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Summary 

Prompted by the desire to increase the industrial applicability range of 

self-tuning control, the objective of this work has been to extend the standard linear 

self-tuning framework to facilitate the design of self-tuning controllers for bilinear 

systems. Bilinear systems form a well structured class of non-linear systems within which 

linear systems coexist as a special subclass. They are, therefore, appropriate for modelling 

a wider range of processes and plant than the restrictive, yet convenient, linear model 

structures since such models are valid both within the linear subregion and beyond. In 

addition to extending the self-tuning framework for bilinear systems another significant 

contribution of the Thesis is the introduction of a cautious least squares estimation 

procedure which also enhances the existing linear self-tuning schemes. 

In recognition of the inevitable plant/model mismatch problems that 

accompany the standard linear self-tuning approach, it is pertinent to consider extending 

the linear self-tuning framework to accommodate the wider class of bilinear systems. Such 

an extended framework should alleviate the problems of plant/model mismatch whilst at 

the same time increasing the range of applicability of self-tuning control. An extended 

form of the linear pole-placement control strategy is investigated and attention is 

restricted to the class of single-input single-output and multiple-input single-output 

bilinear systems, noting that the more general class of multiple-input multiple-output 

systems can be represented by a series of interconnected multiple-input single-output 

subsystems. 

In the development of an appropriate bilinear self-tuning controller, a number 

of enhancements to the standard estimation algorithms used for linear self-tuning control 

have been necessitated; this being due mainly to the increased sensitivity of the bilinear 

approach . Enhancements include; a hybrid form of the variable forgetting factor to 

facilitate the tracking of slowly varying model parameters; a two-tier adaptive mechanism 
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involving variable forgetting factor reset coupled with covariance matrix reset for both 

rapid and slow parameter variation; and a cautious least squares parameter estimation 

scheme for increased robustness. 

The bilinear self-tuning controller and its successive variants are assessed 

using both simulation studies and real-time laboratory based trials. It is shown that when 

the bilinear self-tuner is applied to systems exhibiting bilinear characteristics that 

significant improvements in performance are possible over the use of standard linear 

schemes incorporating enhanced parameter estimation procedures. Finally, since the 

resulting self-tuning controller is potentially applicable for a wider range of applications 

than the linear self-tuning scheme, it is pertinent to consider, as one does for the linear 

case, the applicability of the bilinear self-tuner to other forms of non-linear systems for 

which local bilinearity may be assumed. 
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1. Introduction and outline of approach 

Introduction 

A self-tuning controller (STC), of whatever generic type, is required to 

perform the dual role of on-line parameter estimation followed by control law 

implementation and it is this sequential rationale that distinctively characterises STC 

from any other form of adaptive control. In principle once an appropriate model structure 

has been identified, any analytical control law design procedure can be combined with 

any recursive parameter estimation procedure. The choice of appropriate algorithms is, 

therefore, wide and will be influenced, to some extent, by the particular application under 

consideration. In adopting the STC rationale it is assumed that variations in system 

behaviour, including effects due to inherent plant non-linearities, may be adequately 

absorbed within the time varying nature of the parameters of an adopted linear model 

structure. 

At first, not surprisinglY., industry was slow to respond to the new 

technology, however, STC is now rapidly maturing to provide a realistic option for the 

control of an increasingly widening range of industrial applications; this being only 

recently made possible by the rapid parallel developments in microcomputer technology. 

Significant interest has already been shown by the process industries where large system 

time constants and assumptions on slowly varying plant dynamics has permitted the 

widespread use of STC techniques. However, the number of reported successful 

implementations of STC to systems exhibiting fast dynamics and/or where assumptions on 

local linearity may be invalid remain rather few and it is in these directions that there is 

currently much interest and on-going research. 

Traditionally, manually tuned three term proportional-integral-derivative 
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(PID) controllers have found wide usage in industry; being tuned empirically to provide 

an acceptable engineering trade-off between optimal performance and operational 

robustness. thus ensuring 'satisfactory' operation over a 'limited' operating range of the 

plant. An advantage of the conventional PID controller is that it may be effectively tuned 

without the need for a mathematical model of the plant. This is particularly relevant since 

all but for the simplest of plant exhibit non-linear characteristics, suggesting that even if a 

model were to be obtained for the purpose of tuning it would only be an approximation 

so that there could well be no guaranteed advantages. The disadvantage of the PID 

controller, however, is that it is required to be re-tuned/ de-tuned for each new operating 

point / range of the plant; a time consuming task which requires the skill of an 

experienced operator and yet neither guarantees optimality or repeatability. 

In an attempt to overcome the latter shortfalls, auto-tuning controllers have 

been introduced, thereby removing the need for manual tuning and, as such, have 

provided for an element of repeatability. There are basically three generic types of 

auto-tuner currently commercially available; one type being based on a mathematical 

model of the plant is classified as a 'one-shot' STC. The other types make use of pattern 

recognition techniques in the time d~main and limit cycling techniques in the frequency 

domain. Once tuned, however, the auto-tuning PID controller suffers the same shortfalls 

as the manually tuned scheme in that, as controller gains are fixed, it is unable to adapt 

to variations in the plant or, as experienced by the controller, variations in the operating 

range. 

Whilst the auto-tuner has found favour in the process industries, it has not 

been widely adopted as a replacement for the conventional PID controller for applications 

which exhibit fast dynamics and/or severe non-linear characteristics. Distinct from the 

auto-tuner is the STC which continually updates a discrete linear mathematical model of 

the plant. A key "feature of the standard STC approach is that variations in plant 

behaviour are assumed to be absorbed into the time varying nature of the updated model 
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parameters. Shortfalls arising in the implementation of standard linear STC techniques 

have been recognised and, in an attempt to alleviate such shortfalls, various adaptations 

and enhancements to the existing schemes have been proposed. It is found in practice, 

however, that when applied to systems for which assumptions on local linearity may be 

invalid, the performance of even the enhanced linear STC often falls short of that 

achieved using the conventional PID schemes. 

Prompted by the above, STC schemes are required to be developed 

application specific and, in order to provide for an effective implementation, it is believed 

to be advantageous to incorporate the knowledge of plant non-linearities into either or 

both of the estimation and control algorithms. Since STC is implemented digitally, the 

incorporation of such knowledge is accomplished using time-step quasi-linearisation 

techniques. 

In this work, the standard linear self-tuning framework is extended to 

accommodate a class of discrete single-input single-output (SISO) and multiple-input 

single-output (MISO) bilinear model structures, such non-linear structures being 

representative of a wide range of engineering, biomedical and socioeconomic systems. 

Bilinear systems are an appealing class of non-linear systems for which the linear control 

theory may be readily extended and applied. It is shown that, by taking into account the 

non-linearity, or bilinearity, at the design stage, potential significant improvements in 

overall system performance are possible. Further, it is believed that the resulting bilinear 

STC may be applicable to a wider range of systems, with the applicability range of the 

linear STC being a subset of this. Additionally, the bilinear STC may well be appropriate 

for other forms of non-linear system for which local bilinearity may be assumed. 

• 
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Outline of approach 

The principles of self-tuning control are introduced in Chapter 2 together 

with a brief historical development of the subject. A derivation of the recursive least 

squares algorithm is presented and this serves to form the basis of a number of extended 

parameter estimation schemes which have been developed specifically to overcome the 

problems encountered when dealing with bilinear systems. Particular emphasis is directed 

towards the pole-placement control strategy since this forms the basis of the bilinear STC 

developed in Chapter 3. The noise rejection capabilities of the state-space pole-placement 

STC is highlighted via comparative simulation studies involving both the state-space and 

polynomial techniques. The shortfalls arising in the implementation of standard linear 

STC to non-linear systems is also discussed. 

A formal definition of a bilinear system is given in Chapter 3 and examples 

of non-linear systems which may be more appropriately represented by bilinear model 

structures are briefly discussed. The concept of a bilinear STC is introduced and, based 

on the state-space pole-placement approach, a number of interesting alternative STC 

algorithms are investigated. The approach, which is adopted for all investigative studies in 

this work, makes use of a time-step quasi-linearisation procedure in which a 

'boot-strapping' technique is employed in a tandem state/parameter estimation scheme. 

Early investigations involving the bilinear STC highlighted the need for a more robust 

parameter estimation scheme when dealing with such non-linear systems and served to 

provide the stimulus for much of the work in Chapter 4. Finally, the approach is 

extended to accommodate a MISO bilinear model structure and preliminary investigations 

undertaken. 

In Chapter 4, a number of enhanced/extended parameter estimation schemes, 

which have been developed specifically for improving the integrity of the bilinear STC, 

are presented. These include: a hybrid form of a variable forgetting factor for improved 
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adaptivity in the presence of slowly varying system parameters; a combined variable 

forgetting factor and covariance matrix resetting technique for improved adaptivity and 

alertness in the presence of both slow and sudden parameter variations; a recursive 

instrumental variables technique for improved accuracy in the presence of coloured noise 

output disturbance; Kalman filtering and extended Kalman filtering for improved 

parameter and joint state/parameter tracking ability in the presence of a priori 

engineering knowledge of the plant; and a cautious least squares estimation procedure, 

applied either sequentially, cyclically or on reset, in an attempt to improve the robustness 

of the bilinear STC as well as provide for increased numerical stability in the absence of 

a sufficiently exciting input signal to the plant. Whilst all of these techniques have been 

developed principally for bilinear systems, the results are equally applicable to linear 

systems and may be readily extended to other forms of non-linear system in which the 

non-linearity may be represented in polynomial form. 

Real-time trials involving two laboratory based non-linear systems are 

presented in Chapter 5. In the first application, use is made of a standard linear STC 

which incorporates the various enhanced parameter estimation techniques developed in 

Chapter 4. The cautious least squares procedure when used in conjunction with a 

switched model linearisation scheme is found to be particularly appropriate. The second 

application, which is known from physical considerations to exhibit bilinear 

characteristics, forms an ideal test environment for evaluating the effectiveness of the 

bilinear STC. A bilinear model structure appropriate for the system is derived from first 

principles and the self-tuning framework is extended to accommodate this structure as 

outlined in Chapter 3. The effectiveness of the bilinear STC is demonstrated when use is 

made of extended forms of the linear pole-placement and PID self-tuning schemes. The 

results are particularly encouraging and indicate that a markedly improved performance is 

possible when use is made of the bilinear STC. 

Conclusions and discussions for further work are presented in Chapter 6. 
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2. Principles of self-tuning control 

2.1 Resume 

Self-tuning control was originaly proposed under the title of self-optimisation 

by Kalman in 1958 [1] but it did not receive much attention because of difficulties in 

implementation due mainly to the state of the art of computer technology at that time. 

Around the same time an important symposium on self-adaptive flight control systems 

was held at what is now Wright-Patterson U.S. Air Force base at Dayton, Ohio in 1959. 

At this symposium many interesting ideas were put forward which were later to form the 

basis for the early work on model reference adaptive control (MRAC). The sequential 

rationale of identification followed by adaptive control was also proposed and this 

provided the impetus which ultimately led to the concept of self-tuning control (STC). 

Although Peterka revived the concept in 1970 [2] it was the pioneering paper of Astrom 

and Wittenmark in 1973 [3], in which the convergence properties were proved, that 

triggered off intense interest in STC which is still very much in evidence today. In 

parallel with the rapid developments in .computer technology, STC is rapidly maturing to 

provide a viable control design approach appropriate for a wide range of complex 

industrial applications. This is reflected in the amount of interest currently being shown 

by industry and the fact that STC's are now available commercially. 

The algorithm proposed by Astrom and Wittenmark was the minimum 

variance STC in which the sole objective of the control strategy was to minimise the 

variance of the system output. Recognising that the minimum variance approach could 

lead to a widely varying and possibly unrealisable control input, Oarke and Gawthrop in 

1975 [4] extended this approach and proposed the generalised minimum variance STC in 

which the objective was to minimise the output variance subject to constraints on the 

input variance. Unfortunately both approaches are unable to cope with systems which 
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exhibit variable dead-time and non-minimum phase characteristics; the latter condition 

being prevalent in sampled data systems. In an attempt to overcome these problems 

Wellstead and his colleagues in 1979 [5] proposed the pole-placement STC in which the 

objective of the control strategy was to re-locate the system closed-loop poles, defining 

some pre-specified transient response, whilst the system zeros remain in their open-loop 

positions. This approach has proved to be particularly attractive to practising engineers, 

probably due to its close links with the familiar classical control design techniques. The 

approach also has the advantage in that the desired control objective can be achieved 

using a more realistic control action. However, all three approaches have their limitations 

when applied in practice and much of the recent research in STC has been directed 

towards refining the algorithms and, in many cases, tailoring them to particular 

applications. One such variant was introduced by Warwick in 1981 [6] when a state-space 

approach to the existing pole-placement STC was proposed. This approach, which provides 

a significantly smoother control effort due to its inherent filtering action, forms the basic 

framework of the STC which is proposed in this Thesis for bilinear systems and, as such, 

is given detailed consideration in this Chapter. 

2.2 Problem formulation for self-tuning control 

22.1 Preliminaries 

In principle STC is a conceptually simple and straightforward approach 

which may be characterised by two coupled sub-algorithms; one for on-line parameter 

estimation and the other for control law implementation. These sub-algorithms can be 

linked via a simple route known as certainty equivalence, in which the estimated 

parameters are always assumed to be correct, or via a more complex route using probing 

or superimposed test signals. These approaches lead to the sercalled non-dual and dual 
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STC respectively; a dual STC being one in which the input serves as both an ideal control 

and test signal. whereas in the non-dual STC the input serves as a control signal only. A 

further categorisation is made pos.sible by either merging or separating the parameter 

estimation and control law design procedures; the resulting STC's being termed implicit or 

explicit respectively [7]. A schematic representation of an explicit non-dual certainty 

equivalence STC is illustrated in Figure 2.1. 

Figure 2.1. Schematic representation of an explicit non-dual certainty equivalence STC. 
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Adopting the rationale of on-line parameter estimation followed by control 

implementation, the STC or self-tuner is able to adjust or •self-tune' its controller 

coefficients, in order to satisfy some particular control law objective, as the system under 

control itself evolves. The approach assumes that the system to be controlled can be 

adequately represented by a linear discrete-time stochastic model, commonly a 

single-input single-output (SISO) difference equation. The parameters of the assumed 

model are recursively updated using past histories of the input u(t) and output y(t) time 

series data; this being commonly achieved using a recursive least squares (RLS) technique 

of the form originally proposed by Plackett (8) (See section 2.3). Whilst it is recognised 

that almost all practical systems are to some extent non-linear it is assumed that by 

adopting a linear model structure the non-linear characteristics of the system are 

absorbed into the time varying nature of the model parameters. 

