensors or data storage units. The 

last layer is called the output layer.  The intermediate layer is called the hidden layer. As 

can be seen there is no feedback of the outputs again to the inputs. In Fig. 2.8(b) a 

recurrent neural network is shown. They have a kind of direct cycles in their connection 

graphs. As shown in Fig. 2.8(b), the outputs are going back to the output layer as inputs. 

The outputs are recurrent, as they have the effect on the next outputs. In this thesis only 

the feed forward networks are considered and designed using hybrid architecture.  

  
Figure 2.8(a): Feed forward network                     Figure 2.8(b): Recurrent network 

Figure 2.8 Different types of neural network architectures (Bose and Liang 2006) 
2.4.1 Single Layer Neuron  

In Fig. 2.9 single neuron is shown.  The x input matrix multiplied with the weights (w) 

and modified using bias (b) is summed (n) and passed through the network function f, 

mathematically it can be shown as in equation (2.6) and equation (2.7),  

                                      ∑
=

+=
R

i
ii bwxn

1
1                                 (2.6) 

                                       )(nfz =                                   (2.7) 

aa0682
Typewritten Text
This image has been removed



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

58 

Where, n is the summed output of the multipliers and z is neuron output.  

  

 

 

 

 

 

 

Figure 2.9 Single neuron (Bose and Liang 2006) 
In Fig. 2.10 a single layer of neuron network is shown. The input matrix x is now 

connected to layer of neurons. Each neuron receives x inputs and is processed to one 

output from each neuron. Each output of neuron is further passed through a network 

function to compute s number of outputs as shown in Fig. 2.10.  The equation (2.6) and 

equation (2.7) are modified to equation (2.8) and equation (2.9) for single layer neuron 

network and is given as, 

                                      ∑
=

+=
R

i
jijij bwxn

1
                    (2.8) 

                                          )( jj nfz =                      (2.9) 

2.4.2 Multiple Layer of Neurons 

The set of single layer neurons connected with each other is called the multiple layer 

neurons, as shown in the Fig. 2.11. The inputs (input layer) are connected to the layer 1 

which in turn is connected to the layer 2 which in turn is connected to the output layer 3. 

Layer 2 is the hidden layer, and layer 3 is the output layer. Inputs (X) is taken into hidden 

layer for processing, the output of hidden layer is further processed by the output layer to 

produce outputs (Z) of the network. As the input is processed by more than one layer of 

network, this architecture is called as multilayered neural network architecture.  
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Figure 2.10 Single layer of neuron (Bose and Liang 2006) 

 
Figure 2.11 Multiple layers neural network (Bose and Liang 2006) 

2.5 Backpropagation Algorithm 

The essence of the neural network lies in the way the weights are updated. The updating 

of the weights is through a definite algorithm. In this thesis, Backpropagation (BP) 
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algorithm is modeled and implemented. The algorithm is applied for the supervised 

learning that is a desired output will be applied to neural architecture. The target is 

represented as di (desired output) for the ith output unit. The actual output of the layer 2 is 

given by z2
i. 

Thus, the error or cost function is given by equation 2.10 (Bose and Liang 2006) 

                                      ∑ =
−=

S

i idzE
i1

22 )(
2
1

                   (2.10) 

This process of computing the error is called a forward pass. How the output unit affects 

the error in the ith layer is given by differentiating equation (2.11) by  

                                      2
i

z
E

∂
∂

                                               (2.11) 

The equation (2.12) can be written in the other form as  

                                   )()( 22
ii

zddz ii −=∂                                                   (2.12) 

where, d(zi) is the differentiation of zi. The weight update is given by 

                                     1
iziijw ∂=∆ η                                                               (2.13) 

Where z1
i is the output of the hidden layer or input to the output neuron and η is the 

learning rate (Bernabe and Barranco 1992). This error propagates backwards from the 

output to the input. The δ for the hidden layer is calculated as  

                                 iijrhiddenlaye wzd
i

∂=∂ ∑)( 1                                        (2.14) 

Weight update for the hidden layer with new δ, is computed using equation (2.14). 

Equation (2.10) – (2.14) depend on the number of the neurons present in the layer and the 

number of layers present in the network. Appendix – A discusses backpropagation 

algorithm.  

2.6 Neural Networks in Analog VLSI 

Neural network described so far is a multilayer feed forward network with 

backpropagation algorithm. The basic building blocks in the neural networks are the 
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multipliers, summers and tan-sigmoid function. Multiplier is an essential component in 

the neural network. Commonly known as the synapse, the multiplier performs the 

multiplication of the input with the weight function. Reviews of different analog VLSI 

architectures for neural network are presented in this section.  

2.6.1 Modular T-Mode Design  

Bernabe Linares (1992) came up with the modular transconductance-mode approach 

shown in Fig. 2.12. x1, x2 ….. xN are the inputs that are multiplied by the network weights 

w1i, w2i...……wNi. Current output of transconductance amplifier is summed up at the node 

xi and is processed by the translinear amplifier (f()) as shown in Fig. 2.12. As the neuron 

size increases, the transconductance amplifiers connected to the node xi also increases.  

The node current Ii is a function of xN and wNi represented mathematically as in 

equation (2.15), 

Ii = x1w1i + x2w2i + x3w3i + ………………….xNwNi + I1                                 (2.15) 

Where, x1, x2 …xN are the inputs, w1i, w2i ......., wNi are the weights, I1 is the bias current.  

 

 
Figure 2.12 Neuron interconnections using transconductance devices (Bernabe 

1992) 

Fig. 2.13 shows MOS transistor schematics for transconductance amplifier and 

translinear amplifier. Gilbert cell is used as transconductance amplifier. 
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Figure 2.13(a): Transconductance amplifier 

      
Figure 2.13(b): Nonlinear circuit or translinear amplifier     

Figure 2.13 Building blocks of analog neural network (Bernabe and Barranco 1992) 
The output current of the transconductance amplifier is Iout = gm xi wNi, where xi 

is the input to the neuron, gm is the transconductance of the amplifier and wNi is the 

network weight. As shown in Fig. 2.13(a) for a given neuron input x applied at the gate of 

transistor M2 and M3, w input applied at the gate of transistor M5 controls the current 

flow from VDD to VSS. The nonlinear network function shown in the Fig. 2.12 was 

 

 

VSS 
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implemented using the circuit shown in the Fig. 2.13(b).  This architecture was used to 

implement the winner takes all network and the Hopfield networks. As the circuit 

requires resistors, capacitors, and transconductance amplifier for realization, the circuit is 

complex, and has less accuracy.  

 
Figure 2.14 Neuron in the output layer (Hussein 1997) 

Hussein (1997) in his PhD thesis designed neural network architecture with on-

chip supervised learning. He designed the multilayer perceptron architecture trained by 

the Backpropagation algorithm. Fig. 2.14 shows the neuron in the output layer and the 

neuron in the hidden layer. The block A is activation function. D is the derivative block 

which performs the derivative of the input. R block generates the error signal that goes to 

the other synapses to update the weights. The FC block takes in the outputs and calculates 

the cost function described as in equation (2.5). 

Multiplier block is implemented using the operational transconductance amplifier 

shown in Fig. 2.15(a). The backpropagation algorithm used in the design is the modified 

version of Vogl Back Propagation (MVBP). The author compared modified Vogl and 

Vogl backpropagation (VBP) algorithms and concluded that the learning rate of MVBP is 

faster than VBP. He successfully trained the network for logic functions like XOR, AND, 

OR gates. It is observed that this circuit supports online training, the complexity of the 

circuit is due to the number of transistors required to realize the blocks. The circuit for 

the hyperbolic tangent function is shown in Fig. 2.15(b). 

j 
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Figure 2.15 (a): Multiplier  

 
Figure 2.15 (b): Hyperbolic tangent function  

Figure 2.15 Analog neuron circuit diagram (Hussein 1997) 

Roy (1994) in his thesis described the analog neural network with on chip 

learning. He used the single ended inputs in his design and a modified transconductance 

amplifier for multiplication purpose as shown in Fig. 2.16(a). The circuit has large linear 

range. The author used the backpropagation algorithm for the training. The derivative 
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circuit is also shown in the Fig. 2.16(b). The Ibump current in the figure is the derivative 

output of the Neuron activation function. The author designed a 4-3-2 neural network. He 

had four inputs and two outputs, which required 2 target signals for training the network. 

The design was validated for 4 input XOR function and an 8 input XOR function. 

 
Figure 2.16(a): Transconductance amplifier 

 
Figure 2.16 (b): Bump circuit 

Figure 2.16 Amplifier and adder circuit (Roy 1994) 
Chun Lu, Bing-xue Shi and Lu Chen (2002) in their paper presented a method of 

implementing analog accumulator used in the Backpropagation (BP) algorithm. For the 

usual BP algorithm the parallel approach is shown in the Fig. 2.17. As M increases the 

hardware complexity for implementation also increases. The authors proposed the 
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structure where the inputs were given in the sequential manner as shown in the Fig. 2.17. 

Even if M increases, the hardware complexity remains the same.   

 
Figure 2.17 Neuron circuit (Chun, Bing-xue and Lu 2002) 

Circuit realization of the accumulator in Fig. 2.17 is shown in Fig. 2.18. Cells A, 

B and C are comparators. Clocks clk1 and clk2 are the non-overlapping clocks. Input a 

from the accumulator and the output b are compared and the error is used to update the 

weight matrix. Every time new inputs and targets are presented the network needs to be 

trained and hence is time consuming.  

Figure 2.18 Analog accumulator (Chun, Bing-xue and Lu 2002) 
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Shai, Cai-Qin, Geiger and Randy (1987) have designed a four quadrant multiplier using 

Gilbert cell multiplier. The nonlinearity error calculated was less than 0.5% at 75% of 

full-scale swing. The circuit complexity is four times the simple Gilbert cell multiplier. 

Andreas, G. and Boahen, A. (1996) in their paper provided an overview of 

translinear circuit design using MOS transistors working in sub threshold region. They 

contrasted the bipolar and MOS sub threshold characteristics and extended the translinear 

principle to the sub-threshold MOS Ohmic region through a drain source current 

decomposition.  

From the review carried out on VLSI implementation of neural network architectures, 

the following are the conclusions drawn: 

⇒ The basic building blocks for a neuron network are multipliers, adders and 

network functions 

⇒ Gilbert cell is used for realizing the multipliers in many circuits, transconductance 

amplifier are also used for realizing multipliers  

⇒ Most of the reviewed architectures generate current as circuit outputs, this 

simplifies circuit complexities 

2.7 Digital Implementation of Neural Network Architectures 

In this section a brief review of digital implementation of neural network is discussed. As 

the neural network architecture is massively parallel and hence computational intensive, 

realizing the neural network architecture on processor platforms have their own merits 

and demerits (Hammerstrom 1992). Dedicated high speed parallel processors are required 

to realize neural network architectures. In this discussion, Application Specific Integrated 

Circuits (ASIC) and Field Programmable Gate Array (FPGA) based implementations are 

discussed. ASICs are the ideal choice when high performance is required. However, long 

development time is needed and the complexity of the system could become unavoidable. 

In this kind of designs, an area-flexibility trade-off is found (Kristian 2003). ASICs 

cannot easily provide the flexibility demanded by NNs (diverse learning algorithms, 
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reconfigurability, etc.). Consequently, hardware sharing policies have to be used to 

optimize the hardware resources. Different solutions regarding the implementation of 

NNs on programmable digital devices (FPGAs and DSPs) can be found in the literature 

(Backus 1978, Blelloch 1990, Cox and Blanz 1992, Hillis 1985, Auda and Kamel 1999 

and Beuchat, Haenni, and Sanchez 1998). In these cases it is needed to employ many of 

these devices increasing both price and power dissipation. As discussed in earlier 

sections, the basic building blocks for implementation are the adders, multipliers, transfer 

functions and memory. Training is another very important factor when working with 

neural network architectures. The hardware realization should support both training and 

functionality realization. Hence there is a need for reconfigurability of the hardware.  

2.8 FPGA Implementation of Neural Network Architecture 

Several architectures based on Field Programmable Gate Arrays (FPGAs) have recently 

been introduced. These machines have demonstrated a high level of performance for a 

variety of problems. Recently, several FPGA-based machines have been designed and 

built. These machines have demonstrated supercomputer-level performance for a variety 

of computationally intensive problems. In spite of these impressive demonstrations, 

FPGA-based machines have not found widespread use. One limitation of these machines 

is their programming environment. For the most part, these machines have been 

programmed using hardware design tools. While this approach permits the most 

flexibility and highest performance, it requires that the programmer be a skilled hardware 

designer. Guccione and Gonzalez (1993) have proposed a more traditional programming 

model for these machines based on the vector-based data-parallel model of computation. 

This model takes algorithms described in a high-level C-like language and translates 

them into high-performance digital circuits. 

Backpropagation based neural networks currently stand out as the most popular 

type of neural network used to date and have been successfully implemented on FPGAs 

(Omondi and Rajapakse 2006, Pavlitov and Mancler 2004, Blake and McDaid 2005 and 
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Kwan, 1992). Eldridge (1994) successfully implemented the backpropagation algorithm 

using a custom platform built out of Xilinx XC3090 FPGAs, called the Run-Time 

Reconfiguration Artificial Neural Network (RRANN). This architecture could learn how 

to approximate centroid of fuzzy sets. Results showed that RRANN converged on the 

training set, once 92% of the training data came within two quantization errors (1/16) of 

the actual value, also RRANN generalized well as 88% of approximations calculated by 

RRANN (based on randomized inputs) came within two quantization values. Heavily 

influenced by the Eldredge's (1994) RRANN architecture Beuchat, Haenni, and Sanchez 

(1998) developed a FPGA platform, called RENCO-a Reconfigurable Network 

Computer. As its name implies, RENCO contains four Altera FLEX 10K130 FPGAs that 

can be reconfigured and monitored over any LAN (i.e. Internet or other) via an onboard 

10 Base-T interface. RENCO's intended application was hand-written character 

recognition. One challenge in implementing the backpropagation on FPGA is the 

sequential nature of processing between layers. A major challenge is that pipelining of 

the algorithm cannot occur during training. This problem arises due to the weight update 

dependencies of backpropagation, and as a result, the utilization of hardware resources 

dedicated to each of the neural network's layer is wasted. Aaron Ferrucci (1994) and 

Marcelo H. Martin (1994) built a custom platform, called Adaptive Connectionist Model 

Emulator (ACME) which consists of multiple Xilinx XC4010 FPGAs. ACME was 

successfully validated by implementing a 3-input, 3-hidden unit, 1-output network used 

to learn the 2-input XOR problem. Skrbek (1999) also used this problem to prove that his 

own custom backpropagation based FPGA platform worked. Skrbek's (1999) FPGA 

platform, called the ECX card, could also implement Radial Basis Function (RBF) neural 

networks, and was validated using pattern recognition applications such as parity 

problem, digit recognition, inside-outside test, and sonar signal recognition.  

The type of neural network used in FPGA-based implementations is an important 

feature used in classifying such architectures. The type of neural network applied 

depends on the intended application used to solve the problem at hand. Current trends in 
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this field have shown that there have been very few attempts at implementing modular 

neural networks on FPGA based platforms. In the past, this can be attributed to the fact 

that FPGA densities and speeds were inadequate for supporting modular neural networks. 

However, FPGA densities and speeds have now improved to the point where it's far more 

feasible to support modular neural networks, and attempts at doing so should be re-

visited. The key advantage to the digital approach over analog approach is the ease of 

design, manufacturability and flexibility. In analog approach, circuit reliability is always 

a concern; also training the analog network is always a challenge. In digital approach, 

with software controlling the hardware, both training and functionality is realizable. 

However, the major disadvantage is that the digital implementation is very time 

consuming, area hungry and power hungry. Also, digital implementation is driven by the 

algorithm and the architecture selected.  

To measure the computation complexity of digital implementation of neural 

network architecture, feed forward neural network with 16 inputs, 4 hidden layer and 16 

output neurons is designed (Cyril Prasanna Raj, P. and Pinjare S. L. 2005). The network 

is trained using back propagation technique using multiple training data sets. Optimum 

weights and biases are identified, Binary Canonic Sign Digit (BCSD) based multiplier 

and Ripple Carry Adder is designed. HDL model for the 16:4:16 neural network 

architecture is developed and synthesized using Xilinx ISE. FPGA based implementation 

of neural network architecture for image compression and decompression is discussed in 

Chapter 4. In this research work, we address the implementation issues of neural network 

architectures for image compression based on hybrid architectures.  

2.9 Literature Review Summary on VLSI Implementation of Neural 
Network 

From the above discussion, the conclusions drawn in this section based on the literature 

review further lead to the scope of this research work, addressing the gaps in analog 

neural networks for image compression. The following are the conclusions that can be 

drawn: 
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• Analog neural network requires multiplier, adder and neuron activation function. 

Training is also similar to the digital network. Analog neuron is able to execute 

both digital and analog functions similar to the digital network. From the 

literature analysis it is found that analog neural networks are on par with digital 

neural networks, secondly analog neurons are faster, as training time is less when 

compared with digital network training.  

• Gilbert cell based transconductance multipliers have been used to implement 

analog neural network. It requires less number of transistors compared with a 

typical digital multiplier. Circuit complexities of analog implementation of neural 

network architecture are much smaller than the digital implementation.    

• There is need for two-dimensional multilayer neural network architecture. 

• The inputs are analog intensities in spatial domain; the two-dimensional 

multilayer network should be implemented in the analog domain. Analog 

implementation minimizes circuit complexity and is faster.  

• Two-dimensional multilayer analog neural network architecture should be trained, 

and the trained weights should be stored for signal processing.  

• The network should be used for image compression and decompression.  

 

Next chapter discusses the aims and objectives of the research work, highlighting 

methods and methodology.  
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Chapter 3 - Problem Definition 

From the literature review carried out in the previous chapter, feed forward multilayer 

neural network architecture with backpropagation training has been adopted for image 

compression. Many variations of this architecture have been proposed and realized for 

improving the performance of the network with respect to image quality. Modifications 

in backpropagation algorithm have also been suggested to improve the accuracy of the 

network architecture. A very critical observation made during the literature review is that 

the network works on one-dimensional image data. Image being 2-D, and captured in the 

analog form is digitized into N-bit number by row-column read out as discussed in 

chapter 1. Hence, analog pixel intensities of image captured using charge coupled device 

can be taken in two-dimensional without converting into one-dimensional digital form. 

Two-dimensional multilayer feed forward neural networks (TDMNN) architecture for 

image compression is proposed. This avoids conversion from 2-D to 1-D as being carried 

out in the conventional and neural network techniques reported. Also, analog data need 

not be converted to digital data, and hence eliminates analog and digital conversion, 

which further saves time involved in data preprocessing. Based on the literature review 

and observations made, the aim and objectives for the research work is formulated and 

discussed in this chapter. The methods and methodologies required to carry out the 

objectives is also highlighted. Based on the objectives and methods, two-dimensional 

multilayer neural network architecture is designed, modeled and implemented for image 

compression and validated for its performances.  

3.1 Aim 

To design two-dimensional neural network architecture, implement and optimize for area, 

power and speed, and validate its performance for image compression. 
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3.2 Objectives 

1. To explore the use of artificial neural networks for image compression with 

existing architectures in literature. 

2. To propose, analyze and validate two-dimensional neural network for image 

compression. 

3. To design and test analog building blocks suitable for realizing the 2-DMNN. 

4. To train and optimize analog 2-DMNN for image compression. 

5. To optimize the proposed architecture with available architectures for area, power 

and speed performances. 

6. To validate the proposed architecture performance for image compression and 

image quality. 

3.3 Methods and methodologies to carry out the objectives 

• Literature review on artificial neural networks and architectures for image 

compression, analog blocks required for NN implementation, image acquisition, 

conventional compression techniques, image quality, hardware and software 

platforms for implementation and compression metrics is carried out by referring 

journals, conference papers, patents, books and related documents 

• Literature review of existing algorithms and architectures for image compression 

and decompression is carried out highlighting the major limitations and 

advantages 

• Identification of standard image data sets and standard test results is carried out 

based on literature review 

• The gaps in literature are identified for further investigation based on literature 

review and experimental results 

• Pilot studies on available techniques of image compression using NN is carried 

out 
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• Software reference models for the algorithms and architecture reported in the 

literature are developed. The algorithm performance is estimated for image 

compression in terms of MSE, PSNR and hardware complexities 

• Limitations of the neural network algorithms for image compression compared 

with conventional techniques in terms of MSE, PSNR and maximum error are 

identified 

• Two dimensional neural network architecture for image compression is proposed 

based on the source of data from camera and its operation to meet 2D 

compression requirement 

• 2-DMNN is modeled using MATLAB and trained using standard image data sets 

• Performance of 2-DMNN is estimated and compared with the results of pilot 

studies 

• Mismatches in the results have been considered and suitable modifications is 

incorporated to obtain better performance 

• 2-DMNN is modified based on the results obtained to obtain better performances 

• 2-DMNN model is validated using standard image data sets  

• Adaptive 2-DMNN architecture is proposed, designed, simulated using MATLAB 

• Performances of Adaptive 2-DMNN is compared with 2-DMNN 

• Analog building blocks are identified to model the 2-DMNN based on the 

literature review 

• Suitable modifications are made in the design of analog blocks to suite the 

requirements of 2-DMNN, multipliers and nonlinear transfer function 

• Analog multiplier based on Gilbert cell, algorithm for neuron activation function 

and backpropagation algorithm is proposed, designed simulated and implemented 

using Cadence Virtuoso and Spectre 

• Performances of 2-DMNN is analyzed and modifications are made  

• Hybrid 2-DMNN architecture  is designed, simulated and implemented using 

Cadence Virtuoso and Spectre 
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• Image compression and decompression is performed for different compression 

ratio and checked for MSE and PSNR using the test setup 

• Hardware complexities are compared with existing architectures 

• Schematic for the building blocks is drawn using Virtuoso Schematic Editor and 

simulated using Spectre 

• Layout of basic blocks is drawn using Virtuoso Layout Editor and Layout 

validations (DRC & LVS) has been carried out for it using Assura 

• Test setup is designed and implemented in Cadence Virtuoso and HSpice 

• Schematic for the basic blocks is drawn using Virtuoso SE and layout is generated 

using Virtuoso XL. The layout is validated using Assura 

• Identified architectures of neural cell is designed in SPICE deriving transistor 

sizes using design equations 

• Designed neural cell is simulated and characterized using HSpice and the results 

are compared with the specifications  

• Neuron cell architecture best suited for reduced leakage power and enhanced data 

stability is selected 

• Schematics for two dimensional neural network architecture blocks are drawn in 

Virtuoso Schematic Editor using 0.18 µm CMOS technology. 

• Layouts of all the blocks of two-dimensional neural network architecture is 

verified (LVS and DRC) using Assura 

• Layouts for two dimensional neural network architecture is designed using 

Virtuoso Layout Editor  

• RC extraction of the implemented two dimensional neural network architecture is 

performed using Assura 

• Post-layout simulation for two-dimensional neural network architecture is carried 

out using Spectre. Simulation results are verified for reduction in leakage power 

and enhanced data stability  

• GDSII is generated for the two dimensional neural network architecture 
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In the next chapter new architectures for image compression using neural network is 

proposed, designed, modeled and implemented. Software models for the proposed model 

are developed using MATLAB, test images are used to train the network. New algorithms 

for training are proposed. Based on the trained network different images are used to test 

the network performances with respect to image compression. MSE, PSNR and 

maximum error is calculated for standard test images. The results are compared with 

conventional and neural network techniques.  
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Chapter-4 2-D Multilayered Neural Network: Design and 
Implementation 
 

4.1 Design Overview 

The present research relates to neural networks for image compression, more particularly 

design and development of two-dimensional multilayer neural network architecture for 

image compression and decompression. A single chip solution which addresses 

computational complexities, operates faster, consumes relatively low power, and 

occupies less space is designed and implemented. This architecture can be scaled in a 

planar or massively parallel, stacked arrangement to handle more data points achieving 

greater processing rates. The programmability of the synaptic connections, through 

binary weights that are obtained during offline training makes the design reconfigurable.  

Image sensors arranged in 2-D matrix of size [256 x 256], [512 x 512] and [1024 

x 1024] capture light intensities that fall on them from the image. Two-dimensional 

multilayer neural network architecture proposed in this work captures this voltage or 

current values for image compression. The advantage of the proposed architecture is that 

it avoids image reordering (2-D to 1-D conversion as in conventional processing) and 

also processes the image in analog form and hence avoids analog to digital conversion. 

The architecture is first trained to learn the properties of images using training data sets 

and this makes the proposed neural network more generic and achieves better 

performance. Building blocks for proposed neural network architecture is identified, 

designed, modeled and simulated. Test setup is developed to verify functionality of the 

design as image compressor and decompressor. The hardware implementation of the 

proposed architecture is optimized for area, power and speed performances.  
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4.2 Design Requirements 

The frame rate of a video signal captured using camera may be as slow as 30 Hz and fast 

as 1000 Hz. Each frame may be represented using [256 x 256] CCD arrays. Each frame 

of size [256 x 256] pixels with a frame rate of 30 Hz needs a processing time of 65536 

pixels/33 ms. If the image is sub-divided into sub-blocks of (4 x 4) computation speed is 

4096 sub-blocks/33 ms. Considering a fast motion picture at 1000 Hz the computational 

speed required is 4096 sub-blocks/1ms. In case of 1024 x 1024 image with a frame rate 

of 30 Hz requires a computational speed of 65536 sub-blocks per 33 ms and with frame 

rate of 1000 Hz the computational speed required is 65536 sub-blocks per 1 ms. Neural 

network architecture required to process images should be able to process data at this 

required rate. Fig. 4.1 shows the block diagram of the proposed architecture here with 

called as Two-Dimensional Multilayer Neural Network Architecture (TDMNN) for 

image compression and decompression. The architecture shown in Fig. 4.1 is 

implemented using VLSI technology.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 2-D Architecture for image compression and decompression 
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4.2.1 Two-Dimensional Multilayer Neural Network Architecture 

Two-dimensional multilayer neural network architecture consists of input layer, hidden 

layer and output layer. The input layer consists of image pixels that are obtained from 

CCDs. Hidden layer consists of multiple single layer neurons arranged as shown in Fig. 

