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Summary

Prompted by the desire to increase the industrial applicability range of
self-tuning control, the objective of this work has been to extend the standard linear
self-tuning framework to facilitate the design of self-tuning controllers for bilinear
systems. Bilinear systems form a well structured class of non-linear systems within which
linear systems coexist as a special subclass. They are, therefore, appropriate for modelling
a wider range of processes and plant than the restrictive, yet convenient, linear model
structures since such models are valid both within the linear subregion and beyond. In
addition to extending the self-tuning framework for bilinear systems another significant
contribution of the Thesis is the introduction of a cautious least squares estimation

procedure which also enhances the existing linear self-tuning schemes.

In recognition of the inevitable plant/model mismatch problems that
accompany the standard linear self-tuning approach, it is pertinent to consider extending
the linear self-tuning framework to accommodate the wider class of bilinear systems. Such
an extended framework should alleviate the problems of plant/model mismatch whilst at
the same time increasing the range of applicability of self-tuning control. An extended
form of the linear pole-placement control strategy is investigated and attention is
restricted to the class of single-input single-output and multiple-input single-output
bilinear systems, noting that the more general class of multiple-input multiple-output

systems can be represented by a series of interconnected multiple-input single-output

subsystems.

In the development of an appropriate bilinear self-tuning controller, a number
of enhancements to the standard estimation algorithms used for linear self-tuning control
have been necessitated; this being due mainly to the increased sensitivity of the bilinear
approach . Enhancements include; a hybrid form of the variable forgetting factor to

facilitate the tracking of slowly varying model parameters; a two-tier adaptive mechanism



involving variable forgetting factor reset coupled with covariance matrix reset for both
rapid and slow parameter variation; and a cautious least squares parameter estimation

scheme for increased robustness.

The bilinear self-tuning controller and its successive variants are assessed
using both simulation studies and real-time laboratory based trials. It is shown that when
the bilinear self-tuner is applied to systems exhibiting bilinear characteristics that
significant improvements in performance are possible over the use of standard linear
schemes incorporating enhanced parameter estimation procedures. Finally, since the
resulting self-tuning controller is potentially applicable for a wider range of applications
than the linear self-tuning scheme, it is pertinent to consider, as one does for the linear
case, the applicability of the bilinear self-tuner to other forms of non-linear systems for

which local bilinearity may be assumed.
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1. Introduction and outline of approach

Introduction

A self-tuning controller (STC), of whatever generic type, is required to
perform the dual role of on-line parameter estimation followed by control law
implementation and it is this sequential rationale that distinctively characterises STC
from any other form of adaptive control. In principle once an appropriate model structure
has been identified, any analytical control law design procedure can be combined with
any recursive parameter estimation procedure. The choice of appropriate algorithms is,
therefore, wide and will be influenced, to some extent, by the particular application under
consideration. In adopting the STC rationale it is assumed that variations in system
behaviour, including effects due to inherent plant non-linearities, may be adequately
absorbed within the time varying nature of the parameters of an adopted linear model

structure.

At first, not surprisingly, industry was slow to respond to the new
technology, however, STC is now rapidly maturing to provide a realistic option for the
control of an increasingly widening range of industrial applications; this being only
recently made possible by the rapid parallel developments in microcomputer technology.
Significant interest has already been shown by the process industries where large system
time constants and assumptions on slowly varying plant dynamics has permitted the
widespread use of STC techniques. However, the number of reported successful
implementations of STC to systems exhibiting fast dynamics and/or where assumptions on
local linearity may be invalid remain rather few and it is in these directions that there is

currently much interest and on-going research.

Traditionally, manually tuned three term proportional-integral-derivative



(PID) controllers have found wide usage in industry; being tuned empirically to provide
an acceptable engineering trade-off between optimal performance and operational
robustness, thus ensuring ‘satisfactory’ operation over a ‘limited’ operating range of the
plant. An advantage of the conventional PID controller is that it may be effectively tuned
without the need for a mathematical model of the plant. This is particularly relevant since
all but for the simplest of plant exhibit non-linear characteristics, suggesting that even if a
model were to be obtained for the purpose of tuning it would only be an approximation
so that there could well be no guaranteed advantages. The disadvantage of the PID
controller, however, is that it is required to be re-tuned / de-tuned for each new operating
point / range of the plant; a time consuming task which requires the skill of an

experienced operator and yet neither guarantees optimality or repeatability.

In an attempt to overcome the latter shortfalls, auto-tuning controllers have
been introduced, thereby removing the need for manual tuning and, as such, have
provided for an element of repeatability. There are basically three generic types of
auto-tuner currently commercially available; one type being based on a mathematical
model of the plant is classified as a ‘one-shot’ STC. The other types make use of pattern
recognition techniques in the time domain and limit cycling techniques in the frequency
domain. Once tuned, however, the auto-tuning PID controller suffers the same shortfalls
as the manually tuned scheme in that, as controller gains are fixed, it is unable to adapt
to variations in the plant or, as experienced by the controller, variations in the operating

range.

Whilst the auto-tuner has found favour in the process industries, it has not
been widely adopted as a replacement for the conventional PID controller for applications
which exhibit fast dynamics and/or severe non-linear characteristics. Distinct from the
auto-tuner is the STC which continually updates a discrete linear mathematical model of
the plant. A key feature of the standard STC approach is that variations in plant

behaviour are assumed to be absorbed into the time varying nature of the updated model



parameters. Shortfalls arising in the implementation of standard linear STC techniques
have been recognised and, in an attempt to alleviate such shortfalls, various adaptations
and enhancements to the existing schemes have been proposed. It is found in practice,
however, that when applied to systems for which assumptions on local linearity may be
invalid, the performance of even the enhanced linear STC often falls short of that

achieved using the conventional PID schemes.

Prompted by the above, STC schemes are required to be developed
application specific and, in order to provide for an effective implementation, it is believed
to be advantageous to incorporate the knowledge of plant non-linearities into either or
both of the estimation and control algorithms. Since STC is implemented digitally, the
incorporation of such knowledge is accomplished using time-step quasi-linearisation

techniques.

In this work, the standard linear self-tuning framework is extended to
accommodate a class of discrete single-input single-output (SISO) and multiple-input
single-output (MISO) bilinear model structures, such non-linear structures being
representative of a wide range of engineering, biomedical and socioeconomic systems.
Bilinear systems are an appealing class of non-linear systems for which the linear control
theory may be readily extended and applied. It is shown that, by taking into account the
non-linearity, or bilinearity, at the design stage, potential significant improvements in
overall system performance are possible. Further, it is believed that the resulting bilinear
STC may be applicable to a wider range of systems, with the applicability range of the
linear STC being a subset of this. Additionally, the bilinear STC may well be appropriate

for other forms of non-linear system for which local bilinearity may be assumed.
=



Outline of approach

The principles of self-tuning control are introduced in Chapter 2 together
with a brief historical development of the subject. A derivation of the recursive least
squares algorithm is presented and this serves to form the basis of a number of extended
parameter estimation schemes which have been developed specifically to overcome the
problems encountered when dealing with bilinear systems. Particular emphasis is directed
towards the pole-placement control strategy since this forms the basis of the bilinear STC
developed in Chapter 3. The noise rejection capabilities of the state-space pole-placement
STC is highlighted via comparative simulation studies involving both the state-space and
polynomial techniques. The shortfalls arising in the implementation of standard linear

STC to non-linear systems is also discussed.

A formal definition of a bilinear system is given in Chapter 3 and examples
of non-linear systems which may be more appropriately represented by bilinear model
structures are briefly discussed. The concept of a bilinear STC is introduced and, based
on the state-space pole-placement approach, a number of interesting alternative STC
algorithms are investigated. The approach, which is adopted for all investigative studies in
this work, makes use of a time-step quasi-linearisation procedure in which a
‘boot-strapping’ technique is employed in a tandem state/parameter estimation scheme.
Early investigations involving the bilinear STC highlighted the need for a more robust
parameter estimation scheme when dealing with such non-linear systems and served to
provide the stimulus for much of the work in Chapter 4. Finally, the approach is
extended to accommodate a MISO bilinear model structure and preliminary investigations

undertaken.

In Chapter 4, a number of enhanced/extended parameter estimation schemes,
which have been developed specifically for improving the integrity of the bilinear STC,

are presented. These include: a hybrid form of a variable forgetting factor for improved



adaptivity in the presence of slowly varying system parameters; a combined variable
forgetting factor and covariance matrix resetting technique for improved adaptivity and
alertness in the presence of both slow and sudden parameter variations; a recursive
instrumental variables technique for improved accuracy in the presence of coloured noise
output disturbance; Kalman filtering and extended Kalman filtering for improved
parameter and joint state/parameter tracking ability in the presence of a priori
engineering knowledge of the plant; and a cautious least squares estimation procedure,
applied either sequentially, cyclically or on reset, in an attempt to improve the robustness
of the bilinear STC as well as provide for increased numerical stability in the absence of
a sufficiently exciting input signal to the plant. Whilst all of these techniques have been
developed principally for bilinear systems, the results are equally applicable to linear
systems and may be readily extended to other forms of non-linear system in which the

non-linearity may be represented in polynomial form.

Real-time trials involving two laboratory based non-linear systems are
presented in Chapter 5. In the first application, use is made of a standard linear STC
which incorporates the various enhanced parameter estimation techniques developed in
Chapter 4. The cautious least squares procedure when used in conjunction with a
switched model linearisation scheme is found to be particularly appropriate. The second
application, which is known from physical considerations to exhibit bilinear
characteristics, forms an ideal test environment for evaluating the effectiveness of the
bilinear STC. A bilinear model structure appropriate for the system is derived from first
principles and the self-tuning framework is extended to accommodate this structure as
outlined in Chapter 3. The effectiveness of the bilinear STC is demonstrated when use is
made of extenc‘led forms of the linear pole-placement and PID self-tuning schemes. The
results are particularly encouraging and indicate that a markedly improved performance is

possible when use is made of the bilinear STC.

Conclusions and discussions for further work are presented in Chapter 6.
5 2



2. Principles of self-tuning control

2.1 Resume

Self-tuning control was originaly proposed under the title of self-optimisation
by Kalman in 1958 [1] but it did not receive much attention because of difficulties in
implementation due mainly to the state of the art of computer technology at that time.
Around the same time an important symposium on self-adaptive flight control systems
was held at what is now Wright-Patterson U.S. Air Force base at Dayton, Ohio in 1959.
At this symposium many interesting ideas were put forward which were later to form the
basis for the early work on model reference adaptive control (MRAC). The sequential
rationale of identification followed by adaptive control was also proposed and this
provided the impetus which ultimately led to the concept of self-tuning control (STC).
Although Peterka revived the concept in 1970 [2] it was the pioneering paper of Astrom
and Wittenmark in 1973 [3], in which the convergence properties were proved, that
triggered off intense interest in STC which is still very much in evidence today. In
parallel with the rapid developments in computer technology, STC is rapidly maturing to
provide a viable control design approach appropriate for a wide range of complex
industrial applications. This is reflected in the amount of interest currently being shown

by industry and the fact that STC's are now available commercially.

The algorithm proposed by Astrom and Wittenmark was the minimum
variance STC in which the sole objective of the control strategy was to minimise the
variance of the system output. Recognising that the minimum variance approach could
lead to a widely varying and possibly unrealisable control input, Clarke and Gawthrop in
1975 [4] e;(tended this approach and proposed the generalised minimum variance STC in
which the objective was to minimise the output variance subject to constraints on the

input variance. Unfortunately both approaches are unable to cope with systems which



exhibit variable dead-time and non-minimum phase characteristics; the latter condition
being prevalent in sampled data systems. In an attempt to overcome these problems
Wellstead and his colleagues in 1979 [5] proposed the pole-placement STC in which the
objective of the control strategy was to re-locate the system closed-loop poles, defining
some pre-specified transient response, whilst the system zeros remain in their open-loop
positions. This approach has proved to be particularly attractive to practising engineers,
probably due to its close links with the familiar classical control design techniques. The
approach also has the advantage in that the desired control objective can be achieved
using a more realistic control action. However, all three approaches have their limitations
when applied in practice and much of the recent research in STC has been directed
towards refining the algorithms and, in many cases, tailoring them to particular
applications. One such variant was introduced by Warwick in 1981 [6] when a state-space
approach to the existing pole-placement STC was proposed. This approach, which provides
a significantly smoother control effort due to its inherent filtering action, forms the basic
framework of the STC which is proposed in this Thesis for bilinear systems and, as such,

is given detailed consideration in this Chapter.

2.2 Problem formulation for self-tuning control

2.2.1 Preliminaries

In principle STC is a conceptually simple and straightforward approach
which may be characterised by two coupled sub-algorithms; one for on-line parameter
estimation and the other for control law implementation. These sub-algorithms can be
linked via a simple route known as certainty equivalence, in which the estimated
parameters are always assumed to be correct, or via a more complex route using probing

or superimposed test signals. These approaches lead to the so-called non-dual and dual



STC respectively; a dual STC being one in which the input serves as both an ideal control
and test signal, whereas in the non-dual STC the input serves as a control signal only. A
further categorisation is made possible by either merging or separating the parameter
estimation and control law design procedures; the resulting STC's being termed implicit or
explicit respectively [7]. A schematic representation of an explicit non-dual certainty

equivalence STC is illustrated in Figure 2.1.

SYSTEM

ESTIMATOR

CONTROLLER

Figure 2.1. Schematic representation of an explicit non-dual certainty equivalence STC.



Adopting the rationale of on-line parameter estimation followed by control
implementation, the STC or self-tuner is able to adjust or ‘self-tune’ its controller
coefficients, in order to satisfy some particular control law objective, as the system under
control itself evolves. The approach assumes that the system to be controlled can be
adequately represented by a linear discrete-time stochastic model, commonly a
single-input single-output (SISO) difference equation. The parameters of the assumed
model are recursively updated using past histories of the input u(t) and output y(t) time
series data; this being commonly achieved using a recursive least squares (RLS) technique
of the form originally proposed by Plackett [8] (See section 2.3). Whilst it is recognised
that almost all practical systems are to some extent non-linear it is assumed that by
adopting a linear model structure the non-linear characteristics of the system are

absorbed into the time varying nature of the model parameters.

A distinctive feature of STC is that any analytical control law design procedure can,
in principle, be combined with any on-line recursive parameter estimation scheme; with
the particular control law being repeatedly applied in order to achieve some pre-specified
system performance criterion as updated parameter estimates are recursively supplied.
Many design procedures for STC have been proposed in the literature and an excellent
coverage of the relevant material together with exhaustive bibliographies on the subject

may be found in recent texts [9,10,11].

2.2.2 Model formulation

It is generally assumed that the continuous-time system to be controlled may
be modelled by the discrete-time linear SISO difference equation or ARMAX
representation

A@Hy® = q*B@™)u() + CqHe® @.1)



where the polynomials A(q™!), B(g™!) and C(q"!) are defined as

A@YH=1 +aq'+aq2+...+ anaq'“a,
B(@") = bo+ b,q7'+ bygZ+ ... + b, g™, by0,
c@H=1 +c,q'+ c,q%+... + cncq'"",

with u(t), y(t) and e(t) being the input, output and white noise sequences respectively,
k>1 represents the system time delay and is expressed as an integer multiple of the
sampling interval, q~! is the backward shift operator defined as q'iy(t) = y(t-i) and the
zeros of the noise colouring polynomial C(q™!) are assumed to lie inside the unit circle.

Representation (2.1) is refered to as the polynomial model structure.

Due to non-linearities and time varying characteristics inherent in all
physical systems, some model mismatch will inevitably occur. Consequently the validity of
the model and the subsequent performance of the STC is dependent on the ability of the
designer to minimise this mismatch. Also, it is normal to adopt a model structure which
presents the least computational overhead yet adequately models the system over a
particular operating range of interest. The selection of the most appropriate form of
equation (2.1) for a particular system is thus an important first step in model formulation

and is summarised as follows:

Selection of sampling interval:
The selection of the sampling interval is a key factor, since this will determine the
value of the integer k (which must always satisfy k>>1). The sampling interval is
ideally chosen as one tenth of the fastest time constant to be identified. This latter
requirement suggests that some a priori knowledge of the system is desirable. In the

absence of such knowledge, good trial and error procedures must be adopted.

Selection of polynomial orders:
The selection of polynomial orders n, and np, will also ideally require some physical

knowledge of the system. For a practical system n,>n, and the minimum values of
10



ng and ny, are selected which adequately model the system. This latter feature
prevents problems arising due to overparameterisation which may lead to numerical
deficiencies in the algorithms. Consideration must also be given to ensure that n,
can accommodate the possibility of an increase in system time delay. Finally, it is
usual to adopt a white noise model by setting the noise colouring polynomial

C(q'l)-l in equation (2.1) so that n_=0.

There are many alternative state-space representations of the ARMAX model
(2.1), each being characterised by the definition of the respective state vectors. The
representation adopted in this work is that proposed by Warwick [6]. It is known as the
innovations or prediction error model and takes the implicit delay observable canonical
form

x(t+1) = Px(t)+ Qu(t)+ Re(t) (2.2a)
y(t) = Hx(t)+ e(t) (2.2b)

where x(t) € R", n nj+k where nj-max{ n,, 0, n. ), is the vector of state variables and

the matrices P, Q, R and H are given initially as

P=[0 g Q=[ b ] (2.3)
T8 W T e 0 ':' : i
| _0 by
| 0
a0
S
| 0 i | o
R=[ o ] B=[ 0 ]
0
(cnj.-a,.j) &
(¢ -a;)

The state-space framework gives rise to a greater understanding and insight

11



into the intrinsic properties of the system, such as stability, controllability, observability
and closed-loop dynamic behaviour. For example, representation (2.2) may be

representative of an uncontrollable system when the Kalman controllability test matrix

has the property rank{K}<n,. This feature illustrates the problem of overparameterisation
which may not be so apparent from representation (2.1). Once identified, this apparent

problem may be readily overcome by reducing the dimension of the state-space model.

Hllustrative example
u(t) Y, y()
+  Ggy(s) > G(s)
J i
zero order
hold
Figure 2.2

As an illustration, consider the sampled system of Figure 2.2, in which

K, - (1—e*T)
G(s) = —— and Ggu(s)=
s(s+a) s

The corresponding z-form transfer function G(z) is given by

@) =
24az+a,
KT + T — 1) K,(1 — e¥T(14aT))
Where bo= s bl = y
o? o?
a,=—(1- eoT) and a,= eoT,

12



This leads to the ARMAX representation (replacing z! by q!)
A@@y® = q'B@Hu(®) + e(t)

with n =2, n;=1 and k=1. From (2.3) the matrices P and Q are determined as

0 1 0 0 b,
- _l ______ -— e
|
0 ' 1 -a, by

and because b,=0, it is evident that the pair PQ does not satisfy the Kalman
controllability criterion. To overcome this apparent problem a reduction in dimension of
the state-space model, indicated by the partition lines, is necessary.
|
A sufficient, but not necessary, condition which ensures both controllability
*
and no loss of information in the reduction process is that n,<n, +k [A1] . Allowing for

possible reduction, the dimension of the resulting state-space representation is denoted as

dim{ state-space } = n<n,.

2.3 Parameter estimation

Having established an appropriate model structure, the next step is to
estimate the values of the model parameters. This is commonly achieved using the

technique of recursive least squares (RLS).

*
Note that references prefixed by the letter ‘A’ correspond to the authors
publications which are listed separately.

13



Historical note

Estimation based on least squares techniques is today a well
established and versatile approach in the field of adaptive control. The method of
least squares estimation was proposed in 1795 by Gauss, perhaps the most original
and prolific mathematician of his era [12]. Gauss was just 18 years old when he
first used the method in the analysis of astronomical observations of planet and
comet motions. The motion of such bodies can be completely characterised by six
parameters (the Laws of Kepler), and the estimation problem perceived by Gauss

was that of infering the values of the parameters from the measured data [13].

It is interesting to note that over 150 years had elapsed before least
squares theory advanced significantly beyond the work of Gauss. In 1950 a very
important development to least squares theory was made when Plackett [8]
extended the results of Gauss to provide a recursive least squares (RLS) scheme.
This work was perhaps inspired by the unfulfilled promise of Gauss whereby he
"reserved for another occassion the explanation of the devices by which the estimates
of parameters can be adjusted with a minimum of fresh calculation due to the
appearance of additional observations.” Today, recursive least squares estimation
techniques are widely used in a diversity of practical applications and, over the last
three decades or so, has provided the stimulus for a wealth of theoretical research.

To provide a basis for developing and extending improved estimation
algorithms for bilinear systems, the development of the RLS algorithm is breifly reviewed
here. It is convenient to follow the route taken by Gauss and Plackett which involves the

progression from the leaét squares algorithm to the recursive least squares algorithm.