A distinctive feature of STC is that any analytical control law design procedure can, 

in principle, be combin~ with any on-line recursive parameter estimation scheme; with 

the particular control law being repeatedly applied in order to achieve some pre-specified 

system performance criterion as updated parameter estimates are recursively supplied. 

Many design procedures for STC have been proposed in the literature and an excellent 

coverage of the relevant material together with exhaustive bibliographies on the subject 

may be found in recent texts [9,10,11). 

222 Model formulation 

It is generally assumed that the continuous-time system to be controlled may 

be modelled by the discrete-time linear SISO difference equation or ARMAX 

representation 

A(q-1)y(t) = q-kB(q-1)u(t) + C(q-1)e(t) 

9 

(2.1) 



where the polynomials A(q-1), B(q-1) and C(q-1) are defined as 

A( -1) 1 + -1+ -2+ + -Da q = alq aiq · · · aoaq • 

with u(t), y(t) and e(t) being the input, output and white noise sequences respectively, 

k> 1 represents the system time delay and is expressed as an integer multiple of the 

sampling interval, q-1 is the backward shift operator defined as q-iy(t) = y(t-i) and the 

zeros of the noise colouring polynomial C(q-1) are ~urned to lie inside the unit circle. 

Representation (2.1) is refered to as the polynomial model structure. 

Due to non-linearities and time varying characteristics inherent in all 

physical systems, some model mismatch will inevitably occur. Consequently the validity of 

the model and the subsequent performance of the STC is dependent on the ability of the 

designer to minimise this mismatch. Also, it is normal to adopt a model structure which 

presents the least computational overhead yet adequately models the system over a 

particular operating range of interest. The selection of the most appropriate form of 

equation (2.1) for a particular system is ~us an important first step in model formulation 

and is summarised as follows: 

Selection of sampling interval: 

The selection of the sampling interval is a key factor, since this will determine the 

value of the integer k (which must always satisfy k>l). The sampling interval is 

ideally chosen as one tenth of the fastest time constant to be identified. This latter 

requirement suggests that some a priori knowledge of the system is desirable. In the 

absence of such knowledge, good trial and error procedures must be adopted. 

• 
Selection of polynomial orders: 

The selection of polynomial orders na and Db will also ideally require some physical 

knowledge of the system. For a practical system na>nb and the minimum values of 
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na and Db are selected which adequately model the system. This latter feature 

prevents problems arising due to overparameterisation which may lead to numerical 

deficiencies in the algorithms. Consideration must also be given to ensure that Db 

can accommodate the possibility of an increase in system time delay. Finally, it is 

usual to adopt a white noise model by setting the noise. colouring polynomial 

C(q-1)- 1 in equation (2.1) so that nc=O. 

• 

There are many alternative state-space representations of the ARMAX model 

(2.1), each being characterised by the definition of the respective state vectors. The 

representation adopted in this work is that proposed by Warwick [6]. It is known as the 

innovations or prediction error model and takes the implicit delay observable canonical 

form 

x(t+l) = Px(t)+ Qu(t)+ Re(t) (2.2a) 

y(t) = Hx(t)+ e(t) (2.2b) 

where x(t) E R0
i, ni- nj+k where nj- max( na, nb, De }, is the vector of state variables and 

the matrices P, Q, R and H are given initially as 

R= 

0 

0 

0 
( Coj-&oj) 

(c1 ~a1 ) 

0 

0 
-aa. 

J 

Q= 

HT= 

b n. 
• J 

(2.3) 

ho 
0 

0 

0 

0 

1 

The state-space framework gives rise to a greater understanding and insight 
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into the intrinsic properties of the system, such as stability, controllability, observability 

and closed-loop dynamic behaviour. For example, representation (2.2) may be 

representative of an uncontrollable system when the Kalman controllability test matrix 

K - ( ..nHQ. . PQ . Q I - r . . . . . . 

has the property rank{KKI¾· This feature illustrates the problem of overparameterisation 

which may not be so apparent from representation (2.1). Once identified, this apparent 

problem may be readily overcome by reducing the dimension of the state-space model. 

Illustrative example 

_u_<_o __ _,~ 4 Gou(s) H G(s) 

zero order 

hold 

Figure 2.2 

y(t) 

As an illustration, consider the sampled system of Figure 2.2, in which 

Kl (1-e-sT) 
G(s) = -- and G08(s)= ---

s(s+a) s 

The corresponding z-fonn transfer function G(z) is given by 

b0z + b1 
G(z) = ------

z2 + a1z + ¾ 

where ho= ---------
cl-

bl= ---------
cl-

and 
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This leads to the ARMAX representation (replacing z-1 by q-1) 

with na- 2, nb- 1 and k- 1. From (2.3) the matrices P and Qare determined as 

[

_0 _ 1 o __ o __ l 
P = 1 I O -½ 

0 1 -a 1 

and because b2-0, it is evident that the pair PQ does not satisfy the Kalman 

controllability criterion. To overcome this apparent problem a reduction in dimension of 

the state-space model, indicated by the partition lines, is necessary. 

• 
A sufficient, but not necessary, condition which ensures both controllability 

* 
and no 1~ of information in the reduction process is that na<nb+k [Al] . Allowing for 

possible reduction, the dimension of the resulting state-space representation is denoted as 

dim{ state-space } - n<ni. 

2.3 Parameter estimation 

Having established an appropriate model structure, the next step is to 

estimate the values of the model parameters. This is commonly achieved using the 

technique of recursive least squares (RLS). 

* Note that references prefixed by the letter 'A' correspond to the authors 
publications which are listed separately. 
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Historical note 

Estimation based on least squares techniques is today a well 

established and versatile approach in the field of adaptive control. The method of 

least squares estimation was proposed in 1795 by Gauss, perhaps the most original 

and prolific mathematician of his era [12). Gauss was just 18 years old when he 

first used the method in the analysis of astronomical observations of planet and 

comet motions. The motion of such bodies can be completely characterised by six 

parameters (the Laws of Kepler), and the estimation problem perceived by Gauss 

was that of infering the values of the parameters from the measured data [13]. 

It is interesting to note that over 150 years had elapsed before least 

squares theory advanced significantly beyond the work of Gauss. In 1950 a very 

important development to least squares theory was made when Plackett [8] 

extended the results of Gauss to provide a recursive least squares (RLS) scheme. 

This work was perhaps inspired by the unfulfilled promise of Gauss whereby he 

"reserved for another occassion the explanation of the devices by which the estimates 

of parameters can be adjusted with a minimum of fresh calculation due to the 

appearance of additional observations." Today, recursive least squares estimation 

techniques are widely used in a diversity of practical applications and, over the last 

three decades or so, has provided the stimulus for a wealth of theoretical research. 

• 

To provide a basis for developing and extending improved estimation 

algorithms for bilinear systems, the development of the RLS algorithm is breifly reviewed 

here. It is convenient to follow the route taken by Gauss and Plackett which involves the 

progression from the least squares algorithm to the recursive least squares algorithm. 
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2.3.1 Least squares algorithm 

Re-arranging equation (2.1) 

y(t) = XT(t}8(t)+ s(t) 

where xT(t) is the observation vector 

xT(t) = [y(t-1) y(t-2) ... y(t-na); u(t-k) u(t-1-k) ... u(t-nb-k) ] 

consisting of previous measured values of system input and output; and 9(t) is the 

parameter vector 

(2.4) 

with s(t) representing a sequence of fitting errors which includes both measurement 

errors and estimation errors. The standard linear regression approach is then used to 

estimate the p, p-na+nb+l, elements of the parameter vector O(t). 

y(l} = XT(l)O + s(l} 

y(2) = XT(2)6 + s(2) 

This assumes that M, M>P, data sets are available. In matrix form this may be expressed 

as 

y(M) = X(M)O + f(M) 

where 

y(M) = y(l) 

y(2) 

y(M) 

15 

~(M) = s(l) 

s<2> 

(2.5) 



The least squares problem percieved by Gauss was that of estimating the parameter 

vector denoted 9(M) subject to minimising the least squares cost function 

M 

JM(O)= I: W)2 = fT~(M) (2.6) 

i=l 

After M observations it follows from (2.5) that 

JM(O)= (y(M)-X(M)6(M)) T (y(M)-X(M)O(M)) (2.7) 

In order to minimise the cost function JM(O) of (2.6) it is required that the p 

partial derivatives of JM(O}, with respect to the elements of O(M}, should be 

simultaneously zero. 

i.e. =0 

Expanding equation (2.7) gives 

JM(9)= yT(M)y(M) - 9T(M)XT(M)y(M) 

(2.8) 

- YT (M)X(M)8(M) + 9T (M)XT (M)X(M)8(M) 

Using the vector differentiation [14] given in Appendix 1 leads to 

+ (XT(M)X(M))TO(M) + (XT(M)X(M))8(M) 

and since XT(M)X(M) is symmetric it follows that 

giving 

so that 

xT(M)X(M)= cxT(M)X(M)l. 

= _zxT (M)y(M) + zxT (M)X(M)B(M), 

xT(M)y(M) = xT(M)X(M)B(M) 
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which gives 

(2.10) 

which is the optimal estimate in the sense of least squares based on M observed data sets. 

The matrix (XT(M)X(M)] is the information matrix and its inverse is known as the error 

covariance matrix denoted '1>(M). Making this substitution (2.10) becomes 

O{M) = '1>(M)X T (M)y(M) (2.11) 

Remarks 

i) 

ii) 

iii) 

The resulting least squares estimator minimises the residual error 

f(M)=y(M)-XT(M)O(M), and does not automatically minimise the error 

6(M)-6(M). 

The least squares approach given in equation (2.11) is only suitable 

for 'batch' processing off-line. In its present form, O(M) is estimated from M 

observations and there is no means by which an extra observation can be used to 

update the estimate 8(M+l) without repeating the whole procedure. 

It is worth noting that the least squares cost criterion is by no means 

absolute; with other cost functions being equally appropriate such as 

M 

JM(O)= I: I e(i) I 
i=l 

or JM(O)= maxi e(i) I • 1 < i < M 

or any other meaningful cost function. The least squares technique is algebraically 

tractable and, as such, has found wide acceptance. 
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2.3.2 Recursive least squares algorithm 

The proposed extension by Plackett [8] was to make equation (2.11) 

recursive; this being achieved by expres.sing the estimate O(M+l), obtained after (M+l) 

samples, in terms of the estimate O(M) obtained after M samples, plus a corrective action 

based on the new information available at sample (M+l). In qualitative terms 

O(M+l) = O(M) + corrective action based ony(M+l) and x(M+l). 

This extension reflected the increasing interest in the use of the least squares technique 

at the time. Whereas it had previously been used for retrospective off-line batch analysis, 

its potential as an on-line tool for generating updated parameter estimates as new 

information became available was becoming increasingly apparent. 

Extending (2.5) after (M+l) observations an extra row xT(M+l) appears in X 

and an extra element y(M+l) appears in y, 

i.e. y(M+l) = y(l) X(M+l)= 

y(2) 

y(M) 
----- - -

y(M+l) 

which may be expressed in the partitioned form 

y(M) = X(M) 8(M+l) + 

y(M+l) 

It follows from (2.11) that after (M+l) observations 

O(M+l) = 4>(M+l)XT(M+l)y{M+l) 

where 

4>(M+l) = [ xT(M+l)X(M+l) r1 

18 

XT(l) (2.12) 

XT(2) 

XT(M) 

------- -
xT(M+l) 

(2.13) 

(2.14) 

(2.15) 



Re-writing (2.15) in partitioned form leads to 

which on expanding gives 

(f)(M+l)= [ XT(M)X(M)+ x(M+l)xT(M+l) rt 

and because 4' = I xTx rt' 

4'(M+l) = I · - t(M) + x(M+l)xT(M+l) r• 

(2.16) 

(2.17) 

(2.18) 

ll is apparent that matrix inversion is necessary to obtain the updated covariance matrix. 

However, by making use of the matrix inversion lemma [15] (see Appendix 2) equation 

(2.18) simplifies to 

4'(M + 1) = cf>(M)-
cf>(M)x(M+ 1 )x T (M + 1 )cf>(M) 

1 + xT(M+l)cf>(M)x(M+l) 
(2.19) 

Note that the quantity [1 + xT(M+l)cf>(M)x(M+l)] is a scalar, so that no matrix inversion 

actually takes place. 

Similarly, re-writing equation (2.14) in the partitioned form leads to 

B(M+l) = (f)(M+l) [ xT(M): x(M+l) J [- -=~] 
y(M+l) 

which on expanding gives 

O(M+l) = (f)(M+l) [ xT(M)y(M) +x(M+l)y(M+l)] 

and from equation (2.9) it follows that 

Substituting equation (2.22) into equation (2.21) gives 

O(M+l) = 4'(M+l) [ 4'-1(M)8(M) + x(M+l)y(M+l}] 

and adding the quantity 

yields a simplification, such that 
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(2.20) 

(2.21) 

(2.22) 

(2.23) 



O(M+l) = cf)(M+l) [ 4>-l(M)O(M) + x(M+l)y(M+l)) 

+ [ 8(M) - cf)(M+1)4>-1(M+1)8(M) ) 

= cf)(M+l) [ 4>-1(M}O(M)+ x(M+l)y(M+l) 

- • -
1(M+1)6(M)] + O(M) 

= 8(M) + [ [ 4>-l (M) - 4>-l(M+l)] O(M) 

+ x(M+l)y(M+l)] 

From equation (2.18) 

4>-l(M) - 4>-l(M+l)= 4>- l(M) - [ 4>-l(M) + x(M+l)xT(M+l)] 

= - x(M+l)xT(M+l) 

Substituting equation (225) into equation (2.24) and re-arranging gives 

O(M+l) = 8(M) + cf)(M+l)x(M+l)[ y(M+l) - xT(M+1)6(M)] 

(2.24) 

(2.25) 

(2.26) 

in which 4>(M+l)x(M+l) is known as the gain vector, y(M+l) is the current observation 

of the output and xT(M+l)O(M) is the least squares prediction of y(M+l); the quantity 

[y(M+l)-xT(M+l)O(M)] being known as the estimation prediction error. 

The recursive algorithm 

On-line use of the recursive scheme makes use of data pairs u(i), y(i), for 

i- 1,2, . .M where Mis now allowed to increase to infinity with the recursive form making 

use of new data as it appears on-line. It is convenient to adopt a new notation for the 

recursive procedure, since only the quantities 6 and 4> are retained between iterations. 