4.2. Each single layer of neuron consists of multiple neurons. The output layer consists of 

multiple single layer neurons as shown in Fig. 4.2. In Fig. 4.2, an input image of size (8 x 

8) consisting of 64 pixels is processed by a two-dimensional hidden layer consisting of 

four single layer neurons. In the hidden layer there are 16 neurons, each single layer 

neuron consisting of 4 neurons.  

 
Figure 4.2 2-Dimensional multilayer neural network 
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As shown in Fig. 4.2, first row of inputs consists of pixels x1 to x8. First column of input 

consists of 8 pixels as shown in Fig. 4.2. 8 x 8 input image processed by the 2-D hidden 

layers compresses the input to 4 x 4 outputs.  Compressed outputs are z1 to z16 obtained in 

2-D form as shown in Fig. 4.2.  The output layer consisting of eight single layer neurons 

(each single layer neuron consists of 8 neurons), decompresses 16 compressed data to 64 

outputs. The decompressed outputs are obtained in 2-D form as shown in Fig. 4.2. 2-

DMNN is trained with known image data sets. Once the network is trained the network 

remembers the properties of different images that were used for training. The weights and 

bias elements of the network obtained during training are responsible in compressing and 

decompressing images without loss of data. Once training is accomplished, the hidden 

layer and the output layer are separated and are used as compressor and decompressor as 

shown in Fig. 4.2. The hidden layer compresses images received from image sensors, 

compressed data is transmitted and the output layer decompresses the received data. This 

research work focuses on design and development of compressor and decompressor unit 

as shown in Fig. 4.2.  

4.2.2 Two-DMNN Parameters 

Image inputs consist of [256 x 256] pixel values are sub-divided into sub-blocks and are 

processed by the two-dimensional network. The hidden layer compresses the sub-blocks 

of image; the output layer decompresses the compressed sub-blocks. For a given image 

the network functionalities are:  

 Extracting sub-blocks from the image 

 Compression of each sub-block  

 Decompression of compressed sub-blocks 

 Rearranging sub-blocks into image 

The parameters for the 2-DMNN are as follows:  

Image size: Size of input image considered for compression and decompression for 

example [256 x 256], [512 x 512]. In general, image can be represented as [M x M], 

where M is an integer.  
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Image sub-block size: Images are divided into sub-blocks of images of smaller size. 

Sub-block image size can be (16 x 16), (8 x 8), (4 x 4). In general sub-block image size 

can be represented as (N x N). N is an integer. Size of N is always less than M.  

Hidden layer size: Size of hidden layer decides the compression ratio. Image sub-blocks 

are processed by the hidden layer. The number of neurons in each single layer of neuron, 

and the number of single layers decides compression. For example, if the sub-block 

image size is (8 x 8), selecting a hidden layer consisting (4 x 4) neurons achieves 75% 

compression. If the sub-block size is increased to (16 x 16) and is compressed using 4 x 4 

hidden layers, compression of 93.75% is achieved.  

Output layer size: Number of neurons in the output layer is equivalent to the sub-block 

image size. The compressed data at the output of hidden layer to be reconstructed to 

original image of size N x N, the output layer should consist of N x N neurons.  

Weights and biases of network: Hidden layer and output layer consists of weights and 

biases that are obtained during training. Once the network is trained for various sets of 

images during the training phase, optimum weights and biases obtained are used to 

compress and decompress images. Number of weights and number of biases in the hidden 

layer and output layer depends upon the number of neurons and the input size. For 

example, if the input sub-block size is (8 x 8), and the number of hidden layer neurons is 

(4 x 4), the hidden layer consists of 1024 weights and 16 biases. The output layer consists 

of 1024 weights and 64 biases. Table 4.1 presents TDMNN parameters. For image size of 

(256 x 256) TDMNN network parameters are presented.  

Table 4.1 TDMNN design parameters 
Image 
size 

Sub-
block 
image 
size 
(number 
of input 
pixel) 

Numbe
r of  
sub-
blocks 

Hidden 
layer size  
(i x j) 
(number of 
compressed 
pixels) 

Out-
put 
layer 
size 

Compr
ession 
ratio 
(%) 
 

Number of weights  Number of 
Biases  

Hidden 
layer 
(Wij) 

Out-put 
layer 
(Wji) 

Hidden 
layer 

Out-
put 
layer 

 
 
256 x 

 
 
32 x 32 

 
 
0064 

20 x 20 
(400) 

 
 
32 x 

60.93 409600 
(400 x 1024) 

409600 
(1024 x 400) 

400 1024 

16 x 16 75.00 262144 
(256 x 1024) 

262144 
(1024 x 256) 

256 1024 
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256 (1024) (256) 32 
10 x 10 
(100) 

90.23 102400 
(100 x 1024) 

102400 
(1024 x 100) 

100 1024 

8 x 8 
(64) 

93.75 065536 
(64 x 1024) 

065536 
(1024 x 64) 

064 1024 

4 x 4 
(16) 

98.43 016384 
(16 x 1024) 

016384 
(1024 x 16) 

016 1024 

2 x 2  
(4) 

99.60 004096 
(4 x 1024) 

004096 
(1024 x 4) 

004 1024 

1 x 1 
(1) 

99.90 001024 
(1 x 1024) 

001024 
(1024 x 1) 

001 1024 

 
 
256 x 
256 

 
 
16 x 16 
(256) 

 
 
0256 

15 x 15 
(225) 

 
 
16 x 
16 

12.10 057600 
(225 x 256) 

057600 
(256 x 225) 

225 0256 

12 x 12 
(144) 

43.75 036864 
(144 x 256) 

036864 
(256 x 144) 

144 0256 

10 x 10 
(100) 

60.93 025600 
(100 x 256) 

025600 
(256 x 100) 

100 0256 

8 x 8 
(64) 

75.00 016384 
(64 x 256) 

016384 
(256 x 64) 

064 0256 

4 x 4 
(16) 

93.75 004096 
(16 x 256) 

004096 
(256 x 16) 

016 0256 

2 x 2 
(4) 

98.43 001024 
(4 x 256) 

001024 
(256 x 4) 

004 0256 

1 x 1 
(1) 

99.60 000256 
(1 x 256) 

000256 
(256 x 1) 

001 0256 

 
 
256 x 
256 

 
 
8 x 8 
(64) 

 
 
1024 

7 x 7 
(49) 

 
 
8 x 8 

23.43 003136 
(49 x 64) 

003136 
(64 x 49) 

049 064 

6 x 6 
(36) 

43.75 002034 
(36 x 64) 

002034 
(64 x 36) 

036 064 

5 x 5 
(25) 

60.93 001600 
(25 x 64) 

001600 
(64 x 25) 

025 064 

4 x 4 
(16) 

75.00 001024 
(16 x 64) 

001024 
(64 x 16) 

016 064 

3 x 3 
(9) 

85.93 000576 
(9 x 64) 

000576 
(64 x 9) 

009 064 

2 x 2 
(4) 

93.75 000276 
(4 x 64) 

000276 
(64 x 4) 

004 064 

1 x 1 
(1) 

98.43 000064 
(1 x 64) 

000064 
(64 x 1) 

001 064 

 
 
256 x 
256 

 
 
4 x 4 
(16) 

 
 
4096 

5 x 3 
(15) 

 
 
4 x 4 

06.25 000240 
(15 x 16) 

000240 
(16 x 15) 

015 016 

4 x 3 
(12) 

25..00 000192 
(12 x 16) 

000192 
(16 x 12) 

012 016 

4 x 2 
(8) 

50.00 000128 
(8 x 16) 

000128 
(16 x 8) 

008 016 
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3 x 2 
(6) 

62.50 000096 
(6 x 16) 

000096 
(16 x 6) 

006 016 

2 x 2 
(4) 

75.00 000064 
(4 x 16) 

000064 
(16 x 4) 

004 016 

2 x 1 
(2) 

87.50 000032 
(2 x 16) 

000032 
(16 x 2) 

002 016 

1 x 1 
(1) 

93.75 000016 
(1 x 16) 

000016 
(16 x 1) 

001 016 

 

In Table 4.1, a 256 x 256 image is considered as an example, and the network 

parameters are presented for various compression ratios. Image is sub-divided into sub-

block of size (32 x 32), (16 x 16), (8 x 8) and (4 x 4). As the sub-block size is reduced the 

number of sub-blocks increases and hence the network requires more time to process 

data. As the input image is considered as 256 x 256, the sub-block size is chosen as even 

integer only. Hidden layer sizes presented in Table 4.1 are randomly selected only to 

demonstrate the network parameters. Hidden layer size is expressed as (i x j), which 

implies that there is j number of single layer neurons, each single layer neurons consists 

of i number of neurons. The value of i and j can be even or odd. Total number of neurons 

in the hidden layer is i multiplied by j. Number of neurons in the output layer is 

dependent on the sub-block image size. If the sub-block image size is 8 x 8, then the 

output layer consists of 8 single layer neurons, each single layer consisting of 8 neurons. 

Size of hidden layer decides the compression ratio. Table 4.1 also presents the number of 

weights required in the hidden and output layer. The network architecture is feed forward 

and fully connected architecture, every input reaches every hidden layer neuron. Every 

input pixel is correspondingly multiplied by a weight value; the multiplied inputs are 

added at the output of neuron. Every single neuron receiving 64 inputs are multiplied by 

64 weights. If there are 16 neurons and 64 inputs than the total number of multiplications 

are 1024. Number of weights and number of multiplications for hidden layer and output 

layer are presented in Table 4.1. The arrangement of weights in the hidden layer and the 

output layer is highlighted in yellow. Number of biases is dependent on number of 
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neurons. Compression Ratio (CR) is expressed in percentage and is defined as in equation 

4.1,  

                                                       CR = (K1 – K2)/ K1                                                            (4.1) 

Where, K1 is number of data samples in the input and K2 is number of data samples in the 

compressed output.  

Table 4.1 presents the compression ratios for various hidden layer sizes. Images 

sub-divided into sub-blocks of size (N x N) consists N2 pixels. 2-DMNN consisting of 

hidden layer of size (M x M) compresses N2 pixels to M2 pixels. In Table 4.1 column 2 

and column 3, highlighted values correspond to number of pixels in the compressed data 

to input data. Based on the parameters provided in Table 4.1, network parameters can be 

selected. In this work, two-dimensional multilayer neural network architecture with 4 x 4 

input layers, 2 x 2 hidden layers and 4 x 4 output layer is chosen analyzed for its 

performance. Fig. 4.3 shows the compression unit of two-dimensional multilayer neural 

network architecture. Inputs from image sensor are represented as I denoting current (is 

also represented as X). Hidden layer outputs are represented as Z. Inputs that are arranged 

in 4 x 4 matrix form are fed into the hidden layer for compression. Every pixel in the 

input layer is multiplied by weight values corresponding to the neuron. As shown in Fig. 

4.3, hidden layer has two layers of neuron, each layer consisting 2 neurons represented by 

Zn,k. Where n represents the neuron number and k represents the network layer. For 

example, Z1,2 represents first neuron in the second layer. Every neuron has 16 weight 

values and one bias element as per the network parameters data presented in Table. 4.1. 

Hence every neuron requires 16 multipliers and one adder. Output of every adder is 

further processed using network function.  

The TDMNN architecture has 4 neurons arranged in two-dimensional structures 

as shown in Fig. 4.3, to each of the 4 neurons, 16 input image pixels arranged in two-

dimensional format as (4 x 4) is applied in parallel. Each of the neurons produces one 

output which is a function of 16 input values. Input image size of (4 x 4) is processed by 

a (2 x 2) neuron producing (2 x 2) outputs. For simplicity and mathematical analysis, we 
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represent the input and the output matrix in (16 x 1) and (4 x 1) matrix form respectively. 

However, for hardware implementation, 2-D input is considered.  Each column of (16 × 

1) linear matrix of the (16 × M) matrix considered as the input layer is fed in to the two-

layered network as shown in Figure 4.1. The first stage has input layer of size (4 x 4), 

hidden layer of size (2 x 2) (4 neurons) neurons. (4 x 4) image blocks is compressed to (2 

x 2) image block at the hidden layer.   

 

 
Figure 4.3 2-D neural network architecture 

As illustrative example, let the input matrix be of size (4 x 4) arranged as (16 x 1), 

is compressed to (2 x 2) and arranged as (4 × 1) by the first layer as per the equation 

(4.1).  
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                            [Wf x i (4 × 16)] * [Xi x 1 (16 × 1)] = [Zf  x 1 (4 × 1)]                             (4.1) 
 

The compressed (4 × 1) matrix is decompressed to (16 × 1) by the output layer as shown 

in equation (4.2). The output layer has 16 neurons.  

                         [Whi x f(16 × 4)]*[Zhf x 1(4 × 1)] = [Xhi x 1 (16 × 1)]                              (4.2) 
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Similarly at the receiver end, the 2 x 2 (4 x 1) matrix is reconstructed to 4 x 4 (16 x 

1), by the weight matrix as shown in equation (4.2). Xi x 1 is the input matrix compressed 

to Zf x 1 by the Wf x i matrix at the hidden layer. Zf x 1 compressed data is transmitted, due 

to channel error Zhf x 1 is the received data. Zhf x 1 is decompressed to Xhi x 1 by the Whi x f 

matrix at the output layer. Wf x i and Whi x f weight values are obtained during training of 

the neural network using known image data sets.   

Fig. 4.4 shows the detailed view of a single neuron. 16 synaptic weights are 

multiplied with 16 inputs. The multiplied partial products are added as shown in equation 

Input weight 
matrix W 

Input matrix X (4x4) represented as 
16x1 for mathematical analysis 

Output of Z hidden layer (2x2) represented 
as 4x1for mathematical analysis 
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(4.3). At the adder stage a bias value is added and the result passed through a transfer 

function as shown in Fig. 4.4. As there are four neurons each produces one output and 

hence 4 outputs are generated from 16 inputs. Each neuron requires 16 multipliers, adders 

and one network function to realize equation (4.4). 

N1= W1,1 X1 + W1,2 X2 + W1,2 X3 + ----------+W1,16 X16  + Bias                              (4.3) 
 

Z = Ғ(N1)                                                                                                                   (4.4) 
 

 
Figure 4.4 Single neuron structure 

4.3 Neural Network Training 

The training of the network is a very important step and need to be carefully carried out 

to get better performance of the network. The images shown in Fig. 4.5 are selected for 

the purpose of training the network.  

The training sets that are used should support in obtaining an optimum weight and 

bias values of the network so that the image is reconstructed from the compressed data. 

Any image data consists of edges, vertical lines, horizontal lines, curves, diagonal lines, 

sharp discontinuities, intensity variation, contrast variation and random variations. Image 

data sets selected for training the network and presented in Fig. 4.5 have this information. 

Various images that have been chosen for training the network having some of the 

properties mentioned have been presented in Appendix – B. Training the network using 

these images would generalize the network and can be used for compression of any 

image having the above features.  
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Figure 4.5 Image data sets selected for training the neural network 

4.4 Two-Dimensional Network Training using Backpropagation 

Backpropagation training algorithm is adopted for training the network. Backpropagation 

algorithm is used to find weights and bias elements of neural network architecture. In this 

technique, the error between the desired output and the network output is used to 

compute the new weights and bias elements. This process is carried out until the error 

between the target and the output is zero or within threshold.  Backpropagation technique 

is discussed in Appendix - A works on 1-D inputs and produces 1-D output and the 

network is multilayered. The network proposed in this work is two-dimensional and 

multilayered, and the input-output is two-dimensional. Hence in this section, two 

dimensional multilayered neural network training algorithm based on back propagation is 

discussed. Fig. 4.8 shows the two-dimensional multilayered neural network architecture. 

aa0682
Typewritten Text

aa0682
Typewritten Text
These images have been removed



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

89 

In order to train two-dimensional architecture, a two-dimensional backpropagation 

algorithm is required. As per the literature review carried out and summarized in chapter 

2, two-dimensional training algorithm does not exist. Hence in this work two-

dimensional network is trained based on modified one-dimensional backpropagation 

training algorithm. For multilayer neural network architecture, input image which is two-

dimensional is rearranged into one-dimension as shown in Fig. 4.6. The feed-forward 

multilayer neural network is trained by setting the rearranged input as the target. The 

network is trained to reproduce the target; the training is done iteratively by updating the 

weights and biases based on error computed between actual output and the target. A 

detailed discussion on backpropagation algorithm is presented in Appendix – A.  

Fig. 4.6 shows the image reordering from 2-D to 1-D. Careful observation of the 

reordering indicates that the adjacent pixels in every row when reordered are placed in 

column. In the original matrix which is two-dimensional pixel 1 is adjacent to pixel 2, 

pixel 2 is adjacent to pixel 3, and so on. In other words, neighboring pixels are adjacent to 

each other. When the two-dimensional matrix is rearranged into one-dimension matrix as 

shown in Fig. 4.6, pixel 5 that was adjacent to pixel 1 is actually moved down in this 

column matrix. In an image neighboring pixels are highly correlated. Due to reordering 

the correlation between pixels is lost. Hence the correlation between the pixels in 

multiple rows is lost and hence the 1-D training algorithm cannot be used to train the 

proposed two-dimensional network.  In order to extend the one-dimensional training 

algorithm to the proposed two-dimensional network, image reordering process is 

modified and the training sets are created to maintain the pixel-pixel correlation. 

Retaining the correlation between neighboring pixels in a given image, existing one 

dimensional backpropagation training technique is used to train the two-dimensional 

network. In Fig. 4.7, modified reordering scheme (Fisher, Perkins, Walker and Wolfart 

2003) is demonstrated to increase the correlation between pixels. In this scheme, pixels 1, 

2, 5 and 6 that are very close are reordered into column matrix. By doing so the pixels are 
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placed closer than the previous technique. Further, the correlations between pixels are 

further retained by using overlapping sub-blocks as shown in Fig. 4.7.  

       
Figure 4.6 Image reordering from 2-D to 1-D 

 

 

      

 

 

 

 

    

 

 

   

Figure 4.7 Modified reordering scheme to improve correlation between pixels 
Comparing the reordered outputs presented in Fig. 4.5 and Fig. 4.7, in Fig. 4.7 
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between pixels is retained to an extent. Training the two-dimensional network using 

backpropagation algorithm based on this reordered matrix optimum weights and biases 

are obtained for the network.  

Since the reordering of the matrix ensures that the 2-D pixel-pixel correlation is 

not affected by the modified reordering scheme. Backpropagation algorithm for feed-

forward multilayer network can be extended to 2-D multilayer network.  Before training 

the 2-D network the reordering of the matrix as shown in Fig. 4.7 is required. A software 

reference model is developed for the proposed two-dimension multilayer neural network 

is designed, modeled, simulated and results are verified for multiple test cases. The 

network model is trained using the reordered data set, and simulated using different 

image samples to validate its performances. Weights and biases obtained after training is 

used to compress and decompress the network. In Fig. 4.8, the compressor unit is 

presented.  

As shown in Fig. 4.8, for the compressor unit consisting of 4 neurons in the 

hidden layer arranged as 2 x 2 is fed with 16 inputs that are available as 4 x 4.  The input 

image pixels X1 – X16 are the pixels of a sub-image arranged as 4 x 4 matrixes. Every 

neuron in the hidden layer receives these inputs but is correspondingly multiplied by the 

weights. First neuron weight matrix W1,1 – W1,16 is multiplied by input image X1 – X16, 

second neuron weight matrix W2,1 – W2,16 is multiplied by X1 – X16, similarly W3,1 – 

W3,16  is multiplied by X1 – X16 and W4,1 – W4,16  is multiplied by X1 – X16. The partial 

products are added and processed using the network function and Z1- Z4 the compressed 

data is computed. During the training process the image pixels X1 – X16 are arranged in 

one-dimensional matrix form. During implementation the input image pixels X1 – X16 are 

arranged in 4 x 4 matrix forms. Hence modified one-dimensional training algorithm is 

adopted for two-dimensional networks. Fig. 4.8 shows the input image sub-block 

consisting of 4 x 4 pixels arranged in X-Y plane is compressed to 2 x 2 pixels represented 

in X-Y plane.  
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Figure 4.8 Two-dimensional neural network architecture (Compressor unit) 
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As shown in Fig. 4.8, sub-block image of size 4 x 4 is compressed to 2 x 2 block. The 

hidden layer has 4 neurons, 16 inputs to each neuron is multiplied by 16 weight values. 

The multiplied partial products are added and processed by the network function. 2 x 2 

neurons produce 4 outputs that are compressed image data set for an input image of size 4 

x 4 sub-blocks. To compress each sub-block, multiplication, addition and network 

function are the three major processing blocks required. Network functions used classify 

the network as linear neural network and nonlinear network. Hardware realization of the 

proposed architecture in VLSI requires designing multipliers, adders and network 

function. Weight and biases need to be stored using on-chip memory. Training of the 

network is required to find optimum weights and biases for the network. Test inputs are 

required to validate the network performances.  

4.5 Design, Modeling and Analysis of TDMNN Architecture  

In this section, design and analysis of two-dimensional multilayer neural network 

architecture is presented. In this section, for analyzing the performances of the network 

software reference model is designed. Fig. 4.9 shows the top level architecture of the 

software reference model of the proposed architecture. N x 1 pixel is processed to K x 1 

pixel by the compression block. The compressed output is reconstructed to N x 1 pixels 

by the decompressor unit as shown in Fig. 4.9.  

The basic building blocks for the network are: 

1. Weight matrix (required in hidden layer and output layer) 

2. Bias (required in hidden layer and output layer) 

3. Multipliers and Adders 

4. Network function ( required in hidden layer and output layer) 

In this work, the following network functions have been used for the analysis of the 

network: 

1. Purelin or purely linear function 

2. Tansig 
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Figure 4.9 level block diagram of neural network architecture for software model 

 
Fig. 4.10 shows the input-output relation for the selected network functions. In a Purelin 

function, there is a linear relationship between input and output. In Tansig and Logsig 

functions input-output relationship is nonlinear. Network functions shown in Fig. 4.10 are 

standard functions used to design neural network architectures. Based on the kind of 

network function used, the neural network architecture can be classified as linear, non-

linear and hybrid network. Table 4.2 shows the types of networks and their classification. 

The hidden layer has 4 neurons and output layer has 16 neurons, hence 4 network 

functions are required in the hidden layer and 16 network functions are required in the 

output layer. Choosing appropriate network functions for a given application is a very 
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important step. As per the literature review carried and presented in Chapter 2, linear and 

nonlinear networks are used for image compression. 

   
 

Figure 4.10 Network functions Tansig, Pure linear and Logsig 
In this research work, network performance analysis is carried out using the 

network functions shown in Table 4.2. A hybrid network is in which, the hidden layer 

consists of nonlinear network function (tansig) and output layer consists of linear network 

function (purelin).  

Table 4.2 Neural network classification based on transfer function 
Neural network type Network function 

Hidden layer Output layer 

Linear network Purelin Purelin 

Nonlinear network Tansig or logsig Tansig or logsig 

Hybrid network Tansig or logsig Purelin 
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compared with JPEG standard compression technique. Based on the results obtained 

suitable conclusions are drawn for hardware implementation.  

Image quality metrics used for comparison are defined as follows:  

⇒ Image quality metrics: Two of the image quality metrics used to 

compare the various image compression techniques are the Mean 

Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) 

(Huynh-Thu and Ghanbari 2008, Thomos, Boulgouris and Strintzis 

1998 and Xiangjun and Jianfei 2007). 

The MSE is the cumulative squared error between the compressed and the 

original image, whereas PSNR is a measure of the peak error. The mathematical formulae 

for the two are given in equation (4.5), (4.6) and (4.7),  

                                                (4.5) 

Equation (4.5) is a generic equation for mean square error, where e is the error between 

two parameters t and a. Normalization factor Q represents the length of the sequence and 

k is a variable.  

For image,  

                                                                              (4.6) 

Where, I1(m,n) is the original image, and I2(m,n) is the decompressed image. M and N 

represent the image size.  

                                                                                        (4.7) 
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Where, R is the maximum fluctuation in the input image data type. For example, if the 

input image has a double-precision floating-point data type, then R is 1. If it has an 8-bit 

unsigned integer data type, R is 255.  

A lower value of MSE means higher value of PSNR. Lower MSE means that the 

decompressed image is same as the original image with minimum loss. Higher PSNR is 

good for better image quality. Higher value of PSNR is good because it means that the 

ratio of Signal to Noise is higher. Result analysis of the proposed work is based on these 

quality metrics. Maximum error is another quality parameter that is also considered for 

analyzing the performance of the network. This parameter determines the maximum error 

between the original and the decompressed image. The error between the original input 

signal and the decompressed signal is computed, and the absolute maximum error is 

computed, which helps in identifying the maximum deviation between the original and 

the decompressed image. Another factor that is also considered in for comparison is the 

total time required to compress and decompress the image using the proposed neural 

network architecture. As the network has to perform preprocessing operations on the 

input image, compression and decompression using weights and biases, total delay would 

help in estimating the complexity of the network. The quality metrics for variation in 

compression ratio and bits per pixel are computed for analysis.  