14



2.3.1 Least squares algorithm

Re-arranging equation (2.1)
y® = x" 00+ &) 24)

where xT(t) is the observation vector

xT(t) = [y(t-1) y(t-2) . . . y(t-n,) ; u(t-k) u(t-1) . . . u(t-n,k) |
consisting of previous measured values of system input and output; and 6(t) is the
parameter vector

0T(t) = [-a; a5 ...-85 3 by by ... by ]
with &(t) representing a sequence of fitting errors which includes both measurement
errors and estimation errors. The standard linear regression approach is then used to
estimate the p, p=n, +n,+1, elements of the parameter vector 6(t).

y(1) =xT (10 + &)

¥y2) =x'20 + &Q2)

yM) = xT(M)0 + EM)

This assumes that M, M>p, data sets are available. In matrix form this may be expressed

as
yM) = X(M)® + EM) (2.5
where
yM) = | y(1) XM= | x'(1) EM) = | &1 |
¥(2) x'(2) &2)
yM) xT(M) EM)

15



The least squares problem percieved by Gauss was that of estimating the parameter
vector denoted (M) subject to minimising the least squares cost function
M
I©@= " &i? = ETOVHEM) (2.6)
=]
After M observations it follows from (2.5) that

Iy(©@)= (YM)-X(M)OM))' (y(M)—X(M)O(M)) 27
In order to minimise the cost function J,(@) of (2.6) it is required that the p

partial derivatives of J,,(0), with respect to the elements of 8(M), should be

simultaneously zero.

ol\(6)

=0 (2.8)

00 0= 10
Expanding equation (2.7) gives
Iu(0)= yTM)yM) — 6T(MXT(M)y(M)
— YT MXMOM) + 6TMXT(MX(M)OM)
Using the vector differentiation [14] given in Appendix 1 leads to

CUVC))

= — X"MyM) —X"(M)y(M)
00

+ XTxM))ToM) + (XT(M)X(M))OM)
and since XT(M)X(M) is symmetric it follows that

XTMXM)= XTMXM))',

giving
A (6)
Tl = —2XT(M)yM) + 2XT(M)X(M)BM),
00 0=6
so that
XTMyM) = XTOHXMBM) 29)

16



which gives

M) = [ XTMXM)I XT(M)yM) (2.10)

which is the optimal estimate in the sense of least squares based on M observed data sets.

The matrix [XT(M)X(M)] is the information matrix and its inverse is known as the error

covariance matrix denoted @(M). Making this substitution (2.10) becomes

M) = dM)XT(M)y(M) (211)

Remarks

i)

ii)

iii)

The resulting least squares estimator minimises the residual error
EM)=y(M)—XT(M)O(M), and does not automatically minimise the error

O(M)—B(M).

The least squares approach given in equation (2.11) is only suitable
for ‘batch’ processing off-line. In its present form, a(M) is estimated from M
observations and there is no means by which an extra observation can be used to

update the estimate 5(M+1) without repeating the whole procedure.

It is worth noting that the least squares cost criterion is by no means

absolute; with other cost functions being equally appropriate such as

M
@)= ) | (i)
i=1
or Ju@)= maxf e(i) [, 1<i<M

or any other meaningful cost function. The least squares technique is algebraically

tractable and, as such, has found wide acceptance.
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2.3.2 Recursive least squares algorithm

The proposed extension by Plackett [8] was to make equation (2.11)
recursive; this being achieved by expressing the estimate 3(M+l), obtained after (M+1)
samples, in terms of the estimate 5(M) obtained after M samples, plus a corrective action
based on the new information available at sample (M+1). In qualitative terms

5(M+1) = a(M) + corrective action based on y(M+1) and x(M+1).

This extension reflected the increasing interest in the use of the least squares technique
at the time. Whereas it had previously been used for retrospective off-line batch analysis,
its potential as an on-line tool for generating updated parameter estimates as new

information became available was becoming increasingly apparent.

Extending (2.5) after (M+1) observations an extra row xT(M+1) appears in X
and an extra element y(M+1) appears in y,

ie. yM+1) = y(1) XM+1)= xT(l) (2.12)
¥(2) x1(2)
y(M) xTM)
y(M+1) xT(M+1)
L o L o

y(M) = XM | oM+l + | EM) 2.13)

It follows from (2.11) that after (M+1) observations

0M+1) = dM+1)XT(M+1)y(M+1) (2.14)

where

SM+1) = [ XTM+1)XM+1) ]! (2.15)
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Re-writing (2.15) in partitioned form leads to

SM+l)= | [---ocmon| |cozeon-- (2.16)
xT(M+1) xT(M+1)

which on expanding gives

dM+1)= [ X' M)XM) + x(M+1)xT(M+1) ]! (2.17)
and because @ = [ X"X |,

DM+1) = [D'M) + xM+1)xT(M+1) ]! (2.18)
It is apparent that matrix inversion is necessary to obtain the updated covariance matrix.
However, by making use of the matrix inversion lemma [15] (see Appendix 2) equation
(2.18) simplifies to

SM)x(M+1)xT (M+1)@M)

PM+1) = dM)— (2.19)
1 + xTM+1)@M)x(M+1)

Note that the quantity [1 + xT(M+1)¢5(M)x(M+l)] is a scalar, so that no matrix inversion

actually takes place.

Similarly, re-writing equation (2.14) in the partitioned form leads to

BM+1) = dM+1) [ XTM): x(M+1) ] [ y(M)] (2.20)

which on expanding gives

6M+1) = dM+1) [ XT(M)yM) +x(M+1)y(M+1) | (221)
and from equation (2.9) it follows that
X"y = &' vdv) (2.22)
Substituting equation (2.22) into equation (2.21) gives
6(M+1) = BM+1)[ & (MPBM) + x(M+1)y(M+1) ] (2.23)
and adding the quantity

M) — dM+1)@ ' M+1)8M) = 0

yields a simplification, such that
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6M+1) = dM+1)[ &7 MBM) + x(M+1)y(M+1) ]
+ [8(M) — dM+1)&" (M +1)8M) |

= OM+1) [ 7' (MIM) + x(M+1)y(M+1)
— @7 (M+1)BM) ]+ 8M)
=0M) + [[2'M) — & '(M+1)] OM)
+ x(M+1)y(M+1) | (2.24)
From equation (2.18)
o'M) — & Ms1)= &' M) — [@'M)  + xM+1xTM+1) ]
= — x(M+1)xT(M+1) (2.25)
Substituting equation (2.25) into equation (2.24) and re-arranging gives
B(M+1) = B(M) + SM+1)x(M+1)[ yM+1) — xT(M+1)8(M)] (2.26)
in which @(M+1)x(M+1) is known as the gain vector, y(M+1) is the current observation
of the output and xT(M+1)8(M) is the least squares prediction of y(M+1); the quantity

[y(M+1)—-xT(M+l)§(M)] being known as the estimation prediction error.

The recursive algorithm

On-line use of the recursive scheme makes use of data pairs u(i), y(i), for
i=1,2,.M where M is now allowed to increase to infinity with the recursive form making
use of new data as it appears on-line. It is convenient to adopt a new notation for the
recursive procedure, since only the quantities 0 and & are retained between iterations.

This is achieved by replacing O(M+1) and dM+1) by (1) and &(t) respectively, leading

to the algorithm
D(t-1)x(t)x T (1)d(t-1)
d(t) = d(t-1) — (2.27)
1+ xT(OD(t-1)x(t)
0t = 8(t-1) + DOx() [y(1) — x"(8(t-1) | (2.28)



Such a recursive scheme generates the current estimate 5(() at time t based upon the

previous estimate a@-1) generated at time t-1, the previous observations x(t) available at

time t, the updated covariance matrix @(t) at time t and the current measurement of the

system output y(t) taken at time t.

Remarks

i)

ii)

The RLS algorithm is computationally efficient, requiring only matrix
multiplication and no matrix inversion. Between samples it is only necessary to store

the quantities 6«) and &(t).

The matrix @(t) is directly proportional to the estimation error covariance
matrix
cov 0-0)= E {6-0)@-0)")
Consider the presence of measurement noise e on the output y, then
o= (xTx)'xTy
= (XX XT(X0+e)
=0 + X™Xx)'xTe
so that the estimation error covariance matrix becomes
cov 0—0)= E {(X"X)"'XTeeTX(XTXx))
= (XTX)1XT E {ee} X(X"X)"!
assuming that the elements of X are uncorrelated with the elements of e (which
may not be the case in practice). If it is further assummed that the elements of e
are serially uncorrelated with variance o? (i.e. that the output sequence y(t) is
contaminated with white noise of variance 02), then
cov @—0)= (XTX)'XT o1 X(X"X)™!
= oz(XTX)-l
= o?d(t) (2.29)
Then D(t) is dire(;tly proportional to the estimation error covariance matrix and

conveniently provides an indication of the accuracy of the estimated vector 8, so
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iii)

v)

vi)

that the algorithm provides its own error analysis. Thus one implication of equation

(2.29) is that a little noise can be advantageous in keeping the algorithm alert.

Note that equation (2.28) has an intuitive ‘feel’ for when the estimate 0is
close to its true value, the term [y(t)—x"(t)(t-1)] will be small and hence the
corrective action will be small. Also, as the elements of @(t) decrease, indicating

increasing accuracy in 5(!). the corrections to 5(() will tend to decrease.

Initialisation of the algorithm: Perhaps the simplest method is to set 8(0)
according to any a priori information and then to set @(0) according to the
confidence one has in such information (noting the interpretation of &(t) as a
covariance matrix). A typical choice in the absence of such a priori knowledge is
3(0)-0 and @(t)=ul where I is the identity matrix and u is some large positive

scalar.

The RLS algorithm can be arranged into the slightly different form [15]

8 = 8(t-1) + PV [ y(t) — xT(VB(t-1) ] (2.30)
where

d()= S-Dx)[ 1+ xTOD(t-1)x(1)] ! @31)
and then

&)= [ 1— $(Ox"(1) J&(t-1). (2.32)

In this form ¢ can be considered as a gain vector which acts on the estimation

prediction error (y—x16).

The RLS algorithm considered so far is unable to adequately adapt to
variations in plant behaviour since all measured data is given equal weighting in the
least squares cost function (2.7). In order to facilitate the tracking of slowly varying
parameters, a forgetting factor A<1 is introduced into the algorithm. The forgetting

factor effectively provides an exponential window length, or fading memory, given
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vii)

approximately by M=(1—4)"! and ensures that greatest emphasis is given to the
most recent observations. The forgetting factor is incorporated into the RLS
algorithm via the least squares cost function

I= (y— X6) A (y — X0)

where A is the diagonal matrix

A= M |

AZ
A.l

The resulting adaptive least squares scheme is realised by a simple modification to
the covariance update equation (2.32), such that

()= [1— ¢x"() 1&(t-1) / 2.
Factors affecting the choice of forgetting factor are discussed in [A2]. In an attempt
to overcome the attendant problems of covariance blow-up, reported in [16], a
hybrid form of the variable forgetting factors proposed in [17,18] is developed in

Chapter 4 for bilinear systems.

Equations (2.31) and (2.32) may be further converted to a ‘true’ covariance
matrix form (See Kalman filter, Chapter 4). Since the error covariance matrix

cov(0—0)=0?d(t), where o? is the assumed variance of the noise on y, then

$H)= &E-Dx®[0+ xTOS - 1)x®] o
and
&) = [1— ¢x"(1) (-1 2.39)
where @'(t)=cov(6—0).
=]
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2.4 Control law design

As indicated in the introduction, the pole-placement control strategy is
adopted here. The corresponding control law procedures for both the polynomial and

state-space approaches are briefly outlined.

The self-tuning pole-placement controller makes use of the non-dual certainty
equivalence approach in which the parameter estimation and control law implementation

stages are considered to be separated (i.e. an explicit STC scheme).

Following the STC rationale, updated parameter estimates generated from
within the estimation algorithm are progressed to the control law algorithm where

controller parameters are subsequently updated.

2.4.1 Polynomial pole-placement control law

The original self-tuning pole-placement control algorithm proposed in [5]
makes use of the control law

D(gHu® = G@™y(® 2.35)
where the controller polynomials D(q'l) and G(q") are given by
Dq)=1 +d;q"+ dyq 2+ .. +d, 4™
G =g+ a7+ 8972+ - + 8,9
The controller coefficients are obtained from the polynomial identity, or Diophantine

equation,

A@hHD@E!) - ¢*B@ G = Ir'@q?) (2.36)

where I'(q"1) is the user specified closed-loop pole polynomial
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r@h=1+7a" + 702+ . + 74,977, ny=n,, (237)
the zeros of which are the desired closed-loop poles. In order for a unique solution to
exist for the controller coefficients, it is suggested [5,19] that the orders of the controller
polynomials D(q'l) and G(q'l) be constrained such that n =n,+k-1 and ng=na-1. A
derivation of the polynomial identity together with a discussion on the orders of the

controller polynomials is given in Appendix 3.

Note that (2.36) may be re-formulated in the matrix form

- - - B - -

1 0 }k—l 0 d, = 71—,
G Taual
9 3 by
a, b 0 Ay k-1
by &
¥ Yna 20,
na by, 0
0 a, ' ' n, +k-1
n,+k-2 [ . 4 ) ] b
0 s 0 Zeros
zeros ! Rl Bt 4 I ]
[ —— | Emee e ey )
nb+k-1 n,

which is readily solved at each time step to provide the updated controller coefficients.

Remarks
In order to justify use of a recursive least squares estimation
procedure the noise colouring polynomial C(q'l) in equation (2.1) must be taken as
unity, implying that white noise is assumed. Although this assumption may lead to
biased estimates if the noise is non-white, the self-tuning property [5,19] ensures
that overall  control = is still achieved provided the estimated system

parameters converge to some steady-state values.
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2.4.2 State-space pole-placement control law

The state-space pole-placement control strategy makes use of the familiar
state variable feedback control law
u(t) = Fx(t) (2.38)

where §(t) is the estimated state vector obtained from a steady-state Kalman filter [20]
and F=[f, f,,.. f | is a feedback vector chosen such that the resulting closed-loop
system matrix [P+QF], obtained from substituting (2.38) in to the state equation (2.2a),
has the desired eigenvalues, or equivalently

ny

det[I— q”'[P+QF] | = 1+ > 7q'= I'q”™"),
i=1

where I’ (q'l) is the desired closed-loop pole polynomial given in (2.37).

Steady-state Kalman filter

Subsitituting the output equation (2.2b) into the state equation (2.2a) and
eliminating the noise term e(t) leads to
x(t+1) = [P — RH]x(t)+ Qu(t)+ Ry(t) (2.39)

which is effectively equivalent to an identity observer.

Re-arranging (2.39), replacing x(t) by its estimate §(t), substituting
P,=[P—RH] and making use of the backward shift operator q! leads to
x@®=[1- q'P; "' [Qu(t-1) + Ry(t-1) ] (2.40)
which is known as the steady-state Kalman filter (SKF) used previously by Warwick

[6,19] and Caines [20].

It is interesting to note that the implied matrix inversion in (2.40) is really

only a transparent problem with [I—q'lPl]’l being readily generalised as a lower
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triangular matrix consisting of backward shift operators. It takes the general form

l-qgP'=f1 ¢ . . ... 0] (2.41)
-1
2 g1
0
-1 " p o and
L q-(n ) q 1 ]

The resulting state estimator (2.40) is optimal in the sense that if P, Q and R are known
and the output disturbance is white then the error dynamics, determined by the
eigenvalues of P,=[P—RH], ensure that the estimated state vector converges to the true
state vector in n discrete steps. (In the case of coloured noise, the rate of convergence
will depend on the locations of the zeros of C(q‘l) which are assumed to lie inside the
unit circle.) However, within the self-tuning framework the elements of P, Q and R are
themselves recursively estimated and, as a consequence, convergence of the state
estimator is dependent upon convergence of the parameter estimator. This does not
present an unreasonable situation since variations in system parameters are normally

assumed to be much slower than variations in system states.
Dyadic form of feedback vector F

There are many methods for determining the feedback vector F and a good
summary of these may be found in [21]. The approach adopted here makes use of the
dyadic form [22] and differs from that originally proposed in [6]. The dyadic approach,
which is based on functional relationships between the open and closed loop systems
[23,24], provides a straightforward method for obtaining the feedback F and a detailed

derivation is given in Appendix 4.
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Essentially, the feedback vector is obtained from
FT= w-ls (2.42)
where ST=[0 ...0 (7,8, ) ... (7;—8))]
and W is the symmetric matrix given by
W=KL
in which K is the Kalman controllability test matrix
K=[P"IQ:...:PQ:Q]

and L the lower triangular matrix

L =-— 1 (ST 0
a,
f 0
[ 351 a, 1 |

It is interesting to note that for the feedback vector F to exist, the symmetric matrix W
must be non-singular. Being lower triangular, L will always satisfy this so the only
condition for the existence of F is that K be of full rank (i.e. the Kalman controllability
test must be satisfied). This feature highlights the need for model reduction in order to
avoid potential problems of overparameterisation. The symmetry of the matrix W and its
representation in terms of the Kalman controllability test matrix are considered in

Appendices 5 and 6 respectively.



2.5 Analysis of the polynomial and state-space approaches

A simple analysis of the polynomial and state-space control algorithms
presented here reveals that whilst the two control laws are theoretically identical, having
equivalent input/output maps, their implementation in the presence of output or
measurement noise gives rise to distinctively different yet equable control action. The
results of this section serve to substantiate the findings reported in [6,A1,A3]. The results
suggest that the state-space approach, with its inherent filtering action, should produce

the more ‘smooth’ performance.

2.5.1 Analysis of the control algorithms

Whilst the following results may be readily generalised, for illustrative
purposes consideration is given here to the system
A@y® = q*B@u®) + Cae(t),
in which n,=2, n;=1, n_=0 and k=1, in order to highlight the fundamental difference

between the two approaches.

The corresponding polynomial control law given by equation (2.35) may be

expressed as

(1+d,q7Hu® = @o+e,a )y
which on rearranging leads to

u(t) = goy(t)+g,y(t-1)—d,u(t-1). (2.43)
Similarly, the corresponding control action generated by the state variable feedback
control law of equation (2.38) may be expressed as

u(®) = £,x,(0) + ‘fziz(t). (2.44)

In order to demonstrate the equivalence of the two approaches in the absence of noise,
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consider the direct expansion of the state estimates obtained from the SKF, equation
(2.40),

x,(t) = —a,y(t-1)+ bju(t-1)

§2(t) = —a,y(t-1)— a,y(t-2) + byu(t-1) + b u(t-2).
Note that due to the form of H in the state-space formulation (2.3) it follows that the nth
state variable Axn(l), in this case ;z(l), corresponds to the noise free system output
(y(t)—e(t)). Thus in the absence of noise (i.e. e(t)=0) the state estimates may be expressed
as

X;(1) = —apy(t-1)+ bju(t-1) (2.452)

Xp(t) = y(v). (2.45b)
Substituting equations (2.45) into equation (2.44) leads to

u(t) = f,[—a,y(t-1) + byu(t-1)] + fy(1).
Re-arranging

u(t) = foy(t) — fa,y(t-1) + f;bu(t-1). (2.46)
By comparing coefficients on the right hand sides of equations (2.43) and (2.46) it is
clear that there is a direct relationship, such that

f,=g, fia,;=—g, and fb=—d, (2.47)
which may be verified by direct expansion of the respective controller coefficient

equations (2.36) and (2.42). Hence in the absence of output noise the state-space and

polynomial control algorithms are equivalent.

The fundamental difference between the two control algorithms is that the
polynomial approach makes direct use of the current output whereas the state-space
approach, which incorporates the SKF equation (2.40), makes use of a noise free
prediction of the current system output. Consequently in the presence of output noise the
control algorithms differ with %(t):.‘-y(t) and the resulting control actions give rise to
differing input/output sequences. It is noted that with differing input/output sequences,
due to the presence of noise, the convergence behaviour of the estimated model

parameters could also differ so that the relationships (2.47) may no longer be strictly
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correct.

Remarks

i) A simple analysis of the polynomial and state space model structures has
revealed that whilst they are commonly regarded as being equivalent, in practice (in
the presence of output noise) it is found that they may well give rise to distinctively

different controller action.

ii) The above observation stimulated the search for a state space structure
which is truly identical to the polynomial approach in terms of its practical
implementation as well as from theoretical considerations. It is interesting to find
that this may be achieved via a simple re-configuration of the system state vector.
The resulting structure differs from the normal innovations approach, which
essentially gives rise to a prediction error model of the form (2.3), in that a

‘filtered’ state-space model is produced [A4].
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2.6 Simulation studies

This section highlights typical results of simulation studies undertaken in
[A1,A3] involving both the polynomial and state-space pole-placement techniques. The
results reinforce the findings of section 2.5 and generally support the claim in [6] that the
state-space approach produces the more favourable response in terms of a ‘lighter’ control

action.

In [A1] the basic form of the system under investigation is that previously
adopted by Astrom and Eykoff [25], in which
(1 — 150" + 0.74D)y(t) = q”' + 0.5 )u(t) + e(t)
and the objective is to regulate the output y(t) about a level given by B(1)/I'(1) with
r(t)=1.0 and closed-loop poles effectively specified at -3 and -10 in the s-plane when the

sampling interval T is taken as 0.1 second. Each test is taken over 100 iterations.

The system parameters are varied from their nominal values in order to
produce a number of interesting test conditions. The test conditions investigated in [A1]
include

(i) various levels of white output noise (fixed parameters),
(ii)  various levels of coloured output noise (fixed parameters),
(iii) non-minimum phase system (parameter b, differs from its nominal value of

0.5 to become 1.1),

(iv)  open-loop unstable system (parameter a, differs from its nominal value of

-1.5 to become -2.1),

Results of test (i) are presented in Figures 2.3 and 2.4 which correspond to the use of the
polynomial and state-space approach respectively. In each case the upper trace shows the
system response y(t) and the lower trace the control actuation signal u(t). It is readily

observed that the variance of the control signal is significantly reduced when use is made

of the state-space approach. This feature is highlighted in Figures 2.5 and 2.6 which
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illustrate the same control actuation signals when increased by a factor of five. It is found
[A1] that with the exception of the open-loop unstable system, test (iv), that in terms of
reduced control input variance, the state-space approach generally produces the more

favourable results.