This is achieved by replacing O(M+l) and cf)(M+l) by O(t) and 4>(t) respectively, leading 

to the algorithm 

4>(t-l)x(t)xT(t)4>(t-1) 
4>(t) = 4>(t-1) - ------

O(t) = O(t-1) + 4>(t)x(t) [ y(t) - xT(t)O(t-1) ) 

20 

(2.27) 

(2.28) 



Such a recursive scheme generates the current estimate O(t) at time t based upon the 

previous estimate 8(t-1) generated at time t-1, the previous observations x(t) available at 

time t, the updated covariance matrix cf>(t) at time t and the current measurement of the 

system output y(t) taken at time t. 

Remarks 

i) The RLS algorithm is computationally efficient, requiring only matrix 

• 

multiplication and no matrix inversion. Between samples it is only necessary to store 

the quantities 8(1) and cf>(t). 

ii) The matrix cf>(t) is directly proportional to the estimation error covariance 

matrix 

COY(~)= E {(8-6)(~l} 

Consider the presence of measurement noise e on the output y, then 

8= <xTxrixTy 

= (XTxr1xT(X8-te) 

= 8 + (XTXr1XTc 

so that the estimation error covariance matrix becomes 

cov (~)= E {(XTXr1XTccTX(XTXr1} 

= (XTxrixT E {ceT} X(XTxrI 

assuming that the elements of X are uncorrelated with the elements of e (which 

may not be the case in practice). If it is further assummed that the elements of e 

are serially uncorrelated with variance cl- (i.e. that the output sequence y(t) is 

contaminated with white noise of variance cl-), then 

COY (8-6)= (XTxr1xT cl-1 X(XTxr1 

= cl-cxTxr1 

= cl-cf>(t) (2.29) 

Then cf>(t) is directly proportional to the estimation error covariance matrix and 

conveniently provides an indication of the accuracy of the estimated vector 8, so 
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that the algorithm provides its own error analysis. Thus one implication of equation 

(2.29) is that a little noise can be advantageous in keeping the algorithm alert. 

iii) Note that equation (2.28) has an intuitive 'feel' for when the estimate 8 is 

close to its true value, the term [y(t)-xT(t)O(t-1)) will be small and hence the 

corrective action will be small. Also, as the elements of 4>(t) decrease, indicating 

increasing accuracy in O(t), the corrections to 8(t) will tend to decrease. 

iv) Initialisation of the algorithm: Perhaps the simplest method is to set 8(0) 

according to any a priori information and then to set 4>(0) according to the 

confidence one has in such information (noting the interpretation of 4>(t) as a 

covariance matrix). A typical choice in the absence of such a priori knowledge is 

8(0)- 0 and cf>(t)- µI where I is the identity matrix and µ is some large positive 

scalar. 

v) The RLS algorithm can be arranged into the slightly different form (15) 

8(t) = B(t-1) + ~t)[ y(t) - XT(t)B(t-1) ) (2.30) 

where 

~t)= 4>(t-l)x(t)[ 1+ XT(t)4>(t-l)x(t)r1 

and then 

4>(t)= [ 1- ~t)xT(t) ]4>(t-1). 

(2.31) 

(2.32) 

In this form <f, can be considered as a gain vector which acts on the estimation 

prediction error (y-xT8). 

vi) The RLS algorithm considered so far is unable to adequately adapt to 

variations in plant behaviour since all measured data is given equal weighting in the 

least squares cost function (2.7). In order to facilitate the tracking of slowly varying 

parameters, a forgetting factor A<l is introduced into the algorithm. The forgetting 

factor effectively provides an exponential window length, or fading memory, given 
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approximately by M- (1-Ar1 and ensures that greatest emphasis is given to the 

most recent observations. The forgetting factor is incorporated into the RLS 

algorithm via the least squares cost function 

J = (y - XO) A (y - XO) 

where A is the diagonal matrix 

A= AM 

The resulting adaptive least squares scheme is realised by a simple modification to 

the covariance update equation (2.32), such that 

cj)(t)= [ 1- (/){t}xT(t) ]cJ)(t-1) / A. 

Factors affecting the choice of forgetting factor are discussed in [A2]. In an attempt 

to overcome the attendant problems of covariance blow-up, reported in [16], a 

hybrid form of the variable forgetting factors proposed in [17,18] is developed in 

Chapter 4 for bilinear systems. 

vii) Equations (2.31) and (2.32) may be further converted to a 'true' covariance 

matrix form (See Kalman filter, Chapter 4). Since the error covariance matrix 

cov(~)-a2cJ)(t), where a2 is the assumed variance of the noise on y, then 

(/){t}= 4>'(t-l)x(t)[a2+ xT(t)cJ')'(t-l)x(t)r1 (2.33) 

and 

(f)'(t) = [ I- (/){t}XT(t) J(f)'(t-1) 

where (f)'(t)-cov(~). 

(2.34) 

• 
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2.4 Control law design 

As indicated in the introduction, the pole-placement control strategy is 

adopted here. The corresponding control law procedures for both the polynomial and 

state-space approaches are briefly outlined. 

The self-tuning pole-placement controller makes use of the non-dual certainty 

equivalence approach in which the parameter estimation and control law implementation 

stages are considered to be separated (i.e. an explicit STC scheme). 

Following the STC rationale, updated parameter estimates generated from 

within the estimation algorithm are progressed to the control law algorithm where 

controller parameters are subsequently updated. 

2.4.1 Polynomial pole-placement control law 

The original self-tuning pole-placement control algorithm proposed in [5] 

makes use of the control law 

(2.35) 

where the controller polynomials D(q-1) and G(q-1) are given by 

The controller coefficients are obtained from the polynomial identity, or Diophantine 

equation, 

(2.36) 

where I'( q-1) is the user specified closed-loop pole polynomial 
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(2.37) 

the zeros of which are the desired closed-loop poles. In order for a unique solution to 

exist for the controller coefficients, it is suggested [5,19) that the orders of the controller 

derivation of the polynomial identity together with a discussion on the orders of the 

controller polynomials is given in Appendix 3. 

Note that (2.36) may be re-formulated in the matrix form 

1 
0 t-1 

0 d1 = Y1-a1 

al 1 0 
zeros 

½ al -bo 

½ -bi 0 dDb+k-1 

-bo &o 
Yoa-ana 

ana -bOb 

0 
0 

l { aoa nb+k-1 
nb+k-2 zeros 
zeros 0 -bOb &oa-1 0 

.___, 

nb+k-1 na 

which is readily solved at each time step to provide the updated controller coefficients. 

Remarks 

In order to justify use of a recursive least squares estimation 

procedure the noise colouring polynomial C(q-1) in equation (2.1) must be taken as 

unity, implying that white noise is assumed. Although this assumption may lead to 

biased estimates if the noise is non-white, the self-tuning property [5,19) ensures 

that overall .control is still achieved provided the estimated system 

parameters converge to some steady-state values. 
• 

25 



2.4.2 State-space pole-placement control law 

The state-space pole-placement control strategy makes use of the familiar 

state variable feedback control law 

u(t) = Fx(t) (2.38) 

where x(t) is the estimated state vector obtained from a steady-state Kalman filter (20) 

and F = [ f 1, f2, ... f
0 

) is a feedback vector chosen such that the resulting closed-loop 

system matrix [P+QF], obtained from substituting (2.38) in to the state equation (2.2a), 

has the desired eigenvalues, or equivalently 

ny 

det[I- q-l[P+QF]] = 1+ L)8-i= I'(q-1), 

i=l 

where I'(q-1) is the desired closed-loop pole polynomial given in (2.37). 

Steady-state Ko.Iman filter 

Subsitituting the output equation (2.2b) into the state equation (2.2a) and 

eliminating the noise term e(t) leads to 

x(t+l) = [P- RH]x(t)+ Qu(t)+ Ry(t) 

which is effectively equivalent to an identity observer. 

Re-arranging (2.39), replacing x(t) by its estimate x(t), substituting 

P1=[P-RH] and making use of the backward shift operator q-1 leads to 

x(t)= [I- q-1P 1r1[Qu(t-1) + Ry(t-1)] 

(2.39) 

(2.40) 

which is known as the steady-state Kalman filter (SKF) used previously by Warwick 

[6,19] and Caines [20]. 

It is interesting to note that the implied matrix inversion in (2.40) is really 

only a transparent problem with [l-q-1P1r1 being readily generalised as a lower 
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triangular matrix consisting of backward shift operators. It talces the general form 

[ I- q-lplrt= 1 0 0 (2.41) 

q-1 1 

q-2 q- 1 1 

0 

q -(n- 1) q- 1 1 

The resulting state estimator (2.40) is optimal in the sense that if P, Q and R are known 

and the output disturbance is white then the error dynamics, determined by the 

eigenvalues of P 1- [P-RH], ensure that the estimated state vector converges to the true 

state vector in n discrete steps. (In the case of coloured noise, the rate of convergence 

will depend on the locations of the zeros of C(q-1) which are assumed to lie inside the 

unit circle.) However, within the self-tuning framework the elements of P, Q and Rare 

themselves recursively estimated and, as a consequence, convergence of the state 

estimator is dependent upon convergence of the parameter estimator. This does not 

present an unreasonable situation since variations in system parameters are normally 

assumed to be much slower than variations in system states. 

Dyadic form of feedback vector F 

There are many methods for determining the feedback vector F and a good 

summary of these may be found in (21). The approach adopted here makes use of the 

dyadic form (22) and differs from that originally proposed in (6). The dyadic approach, 

which is based on functional relationships between the open and closed loop systems 

[23,24), provides a straightforward method for obtaining the feedback F and a detailed 

derivation is given in. Appendix 4. 
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Essentially, the feedback vector is obtained from 

FT= w-1s 

where sT = [ 0 ... 0 ( r
0
a-ana ) . . . ( r 1-a1 )] 

and W is the symmetric matrix given by 

W= KL 

in which K is the Kalman controllability test matrix 

K = I pn-lq : ... : PQ : Q ) 

and L the lower triangular matrix 

0 · · • • • • 0 

(2.42) 

It is interesting to note that for the feedback vector F to exist, the symmetric matrix W 

must be non-singular. Being lower triangular, L will always satisfy this so the only 

condition for the existence of F is that K be of full rank (i.e. the Kalman controllability 

test must be satisfied). This feature highlights the need for model reduction in order to 

avoid potential problems of overparameterisation. The symmetry of the matrix W and its 

representation in terms of the Kalman controllability test matrix are considered in 

Appendices 5 and 6 respectively. 

• 
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2.5 Analysis of the polynomial and state-space approaches 

A simple analysis of the polynomial and state-space control algorithms 

presented here reveals that whilst the two control laws are theoretically identical, having 

equivalent input/output maps, their implementation in the presence of output or 

measurement noise gives rise to distinctively different yet equable control action. The 

results of this section serve to substantiate the findings reported in [6,Al,A3]. The results 

suggest that the state-space approach, with its inherent filtering action, should produce 

the more 'smooth' performance. 

25.1 Analysis of the control algorithms 

Whilst the following results may be readily generalised, for illustrative 

purposes consideration is given here to the system 

A(q-1)y(t) = q-kB(q-1)u(t) + C(q-1)e(t), 

in which na- 2• nb- 1• nc-0 and k- 1, in order to highlight the fundamental difference 

between the two approaches. 

The corresponding polynomial control law given by equation (2.35) may be 

expres.5ed as 

(l+d1q- l)u(t) = <&o+g1q- l)y(t) 

which on rearranging leads to 

u(t) = &QY(t)+g1y(t-1)-d1u(t-1). (2.43) 

Similarly, the corresponding control action generated by the state variable feedback 

control law of equation (2.38) may be expres.5ed as 

u(t) = f 1 x1 (t) + f2ii(t). (2.44) 

In order to demonstrate the equivalence of the two approaches in the absence of noise, 
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consider the direct expansion of the state estimates obtained from the SKF, equation 

(2.40), 

x1(t) = -clz)'(t-1)+ b 1u(t-1) 

Xz(t) = -a1y(t-1)- clz)'(t-2) + b0u(t-1) + b1u(t-2). 

Note that due to the form of H in the state-space formulation (2.3) it follows that the nth 

state variable ~(t), in this case x2(t), corresponds to the noise free system output 

(y(t)-e(t)). Thus in the absence of noise (i.e. e(t)-0) the state estimates may be expressed 

as 

x1(t) = -clz)'(t-1)+ b1u(t-1) 

Xz(t) = y(t). 

Substituting equations (2.45) into equation (2.44) leads to 

u(t) = f 1[-a1y(t-1) + b{u(t-1)] + f2Y(t). 

Re-arranging 

u(t)= f2Y(t) - f 1a 1y(t-1) + f1b1u(t-1). 

(2.45a) 

(2.45b) 

(2.46) 

By comparing coefficients on the right hand sides of equations (2.43) and (2.46) it is 

clear that there is a direct relationship, such that 

(2.47) 

which may be verified by direct expansion of the respective controller coefficient 

equations (2.36) and (2.42). Hence in the absence of output noise the state-space and 

polynomial control algorithms are equivalent. 

The fundamental difference between the two control algorithms is that the 

polynomial approach makes direct use of the current output whereas the state-space 

approach, which incorporates the SKF equation (2.40), makes use of a noise free 

prediction of the current system output. Consequently in the presence of output noise the 

control algorithms differ with xn(t)*y(t) and the resulting control actions give rise to 

differing input/output sequences. It is noted that with differing input/output sequences, 

due to the presence of noise, the convergence behaviour of the estimated model 

parameters could also differ so that the relationships (2.47) may no longer be strictly 
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correct. 

Remarks 

i) A simple analysis of the polynomial and state space model structures has 

revealed that whilst they are commonly regarded as being equivalent, in practice (in 

the presence of output noise) it is found that they may well give rise to distinctively 

different controller action. 

ii) The above observation stimulated the search for a state space structure 

which is truly identical to the polynomial approach in terms of its practical 

implementation as well as from theoretical considerations. It is interesting to find 

that this may be achieved via a simple re-configuration of the system state vector. 

The resulting structure differs from the normal innovations approach, which 

essentially gives rise to a prediction error model of the form (2.3), in that a 

'filtered' state-space model is produced (A4]. 
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2.6 Simulation studies 

This section highlights typical results of simulation studies undertaken in 

[Al,A3] involving both the polynomial and state-space pole-placement techniques. The 

results reinforce the findings of section 2.5 and generally support the claim in [6] that the 

state-space approach produces the more favourable response in terms of a 'lighter' control 

action. 

In [Al] the basic form of the system under investigation is that previously 

adopted by Astrom and Eykoff [25], in which 

(1 - 1.5q-l + 0.7q-2)y(t) = q- 1(1 + 0.5q-1)u(t) + e(t) 

and the objective is to regulate the output y(t) about a level given by B(l)/I'(l) with 

r(t)- 1.0 and closed-loop poles effectively specified at -3 and -10 in the s-plane when the 

sampling interval T is taken as 0.1 second. Each test is taken over 100 iterations. 