Bits per pixel (bpp) is calculated as follows: the input image is gray scale image 

and each pixel is represented by 8-bit and hence the input image requires 8 bits per pixel 

for representation. The compressed data is also represented using 8 bits. For example, if 

we consider a 256 x 256 image each pixel represented by 8 bits, the total number of bits 

required to represent the original image is 524288, the number of bits per pixel is 8 

(524288/256*256) for the original image. The original image is sub-divided into 4 x 4 

sub-block, for 256 x 256 images there are 4096 sub-blocks. Each of these sub-blocks is 

compressed to 2 x 2 block. Hence the compressed image has 4096 compressed sub-

blocks of 2 x 2 sizes. Hence there would be 16384 pixels in the compressed data. If each 
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pixel is represented by 8 bits the total number of bits is 131072 bits. 131072 bits are 

required to represent 256*256 pixels in the compressed form. Hence the number of bits 

per pixel is 2 (131072/256*256).  

Compression Ratio (CR) is calculated as follows: each sub-block of the 256 x 

256 image consisting of 16 pixels (4 x 4) is compressed to 2 pixels (for example), the 

compression ratio is given by: [(number of input pixels - number of compressed pixels)/ 

number of input pixels

4.6 Design of Software Reference Model 

] %.  

Design and development of software reference model using Matlab consists of four major 

aspects: 

1> Preprocessing: 

a. Selection of training image data sets 

b. Reordering of the image data sets suitable for 2D network 

2> Network training: 

a. Data sets arrangement for training the network 

b. Setting of training goals 

c. Setting of number of iterations 

3> Compression and decompression 

a. Compression of image using the trained network 

b. Decompression of image using the trained network 

4> Performance analysis 

a. Visual analysis 

b. Mean square error 

c. Peak signal to noise ratio 

d. Maximum error 

e. Computation time 
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Figure 4.11 Software reference model flow chart 

Read ten images       

Divide images into sub blocks and 
reorder 

Image preprocessing 
Size the images to 256 x 256 

Define the network model 

Set the training parameters 

Train the network 

Read image for testing the trained 
network 

Compress the image using the hidden 
layer 

Decompress the image using the output 
layer 

Stop 

Calculate Max. Error, MSE, PSNR 

Testing for images that are not 
part of training 

Calculate Max. Error, MSE, PSNR 

       Start 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

100 

The flow chart for the reference model is shown in Fig. 4.11. Training data sets are 

selected, rearranged into one-dimensional and network architecture is modeled. Training 

parameters for the proposed network is set; the network is trained based on back 

propagation algorithm. The trained network is tested using new set of image data sets. 

The quality metrics are measured to analyze the network performance.  

4.7 Results and Analysis 

This section discusses software simulation results obtained based on the proposed neural 

network architecture. Gray scale images have been considered for analyzing the neural 

network performances. Color images can also be compressed based on the proposed two-

dimensional network. The proposed method is implemented in MATLAB (R2006b) 

Version 7.3. Software reference model developed is presented in Appendix – A. The 

image is transformed, quantized, compressed using neural network and then 

reconstructed.  In order to analyze the performances of the proposed network, quality 

metrics such as MSE, PSNR are considered for variations in bpp. The network is trained 

using the selected nine images, further to test the generalization property of the network, 

images that were not part of training data sets is used to analyze the network 

performances. For the two-dimension multilayer neural network architecture model the 

following are the results obtained and discussed:  

1> Linear network: 

i. Quality metrics vs. bpp  

2> Hybrid network: 

i. Quality metrics vs. bpp  

ii. Quality metrics vs. bpp in graph form for three images 

3> Comparison of linear, nonlinear and hybrid networks 

i. Quality metrics vs. bpp  

4> Comparison of hybrid, linear with JPEG technique 

i. Quality metrics vs. bpp  
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ii. Quality metrics vs. bpp in graph form for three images 

iii. Computation time for three images 

5> Noise analysis 

i. Quality metrics vs. bpp is presented 

ii. Visual representation of reconstructed images 

6> Error analysis 

i. Quality metrics vs. bpp is presented 

ii. Visual representation of reconstructed images 

Results for three neural networks are discussed in detail. Based on the results and 

observations new techniques are presented at the end of this section. Images that are not 

part of training data sets are also used to identify network performances. This helps in 

generalizing the network based on the optimum weights and bias obtained during 

training. Various images that have been used for validating the neural network 

performances are presented in Appendix-B.  

4.7.1 Linear Network for Compression and Decompression 

Fig. 4.12 shows the linear network architecture model, the input image is subdivide into 4 

x 4 sub-blocks and reordered into 16 x 1 inputs. The input is set as the target for training 

purpose. The hidden network and output network consists of Purelin function and hence 

the network is linear. 

Table 4.3 presents the quality metrics for nine different images. These images 

have been randomly selected. For different bits per pixel values MaxError, MSE and 

PSNR are computed using the neural network architecture and the results obtained are 

given in Table 4.3.  
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Figure 4.12 (a): Linear network for compression 

 
Figure 4.12 (b) Linear network for decompression  

Figure 4.12 Linear neural network for compression and decompression 
 Table 4.3 Compression ratio vs. Quality metrics for linear network 

Quality Metrics 

Bits per pixel 

0.5 2 4 5 7.5 

Baboon 
MaxError 12.0 10.0 15.0 23.0 24.0 

MSE 1.0 1.4 2.9 4.4 6.3 

PSNR 47.7 46.6 43.4 41.6 40.1 

Image1 

MaxError 15.0 23.0 33.0 27.0 28.0 

MSE 2.4 5.6 7.2 6.5 8.8 

PSNR 44.3 40.6 39.5 39.9 38.6 

Peppers 
MaxError 55.0 61.0 99.0 74.0 68.0 

MSE 15.5 24.8 25.6 28.4 36.5 
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PSNR 36.2 34.1 34.0 33.5 32.4 

Testim 
MaxError 31.0 33.0 66.0 83.0 56.0 

MSE 10.1 12.1 43.0 43.0 44.2 

PSNR 38.0 37.2 31.7 31.7 31.6 

Trees 
MaxError 44.0 58.0 77.0 54.0 61.0 

MSE 17.0 29.5 49.7 32.3 20.9 

PSNR 35.8 33.4 31.1 33.0 34.9 

Pears 
MaxError 37.0 31.0 68.0 43.0 78.0 

MSE 12.1 06.0 41.8 17.3 33.9 

PSNR 37.2 40.3 31.9 35.7 32.8 

Saturn 
MaxError 28 61 57 50 42 

MSE 2.6 10.3 6.1 10.0 8.6 

PSNR 43.9 37.9 40.2 38.1 38.7 

Kids 
MaxError 61 42 57 60 45 

MSE 19.2 15.3 20.3 20.0 17.2 

PSNR 35.2 36.2 35.0 35.1 35.7 

Rice 
MaxError 19 32 29 32 32 

MSE 8.5 17.8 22.0 21.8 24.6 

PSNR 38.7 35.6 4.7 34.7 34.2 

 

From the results obtained it is observed that MSE is not varying uniformly for 

variations in bpp from 0.5 to 7.5 for all the images. Fig. 4.13 shows the plot of MSE vs. 

bpp for selected images from Table 4.2. From the Fig. 4.13, it is observed that MSE 

uniformly varies for baboon and image1, for pears and kids images MSE has random 

variations. In case of Trees image, MSE increases to 50 at 4 bpp and falls back to 20 at 

7.5 bpp. This is due to the fact that, the neural network architecture is trained to compress 
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and decompress all the images based on optimum weight and biases obtained during 

training. Hence the weight and bias values need to be optimized for all possible images.  

 
Figure 4.13 Bpp vs. quality metrics for linear network for selected images 

From the results presented in Fig. 4.13 the following are the observations made: 

1> For images baboon and trees, at 0.5 bpp and 2 bpp MSE is minimum, which 

implies that due to compression information present in the images are not lost.  

2> For pears and kids images, at 2 bpp MSE is minimum, which implies the 

linear network, is able to reconstruct the original image at 2 bpp better than 

any other bpp values.  

3> For trees image MSE is lowest at 0.5 bpp.  

From the results obtained, the following conclusions are made: 

1> Linear network reconstructs images like baboon and image1 at 2 bpp 

compression minimum MSE is obtained. 

2> In baboon and image1, pixel-pixel correlation is very high (visual 

observation) and hence the two-dimension training algorithm exploits this 

property. In other images there are multiple edges and hence linear network 

performance varies.  

3> Highly correlated images when sub-divided into smaller sub-blocks would not 

loose information. Images consisting of multiple edges when sub-divided into 
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smaller sub-blocks and compressed and decompressed separately using the 

TDMNN, when merged into original image size lose information due to 

blocking artifacts. Images with multiple edges to obtain better MSE, larger 

sub-block sizes are required.  

4> Linear network performances are not same for all the images at different 

values of bpp. This implies that the network performance depends on input 

data.  

In the next section, performances of hybrid neural network are discussed.  

4.7.2 Hybrid Network for Compression and Decompression 

Fig. 4.14 shows the hybrid network architecture model, the hidden network and output 

network consists of Tansig function and Purelin function respectively and hence the 

network is hybrid.  

 
Figure 4.14 Neural network for compression and decompression 
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Input image is compressed using nonlinear network (hidden layer) consisting Tansig 

network function. Compressed data is reconstructed using linear network (output layer). 

In this architecture, Tansig and Purelin functions have been used in the hidden layer and 

output layer respectively.  Logsig with Purelin, Purelin with Logsig and Purelin with 

Tansig function have also been used to analyze the network performance (results have 

not been presented). The hybrid TDMNN is trained using the modified backpropagation 

algorithm. Network is trained using nine test images for 100 epochs. The optimum 

weights and biases obtained are used to design the network.  Performances of the network 

are obtained using multiple images and the results are presented in Table 4.4. Similar to 

the analysis carried out for linear network, Table 4.4 presents the quality metrics for 

hybrid network.  

Table 4.4 Compression ratio vs. Quality metrics for hybrid network 

Quality Metrics 
Bits per pixel 

0.5 2 4 5 7.5 
Baboon 

MaxError 5.00 8.00 12.00 45.00 46.00 
MSE 0.06 0.10 2.50 4.70 4.70 
PSNR 59.90 57.80 44.10 41.30 41.40 

Image1 
MaxError 3.00 4.00 47.00 48.00 64.00 

MSE 0.15 00.42 15.72 18.42 19.80 
PSNR 56.20 51.80 36.16 35.40 35.15 

Peppers 
MaxError 2.00 91.00 96.00 133.00 140.00 

MSE 0.004 55.20 48.70 98.80 76.30 
PSNR 72.00 30.70 31.20 28.10 29.30 

Testim 
MaxError 30.00 85.00 76.00 63.00 100.00 

MSE 6.10 68.70 34.20 26.30 60.30 
PSNR 40.23 29.70 32.70 33.90 30.30 

Trees 
MaxError 6.00 70.00 20.00 76.00 97.00 

MSE 0.01 39.48 1.20 57.23 68.40 
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PSNR 66.50 32.10 47.30 30.50 29.70 
Pears 

MaxError 1 109 96 109 106 
MSE 9.46E-04 57.05 58.19 67.17 67.18 
PSNR 78.30 30.50 30.40 29.85 29.82 

Saturn 
MaxError 15 37 50 68 75 

MSE 1.47 4.76 16.77 22.02 24.26 
PSNR 46.40 41.30 35.80 34.70 34.20 

Kids 
MaxError 22.00 29.00 83.00 45.00 73.00 

MSE 3.02 9.96 49.80 22.95 45.20 
PSNR 43.30 38.14 31.15 34.52 31.57 

Rice 
MaxError 2.00 8.00 61.00 60.00 69.00 

MSE 0.08 0.96 73.70 89.31 95.40 
PSNR 58.76 48.27 29.45 28.62 28.33 

 

Fig. 4.15 compares the quality metrics of hybrid network for three different 

images.  

 
Figure 4.15 Bpp vs. Quality metrics for hybrid network for selected images 

It is found that PSNR and MSE are inversely proportional. For lower bpp MSE is 

found to be very low and PSNR is very good. The maximum value of PSNR is 78 for 
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pears image at 0.5 bpp, which is better than linear PSNR for the same image and bpp. 

The minimum MSE is 0.009 for pears at 0.5 bpp. Fig. 4.15 presents the bpp vs. MSE for 

selected images such as baboon, image1, Trees, pears and Kids. It is found that MSE for 

Baboon and Image1 images vary similar to the linear network. In case of Trees, at 4 bpp 

hybrid network achieves 1.2 MSE, but with linear network MSE is 49.7.  This implies 

that the network performance is image dependent.  

From the results obtained it is found that hybrid network achieves better quality 

metrics compared with linear network at lower bpp. Another very interesting observation 

is that at higher bpp linear network perform better than hybrid networks. Based on the 

experimental analysis carried out the following are the observations made: 

1. MSE and PSNR values obtained at 0.5 bpp for both linear and hybrid network is 

better than MSE and PSNR values at 7.5 bpp for all images. At 0.5 bpp, 16 pixels 

are compressed to 1 pixel. Hence the network consists of 16 input layers, one 

hidden layer and 16 output layers. At 7.5 bpp, 16 pixels are compressed to 15 

pixels. This network consists of 16 input layers, 15 hidden layers and 16 output 

layers.  

2. 16 inputs are passed into one neuron in the hidden layer. The correlation or 

redundancies among all the neighboring pixels are exploited and hence the 

network reproduces the image with less MSE and higher PSNR. At 7.5 bpp, 15 

neurons are used to compress 16 pixels, and hence the correlation properties 

among the pixel values are not exploited. This achieves poor PSNR and MSE.  

From the results obtained, the network performance is image dependent. Also training 

the network is a very important phase. Optimum weights and biases obtained define the 

network performance. Performance of nonlinear network is not presented. Comparison of 

network performances of all three networks is presented in next section. Table 4.5, 

compares the results of hybrid and linear network for the five selected images with 

variation in bpp.  MSE for selected five images are presented with variation in bpp.  
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Table 4.5 Comparison of Hybrid and Linear Network 

Quality Metrics 
Bits per pixel 

0.5 2 4 5 7.5 
Baboon 

Linear - MSE 1.00 1.40 2.90 4.40 6.30 

Hybrid - MSE 0.06 0.10 2.50 4.70 4.70 

Image1 
Linear - MSE 2.40 5.60 7.20 6.50 8.80 

Hybrid - MSE 0.15 0.42 15.72 18.42 19.80 

Trees 
Linear - MSE 17.00 29.50 49.70 32.30 20.90 

Hybrid - MSE 0.01 39.48 1.20 57.23 68.40 

Pears 
Linear - MSE 12.10 6.00 41.80 17.30 33.90 

Hybrid - MSE 9.46E-04 57.05 58.19 67.17 67.18 

Kids 
Linear - MSE 19.20 15.30 20.30 20.00 17.20 

Hybrid - MSE 3.02 9.96 49.80 22.95 45.20 

 
From the results obtained and presented in Table 4.5, hybrid network performs 

better than linear network at 0.5 bpp. At higher values of bpp, linear network performs 

better than hybrid network. At 4 bpp for trees image hybrid achieves very less MSE 

compared with linear network. Form the results obtained it is concluded that the network 

performance is a function of input. Next section compares the performance of all three 

networks.  

 
4.7.3 Performance Comparison of all Three Network Architectures 

Quality metrics for all the three networks are presented in Table 4.6, the network 

performances have been computed for 4 bpp. From the results obtained it is found that 

the nonlinear network has very poor quality metrics compared with linear and hybrid 

network and hence only linear and hybrid network is used for image compression and 

decompression in this work.  
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Table 4.6 Quality metric for all three networks 
 Nonlinear Linear Hybrid 

Baboon 
MaxError 92.00 15.00 12.00 

MSE 192.50 2.94 2.50 
PSNR 25.28 43.44 44.14 

Image1 
MaxError 178.00 33.00 47.00 

MSE 123.47 7.28 15.72 
PSNR 17.21 39.50 36.16 

Peppers 
MaxError 161.00 99.00 96.00 

MSE 127.44 25.63 48.73 
PSNR 27.07 34.04 31.25 

Testim 
MaxError 103.00 66.00 76.00 

MSE 121.39 43.06 34.22 
PSNR 27.28 31.78 32.78 

Trees 
MaxError 193.00 77.00 20.00 

MSE 310.79 49.75 01.20 
PSNR 23.20 31.16 47.31 

Pears 
MaxError 172.00 68.00 96.00 

MSE 151.57 41.86 58.19 
PSNR 26.32 31.91 30.48 

Saturn 
MaxError 82.00 57.00 50.00 

MSE 45.67 6.16 16.77 
PSNR 31.53 40.23 35.88 

Kids 
MaxError 201.00 57.00 83.00 

MSE 401.50 20.32 49.80 
PSNR 22.09 35.04 31.15 

Rice 
MaxError 96.00 29.00 61.00 

MSE 227.34                              22.03  73.70 
PSNR 24.50 34.70 29.45 
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From the results obtained the following are the observations made: 

1. MSE and PSNR for all images are not the same. This shows that images don’t 

have common information and the network has learnt to reproduce the images 

based on information content 

2. PSNR is best for images like trees, testim and baboon using Hybrid network, for 

all other images linear network achieves best PSNR.  

Form Table 4.6, it is found that linear and hybrid networks achieve higher PSNR and 

lower MSE compared with nonlinear network performances. Also it is found that, hybrid 

network outperforms linear network for certain images. Hence, it is concluded that hybrid 

and linear networks can be used depending upon the image used for compression.  

 

 
Figure 4.16 Decompressed output using linear network 

In order to understand the performances of all the three networks, decompressed 

images using all the three networks for four different images are presented in Fig. 4.16 to 
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Fig. 4.18. From the visual images presented in Fig. 4.16 to Fig. 4.18, it is very clear that, 

linear network and hybrid network have better results compared to nonlinear network.  

Fig. 4.16 presents the result of linear network, form the images we find that linear 

network has reproduced the images with minimum distortions.  

Fig. 4.17 presents the decompressed images using nonlinear network. All the four 

images have distortions compared to the decompressed image using linear network. From 

the results shown in Fig. 4.18, the decompressed results using hybrid network have better 

visual quality compared to nonlinear network, but not better than linear networks. The 

same results were also observed and discussed using graphs and tables presented.  

 
Figure 4.17 (a)                                   Figure 4.17 (b) 

 
Figure 4.17  (c)                 Figure 4.17 (d) 

Figure 4.17 Decompressed output using nonlinear network (a) baboon (b) Peppers 
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Figure 4.18 (a)                     Figure 4.18 (b) 

 
Figure 4.18 (c)                       Figure 4.18 (d) 

Figure 4.18 Decompressed output using hybrid network (a) baboon (b) peppers 
4.7.4 Comparison of TDMNN with DWT-SPIHT Technique 

The results obtained for the TDMNN are compared with JPEG (DWT-SPIHT) 

compression technique. In this work software model for JPEG technique is also 

developed. Discrete Wavelet Transforms (DWT) and Set Partitioned Integer Hierarchical 

Tree (SPIHT) encoder techniques have been used to develop JPEG compression and 

decompression model.  Images that have been considered for linear and hybrid networks 

have been considered for JPEG technique. Table 4.7 presents the results obtained and 

comparison of all the three techniques discussed.  
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Quality metrics for three different techniques have been compared and Fig. 4.19 is used 

for detailed analysis and observations. In Fig 4.19(a) bpp vs. MSE for baboon is 

presented for all the three techniques.  Lower bpp implies the number of neurons in the 

hidden layer is less than the number neurons in the output layer. In this example, 16 

pixels are compressed to 1 pixel which is 0.5 bpp, 16 pixels compressed to 2 pixels is 1 

bpp. In the network compression data from 16 pixels to 1 pixel, is achieved by a single 

neuron in the hidden layer, hence all the 16 inputs are multiplied by the weight matrix of 

the single neuron network, thus exploiting the pixel to pixel correlation. As the number of 

neurons in the hidden layer increases, pixel to pixel dependency reduces and hence 

affects the MSE and PSNR. Thus it is observed that lower the bpp better is the network 

performance in case on neural network architecture.  

Table 4.7 Comparison of quality metrics for linear, hybrid and DWT-SPIHT 
techniques 

bpp 0.5 2 4 5 7.5 
baboon MSE 

DWT-SPIHT 715.9 183.8 46.80 14.62 1.97 

NN- Hybrid 0.06 0.10 2.50 4.79 4.70 

NN- Linear 1.09 1.41 2.94 4.47 6.33 

baboon PSNR 
DWT-SPIHT 19.58 25.48 31.42 36.47 45.17 

NN- Hybrid 59.95 57.85 44.14 41.32 41.40 

NN- Linear 47.73 46.62 43.44 41.61 40.11 

image1 MSE 
DWT-SPIHT 11.31 1.93 0.91 1.09 1.22 

NN- Hybrid 0.15 0.42 15.72 18.40 19.84 

NN- Linear 2.41 5.64 7.28 6.52 8.87 

image1 PSNR 
DWT-SPIHT 37.59 45.26 48.53 47.75 47.26 

NN- Hybrid 56.2 51.82 36.16 35.4 35.15 

NN- Linear 44.30 40.61 39.50 39.98 38.65 
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testim MSE 
DWT-SPIHT 136.05 21.41 4.36 1.37 1.76 

NN- Hybrid 6.16 68.73 34.22 26.30 60.38 

NN- Linear 10.16 12.13 43.06 43.02 44.24 

testim PSNR 
DWT-SPIHT 26.79 34.80 41.73 46.75 45.65 

NN- Hybrid 40.23 29.75 32.78 33.93 30.32 

NN- Linear 38.0 37.29 31.78 31.79 31.67 

peppers MSE 
DWT-SPIHT 44.31 12.16 4.12 1.25 1.64 

NN- Hybrid 0.10 27.09 47.06 47.25 53.02 

NN- Linear 9.95 26.08 32.79 38.23 34.82 

peppers PSNR 
DWT-SPIHT 31.66 37.27 41.97 47.14 45.97 

NN- Hybrid 57.83 33.80 31.40 31.38 30.80 

NN- Linear 38.15 33.96 32.97 32.30 32.71 

trees MSE 
DWT-SPIHT 130.62 32.01 4.57 1.66 1.70 

NN- Hybrid 0.01 39.48 1.20 57.23 68.40 

NN- Linear 17.05 29.56 49.75 32.38 20.96 

trees PSNR 
DWT-SPIHT 26.97 33.07 41.52 45.90 45.82 

NN- Hybrid 66.55 32.10 47.31 30.55 29.77 

NN- Linear 35.81 33.42 31.16 33.02 34.91 

pears MSE 
DWT-SPIHT 33.70 9.40 1.48 0.62 1.71 

NN- Hybrid 9.46E-04 57.05 58.19 67.17 67.18 

NN- Linear 12.14 6.03 41.86 17.35 33.90 

pears PSNR 
DWT-SPIHT 32.84 38.37 46.41 50.17 45.78 
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NN- Hybrid 78.37 30.56 30.48 29.85 29.82 

NN- Linear 37.28 40.32 31.91 35.73 32.82 

Saturn MSE 
DWT-SPIHT 2.43 0.40 0.70 0.71 0.71 

NN- Hybrid 1.47 4.76 16.77 22.02 24.26 

NN- Linear 2.61 10.31 6.16 10.03 8.63 

Saturn PSNR 
DWT-SPIHT 44.26 52.10 49.67 49.60 49.59 

NN- Hybrid 46.44 41.34 35.88 34.70 34.28 

NN- Linear 43.95 37.99 40.23 38.11 38.76 

kids MSE 
DWT-SPIHT 9.97 2.40 0.41 0.81 1.24 

NN- Hybrid 3.02 9.96 49.80 22.95 45.20 

NN- Linear 19.20 15.30 20.32 20.02 17.20 

kids PSNR 
DWT-SPIHT 38.14 44.31 51.99 49.03 47.16 

NN- Hybrid 43.33 38.14 31.15 34.52 31.57 

NN- Linear 35.29 36.27 35.04 35.11 35.75 

rice MSE 
DWT-SPIHT 199.70 44.37 13.70 4.31 1.57 

NN- Hybrid 0.08 0.96 73.70 89.31 95.40 

NN- Linear 8.59 17.80 22.03 21.80 24.60 

rice PSNR 
DWT-SPIHT 25.12 31.65 36.74 41.77 46.16 

NN- Hybrid 58.76 48.27 9.45 28.60 28.33 

NN- Linear 38.78 35.62 4.70 34.74 34.20 

From Fig. 4.19(b), proposed technique outperforms JPEG technique at lower bpp, and 

also it is found that hybrid network achieves better PSNR compared to linear network. At 

higher bpp, JPEG based technique outperforms neural network techniques.  
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Figure 4.19 (a) bpp vs. MSE  

 
Figure 4.19 (b) bpp vs. PSNR 

Figure 4.19 Comparison of quality metrics for all three techniques for baboon 

 
Figure 4.20 (a) bpp vs. MSE 
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Figure 4.20 (b) bpp vs. PSNR 

Figure 4.20 Comparison of quality metrics for all three networks for Image1 
From Fig. 4.20(a), hybrid network achieves better MSE at low bpp, at higher bpp JPEG 

techniques achieves better results. For bpp 0.5 and 2 hybrid achieves better MSE. From 

Fig. 4.20(b), PSNR is higher for hybrid network for 0.5 bpp and 2 bpp compared with 

linear and JPEG based techniques. From Fig. 4.21, it is found that hybrid network 

performs better at lower bpp, at higher bpp JPEG is better than the other two techniques. 