In [A3] the system under investigation is that of an industrial hydraulic test
rig [26] which has been developed specifically for the purpose of evaluating alternative
STC techniques. The model adopted for simulation studies takes the form

(1 — 0.48927q"! + 0.36327q 2)y(t) = 4.78426u(t-1);
this model being identified on-line for a given region of operation. A full description of
the test rig including a discussion on the inherent non-linearities is given in [27]. In [A3],
the performance of the existing polynomial STC is compared to the state-space STC when
the system model is subjected to various levels of output noise disturbance. The results
presented here again serve to highlight the difference between the two approaches in the
presence of noise. Figures 2.7 and 2.8 correspond respectively to use of the polynomial
and state-space STC when the feed flow is varied in the absence of noise, indicating little
or no difference in performance. However, it is clear from the results given in Figures 2.9
and 2.10, which also correspond to the polynomial and state-space STC, that in the
presence of noise use of the state-space approach, with its inherent noise rejection

cababilities, leads to a markedly superior performance.

Remarks
The state-space innovations model, or so called prediction error model, is found to
provide the more favourable results in terms of its noise rejection capabilities and,

as such, forms the framework for the bilinear self-tuning controller which is

developed in Chapter 3.
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2.7 Concluding remarks

Whilst there are significant potential advantages to be gained by adopting
STC techniques, it must be noted that the number of reported successful implementations,

on all but the simplest of plant, remain few.

Historically, the main shortfall has been two fold: Firstly, early
implementations of STC were, by necessity, based on restrictive low order model
structures and subsequent controller performance was often, not surprisingly, found to be
inadequate; secondly, attempts to capture complex plant dynamics, including effects due
to non-linearities, necessitates high order linear models, thus leading to excessively large
computational overheads and the possibility of numerical instability due to

overparameterisation.

Due to the recent advances in microcomputer technology the above
arguments no longer hold and STC potentially offers a realistic option for the control of
an increasingly widening range of applications. It is believed, however, that if the
advantages of the rapidly developing technology are to be fully realised then the
self-tuning framework should be extended to accommodate for known/identified plant
non-linearities at the design stage. Thus significantly reducing the major problem of

plant/model mismatch which is unavoidable when adopting  linear STC.

In an attempt to increase the applicability range of STC, the self-tuning

framework is extended in Chapter 3 to accommodate a class of discrete-time bilinear

systems; such systems encompassing a wide range of practical applications.
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3. Self-tuning control for bilinear systems

3.1 Bilinear systems

Self-tuning control has generated significant interest in the process industries
where large system time constants and assumptions on slowly varying model parameters
permits the widespread use of such adaptive schemes. However, the reported successful
implementations of STC to systems which exhibit fast dynamics and/or where
assumptions on local linearity may be invalid remain rather few and it is in these

directions that there is currently much interest and on-going research.

Prompted by the shortfalls arising in the implementation of standard STC
schemes to non-linear plant, the need for an alternative approach, in which plant
non-linearities are taken into account at the design stage, has been identified. In this
Chapter, the standard linear STC framework is extended to accommodate a well
structured class of non-linear systems for which extensions of the linear control theory
may be readily developed and applied; such systems being defined originally by Mohler

[28] are known as bilinear systems.

Bilinear systems are defined to be linear in terms of both state and control
when considered independently, with the non-linearity or bilinearity arising from coupled
terms [28]. Such systems form an important class of ‘near linear’ systems and are
representative of a wide range of biological, economical and engineering applications
[29-35]. These include fermentation processes, effects due to cancer drugs, population
growth, distillation columns, disc braking systems, AC/DC motors and heating/cooling
processes. When considering such applications the use of a bilinear model structure can
often provide a greater insight into the underlying physical phenomenon, leading to a

better understanding of system behaviour than the convenient, yet often inadequate,
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linear model structures.

Whilst identification of bilinear systems has received much attention in the
literature [36-41] it is found that in general, the resulting algorithms are not readily
implementable and are thus inappropriate for use within a STC. Although aspects of
stability, controllability and optimal control of bilinear systems have also received much
attention, often leading to complex strategies [42-49], the integration of both
identification and control strategies in the Qesign of STC appears to be limited to the

work of the author [A5-A13].

In references [A5-A13] self-tuning principles have been developed for a class
of SISO discrete time bilinear systems and extended forms of the linear pole-placement
algorithm have been investigated. Essentially, due to its noise rejection capabilities, the
state-space innovations framework has been adopted and, by making use of quasi-linear
state variable feedback, the objective of this extended STC scheme is to relocate the
closed-loop poles of the linear part of the overall bilinear system. In developing the
bilinear STC algorithms a number of approaches for obtaining the feedback vector and
the estimated state vector have been considered [A5] and these are described in section
3.3. The resulting algorithms are assessed in terms of their ability to achieve the control
objective whilst at the same time producing an acceptable level of variance in both
control input and system response. The approach adopted on this basis is further
developed to include an alternative structure for the observation vector [A6] which is
used in an extended form of the basic RLS algorithm. The resulting scheme, which is
described in [A7], makes use of a ‘boot-strapping’ technique in which the parameters and
states are estimated in tandem. In [A8,A9] an enhanced estimation scheme involving a
combined variable forgetting factor and covariance matrix resetting procedure is
investigated. The resulting two-tier adaptive mechanism is able to handle both slow and

sudden parameter variations.
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A significant step in the development of the bilinear STC has been the
introduction of a cautious supervisory procedure [A10]. The resulting cautious approach
differs from that discussed in [9,16] in that caution is applied within the estimation
algorithm rather than at the control implementation stage. In this way the designer has
the ability to influence the STC through a practical knowledge of the system. A summary
of the developments in the design of the bilinear STC is given in [A11,A12]. Finally in
[A13], the STC is extended to accommodate the class of multiple-input single-output

(MISO) bilinear systems.

In this Chapter attention is focused towards the development of the bilinear
STC framework, with the enhanced estimation techniques being considered separately in

Chapter 4.

3.2 Problem formulation

Consider the SISO state-space bilinear system SBL(n,m)

x(t+1) = Px(t)+ Qu(t)+ Re(t) + liu(t-hl)Nix(t) (3.1a)
¥ = HX()+ e(t) . (3.1b)
where x(t)eR", ni-nj+k with nj-max{na,nb,nc}, is the vector of state variables and u(t),
y(t) and e(t)eR are the input, output and white noise sequences respectively,k>>1 is the
system time delay expressed as an integer multiple of the sampling interval and n,, n, and

n, are the orders of the polynomials A(q‘l), B(q!) and C(q"!) as previously defined in

Chapter 2. A diagrammatic representation of equation (3.1) is illustrated in Figure 3.1
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Figure 3.1. Illustrating SISO bilinear system SBL(n,m).
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In adopting the state-space self-tuning framework for the bilinear STC, two
model structures are required; a polynomial structure for parameter estimation and a
state-space structure for control law implementation. Since all forms of equation (3.1) will
not be a realisation of a polynomial bilinear system PBL(n,m), the following equivalent

structures are adopted.

Structure 1

State-space innovations model SBL(n,m):

P=]0 0 Q=] b,
"R J
0 :
-anj bO
: 0
_ 0 1 -a, d i 0 _
r 1 r - - -
R = 0 HT = | 0 N=]0..0 ny (3.2)
0 ) ) e,
(Cn;2n) . . . Mg
: 0 0 0 0
©-ay) gkio o
- . - . L .

Note that the form of P, Q, R and H is the same as those given in equation (2.3). Any
system of the form (3.1) may be represented in the form (3.2) by a similarity
transformation provided the linearised part of (3.1) is observable and that rank{N,THT}=1

for all i [42].
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Structure 2

Polynomial bilinear model PBL(n,m):

A@Hx®) = q* Bl@Hu®+ [C@H—-A@Q™!) 1 e®)

nb m
+q* 3 D oxut-isj+ (3.3a)
i=0 j=1
y(®) = x(t)+e(t) (3.3b)

where x(t)eR is the unmeasurable output and, due to the form of H in (3.2), x(t)=x(t) the

nth component of x(t).

Allowing for possible reduction in dimension, as indicated in Chapter 2, the
*
class of systems is restricted such that n,<n,+k. Following the reduction process the
matrices P and R may not have the k leading zeros as indicated in (3.2) and the

dimension of the state-space model is denoted n<n,.

3.3 Control algorithms considered

In the linear self-tuning framework pole-placement via state variable
feedback provides a straightforward procedure, however, in the bilinear self-tuning
framework a number of interesting options are made possible. In this section four such

options are outlined.

This restriction is only necessary if reduction in the state-space dimension is
required. It is still necessary for practical purposes that n,>n,.
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3.3.1 Outline of approach

The control algorithms considered all make use of the general state variable

feedback form
u(t) = Fx(t) (3.4)

where, as outlined in Chapter 2, ;(l) is the estimated state vector and F is the feedback
vector chosen such that the resulting closed-loop system behaves in some pre-specified
manner. In developing the self-tuning controller for bilinear systems four potential
self-tuning algorithms were investigated. With the exception of the first algorithm, all
schemes considered make use of an extended form of the linear state variable feedback

control law given by equation (3.4):

i) As an initial starting point it is pertinent to consider the application of a linear
STC scheme (indeed this would be a natural first choice in reality, with linear STC
strategies being applied to non-linear systems generally). This approach, which forms
the basis of Algorithm 1, continually invokes the assumption that inherent plant
non-linearities are adequately absorbed within the time varying nature of the

parameters of an assumed linear model.

ii & iii) An alternative approach is to estimate the parameters of the bilinear
system, a step in itself which can be achieved in a number of different ways, and
then to separate the model into its constituent linear and non-linear (bilinear) parts.
The feedback vector is again calculated as a function of the estimated parameters of
the linear part which, in adopting this approach, should be more accurately
estimated due to the non-absorbtion of the elements of N;. Having obtained the
feedback vector, the next step is to reconstruct the state vector, again a step which
can be achieved in a number of different ways. In this respect, Algorithm 2 makes
use of a time-step quasi-linearisation procedure when an extended SKF, termed an

iterated steady-state observer (ISO), is adopted. Algorithm 3, on the other hand,
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makes use of an equivalent full order state observer (FLO). In both cases, direct use

is made of the estimated bilinear parameters in the state reconstruction stage.

iv) A further possibility, which forms the basis of Algorithm 4, is to estimate the
parameters of the bilinear system, as in (ii) and (iii), and then to combine the linear
and non-linear parts to form a ‘lumped’ quasi-linear model. A quasi-linear feedback
vector is then calculated as a function of the ‘lumped’ model and the state vector

obtained from a quasi-linear SKF in the form of the ISO used in Algorithm 2.

3.3.2 Parameter estimation

The recursive least squares (RLS) technique has found wide acceptance for
parameter estimation when dealing with linear systems and forms the basis of the
approach adopted here. Despite convergence and bias problems it is believed that, due to
ease of implementation and computational efficiency, the RLS algorithm is preferable to

the maximum likelihood approach [41] when dealing with bilinear systems.

Substituting (3.3b) into (3.3a) leads to the non-linear ARMAX (or
NARMAX) representation

A@@ My = q* B@Hu®+ Cq e

n, m
+q* i > X(t-Du(t-i-j+ 1) (3.5
i=0 j=1

from which it is clear that by setting r)ij-O, for all i, j, is equivalent to the linear ARMAX
representation (2.1). By setting the noise colouring polynomial C(q‘l)-l, equation (3.5) is
readily rearranged into the form of equation (2.4) which is then suitable for application
of RLS.

y®© = x"(08(+ &) (3.6)
where &(t) is a sequence of fitting errors which becomes equal to the noise sequence upon
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convergence, 0 is the extended parameter vector,
0T =[-8; . @y 3boubuy Moy Ty b 3 Mom Ty | (€X))

and x(t) is the corresponding observation vector,

xT() = [y(t-1) .. y(tn) ; u(t-k) .. u(tkn, ); x(t-ku(t-k).. x(t-k-n u(t-k-n,);
- 3 X(t-ku(t-k-m+1) ... x(t-k-n )u(t-k-n,-m+1)] (3.8)

Note that only the input and output sequences u(t) and y(t) are available so that the
sequence x(t), which is the noise free system output, (x(t)=y(t)—e(t) from equation (3.3b)),
is unmeasurable. In order to form an unbiased basis from which to assess the proposed
control algorithms outlined in section 3.3.1 it is necessary to replace x(t) by y(t) (this is
not unreasonable given the assumptions on the noise sequence e(t)), so that the
observation vector, equation (3.8), becomes

xT(t) = [y(t-1) .. y(t-n,); u(t-k) .. u(t-k-ny ); y(t-kju(t-k) .. y(t-k-npu(t-k-n.);

-« 3 y(t-ku(t-k-m+1)..y(t-k-n Ju(t-k-n -m+1)]. 3.9)

Having established the most appropriate control algorithm with use being
made of observation vector (3.9) further investigations were undertaken with y(t) replaced
by §n(t), which is the estimate of X(t) (i.e. the noise free system output) obtained from
the state reconstruction stage. When use is made of state reconstruction, a more
appropriate observation vector takes the form

xT(t) = [ y(t-1)... y(t-n,); u(t-k).. u(tk-n, ); X (t-Ku(t-k)..x (t-k-n u(tk-n,);
« 3 X (t-K)u(t-k-m+1)..X (t-k-n, Ju(t-k-n,-m+1)]. (3.10)

The next phase in the development of an appropriate bilinear STC algorithm is then to
compare the overall performance resulting from the use of equations (3.9) and (3.10) in

the parameter estimation stage.
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The basic form of the RLS algorithm adopted is given by equations

(2.30)(2.32)
8(t) = B(t-1)+ () [y)—xT(1B(t-1)] (3.11)
()= S(t-Dx(t)[1 + xT(O)P(t-1)x(t)]! (3.12)
()= [I—p()xT(1)] B(t-1) /A (3.13)

Note, that in adopting the observation vector given by (3.10), the parameter estimation
scheme makes use of the state estimates and the state estimation scheme makes use of
the parameter estimates. The resulting overall tandem state/parameter estimation scheme

may be illustrated schematically as in Figure 3.2.

Figure 3.2. Illustrating tandem operation of state/parameter estimation.
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3.3.3 Quasi-linearisation

State estimation

Define the quasi-linear state-space representation SBL(n,m) of Structure 1 by

x(t+1) = P(U())x(1) + Q(x()u(t) + Re(t) (3.14a)
y(t) = Hx(t)+ e(t) (3.14b)
where
0= [u@-D.um+))T, 5 >2 (3.15)
and
P(ii(t)) = P, m =1, (3.16)
m
=P + ), uti+DN, m >2,
=2
with
Q(x(1) = Q + N;x(1). (3.17)

Substituting the output equation (3.14b) into the state equation (3.14a) yields the
quasi-linear full order state observer (FLO)

X(t+1) = P @)X + QRMu()+ Ry(t) (3.18)
where ﬁl(ﬂ(t))=l_’(ﬂ(t))—RH; which on rearranging yields the equivalent steady-state
Kalman filter (SKF)

x()= [I—q""P, (@) [QRM®)u(t-1) + Ry(t-1)] (3.19)

which is referred to as the iterated steady-state observer (ISO).

Note that, unlike the SKF for linear systems, convergence is no longer
guaranteed. The error dynamics associated with equation (3.19) are dependent on the

eigenvalues of the matrix ﬁ,(ﬂ(t)),
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P,(li(t)= P — RH + Nyu(t-1) + Nju(t-2) + .. + N u(t-m+1)

m
=P — RH + ) Nu(t-i+1) (3.20)
i=2
which are themselves dependent on past values of the control input sequence (t).

‘Whilst some initial work on the stability and convergence behaviour of
observers for bilinear systems has been undertaken [50], further work on the convergence
behaviour of the ISO remains an outstanding issue. It may be possible, however, under the
assumption of convergence of RLS, to compute the eigenvalues of l_’l(ﬂ(t)) on-line as the
process evolves. This would allow bounds on future control action to be placed, thereby
ensuring convergence of the ISO. Such a procedure could well be realised as a parallel

tasking procedure in the STC jacketing software.

=}
Feedback vector
With the exception of the Algorithm 4, all proposed approaches make use of the linear
form of the feedback vector given by equation (2.42). In Algorithm 4, the corresponding
quasi-linear feedback vector is givén by

Fl=W!s (3.21)

where W=KL in which K is the quasi-linear Kalman controllability test matrix
K = [ PQA(1)"'QER(®) : .. : PAMQAR®) : QRW) ] (322)
and the matrices L and S are defined as in section 2.4.2.
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3.3.4 Extended pole-placement algorithms

The four algorithms are simply stated as

Algorithm 1
i) Estimate parameters of an assumed linear model,
ii) Reconstruct X(t) from SKF (equation (2.40))

iii) Compute feedback vector (equation (2.42))

Algorithm 2
i) Estimate parameters of an assumed bilinear model
ii) Reconstruct X(t) from ISO (equation (3.19))

iii) Compute feedback vector (equation (2.42))

Algorithm 3
i) Estimate parameters of an assumed bilinear model
ii) Reconstruct X(t) from FLO (equation (3.18))

iii) Compute feedback vector (equation (2.42))

Algorithm 4
i) Estimate parameters of an assumed bilinear model
ii) Reconstruct X(t) from ISO (equation (3.19))

iii) Compute feedback vector (equation (3.21))

Note that in the first phase of the investigation use is made of the observation vector
given by equation (3.9). Having established the most appropriate algorithm, the second
phase involved comparative studies with use also being made of the observation vector

given by equation (3.10).
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The algorithms are summarised in Table 3.1.

Assumed State Compute
Model Reconstruction Feedback
Linear (L) Equation Equation
Algorithm
Bilinear (BL) No. No.
1 L (2.40) (2.42)
2 BL (3.19) (2.42)
3 BL (3.18) (2.42)
4 BL (3.19) (3.21)
Table 3.1

3.4 Simulation studies

In order to evaluate the four initial algorithms, consideration is given to the

following bilinear systems

System 1 PBL(2,1)
y(t) = 1.5y(t-1) — 0.7y(t-2) + u(t-1) + 0.5u(t-2)

+ 0.25x(t-1)u(t-1)+ e(t)
System 2 PBL(2,2)
y(t) = 1.5y(t-1) —0.7y(t-2) + u(t-1) + 0.5u(t-2)

+ 0.2x(t-1u(t-1) — x(t-2)u(t-2)+ e(t)
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For both systems a reduction of the implicit delay state-space representation is required
to ensure system controllability. Following reduction, System I may be expressed in the

state-space SBL(2,1) form
xt+1)= | 0 07 |x(t)+ | 05 |u(®)+ [ 0.7 |e(t) 4+ u(t)| O O x(t)

) [ 1.0 1.5 0 0.25

y®=[0 1]x(1) + et).

Similarly for System 2 the matrix N, becomes
Nl= 0 '1-0 .

0 0.2

3.4.1 Comparison of four algorithms

The two systems were simulated using the proposed control algorithms of
section 3.3.1; the objective of the controller being to regulate the system output about a
zero reference in the presence of noise. To give a sufficiently fast response to any
disturbance the closed-loop poles, or eigenvalues, of the linear part were specified as
repeated poles at -10 in the s-plane, which for a sampling interval T=1 second, gives rise
to a virtual dead beat response, i.e. 7=e’T20. In each case the simulation is run over 100
iterations with a fixed forgetting factor of A=0.98. The results are shown in Tables
3.2(a)(b)(c) and 3.3(a)(b) where Iy S", o, and u denote the variance and mean of the
system output y(t) and the control input u(t) respectively and a;, b; and 7,; denote the
estimated parameter values after each simulation run. (A blank entry in these Tables

indicates that instability has occurred.)

The results given in Table 3.2(a), (b) and (c) compare algorithms 1, 2 and 3
and relate to System 1. Columns 1 to 4 correspond to simulation under various levels of

white noise output disturbance and constant parameters. In columns 5 to 11 the bilinear

33



parameter 7),, is varied linearly from its nominal value of 0.25 to 0.5 over the duration of
the simulation, with columns 5 to 8 and 9 to 11 corresponding to various levels of white
and coloured noise respectively. In the case of coloured noise, the noise colouring
polynomial

c@h=1-075" + 0.25¢2

is adopted.

The results given in Table 3.3(a) and (b) compare algorithms 2 and 4 and
relate to System 2. In the case of varying parameters, columns 5 and 6 correspond to
varying the parameter a, linearly from its nominal value of 0.7 to 1.4 over the duration
of the simulation whilst column 7 corresponds to the simultaneous variation of a, and
711> With 77, being varied linearly from its nominal value of -1.0 to -2.0. Columns 8 to 10

correspond to bounds being placed on the control effort,

u(t) ’ < 1.0; noting that for the
noise levels considered both algorithms gave rise to instability when the control was

unbounded.

The results of Table 3.2 indicate that the variance of the control effort is
always less when use is made of A4lgorithm 2. However, for noise levels lower than those
tabulated Algorithm 1 produces comparable results. As the noise level is increased,
Algorithm 3 is the first to give rise to instability, followed by Algorithm 1 with Algorithm
2 continuing to maintain stability for higher noise levels. Figures 3.3 and 3.4 illustrate
control input (a) and system response (b) for Algorithms 1 and 2 respectively and

correspond to the test conditions of column 7 in Tables 3.2(a) and 3.2(b).