The system parameters are varied from their nominal values in order to 

produce a number of interesting test conditions. The test conditions investigated in [Al] 

include 

(i) various levels of white output noise (fixed parameters), 

(ii) various levels of coloured output noise (fixed parameters), 

(iii) non-minimum phase system (parameter b 1 differs from its nominal value of 

05 to become 1.1), 

(iv) open-loop unstable system (parameter a1 differs from its nominal value of 

-1.5 to become -2.1), 

Results of test (i) are presented in Figures 2.3 and 2.4 which correspond to the use of the 

polynomial and state-space approach respectively. In each case the upper trace shows the 

system response y(t) and the lower trace the control actuation signal u(t). It is readily 

observed that the variance of the control signal is significantly reduced when use is made 

of the state-space approach. This feature is highlighted in Figures 2.5 and 2.6 which 
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illustrate the same control actuation signals when increased by a factor of five. It is found 

[Al] that with the exception of the open-loop unstable system, test (iv), that in terms of 

reduced control input variance, the state-space approach generally produces the more 

favourable results. 

In [A3] the system under investigation is that of an industrial hydraulic test 

rig [26] which has been developed specifically for the purpose of evaluating alternative 

STC techniques. The model adopted for simulation studies takes the form 

(1 - 0.48927q-l + 0.36327q-2)y(t) = 4.78426u(t-1); 

this model being identified on-line for a given region of operation. A full description of 

the test rig including a discussion on the inherent non-linearities is given in [27]. In [A3], 

the performance of the existing polynomial STC is compared to the state-space STC when 

the system model is subjected to various levels of output noise disturbance. The results 

presented here again serve to highlight the difference between the two approaches in the 

presence of noise. Figures 2.7 and 2.8 correspond respectively to use of the polynomial 

and state-space STC when the feed flow is varied in the absence of noise, indicating little 

or no difference in performance. However, it is clear from the results given in Figures 2.9 

and 2.10, which also correspond to thel)Olynomial and state-space STC, that in the 

presence of noise use of the state-space approach, with its inherent noise rejection 

cababilities, leads to a markedly superior performance. 

Remarks 

The state-space innovations model, or so called prediction error model, is found to 

provide the more favourable results in terms of its noise rejection capabilities and, 

as such, forms the framework for the bilinear self-tuning controller which is 

developed in Chapter 3. 
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2.7 Concluding remarks 

Whilst there are significant potential advantages to be gained by adopting 

STC techniques, it must be noted that the number of reported successful implementations, 

on all but the simplest of plant, remain few. 

Historically, the main shortfall has been two fold: Firstly, early 

implementations of STC were, by necessity, based on restrictive low order model 

structures and subsequent controller performance was often, not surprisingly, found to be 

inadequate; secondly, attempts to capture complex plant dynamics, including effects due 

to non-linearities, necessitates high order linear models, thus leading to excessively large 

computational overheads and the possibility of numerical instability due to 

overparameterisation. 

Due to the recent advances in microcomputer technology the above 

arguments no longer hold and STC potentially offers a realistic option for the control of 

an increasingly widening range of applications. It is believed, however, that if the 

advantages of the rapidly developing technology are to be fully realised then the 

self-tuning framework should be extended to accommodate for known/identified plant 

non-linearities at the design stage. Thus significantly reducing the major problem of 

plant/model mismatch which is unavoidable when adopting linear STC. 

In an attempt to increase the applicability range of STC, the self-tuning 

framework is extended in Chapter 3 to accommodate a class of discrete-time bilinear 

systems; such systems encompassing a wide range of practical applications. 
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3. Self-tuning control for bilinear systems 

3.1 Bilinear systems 

Self-tuning control has generated significant interest in the process industries 

where large system time constants and assumptions on slowly varying model parameters 

permits the widespread use of such adaptive schemes. However, the reported successful 

implementations of STC to systems which exhibit fast dynamics and/or where 

assumptions on local linearity may be invalid remain rather few and it is in these 

directions that there is currently much interest and on-going research. 

Prompted by the shortfalls arising in the implementation of standard STC 

schemes to non-linear plant, the need for an alternative approach, in which plant 

non-linearities are taken into account at the design stage, has been identified. In this 

Chapter, the standard linear STC framework is extended to accommodate a well 

structured class of non-linear systems for which extensions of the linear control theory 

may be readily developed and applied; such systems being defined originally by Mohler 

(28] are known as bilinear systems. 

Bilinear systems are defined to be linear in terms of both state and control 

when considered independently, with the non-linearity or bilinearity arising from coupled 

terms [28]. Such systems form an important class of 'near linear' systems and are 

representative of a wide range of biological, economical and engineering applications 

[29-35]. These include fermentation processes, effects due to cancer drugs, population 

growth, distillation columns, disc braking systems, AC/OC motors and heating/cooling 

processes. When considering such applications the use of a bilinear model structure can 

often provide a greater insight into the underlying physical phenomenon, leading to a 

better understanding of system behaviour than the convenient, yet often inadequate, 
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linear mcxlel structures. 

Whilst identification of bilinear systems has received much attention in the 

literature (36-41] it is found that in general, the resulting algorithms are not readily 

implementable and are thus inappropriate for use within a STC. Although aspects of 

stability, controllability and optimal control of bilinear systems have also received much 

attention, often leading to complex strategies (42-49], the integration of both 

identification and control strategies in the design of STC appears to be limited to the 

work of the author [A5-A13]. 

In references [A5-A13] self-tuning principles have been developed for a class 

of SISO discrete time bilinear systems and extended forms of the linear pole-placement 

algorithm have been investigated. Essentially, due to its noise rejection capabilities, the 

state-space innovations framework has been adopted and, by making use of quasi-linear 

state variable feedback, the objective of this extended STC scheme is to relocate the 

closed-loop poles of the linear part of the overall bilinear system. In developing the 

bilinear STC algorithms a number of approaches for obtaining the feedback vector and 

the estimated state vector have beep considered [A5] and these are described in section 

3.3. The resulting algorithms are assessed in terms of their ability to achieve the control 

objective whilst at the same time prcxlucing an acceptable level of variance in both 

control input and system response. The approach adopted on this basis is further 

developed to include an alternative structure for the observation vector [A6] which is 

used in an extended form of the basic RLS algorithm. The resulting scheme, which is 

described in [A 7], makes use of a 'boot-strapping' technique in which the parameters and 

states are estimated in tandem. In [A8,A9] an enhanced estimation scheme involving a 

combined variable forgetting factor and covariance matrix resetting procedure is 

investigated. The resulting two-tier adaptive mechanism is able to handle both slow and 

sudden parameter variations. 
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A significant step in the development of the bilinear STC has been the 

introduction of a cautious supervisory procedure [AlO]. The resulting cautious approach 

differs from that discussed in [9,16] in that caution is applied within the estimation 

algorithm rather than at the control implementation stage. In this way the designer has 

the ability to influence the STC through a practical knowledge of the system. A summary 

of the developments in the design of the bilinear STC is given in [Al 1,A12]. Finally in 

[Al3], the STC is extended to accommodate the class of multiple-input single-output 

(MISO) bilinear systems. 

In this Chapter attention is focused towards the development of the bilinear 

STC framework, with the enhanced estimation techniques being considered separately in 

Chapter 4. 

3.2 Problem formulation 

Consider the SISO state-space bilinear system SBL(n,m) 

m 
x(t+l) = Px(t)+ Qu(t)+ Re(t) + I:u(t-i+l)Nix(t) 

i=l 
y(t) = Hx(t)+ e(t) 

(3.la) 

(3.lb) 

y(t) and e(t)tR are the input, output and white noise sequences respectively,k> 1 is the 

system time delay expressed as an integer multiple of the sampling interval and na• nb and 

nc are the orders of the polynomials A(q-1), B(q-1) and C(q-1) as previously defined in 

Chapter 2. A diagrammatic representation of equation (3.1) is illustrated in Figure 3.1 
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Figure 3.1. Illustrating SISO bilinear system SBL(n,m). 
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In adopting the state-space self-tuning framework for the bilinear STC, two 

model structures are required; a polynomial structure for parameter estimation and a 

state-space structure for control law implementation. Since all forms of equation (3.1) will 

not be a realisation of a polynomial bilinear system PBL(n,m), the following equivalent 

structures are adopted. 

Structure 1 

State-space innovations model SBL(n,m): 

P= 0 ... 0 Q= bnj 
1 0 

0 
-ao. 

J 
ho 

0 

0 1 -al 0 

R= 0 HT= 0 Ni= 0 0 T/nji (3.2) 

0 

<enranj) T/Qi 

0 0 0 0 

(c1-a1) 1 
0 0 0 

Note that the form of P, Q, Rand His the same as those given in equation (2.3). Any 

system of the form (3.1) may be represented in the form (3.2) by a similarity 

transformation provided the linearised part of (3.1) is observable and that rank{N?HT}=l 

for all i [42). 

• 
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Structure 2 

Polynomial bilinear model PBL(n.m): 

y(t) = x(t)+e(t) 

nb m 

+ q-k Z:: Z::x(t-i)u(t-i-j+l)T/ij 

i-0 j-1 

(3.3a) 

(3.3b) 

where x(t)€R is the unmeasurable output and, due to the form of ff in (3.2), x(t)=~(t) the 

nth component of x(t). 

I 

Allowing for possible reduction in dimension, as indicated in Chapter 2, the 

* 
class of systems is restricted such that na <nb +k. Following the reduction process the 

matrices P and R may not have the k leading zeros as indicated in (3.2) and the 

dimension of the state-space model is denoted n<ni. 

3.3 Control algorithms considered 

In the linear self-tuning framework pole-placement via state variable 

feedback provides a straightforward procedure, however_. in the bilinear self-tuning 

framework a number of interesting options are made possible. In this section four such 

options are outlined. 

*Th· IS restriction is only necessary if reduction in the state-space dimension is 
required. It is still necessary for practical purposes that na>nb. 
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3.3.1 Outline of approach 

The control algorithms considered all make use of the general state variable 

feedback form 

u(t) = Fx(t) (3.4) 

where, as outlined in Chapter 2, x(t) is the estimated state vector and F is the feedback 

vector chosen such that the resulting closed-loop system behaves in some pre-specified 

manner. In developing the self-tuning controller for bilinear systems four potential 

self-tuning algorithms were investigated. With the exception of the first algorithm, all 

schemes considered make use of an extended form of the linear state variable feedback 

control law given by equation (3.4): 

i) As an initial starting point it is pertinent to consider the application of a linear 

STC scheme (indeed this would be a natural first choice in reality, with linear STC 

strategies being applied to non-linear systems generally). This approach, which forms 

the basis of Algorithm 1, continually invokes the assumption that inherent plant 

non-linearities are adequately absorbed within the time varying nature of the 

parameters of an assumed linear model. 

ii & iii) An alternative approach is to estimate the parameters of the bilinear 

system, a step in itself which can be achieved in a number of different ways, and 

then to separate the model into its constituent linear and non-linear (bilinear) parts. 

The feedback vector is again calculated as a function of the estimated parameters of 

the linear part which, in adopting this approach, should be more accurately 

estimated due to the non-absorbtion of the elements of Ni. Having obtained the 

feedback vector, the next step is to reconstruct the state vector, again a step which 

can be achieved in a number of different ways. In this respect, Algorithm 2 makes 

use of a time-step quasi-linearisation procedure when an extended SKF, termed an 

iterated steady-state observer (ISO), is adopted. Algorithm 3, on the other hand, 
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makes use of an equivalent full order state observer (FLO). In both cases, direct use 

is made of the estimated bilinear parameters in the state reconstruction stage. 

iv) A further possibility, which forms the basis of Algorithm 4, is to estimate the 

parameters of the bilinear system, as in (ii) and (iii), and then to combine the linear 

and non-linear parts to form a 'lumped' quasi-linear model. A quasi-linear feedback 

vector is then calculated as a function of the 'lumped' model and the state vector 

obtained from a quasi-linear SKF in the form of the ISO used in Algorithm 2. 

3.3.2 Parameter estimation 

The recursive least squares (RLS) technique has found wide acceptance for 

parameter estimation when dealing with linear systems and forms the basis of the 

approach adopted here. Despite convergence and bias problems it is believed that, due to 

ease of implementation and computational efficiency, the RLS algorithm is preferable to 

the maximum likelihood approach [41] when dealing with bilinear systems. 

Substituting (3.3b) into (3.3a) leads to the non-linear ARMAX (or 

NARMAX) representation 

D m 
+ q-k f ~ x(t-i)u(t-i-j+l)77i. 

. (\ . 1 J 
l=v J-

(3.5) 

from which it is clear that by setting 'lij-0, for all i, j, is equivalent to the linear ARM.AX 

representation (2.1). By setting the noise colouring polynomial C(q-1)=1, equation (3.5) is 

readily rearranged into the form of equation (2.4) which is then suitable for application 

of RLS. 

(3.6) 

where ~(t) is a sequence of fitting errors which becomes equal to the noise sequence upon 
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convergence, (J is the extended parameter vector, 

oT(t) = [ -al ... -ana ; ho ... bnb ; 1/01 ···1/nbl ; ... ; 1/om ···1/nbffi ) (3.7) 

and x(t) is the corresponding observation vector, 

xT(t) = [ y(t-1) ... y(t-na) ; u(t-k) ... u(t-k-nb ); x(t-k)u(t-k) ... x(t-k-nJu(t-k-nJ; 

... : x(l-k)u(l-k-m+ 1) ... x(t-k-nb)u(t-k-nb-m+ 1)] (3.8) 

Note that only the input and output sequences u(t) and y(t) are available so that the 

sequence x(t), which is the noise free system output, (x(t)- y(t)-e(t) from equation (3.3b)), 

is unmeasurable. In order to form an unbiased basis from which to assess the proposed 

control algorithms outlined in section 3.3.1 it is necessary to replace x(t) by y(t) {this is 

not unreasonable given the assumptions on the noise sequence e(t)), so that the 

observation vector, equation (3.8), becomes 

xT(t) = [ y(t-1) ... y(t-na): u(t-k) ... u(t-k-nb): y(t-k)u(t-k) ... y(t-k-nJu(t-k-nJ; 

... ; y(t-k)u(t-k-m+l) ... y(t-k-nJu(t-k-nb-m+l)]. (3.9) 

Having established the most appropriate control algorithm with use being 

made of observation vector (3.9) further investigations were undertaken with y(t) replaced 

by x
0
(t}, which is the estimate of x(t) (i.e. the noise free system output) obtained from 

the state reconstruction stage. When use is made of state reconstruction, a more 

appropriate observation vector takes the form 

xT(t) = [ y(t-1) ... y(t-na); u(t-k) ... u(t-k-nb ); x
0
{t-k)u(t-k) ... x/t-k-nb)u(t-k-nJ; 

... ; x
0
(t-k)u(t-k-m+ 1) ... ~(t-k-ni)u(t-k-nb-m+ 1)). (3.10) 

The next phase in the development of an appropriate bilinear STC algorithm is then to 

compare the overall performance resulting from the use of equations (3.9) and (3.10) in 

the parameter estimation stage. 
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The basic form of the RLS algorithm adopted is given by equations 

(2.30)-(2.32) 

B(t) = B(t-1)+ </>(t)[y(t}-.xT(t)B(t-1)] (3.11) 

</>(t)= 4>(t-1).x(t)[l + .xT(t)4>(t-l).x(t)r1 (3.12) 

(3.13) 

Note, that in adopting the observation vector given by (3.10), the parameter estimation 

scheme makes use of the state estimates and the state estimation scheme makes use of 

the parameter estimates. The resulting overall tandem state/parameter estimation scheme 

may be illustrated schematically as in Figure 3.2. 