Another very important observation made is that at higher bpp, linear networks perform 

better than hybrid networks. Also the PSNR is better for hybrid techniques only at lower 

bpp (≤ 4 bpp). JPEG is better compared to the other two techniques at higher bpp (> 4 

bpp). Similarly, from the Table 4.7, we find that at lower bpp hybrid technique performs 

better than JPEG technique. As our focus is on use of neural network architecture, 

comparing hybrid and linear neural network technique, at higher bpp linear network 

architecture perform better than hybrid network. In table 4.7, MSE and PSNR for various 

bpp are highlighted. For each of the images considered in this work, best MSE and best 

PSNR for various bpp are highlighted using yellow color. From the results it is found that 

for 0.5 bpp hybrid networks achieves better PSNR and MSE compared to linear network. 

For 7.5 bpp, linear network performs better than hybrid network.  For bpp between 2 and 

5, for few of the images hybrid achieves better performance compared to linear network.  

bpp vs. PSNR

0

10

20

30

40

50

60

0.5 2 4 5 7.5

bpp

P
S

N
R DWT-SPIHT

NN-L-NL
NN-L-L



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

119 

 
Figure 4.21 (a) bpp vs. MSE 

 
Figure 4.21 (b) bpp vs. PSNR 

Figure 4.21 Comparison of quality metrics for all three networks for peppers 
Computation time is another very important factor required to analyze network 

performance, which is discussed in the next section.  

4.7.5 Comparison of Computation Time  

MSE and PSNR have been used to compare the performances of the neural network 

architectures proposed in this work. Another very important factor that needs to be 

compared is the computation time of the network. The total time taken in compression 

and decompressing the image is considered as the computation time. In the proposed 

architecture, the input image is sub-divided, reordered and compressed using the hidden 

layer, and the compressed image is further decompressed using the output layer. The 

decompressed data is reordered and regrouped to the original image size. The total time 

taken to perform this process is considered as the computation time. The computation 

time for the proposed network is also compared with the total computation time using 
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JPEG technique. In JPEG technique, the input image is transformed using DWT and the 

transformed data is encoded using SPIHT technique. The encoded data is decoded and 

inverse transformed to decompress the compressed image. Table 4.8 presents the 

computation time for three different images with varying bpp. The results presented in 

the table are plotted in graphical form and is presented in Fig. 4.22. Computation time is 

measure in terms of the CPU time required to perform the operation. Computation time 

of DWT-SPIHT is higher compared to the time required by the network architectures 

proposed in this work. For bpp from 0.5 to 7.5 the computation time using the proposed 

technique is almost remaining constant. 

Table 4.8 Computation time with variation in bpp 
 

Time in seconds bpp 0.5 2 4 5 7.5 

 
Baboon 

DWT-SPIHT 48.520 83.660 167.390 203.950 228.600 
NN - Linear 0.026 0.031 0.031 0.035 0.042 

NN - Hybrid 0.029 0.030 0.042 0.044 0.044 

 bpp 
 0.5 2 4 5 7.5 

 
Testim 

DWT-SPIHT 57.240 95.600 189.360 192.560 191.880 

NN - Linear 0.027 0.027 0.028 0.030 0.030 

NN - Hybrid 0.027 0.030 0.30 0.037 0.037 

 
 bpp 0.5 2 4 5 7.5 

Image1 

 
DWT-SPIHT 64.750 104.170 121.430 121.480 122.160 

NN - Linear 0.025 0.027 0.028 0.030 0.030 

NN - Hybrid 0.020 0.029 0.034 0.040 0.040 

 

Computation time for JPEG is higher for increase in bpp. Fig. 4.22 depicts the 

variation of computation time with bpp for three different images. Computation time is 
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the total time required to compress and decompress the input image. Network training 

time is not considered, as the network is trained first and with the optimum weight and 

bias values TDMNN is constructed and is used for compression and decompression. 

Hybrid network is slower than linear network by almost 10 ms. In a linear network, 

network function is linear and hence there is no network function required. In a hybrid 

network, network function is Tansig, hence this introduces delay. 

 
Figure 4.22 (a) 

 
Figure 4.22 (b) 
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Figure 4.22 (c) 

Figure 4.22 Computation time vs. bpp (a) baboon (b) testim (c) image1 
Next section discusses the network performance for various images that were not 

part of training data sets. This analysis helps in generalizing the network architecture for 

image compression and decompression.  

 
4.7.6 Network Performances for General Images 
 
In this section images that were not part of the training sets have been used to compare 

the network performance. Fig. 4.23 shows the results of compression and decompression 

of test images. These images are not part of the training samples. These pictures have 

been taken as a test case to verify the network performance.   

In order to understand the network architecture and its performance better, the 

following experiments have been carried out: 

1. Impact of sub-block size on the network performance 

2. Impact of multiple layers on network performance 

In the next section the above two factors are discussed in detail based on the results 

obtained using software models developed.  

 

COmputation time

0

20

40

60

80

100

120

140

0.5 2 4 5 7.5

bpp

tim
e 

un
its DWT-SPIHT

NN-L-L
NN-NL-L



 
 
 

Coventry University – Doctoral Programme (PhD) 

  

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

123 

 
Figure 4.23 Results of 2-D multilayered neural network architecture 

4.8 Analysis of Variations in Network Size 

As discussed in previous sections, neural network architecture consists of multiple layers 

and each layer has multiple neurons. Number of layers and number of neurons in each 

layer influences the network performance for image compression. The number of weights 

and biases required to process data depends upon the network architecture. Analysis of 

optimum network size is presented in this section. Another analysis discussed in this 

section is the influence of image block size on the network performance. As discussed in 
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previous sections, images are sub-divided in smaller blocks and are compressed. The 

optimum block size that can give better quality metrics is analyzed.   

4.8.1 Block Size Influences on Performance Metrics 

Original image of size 256 x 256 was sub-divided into 4 x 4 sub-block and was 

compressed to 2 x 2 block using the two-dimensional multilayer network discussed in the 

previous section. In this section, network with various other input sub-block sizes are 

considered for analysis. Block sizes varying from 8 x 8 to 3 x 3 are considered for 

analysis. Table 4.9 presents the performance metrics variations with respect to input 

block size. The hidden layer size is fixed to 2 x 2, input layer and output layer sizes are 

varied as shown in Table 4.9. Compression Ratio (CR) is expressed in percentage.  

Table 4.9 Input block size vs. Performance parameters for tree image 
Block 

size 

Maximum  

CR% 

MaxError MSE PSNR 

Tree Pears Peppers Trees Pears Peppers Tree Pears Peppers 

8 x 8 98.43 127 165 97 394.50 267.90 100.00 22.17 23.80 28.13 

7 x 7 97.95 136 134 100 258.38 155.70 81.26 24.00 26.20 29.03 

5 x 5 96.00 123 149 86 203.50 112.97 58.43 25.04 27.60 30.46 

4 x 4 93.75 109 131 78 147.80 79.00 38.74 26.43 29.14 32.24 

3 x 3 88.88 93 106 75 111.35 60.68 32.47 27.66 30.30 33.01 

From the results obtained and presented in Table 4.9 it is found that the MSE is 

best for block size of 4 x 4 and less. Hence in this work the block size selected is 4 x 4 

block. The 2-D network designed also takes 4 x 4 matrixes and compresses the same to 2 

x 2 sizes. Block size less than 4 x 4 has better MSE and PSNR, but affects the maximum 

compression ratio. 

Fig. 4.24 to Fig. 4.26 compares the variations in block size with quality metrics 

for three different images. Sub-block size of 4 x 4 is recommended as it achieves better 

PSNR and MSE compared to block sizes greater than 4 x 4. Smaller the sub-block size 

better is the network performance, but the number of sub-blocks for a given image 

increases with smaller sub-block size. From the results obtained and presented in this 
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section, sub-block of size 4 x 4 is chosen as a trade-off between network performance and 

computation time. 

 
Figure 4.24 Input block size vs. performance parameters for trees 

 

 
Figure 4.25 Input block size vs. performance parameters for pears 

 

 
Figure 4.26 Input block size vs. performance parameters for peppers 

Next section discusses the selection process for number of hidden layer to achieve 

better compression.  

Input size vs. parameters

0
50

100
150
200
250
300
350
400
450

8 x 8 7 x 7 5 x 5 4 x 4 3 x 3 2 x 2 1 x 1

block size

Pa
ra

m
et

er
s

Max Error
MSE
PSNR

Input block size vs. parameters

0

50

100

150

200

250

300

8 x 8 7 x 7 5 x 5 4 x 4 3 x 3 2 x 2 1 x 1

block size

pa
ra

m
et

er
s

Max Error
MSE
PSNR

Input block size vs. parameters

0

20

40

60

80

100

120

8 x 8 7 x 7 5 x 5 4 x 4 3 x 3 2 x 2 1 x 1

Input block size

pa
ra

m
et

er
s

Max Error
MSE
PSNR



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

126 

4.8.2 Impact of Multiple Layers on Network Performance 

Another very important analysis that was necessary to carry out was the influence of 

number of layers on the performance parameters. In this section, the impact on 

performance parameters is analyzed by increasing the number of hidden layers. In this 

analysis input block size is fixed to 4 x 4, hence the numbers of inputs at the hidden layer 

is 16. Instead of compressing the input using one hidden layer, multiple hidden layers can 

also be used to compress the data. In this analysis, 16 inputs are compressed to 8 and then 

to 4, instead of 16 to 4 using one hidden layer. Table 4.10 and Table 4.11 show the 

performance parameters for three different images with multiple hidden layers. Values in 

brackets are for two layer network (hidden layer and output layer) network.  

Comparing the results obtained for multiple hidden layers with single hidden 

layer presented in Table 4.6, the results clearly show that the network consisting of one 

hidden layer has better performance metrics. Hence in this research work, 2-D network 

with single hidden layer is selected for implementation.  

Table 4.10 Performance parameters for 16:8:4:8:16 network 

Parameters Trees Pears Peppers 

MSE 93.94 (49) 47.83(1.12) 25.59(0.06) 

PSNR 28.00 (47)   31.00(49.00) 34.00(52.00) 
 

Table 4.11 Performance parameters for 16:8:4:2:8:16 network 

 Trees Pears Peppers 

MSE 185(49) 115(01.12) 47(0.06) 

PSNR 25(47) 27(49.00) 31(52.00) 
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Figure 4.27 Performance metrics for multiple hidden layers 

Fig. 4.27 and Fig. 4.28 presents the comparison of performance metrics for three images. 

From the simulations study carried out, another interesting observation is that the 

performance parameters of the network are not same for different images. There is a 

variation in MSE, PSNR and Maximum error with variation in input image properties. 

The performance of the network architecture is a function of image properties, unlike 

conventional techniques. In order to understand the network performance better 

(discussed in section 4.10), image properties are analyzed based on which the network 

architecture is modified to improve performances.  

 
Figure 4.28 Performance metrics for multiple hidden layers 
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4.9 Noise Analysis and Error Analysis 

One of the major objectives of this research work is to analyze the network performance 

under the influence of noise and error. Noisy image is given as input to the network, and 

the network performance is analyzed. Different noise sources such as Gaussian noise, 

Poisson noise and Salt & pepper noise with SNR of 10 dB are added to the image prior to 

compression and decompression. Error analysis is also carried out by introducing error in 

the compressed data.  

4.9.1 Noise Analysis  

TDMNN is trained to reproduce images even in the presence of noise. Test images are 

added with noise and set as input. Network needs to reproduce images without noise. 

Hence the target is set to images without noise. The network is trained for 100 epochs. 

The network learns to reproduce the original image from the noisy input data during the 

training phase. Optimum weight and biases are identified during the training phase. The 

network performance metrics such as MSE and PSNR are obtained for 0.5 and 1 bpp for 

four different images. The results obtained are compared with DWT-SPIHT technique. 

Images corrupted with noise (Gaussian, Poisson, and Salt & Pepper) are compressed and 

decompressed using TDMNN architecture and DWT-SPIHT technique. The results are 

tabulated in Table 4.12 to Table 4.14.  

Table 4.12 presents the MSE and PSNR results obtained for four images with 0.5 bpp 

and 1 bpp compression. The results are obtained on images of size 256 x 256. From the 

results obtained the following are the observations made: 

1. Without noise hybrid neural network architecture and linear neural network 

architecture achieve better MSE and PSNR. With salt and pepper noise added to 

the image, MSE and PSNR achieved using DWT-SPIHT technique have large 

variations as compared with hybrid and linear neural network architectures.  

2. Neural network technique (hybrid and linear) achieve good MSE and PSNR even 

when the image is corrupted with noise. 
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Table 4.12 Results of noise analysis (Salt and Pepper) 

Bpp = 1, Salt & Pepper Noise 
Mean Square Error 

 Hybrid Linear DWT-SPIHT 

 Without noise With Noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 619.07 687.93 482.46 627.34 868.21 1.40E+03 
Testim 189.00 262.07 112.74 275.90 213.34 1.01E+03 
Peppers 142.01 212.22 96.68 244.47 189.37 946.31 
Image1 33.87 96.20 18.24 160.17 46.78 882.80 

PSNR 
 Hybrid Linear DWT-SPIHT 

 
Without  
noise 

With 
noise 

Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 20.21 19.75 21.29 20.15 18.78 16.68 
Testim 25.36 23.94 27.60 23.72 21.28 18.09 
Peppers 26.60 24.86 28.27 24.24 24.53 18.37 
Image1 32.83 28.29 35.51 26.08 22.61 18.67 

Bpp = 0.5, Salt & Pepper Noise 
Mean Square Error 

 Hybrid Linear DWT-SPIHT 

 Without noise With Noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 640.76 859.96 611.52 685.15 721.08 1.73E+03 
Testim 177.60 438.96 171.82 251.67 194.90 1.44E+03 
Peppers 139.74 383.19 132.75 206.78 145.50 1.20E+03 
Image1 33.12 241.57 30.11 95.76 46.15 1.01E+03 

PSNR 
 Hybrid Linear DWT-SPIHT 

 Without noise 
With 
noise 

Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 20.06 18.78 20.26 19.77 19.55 15.75 
Testim 25.63 21.70 25.78 24.12 22.82 16.55 
Peppers 26.67 22.29 26.90 24.97 21.50 17.33 
Image1 32.92 24.30 33.34 28.31 30.90 18.07 

 

Table 4.13 and Table 4.14 present the results obtained with Poisson and Gaussian noise.  
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Table 4.13 Results of noise analysis (Poisson) 

Bpp = 1, Poisson Noise 
Mean Square Error 

 Hybrid Linear DWT-SPIHT 

 Without noise With Noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 619.07 628.18 482.46 500.11 868.21 928.65 
Testim 189.00 195.36 112.70 127.34 213.34 247.44 
Peppers 142.00 150.29 96.60 113.90 189.37 200.51 
Image1 33.87 44.90 18.24 39.10 46.78 183.01 

PSNR 
 Hybrid Linear DWT-SPIHT 

 
Without  
noise With noise 

Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 20.21 20.15 21.29 21.14 18.78 18.94 
Testim 25.36 25.22 27.60 27.08 21.28 20.75 
Peppers 26.60 26.36 28.27 27.56 24.53 22.10 
Image1 32.83 31.60 35.51 32.20 22.61 20.50 

Bpp = 0.5, Poisson Noise 
Mean Square Error 

 Hybrid Linear DWT-SPIHT 

 Without noise With Noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 640.76 668.61 608.70 616.04 721.08 832.01 
Testim 177.69 200.69 171.14 176.77 194.90 221.62 
Peppers 139.74 169.53 132.20 139.19 145.50 200.46 
Image1 33.12 66.47 30.04 38.70 46.15 185.71 

PSNR 
 Hybrid Linear DWT-SPIHT 

 Without noise With noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 20.06 19.87 20.28 20.23 19.55 18.92 
Testim 25.63 25.10 25.79 25.65 22.82 24.67 
Peppers 26.67 25.83 26.91 26.69 21.55 25.11 
Image1 32.92 29.90 33.30 32.24 30.95 25.44 
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Table 4.14 Results of noise analysis (Gaussian) 

Bpp = 1, Gaussian 
Mean Square Error 

 Hybrid Linear DWT-SPIHT 

 Without noise With Noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 619.07 666.81 482.46 582.99 868.21 1.30E+03 
Testim 189.00 233.42 112.74 212.65 213.34 861.29 
Peppers 142.01 188.17 96.68 199.33 189.37 804.83 
Image1 33.87 86.23 18.24 119.16 46.78 743.92 

PSNR 
 Hybrid Linear DWT-SPIHT 

 
Without  
Noise 

With 
noise 

Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 20.21 19.89 21.29 20.47 18.78 16.97 
Testim 25.36 24.44 27.60 24.80 21.28 18.77 
Peppers 26.60 25.38 28.27 25.13 24.53 19.07 
Image1 32.83 28.77 35.51 27.36 22.60 19.41 

Bpp = 0.5, Gaussian 
Mean Square Error 

 Hybrid Linear DWT-SPIHT 

 Without noise With Noise 
Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 640.76 808.32 608.70 649.61 721.08 1.55E+03 
Testim 177.6 328.80 171.14 211.97 194.90 870.02 
Peppers 139.7 300.99 132.20 175.05 145.50 812.92 
Image1 33.12 196.99 30.04 71.69 46.15 744.18 

PSNR 
 Hybrid Linear DWT-SPIHT 

 Without noise 
With 
noise 

Without 
noise 

With 
noise 

Without 
noise 

With 
noise 

Baboon 20.06 19.05 20.28 20.00 19.55 16.22 
Testim 25.63 22.96 25.79 24.80 22.82 18.73 
Peppers 26.67 23.34 26.91 25.69 21.55 19.03 
Image1 32.92 25.18 33.35 29.576 30.95 19.40 

 

Neural network is trained with the images without noise, and the training is 

carried out until the error is 0.001 of 100 epochs are carried out. In order to further 

increase the efficiency of the network, the training parameters can be changed. PSNR and 
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MSE are dependent on image. Hence, the network needs to be trained efficiently to meet 

the requirements of all the images.  

4.9.2 Error Analysis 

In this work, error analysis is also carried out to analyze the network performance. Error 

refers to bit errors occurring on the compressed stream of data. In DWT-SPIHT 

technique, the input image having 8 bpp is compressed to less than 8 bpp achieving 

compression. For analysis purpose, 0.5 bpp and 1 bpp is selected. The compressed stream 

of data using DWT-SPIHT technique is achieved in two steps. First image is transformed 

using DWT into sub-bands and in the second stage the sub-bands are encoded into bit 

stream using SPIHT. The compressed data is assumed to be transmitted, and due to 

transmission, bit error occurs. In this work, error is introduced randomly on the 

compressed data at various positions. For an image of size 256 x 256 selected for analysis 

the compressed bit stream size at 0.5 bpp is 32,768. The bit stream consisting of ‘1s’ and 

‘0s’ are corrupted by changing the values at various bit positions. For example, at bit 

position 60, if the value is ‘1’, it is changed to ‘0’ or if ‘0’ is changed to ‘1’. Fig. 4.29 

presents the visual pictures of reconstructed output with and without bit errors. Original 

image of size 256 x 256 consisting of 524,288 bits are compressed to 32, 768 bits and is 

further decompressed to 524,288. The decompressed image is shown in Fig. 4.29(b). 

 
   Figure 4.29 (a) Input             Figure 4.29 (b) Without Error     Figure 4.29 (c) With error 

Figure 4.29 Error analysis for Baboon image with 0.5 bpp, and error at 60th bit 
position 
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MSE and PSNR for this image is 721.08 and 19.55. Bit error is introduced randomly at 

the 60th bit position, at 60th bit position the bit value was ‘1’, this was changed to ‘0’, 

based on this error the image was reconstructed and is shown in Fig. 4.29 (c). The error at 

the 60th bit position introduces complete distortion in the decompressed data. MSE and 

PSNR for the decompressed image with error in 60th bit position is 14860 and 6.4107 

respectively. Similar observations were made by introducing errors at various bit 

positions, every image was found to be distorted. Bit errors had larger influence on the 

reconstructed image. The results for other images are also presented in Table 4.15, MSE 

and PSNR have been obtained by introducing errors at 60th bit position only. Fig. 4.30 to 

Fig. 4.32 presents the results obtained using DWT-SPIHT technique for four different 

images. Images have been compressed at 0.5 bpp and error is introduced at the 60th bit 

position.   

Table 4.15 Error analysis for DWT-SPIHT technique 

DWT-SPIHT Technique, 0.5 bpp, Error at 60th bit position 
 Baboon Testim Peppers Image1 

 
Without 
Error 

With 
error 

Without 
Error 

With 
error 

Without 
Error 

With 
error 

Without 
Error 

With 
error 

MSE 721.08 14860 134.93 8860 45.5 10500 26.15 2050 
PSNR 19.55 6.4100 26.82 8.6531 31.5 7.89 33.96 15.01 
 

 
Figure 4.30 (a) Input             Figure 4.30 (b) Without Error     Figure 4.30 (c) With error 

Figure 4.30 Error analysis for Testim image with 0.5 bpp, and error at 60th bit 
position 
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Figure 4.31 (a) Input             Figure 4.31 (b) Without Error     Figure 4.31 (c) With error 

Figure 4.31 Error analysis for Testim image with 0.5 bpp, and error at 60th bit 
position 

 

 
Figure 4.32 (a) Input             Figure 4.32 (b) Without Error     Figure 4.32 (c) With error 

Figure 4.32 Error analysis for Test image with 0.5 bpp, and error at 60th bit 
position 

 

From the results obtained and shown in Table 4.15 and Fig. 4.30 to Fig. 4.32, the 

following are the observations made: 

1. Without error in the compressed data, MSE and PSNR for all the images have 

different values, this is due to the fact that all the images have different 

information and hence the compression scheme exploits this information and 

compress data.  
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2. PSNR for Image1 is higher compared to PSNRs for other images at 0.5 bpp. This 

is due to the fact that Image1 does not have large variations in the background. At 

0.5 bpp, reconstructed images have lost sharpness and are blurred. 

3. Error at the 60th bit position corrupts the reconstructed image completely. Only in 

case of Image1, the distortion is not very severe and visual information is 

retained. This is due to the fact that, the DWT output transposes the temporal 

information into multiple sub-bands and each sub-band holds the low frequency 

and high frequency components of the original image at different band levels. The 

significant components in the different sub-bands are encoded using SPIHT 

encoding scheme. Bit error occurring at any bit positions influences the decoding 

of the significant values at various sub-band levels and hence the image gets 

distorted. As there is interdependency between various sub-band levels which is 

captured by the SPIHT technique, any bit error affects the reconstructed image.  

4. Reconstructed images with and without error have very large variations in MSE 

and PSNR as shown in Table 4.15. For example, for baboon image PSNR of 

19.55 changes to 6.4107, similar changes are observed in all other images.  

5. From the results obtained, it is concluded that bit errors impact reconstruction 

process in DWT-SPIHT technique. Similar, observations were for other images, 

by inserting errors at various other positions.  

In case of neural network based approach, input pixels are multiplied by the weight 

elements and added with bias to compress the data. In this work, image of size 256 x 256 

is sub-divided into 4 x 4 block. Each 4 x 4 block is rearranged to 16 x 1 matrix sizes, for 

the entire 256 x 256 image the rearrangement matrix size is 16 x 4096. The network after 

training consists of 2 x 16 weight matrix and 2 bias values to achieve 1 bpp. To achieve 

0.5 bpp, the weight matrix is 16 x 1 and 1 bias value. The decompressor unit in case of 1 

bpp consists of 2 x 16 weights and 16 bias values. For 0.5 bpp, the weight matrix is 16 x 

1 and has 16 bias values. Four different images are considered for error analysis. The 

reordered image is compressed using the compressor unit. Compressed data is of size 2 x 
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4096 and 1 x 4096 for 1 bpp and 0.5 bpp respectively. In the neural network approach, 

compression is achieved in one step, there is no encoding stage.  Error is introduced by 

changing the compressed data values. Fig. 4.33 shows the snap shot of a compressed 

image data. Only a partial data is presented for the sake of understanding the procedure of 

error analysis. In order to introduce error on this compressed data, the decimal values at 

different positions are modified. For example, in Fig. 4.33 the compressed data is stored 

in a variable name atest41, this consists of 4096 pixels. The decimal value at 3rd position 

having a value -1.2351 is modified and changed to 0. In this work, the compressed data is 

modified at positions 200 to 210. 11 decimal positions from 200 to 211 are changed to 0. 

The modified compressed data is presented to the decompressor unit for reconstruction.  

 
Figure 4.33 Compressed output 

 
Fig. 4.33 presents the reconstructed output for all four images compressed at 0.5 

bpp using linear network. Fig 4.34 presents the reconstructed output for all four images 

with 1 bpp using hybrid network. For all the images the error is introduced between 200th 

decimal positions to 210th decimal position. From the obtained results if is observed that 

the error introduced at the given positions corrupt the data only at appropriate positions as 

highlighted in yellow circles. The errors do not corrupt the entire image as in DWT-

SPIHT technique. Image quality is not affected and most of the information in the 

original image is retained in the reconstructed image, even in the presence of error. Errors 
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positions have been changed and analysis is carried out. It is observed that errors 

introduced at any decimal positions do not corrupt the entire image but introduce 

disturbance only at specific locations. Multiple images were used for error analysis and 

results obtained are not presented. It is observed that error introduced on the compressed 

data does not impact the information content in the reconstructed data. Fig. 4.34 to Fig. 

4.37 presents the reconstructed images using linear and hybrid network. Table 4.16 and 

Table 4.17 presents the image quality metrics for linear and hybrid network.  