The results of Table 3.3 indicate that in the case of unbounded control,
Algorithm 2 again produces the more favourable results with a significantly lower control
input variance than Algorithm 4. Furthermore, in the case of bounded control, whilst the
control input ‘varianc% are of the same order, Algorithm 2 produces a system response

with significantly lower variance. Figures 3.5 and 3.6 illustrate control input and system
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response for Algorithms 2 and 4 respectively and correspond to the test conditions of
column 3 of Tables 3.3(a) and 3.3(b). Similarly Figures 3.7 and 3.8 correspond to the test

conditions of column 8.

It is noted for both systems, that when use is made of unbounded control,
good initial estimates are required for the linear parameters otherwise instability can
arise during the initial iterations. This requirement is not essential when a bounded
control is used. Provided either good initial estimates of the linear parameters are
available, or that the control is initially bounded, it is found that the initial estimates of

the bilinear coefficients may be arbitrarily set at zero.

Remarks

i) For the simulation studies undertaken, Algorithm 2 gives rise to a superior
performance over the other proposals in the sense that the closed-loop system
remain stable for a wider range of conditions in terms of measurement noise and
parameter variations. Also, the variance of the control effort and system response is
significantly smaller than the other algorithms operating under convergence

conditions; a desirable feature of any control system.

ii) The simulation studies also indicate that for convergence of parameters and
stability of the closed-loop system it is necessary to have good initial estimates of
the parameters of the linear part of the system if an unbounded control is to be
used; thus highlighting the vulnerability of bilinear systems to numerical instability

particularly during initialisation, or ‘start-up’ stages.

iii) The results of the initial investigations, albeit limited, indicate that the
self-tuning principle may be successfully applied to bilinear systems. In the
development of the bilinear STC throughout this work, Algorithm 2 is taken to

provide the basic framework.
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CONSTANT PARAMETERS

TIME VARYING PARAMETERS (BILINEAR TERM)

Noise
levelN
s WHITE NOISE WHITE NOISE COLOURED NOISE
e 075 085 100 125 | 050 075 085 100 | 050 075 085
COLUMN | 1 2 3 4 5 6 7 8 9 10 11
by | 085 078 060 100 078 082 040  1.00
bl 0.53 0.49 0.49 0.60 0.52 0.53 091 1.88
a; | -153 -150 -133 -152 -149 -145 065 -0.79
ay | 079 073 o044 074 073 073 -74E-2 -0.33
o, 052 080 o087 0.10 062 052 020 049
y | 028 -046 -020 -52E-2 -036 -039 -2.6E-2 -7.5E-2
o,| 054 079 130 0.15 065 072 74E-2 0.56
u | -24E-2 -4.7E-2 83E-2 -1.5E-2 -2.3E-2 -3.5B-2 -1.7E-5 -1.7E-2
Table 3.2(a). Algorithm 1.
T CONSTANT PARAMETERS | TIME VARYING PARAMETERS (BILINEAR TERM)
level N
s WHITE NOISE WHITE NOISE COLOURED NOISE
- 075 085 100 125| 050 075 085 100| 050 075 085
COLUMN | 1 2 3 4 5 6 9 8 9 40 ! W
by | 101 103 102 098] 098 099 100 101 | 102 086 046
b, | 055 053 049 049 | 058 057 054 049 | 164 145 085
a; | -149 -149 -145 -147 | -144 -144 -143 -144| -090 -091 -072
ay | 066 069 071 072| 061 063 065 069 -015 -0.11 -19E-2
Moy| 027 027 027 o025| 028 029 029 028 | 31E2 018 031
oy [ 024 034 073 174 |93E2 025 038 116 030 070 092
y |-17B2 -24B-2 012 -029 |-12E-2 -33E-2 -43E-2 -026 | -49E-2 -8.9E-2 -025
o,| 038 055 100 184| 014 038 058 132 5582 015 039
U | 22B2 34B2 6.5B-2 0.13 | 72E-3 26E-2 4.1E-2 93E-2| 44E-3 24E-2 25E-2

Table 3.2(b). Algorithm 2.

56




CONSTANT PARAMETERS

TIME VARYING PARAMETERS (BILINEAR TERM)

Noise
level N
s WHITE NOISE WHITE NOISE COLOURED NOISE
it 075 085 100 125 | 050 075 085 100 | 050 075 085
COLUMN | 1 2 3 4 5 6 7 8 9 10 11
bo 1.08 1.09 1.00 1.05 0.94 0.70
bl 0.55 0.54 0.57 0.55 1.58 0.71
a; | -1.56 -1.60 -146 -1.50 -1.05 -0.88
a | 072 075 063 068 -42E-2 44E-2
moy| 027 026 032 028 029 031
oy | 024 037 93E-2 026 043 092
y |-1.5B-2 -27B-2 -8.9E-3 -34E-2 “72E-2 023
g,| 058 119 0.16 068 84E-2 0.59
u | 3.1B-2 55E2 84E-3 3.8E-2 -1.5B-5 8.5E-2

Table 3.2(c). Algorithm 3.
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CONTROL : UNBOUNDED BOUNDED
White PARAMETERS: CONSTANT TIME VARYING CONSTANT
noise N
peak - peak | 0.10 025 0.30 0.35 025 0.30 0.30 0.4 0.5 0.6 0.4
COLUMN 1 2 3 4 3 6 7 8 9 10 11
bo 1.09 1.06 1.05 1.06 0.79 0.79 0.82 1.01 112 1.14 1.00
bl 0.58 0.57 0.53 0.51 0.39 0.38 0.36 0.57 0.66 061 0.51
a -1.55 -1.56 -1.57 -1.55 -123 -120 -1.20 -1.54 -1.54 -1.56 -148
ap 0.68 0.64 0.66 0.68 0.95 0.95 0.98 0.75 0.69 0.71 0.67
To1 9.5E-2 S5.1E-2 0.10 0.10 0.12 0.12 0.11 -0.12 -0.10 0.15 021
M1 -0.37 -0.71 -0.81 -0.90 -0.9 -098 -1.10 -093 -093 -091 -0.98
ay 3.1E-3 2.5E-2 4.3E-2 8.0E-2 28E-2 46E-2 53E-2| S5.1E-2 7.3E-2 0.16 1.58
; 54E-3 23E-2 39E-2 7.6E-2 19E-2 3.0E-2 5.3E-2| 4.3E-2 6.0E-2 0.13 1.52
oy 49E-3 39E-2 68E-2 0.13 36E-2 59E-2 B8.1E-2| 52E-2 54E-2 94E-2 0.58
—ll- -1.7E-3 -1.1E-2 -1.8E-2 -2.8E-2 |-92E-2 -1.5E-2 -1.9E-2| -1.1E-2 -1.3E-2 -2.3E-2 -5.1E-2

Table 3.3(a). Algorithm 2.
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CONTROL : UNBOUNDED BOUNDED
White PARAMETERS: CONSTANT TIME VARYING CONSTANT
noise N

peak -peak | 0.10 025 030 0.35 025 030 030 0.4 0.5 0.6 0.4

COLUMN 1 2 3 4 3 6 i 8 9 10 11
by 1.07 100 099 079 079 038l 1.10 1.10 103
by 052 054 047 0.55 039 045 069 065 0.71
a; | -1.56 -149 -1.51 -143 -120 -130 | -1.54 -1.54 -1.51
a | 069 067 072 097 093 086 075 069 065
Mo1| 041 021 022 99E-2 0.19 021 -0.12 -0.10 024
Ny | -1.08 096 -0.95 -1.00 -0.92 -1.00 -093 -093 -099
ay 39E-3 4.5E-2 82E-2 62E-2 0.10 023 5.1E-2 7.3E-2 027
; 2.1E-3 -1.8E-2 22E-2 23E-2 29E-2 46E-2| 4.3E-2 6.0E-2 0.14
o, | 62E-3 69E-2 0.12 88E-2 0.14 025 52E-2 54E-2 98E-2
U |-24E-3 -18E-2 -4.0E-2 -22E-2 -44E-2 -72E-2| -1.1E-2 -1.3E-2 -3.0E-2

Table 3.3(b). Algorithm 4.
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3.4.2 Alternative form of the observation vector

Having established the basis of the bilinear STC, the second phase involved
further comparative simulation studies in order to investigate the effectiveness of the
alternative observation vector given by equation (3.10). This observation vector differs
from that given by equation (3.9) in that the measured output y(t-1) is replaced by X (t-1)

in the product terms corresponding to the bilinear coefficients.

System 1 is adopted for simulation trials when the objective of the controller
is to place poles at -3 and -5 in the s-plane with an effective sampling interval of T=0.1
second. The system is subjected to a range of output noise levels N and, in each case,

various values of the fixed forgetting factor are investigated.

Results given in Tables 3.4(a) and 3.4(b) correspond to the use of the
measured output y(t-1) and the estimated noise free output X (t-1) in the product term of
the observation vectors respectively. In each Table, Iy Y o0, and u denote the variance
and mean values of the system response and control input respectively.

The results show that use of X (t-1) in the observation vector, particularly in
the case of high noise levels, leads to an improved performance in terms of reduced
variance of both control input and system response. This is to be expected due to the
inherent filtering effects of the iterated steady-state observer (ISO) of equation (3.19). In
the presence of noise levels, however, there is little difference in performance with the
use of the measured output y(t-1) perhaps introducing a marginal improvement. This
observation once again indicates that a little noise on the system is often advantageous

from an improved estimation point of view.
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N A 1.00 0.98 0.95 0.93 0.90
oy | 48E2 33E-2 32E-2 3.1E-2 38E-2
y | -36E2 -4.TE-2 -4.5E-2 -3.8E-2 -5.1E-2
0.10
o,| 7684 6.6E-4 6.6E-4 8.5E-4 8.4E-4
u | -1iE3 2.7E-3 23E-3 -1.4E-3 -3.1E-3
Oy 0.710 0.634 0.553 0.692 0.557
y | -s78-2 -48E-2 24E-2 -9.3E-2 2.7E-2
0.35
o,| 132 12E-2 24E-2 1.5E-2 1.3E-2
u | -25B-3 3.6E-4 5.1E-3 -6.TE-3 12E-2
oy | 1541 1.190 1.042 1051 1.104
y 0222 0.159 0.194 0207 0.125
0.40
o,| 23E2 2.0E-2 29E-2 23E-2 2.5E-2
u 2.5E-2 2.1E-2 29E-2 3.0E-2 1.8E-2

Table 3.4(a). Use of measured output y(t-1).

It is further noted that use of a forgetting factor less than unity produces the more
favourable results. However, use of such a forgetting factor in the presence of prolonged periods of
steady-state operation can lead to the problem of covariance blow-up. The latter conflicting

observations prompt the need for a variable forgetting factor and this is investigated in Chapter 4.



N A 1.00 0.98 095 0.93 0.90
oy | 462 3.4E-2 32E-2 3.0E-2 72E-2
y | -37-2 -4.TE-2 -43E-2 -3.5E-2 -8.0E-2
0.10
o,| 74E-4 6.TE-4 6.7E-4 7.76-4 1.8E-3
u | -14E3 2.6E-3 2.1E-3 -9.4E-4 -7.8E-3
oy [ 0732 0.624 0.867 0.558 0.595
y | -46E-2 -49E-2 -0.132 -5.9E-2 -0.150
0.35
o,| 1482 12E-2 6.6E-2 13E-2 14E-2
u | -15E-3 43E-4 -1.0B-2 1.78-2 -12E-2
o, [ 1530 1.090 0.890 0819 0.863
y 0296 0.108 3.1E-2 -3.7E-2 -7.6E-2
0.40
o,| 24E2 1.9E-2 0.126 19E-2 3.6E-2
u 3.3E-2 1.6E-2 1.8E-2 14E-3 -9.9E-4
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3.5 Extension of the bilinear STC framework for MISO systems

In this section, the bilinear approach is extended to accommodate
multiple-input single-output (MISO) bilinear model structures. Such systems are found to
be representative of interconnected non-linear sub-systems such as, for example, computer

architecture structures appropriate for parallel processing [51].

3.5.1 MISO model structure

The MISO state-space bilinear model structure SBL(n,m,r) is an extension of

the SISO SBL(n,m) structure of equation (3.1). It takes the form

r m

x(t+1) = Px()+ Qu(t)+ Re()+ »_ >’ uj(t-i+1)N;' x(t) (3.23a)
j=1 i=1

y(t) = Hx(t)+ e(t) (3.23b)

where x(t) € R", u(t) € R", y(t), e(t) € R, are, respectively, the system state vector, input
vector, output and white noise sequences. The form of the matrices P, R and H are as

previously defined in (3.2) with the partitioned input matrix Q and bilinear coefficient

matrices N taking the form
Q= by ..... byye Nl=1|0 . 0 my (3.24)
bOI ..... bOr ﬂ(j)i
0 0 0 0 0
| 0 % K 0 0 |

where n, is the initial dimension of the state-space.



The equivalent polynomial bilinear model structure PBL(n,m,r) which is
adopted in the parameter estimation stage of the MISO bilinear STC takes the form

r

AQHx® = %) B@Hu® + [C@H-AG™)] e

j=1
l'li m T
+q* )] D0 D X0 uti-trlyg, (3.25a)
=0 i=1 j=1
y() = x(1) + e(t) (3.25b)

where x(t)€R is the unmeasurable noise free system output and, due to the form of H in
(3.2), x(t)=x(t) the at component of x(t). The polynomials A(q-1) and C(q-1) are as
defined in Chapter 2 with the polynomials B,(q™"), j=1,2, . . r, defined as

B,(q") = bj+ blq'+ blq? +....+ bjqg™

Byq!) = b3+ blq + 632 +....+ blq™

B(q") =bf+ bjq!+ b5q? +....+ biq™ (3.26)

As in the SISO formulation of section 3.2, in order to ensure no loss of information and
system controllability, the class of systems is restricted such that nagng;k, j=12,..r.In
practice this may require a reduction in the dimension of the state-space model so that

dim{state-space}=n, +k=n.

3.5.2 Parameter estimation

As in the case of SISO bilinear systems, since only the known inputs,

measured outputs and estimated state variables are available, it is necessary to
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re-formulate the PBL(n,m,r) model (3.25). Substituting (3.25b) into (3.25a) and setting the

noise colouring polynomial C(q") to unity leads to

r n; m r
A@YY® = q*Y) B@hu®+ q* Y 3 3 X0 utiteny + e®) (327
j=1 0=0 i=1 j=1

which is now in the form of equation (3.5) and suitable for RLS. Rearranging yields

y(t) = xT()0) + &)

where x(t) and 6(t) are respectively of the form (3.7) and (3.8), extended appropriately

to accommodate the additional (r-1) inputs. That is

0" =[-a; .. g, :bj.bl, ;6F.b2 :....;0f b} ;
ey i N
qu""lnbl 9 see o 7Iorn '"r’nb'ﬂ’ 0wy

e r]{"...ﬂ“;bl S 5 U ...r]",m; ] (3.28)

and

xT(1) = [y(t-1) .. y(t-n) ; v (tK).. u;(t-kny) ;.. .; u(tk) .. u(tkn,);
X(thu, (1K) ... x(tknu (tkn); ... ;
x(thu, (tk-m+1) .. x(t-k-npu, (tkn,m+) ;
X(tR)u () ... x(thknu tkn); ... ;
x(tRu (t-k-m+1)... x(tknu (thnymel)]  (329)

The standard RLS algorithm given by equation (3.11)-(3.13) is then adopted in order to

estimate the [n,+r(m+1)(ny+1)] model parameters.

3.5.3 State estimation

Extending the approach outlined in section 3.3.3, define the quasi-linear

state-space representation SBL(n,m,r) of the state-space representation (3.23) by
68



x(t+1) = PE(1)x(t) + Q(x(t)u(t) + Re(t) (3.30a)
y(t) = Hx(t)+ e(t) (3.30b)
where

T
()= [ul(t-l) w U (tm+1) § uy(t-1) .. up(t-m+1) ... u(t-1) .. u(t-m+1) ; ] , (3.31)

and
P@() =P, m =1,
m r
=P+ D uyt-i+)N, m>2 (332)
i=2 j=1
with
Qx(1) = [b, + NIx(t): by+ N2x(1):...: b, + N;x(t)] (3.33)

where bj, j=1,2, . . r, denotes the j column of Q.

Substituting the output equation (3.30b) into the state equation (3.30a),
rearranging and setting P, (1(1))=P({i(1))—RH leads to

x(t)= [ I-q"'P,@®) "' [QRM®)u(t-1) +Ry(t-1)] (3.34)

which is an extended form of the ISO given by equation (3.19).

Note that the error dynamics are now dependent on the eigenvalues of the

matrix
r r  §
P@®)=P — RH+ Y Nju(t1) + 3 Nu(t2) + .. + > Nlu(e-m+1)
j=1 j=1 j=1
m T
=P —RH+ ) 3 Nu-i+1). (335)
i=2 j=1

Again, as in the case of the SISO system, the error dynamics are a function of both the
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past values of the control input sequences and the estimated values of the bilinear
coefficients. Since the ISO performs effectively for SISO bilinear systems it is pertinent to

consider its effectiveness for MISO bilinear systems and is adopted here.

3.5.4 MISO control law synthesis

A realistic approach to pole-placement in the linear multivariable case is to
make use of the dyadic control [22]. This effectively involves determining an (rxn) state
variable feedback gain matrix F which is constrained to have unity rank by defining it in
the dyadic form

F = 1,13 (3.36)
The vector f,€R" is arbitrarily specified by the designer and then f,€R" is computed
from

£, = w-‘[ 0...0 Opgtn) .. =2 [ 337)
where y,, i=1,2, . . n,, are the coefficients of the desired closed-loop pole-polynomial and
W is determined by

W= KL
with K being the Kalman controllability test matrix for the effective single input problem

K= [P"-lqr, :P2Qf, :...: PQf, : Qf, ] (3.38)

and L is the lower triangular matrix as previously defined in Chapter 2.

3.5.5 Preliminary investigations
In adopting Algorithm 2 as the basis of the bilinear STC, use is made of the

equivalent MISO quasi-linear ISO, equation (3.34) and the effective linear multivariable

feedback matrix of equation (3.36).
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In [A13], simulation studies are undertaken using a simple SBL(2,2,2) model
structure. For convenience the vector f, is chosen such that f’l‘-[ 11 ] and the
investigation compared the effectiveness of fixed forgetting factors, variable forgetting
factors, variable forgetting factors combined with covariance reset and variable forgetting
factors combined with cautious covariance reset . The results once again indicate the
potential vulnerability of the bilinear approach to numerical instability and highlight the
need for more robust parameter estimation procedures. In particular it must be noted that
in reality, the problem could be further compounded by the accompanying effects of

computational delay, particularly for MISO systems.

It is noted [22], for linear systems, that although the closed-loop system will
exhibit the desired characteristics in terms of overall closed-loop pole locations, different
choices of f, will give rise to distinctive controller action. In practice the elements of f,
may be regarded as tuning knobs allowing an element of trade-off in terms of
proportioning the controller action; the latter feature being advantageous when attempting

to avoid saturating input signals.

The MISO approach has been successfully applied to a laboratory scale
heater-cooling system (introduced in Chapter 5) which is known from physical
considerations to exhibit bilinear characteristics. It has been shown that by carefully
tailoring the elements of f, that improvements can be achieved over the use of the SISO
approach, with the MISO STC providing the designer with the facility for weighting or
proportioning the control effort in each input channel so as to produce an overall

improved performance.
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3.6 Concluding remarks

By taking into account the non-linearity or bilinearity at the design stage, the
standard linear self-tuning framework has been extended to accommodate a class of

discrete SISO and MISO bilinear systems.

Investigative studies involving four initial candidates for extended
pole-placement algorithms have been undertaken and, based on extensive simulation trials
involving a number of bilinear system models subjected to a range of different test
conditions, one such algorithm has been proposed and this forms the basis for further

studies.

Whilst preliminary results obtained when applying the proposed bilinear STC
to both SISO and MISO systems have been encouraging, it is believed that in order to
provide for a more effective self-tuning scheme, enhanced estimation techniques are
required. These are to be robust enough to minimise the susceptibility of the algorithm to
numerical instability without compromising the desirable features of adaptivity and

without increasing significantly the.complexity.
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4. Enhanced parameter estimation techniques for bilinear STC

4.1 Preliminaries

The need for increased integrity within STC schemes is of paramount
importance, particularly when dealing with non-linear systems. In an attempt to improve
the integrity of the bilinear STC introduced in Chapter 3 a number of enhanced
parameter estimation techniques have been specifically investigated/developed for a class
of SISO discrete bilinear systems. The results may readily be extended to the MISO case.
It should be noted, however, that all enhanced techniques are accompanied by an increase
in computational overhead such that the full advantages of adopting the enhanced
techniques may never in practice be realised. As such, a compromise situation exists in
which a trade-off must be made between increased integrity arising from the use of

enhanced techniques and reduced overall closed-loop performance due to the effects of

increased computational complexity and it is against this background that investigative

~

studies have been based.

The enhanced estimation techniques considered here include: fixed and
variable forgetting factors [17,18,A6] for increased adaptivity whilst reducing the
possibility of numerical instability arising from covariance blow-up [16]; covariance
matrix resetting techniques [52,53,54,A9] for improved alertness and numerical stability;
instrumental variable techniques [55,56] for improved accuracy in the presence of
coloured noise; Kalman filtering techniques [57,58,59,A14,A15] for increased tracking
ability; and cautious least squares [60,A10,A11,A12,A16] for increased robustness. Whilst
the techniques are shown to be advantageous when applied to bilinear systems, they are
equally appropriate for linear systems. Indeed the techniques are considered to be highly
appropriate when dealing with systems exhibiting non-linear characteristics and

linear/bilinear self-tuning techniques are to be employed.