RLS I 

ISO 

Figure 3.2. Illustrating tandem operation of state/parameter estimation. 
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3.3.3 Quasi-linearisation 

State estimation 

Define the quasi-linear state-space representation SBL(n,m) of Structure 1 by 

x(t+l) = P(il(t))x(t) + Q(x(t))u(t) + Re(t) 

y(t) = Hx(t)+ e(t) 

where 

il(t) = [u(t-1) ... u(t-m+l))T, m>2 

and 

P(il(t)) = P, m = 1, 

m 

= P + I: u(t-i+l)Ni• m > 2, 

i=2 

with 

Q(x(t)) = Q + N1x(t). 

Substituting the output equation (3.14b) into the state equation (3.14a) yields the 

quasi-linear full order state observer (FLO) 

x(t+l) = P 1 (il(t))x(t) + Q(x(t))u(t)+ Ry(t) 

(3.14a) 

(3.14b) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where P 1 (il(t))=P(il(t))-RH; which on rearranging yields the equivalent steady-state 

Kalman filter (SKF) 

x(t)= (I-q· 1p1(u(t))r1 (Q(x(t))u(t-1) + Ry(t-1)] (3.19) 

which is referred to as the iterated steady-state observer (ISO). 

Note that, unlike the SKF for linear systems, convergence is no longer 

guaranteed. The error dynamics associated with equation (3.19) are dependent on the 

eigenvalues of the matrix P 1 (il(t)), 
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m 

= P - RH + Z:: Niu(t-i+l) 

i- 2 

which are themselves dependent on past values of the control input sequence il(t). 

(3.20) 

Whilst some initial work on the stability and convergence behaviour of 

observers for bilinear systems has been undertaken [50), further work on the convergence 

behaviour of the ISO remains an outstanding issue. It may be possible, however, under the 

assumption of convergence of RLS, to compute the eigenvalues of i\ (il(t)) on-line as the 

process evolves. This would allow bounds on future control action to be placed, thereby 

ensuring convergence of the ISO. Such a procedure could well be realised as a parallel 

tasking procedure in the STC jacketing software. 

Feedback vector 

With the exception of the Algorithm 4, all proposed approaches make use of the linear 

form of the feedback vector given by equation (2.42). In Algorithm 4, the corresponding 

quasi-linear feedback vector is given by 

• 

(3.21) 

where W=KL in which K is the quasi-linear Kalman controllability test matrix 

K = ( P(il(t))0
-

1Q(i(t)) : ... : P(il(t))Q(i(t)) : Q(i(t)) ] (3.22) 

and the matrices Land Sare defined as in section 2.4.2. 

• 
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3.3.4 Extended pole-placement algorithms 

The four algorithms are simply stated as 

Algorithm I 

i) Estimate parameters of an assumed linear model, 

ii) Reconstruct i(t) from SKF (equation (2.40)) 

iii) Compute feedback vector (equation (2.42)) 

Algorithm 2 

i) Estimate parameters of an assumed bilinear model 

ii) Reconstruct i(t) from ISO (equation (3.19)) 

iii) Compute feedback vector (equation (2.42)) 

Algorithm 3 

i) Estimate parameters of an assumed bilinear model 

ii) Reconstruct i(t) from FLO (equation (3.18)) 

iii) Compute feedback vectOI' (equation (2.42)) 

Algorithm 4 

i) Estimate parameters of an assumed bilinear model 

ii) Reconstruct i(t) from ISO (equation (3.19)) 

iii) Compute feedback vector (equation (3.21)) 

Note that in the first phase of the investigation use is made of the observation vector 

given by equation (3.9). Having established the most appropriate algorithm, the second 

phase involved comparative studies with use also being made of the observation vector 

given by equation (3.10). 
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The algorithms are summarised in Table 3.1. 

As.5\lmed State Compute 

Model Reconstruction Feedback 

Linear (L) Equation Equation 
Algorithm 

Bilinear (BL) No. No. 

1 L (2.40) (2.42) 

2 BL (3.19) (2.42) 

3 BL (3.18) (2.42) 

4 BL (3.19) (3.21) 

Table 3.1 

3.4 Simulation studies 

In order to evaluate the four initial algorithms, consideration is given to the 

following bilinear systems 

System 1 PBL(2, 1) 

y(t) = 1.5y(t-1) - 0.7y(t-2) + u(t-1) + 0.5u(t-2) 

+ 0.25x(t-l)u(t-1)+ e(t) 

System 2 PBL(2,2) 

y(t) = 1.5y(t-1) -0.7y(t-2) + u(t-1) + 0.5u(t-2) 

+ 0.2x(t-l)u(t-l) - x(t-2)u(t-2)+ e(t) 
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For both systems a reduction of the implicit delay state-space representation is required 

to ensure system controllability. Following reduction, System I may be expr~ in the 

state-space SBL(2,1) form 

x(t+l) = [ : --0.7 l x(t) + [ 0.5 l u(t) + [ --0.7 l e(t) + u(t) [ 0 0 l x(t) 

1.5 1.0 1.5 0 0.25 

y(t) = [ 0 1 ] x(t) + e(t). 

Similarly for System 2 the matrix N 1 becomes 

[ 

o -1.0

1
. 

0 0.2 

3.4.1 Comparison of four algorithms 

The two systems were simulated using the proposed control algorithms of 

section 3.3.1; the objective of the controller being to regulate the system output about a 

zero reference in the presence of noise. To give a sufficiently fast response to any 

disturbance the closed-loop poles, or eigenvalues, of the linear part were specified as 

repeated poles at -10 in the s-plane, which for a sampling interval T- 1 second, gives rise 

to a virtual dead beat response, i.e. z-e5T~. In each case the simulation is run over 100 

iterations with a fixed forgetting factor of A-0.98. The results are shown in Tables 

3.2(a)(b)(c) and 3.3(a)(b) where ay, y, au and u denote the variance and mean of the 

system output y(t) and the control input u(t) respectively and ai, bi and 7Jil denote the 

estimated parameter values after each simulation run. (A blank entry in these Tables 

indicates that instability has occurred.) 

The results given in Table 3.2(a), (b) and (c) compare algorithms 1, 2 and 3 

and relate to System I. Columns 1 to 4 correspond to simulation under various levels of 

white noise output disturbance and constant parameters. In columns 5 to 11 the bilinear 
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parameter 7Joi is varied linearly from its nominal value of 0.25 to 0.5 over the duration of 

the simulation, with columns 5 to 8 and 9 to 11 corresponding to various levels of white 

and coloured noise respectively. In the case of coloured noise, the noise colouring 

polynomial 

C(q-1) = 1 - 0.75q-l + 0.25q-2 

is adopted. 

The results given in Table 3.3(a) and (b) compare algorithms 2 and 4 and 

relate to System 2. In the case of varying parameters, columns 5 and 6 correspond to 

varying the parameter az linearly from its nominal value of 0.7 to 1.4 over the duration 

of the simulation whilst column 7 corresponds to the simultaneous variation of az and 

7] 11 , with 7] 11 being varied linearly from its nominal value of -1.0 to -2.0. Columns 8 to 10 

correspond to bounds being placed on the control effort, I u(t) I < 1.0; noting that for the 

noise levels considered both algorithms gave rise to instability when the control was 

unbounded. 

The results of Table 3.2 indicate that the variance of the control effort is 

always l~ when use is made of Algorithm 2. However, for noise levels lower than those 

tabulated Algorithm 1 produces comparable results. As the noise level is increased, 

Algorithm 3 is the first to give rise to instability, followed by Algorithm 1 with Algorithm 

2 continuing to maintain stability for higher noise levels. Figures 3.3 and 3.4 illustrate 

control input (a) and system response (b) for Algorithms 1 and 2 respectively and 

correspond to the test conditions of column 7 in Tables 3.2(a) and 3.2(b). 

The results of Table 3.3 indicate that in the case of unbounded control, 

Algorithm 2 again produces the more favourable results with a significantly lower control 

input variance than Algorithm 4. Furthermore, in the case of bounded control, whilst the 

control input variances are of the same order, Algorithm 2 produces a system response 

with significantly lower variance. Figures 3.5 and 3.6 illustrate control input and system 
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response for Algorithms 2 and 4 respectively and correspond to the test conditions of 

column 3 of Tables 3.3(a) and 3.3(b). Similarly Figures 3.7 and 3.8 correspond to the test 

conditions of column 8. 

It is noted for both systems, that when use is made of unbounded control, 

good initial estimates are required for the linear parameters otherwise instability can 

arise during the initial iterations. This requirement is not essential when a bounded 

control is used. Provided either good initial estimates of the linear parameters are 

available, or that the control is initially bounded, it is found that the initial estimates of 

the bilinear coefficients may be arbitrarily set at zero. 

Remarks 

i) For the simulation studies undertaken, Algorithm 2 gives rise to a superior 

performance over the other proposals in the sense that the closed-loop system 

remain stable for a wider range of conditions in terms of measurement noise and 

parameter variations. Also, the variance of the control effort and system response is 

significantly smaller than the other algorithms operating under convergence 

conditions; a desirable feature of any control system. 

ii) The simulation studies also indicate that for convergence of parameters and 

stability of the closed-loop system it is neces.sary to have good initial estimates of 

the parameters of the linear part of the system if an unbounded control is to be 

used; thus highlighting the vulnerability of bilinear systems to numerical instability 

particularly during initialisation, or 'start-up' stages. 

iii) The results of the initial investigations, albeit limited, indicate that the 

self-tuning principle may be successfully applied to bilinear systems. In the 

development of the bilinear STC throughout this work, Algorithm 2 is taken to 

provide the basic framework. 
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CONSTANT PARAMETERS TIME VARYING PARAMETERS (Bll.INFAR TERM) 

WHITE NOISE WHITE NOISE COLOURFD NOISE 

0.75 0.85 1.00 125 0.50 0.75 0.85 1.00 0.50 0.75 0.85 

1 2 3 4 5 6 7 8 9 10 11 

0.85 0.78 0.60 1.00 0.78 0.82 0.40 1.00 

0.53 0.49 0.49 0.60 0.52 0.53 0.91 1.88 

-1.53 -1.50 -1.33 -1.52 -1.49 -1.45 -0.65 -0.79 

0.79 0.73 0.44 0.74 0.73 0.73 -7.4E-2 -0.33 

0.52 0.80 0.87 0.10 0.62 0.52 020 0.49 

-028 -0.46 -020 -52E-2 -0.36 -0.39 -2.6E-2 -7.5E-2 

0.54 0.79 1.30 0.15 0.65 0.72 7.4E-2 0.56 

-2.4E-2 -4.7E-2 8.3E-2 -1.5E-2 -2.3E-2 -3.5E-2 -l.7E-5 -1.7E-2 

Table 3.2(a). Algorithm 1. 

CONSTANT PARAMETERS TIME VARYING PARAMETERS (Bll.INFAR TERM) 

WHITE NOISE 

0.75 0.85 1.00 

I 2 3 

1.01 1.03 1.02 

0.55 0.53 0.49 

-1.49 -1.49 -1.45 

0.66 0.69 0.71 

027 027 027 

024 0.34 0.73 

-1.7E-2 -2.4E-2 -0.12 

0.38 0.55 1.00 

22E-2 3.4E-2 6.5E-2 

WHITE NOISE 

125 0.50 0.75 0.85 1.00 

. 
4 5 6 7 8 

0.98 0.98 0.99 1.00 1.01 

0.49 0.58 0.57 0.54 0.49 

-1.47 -1.44 - 1.44 - 1.43 -1.44 

0.72 0.61 0.63 0.65 0.69 

025 028 029 029 0.28 

1.74 9.3E-2 0.25 0.38 1.16 

-029 -12E-2 -3.3E-2 -4.3E-2 -026 

1.84 0.14 0.38 0.58 1.32 

0.13 72E-3 2.6E-2 4.lE-2 9.3E-2 

Table 3.2(b). Algorithm 2. 
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COLOURED NOISE 

0.50 0.75 0.85 

9 10 11 

1.02 0.86 0.46 

1.64 1.45 0.85 

-0.90 -0.91 -0.72 

-0.15 -0.11 -l.9E-2 

3.lE-2 0.18 0.31 

0.30 0.70 0.92 

-4.9E-2 -8.9E-2 -025 

5.5E-2 0.15 0.39 

4.4E-3 2.4E-2 2.5E-2 



Noise 
CONSTANT PARAMETERS TIME VARYING PARAMETERS (BILINEAR TERM) 

levelN 
WJilTE NOISE WlllTENOlSE COLOURED NOISE 

peak to 

peak 
0.75 0.85 1.00 1.25 0.50 0.75 0.85 1.00 0.50 0.75 0.85 

COLUMN 1 2 3 4 5 6 7 8 9 10 11 

bo 1.08 1.09 1.00 1.05 0.94 0.70 

bl 0.55 0.54 0.57 0.55 1.58 0.71 

al -1.56 -1.60 - 1.46 -1.50 - I.OS -0.88 

az 0.72 0.75 0.63 0.68 -42E-2 4.4E-2 

T/01 021 026 0.32 028 029 0.31 

Oy 024 0.37 9.3E-2 026 0.43 0.92 

-y -1.SE-2 -2.7E-2 -8.9E-3 -3.4E-2 -72E-2 023 

Ou 0.58 1.19 0.16 0.68 8.4E-2 0.59 

-
u 3.lE-2 5.SE-2 8.4E-3 3.8E-2 -l.SE-5 8.SE-2 

Table 3.2(c). Algorithm 3. 
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CONTROL: UNBOUNDED BOUNDED 