 
Figure 4.34 Reconstructed output at 1bpp using linear network 
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Figure 4.35 Reconstructed output at 0.5 bpp using linear network 

 

 

 
Figure 4.36 Reconstructed output at 1 bpp using hybrid network 
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Figure 4.37 Reconstructed output at 0.5 bpp using hybrid network 
Table 4.16 Error analysis for linear network 

MSE, 1 bpp Linear Network 
 Baboon Testim Peppers Image1 

Without error 473.59 107.05 102.35 18.99 
With error 502.19 125.95 121.46 39.54 

PSNR, 1 bpp Linear network 
 Baboon Testim Peppers Image1 

Without error 21.37 27.83 28.02 35.34 
With error 21.12 27.12 27.28 32.16 

MSE, 0.5 bpp Linear Network 
 Baboon Testim Peppers Image1 

Without error 610.9 171.12 132.47 30.07 
With error 616 176.89 140.01 33.73 

PSNR, 1 bpp Linear network 
 Baboon Testim Peppers Image1 

Without error 20.27 25.78 26.9 33.34 
With error 20.17 25.69 26.81 32.85 
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Table 4.17 Error analysis for hybrid network 
MSE, 1 bpp Hybrid network 

 Baboon Testim Peppers Image1 
Without error   624.39   176.53   136.34 31.36 
With error   648.49       195.07  154.36 50.24 

1 bpp Hybrid network 
 Baboon Testim Peppers Image1 
Without error    20.17         25.66 26.78 33.16 
With error    20.01          25.22 26.24 31.11 

MSE, 0.5 bpp Hybrid network 
 Baboon Testim Peppers Image1 
Without error   610.30        172.80 133.51 30.69 
With error   611.52   174.41 133.67 31.07 

PSNR, 0.5 bpp Hybrid network 
 Baboon Testim Peppers Image1 
Without error    20.27          25.75 26.87 33.25 
With error    20.26         25.71 26.87 33.20 

 
In order to minimize the impact of channel error on the reconstructed image, error 

control codes are used to encode the compressed data.  

After compression of image using DWT-SPIHT, the compressed data can be 

encoded using error control codes. Error control codes are used to detect errors and 

correct errors when the compressed data is transmitted in a communication channel that 

has noise. In order to detect and correct errors, the encoder transmits redundant 

information along with compressed data. At the receiver, the decoder uses the redundant 

information to detect and correct the errors that has occurred during transmission. There 

are two types of error-control coding techniques, block codes and convolution codes.  

Block coding techniques map a fixed number of message symbols to a fixed number of 

code symbols. A block coder treats each block of data independently and is a memoryless 

device. Bose-Chaudhuri-Hocquenghem (BCH), Low-density parity-check (LDPC), 

cyclic, hamming and Reed Solomon (RS) are different types of block codes (Wicker, S. 

B 1995). In this work, RS encoder is used as error control codes to detect and correct 

errors. Reed-Solomon codes use m-bit symbols instead of bits. A message for an [n, k] 

Reed-Solomon code must be a k-column Galois array in the field GF(2m). Each array 
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entry must be an integer between 0 and 2m-1. The code corresponding to that message is 

an n-column Galois array is GF(2m). The codeword length n must be between 3 and 2m-1. 

The quantities n and k are input parameters for Reed-Solomon code. In RS encoder, m is 

number of bits per symbol (3 to 16), n is number of symbols per codeword, k is number 

symbols per message and t is error correction capability ((n-k)/2).  

 

In this work, [255,239] RS encoder is used to encode the compressed data and 

error is introduced on the encoded data. At the receiver, the encoded data along with 

noise is decoded using RS decoder. The compressed bits were converted to symbols of 

each 8-bit, and symbols were grouped into frames of 225 symbols. Each block of 

symbols were encoded using RS encoder, error were introduced on the encoded data. 

From the simulation results obtained, it is found that due to introduction of error control 

codes, maximum of 4 symbol errors were corrected by [255,239] RS encoder. Errors 

occurring on more than 4 symbols, were not be corrected by the RS encoder. Thus, for 

burst error correction of compressed data RS encoder would improve the image quality 

for a maximum of (n-k)/2 errors. DWT-SPIHT based image compression algorithm along 

with RS encoder is capable of detecting and correcting error, however, the processing 

time is increased by 9 seconds due to RS encoder logic.  

From the results obtained and presented in Table 4.16 and Table 4.17 the following 

are the observations made: 

 
1. Linear network are better than hybrid network in reconstructing the images 

considered from the compressed data.  

2. MSE and PSNR variations with and without error are very less, as compared with 

DWT-SPIHT technique.  

3. At 0.5 bpp hybrid network exhibits better performance in terms of MSE and 

PSNR compared with 1 bpp.  

4. Use of error control codes to minimize channel errors in DWT-SPIHT gives 

improvement in image reconstruction at the cost of processing delay. TDMNN 
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technique is capable of reconstructing image even in the presence of channel error 

and is faster compared with DWT-SPIHT.  

5. Careful observation of the reconstructed data, it is found that checker blocks 

occur in the reconstructed image. This is due to the fact that in the software 

reference model, image is sub-divided into 4 x 4 blocks and hence this introduces 

checker block error. This is one of the major limitations of NN based compression 

technique as compared with DWT-SPIHT technique. The checker block error can 

be minimized by combining DWT with Neural Network.  

A paper titled TDMNN architecture for image compression and decompression is 

prepared based on the results obtained and is submitted to International Journal on 

Signal Processing. 

The disadvantage of DWT with TDMNN is that the DWT decomposes the images 

into sub-bands, image information are represented in terms of low frequency and high 

frequency components and are available in each sub-band of the transformed data. SPIHT 

encoder encodes the significant and insignificant pixels using hierarchical approach 

(Rabbani, M and Joshi, R 2002). Every encoded bit has information of the original 

image; hence any error on the compressed data significantly affects the reconstructed 

image. In TDMNN due to the training process, the network is trained to reproduce 

original image even in the presence of noise or error, this advantage of TDMNN achieves 

better performance for the network as compared with DWT-SPIHT technique. However, 

in TDMNN technique, as the input image is sub-divided into sub-blocks, the 

reconstructed images have checker blocks as observed in Fig. 4.34 to Fig. 4.37. This is 

one of the limitations of TDMNN. In order to over-come this limitation, image is first 

transformed into sub-bands using DWT and the transformed sub-bands are compressed 

using the TDMNN architecture. DWT transformation extracts frequency components 

present in a given images at various sub-bands. The network is trained to learn this 

information content. Weights and biases are obtained for the network based on the image 

features. Also, as the TDMNN compresses 4 x 4 sub-bands to 2 x 2 outputs, compression 
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is achieved. Errors in channel do not impact the reconstruction process as TDMNN is 

trained to work in such environments. Further, the checker block error in the 

reconstructed output is eliminated as the images are not sub-divided into smaller sub-

blocks. This technique not only eliminates checker block error, but also reproduces 

images even in the presence of error. DWT with neural networks have been proposed and 

used for image compression and decompression (Szu, Telfer and Garcia 1996, Szu, 

Telfer and Kadambe 1992, Veronin et al. 1992, Zhang 1996, Robinson and Kecman 2003 

and Barni, Bartolini and Piva 2001). DWT combined with TDMNN architecture is 

designed, modeled and analyzed for image compression and decompression.  DWT-

combined with TDMNN architecture for image compression is further extended to 3D-

DWT and TDMNN architecture. This architecture is documented by the author and is 

sent for patent review process. Based on the results and analysis carried out on TDMNN 

architecture the following are the conclusions: 

1. Hybrid, linear and nonlinear TDMNN architecture have been designed, modeled 

and simulated.  

2. 1-D backpropagation training algorithm have been modified and used to train 

TDMNN architecture.  

3. Performances of TDMNN (Hybrid and Linear) architecture are compared with 

DWT-SPIHT technique for various images and compression ratios (bpp). 

4. TDMNN network performance is a function of image. Based on the image 

properties, hybrid or linear TDMNN architecture is used for achieving better 

results.  

5. Computation time is another metric that is computed for TDMNN and compared 

with DWT-SPIHT technique. TDMNN architecture is faster compared to DWT-

SPIHT.  

6. Two-layered network with sub-block size of 4 x 4 is the selected TDMNN 

architecture.  

7. TDMNN architecture is immune to noise and also immune to channel errors.  
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Based on the conclusion presented above, next section discusses adaptive TDMNN 

architecture for image compression and decompression.  

4.10 Adaptive TDMNN Architecture for Image Compression and 

Decompression 

Based on the results obtained and presented in previous sections, as the network 

performance is image dependent, it is evident that use of hybrid or linear or nonlinear 

network would not be a viable solution for image compression and decompression that 

can be used to compress any image. Compression ratio (bpp) and computation time plays 

another important factor to be considered for image compression and decompression. 

Hence in this section, an adaptive TDMNN architecture is proposed, designed and 

analyzed for image compression and decompression.  TDMNN performance is a function 

of input image and bpp, next section discusses the very basics of images and its 

properties. This discussion helps in understanding the need for adaptive image processing 

technique. Adjacent pixels in an image are highly correlated, this redundancy between 

pixels in spatial domain need to analyzed and compared with multiple images.  

 

4.10.1 Linear Correlation in Spatial Domain 

In order to understand the pixel to pixel correlation property, multiple images are 

considered. For convenient illustration, the image is cut into blocks of two pixels, in 

order to find the linear correlation between adjacent pixels, pixels blocks of size two is 

ordered into Cartesian coordinates. The results of this pixel-pixel relation are presented in 

this section for discussion. Fig. 4.38 shows the linear correlation between two adjacent 

pixels for multiple images. It is very clear that the every image has linear correlation 

between adjacent pixels. This correlation is exploited for image compression. If a straight 

line is drawn linking maximum number of pixels, the points on straight lines represents 

the approximation matrix using which the image properties can be represented. The 

weight matrix obtained during training tends to move toward this optimum point. From 
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the results presented in Fig. 4.38(a) to 4.38(h), it is clear that for most of the image 

maximum number of pixels are closer to this straight line. The slope of the straight line 

may vary, or the number of points available may spread across the straight line depending 

upon the information in the image.  

 

 
Figure 4.38 (c) Printer 
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Figure 4.38 Linear correlations between adjacent image pixels 
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From the results presented in Fig. 4.38, there exists high correlation among adjacent 

pixels in a given image. Images consisting of multiple edges and large variation in 

intensities in the spatial domain, as seen in Fig 4.38(e) to Fig. 4.38(h), there is a wide 

spread of pixel values. This spread in pixels defines the amount of information in a given 

image. Hadi and Jamzad (2009) have classified the information content in an image based 

on three parameters: 

 1. Entropy  

2. Activity and  

3. Pattern trajectory in blocks  

Rahman and Rahman (2003) have proposed new architectures for image 

compression based on variations in neural network architectures. Based on the work 

reported by Hadi and Jamzad (2009) and Rahman and Rahman (2003), in this research 

adaptive TDMNN architecture is proposed for image compression and decompression. 

From the results obtained and analysis carried out, network performance is a function of 

image input and bpp. Hence, adaptive 2-D multilayered network is proposed for 

implementation.   

4.10.2 Adaptive TDMNN 

Hadi and Jamzad (2009) in their paper have reported that activity and pattern trajectory 

for a given image given accurate results in classifying images, but they consume more 

time. In this work, entropy factor is considered for classifying images. Entropy is 

calculated for every image before compression. Based on the entropy computed for a 

given image, compression ratio or bpp and required computation time, a suitable 

TDMNN architecture is selected for compression and decompression of images. In this 

architecture, computation time is also used to select the TDMNN architecture. Bpp and 

computation time are user inputs that needs to be defined during the compression and 

decompression process.  A detailed discussion on Entropy is presented in Appendix- C. 

Fig. 4.39 presents the adaptive TDMNN architecture.  
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Figure 4.39 Adaptive TDMNN architecture 
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As shown in Fig. 4.39, input image of size 4 x 4 is given as input to any of the TDMNN 

architecture. The architecture consists of three different TDMNN architecture (hybrid, 

linear and nonlinear), based on user defined inputs (bpp and computation time) the 

control unit selects one of the TDMNN architecture for compression. For every sub-block 

of the input image entropy is computed, based on the entropy value and user defined 

inputs provided the control unit adaptively selects the TDMNN architecture. Entropy can 

be calculated for entire image or can be computed for every sub-block of the image. 

Entropy calculated for every sub-block of an image would be more accurate in choosing 

TDMNN architecture. The software reference model developed computes entropy for 

image which is used to adaptively select the required TDMNN. At the decompressor unit, 

the compressed data is decompressed by one of the TDMNN architecture 

correspondingly selected by the control unit. As the system is capable of choosing 

different TDMNN architectures to achieve better performance this architecture is called 

as Adaptive TDMNN architecture. Fig. 4.40 represents the flow chart for the proposed 

adaptive TDMNN architecture. Based on experimental results carried out the flow chart 

for the adaptive TDMNN architecture is designed and is presented in Fig. 4.40.  

Entropy for a given image is computed, entropy values are classified into three classes.  

⇒ Class 1: Entropy value - 6 to 7.5.  

⇒ Class 2: Entropy value - 5 to 6. 

⇒ Class 3: Entropy value - 4 to 5.  

Higher the entropy, information content is high. From the discussion carried out 

from the previous section, for lower values of bpp hybrid TDMNN performance was 

found to be better than linear TDMNN. For higher values of bpp linear or nonlinear is 

better. Based on the results discussed in the previous section, flow chart for adaptive 

TDMNN is designed. Software reference model is developed and the network 

performance is analyzed for different test images.  
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Figure 4.40 Flow chart for adaptive TDMNN architecture 
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Adaptive TDMNN architecture is developed based on the algorithm presented in Fig. 

4.40. The default architecture for the proposed system is hybrid TDMNN. Depending 

upon user defined input, the network automatically selects corresponding architecture for 

compression and decompression of input image. Fig. 4.41 presents the entropy for 18 

images. From the selected set of images, for which entropy is computed based on the 

equation in Appendix-C, entropy for given images vary from 4 to 8. Also based on the 

results presented in section 4.7, a control unit is designed to adaptively select the required 

TDMNN architectures based on image entropy and bpp.  

 

   
Figure 4.41 Entropy distributions of different images 

Fig. 4.41 presents the entropy of multiple images considered for analysis in this 

work. The adaptive TDMNN architecture is analyzed for its performance for 9 different 

images.  Entropy is calculated first based on the entropy and required bpp corresponding 

TDMNN architecture is selected for image compression as shown in Table 4.15. The 

compressed data is transmitted along with network code to the receiver, so that 

corresponding TDMNN is chosen for reconstruction. In this research work, hybrid, linear 

and nonlinear networks are designed to compress the image data. The network is trained 

using the software reference model. As shown in Table 4.18, based on results presented 
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in section 4.7, and entropy values are computed for each of the images, control unit is 

designed for adaptive TDMNN.  

Table 4.18 Adaptive TDMNN selection guide 

Images Entropy 
Selected Network 

Bpp < 4 Bpp = 4 Bpp > 4 
Baboon 7.4 Hybrid Hybrid Linear 
Image1 6.4 Hybrid Linear Linear 
Testim 7.1 Hybrid Hybrid Linear 
Peppers 6.5 Hybrid Linear Linear 
Trees 5.5 Hybrid Linear Linear 
Pears 6.9 Hybrid Hybrid Linear 
Rice 7.0 Hybrid Hybrid Linear 

Saturn 5.6 Hybrid Linear Linear 
Kids 4.8 Hybrid Linear Linear 

 

Table 4.19 and Table 4.20, presents the results of MSE and PSNR for adaptive 

TDMNN architecture and is compared with TDMNN architecture.  The compression 

ratio is fixed at 75%. The adaptive TDMNN computes entropy for the given image, and 

based on this information appropriate network is selected for compression and 

decompression. From the results presented in Table 4.19, MSE is better in case of 

adaptive TDMNN. Due to network adaptability, there is improvement in network 

performance compared to TDMNN architecture.   

 
Table 4.19 Comparison of adaptive TDMNN with TDMNN 

Images Network Selected 
PSNR 

(Adaptive TDMNN) 
PSNR 

(TDMNN) 
Trees Nonlinear 30.9 27.4 
Board Hybrid 32.9 28.7 
Circuit Hybrid 37.8 33.0 
Greens Linear 46.3 36.0 

Football Hybrid 35.4 29.8 
Cameraman Hybrid 33.5 26.4 

Tape Hybrid 31.0 27.0 
Fabric Linear 33.9 26.8 
Pears Linear 32.0 29.0 
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Saturn Nonlinear 28.3 24.0 
Peppers Linear 25.7 22.0 

Tier Hybrid 32.3 28.3 
Kids Nonlinear 23.5 18.4 
Rice Hybrid 27.5 24.6 
Cell  Nonlinear 26.9 16.7 

 
Table 4.20 Comparison of adaptive TDMNN with TDMNN 

Images Network Selected 
MSE 

(Adaptive TDMNN) 
MSE 

(TDMNN) 
Trees Nonlinear 21.0 22.9 
Board Hybrid 18.0 21.2 
Circuit Hybrid 16.9 18.0 
Greens Linear 12.7 14.7 
Football Hybrid 18.0 21.3 

Cameraman Hybrid 17.0 21.2 
Tape Hybrid 19.8 22.6 

Fabric Linear 15.0 16.2 
Pears Linear 14.3 17.8 
Saturn Nonlinear 27.0 32.0 

Peppers Linear 22.0 25.0 
Tier Hybrid 27.0 29.3 
Kids Nonlinear 38.0 42.0 
Rice Hybrid 25.4 26.0 
cell Nonlinear 45.7 71.0 

 

Table 4.21 Adaptive TDMNN architecture comparison 

Quality metrics 
Barbara 

DWT-SPIHT Adaptive TDMNN 
Max Error 139 168 

MSE 736 447 
PSNR 19 21 

Quality metrics 
Lena 

DWT-SPIHT Adaptive TDMNN 
Max Error 125 123 

MSE 562 202 
PSNR 20 25 
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The results presented in Table 4.19 and Table 4.20 was for images that were part of 

training data set. In order to analyze the network performance for generic images, two 

images Lena and Barbara were considered. These images have been considered as they 

form the standard images for any image processing activity. The results obtained for 

these images are presented in Table 4.21, and are compared with DWT-SPIHT technique.  

From the results obtained, it is concluded that proposed adaptive TDMNN is 

superior to DWT-SPIHT technique in compressing and decompressing images. For bpp 4 

and less than 4 adaptive TDMNN architecture is recommended for image compression. 

Further, proposed architecture is immune to noise and also immune to channel errors. 

Superiority of the proposed network is due to the adaptability of the network as per the 

entropy of the input image and required bpp. Further, the network performance can be 

explored with variations in block size and make the network adaptable to input block 

size. Instead of computing entropy for the entire image, entropy for sub-blocks can be 

computed and the network can be made adaptable. This would further increase the 

accuracy of the network. However, the scope of this research is to realize the proposed 

adaptive TDMNN using VLSI technology. Chapter 5 presents a detailed discussion on 

VLSI implementation of proposed adaptive TDMNN architecture. The 2-D adaptive 

network proposed in this chapter achieves better results compared with the conventional 

technique. The adaptive network architecture consists of three types of 2-D network 

(Tansig-Purelin for hybrid networks, Tansig-Tansig for nonlinear networks and Purelin-

Purelin for linear networks). The basic building blocks for the three architectures are 

multipliers, adders and network functions (Tansig function and Purelin function).  
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Chapter 5 – VLSI Implementation of Adaptive TDMNN 
Architecture  

5.1 Introduction 

This chapter discusses design, modeling and simulation of the adaptive two-dimensional 

multilayer neural network architecture proposed for image compression and 

decompression. This chapter also discusses implementation results and analysis of the 

proposed architecture for compression and decompression of images. The adaptive 

TDMNN architecture achieves better performance than the 2-D network and the 

conventional technique. The network is trained using multiple image data sets. The 

optimum weight matrix and bias elements obtained after training are used to compress 

images using adaptive approach. The network estimates the entropy for the given image 

and selects a suitable TDMNN for compression and decompression. Linear network, 

nonlinear network or hybrid network is selected based on entropy of image. The weight 

matrix and bias elements obtained during offline training process is converted into digital 

data and stored in memory. As per the analysis carried out in the previous chapters, 

image is sub-divided into 4 x 4 block size and is fed into the network. For every 4 x 4 

blocks to be processed by the network, 4 x 16 weight matrix and 4 bias elements are 

required. For every 4 x 4 block to be compressed to 2 x 2 block, 64 multipliers (4 x 16), 

64 adders (15 x 4 + 4) are required for the compressor block. Similarly, the decompressor 

requires 64 multipliers and 64 adders. Linear networks have Purelin functions and hence 

network functions are not required for hardware implementation. To realize nonlinear 

transfer function used in nonlinear network and hybrid network translinear circuits are 

required for hardware realization. Fig. 5.1 shows the top level architecture of the 

proposed network for hardware implementation.  

5.2 Design Analysis 

Video sequences are captured at a frame rate of 30 frames per second; every image 

consisting of 256 x 256 pixels would be captured and will be available on image sensors 
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for time duration of 33ms. The total amount of time available to process every frame is 

33ms, within this time the proposed architecture should compute the entropy of the 

image, based on the entropy particular network need to be selected. Based on the network 

selected the image is sub-divided into 4 x 4 blocks. Assuming that the total time to 

preprocess the data requires 10 ms, for every 4 x 4 block to be processed the total amount 

of time available is 5.6 µs ( 256 x 256 has 4096 4 x 4 blocks, 23 ms is the processing 

time, this implies for 4 x 4 block total time is 23 ms / 4096). Within this time the network 

has to perform 64 multiplications and 64 additions at the compressor end and same 

number of computations at the decompressor end. Hence the circuit designed should meet 

the timing requirement, and the hardware circuits designed should be able to have a 

maximum delay of 5.6 µs.  

 
 

 
Figure 5.1 2-D multilayered neural network architecture 

For every computation the input collected from the image sensor need to be 

multiplied by the weight matrix and bias elements, hence weight and bias elements need 
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decompressor stage, storage space is required to store the weight, bias, compressed data 

and decompressed data. As this research focuses on only compression and 

decompression, data encoding and decoding of the compressed data is not within the 

scope of this work. The objective of this chapter is to design, model, simulate, implement 

and test an optimum neural network architecture optimizing area, power and speed. The 

speed, area and power performances are tested for 4 x 4 input size, the results obtained 

can be extended to image sizes larger than 4 x 4.  

5.3 Neural Network Design and Implementation 

As discussed in chapter 2, neural network architectures can be realized using digital 

circuits, analog circuits and hybrid circuits. The basic building blocks required for neuron 

implementation are multiplier, adder, and network function and storage elements. During 

initial stages of research work, analog implementation was found to be suitable for 

hardware implementation. To analyze performances of analog neuron, a simple 

multilayered neural network is considered. A 2:3:1 neuron is considered for analysis. The 

network architecture is shown in Fig. 5.2. The neuron has two input layers three hidden 

layers and one output layer. Two inputs V1 and V2 are connected to the neurons in the 

hidden layer through weights W11 to W16. The outputs of the hidden layer are connected 

to the output layer through weights W21 to W23. The final output is a21.  

 
Figure 5.2 Block diagram for 2:3:1 neuron 
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5.4 Analog components for Neural network Architecture 

The architecture shown in the Fig. 5.2 multiplies the input V1 and V2 with the weights 

W11 to W16 and the multiplied outputs are accumulated in the adder along with the bias b. 

The accumulated output n is then passed through the Neuron Activation Function (NAF) 

to produce the intermediate output a. The output layer processes the intermediate output 

and produces the final output. Analog blocks required to realize the network shown in 

Fig. 5.2 are: 

1. Multiplication block (Gilbert cell) 

2. Adders (with output of multiplier being current, currents from various 

multipliers are accumulated at a node, thus realizes a adder) 

3. NAF block (nonlinear function) 

5.4.1 Multiplier Design 

The Gilbert cell is used as the multiplier block. The schematic of the Gilbert cell is as 

shown in the Fig. 5.3.  

               
Figure 5.3 Gilbert cell multiplier 
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Vin1 and Vin2 are two analog inputs that are multiplied by the Gilbert cell, the output 

current flows through the output node Vout, into the adder circuit, which is a current node. 

In order to verify the functionality of the Gilbert cell a load capacitance CL is connected 

at the output node Vout to measure the output voltage. Thus the load capacitance converts 

current to voltage. Design of Gilbert cell multiplier is discussed in the next section. The 

Gilbert cell works in the sub threshold region. The current expression for NMOS 

transistor to work in the sub threshold region is given by the following equations (Razavi 

2002, Eric A. Vittoz 2006): 

                    )1(

][

nKT
dsqV

enKT
snVgVq

eoIdsI
−

−

−

=                             (5.1) 

Where, all the voltages Vg, Vs and Vd are taken with respect to the bulk voltage Vb. 

KT/q= 25mV at room temperature. 

n = 1.2 to 1.6 slope factor.       (5.2)  

K- boltzmans constant, T – Temperature, q-electron charge 
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Cox- capacitance per unit area, µ-mobility of electron, W-width of transistor, L-length of 

transistor, Vto-threshold voltage 

The current equation for PMOS is same as equation (5.1), but all the voltages have 

opposite signs so equation (5.1) will change to  

                    )1(
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When 4/ ≥KTdsqV , or in other words Vds is equal to 100mV, the term 
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approximately zero. Equation (5.1) becomes 
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Equation (5.5) is the saturation current in the sub-threshold region and Ids is independent 

of Vds.  