73



4.2 Forgetting factors

4.2.1 Fixed forgetting factor

When parameters to be estimated are varying with time, the recursive
parameter estimation procedure may be modified to produce an ‘adaptive’ least squares
scheme; this being achieved by introducing a forgetting factor [15] as indicated in

Chapter 2. The resulting recursive form of the adaptive least squares algorithm is then

given by
6(t) = 8(t-1) + PO [y®) — x"(VB(t-1) ] (@.1)
()= St-Dx(O[ 1+ x"ODt-1x(v)]"! 42)
d(1)= [1— $Ox" (1) |&(t-1) / A (4.3)

in which the scalar A<1.0 is the forgetting factor. (See Appendix 7.)

Use of a forgetting factor enables greater emphasis to be placed on the more
recent observations and gives rise to a fading memory length which is given
approximately by

M= (1-4)7 (4.4)
Clearly, for a least squares solution the value of M must be such that M>p where
p=n,+ny+1 is the number of parameters to be identified and the value of the forgetting
factor must be bounded from below such that 4p<A<1.0; typically 4p=0.9 — 0.95. Note
that when A=1, all observations are given equal weighting and the algorithm is unable to

adequately adapt.

A problem for the user lies in the choice for a suitable value for A. The
lower its value, the more adaptive in nature the procedure becomes, unfortunately
however, this also renders the algorithm highly sensitive to external disturbances such as

measurement noise. Consequently, the margin for error is small with poor choice of A
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leading possibly to a correspondingly poor control. A summary of the features which

affect the choice of forgetting factor are given in [A2].

A major problem arising in the use of a fixed forgetting factor is that of
covariance blow-up and possible instability [16]. This phenomenon occurs when the
system is operating in steady-state: The STC has driven the system to its destination and
there is now little or no new information coming in from the plant; the forgetting factor
A is less than unity and the information content within the algorithm is therefore
reducing. A reduction in the information content of the algorithm leads to the
information matrix (inverse of the covariance matrix) becoming ‘near singular’, giving rise
to a corresponding growth in the elements of the covariance matrix. This condition may
well result in instability, however, it may often be self-correcting giving a ‘near blow-up’
or ‘near instability’ situation and this can generate sufficient control input to the system
to remedy the lack of information content from the plant. In either case when dealing
with bilinear systems, which are known to be particularly sensitive, the latter is a serious

problem which can be alleviated by using a variable forgetting factor.

4.2.2 Variable forgetting factors

Use of a variable or regulated forgetting factor A(t) will give rise to increased
adaptivity of the STC scheme whilst also preventing the possibility of instability or near
instability arising due to covariance blow-up. This is effectively achieved by regulating the
information content of the STC algorithm. Whilst various variable forgetting factors
(VFF) have been proposed for linear systems [17,18] ii 1s pertinent to consider their use
when dealing with bilinear systems. As a result, a hybrid of those proposed in [17,18] has
been found to be advantageous for bilinear systems [A6] and has also found favour when
dealing with other non-linear systems [A16,A17]. Essentially, the mechanism for varying

the value of the forgetting factor is based on the estimation prediction error within the
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estimator, this being regarded as an indicator of the ‘accuracy’ of the algorithm in the

presence of parameter variation.

Method 1: Fortescue et al [17].

This approach is based on the early theoretical work of Albert and Sittler,
1966 [61]. As a means of ensuring a consistent information content within the algorithm,
the VFF is regulated such that a weighted sum of past estimation prediction errors is
minimised. It takes the form

Aty = 1 —[1—xTtk-1P(t-kx(tk-1) | ZX1-1) / =, (4.5)
where

2= y(t) — xT(1)8(t-1) (4.6)
is the estimation prediction error and

5y = M, @)

in which a% is the expected measurement noise variance and M, is the nominal memory

length of the estimator.

Method 2: Wellstead and Sanoff [1 é].
This is essentially a heuristic approach and includes an exponential delay
term in its formulation. It takes the form
A = A(1).A5(1) (4.8)
where A1) = Ao + (1—Ag)(1—e M) (4.9)
Ay®) = 1 — ZXt-1) / s(t) (4.10)
s(t) = My—1)s(t-1) + >2(t-1) (4.11)
where A is the initial value of the forgetting factor which from equation (4.4),
Ao=Mo—1)/M,.
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Hybrid method 3: [A6]

This method attempts to exploit the desirable features of the two previously
existing methods and takes the form

At) = A (D.A(D (4.12)
where A, () = A(t) from Method 1,

Ay(® = A;(t) from Method 2.

4.2.3 Simulation studies

With consideration being given to the bilinear system
y() = u(t-1) + 0.5u(t-2) — a,()y(t-1) — 0.7y(t-2) + 0.25x (t-1)u(t-1) + e(t),
in which the parameter a is allowed to be time varying, the three forms of VFF are
compared. In each case, the simulation is run over 200 iterations with the control
objective being to regulate the system output about a zero reference when closed-loop
poles are effectively specified at -3 and -5 in the s-plane with use made of a sampling

interval of T=0.1 second.

The three methods for obtaining the VFF defined by equations (4.5), (4.8)
and (4.12) are investigated when the parameter a, is varied as follows: Fixed at -1.5 for
0<t<40, decreasing linearly to a value of -2.0 over 40<t<120, followed b)" a step change
back to -1.5 when t=120 then held constant. In each case an initial value of 1,=0.925 is
used and the methods are compared when subject to a range of noise levels and nominal

estimator memory lengths.

Figures 4.1(a)(b)(c), 4.2(a)(b)(c) and 4.3(a)(b)(c), illustrate (a) the value of
the variable forgetting factor, (b) the system response and (c) the control input

corresponding to use of the bilinear STC when use is made of Method 1, Method 2 and
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the hybrid method of obtaining the variable forgetting factor respectively, with noise level

e(t) bounded such that

e(t) ‘ < 0.05 and the nominal memory length M;=60.

Whilst detailed discussion is given in [A6], the results indicate that, when
applied to the simulated model of a time varying bilinear system, use of the hybrid VFF
is found to give rise to a superior system performance in terms of its ability to maintain
system stability, providing for a more robust algorithm in term of user choice of

estimator memory length.

4.3 Resetting techniques
4.3.1 Covariance matrix reset

Whilst variable forgetting factors are found to provide effective algorithms
for the tracking of slowly varying parameters, their use in tracking sudden changes is
limited by the need to retain a sufl;icient memory length. An alternative, albeit ad hoc,
approach which facilitates fast adaptation (or re-adaption) of the estimation algorithm is
that of covariance matrix reset. Covariance reset has the effect of removing all a priori
knowledge from within the algorithm, and is achieved by resetting the covariance matrix
@(t) in equation (4.3) to ul, where I is the identity matrix and u is a user defined large
positive scalar. The larger the value of u the ‘harder’ the reset with more of the older
information being discarded. (Typically u is taken to be of the order 100.) Reset action
can be enforced at regular intervals [52,53], or triggered on fault detection [54,A8,A9];

with the fault condition being an indicator of the accuracy of the estimator.
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4.3.2 Combined covariance matrix and VFF reset techniques

By combining the desirable features of covariance matrix reset together with
reset applied to the exponential decay term of the hybrid VFF of equation (4.12) an
algorithm has been developed which can handle both slow and sudden parameter
variation. Investigative studies involving the application of such a two-tier approach
[A8,A9] to the simulated model of a bilinear system have indicated that a markedly
improved performance is possible over that achieved when use is made of VFF and
covariance reset in isolation. In [A8,A9] reset action is triggered using a fault detection
mechanism which is indicative of large estimation errors. The mechanism, which is
similar to that proposed in [54] for linear systems, triggers the reset action whenever the
demand for a VFF falls below some pre-specified threshold level A o (Note that the actual

value of the VFF is bounded from below such that A(t)>lg>/lp.)

4.3.3 Simulation studies

In order to compare tl;e effectiveness of the combined two-tier algorithm, the
bilinear system which had previously been investigated by Gabr and Subba Rao [41], in a
different context, is adopted. This takes the form
y(t) = —a,()y(t-1) — 0.7y(t-2) + u(t-1) + 0.5u(t-2) + 0.12x(t-1)u(t-1) + e(t)
As in section 4.2.3 the objective in this case is to place closed-loop poles at -3 and -5 in
the s-plane and with a sample interval of T=0.1 second the system was subject to a step
input of r(t)=0.05. There is no attempt to make adjustment to the closed-loop steady-state

gain of the system. With the noise level e(t) chosen such that

e(t) I < 0.01 in each case,
the techniques are compared both when combined and in isolation with each simulation

being run over 750 iterations.

It is shown [A8, A9] that the use of the combined two-tier approach leads to
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a marked improvement over that previously attained using VFF and covariance reset in

isolation.

As a test condition, the system is subjected to a step input r(t)=0.05 and an

output disturbance e(t) represented by discrete white noise, where | e(t) | < 0.04. The

parameter a,(t) is varied according to

-15 1<50
a() ={ -15(-50/1200  50<1<650
-1.5 £650

with each simulation being run over 750 iterations.

Figures 4.4(a) and 4.4(b) illustrate, respectively, system response and control
input when use is made of the combined VFF and covariance matrix reset scheme. By
combining the desirable features of the hybrid VFF with the covariance resetting
approach the resulting algorithm is able to handle both slow and sudden parameter
variation and the resulting mechanism is believed to be applicable to a wide range of
non-linear and/or time-varying systems which may be required to be controlled using STC

schemes.
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4.4 The method of instrumental variables

4.4.1 Instrumental variables (linear case)

The method of instrumental variables (IV) is based on the concept of a
multi-pass RLS algorithm and has been found to be advantageous for linear systems when
the noise is non-white [55,56]. The instrumental variables are the (noise free) generated
outputs z(t) obtained when the identified model is subjected to the same input excitation

signal as the actual system.

Whilst  there appears to be no unique approach for generating the
instrumental variables [56], the simplest form of the recursive algorithm is to make use of
the prediction of the system output obtained directly from the estimation prediction error
of equation (4.1) of the RLS algorithm i.e. z(t)=xT(t)5(t-1). The recursive instrumental

variables (RIV) algorithm takes the form

0(t) = B(t-1)+ ¢(1)[ y(t) — xT(1)B(t-1) | (4.13)
where &(t)= S(t-1)x(t) [ 14 xT(t)d(t-1)x(t) | (4.14)
and D)= [ 1 — @()x"(1) | D(t-1) / A1) (4.15)

where x(t) is the observation vector as defined in Chapter 2

xT(t) = [ y(t-1) y(t-2) ... y(t-n,); u(t-k) u(t-k-1) ... u(t-k-ny) |, (4.16a)
;(t) is the vector consisting of the instrumental variables

x T()= [ z(t-1) z(t-2) ... z(t-n,); u(t-k) u(t-k-1) ... u(t-k-n) | (4.16b)

and @(t) is the corresponding error covariance matrix.
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4.4.2 Instrumental variables (bilinear case)

When considering bilinear systems, the RIV algorithm is extended in a
similar manner to the RLS algorithm as outlined in Chapter 3. However, a number of
interesting possibilities arise. Recall that in the case of bilinear systems, the adopted form
of the observation vector (3.10) is given by

xT(t) = [ y(t-1) .. y(tn,); u(t-k) ... u(t-k-n, );
X, (tk)u(t-k) ... X (t-k-n Ju(t-k-n);... ;
X, (t-kJu(t-k-m+1) ... X (t-k-np)u(t-k-n,-m+1) | (4.17a)
so that the equivalent vector of instrumental variables becomes
x T(t)= [ z(t-1) ... (tn); u(tk) ... u(t-kny);
X, (tK)u(tk) ... X (t-k-npu(t-k-ng);.. ;
X, (t-k)u(t-k-m+1) ... X (t-k-n Ju(t-k-n,-m+1) | (4.17b)
However, note that the instrumental variables are already available in the form of past
values of the noise free filtered estimates in(t-i) obtained from the iterated steady-state
observer (ISO), equation (3.19), so that an alternative form for the vector of instrumental
variables becomes
x T(t)y= [ x,(t-1) ... X, (t-n,); u(tk) ... u(t-kny );
X, (tk)u(tk) ... X (t-k-n u(t-k-ny);.. ;
X, (tk)u(t-k-m+1) ... X (t-k-n Ju(t-k-n,-m+1) | (4.17¢)
The distinction between the instrumental variables z(t-i) obtained from RLS and the noise
free filtered estimates in(t-i) obtained from the ISO is that whereas the z(t-i) are based

on 5(t-i-l), the ;En(t-i) are based on the most recent estimates a(t-i).

The extended RIV algorithm for bilinear systems takes the form of equations

(4.13)-(4.15) with ;(t) being of the form (4.17b) or (4.17c).
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4.4.3 Simulation studies

In order to assess the effectiveness of the extended forms of the RIV
algorithm for bilinear systems, the performance arising, in terms of minimum estimation
prediction error, when use is made of the vectors of instrumental variables, given by
(4.17b) and (4.17c), are compared. The bilinear system described in section 4.3 is
subjected to a range of white and non-white noise levels when driven in open-loop by a
pseudo random input sequence. At each time step the total absolute error between actual
parameter values and estimated parameter values is formed. It is found that use of the
ISO, corresponding to the vector of instrumental variables given by equation (4.17c), leads
to a faster convergence than when use is made of the vector given by equation (4.17b).
However, in the steady-state, both methods are found to produce virtually identical
estimation errors. Typical plots of estimation errors, indicating convergence behaviour, are
given in Figures 4.5(a) and 4.5(b) which correspond to a step change in a single parameter
(at the 100th iteration) and a ramp change in a single parameter (commencing at the
100th iteration) respectively. In each case, the solid line corresponds to the use of (4.17b)
and the dashed line corresponds to the use of (4.17c). In both cases, a fixed forgetting
factor A=0.99 is employed and the simulation run over 200 iterations. It is evident from
these Figures that both approaches are able to recover from these disturbances. However,
due to the faster initial convergence when use is made of equation (4.17c), the approach
in which the IV’s are generated from the ISO is the more favourable. This approach is
believed to be particularly appropriate when used in conjunction with the covariance
resetting techniques outlined in section 4.3, where the estimation algorithm may be

required to be repeatedly re-initialised.
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4.5 Kalman filtering techniques

Based on the RLS algorithm developed in Chapter 2, the Kalman filter (KF)
for linear state estimation and the extended Kalman filter (EKF) for non-linear state
estimation are developed in Appendices 8 and 9 respectively. For brevity and to maintain
continuity, consideration is focused here to the problem of joint state and parameter
estimation for bilinear systems. Via a simple transformation the KF is re-formulated for
parameter estimation and the EKF is re-formulated for both state and parameter
estimation (see Appendices 8 and 9 respectively). The applicability of the EKF is
compared to the tandem estimation schemes, introduced in Chapters 2 and 3, when

applied to the simulated models of both a linear and a bilinear system.

4.5.1 Brief historical note

The KF is a well known and versatile tool in the field of estimation theory.
Originally proposed for linear state estimation [57,62], the KF has been widely used in a

diversity of practical applications and has also provided a wealth of theoretical research.

Essentially, Kalman [62] developed a general framework for the RLS
algorithm with the important distinction being that the parameters to be identified were
no longer constants (as in the work of Plackett [8]), but were time varying quantities
governed by linear differential (or difference) equations. The KF can handle both
measurement noise on the system output and process noise in the system dynamics and is
the optimal estimator, in the sense of least squares, when such noises are Gaussian in

nature.

The work of Kalman, and later Kalman and Bucy [63], has resulted in

estimation techniques that are both elegant and powerful and can cater for both linear
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and non-linear systems; the latter being achieved using the EKF. The filter in its various
forms has been widely used for more than three decades and shows no sign of losing its

prominence as a successful and reliable engineering tool.

4.5.2 Kalman filter for parameter estimation

In this approach, the RLS parameter estimation procedure, used in the
tandem RLS/SKF scheme for the linear STC introduced in Chapter 2, is replaced by a
linear KF to produce a tandem KF/SKF scheme. In principle this allows incorporation of
a priori engineering knowledge without significantly increasing the computational

overhead [64].

For the purpose of the KF, the evolution of the parameter vector @ is
described by

0(t+1) = 6(1) + ax(1t) (4.18)
where a(t) is a noise sequence which takes into account any likely variation in the
parameter values with time, i.e. 0 is principally time invariant, but includes a random

component to reflect any possible variations.

The KF generates estimates a(tlt) via a simple two stage prediction/correction
process; prediction takes place during the sampling intervals, followed by correction at the
sampling instants. (The notation 5(t|t) is read as the estimate of 8 at time t (t| ) based on

information upto and including time t ( |t).) When configured for parameter estimation,

the KF equations become
Prediction: O(tjt-1) = O(t-1]t-1) (4.192)
o(tt-1) = S(t-1jt-1) + R, (4.19b)



Correction:  8(tjt) = O(tjt-1)+ @(t)[ y(t) — xT()B(t[t-1) ] (4.20a)
where d(t)= S(t-1)x(t) [ r, + xT(O)S(tt-1)x(t) ]! (4.20b)
and D)= [ 1 — ¢(t)xT(t) | D(t|t-1) (4.20c)

where and r, are the process noise covariance matrix and the output noise variance
v P P

respectively.

Note the similarity to RLS, both in form and computational requirements.
The primary difference is in the way in which elements of the covariance matrix are
inflated to increase adaptivity in the presence of time varying parameters. In the case of
RLS all elements are scaled by the forgetting factor A, equation (4.3), whereas in the KF
only selected elements are increased by the addition of the noise covariance matrix R,

equation (4.19b).

In adopting the KF for the parameter estimation stage of the bilinear STC,
the observation vectors are extended as indicated in Chapter 3 to produce a tandem

KF/ISO scheme.

4.5.3 Extended Kalman filter for joint state and parameter estimation

The tandem schemes in which parameters and states are estimated in
separate stages may be replaced by the EKF scheme where parameters and states are
estimated simultaneously. Define the augmented state vector

zZ'(t) = [xT(1): 0T() 4.21)
consisting of both states and parameters. The EKF generates estimates ;(tlt) of the
augmented state vector via a two stage prediction/correction process in a similar manner
to the KF. The important distinction between the KF for parameter estimation and the

EKF for joint state and parameter estimation is that the prediction stage is no longer
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trivial, requiring a knowledge of the state evolution between samples. In addition, even in
the linear case the formulation of the EKF problem leads to non-linear state equations
which are required to be linearised about each discrete operating region along the
trajectory of z(t) (See Appendix 9). The non-linear function is replaced by the Jacobian

matrix J(t) which is evaluated at each time step.

Linear STC

The EKF algorithm for the linear STC takes the form

Prediction: 2z(tjt-1)= P* Z(t-1t-1) + Q"u(t-1) (4.22a)
d(tt-1) = J-DS@-1t-1)IT(t-1) + R, (4.22b)
Correction:  z(t]t) = z(t|t-1)+ @(t)[ y(t) — H* Z(tjt-1) ] (4.23a)
where d)=dt-DH' T [ r, + H' S(t-1)H"T | (4.23b)
and &)= [ I — pH" J&(1)t-1) (4.23¢)
w

Augmented linear system

The evolution of the augmented state vector for the linear system is

described by the augmented state-space model

z(t+1) = P'z(t) + Q"u(t) + R%(1) (4.24a)
y(t) = H'Z(t) + e(t) (4.24b)
in which
P. 4 i | | 1 Q.- [ ]
A et Q
- = g - -
AR N "
ARl %
| |
0 | 0 | e 0

an



0 0 (4.25)

and I is the identity matrix of appropriate dimension

ie. t+l) = | x@t+1) | = ( Px(t) + Qu(t) ) + [ Re(t)
o(t+1) o) 0
y() = H ! © x(t) | + e(®)
0

so that the state equation (4.24a) may be expressed
Z(t+1) = f(z(1),u(1)) +_R'e(t) (4.26)
where f is a non-linear function (strictly bilinear) of state and control. The Jacobian for

this system is given by
of
Jp(t) = ——
O | g)-z(eit)

where suffix ¢ indicates that the original system is linear. This reduces to

a2



X, (1) O

|
|
|
I = 0 @27)
|
|
|

e

th

i.e. the matrix whose ij" element is the partial derivative of the i element of f with

respect to the jth element of z(t).

]
Bilinear STC
In the case of the bilinear STC, equation (4.22a) in the EKF algorithm is
modified to accommodate the bilinear terms, such that
m
z(tjt-1)= P 2(t-1t-1) + Q'u(t-1) + > u(t-iN; z(t-1]t-1) (4.28)
i=1
®
Augmented bilinear system
The state evolution for the augmented bilinear system is described by
m
2(t+1) = P'z(t) + Q"u(t) + R'e(t) + ) u(t-i+N] z(t) (4.292)
i=1

y(t) = H'2(t) + e(t) (4.29b)

OA



Similarly, the matrices P’ Q" R’ H'and N: are of the form (4.25) and are defined by

and

aOs

-

Q

|

(4.30)



The Jacobian for this system is given by Jy(t) =
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4.31)

where the suffix b indicates that the original system is bilinear.