White PARAMETERS: CONSTANT TIME V ARYINO CONSTANT 

noise N 
peak - peak 0.10 025 0.30 0.35 025 0.30 0.30 0.4 0.5 0.6 0.4 

COLUMN I 2 3 4 5 6 7 8 9 10 11 

bo 1.09 1.06 1.05 1.06 0.79 0.79 0.82 1.01 1.12 1.14 1.00 

bl 0.58 0.57 0.53 0.51 0.39 0.38 0.36 0.57 0.66 0.61 0.51 

al -1.55 -1.56 - 1.57 - 1.55 -123 -120 -120 -1.54 -1.54 -1.56 -1.48 

ai 0.68 0.64 0.66 0.68 0.95 0.95 0.98 0.75 0.69 0.71 0.67 

1/01 9.5E-2 5.IE-2 0.10 0.10 0.12 0.12 0.11 -0.12 -0.10 0.15 021 

1/11 -0.37 -0.71 -0.81 -0.90 -0.9 -0.98 -1.10 -0.93 -0.93 -0.91 -0.98 

ay 3.IE-3 2.SE-2 4.3E-2 8.0E-2 2.8E-2 4.6E-2 5.3E-2 5.IE-2 7.3E-2 0.16 1.58 

-y 5.4E-3 2.3E-2 3.9E-2 7.6E-2 l.9E-2 3.0E-2 5.3E-2 4.3E-2 6.0E-2 0.13 1.52 

au 4.9E-3 3.9E-2 6.8E-2 0.13 3.6E-2 5.9E-2 8.IE-2 52E-2 5.4E-2 9.4E-2 0.58 

-
u -1.7E-3 -1.IE-2 -1.8E-2 -2.8E-2 -92E-2 -l.5E-2 -l.9E-2 -l.IE-2 -1.3E-2 -2.3E-2 -5.IE-2 

Table 3.3(a). Algorithm 2. 
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CONTROL: UNBOUNDED BOUNDED 

White PARAMETFRS: CONSTANT TIME VARYING CONSTANT 

noise N 

peak - peak 0.10 0.25 0.30 0.35 0.25 0.30 0.30 0.4 0.5 0.6 0.4 

COLUMN 1 2 3 4 5 6 7 8 9 10 11 

bo 1.07 1.00 0.99 0.79 0.79 0.81 1.10 1.10 1.03 

bl 0.52 0.54 0.47 0.55 0.39 0.45 0.69 0.65 0.71 

al -1.56 -1.49 -1.51 -1.43 -1.20 -1.30 -1.54 -1.54 -1.51 

az 0.69 0.67 0.72 0.97 0.93 0.86 0.15 0.69 0.65 

7701 0.41 0.21 0.22 9.9E-2 0.19 0.21 -0.12 -0.10 0.24 

77 I 1 -1.08 -0.96 -0.95 -1.00 -0.92 -1.00 -0.93 -0.93 -0.99 

ay 3.9E-3 4.5E-2 8.2E-2 6.2E-2 0.10 0.23 5.IE-2 7.3E-2 0.27 

-
y 2.lE-3 -1.8E-2 22E-2 2.3E-2 2.9E-2 4.6E-2 4.JE-2 6.0E-2 0.14 

au 6.2E-3 6.9E-2 0.12 8.8E-2 0.14 025 5.2E-2 5.4E-2 9.8E-2 

-
u -2.4E-3 -1.8E-2 -4.0E-2 -2.2E-2 -4.4E-2 -7 .2E-2 -1.lE-2 -1.3E-2 -3.0E-2 

Table 3.3(b). Algorithm 4. 
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3.4.2 Alternative form of the observation vector 

Having established the basis of the bilinear STC, the second phase involved 

further comparative simulation studies in order to investigate the effectiveness of the 

alternative observation vector given by equation (3.10). This observation vector differs 

from that given by equation (3.9) in that the measured output y(t-1) is replaced by ~(t-1) 

in the product terms corresponding to the bilinear coefficients. 

System 1 is adopted for simulation trials when the objective of the controller 

is to place poles at -3 and -5 in the s-plane with an effective sampling interval of T- 0.1 

second. The system is subjected to a range of output noise levels N and, in each case, 

various values of the fixed forgetting factor are investigated. 

Results given in Tables 3.4(a) and 3.4(b) correspond to the use of the 

measured output y(t-1) and the estimated noise free output l<it-1) in the product term of 

the observation vectors respectively. In each Table, aY' y, au and u denote the variance 

and mean values of the system response and control input respectively. 

The results show that use of x
0
(t-l) in the observation vector, particularly in 

the case of high noise levels, leads to an improved performance in terms of reduced 

variance of both control input and system response. This is to be expected due to the 

inherent filtering effects of the iterated steady-state observer (ISO) of equation (3.19). In 

the presence of noise levels, however, there is little difference in performance with the 

use of the measured output y(t-1) perhaps introducing a marginal improvement. This 

observation once again indicates that a little noise on the system is often advantageous 

from an improved estimation point of view. 
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N A. 1.00 0.98 0.95 0.93 0.90 

ay 4.8E-2 3.3E-2 3.2E-2 3.lE-2 3.8E-2 

-y -3.6E-2 -4.7E-2 -4.SE-2 -3.8E-2 -5.lE-2 

0.10 
au 7.6E-4 6.6E-4 6.6E-4 8.5E-4 8.4E-4 

-
u - l.IE-3 -2.7E-3 -2.3E-3 - l.4E-3 -3.lE-3 

ay 0.710 0.634 0.553 0.692 0.557 

-
y -5.7E-2 -4.8E-2 -2.4E-2 -9.3E-2 2.7E-2 

0.35 
au l.3E-2 1.2E-2 2.4E-2 l.SE-2 1.3E-2 

-
u -2.5E-3 3.6E-4 5.IE-3 -6.7E-3 1.2E-2 

ay 1.541 1.190 1.042 1.051 1.104 

-
y 0.222 0.159 0.194 0.207 0.125 

0.40 
au 2.3E-2 2.0E-2 2.9E-2 2.3E-2 2.5E-2 

-
u 2.5E-2 2.JE-2 2.9E-2 3.0E-2 1.8E-2 

Table 3.4(a). Use of measured output y(t-1). 

It is further noted that use of a forgetting factor less than unity produces the more 

favourable results. However, use of such a forgetting factor in the presence of prolonged periods of 

steady-state operation can lead to the problem of covariance blow-up. The latter conflicting 

observations prompt the need for a variable forgetting factor and this is investigated in Chapter 4. 
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N A 1.00 0.98 0.95 0.93 0.90 

ay 4.6E-2 3.4E-2 32E-2 3.0E-2 72E-2 

-
y -3.7E-2 -4.7E-2 -4.3E-2 -3.SE-2 -8.0E-2 

0.10 
au 7.4E-4 6.7E-4 6.7E-4 7.7E-4 l.8E-3 

-
u -l.4E-3 -2.6E-3 -2.IE-3 -9.4E-4 -7.8E-3 

ay 0.732 0.624 0.867 0.558 0.595 

-
y -4.6E-2 -4.9E-2 -0.132 -S.9E-2 -0.1 so 

0.35 
au l.4E-2 12E-2 6.6E-2 I.3E-2 l.4E-2 

-
u -1.SE-3 4.3E-4 -1.0E-2 I.7E-2 -12E-2 

ay 1.530 1.090 0.890 0.819 0.863 

-
y 0296 0.108 3.lE-2 -3.7E-2 -7.6E-2 

0.40 
au 2.4E-2 l.9E-2 0.126 l.9E-2 3.6E-2 

-
u 3.3E-2 l.6E-2 l.8E-2 1.4E-3 -9.9E-4 

Table 3.4(b). Use of state estimate x
0
(t-l). 
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3.5 Extension of the blllnear STC framework for MISO systems 

In this section, the bilinear approach is extended to accommodate 

multiple-input single-output (MISO) bilinear model structures. Such systems are found to 

be representative of interconnected non-linear sub-systems such as, for example, computer 

architecture structures appropriate for parallel proees.5ing [51]. 

3.5.1 MISO model structure 

The MISO state-space bilinear model structure SBL(n,m,r) is an extension of 

the SISO SBL(n,m) structure of equation (3.1). It takes the form 

r m 

x(t+l) = Px(t)+ Qu(t)+ Re(t)+ ~ ~ up-i+l)N! x(t) 

j=l i- 1 

y(t) = Hx(t)+ e(t) 

(3.23a) 

(3.23b) 

where x(t) E R0
, u(t) E R\ y(t), e(t) E R, are, respectively, the system state vector, input 

vector, output and white noise sequences. The form of the matrices P, Rand Hare as 

previously defined in (3.2) with the partitioned input matrix Q and bilinear coefficient 

matrices N~ taking the f onn 
I 

Q= bo-1 ..... 
I 

bo1 ..... 
0 

0 

ho-r I 

bor 

0 

0 

0 

0 

where ni is the initial dimension of the state-space. 
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0 j . 
77njl (3.24) 

j ,,Oi 
0 0 

0 0 



The equivalent polynomial bilinear model structure PBL(n,m,r) which is 

adopted in the parameter estimation stage of the MISO bilinear STC takes the form 

r 

A(q-1)x(t) = q-k~ Bi(q-1)up) + [C(q-1)-A(q-1)] e(t) 

j-1 

y(t) = x(t) + e(t) 

ni m r 

+ q-k ~ ~ ~ x(t-f) up-i-f+ l)r,i
6 

f..() i - 1 j -1 

(3.25a) 

(3.25b) 

where x(t)ER is the unmeasurable noise free system output and, due to the form of Hin 

(3.2), x(t)- "n(t) the nth component of x(t). The polynomials A(q-1) and C(q-1) are as 

defined in Chapter 2 with the polynomials Biq-1). j- 1,2, .. r, defined as 

B1(q-l) = bi+ b{q-1 + biq-2 + .... + b~bq-% 

B ( -1) b2 b2 -1 b2 -2 b2 -% 
2 q = 0 + lq + 24 + · · · · + °bq 

(3.26) 

As in the SISO formulation of section 3.2, in order to ensure no loss of information and 

system controllability, the class of systems is restricted such that n
3
<ni+k, j=l,2, .. r. In 

practice this may require a reduction in the dimension of the state-space model so that 

dim{state-space}- nb +k- n. 

35.2 Parameter estimation 

As in the case of SISO bilinear systems, since only the known inputs, 

measured outputs and estimated state variables are available, it is necessary to 
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re-formulate the PBL(n,m,r) model (3.25). Substituting (3.25b) into (3.25a) and setting the 

noise colouring polynomial C(q-1) to unity leads to 

r I1i m r 

j- 1 f=() i- 1 j-1 

which is now in the form of equation (3.5) and suitable for RLS. Rearranging yields 

y(t) = XT(t)8(t) + ~(t) 

where x(t) and O(t) are respectively of the form (3.7) and (3.8), extended appropriately 

to accommodate the additional (r-1) inputs. That is 

and 

11 l 111 • • 11 1 111 • • 
01 ··· llbl • ·•· ' Om ••· ntim' • • • ' 

• • 
11

r 
11

r . . 
11

r 
• • • • • • · ' 01 ··· llbl • •.. ' Om ·--11~: I 

x(t-k)u 1 (t-k) ... x(t-k-nJu 1 (t-k-nJ ; ... ; 

-
x(t-k)u1(t-k-m+l) ... x(t-k-nJu1(t-k-nb-m+l); 

... ' 

x(t-k)ur(t-k) ... x(t-k-nJur<t-k-nJ ; ... ; 

- -

(3.28) 

x(t-k)ur(t-k-m+l) ... x(t-k-nJur<t-k-nb-m+l)] (3.29) 

The standard RLS algorithm given by equation (3.11)-(3.13) is then adopted in order to 

estimate the [n
3
+r(m+l)(nb+l)] model parameters. 

3.5.3 State estimation 

Extending the approach outlined in section 3.3.3, define the quasi-linear 

state-space representation SBL(n,m,r) of the state-space representation (3.23) by 
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where 

x(t+ 1) = P(il(t))x(t) + Q(x(t))u(t) + Re(t) 

y(t) = Hx(t)+ e(t) 

(3.30a) 

(3.30b) 

T 
il(t)= [u 1(t-1) ... u 1(t-m+l); u2(t-1) ... uit-m+l); ... ; ur(t-1) ... u/t-m+l); ] , (3.31) 

and 

P{il(t)) = P, m = 1, 

m r 

= P + ~ ~ up-i+l)N!, m > 2, 

i- 2 j- 1 

with 

Q(x(t)) = [ b1 + Nlx(t): h2 + Ntx(t): ... : hr+ N1x(t)] 

where bj• j- 1,2, .. r, denotes the jth column of Q. 

(3.32) 

(3.33) 

Substituting the output equation (3.30b) into the state equation (3.30a), 

rearranging and setting P 1 (il(t))=P(il(t))-RH leads to 

x(t)= ( 1-q-1P1(il(t)) r1 (Q(~(t))u(t-1) +Ry(t-1)) 

which is an extended form of the ISO given by equation (3.19). 

(3.34) 

Note that the error dynamics are now dependent on the eigenvalues of the 

matrix 

r r r 

P 1(il(t)) = P - RH+ ~ N1up-1) + ~ N!uit-2) + ... + ~ N!uj(t-m+l) 

j- 1 j- 1 j-1 

m r 

= P - RH+ ~ ~ Ntup-i+l). 

i- 2 j- 1 

(3.35) 

Again, as in the case of the SISO system. the error dynamics are a function of both the 
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past values of the control input sequences and the estimated values of the bilinear 

coefficients. Since the ISO performs effectively for SISO bilinear systems it is pertinent to 

consider its effectiveness for MISO bilinear systems and is adopted here. 

3.5.4 MISO control law synthesis 

A realistic approach to pole-placement in the linear multivariable case is to 

make use of the dyadic control [22]. This effectively involves determining an (nm) state 

variable feedback gain matrix F which is constrained to have unity rank by defining it in 

the dyadic form 

F = f 1f} (3.36) 

The vector f 1 ERr is arbitrarily specified by the designer and then f 2ER0 is computed 

from 

(3.37) 

where Yi, i- 1,2, .. n
3

, are the coefficients of the desired closed-loop pole-polynomial and 

W is determined by 

W=KL 

with K being the Kalman controllability test matrix for the effective single input problem 

K = [ pn-lQf 1 : pn-2Qf 1 : ••• : PQf 1 : Qf 1 ] (3.38) 

and L is the lower triangular matrix as previously defined in Chapter 2. 