5.4.2 Design of Multiplier Block 

In the neural network architecture when the voltage specified to the Gilbert cell is 3.5 V 

(considering the worst case for non subthreshold operation of the MOS transistors for a 

Vdd of 5 V), the outputs should not exceed 3.5 V as it should be limited to less than the 

threshold voltage. The bias current for the Gilbert cell is assumed to be 2 µA (Ali Naderi 

et. al 2008, Burcu Kapanoglu and Tulay Yildirim 2003, Navin Saxena and James J. Clark 

1994). Now considering each transistor in the saturation region one can design circuit for 

the Gilbert cell multiplier. For 0.35 micron technology, and calculating for geometries of 

transistor M9 (Fig. 5.3) with Io=3.863 nA and VDS = 150 mV, using equation (5.1) 

(W/L)9 = 44.5 for Vgs = 1 V. Now this current is divided into two paths one from M7 and 

other from transistor M8. Ids for both the paths are 1 µA.  Substituting this value in 

equation (5.5) while considering the output swing as 0.5 V, geometries for M7 and M8 are 

(W/L)7-8 = 4. 

Further, the current through each branch is divided into two branches containing 

M3, M4 and M5, M6. The current through each branch is now 0.5 µA. considering 

transistor M3, again same condition is seen as was for M7, since both will have same 

maximum inputs in the threshold region, (W/L) 3,4,5,6 = 2.  For PMOS operating in sub 

threshold region, Io = 2.66 nA. Current carried by each PMOS is 1 µA. Designing for this 

current using equation (5.4) (W/L) 1-2=120.7. The designed Gilbert cell is simulated using 

HSPICE.  

The simulation result shown in the Fig. 5.4 is for the multiplication of two 

voltages Vin1 and Vin2.  Vin1 is 0.2 V pp and 10 MHz frequency and Vin2 is 0.2 V pp and 1 

MHz frequency is applied as the input to the multiplier to test its performances. Fig. 5.4 

shows the results for the multiplier, first and second signals are the inputs, third signal is 

the actual output, fourth is the theoretical output. The results show that the theoretical and 
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practical values match, but the signal strength of practical and theoretical results vary by 

a factor of 10 (Matlab results are compared with Spice). 

 
  

Figure 5.4 Gilbert cell multiplier results 

 
Figure 5.5 DC characteristics of Gilbert cell multiplier 
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Theoretical results are obtained by multiplying two input voltages, in Matlab and are 

imported to Spice for comparison with practical values. Vout is the multiplication of Vin1 

and Vin2 voltage computed by the circuit. The output amplitude is 1.5 mV pp. The Vout 

obtained matches with the theoretical output.  Fig. 5.5 shows the result for the DC 

characteristics for the Gilbert cell multiplier, which is a plot of Vin1* Vin2.  

The input voltages Vin1 and Vin2 are varied from -0.4 V to 0.4 V. The 

characteristic shows a maximum of 2 mV output.  For gray scale image having pixel 

values between 0-255, requires voltage values between -2 mV to +2 mV. Transistors M7 

and M8 are matched, similarly transistors M3 and M6, M4 and M5 are matched thus 

minimizing the effect of temperature leading to non linear behaviour (Andreas G. 

Andreou et al. 1991). In this work, current is assumed to be 2 µA, based on the 

discussions provided in Razavi 2002. From the simulation results, it is observed that there 

is non-symmetrical response in the DC characteristics of Gilbert cell multiplier. In order 

to overcome these nonlinear effects in analog multiplier cell, hybrid multiplier is realized. 

Operating region of Gilbert cell multiplier is limited to +0.2 V to -0.2 V.  

5.4.3 Adders 

The output of the Gilbert cell is in the form of current (transconductance). The node 

connecting the respective outputs of the Gilbert cell, act as adder itself. The load 

capacitance (0.1 pF) connected at the output is used to convert output current to voltage 

at the output node.  

5.4.4 Neuron Activation Function (NAF) 

Neuron activation function designed here is Tansig. The circuit that can exhibit Tansig 

relation between output and input is the differential amplifier.  

5.4.5 Differential Amplifier Design as a Neuron Activation Function  

Differential amplifier when designed to work in the sub-threshold region acts as a neuron 

activation function. Consider a simple differential pair shown in the Fig. 5.6. Differential 

pair consists of five transistors, inputs differential V1 and V2 control the output current 

Iout.  
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Figure 5.6 Simple differential amplifier 
The currents in the sub-threshold region are given by equation (5.5) and assuming 

source and bulk to be shorted and both transistors have same W/L, the currents in M1 and 

M2 transistor is given by (Bose N. K., Liang P, 2002),  

                                                    nKT
Vq

eoKII

]1[

1 =                                                   (5.6) 

                                                   nKT
Vq

eoKII

]2[

2 =                                  (5.7) 

Also I1+I2 = Ib. 

Where Ib is bias current for the differential amplifier. Combining equation (5.6) and (5.7) 

                                    nKT
Vq

eoKInKT
Vq

eoKIbI

]2[]1[

+=                (5.8) 

Implying that  

                                         

nKT
Vq

eoInKT
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eoI

bI
K

]2[]1[

+

=     (5.9) 

Now differentiated output current is defined as I1-I2=Iout or in other words  
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Trigonometric function tanh(x) is given by 
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−+

−−
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Thus equation (5.10) can be transformed to be in the form  
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Thus   

                                                              





 −

=
nKT

VVqIoutI b 2
][tanh 12              (5.13) 

Equation (5.13) proves the functionality of the differential amplifier as a tan 

sigmoid function generator.  As is evident from equation (5.13) Iout is the combination of 

bias current and the voltage input. Thus this can also be used as a multiplier when one 

input is current and the other is voltage.  For the bias current Ib of 150 nA, M5 transistor 

is first designed for gate voltage of 0.1 V. Thus using equation (5.5) (W/L)5 value is 

calculated as 3.3. This current is divided into two branches with each branch carrying 75 

nA of current. The maximum voltage for transistors M3 and M4 is 0.5V.  The (W/L) value 

calculated for M3 and M4 is 2. The PMOS M1 also carries the same current as M3, gate 

voltage is considered for the 0.1 V (minimum voltage to keep it in saturation in sub 

threshold conduction region) the (W/L)1-2 is calculated to be 1.5.  The neuron activation 

function is basically a tanh(x) function. The theoretical value of y = tanh (x) is shown in 

Fig. 5.7. 
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Figure 5.7 Graph showing y = tanh(x) 

 
Figure 5.8 Circuit output for neuron activation function block (tan) 

 
The simulation results of the designed nonlinear function are shown in Fig. 5.8. 

The results match with the theoretical values. To verify the results, the input is varied 

from     -3 V to +3 V, the output is measured and it varies from +3 V to -3 V. The basic 

building blocks for the network are designed and are verified for its performance and 

functionality. The results show that the multiplier has output voltage swing of 3 mV peak 

to peak for an input range of 0.5 V. This ensures that the network performance should be 

limited to these voltage extremes. As the output of Gilbert cell multiplier is current, the 

adder circuit is a node. The current at a given node gets added as per Kirchhoff’s current 

law. The activation function is either Purelin or Tansig; Purelin does not require any 

circuit. Tansig is realized using the neuron activation function. The Gilbert cell multiplier 

requires 6 transistors, activation function requires 5 transistors, and hence to realize a 
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neuron in analog domain, minimum of 11 transistors are required. Hence analog 

implementation requires less number of transistors compared to digital counterpart. 

Based on the building blocks analog neural network is realized.  

5.5 Realization of Neural Architecture using Analog Components 

The components designed are used to implement the neural network architecture.  Fig. 

5.9 shows the neural network architecture using analog components. This block is used as 

the neuron activation function as well as for the multiplication purpose. The mult is the 

Gilbert cell multiplier, the fun is the neuron activation function circuit.  

The hidden layer is connected to the input layer by weights in the first layer 

named as w1i. The output layer is connected to input layer through weights w2j. The op is 

the output of 2:3:1 neural network. 

 
Figure 5.9 Implementation of the neural architecture using analog blocks 

5.5.1 Backpropagation Algorithm  

The training is an important part in the neural network architecture. Back propagation 

algorithm is used to train the network Chun Lu, Bing-xue Shi and Lu Chen (2002).  

 

a) Updating the Output Layer Weights 
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In equation (5.12) Iout is the multiplication of the input applied to the differential 

amplifier and the bias current of the amplifier. On the same basis the differentiation 

current is multiplied to the target (di) and output (ai) difference, implementing

)()( iiii adda −=∂ . Next step is to calculate the weight update using the term

iaiijw ∂=∆ η . The obtained ∂ , is then multiplied with the outputs of the hidden layer 

(input for the output layer) as shown in the Fig. 5.10. The output from the mult blocks is 

used as weight update for the weights in the output layer. 

 
Figure 5.10 Block diagram for weight update scheme for the output neuron 

b) Updating the Hidden Layer Weights 

The hidden layer weights in the architecture are updated from the errors propagating from 

the output layer. This update requires the realization of iijirhiddenlaye wad ∂=∂ ∑)( , which 

deals with the ∂  formation for the hidden layer, ∂  is to be formed for each neuron in 

hidden layer. 3,2,1∂  is formed considering the weight and ∂  output of neuron as shown in 

the Fig. 5.11. The output of the multiplication is then given to the differential amplifier 

with the bias current as the differentiation of the respective neuron output in the hidden 

layer. The ∂  formed is then used to update the weights in the hidden layer as implied by

inputaiijw ∂=∆ η . The ainput is the input to the hidden layer, in this case the inputs v1 and 

v2. The network designed is trained using back propagation algorithm and is tested for 

both analog and digital functions.  
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Figure 5.11 Block diagram for weight update scheme for hidden layer neuron 

5.5.2 Validation for Digital Operation  

The neural network architecture was verified for logic gates like AND, OR, XOR and 

NOT. Fig. 5.12 shows the AND operation learned by the 2:3:1 Neural Architecture. The 

input voltages v1 and v2 are given to the architecture along with the target. The input 

voltages swing form 1 V to –1 V. Target given to the circuit also varies from 1 V to –1 V. 

The output generated by the neuron, as shown in Fig. 5.12, clearly follows the target.  

 
Figure 5.12 AND operation learned by 2:3:1 NN architecture 

The output of the neural architecture swings from –0.726 V to –3.26 V (1.23 V swing). 

The weights are initialized to the value 1 V. Similarly the network was tested for other 

digital functions.  
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5.6 Image Compression and Decompression using NN Architecture 

The neural network architecture is extended for the application of image compression and 

decompression. The simulation result for image compression and decompression are 

shown in the Fig. 5.13. The input v1 is a sine wave with 1 Vpp voltage and 5 MHz 

frequency, and v2 is a sine wave with 0.5 Vpp voltage and 10 MHz frequency. The 

compressed output is a DC signal of 233.63 nV. The decompressed output is shown in 

the same window Fig. 5.13. The decompressed output v1 is 1.2 Vpp with 5 MHz 

frequency and v2 is a 0.51 Vpp with 10 MHz frequency. As there is one output for 2 

inputs there is a 50% compression.  

 
Figure 5.13 Image compression and decompression simulation 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

170 

a)  Limitations of the 2:3:1 neural network 

Fig 5.14 shows the simulation results of XOR gate using the neuron designed. The 

network is trained to meet the functionality of XOR operation. The network is trained 

online, the training of the network automatically takes place once the inputs and outputs 

are presented. The trained network stores the weights using the parasitic capacitances in 

the neuron. The capacitances storing the weights are not capable of storing the weights 

for longer duration and hence, the functionality does not get realized as observed in Fig. 

5.14. In Fig. 5.14, inputs applied to the network realizes XOR operation only for a short 

interval, if the inputs are held constant for some time, instead of realizing the required 

functionality, the network produces erroneous results. This is due to the fact that the 

parasitic capacitance discharges very quickly; hence to overcome this disadvantage, 

frequent training is required. This further adds to circuit complexity.  

 
Figure 5.14 Limitation of 2:3:1 neuron for XOR operation 

b)  Weight storage and update mechanism 

In order to make the network reliable, new circuit is proposed and is shown in Fig. 5.16. 

In this circuit, two capacitors are introduced into the circuit controlled by switches. The 

switches are controlled by two clocks clkI and clkW having complementary phase. The 

weights for the proposed neural architecture are stored on a capacitor. Fig. 5.15 shows the 

update mechanism and initialization of the weights.  
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Figure 5.15 Weight update and initialization scheme 

 
Cw is used to store the weight and Cwd is used to store the weight update. Clock signal 

clkW, is used for updating the weight. Whenever the clock is high the weight is updated, 

else there is no update and previous value of the weight is maintained. The weight 

initialization can also be done external to the chip, using clock ClkI. Whatever voltage is 

applied to weight initialization line, it is given to the Cw when clkI is high. One has to 

make clkI low before starting to train chip. This mechanism eliminates the limitations of 

the circuit designed earlier. The results of analog neural network architectures for image 

compression and decompression are presented in Cyril and Pinjare (2009). However, the 

complexity in this circuit is that, the network consumes power, due to the fact that the 

network continuously getting trained, whenever the weight values reduces below a 

threshold, the trained weights need to be transferred from the main capacitor. This not 

only adds to circuit complexity but also has power loss. In order to overcome these 

limitations and a new architecture is required for efficient hardware implementation. The 

weight and bias elements obtained after training are converted to its digital equivalent 

and stored in external memory. Input to the network is directly fed from image sensors 

and hence the inputs are analog, as the weights are binary.  Multiplication of analog 

inputs with digital weights is required to be performed. Hence, there is a need for a circuit 

that can perform this functionality with minimum cost overheads, reduced circuit 

complexity and also should be optimized with respect to area, time and power 
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consumption. The next section discusses the 2-D multilayered architecture in detail, and 

new hybrid architecture is proposed for hardware realization.  

 

5.6.1 2-D multilayered Neural Network Architecture Design and Implementation 

In chapter 4, the 2-D multilayered neural network was trained to obtain the weight and 

bias elements. In order to overcome the storage problem of the weight matrix, offline 

training is chosen. The software reference model developed in the previous section, 

computes the weights for the network. These weights are converted to binary values and 

stored in memory. The weight matrix is converted to a 7-bit binary number and is shown 

in Table 5.1. The weight matrix for the hidden layer is given in column 1 and the binary 

equivalent of the weight matrix is given in column 2. Column 3 and column 4 gives the 

output weight matrix and its binary representation. As the size of input weight matrix is 4 

x 16 (64), each weight being represented by 7 bit number, a memory of size  64 x 7 = 448 

bit memory is required. Similarly on the receiver section, 448 bit memory is required to 

store the weight matrix. As there are three networks, the total number of weight matrix 

required at the transmitter side is 448 * 3 = 1344 bits. The number of bias elements is 4 

and 16. The total number of bits required to represent the weight and bias elements at the 

transmitter is 448*3 + 28*3 = 1428 bits. Nonlinear functions are realized using 

translinear principle. A detailed discussion on network implementation is presented in the 

next chapter.  

Table 5.1 Binary equivalents of weight matrix 

Input weight  Equivalent binary(Input 
weight * 32) 

Output weight Equivalent 
binary 

-0.1348 (-04) 1000100 -25.9764 (-25) 1011001 

0.0718 (+02) 0000010 -3.2596 (-03) 1000011 

-0.3272 (-10) 1001010 +4.3240 (+04) 0001100 

-0.3331 (-10) 1001010 -59.6807 (-59) 1111011 

-0.4078 (-12) 1001100 -36.7612 (-36) 1100100 
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+0.1711 (+05) 0000101 -0.2085 (-00) 0000000 

-0.0401 (-01) 1000001 +18.2802 (+18) 0010010 

-0.2914 (-09) 1001001 -58.9398 (-09) 1001001 

+0.5041 (+16) 0010000 -55.8463 (-55) 1110111 

+0.2509 (+08) 0001000 -1.6886 (-01) 1000001 

-0.1108   (-03) 1000011 +23.4713 (+23) 0010111 

-0.2488    (-07) 1000111 -47.1475 (-47) 1101111 

+0.3174 (+09) 0001001 -50.6820 (-50 ) 1110010 

-0.7168 (-22) 1010110 -16.0312 (-16) 1010000 

 

The input matrix captured from image sensors is analog in nature, for software 

reference model, the digital equivalents of analog intensities have been considered for 

training and testing the performances of the network. The adaptive 2-D network is trained 

offline. The weight matrix and bias elements calculated during training in digital. Hence 

can be easily stored using digital memory. As the input is analog, and weight is digital, 

there is a need for a hybrid architecture to multiply analog input with digital weights.  

 

 
 

Figure 5.16 Hybrid neuron model for image compression 
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Hybrid architecture is proposed for implementation of 2-D multilayered neural network 

architecture. Figure 5.16 shows the top level block diagram of the proposed work. The 

major focus of this research work is the design and development of this hybrid 

architecture for image compression.  Array of 4 x 4 analog intensities are multiplied by 4 

x 16 digital weight matrixes to produce 2 x 2 analog outputs. Since the input is in spatial 

domain, output is also in spatial domain. This reduces the computational time and also 

leads to a new feature of 2-D coding technique. Table 5.1 shows the weight matrix 

represented in digital form. The total number of bits required to be stored in external 

memory representing the weights for the 2-D adaptive network (16:4:16) is calculated 

below: 

As there are three networks each having 128 weights at the hidden layer and 

output layer, total number of bits per network is 896 bits (7 bits per weight, 128 weights  

* 5 bits). Total number of bits for three layers is 2688 bits. As there are 20 biases, each 

requires 7 bits hence the total number of bits to be stored are 2828 bits. Instead of using 7 

bits for representing weights and biases, for reducing the circuit complexity of the 

network architecture 5 bits are used to represent the weights and biases. This introduces 

loss in data representation, the amount of error or loss occurring due to reduction in bit 

width is discussed in next section.  

At the hidden layer digital representation of the weight matrix is multiplied with 

the 2-D input image intensities (analog) that are captured using the image sensors. The 

top level architecture of the 2-D multilayered neural network architecture is shown in Fig. 

5.17. 256 x 256 image sub-divided into 4 x 4 block size is considered every time interval 

for compression and decompression. Input pixels I1,1 to I4,4 are first multiplied by the 

weight matrix and then added to from Z1,1 to Z2,2 compressed output. The weight matrix 

is digital, input and output is analog. Hence a hybrid circuit is required to multiply analog 

inputs with digital weights.  
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Figure 5.17 2-D architecture of neural network (Hidden Layer) 
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Figure 5.18 Block diagram of single neuron with input and hidden layer 

 

 
 

Figure 5.19 Mathematical operation performed by the neural network 
Fig. 5.19 shows the mathematical representation of the proposed architecture. As 

shown in Fig. 5.18, the network performs the mathematical operation as shown in Fig. 

5.19. The multiplier stage is hybrid, adder and transfer function stage is analog, hence the 

name hybrid network architecture. 
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 5.6.2 Hybrid Neural Network Architecture 

The proposed design requires a circuit that can multiply analog inputs with digital 

weights. This is realized using the data converters. Data converters are most important 

building blocks of analog and mixed signal circuits for data conversion and 

communication applications as well. Digital to Analog also known as DAC’S, convert a 

digital or discrete signal into an analog signal or continuous timing signal, there are 

different types of digital to analog converters (Tiilikainen 2001, Wang, Fukatsu, and 

Watanabe 2001, Bugeja and Song 2000, Chi-Hung and Klaas 1998, Jacob and Nianxiong 

1999 and Hyun-Ho and Cheong-Yong 2004).  

a) Ideal Digital to Analog Converters 

Digital to Analog converters convert digital signals into analog signal.  The ideal block 

diagram of a DAC is shown in Fig. 5.20.  

 
Figure 5.20 DAC ports 

The input–output transfer curve for an ideal digital to analog data converter is 

shown in Fig. 5.21. Here, Bin is defined to be an N-bit digital signal (Wang, Fukatsu, and 

Watanabe 2001). Such that, 

 

                              Bin = b12-1 + b22-2+…… +bN2-N                                            (5.14) 

 

Where, b1 is the most significant bit and bN is least significant bit. Vout represents the 

output of the digital to analog converter. 
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Figure 5.21 Input-output transfer curve for ideal 2-bit DAC (Tiilikainen 2001) 

The relation between output voltage and reference voltage is given by equation (5.15), 

                              Vout = Vref ( b1.2-1 + b2.2-2+…… +bN.2-N) = Vref Bin                    ( 5.15) 

It is useful to define the value of VLSB to be the voltage change when one LSB 

changes or mathematically is given by,  

                                       VLSB = Vref / 2N                                                                      (5.16) 
 

Equation (5.15) relates Vref, Bin and Vout. This forms the basis for the hybrid 

neural network architecture. The requirement is that the analog inputs are to be multiplied 

by digital weights; hence equation (5.15) can be modified to work as hybrid multiplier.  

Every charge coupled device produces an analog intensity equivalent to the image pixel. 

If this is taken as reference voltage Vref, this can be multiplied by the binary inputs Bin 

as per equation (5.15).  The multiplier stage is realized using DAC architecture. The 

output of DAC is analog. Multiple partial products computed by the DAC, need to be 

added, hence an analog adder circuit is required. The output of adder should flow through 

the transfer function. If the network is linear, transfer function can be avoided, else the 

neuron activation function discussed earlier is used to realize the Tansig function. Output 

of each neuron is analog. This compressed output is also analog. In the output layer, the 

analog compressed samples are decompressed to analog output with the help of digital 

weights. Since DAC logic is identified to work as hybrid multiplier, there are multiple 

DAC architectures, hence a through literature review is conducted on various DAC 

architectures. Based on the literature review and design specifications, suitable DAC 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

179 

architecture is selected, designed and verified for its performance. DAC is used as hybrid 

multiplier, it is important to know the limitations of the converter and how they affect the 

performance of the entire system. The outputs of image sensors are usually current, 

which get converted into voltage. Since the input pixels are current intensities, only 

current reference DAC are considered. A detailed study of different current steering DAC 

architectures is required to find the suitable architecture.   

5.7 Current Steering DAC 

The general architecture of a binary weighted current-steering DAC (Wang and Wey 

1998, Anne et al. 1998) is shown in Fig. 5.22.  

 
Figure 5.22 Binary weighted current string DAC 

The switches are controlled by the input bits b0 – bN-1, where, N is the number of bits. 

The output current, of the DAC shown in Fig. 5.22 is given by,  

                     Iout (K) = 20 ILSB.b0 + 21 ILSB.b1 +……+ 2N-1 ILSB.bN-1 = ILSB.K               (5.17) 

Where K is the digital input is given by, 

                        K = 20 b0 + 21 b1 +…… 2N-1 b N-1                                              (5.18) 

 Depending upon the input bits, the switches are set to ON/OFF condition, that 

allows the current flow and at the node all the currents are added to give the analog 

output. The analog output of the circuit depends on the status of the binary switches. 

DAC circuits are used as hybrid multipliers in this work. The work proposed by Ryan et 

Iout 

bo bN-2 bN-1 

2N-1ILSB=IMSB 2N-2ILSB ILSB 
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al. (2004) is a multiplying DAC. The MDAC architecture is modeled using Spice and the 

results are tabulated in Table 5.2.  

Table 5.2 Theoretical, practical outputs with the error of the reference architecture 

Digital Inputs 

S0,S1,S2,S3 

Theoretical 

Outputs in Amps 

Practical Outputs in 

Amps 

Error 

0000 0 28e-15 28e-15 

0001 3µ 2.0µ 1.0 

0010 7µ 5.2µ 1.8 

0011 11µ 7.2µ 3.8 

0100 15µ 13.0µ 2.0 

0101 18µ 15.5µ 2.5 

0110 20µ 18.7µ 1.3 

0111 22µ 20.7µ 1.3 

1000 30µ 29.2µ 0.8 

1001 33µ 30.7µ 2.3 

1010 37µ 33.01µ 3.9 

1011 41µ 34.5µ 6.5 

1100 45µ 38.3µ 6.7 

1101 48µ 39.4µ 8.6 

1110 52µ 41.7µ 10.3 

1111 56µ 61.0µ 5.0 

 

The circuit is modeled using Spice, simulated using HSpice using 180nm technology. Vref 

is set to 1.8 V.  Out of 5-bit input, MSB bit is used for sign representation. The direction 

of current through the multiplier defines the sign of the weight matrix and hence the 

Table 5.2 shows the multiplication operation for 4-bit only, assuming all the weight 

inputs being positive.  

 Table 5.2 shows the output currents for different values of digital inputs ranging 

from 0000 to 1111 where S0 is the LSB and S3 is the MSB. The MDAC is working as a 

hybrid multiplier circuit. The digital inputs of the DAC are multiplied by the Current 
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references. The analog output of the DAC is the multiplied output in terms of current. In 

Table 5.2, input data 0001 multiplied by the corresponding current reference gives an 

output of 3 µA. The practical value obtained is 2 µA. The errors are calculated and are 

also tabulated.  The results show that the maximum current is 61 µA and minimum 

current is 2 µA. From the result obtained the difference in output between expected and 

obtained is 10 µA maximum. This clearly indicates that the circuit has limited accuracy. 

In order to overcome the limitations, a new MDAC architecture is designed to meet the 

accuracy. The next section discusses the novel MDAC architecture.    

 5.7.1 Novel Hybrid Current Steering DAC Multiplier 

In this section, a modified MDAC synapse is designed and demonstrated for different 

values of input current and the digital weights. The hybrid multiplier is designed and 

checked for its performance. The multiplier architecture is optimized for power, area and 

results are reported. 

5.7.2 Proposed MDAC Architecture  

The proposed MDAC architecture has a NMOS transistors connected in the form of  R – 

βR, whereas the referred architecture consists of PMOS current mirror transistors 

connected, wherein a control is given to the circuit to either pass the outputs directly or 

through the current mirror circuit, The proposed MDAC has a better accuracy than the 

referred architecture. It has two main blocks: 

1) Weighted Current Steering Circuit 

2) MDAC Architecture 

The current mirror used here is the folded cascoded current mirror. The main purpose 

of this current mirror here is to replicate the reference current irrespective of the load. 