4.5.4 Simulation studies

Simulation studies involving the application of Kalman filtering and extended Kalman

filtering techniques are described in [A14] and [A15].
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In [A14] the tandem RLS/SKF approach outlined in Chapter 2 is compared
to both the KF/SKF approach and the EKF approach when a linear self-tuning
pole-placement controller is applied to an identified linear model of a hydraulic servo
system [27] in the presence of non-ideal identification signals. In order to replicate the
observed non-linearities, in terms of slow variation in feed flow with operating
temperature, parameters within this model are varied linearly. Results presented in
Figures 4.6, 4.7 and 4.8, which illustrate (a) the control input u(t) and system response
y(t) and (b) the convergence behaviour of the estimated parameters, correspond

respectively to the use of RLS/SKF, EKF and KF/SKF schemes.

‘When a system is subject to poor input excitation signals, the estimation
procedure attempts to determine the ‘p’ parameters from effectively ‘one’ equation. As a
consequence, the estimated parameter values can become highly correlated, drifting in
sympathy, such that this ‘near singular’ set of equations is satisfied. From Figure 4.6 it is
evident that the RLS/SKF approach can lead to divergent estimates and possible
instability. It is evident from Figure 4.7 that the EKF reduces problems of divergence but
may produce biased estimates. The KF/SKF, on the other hand, is found to eliminate the

problems of both divergence and bias; as is evident in Figure 4.8.

The major shortfall of the RLS approach would appear to be due to the fact
that use of a forgetting factor tends to increase the cross correlations (as observed by the
algorithm), causing the estimated parameter values to drift in sympathy. For both the KF
and EKF approaches, the process noise covariance matrix R, is added and, since R, is
usually diagonal (or at least diagonally dominant), the observed cross correlations within
the algorithms are not increased, leading possibly to the better performance of the
KF/SKF and EKF schemes. The reduced performance of the EKF, in this case, is due
possibly to the cross correlations introduced at the covariance update stage involving the

Jacobian,
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In [A15] the tandem RLS/ISO approach outlined in Chapter 3 is compared to
the EKF approach when applied to the simulated bilinear system of section 4.3.3. The
system is operated in open-loop and driven by and ‘ideal’ pseudo random input signal. In
order to evaluate the integrity of the two estimation procedures the system is subjected to
a number of test conditions. It is noted that the EKF can make more meaningful use of
available a priori knowledge than the RLS/ISO approach and, in order to draw sensible
conclusions, it is useful to consider the implications of different initialisation procedures

outlined in [A15].

The results presented in Figures 4.9, 4.10 and 4.11 illustrate the convergence
behaviour of the estimated parameters for (a) the RLS/ISO scheme and (b) the EKF

scheme and correspond, respectively, to Tests 1, 2 and 3 which are outlined as follows.

In Test 1, the model parameters are fixed and the system is subjected to a
range of noise levels. Both techniques are initiated to reflect an absence of a priori
knowledge. It is found that for low noise levels there is little difference in performance.
However, the RLS/ISO scheme becomes increasingly superior for higher noise levels as is

evident in Figure 4.9 which corresponds to l e(t) | < 02.

In Test 2, the model parameters are again fixed, but this time the estimation
schemes are initialised to reflect the presence of a priori knowledge [A15]. Figure 4.10
illustrates the corresponding convergence behaviour of the estimated parameters when
subjected to the noise sequence in which l e(t) I < 0.2. Although, as expected,
steady-state performance is similar, use of the tuned EKF gives rise to an improved

transient performance.

In Test 3, the parameter a; within the model is varied linearly over the
duration of the simulation with the two schemes initiated as in Test 2 except that the

appropriate diagonal element in R, corresponding to the parameter a,, is increased by a
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factor of ten. It is evident from Figure 4.11 that, due to its versatility, the tuned EKF can
give rise to superior performance in terms of pari;neter tracking ability. The tracl.cing
ability of the RLS/ISO approach can be improved by reducing the value of the forgetting
factor. However, it is noted that even in the case of ‘ideal’ input excitation signals, this is

achieved at the expense of reduced estimation accuracy of the fixed parameters.

Whilst it is shown that the tandem RLS/ISO scheme provides a robust
approach requiring little or no a priori knowledge, it is noted that the EKF scheme, with
its increased degrees of freedom, is able to make more meaningful use of such knowledge

and, if tuned correctly, can give rise to a superior performance.
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4.6 Cautious least squares

4.6.1 The search for a simple yet effective approach

Proposals outlined so far for enhanced estimation schemes have, to some
extent, been found to alleviate the problems encountered in the implementation of STC.
However, the fundamental conflict within an STC lies in the requirement that it must
simultaneously perform the dual roles of estimation and control. In practice the
performance of an STC may deteriorate as a result of non-ideal input excitation signals;
unfortunately a condition experienced by well regulated plant particularly over prolonged
periods of steady-state operation. Whilst combinations of the various enhanced parameter
estimation techniques have been employed in an albeit ad hoc manner, the problem of
compromise between robustness and adaptivity remains an outstanding issue. This is
further compounded by the increased computational complexity which often accompanies
the enhanced techniques. This in turn leads to an increased computational delay and the
possibility of an overall deterioration in performance of the closed-loop STC, such that

the potential benefits of the enhanced techniques may never be fully realised.

Prompted by the need to overcome these problems, a computationally simple
yet effective technique termed cautious least squares has been proposed [A10]. Cautious
least squares is a conceptually simple approach providing a robust estimation scheme
which = is able to retain the desirable adaptive features of any enhanced technique,
such as variable forgetting factors and covariance matrix reset, etc., which may readily be
incorporated within its framework. Furthermore, it is able to alleviate problems arising
during prolonged periods of closed-loop steady-state operation due to poor input

excitation.
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4.6.2 Derivation of cautious least squares

Essentially, cautious least squares (CLS) attempts to minimise the modified
cost function

1.6 = (y-X6)" A (y-X0) + (6-6)" ¥ (60, (4.32)
ie. JOe=1,+1J,
the first term of which corresponds to the normal RLS cost function in which y—x'0 is
the prediction error 2 (equation (4.6)) and A is the diagonal matrix

A=diag[M....2%1),

see Appendix 7. The second ‘cautious’ term in the cost function attempts to minimise the
deviation of the estimated parameter vector 6(:) from some pre-specified ‘safe’ set of
parameter values denoted 6. The CLS algorithm is realised as an additional sub-algorithm
which operates in tandem with the RLS algorithm. It has the effect of realigning the
estimated parameter vector &(t) generated from within the normal RLS algorithm towards
the safe set 6; the amount of realignment being associated with the user defined
weighting matrix ¥. The parameter vector which minimises the modified cost function

(4.32) is defined as the cautious parameter vector &(t).

Making use of the vector differentiation given in Appendix 1

a0
= 2| — X"A(y-X0) + ¥(6-6,) (4.33)

00

which equating to zero and setting 0-0 gives
— X"y + XTAX0 + %6 — w0,= 0
(XTAX + ¥)0= X" Ay + W6,
so that
0= [X"AX+ ¥ "' X4y + W0, (4.34)
Since the estimated parameter vector [} generated from RLS is given by
0= [ XTax]! XTay (4.35)

it follows that equation (4.34) may be expressed as
105



=o'+ ¥[8 +0,] (4.36)

where &=[ XTax ]! is the error covariance matrix.

4.6.3 Realisation of the CLS approach

Since a recursive solution for equation (4.36) is not immediate, the approach
is realised as a tandem operation of two separate procedures of:
Obtain 6 from RLS by minimising J; only,
ie. 1,(0) = (y—X0)TA(y—X0) ; 4.37)

-~

0=0

followed by, obtain 8 from CLS by minimising J, only,

ie. 1,(6) = (0-0)"%(@-9,) (4.38)

-~ o~

The tandem RLS/CLS approach outlined by equations (4.37) and (4.38) forms the basis of
the algorithms adopted. Note that if CLS is applied at each time step then a further p
(p=dim{@}) iterations would be required. Whilst such a sequential scheme would ensure
that full weighting is given to the safe set the resulting algorithm would be
computationally cumbersome. However, its operation is considered here since it forms the

basis of a number of possible realisations.

Although it has not been considered in this Thesis, it is interesting to note
that the CLS approach could also be realised in the information matrix filtering domain

[65].

The cautious parameter vector 0, is obtained from either knowledge of the

plant or time series analysis of input/output data.
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Sequential operation of CLS

It should be noted that in the tandem operation of RLS and CLS, the
weighting matrix ¥ provides the user with the flexibility to assign confidence in the
individual safe set values; the overall influence on the safe set being dependent upon how

frequently the CLS sub-algorithm is applied.

In order to give a detailed description of the operation of sequential CLS it
is useful to imagine that following each successive iteration of RLS time is ‘frozen’ until

the cautious estimate has been generated. The approach may be illustrated schematically

as in Figure 4.12.
RLS generates 5(t)
!
t { CLS generates 5(t) ‘frozen’ time
RLS generates 5(t+1)
t+1 { CLS generates 5(t+ 1) ‘frozen’ time
Figure 4.12.

The sequential operation of the CLS algorithm involves, at each time step, a further p
iterations in order to minimise the cautious component J, of the cost function (4.32). For
clarity, it is convenient to assume that whilst time is ‘frozen’ between sucessive iterations
of RLS the discrete time index t is replaced by the index j, where j=1,2,..p. The

sequential CLS algorithm then takes the form
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= 4 ) -1
S=P,,¢[1 +e; P, ¢] (4.40)
Sk x
where the e; are the orthogonal unit vectors defined as
4
e = [8,;0505...6,] (4.42)
in which dij is the Kronecker delta function

1 isj

0 i#j

Note that by making use of artificial data in the form of the orthogonal unit vectors the
CLS algorithm is able to influence the overall estimation algorithm, tending to re-align the
estimated parameter vector towards the safe set 6. It is also noted that use of the
orthogonal unit vectors effectively provides for an artificial excitation signal within the
estimation algorithm, thus alleviating, to some extent, the problem of covariance blow-up

during steady-state periods of operation without the need to disturb/perturb the plant.

CLS is initiated at each time step with 00-§(t) and @ =P(t) where 5(t) and
@(t) are the estimated parameter vector and covariance matrix generated from RLS
respectively. Following the p iterations of CLS, the cautious parameter estimate and
covariance matrix become Op and ¢’p respectively, with the cautious estimate 5(:)-op used
for control purposes. At the next time step 6(t) and ¢p are fed back to the RLS algorithm
such that 5(t-1)-5(t) and ¢(t-l)-¢p. The overall procedure corresponding to the use of

sequential CLS for a linear system, as viewed by the estimator, then becomes
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y(t-1)

1

y(t-2) y(t-3) ...

1

0

y(t-1) y(t-2)...

1

0

1

0

y(t-1-n,) u(t-1-k) u(t-2-k) . .

y(t-n,)

u(t-1-k-ny)
0

0

u(t-k) u(t-1-k) . . u(t-k-ny)

0

I—iOI i

8,-0()

(4.43),

which may be readily extended to the bilinear case. Note that the maximum influence of

the safe set is obtained if CLS is applied at each time step. It is clear that many variants

of the sequential approach are possible and two such variants are outlined here.
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Cyclic operation of CLS

A natural extension of the sequential approach is the cyclic, or selective,
operation of CLS. In this way, only one parameter is ‘cautioned’ after each iteration of
RLS. In the cyclic approach all the parameters are cautioned ‘cyclically’ whereas in the
selective approach only the problematic parameters are cautioned. In the latter approach,
some form of fault detection mechanism would need to be incorporated. The cyclic

operation of CLS may be viewed as

0s, 0 0 1 o(t-1)
y© | = | yt-1) yt-2) ...y@tn,) u(t-k) u(t-1-k) .. u(t-k-n,) o)
05, W A 0 o(t)
yt+1) [ = | y@® y@1) ...y(tn+1) ultk+l) utk) .. ult-kng+l) o(t+1)
0s, e L, 0 o(t+1)
(4.44)
[
CLS on reset

In this approach CLS is combined within a variable forgetting factor and
covariance matrix reset procedure which is implemented whenever a fault condition,
indicative of large estimation errors, is detected. The reset mechanism, being a function
of the estimation prediction error, is triggered when the demand for the variable
forgetting factor falls below some pre-specified threshold level Ap (see section 4.3.2). Such
a combined procedure facilitates, at reset stages, an efficient means of cautioning all

parameters in a single iteration; this being made possible by exploiting the diagonal
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properties of the newly updated covariance matrix. The algorithm takes the form:

If the demand for the forgetting factor A(t)<A 0 (Note that the actual value of the
forgetting factor is bounded such that Ap<A(1)<<1.0 where A;>A p.) then the
cautious covariance matrix ¢Dp becomes zI so that the cautious parameter estimate
a(t) from (4.36) becomes

0() = (1—-0)0(1) + b, (4.45)

where w=ﬁ(1+ﬁ)’1.

The value of w in (4.45) may be interpreted as a measure of the users confidence in the
safe set 6, which then determines the value of 1 used in the resetting. In order to retain
the influence of 6, in subsequent iterations, RLS is re-initiated with the covariance

matrix @ reset to the identity matrix L.

4.6.4 Simulation studies

The bilinear system uséd previously
y() = —a,()y(t-1) — 0.7y(t-2) + u(t-1) + 0.5u(t-2) + 0.12x(t-1)u(t-1) + e(t)
is again adopted for investigative purposes where a,(t) is a time varying parameter.
Closed-loop poles are specified at -3 and -5 in the s-plane with a sampling interval of
T=0.1 second. The objectives of the simulation studies are to investigate the use of
caution on reset combined with variable forgetting factor and covariance matrix reset and

to compare the resulting performance to that obtained in the absense of caution.

The system is again subjected to a step input r(t)=0.05 and an output

disturbance e(t) represented by discrete white noise, where | e(t) I < 0.04, with the

parameter a,(t) varied according to
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-15 <50
a () ={ -15(-50)/1200  50<t<650

-15 650

with each simulation being run over 750 iterations. The algorithm is initiated with
@(0)=10°1 and 0{=[l.7 -0.7 1.0 0.5 0.12], a confidence factor w=0.75 and an initial value

of forgetting factor being 4,=0.97.

Figures 4.13(a) and 4.13(b) illustrate, respectively, the system response y(t)
and control input u(t) when caution is employed whilst those of Figures 4.14(a) and
4.14(b) give corresponding responses in the absence of caution. It is clear that use of
caution on reset gives rise to a markedly superior performance. Figures 4.15(a) and
4.15(b) illustrate, for the case of caution on reset, the convergence behaviour of the
parameter estimates and the state space control law parameters respectively. These again
show an improvement when compared to Figures 4.16(a) and 4.16(b) which correspond to

the same conditions in the absence of caution.
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4.7 Concluding remarks

A number of enhanced parameter estimation techniques have been
investigated and developed with specific attention being directed towards their
effectiveness when incorporated within the bilinear STC framework introduced in

Chapter 3.

The proposed enhanced techniques are essentially extensions and adaptations
of existing techniques for linear systems and include; a hybrid variable forgetting factor
for slow parameter variation; a combined two-tier variable forgetting factor and
covariance matrix resetting technique for both slow and sudden parameter variation; an
alternative form of the recursive instrumental variables technique for improved
convergence behaviour; Kalman and extended Kalman filtering techniques allowing the
incorporation of engineering knowledge; and a novel cautious least squares procedure
which may be applied sequentially, cyclically or on reset conditions to provide a simple
yet robust approach capable of retaining the desirable adaptive properties of any other

coexisting enhanced technique.

Whilst the enhancements have been aimed at improving the integrity of the
bilinear STC, the results are applicable for linear systems although the level of
improvement may not be as significant. When appliying STC to practical systems
exhibiting bilinear characteristics, it is anticipated that any enhancement to the parameter
estimation scheme will largely depend upon the application under consideration and may

well involve a combination of the schemes which have been outlined here.
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5. Real-time laboratory scale trials

5.1 Introduction

In order to evaluate the effectiveness of both the enhanced linear STC and
extended bilinear STC algorithms, developed in Chapters 3 and 4, real-time laboratory

scale trials are undertaken.

The first system considered is the coupled tanks apparatus, marketed by
TecQuipment Ltd. [66], in which the control objective is to regulate the liquid level in the
secondary tank by controlling the fluid flow into the primary tank; the tanks being
coupled via an orifice. The system is known to exhibit non-linearities, due to the square
law relationship between output flow and liquid head and, in order to accommodate for
this, use of enhanced linear STC schemes are investigated. The second system is the
heating-cooling system, marketed by Flight Electronics Ltd. [67], in which the control
objective is to regulate the surface temperature of a heated bar onto which air is blown
from an ambient source; the air flow being regarded as a disturbance on the system. The
resulting overall system is known from physical considerations to exhibit bilinear
characteristics and it is used as a basis for evaluating the bilinear STC algorithms

developed in Chapter 3.

5.2 Coupled tanks hydraulic system

The system under investigation in this section is the coupled tanks hydraulic

system which is illustrated diagrammatically in Figure 5.1.
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Figure 5.1. Coupled tanks apparatus.

Investigations are focused on developing STC algorithms to regulate the
liquid level L2 in the secondary tank by controlling the input flow F to the primary tank.
Whilst from physical considerations it is known that the system behaves in a non-linear
manner, it is never the less useful to consider an approximate linear model structure.
Define Ll-I_,l+I , and Lz-l_‘2+12 where /; and I, are, respectively small variations in liquid
level about mean operating levels I_.1 and I:z By applying the law of conservation to each
tank an approximate linear model for determining /, and /, is readily obtained. Such a

model may be expressed in the state-space form

I, X /A k/A A 1/A| f
- + (5.1)
i k/A ~k+k)/A | | 1, 0

where A is the cross sectional area of each tank, f is the variation in input flow rate
about a steady-state flow F (ie. F=F+ f) and k; and k, are constants of proportionality

which are themselves dependent on the mean operating levels I_.l and I_.2

The implications of equation (5.1) are that for small variations about mean
operating levels the system may be adequately modelled as a linear second order system.
When consideﬁng the application of STC it is first necessary, as outlined in Chapter 2, to
identify an appropriate linear model structure. For a second order system such a discrete

representation takes the form
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y(t) = —a,y(t-1)— ayy(t-2) + byu(t-k) + byu(t-k-1) + e(t) (5.2)
where in the case of the coupled tanks system u(t), y(t) and e(t) are, respectively, the
input flow rate, output liquid level in the secondary tank and an assumed white noise
measurement disturbance. The integer k>>1 is the system time delay expressed as an
integer multiple of the sampling interval. Adopting a sampling interval of T=8.75 second
gives rise to a value of k=1. The corresponding state-space representation of equation
(5.2), as outlined in Chapter 2, becomes

x(t+1) = Px(t)+ Qu(t)+ Re(t) (5.3a)
y(t) = Hx(t)+ e(t) (5.3b)

where x(t) € R? and the matrices P, Q, R and H following the necessary reduction in

dimension are given by

P=[0 <] @=[b] R=[«] BH=[0 (5.4)

1 -a l bo -a 1 1

Based on the assumption that variations in system behaviour, including the
effects due to non-linearities, may be absorbed into the time varying nature of the
adopted model parameters, equations (5.2) and (5.3) are taken to be an appropriate model

structure for implementing linear STC.

5.2.1 Implementation of enhanced linear STC

For small variations in head height, standard linear STC is found to be more
effective than conventional PID control [68]. However, for large variations in head height
both standard linear STC and PID schemes are found to be inappropriate. In [A17] a
switched model linearisation approach is introduced in an attempt to accommodate the
system non-linearities and in [A16] the approach is extended to combine switched model

linearisation with cautious least squares.
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The performance of the various STC schemes are compared to that achieved
when use is made of variable forgetting factors and covariance reset only. In each case
the adopted STC makes use of the state-space pole-placement strategy [6] and in order to
achieve a first order type response closed-loop poles are specified at -0.229 and -100 in
the s-plane. Each test was taken over 300T second (T=8.75 second) and the system
subjected to a set-point demand equivalent to a square wave reference input of period
150T second. The reference levels r(t) are specified as 10cm and 18cm of fluid head in

the secondary tank, corresponding to transducer readings of 2 volt and 4 volt respectively.

Figures 5.2a and 5.2b illustrate the responses corresponding to the use of
variable forgetting factors [A2,A6] and covariance reset action coincident with set-point
change. It is evident from Figure 5.2a that reasonable set-point following is achieved only
at the expense of a relatively high and possibly unacceptable input variance. Whilst use of
reset action at set-point change should remove all a priori information from within the
algorithm and facilitate rapid adaptation Figure 5.2b, which corresponds to this, shows
that this improvement is not forthcoming, rather surprisingly leading to a deterioration in

response.

Recognising the apparent shortfalls in the use of variable forgetting factors
and covariance resetting techniques, when dealing with this non-linear system, prompted
the need for an alternative approach and the use of switched model linearisation in
conjunction with cautious least squares (CLS) is investigated [A16]. Simulation studies
which make use of switched linear model structures given in [A17] are used as a basis to
assess the approach. Figures 5.3a and 5.3b correspond to the use of sequential CLS and
caution on reset respectively. Whilst these Figures would seem to imply comparable
results in terms of set-point following and control input variance, it should be noted that
the sequential approach is computationally more intensive. Real-time implementation
trials corresponding to the above gives rise to the responses shown in Figures 5.4a and

5.4b. As expected, results given in Figures 5.3b and 5.4b are similar, whilst those of
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Figures 5.3a and 5.4a indicate a deterioration in the real-time implementation; this being

due possibly to the increased computational delay.

It is readily observed that in this application, the use of caution on reset
gives rise to a superior performance in terms of increased accuracy in set-point following

and reduced control input variance.