3.5.5 Preliminary Investigations 

In adopting Algorithm 2 as the basis of the bilinear STC, use is made of the 

equivalent MISO quasi-linear ISO, equation (3.34) and the effective linear multivariable 

feedback matrix of equation (3.36). 
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In [A13], simulation studies are undertaken using a simple SBL(2,2,2) model 

structure. For convenience the vector f 1 is chosen such that tJ-[ 1 1 ] and the 

investigation compared the effectiveness of fixed forgetting factors, variable forgetting 

factors, variable forgetting factors combined with covariance reset and variable forgetting 

factors combined with cautious covariance reset . The results once again indicate the 

potential vulnerability of the bilinear approach to numerical instability and highlight the 

need for more robust parameter estimation procedures. In particular it must be noted that 

in reality, the problem could be further compounded by the accompanying effects of 

computational delay, particularly for MISO systems. 

It is noted [22), for linear systems, that although the closed-loop system will 

exhibit the desired characteristics in terms of overall closed-loop pole locations, different 

choices of f 1 will give rise to distinctive controller action. In practice the elements of f 1 

may be regarded as tuning knobs allowing an element of trade-off in terms of 

proportioning the controller action; the latter feature being advantageous when attempting 

to avoid saturating input signals. 

The MISO approach has been successfully applied to a laboratory scale 

heater-cooling system (introduced in Chapter 5) which is known from physical 

considerations to exhibit bilinear characteristics. It has been shown that by carefully 

tailoring the elements of f 1 that improvements can be achieved over the use of the SISO 

approach, with the MISO STC providing the designer with the facility for weighting or 

proportioning the control effort in each input channel so as to produce an overall 

improved performance. 
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3.6 Concluding remarks 

By taking into account the non-linearity or bilinearity at the design stage, the 

standard linear self-tuning framework has been extended to accommodate a class of 

discrete SISO and MISO bilinear systems. 

Investigative studies involving four initial candidates for extended 

pole-placement algorithms have been undertaken and, based on extensive simulation trials 

involving a number of bilinear system models subjected to a range of different test 

conditions, one such algorithm has been proposed and this forms the basis for further 

studies. 

Whilst preliminary results obtained when applying the proposed bilinear STC 

to both SISO and MISO systems have been encouraging, it is believed that in order to 

provide for a more effective self-tuning scheme, enhanced estimation techniques are 

required. These are to be robust enough to minimise the susceptibility of the algorithm to 

numerical instability without compromising the desirable features of adaptivity and 

without increasing significantly the complexity. 
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4. Enhanced parameter estimation techniques for bilinear STC 

4.1 Preliminaries 

The need for increased integrity within STC schemes is of paramount 

imJX)rtance, particularly when dealing with non-linear systems. In an attempt to improve 

the integrity of the bilinear STC introduced in Chapter 3 a number of enhanced 

parameter estimation techniques have been specifically investigated/developed for a class 

of SISO discrete bilinear systems. The results may readily be extended to the MISO case. 

It should be noted, however, that all enhanced techniques are accompanied by an increase 

in computational overhead such that the full advantages of adopting the enhanced 

techniques may never in practice be realised. As such, a compromise situation exists in 

which a trade-off must be made between increased integrity arising from the use of 

enhanced techniques and reduced overall closed-loop performance due to the effects of 

increased computational complexity and it is against this background that investigative 

studies have been ba-sed. 

The enhanced estimation techniques considered here include: fixed and 

variable forgetting factors [17,18,A6] for increased adaptivity whilst reducing the 

possibility of numerical instability arising from covariance blow-up [16); covariance 

matrix resetting techniques [52,53,54,A9] for improved alertness and numerical stability; 

instrumental variable techniques [55,56) for improved accuracy in the presence of 

coloured noise; Kalman filtering techniques [57,58,59,A14,A15] for increased tracking 

ability; and cautious least squares [60,A10,Al l,Al2,A16] for increased robustness. Whilst 

the techniques are shown to be advantageous when applied to bilinear systems, they are 

equally appropriate for linear systems. Indeed the techniques are considered to be highly 

appropriate when dealing with systems exhibiting non-linear characteristics and 

linear/bilinear self-tuning techniques are to be employed. 
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4.2 Forgetting factors 

4.2.1 Fixed forgetting factor 

When parameters to be estimated are varying with time, the recursive 

parameter estimation procedure may be modified to produce an 'adaptive' least squares 

scheme; this being achieved by introducing a forgetting factor [15] as indicated in 

Chapter 2. The resulting recursive form of the adaptive least squares algorithm is then 

given by 

O(t) = O(t-1) + <f,{t)[ y(t) - XT(t}O(t-1) ] 

</)(t)= cf>(t-1).x(t)[ 1+ XT{t}cf>(t-1).x(t)r1 

cf>(t)= [ I - <f,{t).xT(t) ]cf>(t-1) / A 

in which the scalar A<l.O is the forgetting factor. (See Appendix 7.) 

(4.1) 

(4.2) 

(4.3) 

Use of a forgetting factor enables greater emphasis to be placed on the more 

recent observations and gives rise to a fading memory length which is given 

approximately by 

M == (1-Ar1. (4.4) 

Oearly, for a least squares solution the value of M must be such that M>P where 

p-na +nb + 1 is the number of parameters to be identified and the value of the forgetting 

factor must be bounded from below such that Af<A<LO; typically Af=0.9 - 0.95. Note 

that when A-1, all observations are given equal weighting and the algorithm is unable to 

adequately adapt. 

A problem for the user lies in the choice for a suitable value for A. The 

lower its value, the more adaptive in nature the procedure becomes, unfortunately 

however, this also renders the algorithm highly sensitive to external disturbances such as 

measurement noise. Consequently, the margin for error is small with poor choice of A 
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leading possibly to a correspondingly poor control. A summary of the features which 

affect the choice of forgetting factor are given in [A2]. 

A major problem arising in the use of a fixed forgetting factor is that of 

covariance blow-up and possible instability [16]. This phenomenon occurs when the 

system is operating in steady-state: The STC has driven the system to its destination and 

there is now little or no new information coming in from the plant; the forgetting factor 

..tis less than unity and the information content within the algorithm is therefore 

reducing. A reduction in the information content of the algorithm leads to the 

information matrix (inverse of the covariance matrix) becoming 'near singular', giving rise 

to a corresponding growth in the elements of the covariance matrix. This condition may 

well result in instability, however, it may often be self-correcting giving a 'near blow-up' 

or 'near instability' situation and this can generate sufficient control input to the system 

to remedy the lack of information content from the plant. In either case when dealing 

with bilinear systems, which are known to be particularly sensitive, the latter is a serious 

problem which can be alleviated by using a variable forgetting factor. 

4.2.2 Variable f orgettlng factors 

Use of a variable or regulated forgetting factor A(t) will give rise to increased 

adaptivity of the STC scheme whilst also preventing the possibility of instability or near 

instability arising due to covariance blow-up. This is effectively achieved by regulating the 

information content of the STC algorithm. Whilst• various variable forgetting factors 

(VFF) have been proposed for linear systems [17,18] it is pertinent to consider their use 

when dealing with bilinear systems. As a result, a hybrid of those proposed in [17,18] has 

been found to ~ advantageous for bilinear systems [A6] and has also found favour when 

dealing with other non-linear systems [Al6,A17]. Essentially, the mechanism for varying 

the value of the forgetting factor is based on the estimation prediction error within the 
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estimator; this being regarded as an indicator of the 'accuracy' of the algorithm in the 

presence of parameter variation. 

Method 1: Fortescue et al (17]. 

This approach is based on the early theoretical work of Albert and Sittler, 

1966 (61]. As a means of ensuring a consistent information content within the algorithm, 

the VFF is regulated such that a weighted sum of past estimation prediction errors is 

minimised. It takes the form 

A(t) - 1 - [ 1 - XT(t-k-1)4>(t-k)x(t-k-1)] ..E2(t-1) / Io (4.5) 

where 

I(t) - y(t) - XT(t)O(t-1) (4.6) 

is the estimation prediction error and 

(4.7) 

in which ~ is the expected measurement noise variance and M
0 

is the nominal memory 

length of the estimator. 

• 
Method 2: Wellstead and Sanoff [18]. 

This is essentially a heuristic approach and includes an exponential delay 

term in its formulation. It takes the form 

where A1(t) = Ao+ (1-A0)(1-e-t/Mo) 

A.i(t) = 1 - I 2(t-1) / s(t) 

s(t) = (M0-l)s(t-1) + ..E2(t-1) 

where Ao is the initial value of the forgetting factor which from equation (4.4), 
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Hybrid method 3: [A6] 

This method attempts to exploit the desirable features of the two previously 

existing methods and takes the form 

A(t) = Aa<t).Ab(t) (4.12) 

where Aa<t) - A(t) from Method 1, 

,¾(t) - A1(t) from Method 2. 

42.3 Simulation studies 

With consideration being given to the bilinear system 

y(t) - u(t-1) + 0.5u(t-2) - a 1(t)y(t-1) - 0.7y(t-2) + 0.25xn<t-l)u(t-1) + e(t), 

in which the parameter a 1 is allowed to be time varying, the three forms of VFF are 

compared. In each case, the simulation is run over 200 iterations with the control 

objective being to regulate the system output about a zero reference when closed-loop 

poles are effectively specified at -3 and -5 in the s-plane with use made of a sampling 

interval of T-0.1 second. 

• 

The three methods for obtaining the VFF defined by equations (4.5), (4.8) 

and (4.12) are investigated when the parameter a 1 is varied as follows: Fixed at -1.5 for 

0<t<40, decreasing linearly to a value of -2.0 over 40<t<120, followed by a step change 

back to -1.5 when t- 120 then held constant. In each case an initial value of A.0..0.925 is 

used and the methods are compared when subject to a range of noise levels and nominal 

estimator memory lengths. 

Figures 4.l(a)(b)(c), 4.2(a)(b)(c) and 4.3(a)(b)(c}, illustrate (a) the value of 

the variable forgetting factor, (b) the system response and (c) the control input 

corresponding to use of the bilinear STC when use is made of Method 1, Method 2 and 
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the hybrid method of obtaining the variable forgetting factor respectively, with noise level 

e(t) bounded such that I e(t) I < 0.05 and the nominal memory length M0-60. 

Whilst detailed discussion is given in [A6], the results indicate that, when 

applied to the simulated model of a time varying bilinear system, use of the hybrid VFF 

is found to give rise to a superior system performance in terms of its ability to maintain 

system stability, providing for a more robust algorithm in term of user choice of 

estimator memory length. 

4.3 Resetting techniques 

4.3.1 Covariance matrix reset 

Whilst variable forgetting factors are found to provide effective algorithms 

for the tracking of slowly varying parameters, their use in tracking sudden changes is 

limited by the need to retain a sufficient memory length. An alternative, albeit ad hoc, 

approach which facilitates fast adaptation (or re-adaption) of the estimation algorithm is 

that of covariance matrix reset. Covariance reset has the effect of removing all a priori 

knowledge from within the algorithm, and is achieved by resetting the covariance matrix 

cf>(t) in equation (4.3) to µI, where I is the identity matrix andµ is a user defined large 

positive scalar. The larger the value ofµ the 'harder' the reset with more of the older 

information being discarded. (Typicallyµ is taken to be of the order 100.) Reset action 

can be enforced at regular intervals [52,53], or triggered on fault detection [54,A8,A9]; 

with the fault condition being an indicator of the accuracy of the estimator. 
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4.3.2 Combined covariance matrix and VFF reset techniques 

By combining the desirable features of covariance matrix reset together with 

reset applied to the exponential decay term of the hybrid VFF of equation (4.12) an 

algorithm has been developed which can handle both slow and sudden parameter 

variation. Investigative studies involving the application of such a two-tier approach 

[A8.A9] to the simulated model of a bilinear system have indicated that a markedly 

improved performance is possible over that achieved when use is made of VFF and 

covariance reset in isolation. In [A8,A9] reset action is triggered using a fault detection 

mechanism which is indicative of large estimation errors. The mechanism, which is 

similar to that proposed in [54] for linear systems, triggers the reset action whenever the 

demand for a VFF falls below some pre-specified threshold level ).p· (Note that the actual 

value of the VFF is bounded from below such that ).(t)>).e>).p.) 

4.3.3 Simulation studies 

In order to compare the effectiveness of the combined two-tier algorithm, the 

bilinear system which had previously been investigated by Gabr and Subba Rao (41], in a 

different context, is adopted. This takes the form 

y(t) = -a1(t)y(t-1) - 0.7y(t-2) + u(t-1) + 0.5u(t-2) + 0.12x(t-l)u(t-1) + e(t) 

As in section 4.2.3 the objective in this case is to place closed-loop poles at -3 and -5 in 

the s-plane and with a sample interval of T..0.1 second the system was subject to a step 

input of r(t)-0.05. There is no attempt to make adjustment to the closed-loop steady-state 

gain of the system. With the noise level e(t) chosen such that I e(t) I < 0.01 in each case, 

the techniques are compared both when combined and in isolation with each simulation 

being run over 150 iterations. 

It is shown [A8, A9] that the use of the combined two-tier approach leads to 
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a marked improvement over that previously attained using VFF and covariance reset in 

isolation. 

As a test condition, the system is subjected to a step input r(t)-0.05 and an 

output disturbance e(t) represented by discrete white noise, where I e(t) I < 0.04. The 

parameter a1 (t) is varied according to 

-15 

-15-(t-50)/1200 

-1.5 

with each simulation being run over 750 iterations. 

Figures 4.4(a) and 4.4(b) illustrate, respectively, system response and control 

input when use is made of the combined VFF and covariance matrix reset scheme. By 

combining the desirable features of the hybrid VFF with the covariance resetting 

approach the resulting algorithm is able to handle both slow and sudden parameter 

variation and the resulting mechanism is believed to be applicable to a wide range of 

non-linear and/or time-varying systems which may be required to be controlled using STC 

schemes. 
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4.4 The method of instrumental variables 

4.4.1 Instrumental variables (linear case) 

The method of instrumental variables (IV) is based on the concept of a 

multi-pass RLS algorithm and has been found to be advantageous for linear systems when 

the noise is non-white [55,56]. The instrumental variables are the (noise free) generated 

outputs z(t} obtained when the identified model is subjected to the same input excitation 

signal as the actual system. 