The designed weighted current steering circuit produces current of 32 µA for an input 

reference current of 16 µA. This is achieved by doubling the widths of the successive 

transistors. This is based on the current equation of the MOS transistors in saturation 

region which states current is directly proportional to the width. This current is given as 

the input for the MDAC. Because of the heavy short-channel effect on a simple current 
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mirror, the weighted current steering circuit is realized with the cascoded configuration 

that can provide an accurate current with higher output impedance. The circuit as shown 

in Fig. 5.23 receives the input current IREF and produces three output currents Iin1, Iin2, and 

Iin3 that will be injected into the R-βR ladder networks. In this design, Iin1, Iin2, and Iin3 are 

designed to be 16 (24) μA, 128 (27) μA, and 512 (29) μA, respectively. These values are 

selected as an example representing the input pixel samples.  

 
 

Figure 5.23 Weighted current steering circuit 
The schematic of the current steering network for the proposed MDAC 

architecture is as shown in the Fig. 5.24. The input voltages required is at 1.8 V, the 

current source can be replaced by a transistor of the required width calculating the input 

and output characteristics to determine the region of the transistor which produces the 

required current at the output. The calculated voltage is given as the gate to source 

voltage. Fig. 5.24 shows the schematic of the circuit realized using Cadence Virtuoso. 

The design is carried out targeting 180 nm technology and the schematic capture of the 
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MDAC circuit matches with the theoretical circuit designed. Fig. 5.24 is circuit schematic 

of Fig. 5.23 captured using Virtuoso Spectre for simulation.  

 

 
 

Figure 5.24 Weighted current steering circuit schematic from Virtuoso 
5.7.3 MDAC Architecture - R-ßR Ladder Network 

The R-ßR ladder network is modified from the R-2R ladder network such that a more 

accurate current-divider circuit can be obtained under the following condition as 

                                                   ( )21
12

ε
εβ

−
+

>                                         (5.19)                     

Where ε denotes the error on the resistance resulted from the effect of device mismatch. 

For a TSMC 0.18 μm technology, the error range is 

 
                                                    0

0
0

0 55 ≤≤ ε                                          (5.20) 
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Substituting ε = 5% into Equation 5.19, β is 2.3. Fig. 5.25 shows the transistor-level R-βR 

ladder network. Each resistor in the R-βR ladder network is implemented by an NMOS 

transistor biased in triode region.  

 
Figure 5.25 R- βR ladder network 

An NMOS transistor operated at triode region can be characterized by equation (5.21) 

                           ( ) 

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The channel resistance Rn of an NMOS transistor biased in triode region can be derived 

as shown in equation (5.22) 
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Apparently, the channel resistance is inversely proportional to the aspect ratio of the 

transistor. Therefore, the R-βR ladder network can be easily implemented by specifying 

the aspect ratios of the transistors satisfying the relationship as shown in equation (5.23) 

                                
RR L

W
L

W
β






=






 3.2                                                 (5.23) 

Where (W/L)R and (W/L)βR represent the aspect ratios of the NMOS transistors 

implementing the resistances R and βR, respectively. 

The transistors which form the R- βR structure have widths of 400 nm, 520 nm. 

The voltage controlled current switch has width of 400 nm each. The current mirror used 

has two top PMOS transistors of widths 2 µm each and bottom 2 transistors have widths 

of 2.8 µm each. The length used is 180nm. The values of W/L for transistors used in 

MDAC circuit are tabulated in Table 5.3. 

Table 5.3 MDAC Transistors widths Tabulation for Proposed Architecture 
Transistors Widths for 180nm technology with length equals 180nm 

MN1 to MN4 400.0 nm 

MN5 to MN9 520.0 nm 

M10 to M18 400.0 nm 

MP19 to MP20    2.0 µm 

MP21 to MP22   2.8 µm 

 

MDAC architecture proposed by (Ryan Kier, J., Reid Harrison, R. and Randall 

Beer, D., 2004) is modified to design new MDAC architecture. From the size of the 

widths the total comes to 920 nm which is the R-βR realization of the circuit. The 

resolution of referred architecture and proposed architecture is 4-bit, 1-bit for sign 

representation. The offset error of MDAC synapse proposed by Anne et al. (2001) is 

28e10-15 and offset error for proposed MDAC synapse is 2.4e10-12. The error gain for the 

MDAC synapse proposed by Anne et al. (2001) is 4 LSB and gain error for the MDAC 

synapse proposed is 0.5 LSB.  
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The proposed architecture has better results compared with the reference model. The 

error between the theoretical and practical is reduced from 10 µA to 0.9 µA. The voltage 

swing of the proposed network is less compared to the reference model. However, the 

error between the theoretical and simulation values is maximum of +/- 0.9.  Hence this 

circuit has good accuracy.  

Table 5.4 gives the table of the different values of the output currents for the 

different digital inputs which are known as the weights, the digital weights is changed 

from 0000 to 1111 for this 4 bit architecture, the D0 is the MSB and the D3 is the LSB, 

the differential error is also calculated and tabulated in the Table 5.4.  

Table 5.4 Comparisons of theoretical, simulation outputs for proposed architecture 
Digital Inputs 
D0,D1,D2,D3 

Theoretical Outputs in 
Amps 

Simulation Outputs in 
Amps 

Error 

0000 0.00 2.3e-12 2.3e-12 
0001 01.30µ 01.7 µ 0.4 
0010 03.02µ 03.6 µ 0.5 
0011 04.30µ 05.2 µ 0.9 
0100 06.90µ 07.5 µ 0.6 
0101 08.25µ 08.7 µ 0.4 
0110 09.96µ 10.5 µ 0.5 
0111 11.30µ 12.1 µ 0.8 
1000 16.00µ 16.0 µ 0 
1001 17.30µ 16.7 µ 0.6 
1010 19.02µ 18.8µ 0.1 
1011 20.30µ 20.0µ 0.2 
1100 22.90µ 23.0µ 0.1 
1101 23.80µ 23.9µ 0.1 
1110 25.90µ 26.8µ 0.9 
1111 28.20µ 28.6µ 0.4 

 
The layout for the proposed MDAC architecture is captured using Cadence Virtuoso and 

the post layout simulations are carried out to analyze the area, timing and power 

performances.   
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5.8 Layouts of Proposed MDAC 

MDAC layout is designed using Virtuoso tool. The design is developed using 0.18μ 

technology. The MDAC layout is shown as in Fig. 5.26. After designing layout first step 

is design rule check. When there are no DRC errors the design is checked for Layout 

versus Schematic check i.e. the layout is verified with respect to the schematic whether 

the connections made in the layout are same and correct compared to schematic. For the 

schematic shown in Fig. 5.25, layout is drawn using Cadence Virtuoso is shown in Fig. 

5.26.  

 
Figure 5.26 Layouts for MDAC from Virtuoso 

After LVS, compare warnings and extract warnings are removed and the RC 

extraction is carried out. The RC extraction file is used for post layout simulation. The 

GDSII extracted view of the proposed MDAC is as shown in the Fig.5.27, this is carried 

out using the Cadence Virtuoso tool. The GDS II file extracted represents or shows that 

the proposed MDAC architecture is physically realizable in the form of a chip. Typically 
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extraction from the layout is done after the post layout simulations wherein the circuit is 

checked for its functionality after the interconnect resistance and capacitances are added. 

 
 

Figure 5.27 GDSII Extracted view of proposed MDAC architecture 
Proposed MDAC architecture consists of 22 transistors. It is capable of computing 

the multiplication of analog samples with digital weights. The total area required for the 

hybrid network is 28 µm2. This area excluded the storage space of the weight matrix. 

Every multiplier realized using hybrid architecture requires area of 28 µm2 and 22 

transistors. Total number of multipliers for the 2-D adaptive network is 128 multipliers 

per network (hidden layer and output layer). Total number of transistors for the multiplier 

stage is 2816 transistors. The area for the multiplier is 7884 µm2. Partial product output 

computed need to be added in the adder circuit. As the partial products current outputs, 

there is no need for adder circuit. Partial product outputs are added using Kirchhoff’s 

current law, by collecting the currents at a particular node. The current output is taken 

across a load to convert the compressed data into voltage samples. This is further fed into 
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the output layer to reconstruct the original samples. Table 5.5 compares three different 

multiplier cells designed in this work.  

 Table 5.5 Comparisons of various multiplier cells designed 
Parameters Gilbert cell Modified Gilbert cell New hybrid cell 

Convergence time 
(10 MHz) 

200 ns 200 ns Not applicable 

Refresh time <20ns <10ms Not applicable 
Power on Training Required (5ns) Required (8ns) Not applicable 
Circuit complexity 
Single cell neuron 

480T, 8SW, 4C 960T, 4SW, 4C 1420T, digital memory 

Storage cell Capacitor Capacitor Digital memory 
Accuracy ±0.3 V ±0.35 V ±0.08 V 

Parameters Gilbert cell Modified Gilbert cell New hybrid cell 
Technology 0.18µm 0.18µm 0.18 µm 
Resolution Not applicable Not applicable N bit 

INL Not applicable Not applicable < 0.5 LSB 
DNL Not applicable Not applicable <0.5 LSB 

Supply voltage 3.3 V 3.3 V 2.5V 
Power consumption 865 mW 631 mW 232 mW 
Full scale current / 

voltage 
±1.8 V ±1.8 V 65.535 µA 

Operating frequency 50 MHz 50 MHz 200 MHz 

 

Gilbert cell multiplier presented in Fig. 5.3, modified Gilbert cell with weight 

updating scheme and the new hybrid cell. Gilbert cell and modified Gilbert cell multiply 

analog inputs with analog weights and produce analog output. The weight and bias for 

the network is computed during online training, and stored on a capacitor for processing 

the analog input samples. In the new hybrid cell multiplier, the input is analog, and the 

weight matrix is digital. Weights and biases obtained during training phase is digitized 

and stored in ROM.  The performances of all the three multiplier blocks are compared. 

Convergence time is the time taken by the network to converge to achieve zero error 

during the training phase. This is the total time required to obtain the optimum weight.  

Refresh time is the time has be refreshed to weights, as the weights are stored on 

capacitor, capacitor needs to be refreshed every time to hold the optimum weight 
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obtained during training phase. Whenever the network is power on, it requires some time 

to refresh; this time is power on training. Number of transistors, number of capacitors and 

number of switches are used to express the complexity of the switch. Accuracy defines 

the minimum voltage the circuit can produce.  

New hybrid cell (modified DAC) designed using NMOS transistors work at 

200MHz of clock frequency, consumes power of 232mW, maximum full scale current of 

65.535 µA and requires 1420 transistors (T) with digital memory storage unit. The 

training is done offline and the weights are stored in ROM and hence the network 

consumes very less power. The only limitation of this network is that every time new 

weights and biases have to be used for the network to achieve better performance. New 

hybrid architecture is realized and the results obtained have good performances as 

expected. The proposed neural network architecture is realized using the hybrid cell 

multiplier (MDAC), adder and translinear functions.  Fig. 5.28 is the proposed 2D-

multilayered architecture for compression. This architecture is realized using the 

designed hybrid neuron cell.  

Fig. 5.29 shows the output layer of the 2D multilayered neural network 

architecture. Using the hybrid cell multiplier, adder and translinear function the 2D-

multilayered network architecture is realized. The compressor network or the hidden 

layer requires four neurons, and the output layer requires 16 neurons. Each neuron in the 

hidden layer consists of 16 multipliers, one adder and one transfer function (Tansig). 

Each neuron in the output layer consists of 16 multipliers, one adder and one transfer 

function (Purelin). Since Purelin is a linear function this is not used in the output layer. 

Hybrid multipliers or MDAC circuit is used to realize the multiplier, as the output of 

hybrid cell multiplier is current, the adder block is not required both at the hidden layer 

and output layer. The adder block is a node that sums all the current coming out form the 

multiplier circuit. The current flows through a load capacitance and thus voltage is 

measured across the load capacitance.  

 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

191 

 
 

Figure 5.28 2D-multilayered architecture (hidden layer) 
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Figure 5.29 2D-multilayered architecture (output layer) 

The output of the current to voltage converter at the hidden layer is given to the 

transfer function which is realized using the circuit (NAF) shown in Fig. 5.6 having the 

transfer function shown in Fig. 5.8.  In the next section, design of single neuron cell is 

presented. Properties of this cell are analyzed based on simulation results. Multiple single 

neurons are integrated to model the 2D-multilayered neural network architecture.  
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5.9 Top-level Block Diagram of Single Neuron using Hybrid Multiplier 

In this section, top level architecture of single neuron using the hybrid cell multiplier, 

adder and the neuron activation function is presented. The p-inputs of neuron, X0, X1… 

Xp-1 shown in Fig. 5.30, are multiplied by the p number of synaptic weights, W0, W1…, 

Wp-1. The weighted sum is then forwarded to the neuron output via a nonlinear activation 

function S (.). Neuron output Y is then given by equation (5.1). 

                                                                                                (5.1) 

Multiplication operation of XiWi and the addition Σ XiWi are the two arithmetic 

operations performed by the neuron. The implementation of the addition is easy if outputs 

of the synapse are currents. It is performed when synapse outputs are connected together 

according to Kirchhoff’s Current law (KCL).  

 
 

Figure 5.30 Neuron Cell 
The hybrid cell (MDAC) synapse designed performs the multiplication of the 

analog input with the digital weights W1 to Wp-1 , The analog input is in the form of the 

current and is multiplied accordingly with the value of the digital weights represented by 

D3 to D0 and the current as Iin. The current Iin is given through the current mirror circuit, a 

cascoded current mirror circuit for the higher output impedance, so that it can drive large 

circuits for the same current values. The weighted current steering approach along with 

the current mirror circuit acts as the input for the DAC. The neuron circuit performs the 
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summation of the outputs of the different MDAC outputs, the neuron converts the 

currents back into voltages and this is given as the inputs for the next layer of synapses, 

in this proposed design of MDAC there is no need of this conversion. The digital inputs 

commonly known as the digital weights are stored in a memory unit from where it is 

loaded to the inputs of the MDAC. Fig. 5.31 shows the top level architecture of single 

neuron using hybrid cell multiplier, adder and neuron activation function. Hybrid 

multiplier is integrated with other building blocks such as adder and transfer function to 

form a single neuron. Weight matrix is assumed to be positive, and hence the sign bit is 

neglected, the hybrid multiplier has only 4-bits for weight matrix.  Every hybrid cell is 

required to perform multiplication operation of input Xi with the weight matrix Wi. Input 

Xi is analog input representing pixel intensities. In order to simulate the circuit, different 

values of current samples are used from a current reference circuit shown in Fig. 5.22. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.31 Single neuron using hybrid cell multiplier (hidden layer) 
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The single neuron cell shown in Fig. 5.31 is modeled using Cadence Virtuoso and 

simulated using Spectre targeting 180nm Technology. The binary inputs for all the 

multipliers have been considered from 0000 to 1111. The output of the hybrid multiplier 

is added and transferred using the nonlinear transfer function i.e. the NAF function. For 

different values of input weights varying from 0000 to 1111 and using the reference 

current of 16 µA, the network is simulated. The maximum current form each hybrid cell 

is measured is found to be 28.2 µA, the outputs of all the 16 cells are added and the 

maximum output current is found to be 451.2 µA. The activation function requires a 

voltage input in the range -3 V to +3 V, hence the current output is converted to voltage 

using a current to voltage converter realized using a current mirror load circuit (Appendix 

D describes the spice code for measuring output voltage).  

5.10 Test Setup to Evaluate Performance of 2-D Network Architecture 

Image pixels used to test the software reference model is equivalently represented using 

current equivalents. The weight matrix obtained from the software reference model is 

represented in digital form to test the hardware designed. Current mirrors are modeled as 

pixel intensities. Current mirrors are connected to the designed 2-D network architecture 

to compress the pixels to 2 x 2 and to further decompress to 4 x 4. The experimental 

setup is shown in Fig. 5.32.  

 
Figure 5.32 Hidden layer test setup 
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The pixel intensities used in the software reference model have values varying from 0 to 

255; these values are normalized and are scaled from 0 to 1. To represent each of these 

pixel values in terms of current values, different current mirror circuits are designed that 

are driven from current references. The current mirror circuits provide current values 

varying from 0 to 1275 µA. To simulate the image sensor values, these current mirrors 

are arranged in 4 x 4, 8 x 8, 16 x 16, 32x 32 and 64 x 64. Same sized images were used in 

software reference model. Based on the test setup shown in Fig. 5.32, simulation of the 

proposed single neuron network shown in Fig. 5.31, the results are tabulated in Table 5.6.  

Table 5.6 Simulation results of single neuron cell 
1 2 3 4 5 6 7 8 
Binar
y 
input 

Pixel 
Equival
ent 

Hybrid 
multiplier 
output in µA 

Adder 
output 
in µA 

Neuron output 
in mV 
(Simulated) 

Neuron  
output in mV 
(Theoretical) 

Equivalen
t pixel 
values 

Software 
reference 
results 

0000 0 0 0 0 0 0 0 

0001 008 01.7 027.2 0070.20 0081 112 116 

0010 016 03.6 057.6 0149.76 0172 134 140 

0011 024 05.2 083.2 0216.32 0749 142 152 

0100 032 07.5 120.0 0312.00 0360 149 153 

0101 040 08.7 139.2 0361.92 0417 153 161 

0110 048 10.5 168.0 0436.80 0501 160 166 

0111 056 12.1 193.6 0503.36 0579 168 174 

1000 072 16.0 256.0 0665.60 0768 174 180 

1001 080 16.7 267.2 0694.72 0802 182 191 

1010 088 18.8 300.8 0782.08 0906 191 201 

1011 096 20.0 320.0 0832.00 0960 198 207 

1100 104 23.0 368.0 0956.80 1101 206 216 

1101 112 23.9 382.4 0994.24 1140 213 221 

1110 120 26.8 428.8 1114.88 1286 225 232 

1111 128 28.6 451.2 1173.12 1314 236 245 
 

The results obtained are compared with expected results and software reference 

model presented in chapter 4. For the circuit shown in Fig. 5.31, the input to the hybrid 

cells is varied from 0000 to 1111, and the outputs obtained are tabulated. In Table 5.6, 
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column 1 represents the binary input applied to the entire hybrid cell (16 multipliers). 

Column 2 is the pixel values used as test case.  Column 3 is the output of the hybrid cell 

and column 4 is the output of the adder. The output of the adder is converted to voltage 

using a current mirror load designed as a load circuit having resistance of 3K Ohm 

(column 5). Column 6 is the expected voltage output of the single neuron cell. Column 7 

is the equivalent pixel values for the simulated results and column 8 is the pixels values 

obtained using software reference model.  

Fig. 5.33 presents the comparison of the simulated single neuron cell with 

theoretical values for inputs varying from 0 to 16. From the results, it is found that the 

single neuron cell out variation matches with the expected results. The maximum 

expected output when all the inputs applied to the inputs of the neuron are at maximum 

value of 16 is 1.31 V. Simulated results show that the maximum output voltage is 1.26 V. 

The error difference of 0.04 V is acceptable, and can be minimized.  

 
Figure 5.33 Simulated results of single neuron cell 

Fig. 5.34 shows the comparison of expected pixel values and the simulated 

output. As the network produces voltage output, in order to compare with the software 

reference results, the outputs have been converted to its equivalent pixel representation 

and are compared with the results obtained using software reference results. 
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Figure 5.34 Comparison of simulated results with software reference results 

Hardware simulations of the proposed design are used to test image compression 

and decompression of various image sizes. MSE is calculated, the results show that the 

hardware simulated results are very satisfactory as they achieve very less MSE. However, 

the complexity is that due to limitations in test setup, performance of the network is not 

evaluated for large size images. The decompressed network output producing current 

values were compared with input current values; using mathematical equation MSE and 

PSNR were numerical calculated. The results of the same are shown in Table 5.7.  

Table 5.7 Image size and performance parameters 
Image size MSE CR 

64X64 21.2 50 
32x32 18.6 50 
16x16 19.2 50 
8x8 14.3 50 

 
From the results obtained, it is found that the network had less MSE for smaller 

size images; this is due to the fact that smaller size images have minimum number of 4 x 

4 blocks and hence numbers of boundaries are less between these blocks. Large image 

sizes having more boundaries, affects the MSE. This can be avoided by taking 
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overlapping blocks of 4 x 4. This avoids boundaries and hence good MSE. The network 

is also tested for various compression ratios. 4 x 4 blocks of image or current mirrors 

were used to test the network. Different network sizes were chosen to achieve different 

compression ratios. The results obtained were matching the software response curve for 

the same compression ratios.  

Table 5.8 Compression ratio and MSE 

Network size Size of 
hidden layer BPP MSE 

16-8-16 8 4 12.43 
16-6-16 6 3 18.4 
16-5-16 5 2.5 19.8 
16-4-16 4 2 14.6 
16-2-16 2 1 15.7 
16-1-16 1 0.5 17 

Table 5.8 shows the results of compression ratio vs. MSE for the software simulated 

hardware reference model. At higher compression, MSE is 17, and at lower compression 

it is 12.43.  

 In this chapter, the hardware model for the proposed network is designed, 

modelled, simulated using Cadence Virtuoso and Synopsys HSpice EDA tools. The basic 

building blocks for the neuron model is first modelled using spice coding, spice models 

are verified using 180nm and 130nm library. The spice results are set as reference 

models. Based on the designed schematic, schematic capture of the proposed neuron is 

carried out using Virtuoso schematic editor. Simulation results are verified with spice 

models. Finally, layouts for the neuron cell are designed using Virtuoso Layout Editor, 

layouts are verified for LVS, DRC violations. Parasitic extraction of the layout is 

performed using RC-XT and spice simulations of the extracted model are carried out. 

Results obtained are verified with spice model results. As industry standard tools that are 

termed as signoff tools used to verify the design, the results presented in this chapter are 

almost hardware worthy. The next chapter summarizes the research work and highlights 

the major conclusions and scope for future work.  
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Chapter 6 – Conclusion 

6.1 Conclusion and Recommendations for Future Work 

In this research work, adaptive two-dimensional multilayer neural network architecture 

has been proposed, designed, modelled, simulated and verified using both the software 

and hardware models. The adaptive architecture proposed automatically selects one of the 

three 2-D multilayered neural network architectures based on image entropy and Bits Per 

Pixel (bpp). This architecture eliminates the need for 2-D to 1-D reordering of image 

samples and also eliminates the need for analog to digital conversion of image intensities. 

A modified backpropagation algorithm that is suitable to train the 2-D multilayer network 

architecture is proposed and is used to train the TDMNN architecture. Software reference 

model for Adaptive TDMNN architecture is developed.  MSE, PSNR and Maximum 

Error for various images are computed using the developed software reference model. 

Network parameters such as the number of hidden layers, number of neurons in each 

layer, input sub-block image size, network functions and compression ratio are estimated 

based on results obtained. Based on the experimental results it is concluded that a two 

layered network with sub-block of image size 4 x 4 is optimum in terms of network 

performance and computation time. Input block size restricted to 4 x 4 was selected as a 

tradeoff between complexity and quality.  Noise analysis carried out on TDMNN shows 

that the network has 2 to 25 times improvement compared to DWT-SPIHT technique.  

Error analysis of the TDMNN architecture reveals 10 to 30 times improvement over 

DWT-SPIHT technique.  

Initially TDMNN architecture was designed for image compression and 

decompression. Performances of three TDMNN architectures (Linear, Nonlinear and 

Hybrid) were analyzed. From the results it was found that for 0.5 bpp hybrid networks 

achieves better PSNR and MSE compared to linear network. At 7.5 bpp, linear network 

performs better than hybrid network.  For bpp between 2 and 5, the hybrid network 

achieves better performance compared to linear network.  Also the nonlinear network 

was able to achieve better results compared to the linear and hybrid networks.  Based on 
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the results, it was concluded that the network performance is a function of the image. 

Hence, in order to achieve better performance compared to the conventional techniques, 

adaptive TDMNN architecture is proposed. In this architecture, Entropy of input image is 

computed. Based on the Entropy and the required compression ratio, the control unit 

automatically selects appropriate TDMNN architecture for image compression and 

decompression. Adaptive TDMNN architecture is three to ten times better than TDMNN 

in terms of quality metrics such as MSE and PSNR. MSE and PSNR results obtained for 

adaptive TDMNN architecture for 4 bpp and less than 4 bpp reveals three times better 

compared with DWT-SPIHT results. Software simulation results show that Adaptive 

TDMNN architecture is 60 times faster than DWT-SPIHT. Network is trained with 

multiple image data sets to generalize the network for compression of various images.  

 

Based on the software reference model developed, basic building blocks for 

Adaptive TDMNN architecture are identified for VLSI implementation. Multipliers, 

adders and network functions are the three major building blocks for adaptive TDMNN 

architecture. VLSI implementation of TDMNN building blocks are carried out using 

industry standard tools. Analog network architecture is designed and implemented for 

image compression and decompression. Three different neuron cells (Gilbert cell based 

neuron, modified Gilbert cell based neuron and hybrid neuron cell) have been designed 

and analyzed for its area, timing and power performances. Hybrid neuron cell is selected 

as it is found to be more suitable for VLSI implementation. Hybrid cell multiplies analog 

samples with digital weights and hence called as hybrid neuron cell. Hybrid neuron cell 

consists of multiplier, adder and network function. There is a need of 128 multipliers per 

network for adaptive TDMNN architecture (hidden layer and output layer). A modified 

Multiplying DAC architecture based multiplier is designed involving a total number of 

2816 transistors. The area for the multiplier is 7884 µm2. Hybrid cell (based on modified 

MDAC) is designed using NMOS transistors work at 200 MHz of clock frequency. It 

consumes 232 mW of power at the maximum full scale current of 65.535 µA.  Weights 
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and biases obtained during training are stored in Read only Memory (ROM). Test setup 

for verifying the TDMNN architecture as compressor and decompressor is designed.   