5.3 Heating-cooling system

This section describes investigative studies into the application of the bilinear
STC techniques developed in Chapter 3. A laboratory scale non-linear heating-cooling
system [67], which is known from physical considerations to exhibit bilinear
characteristics, forms the test facility for evaluating the applicability of the bilinear
approach. The system which has been used previously [69] for simulating the effects of a

controlled glass house, is illustrated schematically in Figure 5.5.

Fixed
fan
speed T
Air flow
u(t) i
Surface
Current temperature

Figure 5.5. Schematic of heating-cooling system.
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The system consists of a heated bar onto which air is blown from an ambient
source; the heat being largely transferred by convection. The objective of the controller is
to regulate the surface temperature of the heated bar, by controlling the input current, so
that it follows a prescribed temperature profile; the air flow being regarded as a load

disturbance on the system.

In order to implement STC a discrete transfer function representation is
required; a major step when dealing with a non-linear system is to form an appropriate
model structure. The modelling stage is based on a set of assumptions which must be
comprehensive enough to fully characterise the system whilst at the same time provide
the framework for the simplest possible model structure. For the heating-cooling system
which is known from physical considerations to exhibit bilinear characteristics, the
following assumptions provide the basis for a simple first order bilinear model structure:

(i) The system obeys the first law of thermodynamics.

(i)  Heat is derived from conduction of current and heat loss is a function of
temperature gradient.

(iii) Temperature gradient is a function of input current and fan speed.

(iv)  For any given fan sp(;,ed, input current and ambient temperature there will be

some steady-state point of equilibrium.

Based on the qualitative assumptions (i)-(iv) a simple first order bilinear

model is now derived.
Heat stored = Internal conduction — External convection

alternatively
emy = kyu(y—a)— kyf(y—a) (55)
where ¢= specific heat capacity of the resistive element/bar,

m = mass of the resistive element,
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y= rate of change of surface temperature of the resistive element with
respect to time,

u= current input to resistor,

f = fan speed,

Y= actual surface temperature of resistive element,

= temperature of ambient surroundings

and El, Ez = constants of proportionality.

Rearranging equation (5.5) leads to
¥= kju(y—a) — kyf(y—a) (56
where k; and k, are El /cm and Ez/ cm respectively, so that
¥+ Kfy = kju(y—a)+ kfa 5.7)
Since the term involving the product of u and Y cannot be separated it is
convenient to introduce an element of time-step quasi-linearisation. Defining y on the
right hand side of equation (5.7) to be the quantity Y, which is assumed to be constant at
any given sampling instant, leads to
¥+ Kfy = kju(Y—a)+ kyfo (5.8)

which may be represented in the block diagram form

sza 1
(s+a)
d
u b - y
D
"D
(s+a) ¥y

where a=k,f, b=k, (Y-), d is an offset and s is the Laplace variable.
1

127



The z-form transfer function from u to y’ is readily shown to be

y®  z'(p)1—e2T)

u(t) (1—e23T7 1y

(5.9)

where T denotes the sampling interval. The corresponding difference equation takes the

form
y® = e?Ty'-1) + ) 1—eTyu(e-1)

substituting for a and b and including the offset term d gives

fT k(Y-a) fT
yt) = e*2My-1) + —e*2Mu-1) + det)
k,f
which on expanding leads to
k]a
y® = e*2Ty-1) + — e 2T—1yu(e-1)
k,f
k,
- — e 2Tyyue-1) + d
kyf
Substituting a, = — ™27,
kla
by= — (e*2"-1),
kyf
kl
1 =— — (¥,
k,f

and replacing Y by y(t-1) yields

y(h=—a,y(t-1) + bou(t-1) + 7y(t-Du(t-1) + d(t)

which is readily observed to be of the required bilinear structure.
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5.3.1 Implementation of bilinear STC

In order to provide a basis from which to assess the effectiveness of the
proposed bilinear STC it is pertinent to first consider the application of linear and
enhanced linear STC. In this section the effectiveness of self-tuning linear PID and linear
pole-placement strategies are compared to self-tuning bilinear PID and bilinear

pole-placement strategies.

Whilst the simple first order bilinear model structure, equation (5.13), has
been derived from physical principles it is found in practice that use of the second order
bilinear model

¥(1) = —a,y(t-1) — ay(t-2) + byu(t-1) + gy(t-1)u(t-1) + d(t) (5.14)

leads to a more robust STC scheme and is adopted here for all real-time trials.
Tests on the heating-cooling system are run over 150 iterations with a
sampling interval of T=6 second and the surface temperature is recorded as a percentage

of full scale (70°C).

In the case of the PID controller, a discrete form of the ideal non-interacting

algorithm
dz(t)
w0= K ( 20+ 00t + k,— )
dt

is adopted [70], in which

kp=1/bg,  k=(Tbga;,  ky=ay(Thy)
with T being the sampling interval and z(t) the error (r(t)-y(t)). The philosophy of the
bilinear PID approach is simply based on the fact that by estimating the bilinear

coefficient the linear coefficients a;, a,, by, are obtained more accurately.

In the case of the pole-placement strategies, both the linear and bilinear
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control laws attempt to place a dominant closed-loop pole at 0.1 in the z-plane. When

using a second order model structure the second pole is specified at the origin.

To form a basis from which to compare the various STC strategies a fixed
PID controller is tuned manually and the resulting ‘satisfactory’ performance is recorded.
The system is run over a 1200 second period (200 iterations) and is subjected to a square
Wwave temperature reference profile switching from 27.5% to 31.4% of full scale at a
period of 600 second. The system response and control input corresponding to the fixed
PID scheme is illustrated in Figure 5.6. It is evident from this Figure that the system
response is fairly well regulated but at the expense of a very active control actuation

signal.

The responses given in Figures 5.7 and 5.8 correspond respectively to typical
results obtained when use is made of the first and second order linear pole-placement
schemes. In both cases the linear STC is found to be rendered inadequate. Figures 5.9 and
5.10 correspond to the use of the first order and second order bilinear pole-placement
schemes. In contrast to the results shown in Figures 5.7 and 5.8, the bilinear STC is able
to maintain a consistent controllér performance, the second order controller producing the
smoother control action. The bilinear STC clearly achieves its objective and produces a
markedly superior performance over the linear STC. Figure 5.11 illustrates the system
response and control input corresponding to the adaptive bilinear PID scheme, this again

producing a superior performance to the linear STC.

The results presented in this section are representative of typical results

obtained in real-time and they serve to highlight the potential significant benefits to be

gained by adopting the bilinear approach.
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5.4 Concluding remarks

The effectiveness of both the enhanced linear STC and the bilinear STC
schemes have been investigated via real-time trials involving two laboratory based

non-linear systems.

In the case of the coupled tank system, the performance of the standard
linear STC is found to be ineffective when assumptions on local linearity are invalid (i.e.
the performance deteriorates when there are large variations in head height). However, it
is found that when use is made of enhanced linear STC schemes making use of switched
model linearisation combined with a cautious least squares procedure, significant

improvements are possible.

In the case of the heating-cooling system which is known from physical
consideration to exhibit bilinear characteristics the enhanced linear STC is found to be
ineffective and the bilinear STC scheme is found to produce a markedly superior
performance. Further work has since been carried out and the MISO bilinear STC scheme
has been applied to the heating-cooling system. It has been found that, by carefully
tailoring the weighting on each control input channel further improvements in

performance are possible [71].

The results obtained using the bilinear approach are very encouraging and
indicate that the bilinear STC may well be applicable for a wider class of non-linear
systems for which local bilinearity may be assumed. It is anticipated that the form of the
bilinear STC will have to be tailored for each specific application with use being made,

where appropriate, of the enhanced features outlined in Chapter 4.
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6. Discussion and conclusions

Conclusions

The major problem of the standard linear self-tuning approach is believed to
be that of plant/model mismatch. In adopting the standard approach the designer is forced
to adopt a linear model structure which presents the ‘best’ available compromise albeit
limited, due to the current state of the art in microcomputer technology, between
open-loop model accuracy and closed-loop computational intensity. Consequently, the
plant/model mismatch problem is inevitable and when attempting to apply linear
self-tuning control to systems which exhibit time varying dynamic behaviour or to
systems for which local linearity may not hold, the widely accepted assumption on
absorption of these effects into the estimated parameters of an adopted linear model is

rendered invalid thus effectively prohibiting use of the standard self-tuning approach.

Prompted by the need to alleviate the shortfalls encountered when attempting
to apply the standard linear self-tuning approach to systems exhibiting non-linear and/or
time varying dynamic behaviour, the linear self-tuning framework has been extended to
accommodate a class of SISO and MISO bilinear model structures; such structures being
appropriate for a wider range of systems than the often inadequate yet convenient linear
model structures. Bilinear control systems represent a well structured class of nearly
linear systems in which the non-linearity or bilinearity is characterised by additional
multiplicative terms involving products of states and controls. Such systems occur
naturally in a wide variety of engineering, biomedical and socioeconomic applications.
Engineering applications include; fermentation processes, disc braking systems, AC and

DC machines, distillation columns and heat transfer processes.

Attention has been focused towards the development of an extended form of
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the linear self-tuning pole-placement strategy and, recognising that all self-tuners make
use of discrete-time transfer function models, a number of alternative quasi-linear
candidates for the bilinear self-tuning control algorithm have been explored. The resulting
bilinear self-tuning pole-placement controller makes use of two model structures: a
polynomial bilinear model structure for parameter estimation, with use being made of an
extended form of the standard recursive least squares algorithm; and a quasi-linearised
state space model structure for state estimation, with use being made of an iterated
steady-state observer. Due to the presence of the bilinear product term(s), the two
estimation algorithms are required to be operated serially in tandem. Essentially, with use
being made of a boot strapping technique, the estimated states are progressed to the
recursive least squares algorithm in order to estimate the bilinear model parameters and
similarly the estimated parameters are progressed to the iterated steady-state observer in

order to estimate the states.

Preliminary simulation studies revealed that the bilinear self-tuner offers
potential advantages over the linear self-tuning schemes when applied to systems
exhibiting bilinear characteristics; this being believed to be due possibly to the reduced
plant/model mismatch problem. However it is found that the bilinear self-tuning controller
is susceptible to noise and is vulnerable to numerical difficulties within the algorithms.
This being particularly the case during transient periods when excessive control action has
detrimental effects and during prolonged periods of steady-state operation when a well
regulated plant can give rise to a near singular situation. This potential shortfall in the
approach gave rise to the search for and development of enhanced parameter and joint
parameter/state estimation algorithms; with investigations being specifically directed
towards improving the robustness of the bilinear self-tuning controller. A number of
enhancements have been investigated and whilst these have by necessity been considered
for use within the bilinear self-tuning framework they are equally applicable, although
will not genérally produce the same degree of improvement, for linear systems. More

importantly recognising the shortfalls in the standard approach, it is believed that the
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enhanced procedures developed for bilinear systems will be appropriate when attempting
to apply linear self-tuning techniques to practical non-linear systems when it is desirable

to minimise the inevitable mismatch problems found in practice.

The most significant improvement in terms of improving the integrity of the
bilinear self-tuning controller has been that of cautious least squares. Essentially by
defining a safe set of parameter values over a particular operating range of interest, the
designer is able to influence the estimation algorithm through a practical knowledge of
the system. The cautious least squares procedure is realised as a separate sub-algorithm
which is inserted between the extended recursive least squares parameter estimation
algorithm and the pole-placement control law design algorithm. Caution may be applied
either sequentially or cyclically at each time step or on fault detection coincident with
covariance matrix reset; the effect being to realign the estimated parameter vector
towards the appropriate safe set with the amount of realignment being dependent on the
confidence in the safe set values. An additional feature which arises in the use of
cautious least squares is that it provides an element of excitation within the estimation
algorithm without physically disturbing the plant; this effectively being achieved by

repeated use of the artificial observation data in the form of orthogonal unit vectors.

Real-time trials involving two laboratory scale non-linear systems have been
undertaken with use being made of the bilinear self-tuning controller and a linear
self-tuning controller incorporating the enhanced estimation procedures. It is found that
when applied to the hydraulic liquid level system, for which local linearity cannot be
assumed due to the large variations in operating head height, the standard linear
self-tuning controller is rendered inadequate. However, when use is made of switched
model linearisation combined with cautious least squares, significant improvements in
overall performance are possible. In the case of the heating-cooling system, for which a
simple bilinear model structure has been derived from first principles, the enhanced linear

self-tuner is found to be inadequate. The bilinear self-tuning controller, however, is able
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to satisfactorily control the system, with further improvements being made possible when

use is made of the enhanced estimation procedures.

The overall results of the real-time trials serve to illustrate that significant
improvements in performance are possible when known/identified non-linearities
(bilinearities) are ‘actively’ accommodated at the design stage within an extended
self-tuning framework rather than being assumed to be ‘passively’ absorbed into the
parameters of a linear model structure during implementation. Furthermore, since the
range of applicability of the linear self-tuner is a subset of that of the bilinear self-tuner,
it may be conjectured that, in the same way the linear self-tuner is valid where local
linearity holds, the bilinear self-tuner may well be applicable for a wider class of

non-linear systems where local bilinearity holds.

It should be noted that use of the bilinear self-tuning controller introduces
additional model parameters which are required to be recursively identified, thus
increasing computational complexity of the algorithm. To allow the full advantage of
potential improvements offered by such controllers a good a priori knowledge of the
system to be controlled is required in order to ensure that only relevant bilinear terms are

included in the algorithm, therefore reducing the computational burden to a minimum.

Current research

Whilst there is interest in theoretical aspects of identification and parameter
estimation for bilinear systems, as is evident in the recent publications [72-77], the
number of reported applications of control strategies to such systems remains limited.
However, extended schemes, including those incorporating predictive forms [78,79], of the
basic bilinear self-tuning framework proposed in this Thesis are currently being

successfully applied to a gas fired industrial heat treatment furnace [80-83]. In terms of
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efficient energy usage, the performance of these extended bilinear self-tuning schemes are
markedly superior to that achieved using commercial auto-tuning PID controllers; such

controllers currently being regarded as the accepted industrial standard.

A further area of research which has been highlighted is that of applying
self-tuning control to other forms of non-linear systems. In [84-87] enhanced linear
self-tuning strategies are being applied to the dynamometer torque loop of an engine test
cell. Such systems are typical of a wide range of industrial plant, which exhibit fast
dynamics and non-linear behaviour, and it is found that in order to capture the process

dynamics it is necessary to make use of enhanced estimation techniques.

Another area of on-going work is that of the automobile industry where the
reducing size and cost and increasing reliability of microprocessor hardware is continually
posing new challenges. The industry is already facing a revolution in terms of drive by
wire technology. In particular fundamental research on the microprocessor controlled
advanced suspension systems is currently taking place [88], as well as the fault detection

mechanism [89] in readiness for the suspension hardware which is yet to emerge.

Combining the on-going research activities [A18,A19,A20] with the potential
benefits offered by the bilinear self-tuning framework it is clear that self-tuning control is
already becoming a well established approach and promises to provide a powerful and
versatile option for the control of an increasingly widening range of industrial

applications.
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Further research

‘Whilst initial investigations on the stability and convergence properties of the
iterated steady-state observer for bilinear systems have already been undertaken, there
remains much scope in this direction for further theoretical work. This is particularly
relevant when considering the extension of the bilinear approach to accommodate

interconnected multiple-input single-output bilinear subsystems.

In addition the cautious least squares aspect of the work requires further
evaluation on industrial systems and in this context the information matrix filtering

approach, with its increased facilities for greater selectivity, needs to be pursued.

It is envisaged that further research should also be directed towards the
design and development of hybrid schemes involving self-tuning control in association
with other schemes in an attempt to provide robustness over a wider operating range
whilst maintaining optimum performance. Such hybrid schemes should, therefore, aim to
incorporate either the robustness offered by H,, designs, the learning capabilities of a
neural network or the inferential logic of a fuzzy control scheme. This together with the
desirable features of a self-tuning controller should provide for an increased range of

industrial applicability.

The continuing developments in computer technology coupled with the

increasing demands for improved system performance will almost certainly continue to

stimulate the search for new adaptive controller designs.
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Appendix 1. Vector Differentiation

If the following scalars are differentiated with respect to the vectors v and z,

the following results hold [14].

If a) I, = szlv (Al.1a)
b) I, =viwyz (A1.2a)
and ¢) J; =z'ws (Al.32)
o,
Theni) — =Wz (Al.1b)
ov
o,
i) — =wy (A1.2b)
ov
o,
i) — = W3z + Wz (A1.3b)
0z
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Appendix 2. Matrix inversion lemma

In the derivation of the recursive least squares algorithm in Chapter 2, use is
made of the matrix inversion lemma, attributed to Householder (1964). The simple proof

presented here follows that given by Astrom in [15].

Lemma:
Let A, C and A+BCD be non-singular square matrices. Then the matrix
identity
[A+BCD]'=A"1-A"'B[C"'+DA'B] 'DA"! (A2.1)
holds.
Proof:
Pre-multiply both sides of equation (A2.1) by [A+BCD]
I= [A+BCDJ[A'—A"'B[C'4+DA"'B] 'DA"] (A2.2)

To prove the lemma, it is suffice to show that the right hand side of equation (A2.2)
reduces to the identity matrix. This may be demonstrated by direct manipulation.
[A+BCD][A‘1—A"B[C“+DA"B]“DA"]

— I4+BCDA"'—B[C"!+DA"'B] 'DA!

—BCDA'B[C"'+DA™'B] 'DA"!

— 14+BCDA-'—B[I4+CDA"'B][C"!+DA"'B] 'DA™!

= I4+BCDA"'—BCDA™!

=1 as required.
By inspection of equation (2.18) it is clear that &' (M), X(M+1) and XT(M+1)
correspond to the matrices A, B and D in the identity (A2.1) and C=I the identity

matrix.

154



Appendix 3. Derivation of polynomial identity

The polynomial form of the pole-placement self-tuning controller operates
directly on the ARMAX representation (2.1)

A@Q@Hy® = q*B@hHu® + C(q He(t) (A3.1)

Bg™) c@™h
or y) = q* u(t)+ e(t) (A3.2)
AQhH  A@DH

The polynomial control law which shifts the open-loop poles to their desired
closed-loop locations is given by
D@ ™Hu@® = Gy (A33)
Defining all polynomials to be of the general form
LY =1y +4q + a2+ L (A3.4)
it is assumed initially that the orders of D(q"!) and G(q") are ng=ny+k and n=n,

respectively, with d=1.

Rearranging (A3.3) gives
G@q™

u(t)= ——y() (A3.5)
D(qh)

Substituting (A3.5) into (A3.2) leads to

B(q) G@™h c@™)
yty=q¥ — . ——y0® + e(t) (A3.6)
A@"Y) D@ A@@™h)
B! G@™h c@™h
1 - ¢¥— . — |y®O= e(t) (A3.7)
A@YH D@ A@h

Multiplying through by A(g™)D(q™") gives

(A(q")D(q-‘)— q*B(q">G(q">)y(t> = C@HD@ e (A3.8)
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Equation (A3.8) is the closed-loop system equation and (A(q‘l)D(q") -
q"‘B(q'l)G(q’l)) is the closed-loop characteristic polynomial, the zeros of which are the
eigenvalues or poles of the closed-loop system. Hence the polynomial identity becomes

(A@hHpah- a*Bahea™)= rah (A39)

Investigation into the polynomial identity (A3.9) reveals that a unique
solution for the controller polynomials D(q") and G(q'l) does not exist when their
respective orders are taken to be n=n,+k and n=n,. In general it is found that there is
always ‘N’ equations and ‘N+1’ unknowns. It is therefore necessary to fix one of the

controller coefficients to some arbitrary value.

It has been suggested [5,19] that d should be set to zero. By the nature of
the problem, this choice automatically forces the parameter 8ng to become zero. Hence for
a unique solution the orders of D(q") and G(q'l) become ndsnb+k-1 and ng-na-l

respectively.
It is noted [19] that arbitrary choice of any controller coefficient other than

dnd-O will produce a control algorithm which will still perform pole-placement but will

have its own distinct controller action.
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Appendix 4. Derivation of feedback vector F

The derivation of the feedback vector F is the central feature of the
state-space approach. Essentially, the feedback vector will be a function of the estimated
model parameters and the parameters of the specified closed-loop characteristic
polynomial. Its derivation is based on the return ratio and return difference matrices and

the functional realtionships, given in [23], and these are simply stated here.

Return difference matrices

The open-loop return difference matrix is given by

JqH=q'F [I—q"P]'IQ. (Ad.1a)
The closed-loop return difference matrix is given by

1@h= ¢ Fi-q'P+aRl e (Ad.1b)
The return ratio matrix is defined as

gh = [I—Jo(q-l)]. (Ad.1c)
Functional relationships

Denote the open-loop charact;:ristic polynomial

A= 4,97 (Ad4.22)
and the closed-loop characteristic polynomial

rq™h = 44q". (A4.2b)

Denote the determinant of the return ratio matrix

det J(@ )= 4A@qh) (A4.2c)
So that
4(q") = det [l—q"r] (A4.3a)
4(q") = det [I—q“[P+QF]] (A4.3b)
AqQY) = det [I—Jo(q'l)] (A4.3¢)

The fundamental relationship between the open loop and close loop systems is now
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derived
[1- e+ = [1—a'P—'0F]
in [l—q'lP][l—q‘l[I—q'lP]-lQF] (A4.4)
Taking determinants on both sides of (A4.4) and making use of (A4.3) leads to

44 = 4@ [I—q"[l—q"P]'lQF] l (A45)

Denoting P*=q~![I—q"'P]! leads to
g

497" = 4@

[l—q"P'QF] \ (A4.6)

To proceed, use is made of the identity [24].