Image sizes 64 x 64 to 8 x 8 were used to test the network performance. MSE computed 

for different image sizes varies from 21 to 14. These results were validated against the 

software reference model and the difference between hardware and software models was 

less than 10%. The network was tested for various compression ratios and the results 

obtained were found to agree with software reference model. A full chip design of the 

proposed architecture was implemented using Cadence Virtuoso, and the physical 

verification was carried out using Assura. DRC and LVS checks were performed and 

then GDSII was generated for chip fabrication.  

Recommendations for Future Work: 

1. Network performances of Adaptive TDMNN can be further improved by 

identifying the entropy of sub-images and selecting the required network. Based 

on image entropy, bpp and computation time, sub-image size can be selected for 

compression using Adaptive TDMNN.  

2. The network performances can be further improved by having multiple two-

dimensional network architectures supporting multiple image properties. Also, 

robust classification algorithms can be identified to select the required network 

for specified compression and decompression.  

3. Two-dimensional training algorithms can be identified to train two-dimensional 

network, as this research while extends the 1-D training algorithm to 2-D network 

by rearrangement of the input image.  

4. The proposed network can be further extended to perform image segmentation, 

edge detection and restoration replacing the digital weight matrix and hence can 

achieve reconfigurabilty.  

5. Hardware blocks designed can be further optimized my minimizing the weight 

matrix by exploiting the redundancy in the weight matrix.  
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6. Hardware realization on silicon and real time testing of the proposed model would 

be a very good scope for future work.  

7. The compressed analog data being analog can be further converted to digital and 

two dimensional encoding schemes and can be used compress the images and 

higher compression can be achieved. The recommendations lead to two-

dimensional signal processing techniques that are slowly finding prominence for 

next generation communication technologies.  
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Appendix-A Backpropagation Algorithm 

A.1 Introduction 
Backpropagation is the generalization of the Widrow-Hoff learning rule to multiple-layer 

networks and nonlinear differentiable transfer functions. Input vectors and the 

corresponding target vectors are used to train a network until it can approximate a 

function, associate input vectors with specific output vectors, or classify input vectors in 

an appropriate way as defined by you. Networks with biases, a sigmoid layer, and a linear 

output layer are capable of approximating any function with a finite number of 

discontinuities. Standard backpropagation is a gradient descent algorithm, as is the 

Widrow-Hoff learning rule, in which the network weights are moved along the negative 

of the gradient of the performance function. The term backpropagation refers to the 

manner in which the gradient is computed for nonlinear multilayer networks.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure A.1 Multilayer neural network architecture 

There are a number of variations on the basic algorithm that are based on other standard 

optimization techniques, such as conjugate gradient and Newton methods. The discussion 

presented in this chapter is taken from Matlab Help and from Neural Network Design by 
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Hagan Demuth. To illustrate backpropagation training algorithm, the multilayered neural 

network (MLNN) shown in Fig. A.1 is considered, the MLNN consists of input layer, 

hidden layer and output layer.  

Output of each layer is given by equation (A.1) 
 
 
 
 
           (A.1) 
Where a is output of each layer, W is the weight matrix, bi is the bias, m represents 

network layer.  Input layer has m = 0, output layer has m = M.  

 
Network Training consists of following steps: 

Step 1: Network Initialization 

Inputs and targets are initialized along with initial weights and biases.  

 
 
 
 
Step 2: Forward Propagation 
 
Input p is set as a0, using the equation below, output of each layer is computed. The 

output of the final output layer is computed and is denoted as a. Equation A.2 presents 

these equations.  

 
           (A.2) 
This is called as the forward propagation technique. 

 

Step 3: Error calculation 
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The difference in network output a and expected target t is computed as in equation A.3, 

based on this error, the weight matrix gets updated.  

 
                                                                                                                                  (A.3) 
 
Step 4: Error sensitivity calculations and backpropagation 

The sensitivities are computed by starting at the last layer, and then propagating 

backwards through the network to the first layer, as given in equation A.4.  

 
 
                                                                                                                                    (A.4) 
 
 
 
 
 
 

 
 
Above equations compute gradient and Jacobian matrix of the error matrix.  
 
 
 
 
 
 
                                                                                                                                    (A.5) 
Sensitivity of each layer is computed as per equation A.4. Based on the computed 

sensitivity in the reverse direction i.e. from output to input layer, the weight matrix gets 

updated.  

Step 5: Weight update 

Based on the sensitivity factor, weight and bias values are update in every layer of the 

network as per equation A. 6.  
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A.2 Software Reference Model for Network Training:  
% image is read for compression  
I1 = imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\trees.tif'); 
I2 = imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\pears.png'); 
I3=imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\peppers.png'); 
I4 = imread('C:\Program Files\MATLAB\R2007b\toolbox\images\imdemos\trees.tif'); 
%size(I) 
image(I1); 
image(I2); 
image(I3); 
image(I4); 
in1=I1(1:64,1:64); 
in2=I2(1:64,1:64); 
in3=I3(1:64,1:64); 
in4=I4(1:64,1:64); 
in1e=entropy(in1); 
in2e=entropy(in2); 
in3e=entropy(in3); 
in4e=entropy(in4); 
% image is displayed  
% read part of the image for training  
% in1=I1(65:128,129:192); 
% in2=I2(65:128,129:192); 
% in3=I3(1:64,1:64); 
% in4=I4(1:64,1:64); 
rr=64; 
figure 
r=4; 
% part image is displayed 
imshow(in1) 
figure 
imshow(in2) 
figure 
imshow(in3) 
figure 
imshow(in4) 
% Image rearrangement  
in1_rearrange=blkM2vc(in1,[r r]); 
in2_rearrange=blkM2vc(in2,[r r]); 
in3_rearrange=blkM2vc(in3,[r r]); 
in4_rearrange=blkM2vc(in4,[r r]); 
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in_combined = [in1_rearrange in2_rearrange in3_rearrange in4_rearrange in1_rearrange 
in2_rearrange in3_rearrange in4_rearrange]; 
%in_combined = [in1_rearrange in1_rearrange in1_rearrange in1_rearrange 
in1_rearrange in1_rearrange in1_rearrange in1_rearrange]; 
% normalizing the input to less than and equal to 1 
in_combined_normalised=in_combined/255; 
% input is set as the target 
target=in_combined_normalised; 
% creating a neural network having 4 input layer and 16 output layer, 
% tansig is input layer transfer function 
% purelin is output layer transfer function  
% to train the network use train rp function which is backpropagation 
% technique 
net_c=newcf(minmax(in_combined_normalised),[8 7 8 
16],{'tansig','tansig','purelin','purelin'},'trainrp'); 
% training constraints  
net.trainparam.show=5; 
net.trainparam.epochs=100; 
net.trainparam.goal=1e-5; 
% train the network  
[net_s,tr]=train(net_c,in_combined_normalised,target); 
% first image for testing  
image1test= in1_rearrange/255; 
a=sim(net_s,image1test); 
% rearrange the matrix for display  
a4=vc2blkM(a,r,64); 
% scale the output to original size 
asc=a4*255; 
% convert to unsigned number  
az=uint8(asc); 
% display the output  
figure 
imshow(az); 
 
%second image for testing 
image2test= in2_rearrange/255; 
a2=sim(net_s,image2test); 
% rearrange the matrix for display  
a42=vc2blkM(a2,r,64); 
% scale the output to original size 
asc2=a42*255; 
% convert to unsigned number  
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az2=uint8(asc2); 
% display the output  
figure 
imshow(az2); 
 
%third image for testing 
image3test= in3_rearrange/255; 
a3=sim(net_s,image3test); 
% rearrange the matrix for display  
a43=vc2blkM(a3,r,64); 
% scale the output to original size 
asc3=a43*255; 
% convert to unsigned number  
az3=uint8(asc3); 
% display the output  
figure 
imshow(az3); 
 
%fourth image for testing 
image4test= in4_rearrange/255; 
a4=sim(net_s,image4test); 
% rearrange the matrix for display  
a44=vc2blkM(a4,r,64); 
% scale the output to original size 
asc4=a44*255; 
% convert to unsigned number  
az4=uint8(asc4); 
% display the output  
figure 
imshow(az4); 
 
%first image 
imageMaxError1 = max(max(abs(double(in1)-double(az)))) 
imageMSE1 = sum(sum((double(in1)-double(az)) .^ 2)) / size(in1,1) / size(in1,2) 
psnr1 = 10*log10(255*255/imageMSE1) 
 
%second image 
imageMaxError2 = max(max(abs(double(in2)-double(az2)))) 
imageMSE2 = sum(sum((double(in2)-double(az2)) .^ 2)) / size(in2,1) / size(in2,2) 
psnr2 = 10*log10(255*255/imageMSE2) 
 
%third image 
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imageMaxError3 = max(max(abs(double(in3)-double(az3)))) 
imageMSE3 = sum(sum((double(in3)-double(az3)) .^ 2)) / size(in3,1) / size(in3,2) 
psnr3 = 10*log10(255*255/imageMSE3) 
 
%fourth image 
imageMaxError4 = max(max(abs(double(in4)-double(az4)))) 
imageMSE4 = sum(sum((double(in4)-double(az4)) .^ 2)) / size(in4,1) / size(in4,2) 
psnr4 = 10*log10(255*255/imageMSE4) 
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Appendix-B 

B.1 Digital implementation of neural network architecture 

In this section, discussion on FPGA implementation of neural network architecture for 

image compression and decompression is presented. Input image of size 128 x 128 is sub 

divided into 8 x 8 blocks of sub images. Each 8 x 8 block is rearranged to 64 x 1 inputs. 

The neural network architecture selected for digital implementation is hybrid 

architecture, the hidden layer has tansig as the network function and the output layer has 

purelin as the network function. The hidden layer consists of 4 neurons with 4 bias 

elements and the output layer consists of 64 neurons with 64 bias elements. 64 x 1 input 

is compressed to 4 x 1 at the hidden layer, and the 4 x 1 output is decompressed to 64 x 1 

at the output layer. The hidden layer and the output layer consist of 256 weights each that 

have been obtained after training. Fig. B.1 shows the neural network architecture that is 

implemented using FPGA.  
 

 
 
 

Figure B.1 NN architecture for image compression 
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To generalize the network for compression and decompression of any image, 20 sets of 

image samples are considered having all the properties of an image such as vertical lines, 

horizontal lines, diagonals, curves, edges, plain surfaces and sharp edges. The network is 

trained using these data sets, so that the weight matrix obtained can be used to compress 

and decompress with any unknown image. FPGA implementation of neural network 

architecture shown in Fig. B.2, it is requried to identify the building blocks of the 

architecture. The hidden layer consists of 4 neurons, with each neuron computing one 

output (z) as in equation B.1, 

 
       n1 = x1w1,1 + x2w2,1 + x3w3,1 + …………………..x64w64,1 + b1h                       (B.1) 

z1= f(n1) = tansig(n1) 

x is the input pixel, w is the weight, b1h is the bias in the hidden layer, n is the 

intermediate output and z is the final output of hidden layer neuron.  

The output layer consists of 64 neurons, with each neuron computing one output as in 

equation B.2, 

   m1 = z1w1,1 + z2w2,1 + z3w3,1 + z4w4,1 + b1o                                                                (B.2) 

x1= f(m1) = purelin(m1) = m1 

b1o  is the bias in the output layer, m is the intermediate output, x is the output at the 

output layer of the neuron.  

Fig. B.2 shows the architecture of single neuron in the hidden layer and Fig. B.3 shows 

the architecture of two neurons in the output layer.  
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Figure B.2 Single neuron architecture of hidden layer 
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Figure B.3 Output Layer neural network architecture (2 neurons) 
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Based on the discussion presented in Appendix-A, the network is trained with various images as 

shown in Fig. B.4. Various possible images that consists of vertical lines, horizontal lines, curves, 

diagonal lines and circles have been used for training. Also general images that have been 

adopted for validating image processing algorithms have also been used for training the network.  
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Figure B.4 Images for training and testing neural network architecture 

The weights and biases for the neural network architecture are obtained after training in 

Matlab and are presented in Table 5.1. The weights and biases are scaled to integer 

values and represented using 2’s complement number system and stored in memory. For 

FPGA implementation, the input operand size is 8-bit, weights and biases are represented 

using 8-bit 2’s complement number representation. The hidden layer consists of network 

function that is realized using tansig. In this work, tansig function is realized using look 

up table approach. The outputs of tansig function for various values of input in the range 

+/- 127 is computed and stored in ROM. The sum of product output of each neuron is 

used to access corresponding memory content of ROM. The sum of product output is 

used as address to the ROM. The output layer does not require look up table as the 

network function is a linear function. Due to scaling and rounding of weights and biases 

using 8-bit number representation, the quantization leads to a maximum loss in weight 

values of +/-(1/27). From the simulation results obtained using ModelSim, it is observed 

that due to scaling of weights, biases in the hidden layer and output layer, there is a 

maximum difference of +/- 10. This is observed based on the Matlab simulation results 

and ModelSim simulation results considering individual pixel values.  Randomly chosen 

pixels values from Matlab and ModelSim results have been compared to find the 

mismatches between software and FPGA implementation. The image quality measured in 

terms of MSE and PSNR are also compared Fig. B.5 shows the results of Matlab and 

ModelSim simulation. For functional verification of HDL model, HDL co-simulation is 

carried out by interfacing Matlab with ModelSim.  
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Figure B.5 Matlab and ModelSim results of decompressed image 

The architecture complexity of input layer, hidden layer and output layer are presented in 

Table B.1. The architecture shown in Fig. B.2 and Fig B.3 requires sub blocks such as 

multipliers, adders, look-up table, registers and control unit for realization. Table B.1 

presents the complexity of neural network architecture in terms of number of sub blocks 

required for hardware realization.  

Table B.1 Complexity of neural network architecture 

 
 
 

Number 
of 

neurons 

Number 
of 

multiplier 

Number 
of 

adders 

Number 
of look 
up table 

Number of 
registers in the 

input layer 
(x+ w+ b+ z) 

Number of 
registers in the 

output layer 
(z+ w+ b+ x) 

Hidden 
layer 

4 256 256 4 64 + 64 +4 + 4 = 
136 

------ 

Output 
layer 

64 256 256 0 -------- 4 + 64 + 64 + 64 = 
196 

Multipliers and adders are the major building blocks of neural network architecture, in 

this work various multipliers and adders are modeled using Verilog and synthesized using 

Xilinx ISE targeting Spartan IIIE FPGA. In general multiplication involves two basic 

operations: 

    1. Generation of partial products 

    2. Accumulation of partial products 
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Performance and speed depends on how we generate partial products, techniques we use 

to reduce the partial products and accumulate them. Based on these points a number of 

researches are in progress. Multipliers can be basically classified into two three 

categories 

1. Sequential multiplier – This involves generating partial products sequentially 

and adds each newly generated product to previously accumulated partial product 

2. Parallel multiplier – It generates partial products in parallel, accumulates using 

a fast multi-operand adder  

3. Array multiplier - array of identical cells generating new partial products; 

accumulating them simultaneously 

∗ No separate circuits for generation and accumulation  

∗ Reduced execution time but increased hardware complexity 

FPGA implementation involving translation, mapping, placement & routing as well as 

device configuration are important steps in FPGA implementation. Implementation of 

multiplier should deal with all the constraints like area, timing and power. The XST tools 

of Xilinx automatically tries to optimize the design by removing unconnected or non 

operational blocks, even though timing constraints cannot be optimized well using Xilinx 

tools it provides the basic information of timing. The summary of implementation results 

is presented in Table B.2.  

Table B.2 Comparison of multiplier architectures 

Multiplier type Number of Slices utilized out of 1920 Delay in ns 
BCSD  156 11.76  
Array 143 39.27 

Modified Booths 91 24.21 
Baugh Wooley 144 44.12 
Wallace tree 186 18.46 

From the results obtained and presented in Table B.1, BCSD and Wallace Tree 

multipliers are selected for FPGA implementation as they are faster than other 

multipliers. In case of BCSD multiplier, the input, output, weight and bias elements need 

to be represented using BCSD number format, thus the entire neural network architecture 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

235 

need to be represented using BCSD number system. This requires additional logic at the 

input and output of neural network architecture to encode and decode inputs and outputs 

respectively from 2’s complement to BCSD number format. For simplicity, Wallace tree 

multiplier is used to realize the neural network architecture. There are various adder 

circuits reported in literature for FPGA implementation, in this work Xilinx adder logic 

that uses carry chain logic is adopted for architecture implementation.  

A single neuron in the hidden layer is modeled using Verilog HDL and is 

synthesized using Xilinx ISE tool. Based on the synthesize results obtained it is found 

that the selected FPGA cannot support implementation of 64-4-64 neural network 

architecture. Hence, Virtex-5 device from Xilinx has been chosen for FPGA 

implementation. HDL modeling for the 64-4-64 neural network architecture is modeled 

and synthesized using Xilinx ISE targeting Virtex-5 FPGA. The synthesized results are 

summarized in Table B.3.  

Table B.3 Synthesis results of 64-4-64 neural network architecture 

Virtex-5 FPGA 
 (XC5VLX110FF676) 

Number of slices 
out of 51840 

Delay in ns Power consumption in 
W 

64-4-64 network  4132 4.406 0.013 

Further ASIC implementation of single neuron is carried out targeting 130nm TSMC 

technology file. HDL model for single neuron cell is synthesized using Design Compiler 

and timing analysis is carried out using Prime Time. FPGA and ASIC synthesis results of 

single neuron cell are presented in Table B.4.  

Table B.4 Single neuron comparison 

Parameter  FPGA implementation(Spartan IIIE) ASIC results 
Gate count 

Number of 2 input NAND 
gates 

25520 1556 

Maximum delay in ns 56  4 
Dynamic power dissipation in 

mW 
35 2  

 



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

236 

ASIC implementation of 64-4-64 network architecture can be further attempted 

optimizing area, power and speed performances. Low power techniques and area 

optimization techniques can be attempted targeting 65nm CMOS technology. One of the 

major observations made during functional verification of neural network architecture for 

image compression and decompression is that, input image being sub-divided into 8x8 

sub-blocks and is compressed and reconstructed at the output layer to its original size 

checker box errors occur in the reconstructed image as shown in Fig. B.6. 

 

Figure B.6 Results of image reconstruction using neural network architecture 

In order to overcome checker box errors, Wilford Gillespie proposed still image 

compression technique using Discrete Wavelet Transform (DWT) and Neural Networks. 

In this architecture, images are decomposed into sub-band components using DWT, 

based on the sub bands obtained image is grouped into multiple sub-bands and is used in 

training the network. Due to decomposition of images into various sub-bands of 

frequency components, and neural network compressing the regrouped sub band 

components, checker block errors are minimized in the reconstructed image. The author 

 

aa0682
Typewritten Text
This image has been removed



 
 
 

Coventry University – Doctoral Programme (PhD) 

   

Adaptive Two-Dimensional Multilayer Neural Network Architecture for Image Compression and Decompression          
 

237 

compared the MSE of the results obtained that with JPEG based results, and was able 

achieve very less improvement in MSE (MSE reduced from 2.9643 to 2.9586). This is 

not a very significant improvement; hence to improve the MSE of the DWT-NN 

architecture a modified DWT-NN architecture called as hybrid architecture is proposed 

and implemented. Fig. B.7 shows the hybrid architecture for image compression and 

decompression using DWT and NN.  

 
Figure B.7 Hybrid architecture for image compression and decompression 

In the modified architecture, the decomposed image after DWT is ordered such that the 

sub band frequency components are arranged such that the corresponding frequency sub-

bands are placed adjacent prior to compression using neural networks. The reordered sub-

bands are used in raining the network, thus optimum weights and biases are obtained for 

compression and decompression. This modified reordering of sub-band components has 

improved the performance of the hybrid architecture. Fig. B.8 shows the modified 

reordering scheme. Fig. B.9 presents the Matlab simulation results of hybrid architecture. 

In the reordered scheme, the numbers indicate the arrangement matrix of sub-band 

components.  
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Figure B.8 Modified reordering scheme of sub-bands for NN training 
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Figure B.9 Simulation results of hybrid architecture 

 
The results obtained can be further improved by choosing appropriate wavelets and 

training the network for various test images. FPGA implementation and ASIC 

implementation of hybrid architecture is carried out, the results obtained have been 

published in IEEE conference on Biomedical Signal Processing held in Singapore during 

December 2008.  
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Appendix – C Entropy  

In information theory, entropy is a measure of the uncertainty associated with a random 

variable. The Shannon entropy is a measure of the average information content one is 

missing when one does not know the value of the random variable. The concept was 

introduced by Claude E. Shannon (1948) in his paper "A Mathematical Theory of 

Communication". Based on the discussion provided by Shannon, the entropy H of a 

discrete random variable X with possible values {x1, ..., xn} is given by: 

                                                       H(X) = E (I(X))                                                      (C.1) 

Where, E is the expected value function, and I(X) is the information content or self-

information of X. I(X) is random variable and p denotes the probability mass function of 

X then the entropy can explicitly be given by: 

                                      )()()(
1

i

n

i
i xIxpXH ∑

=

= = )(log)(
1

ib

n

i
i xpxp∑

=

−                            (C.2) 

Where, b is the base of the logarithm used. For digital applications, b is 2. The b-ary 

entropy of a source S = {a1, ..., an} and discrete probability distribution P = {p1, ..., pn} 

where pi is the probability of ai is defined by: 

                                         i

n

i
bib ppSH ∑

=

−=
1

log)(                                                           (C.3) 

The discussion presented is taken from wikipedia.org. 

In Matlab, there are inbuilt functions provided that can assist in calculating entropy of a 

given matrix. The syntax for computing Entropy of a given input is  

      E = entropy(I) 

Where, E is the entropy, I is the input matrix. For a given input I, entropy(I) returns a 

scalar value representing the entropy of gray scale image I. For a given image Entropy is 

a statistical measure of randomness that can be used to characterize the texture of the 

input image. To compute entropy using Matlab, histogram of the image is required. 

Entropy is defined as: 

E = -sum (p.*log2(p)), where p contains the histogram for a given image. 
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Appendix – D Spice Code Model for Analog Neural Network 

Gilbert cell multiplier 

.subckt mult v11 v1g v21 v2g 1 2 vb1 vdd vee 
 m1 1 vb1 vdd vdd modp l=1u w=120.7u 
 m2 2 vb1 vdd vdd modp l=1u w=120.7u 
 m3 1 v11 3 3 modn l=1u w=4u 
 m4 2 v1g 3 3 modn l=1u w=4u 
 m5 1 v1g 4 4 modn l=1u w=4u 
 m6 2 v11 4 4 modn l=1u w=4u 
 m7 3 v21 5 5 modn l=1u w=2u 
 m8 4 v2g 5 5 modn l=1u w=2u 
 m9 5 vb1 vee vee modn l=1u w=44.5u 
 m10 1 1 vdd vdd modp l=1u w=120u 
 m11 2 2 vdd vdd modp l=1u w=120u 
 .ends 

Differential amplifier 

 .subckt tan v1 v2 1 2 vb1 vdd vee 
  m1 1 vb1 vdd vdd modp l=1u w=1.5u 
 m2 2 vb1 vdd vdd modp l=1u w=1.5u 
 m3 1 v2 3 3 modn l=1u w=2u 
 m4 2 v1 3 3 modn l=1u w=2u 
 m5 3 vb1 vee vee modn l=1u w=3.3u 
 .ends 
Neuron Activation function 

   .subckt fun v1 v2 na1 na0 op1 vb1 vdd vee vsb 
 m1 1 vb1 vdd vdd modp l=1u w=16u 
 m2 2 vb1 vdd vdd modp l=1u w=16u 
 m3 3 v1 1 1 modp l=1u w=2u 
 m4 na1 v1 2 vsb modp l=1u w=4u 
 m5 na0 v2 1 vsb modp l=1u w=4u 
 m6 4 v2 2 2 modp l=1u w=2u 
 m7 3 3 vee vee modn l=1u w=4u 
 m8 na1 3 vee vee modn l=1u w=4u 
 m9 na0 3 vee vee modn l=1u w=4u 
 m10 4 4 op1 op1 modn l=1u w=4u 
m11 op1 op1 vr4 vr4 modn l=1u w=2u 
m12 vr4 vr4 vee vee modn l=1u w=2u 
 .ends 
Neural Architecture 
*neurons in first layer 
x1 v11 v10 w111 w110 1 2 vb vdd vee mult 
x2 v21 v20 w121 w120 1 2 vb vdd vee mult 
x3 1 2 o11 o10 d1 vb1 vdd vee vsb fun 
x4 v11 v10 w131 w130 3 4 vb vdd vee mult 
x5 v21 v20 w141 w140 3 4 vb vdd vee mult 
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x6 3 4 o21 o20 d2 vb1 vdd vee vsb fun 
x7 v11 v10 w151 w150 5 6 vb vdd vee mult 
x8 v21 v20 w161 w160 5 6 vb vdd vee mult 
x9 5 6 o31 o30 d3 vb1 vdd vee vsb fun 
*output layer 
x10 o11 o10 w211 w210 7 8 vb vdd vee mult 
x11 o21 o20 w221 w220 7 8 vb vdd vee mult 
x12 o31 o30 w231 w230 7 8 vb vdd vee mult 
x13 7 8 op1 op0 d4 vb1 vdd vee vsb fun 
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