Matrix Identity
For any mXn matrix M; and nXm matrix M, the identity

| 1+MM, | -

In+M2M 1

holds.

In (A4.6) dim{P"}=nXn, dim{Q}=nx1 and dim{F}=1xa. If M,-P'Q and M,~F then

dim{M, }=nx1 and dim{M,}=1xn. Applying the above identity gives

ln+[P'Q]F| = ‘ 1-F[P*Q] l (A4.7)
Substituting (A4.7) into (A4.6) leads to
46" = 4@ l 1—FP‘Q| (A4.8)
equivalently
4407 = 4@ l l—q"F[l—q“P]"Q, (A49)

Thus from (A4.1) it follows that
440" = 4@ | IqhH \ (A4.10)
so that

44" = 4" 4@ (A4.11)
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or

a4q™"h
(A4.12)

Aqh = .
409"

Equation (A4.12) is a fundamental relationship between the open-loop and closed-loop

systems and is called upon later in the derivation.

Substituting (A4.1c) into (A4.1a) gives
-1

qgh = l—q"F[l—q"P] Q (A4.13)
which from the definition of an inverse
Adj[l—q"P]
] -
Det[l—q"l’]
Adj[l—-q"l’]
= (A4.14)
-1
4,q7)
Substituting (A4.14) into equation (A4.13) gives
Adj[l—q'lp]
JqY) =1—q'F Q. (A4.15)
-1
4,q7)
Denoting .?-Adj[l—q'lP], equation (A4.15) becomes
F£Q
Iq) = 14! ! (A4.16)
449"

Since dim({F)=(1xn), dim{&}=(nxn) and dim{Q}~(nx1) equation (A4.16) is a scalar so that

det 3@V = N = 4@ (A4.17)
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Hence
F£Q
AgH=1-q" (A4.18)
449"

4,4q" —q' F£Q
ie. AqhH = (A4.19)
4497

Using the fundamental relationship given by (A4.12)
A Haa™ = 4™ = 4@ —a" FLQ (A4.20)

ie. 4@ = —q' FLQ + 4@ (A4.21)

Since (A4.21) is essentially a scalar equation, it follows that transposition gives

a6 = —q' FeQ” + 4@ (A4.22)
ie. 40q"H =—-4q* QT#F + 4(q7") (A4.23)
rqh=-q' Q"€ F +Aq" (A4.24)

In order to rearrange (A4.24) into a form suitable for the evaluation of F, the term

—q'lQT.?TFT is considered in more detail.

The solution of F, by necessity, involves equating coefficients of like powers

of q! in (A4.24). Expanding (A4.24) leads to

[q'“....q’lqo] - 0 -1 = —q"! QZTF' +[q'"----q'lq0]- 0 -1
0 0

”n, n,

71 |

% -

... (A4.25)
In order that (A4.25) be consistent, the term q"'Q"#T should reduce to the form
[ row of shift operators ] [ nXn matrix ] 5
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so that the required scalar quantity is produced when operated on by FT. Recall
T
&7 = [Adj[l—q“P]] (A4.26)
Now since £7 is the matrix of minors of [l—q'lP] and since [l—q'lP] is of dimension

nXn, it follows that the elements of 27 are polynomials in q"! of maximum degree (n-1),

ie. 7= | €@ €p@h) - - . - 6@ | (A4.27)
@) f@h) - o o . f(@ )
Lenl(q-‘) L - . . . Eh
T -1 -1 -1
or T = [ll(q BT TR ¥ )] (A4.28)
where €; denotes the it column of £T. Pre-multiplying (A4.28) by —q‘lQT gives
Q" [[@ L@ - - - @] (A429)
so that
o’ £" = [QT @ QBah - - - QU@h| 4430

Note that the polynomials in (A4.30) are now of maximim degree n. Detaching the

coefficients, the term —q'lQT 2t may now be expressed in the reqired form of (A4.25)

et #T= [ o] |QTty, @, .- QT ;
QM) Q) - - - - Q"¢
L(QTm, @), . ... @),

(A4.31)

Denote the nxn matrix in (A4.31) as W,
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iee W=

then

QT £ =[q"...q"IW.

«Q"e), Q'¢y),

\_(-QTll)l Qe,),

Qe Q') -

“Q'e),

“Q'e), .,

Q'e),

It is interesting to note that the matrix W is symmetric.

1

(A4.32)

(A4.33)

Substituting (A4.33) into equatin (A4.25) and omitting the constant terms leads to

Finally, removing the shift operators

Denoting [o e O (p— ) -y — al)] = ST leads to

g ] 0 =[q‘°....

Y2

71

(A4.35)



WFI = 8§ (A4.36)
so that

Fl= wls (A4.37)

The key feature of the state-space approach lies in the setting up of the
symmetric matrix W. The symmetry of W and its representation in terms of the Kalman

controllability test matrix are considered in Appendices 5 and 6 respectively.
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Appendix 5. The symmetry of the matrix W

The symmetry of W may be readily illustrated by example. Here, its general
structure is explored and a pattern is detected which verifies that W is symmetic in the

general case.

From Appendix 4,
Y
o7 = [Adj[l—q’lP]]

or 27 = Adj[I—q'PT] (A5.1)
Since, from Appendix 4, elements of the nXn matrix 27 are polynomials in q'l of
maximum order (n-1), it follows that &7 can be represented by a polynomial of order
(n-1) with matrix coefficients of order nXn,
ie. S = [ Xo+xa'+.... 4 x(n_l)q‘(“'l)] (A5.2)
so that

Adj[I—q'PT)= [ Xo+ x4 +....+ x(n_l)q'(“'l)] (A5.3)

For any non-singular square matrix Y the following identities hold

Adj Y

W Y= (A5.4a)
det Y

(i) Y[Adj Y]= (det V)I (A5.4b)

(iii) det Y= det YT (A5.4c)

Applying (A5.4b) and (A5.4c) to the square matrix [I—q'lPT] leads to
[l—q'lPT][Adj[l—q'lPT]] = det [I—q"'PT] I

= det [I—q"'P] I (A5.5)
Now det [l—-q'lP] is the open-loop characteristic polynomial A(q'l), so that
[I—q'lPT][Adj[I—q'lPT]] =(14+ alq'1 + a2q‘2 +...+ an‘_ﬂq'na ) I (A5.6)
Substituting (A5.3) into (A5.6) gives
[I—q'lPT] [ X0+ xlq'l +....+ x(n_l)q'("'l)] = (1 + :J.lq'1 - a2q‘2 o+ anaq'na )1

+ax AT
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which on equating coefficients leads to

Xo=1
u= a1 +PTy, = al + P'
L= a1 +PTy = aJ + aPT 4P
1= a +PTy, = ajl + a,PT +a P 4+ PP
- T = T T(n-1
Xoy™ Y1)} + P le2)y= 8l + 8 2P+ ...+ PTCD (A5.8)
Pre-multiplying (A5.2) by —q!QT leads to
—q'QT £T = —q''qQT [ Yo+ xa'+....+ x(n_l)q'(“'”] (A5.9)

and since (A5.9) is essentially a scalar equation it can be written

-

[q'“ A q-l] - —Q"%1) (A5.10)

Note that the partitioned (nxn) matrix in (A5.10) is W. If x;; denotes the ! column of

X; then W becomes

[ T. 7§
W= —QTx(n_l)l "Q X(n_l)z e —Q x(n_lm 1 (A5.11)
T 30 T.
—Q'%p21 —Q¥p2p -+ —QUX@2p
—QTxm —QTXOZ ol iare —QTxon

To show the symmetry of W, the matrix which has as its elements the columns X;; need

only be considered. Denote this matrix by Xy,
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ie
Aw = Xn-1) T (A5.12)

X

Xo

It is clear from (A5.8) that the matrix Xy, and hence W will always be symmetric. In the
general case, it may be readily shown that

s h

xw = a(n_l) a(n_z) . . . . . . . al 1 (A5.1 3)
0 0 0 0
0 0 0 0
a,.2) a,1) 1 0
0 a(n_z) al
0 —a(n_l) 0
0 0
0 0 —a(n_l ) 0
a 1 0 0
0 a

1 0
41
0 —'a(n_ l) —32 0
0 0 0
0
0
0 0 0 1

Thus the matrix Xy, and hence W is shown to be symmetric.
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Appendix 6.  The symmetric matrix W in terms of the Kalman

controllability test matrix

The matrix W has been shown to be symmetric,
ie. w=WT (A6.1)
From Appendix 5,

w= | QT i (A6.2)

—QTX 1

—QTXo

Applying the result of (A6.1) gives

W= [—xT(n_l)Q: R 2L e 71 ] (A6.3)
Transposition of equation (A5.8) of Appendix 5 gives

2= 1

x'f= al + P

Zg= al + a,P + p?
T = vl
Xip1) = 3 gl + dp P+ ... +POD (A6.4)

Substituting (A6.4) into (A6.3) leads to

W= [- [a(n_l)l+a(n_2)P+. ¥ "-‘)]Q S s od [all +P]Q t— IQ] (A6.5)
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Hence

W= [P(“")Q....:PQ:Q] -1 0 0 1 (A6.7)
-a, -1
L'a(n—l) a1
so that
W= KL (A6.8)
as required.
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Appendix 7.  Adaptive least squares - role of variable forgetting

factor

In the standard linear regression problem all data is given equal weighting.
However, in oder to facilitate the tracking of slowly varying model parameters an
exponential weighting of data is required in which greater emphasis is attached to the
more recent observations. This is achieved by introducing a scalar forgetting factor 1<1.0
into the recursive least squares algorithm. Essentially the least squares cost function is
modified such that
J= (y — X0)T A (y — X6) (A7.1)

where A is a diagonal matrix. In the standard approach A is taken to be

A= [ M1 i (A7.2)
A
L 1]
so that the covariance matrix becomes
=1
dM)= [XT(M) AM) X(M)] (A7.3)
and
oM) = SM)XTM)AM)y(M) (A7.4)

so that at the next step

- e TT - )\,M | W o 1 W-l
dM+1) = XM) . : XM) (A7.5)
A |
|
xT(M+1) 1 xT(M+1)
L L 1 ) | 1
- AM -1
= | XTM) W XM) + x(M+1)xT(M+1)
] A
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-1

- [ AXTM)AXM) + x(M+1)xT(M+1) ]
-1
= [ 20007 + xotennTovn) |
Applying the matrix inversion lemma (Appendix 2) leads to

DdM)x(M+1)xT(M+1)dM)

A+ xXTM+1)@M)x(M+1)

PM+1) = [¢(M) . ] / A (A76)

Note that if A=1.0 all data is given equal weighting.

The approach adopted here makes use of the slightly different cost function
I= (y — X6)' 4 (y — X0) (A7.7)
where A is the diagonal matrix

A=ad (A7.8)

ie. A= M 1

so that at the next step

F T T M+l I r
BM-+1) = xon || 2 | 11 xo | (A7.9)
22!
|
L xT(M+1) L A L xT(M+1)
o -1
= [ AxToM) 4 XM) + AxM+1)xT(M+1) ]

which leads to
-1
SM+1)= [ M) + x(M+1)xTM+1) ] il

Application of the matrix inversion lemma gives

SM)xM+1)x" (M+1)P(M) ] i
1 4+ xTM+1)@M)x(M+1)

dM+1)= [ dM) — (A7.10)
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Note that the only difference between (A7.6) and (A7.10) is in the scalar denominator
terms. Whilst the difference between the two approaches is negligible, there is a slight
advantage in the adopted approach in that the scalar denominator
[1+xT(M+1)d>(M)x(M+1)] in (A7.10) is readily available for use within the variable

forgetting factor scheme.

The resulting adaptive least squares algorithm then becomes

8t = 6(t-1) + SO y® — x"(®8(t-1) ]
H(t)= D-Dx(®) 1+ xTOPE-1x(1)]
o(t)= [ 1— GOxT(t) 1(1-1) / A.

In the case of a variable forgetting factor, the scalar A is simply replaced by A(t).
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Appendix 8. The Kalman filter

The Kalman filter (KF) problem is essentially that of estimating the state
vector x of a linear system with noisy measurements and process noise in the dynamics.
Such a system in its discrete form may be expressed

x(t+1) = AX(t) + Bu(t) + Dw(t) (A8.1)
y(1) = cTx(t) + v(t) (A8.2)

where X€R" is the state vector (to be estimated), ucR™ is the input vector, weR" is the
process noise vector, YER is the system output and veR is the output measurement noise.
The matrices A, B, ¢, and D are assumed to be known. It is further assumed that v and
w are independent white noise sequences (i.e. serially independent random variables with
zero mean) and have constant known covariance matrices,

ie. E{fw}=0, E{v}=0, E{wivj} =0, E{wiwj} = Rwdij, E{vivj} = rvdij

where E{ - } denotes the expected value and dij is the Kronecker delta.

The problem is to produce a recursive estimate X which minimises the
estimation error (§—x) based-on the inputs u and the measured output y. The important
distinction between the KF problem for estimating the state vector x and that of
recursive least squares (RLS) for estimating the principally time invariant parameter
vector 0, is that the state vector is now being forced to follow a trajectory governed by
(A8.1). The Kalman filter is a two stage prediction/correction process, with the prediction
stage allowing for modellable changes in X to be taken into account between samples and
the correction stage, which is essentially the RLS algorithm, taking place at the sampling

instants.

Given (A8.1) and the statistical assumptions on W, the best a priori estimate
(or prediction) of X(t) given X(t-1) is

x(tlt-1) = AX(t-1) + Bu(t-1) (A8.4)
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with the notation ;Z(tlt-l) being read as the estimate of §(t) based on information upto

and including (t-1). The corresponding estimation error is
e= ‘i(t‘t-l) — x(t)
which, from (A8.1) and (A8.4), becomes
e=A (:‘E(t-l) - x(t-l)) — Dw(t-1)
so that the error covariance matrix
0(t|t-1) = E[ee').

Expanding (A8.5) leads to

(A8.5)

Q(t\t—l) - E[[ A(‘:Z(t-l)—x(t-l)) — Dw(t-1) ][ (ﬁ(t-l)—x(t-l))TAT — wi@-1)DT ]]

= A g[ (ReD-xen)ReD-xen)" |aT
— A B[ (Ren—x(-) wien | of
— 0 B[ wien) (Ren-x-n)! | AT
+ D B we-nweD | of

Note that the second and third terms of (A8.6) are zero, so that
¢(t|t-1) =A cov( x(t-1)—x(t-1) ) AT+D cov( w(t-1) ) DT
From (A8.3) and denoting Q(t-lit-l) = oov( §(t-1)—x(t-1) ) leads to

¢>(t|t-1) =A ¢(1-1‘t-1) AT+ DR, D'

(A8.6)

(A8.7)

Equations (A8.4) and (A8.7) form the prediction stage of the KF and, by

making the translation  — x and x — C, the standard RLS algorithm essentially forms

the correction stage. The KF algorithm then becomes

Prediction (between sampling instants)
Q(t\t-n = A;i(t-llt-l) + Bu(t-1)
¢(tlt-1) =A <b(t-1|t-1) AT + DR, DT
Correction (at sampling instants)
i(t\t) - i(t‘t-n + ¢(t)[y(t)—cT§(t\t-l)]

()= o(tlt-l)c[rv . cT,,(t‘t_l)c]-l
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¢(t|t)= [1 L ¢(t)cT]0(t|t-l) (A8.12)

Remarks

®

(i)

(iii)

Like RLS, the KF produces its own error analysis via the covariance matrix @.
However, it must be noted that its accuracy depends on the assumed system

matrices A, B, ¢, D, and the noise covariances r, and R.

Note the intuitive manner in which the KF deals with noise. An increase in r, will
decrease the gain ¢ thus decreasing the correction on i(t‘t-l) (i.e. the noisier the
measurement the less effect it is allowed to have on the estimate). An increase in
the process noise R, leads to an increase in the covariance ¢(t|t-1) so that
confidence in the estimate is reduced and greater weighting is given to the

measurement.

The KF equations can easily be extended to cope with multiple-output systems
(replacing the scalar y by a vector y). The form of the equations is unchanged with
the vector ¢ being replaced by the matrix C and the noise variance r,, being replaced
by a niose covariance matrix R,. However, the scheme has the disadvantage of
introducing the need for matrix inversion and it is simpler to treat the problem as a

number of separate single-output subsystems.
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Kalman filter for parameter estimation

The KF may also be used for parameter estimation, making the translation

X — 0 and ¢ — x leads to

Prediction (between sampling instants)

‘6(t|t-1) - a(t-l\l-l) (A8.13)

¢(t|t—1) = ¢(t—l|t—1) + R, (A8.14)
Correction (at sampling instants)

8o = Bfen + 0 yo-xTwhe|i- | (A8.15)

#0= o-1x]r, + FTOB-DxO [ (A8.16)

¢(t|t)= [l - ¢(t)xT(t)]0(t|t-1) (A8.17)

The important difference between RLS and the KF for parameter esimation is the way in
which the algorithms are tuned for tracking variation in parameters. In the RLS
algorithm the scalar forgetting i‘actor A is used to inflate all elements of the covariance
matrix @ and in the KF the process noise covariance matrix R, is used to inflate only
selected elements in @. Thus the KF offers increased flexibility and selectivity and is

advantageous in facilitating the use of a priori knowledge of the system.
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Appendix 9. The extended Kalman filter

The extended Kalman filter (EKF) substantially increases the range of
applicability of the Kalman filter, being able to handle a wider range of non-linear
systems. Consideration is given to the non-linear system

x(t+1) = f(x(1) , u(t) ) + Dw(t) (A9.1)

y(t) = g x(t) + v(t) (A9.2)

Essentially the EKF follows the same rationale as the KF and may be

described as
(i) a priori extrapolation of the state vector using the non-linear model (A9.1),
(ii) linearisation of the state equation (A9.1) around the operating point to obtain the

filter statistics,
(iii) linearisation of the output equation (A9.2) to carry out the Kalman correction.
Note that the output equation (A9.2) can usually be relaxed to the linear form of (A8.2),
as is assumed to be the case here, so that the only real difference between the KF and

EKEF algorithms is linearisation of the state equation (A9.1).

The a priori estimate or prediction of x(t) given x(t-1) is given as
2(tlt-1)= FOX(t-1) , u(t-1) ) + E[Dw(t-l)]
and since w is assumed to be white,

§(t‘t-1)= F(X(t-1) , u(t-1)) (A9.3)

Based on the assumption that the system can be approximated by a linear system along
the trajectory between i(t-l‘t-l) and §(t\t), the non-linear function f may be regarded as
an approximate linear function described by the Jacobian J,

of l
Jt-1)= —
ox

(A9.4)

x=§(t—1lt—1)
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i.e. the matrix whose ijth element is the partial derivative of the ith element of f with

respect to the jth element of Xx.

For small deviations of X around ;f(t-llt-l)
£ x(t-l‘t—l) ,u(t-1)) = f( §(t-1|t-1) ,u(t-1)) + J(t-l)(x(t—l)-i(t-l\t-l))
+ higher order terms
so that for a first oder approximation
x() = £ §(t-1‘t-1) Lut-1)) + J(t-l)(x(t-l)—;i(t-llt—l)) + Dw(-1)
or alternatively

x(t) = J(t-1)x(t-1) + Dw(t-1) + (terms in X(t-1

t-1)) (A9.5)
If (A9.5) approximately holds over the piecewise linear trajectory then the equivalent

error covariance matrix for the non-linear system is

¢(t|t-1) = J(t-l)cb(t-l‘t-l)ﬂ(t-l) +DRDT (A9.6)
The correction stage for the system is given by
xo=Raen + g0 yo—eTxcen)] (A7)
9= o(i-1e[r, + cTa-i]” (A98)
adp= [1- s oD (A99)

The EKEF is then, prediction using (A9.3) and (A9.6) followed by correction using

(A9.7)—(A9.9).

It should be noted that in the case of the EKF &(t|) is only an
approximation to the error covariance matrix. It can only be taken as a indication of the

estimation accuracy and there is no guarantee that divergence will not occur.

Application of the EKF for joint parameter/state estimation

Recall that the KF is essentially a method for estimating the state vector X

of a linear system in which the system matrices are assumed to be known. It is often the
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case that little is known about the values of A and B and it becomes necessary to
identify the unknown parameters by some scheme such as RLS. The EKF can be
configured for joint parameter/state estimation whereby parameters and states are
estimated simultaneously. Consider the system defined by the augmented state vector
2T=[xT : aT : b7 (A9.10)
where a¥ and b! are the vectors corresponding to the estimated parameter vector 0

(ie. ' = xT : @7 ]). This leads to the following state equations

t) = x(t)-‘ - Ax(t—1)+Bu(t-l)T $ [ w(t-l)- (A9.11)
a(t) a(t-1) 0
Bt 08 IR N D W I
yt)=[¢' : 0 : 0 ]zt +vQ® (A9.12)

Note that these equations, in contrast to the initial state equations, are non-linear (or
strictly bilinear) since they now involve products of the elements of z(t), thus
z(t) = f(z(t-1), u(t-1) ).+ w(t-1) (A9.13)
y® = €'2(t) + v
where
wit-1) = [wi(-1) : 0 : 0]
and

T-1)=[cTt-1) : 0 : 0]
It is readily observed that the problem of joint parameter/state estimation is

one which the EKF is directly applicable. Note that the function f, being bilinear, is

easily differentiable to form the Jacobian J.
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