Whilst there appears to be no unique approach for generating the 

instrumental variables [56], the simplest form of the recursive algorithm is to make use of 

the prediction of the system output obtained directly from the estimation prediction error 

of equation (4.1) of the RLS algorithm i.e. z(t)=xT(t)O(t-1). The recursive instrumental 

variables (RIV) algorithm takes the form 

8{t) = O(t-1)+ 4>(t)[ y(t)- xT(t)O(t-1)) (4.13) 

where 

and 

4>(t)= 4'>(t-l)x(t) [ 1+ xT(t)(f>(t-l)x(t) r1 

cl>(t)= [ I - cj)(t)xT(t)) cl>(t-1) / A(t) 

where x(t) is the observation vector as defined in Chapter 2 

xT(t) = [ y(t-1) y(t-2) ... y(t-na); u(t-k) u(t-k-1) ... u(t-k-nb) ], 

i(t) is the vector consisting of the instrumental variables 

i T(t)= [ z(t-1) z(t-2) ... z(t-na); u(t-k) u(t-k-1) ... u(t-k-nb)) 

and cl>(t) is the corresponding error covariance matrix. 
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4.4.2 Instrumental variables (bilinear case) 

When considering bilinear systems, the RIV algorithm is extended in a 

similar manner to the RLS algorithm as outlined in Chapter 3. However, a number of 

interesting possibilities arise. Recall that in the case of bilinear systems, the adopted form 

of the observation vector (3.10) is given by 

xT(t) = ( y(t-1) ... y(t-na); u(t-k) ... u(t-k-nb ); 

~(t-k)u(t-k) ... x
0
(t-k-nb)u(t-k-nb);... ; 

~(t-k)u(t-k-m+l) ... ~(t-k-nb)u(t-k-nb-m+l) ) 

so that the equivalent vector of instrumental variables becomes 

iT(t)= ( z(t-1) ... z(t-na); u(t-k) ... u(t-k-nb); 

x
0
(t-k)u(t-k) ... ~(t-k-nJu(t-k-nJ; ... 

x
0
(t-k)u(t-k-m+l) ... ~(t-k-nb)u(t-k-nb-m+l)) 

(4.17a) 

(4.17b) 

However, note that the instrumental variables are already available in the form of past 

values of the noise free filtered estimates ~(t-i) obtained from the iterated steady-state 

observer (ISO), equation (3.19), so that an alternative form for the vector of instrumental 

variables becomes 

-T - -x (t)= ( ~(t-1) ... ~(t-na); u(t-k) ... u(t-k-nb ); 

xn(t-k)u(t-k) ... Xn(t-k-nb)u(t-k-nJ; ... ; 

~(t-k)u(t-k-m+l) ... xn(t-k-nb)u(t-k-nb-m+l) I (4.17c) 

The distinction between the instrumental variables z(t-i) obtained from RLS and the noise 

free filtered estimates ~(t-i) obtained from the ISO is that whereas the z(t-i) are based 

on O(t-i-1), the xn(t-i) are based on the most recent estimates D(t-i). 

The extended RIV algorithm for bilinear systems takes the form of equations 

(4.13)-(4.15) with i(t) being of the form (4.17b) or (4.17c). 
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4.4.3 Simulation studies 

In order to assess the effectiveness of the extended forms of the RIV 

algorithm for bilinear systems, the performance arising, in terms of minimum estimation 

prediction error, when use is made of the vectors of instrumental variables, given by 

(4.17b) and (4.17c), are compared. The bilinear system described in section 4.3 is 

subjected to a range of white and non-white noise levels when driven in open-loop by a 

pseudo random input sequence. At each time step the total absolute error between actual 

parameter values and estimated parameter values is formed. It is found that use of the 

ISO, corresponding to the vector of instrumental variables given by equation (4.17c), leads 

to a faster convergence than when use is made of the vector given by equation (4.17b). 

However, in the steady-state, both methods are found to produce virtually identical 

estimation errors. Typical plots of estimation errors, indicating convergence behaviour, are 

given in Figures 4.5(a) and 4.5(b) which correspond to a step change in a single parameter 

(at the 100th iteration) and a ramp change in a single parameter (commencing at the 

100th iteration) respectively. In each case, the solid line corresponds to the use of (4.17b) 

and the dashed line corresponds to the use of (4.17c). In both cases, a fixed forgetting 

factor A-0.99 is employed and the simulation run over 200 iterations. It is evident from 

these Figures that both approaches are able to recover from these disturbances. However, 

due to the faster initial convergence when use is made of equation (4.17c), the approach 

in which the IV's are generated from the ISO is the more favourable. This approach is 

believed to be particularly appropriate when used in conjunction with the covariance 

resetting techniques outlined in section 4.3, where the estimation algorithm may be 

required to be repeatedly re-initialised. 
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4.5 Kalman filtering techniques 

Based on the RLS algorithm developed in Chapter 2, the Kalman filter (KF) 

for linear state estimation and the extended Kalman filter (EKF) for non-linear state 

estimation are developed in Appendices 8 and 9 respectively. For brevity and to maintain 

continuity, consideration is focused here to the problem of joint state and parameter 

estimation for bilinear systems. Via a simple transformation the KF is re-formulated for 

parameter estimation and the EKF is re-formulated for both state and parameter 

estimation (see Appendices 8 and 9 respectively). The applicability of the EKF is 

compared to the tandem estimation schemes, introduced in Chapters 2 and 3, when 

applied to the simulated mcxlels of both a linear and a bilinear system. 

4.5.1 Brief historical note 

The KF is a well known and versatile tool in the field of estimation theory. 

Originally proposed for linear state estimation [57,62], the KF has been widely used in a 

diversity of practical applications and has also provided a wealth of theoretical research. 

Essentially, Kalman [62] developed a general framework for the RLS 

algorithm with the important distinction being that the parameters to be identified were 

no longer constants (as in the work of Plackett [8]), but were time varying quantities 

governed by linear differential (or difference) equations. The KF can handle both 

measurement noise on the system output and process noise in the system dynamics and is 

the optimal estimator, in the sense of least squares, when such noises are Gaussian in 

nature. 

The work of Kalman, and later Kalman and Bucy [63], has resulted in 

estimation techniques that are both elegant and powerful and can cater for both linear 
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and non-linear systems; the latter being achieved using the EKF. The filter in its various 

forms has been widely used for more than three decades and shows no sign of losing its 

prominence as a successful and reliable engineering tool. 

4.52 Kalman f ilter for parameter estimation 

In this approach, the RLS parameter estimation procedure, used in the 

tandem RLS/SKF scheme for the linear STC introduced in Chapter 2, is replaced by a 

linear KF to produce a tandem KF/SKF scheme. In principle this allows incorporation of 

a priori engineering knowledge without significantly increasing the computational 

overhead [64]. 

For the purpose of the KF, the evolution of the parameter vector 6 is 

described by 

O(t+ 1) = 6(t) + o,(t) (4.18) 

where o,(t) is a noise sequence which takes into account any likely variation in the 

parameter values with time, i.e. 6 is principally time invariant, but includes a random 

component to reflect any possible variations. 

The KF generates estimates O(tlt) via a simple two stage prediction/correction 

process; prediction takes place during the sampling intervals, followed by correction at the 

sampling instants. (The notation O(tlt) is read as the estimate of 6 at time t (ti ) based on 

information upto and including time t ( It).) When configured for parameter estimation, 

the KF equations become 

Prediction: O(tlt-1) = O(t-llt-1) 

cf>(tlt-1) = cf>(t-1lt-1) + 8w 
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Correction: 

where 

and 

O(tlt) = O(tlt-1)+ q,(t)[ y(t)- xT(t)B(tlt-1) ) 

q,(t)= cf>(tlt-l)x(t) [ rv + xT(t)cf>(tlt-l)x(t) r1 

cf>(tlt)= I I - (/)(t)xT(t) I cf>(tlt-1) 

(4.20a) 

(4.20b) 

(4.20c) 

where~ and rv are the process noise covariance matrix and the output noise variance 

respectively. 

Note the similarity to RLS, both in form and computational requirements. 

The primary difference is in the way in which elements of the covariance matrix are 

inflated to increase adaptivity in the presence of time varying parameters. In the case of 

RLS all elements are scaled by the forgetting factor A, equation (4.3), whereas in the KF 

only selected elements are increased by the addition of the noise covariance matrix ~. 

equation (4.19b). 

In adopting the KF for the parameter estimation stage of the bilinear STC, 

the observation vectors are extended as indicated in Chapter 3 to produce a tandem 

KF/1SO scheme. 

4.5.3 Extended Kalman filter for Joint state and parameter estimation 

The tandem schemes in which parameters and states are estimated in 

separate stages may be replaced by the EKF scheme where parameters and states are 

estimated simultaneously. Define the augmented state vector 

(4.21) 

consisting of both states and parameters. The EKF generates estimates z(tlt) of the 

augmented state vector via a two stage prediction/correction process in a similar manner 

to the KF. The important distinction between the KF for parameter estimation and the 

EKF for joint state and parameter estimation is that the prediction stage is no longer 
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trivial, requiring a knowledge of the state evolution between samples. In addition, even in 

the linear case the formulation of the EKF problem leads to non-linear state equations 

which are required to be linearised about each discrete operating region along the 

trajectory of z(t) (See Appendix 9). The non-linear function is replaced by the Jacobian 

matrix J(t) which is evaluated at each time step. 

Linear STC 

The EKF algorithm for the linear STC takes the form 

- ·- . Prediction: z(tlt-1)= P z(t-llt-1) + Q u(t-1) 

cf>(tlt-1) = J(t-l)cf>(t-l lt-l)JT(t-1) + ~ 

Correction: z(tlt) = z(tlt-1)+ tl>(t)f y(t)- u•z(tlt-1) J 

and cf>(tlt)= [ I - q,(t)U- Jcf>(tlt-1) 

Augmented linear system 

The evolution of the augmented state vector for the linear system is 

described by the augmented state-space model 

• • • z(t+l) = P z(t) + Q u(t) + R e(t) 

• y(t) = H z(t) + e(t) 

in which 

p• _ 
p 0 0 Q 

+ + 
0 Ina I 0 

0 

- + + -
0 0 1

nb+l 
0 

O? 

(4.22a) 

(4.22b) 

(4.23a) 

(4.23b) 

(4.23c) 

• 

(4.24a) 

(4.24b) 



R 

0 0 

0 0 

and I is the identity matrix of appropriate dimension 

i.e. z(t+l) = x(t+l) = Px(t) + Qu(t) + Re(t) 

O(t+l) 6(t) 

y(t) = [ H 

so that the state equation (4.24a) may be expressed 

z(t+l) = J(z(t),u(t)) + R'e(t) 

0 

(4.25) 

(4.26) 

where J is a non-linear function (strictly bilinear) of state and control. The Jacobian for 

this system is given by 

of 
Je(t) = -

oz(t) 
z(t)=z(tlt) 

where suffix f indicates that the original system is linear. This reduces to 



Je(t) = 

0 

1 0 
~(t) 

0 
u(t) 

0 I 0 
I I 

0 1 -al I ~(t) I u(t) 

------+------+------
1 

0 0 

------+------+------

0 0 

(4.27) 

i.e. the matrix whose ijth element is the partial derivative of the ith element off with 

respect to the j1h element of z(t). 

• 
Bilinear STC 

In the case of the bilinear STC, equation (422a) in the EKF algorithm is 

modified to accommodate the bilinear terms, such that 

m 

z(tlt-1)= p•i{t-llt-1) + Q•u(t-1) + ~ u(t-i)N:z(t-llt-1) 

i=l 

Augmented bilinear system 

The state evolution for the augmented bilinear system is described by 

m . . . ~ . . z(t+l) = P z(t) + Q u(t) + R e(t) + u u(t-1+l)Ni z(t) 

i=l 

• y(t) = H z(t) + e(t) 

(4.28) 

• 

(4.29a) 

(4.29b) 



Similarly, the matrices p•, Q•, R•, u• and N; are of the form (4.25) and are defined by 

p• _ 
p 0 0 0 

Q·-
Q 

- + - + - + 
0 I 1na I 0 I 0 

0 

- + - + - + 
0 0 I 1nb+I 

I 0 0 

- + - + + 
0 0 0 I 

Im.(fib+l) 0 
I 

R 

0 0 

0 0 

0 0 

and 

N~ -
I Ni 0 0 0 

- + - + - + -

0 I 0 I 0 I 0 i = 1 ... m 

- + - + - + -
0 0 0 0 

- + - + - + -
0 0 0 0 (4.30) 



The Jacobian for this system is given by Jb(t) = 

0 

1 

I 
m 

-an + I: 7/(n-l)iu(t-m+l) 
1 

. 1 I •- I 
m 

-an-I+ I: 11(n-2)iu(t-m+l): 
i=l 

I 

m 

I 

(t)I 
"n I 

I 

I 

u(t) I 
I 

I 

I 

1 •• 1 

u(t)xo<t) 1 ·· 1 
1 •• 1 
1 •• 1 

1 •• 1 

1 •• 1 
1 •• I 

1 .. 1 
1 .. I 

u(t-m+ l)xn(t) 

0 1 -al + I: 7/0iU(t-m+l) I u(t) 1 u(t)xo<t) 1 ·· 1 u(t-m+l)xn(t) 
I I 1 .. 1 

------------+--- +--- +--- ++- - - - - - -

I I 

0 0 0 I I 0 1 .. 1 
I I 
I I 
I I 

------------+--- +--- +--- ++-------

0 

1 I 

0 0 
I I 
I I 
1 •• 1 

I I I 
I I I 

0 

- - - - - - - - - - - - + - - - + - - - + - - - ..I.. ..I..- - - - - - -

0 0 0 

(4.31) 

where the suffix b indicates that the original system is bilinear. 

4.5.4 Simulation studies 

• 

Simulation studies involving the application of Kalman filtering and extended Kalman 

filtering techniques are described in [A14] and [A15]. 
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In [A14] the tandem RLS/SKF approach outlined in Chapter 2 is compared 

to both the KF/SKF approach and the EKF approach when a linear self-tuning 

pole-placement controller is applied to an identified linear model of a hydraulic servo 

system [27] in the presence of non-ideal identification signals. In order to replicate the 

observed non-linearities, in terms of slow variation in feed flow with operating 

temperature, parameters within this model are varied linearly. Results presented in 

Figures 4.6, 4.7 and 4.8, which illustrate (a) the control input u(t) and system response 

y(t) and (b) the convergence behaviour of the estimated parameters, correspond 

respectively to the use of RLS/SKF, EKF and KF/SKF schemes. 

When a system is subject to poor input excitation signals, the estimation 

procedure attempts to determine the 'p' parameters from effectively 'one' equation. As a 

consequence, the estimated parameter values can become highly correlated, drifting in 

sympathy, such that this 'near singular' set of equations is satisfied. From Figure 4.6 it is 

evident that the RLS/SKF approach can lead to divergent estimates and possible 

instability. It is evident from Figure 4.7 that the EKF reduces problems of divergence but 

may produce biased estimates. The KF/SKF, on the other hand, is found to eliminate the 

problems of both divergence and bias1 as is evident in Figure 4.8. 

The major shortfall of the RLS approach would appear to be due to the fact 

that use of a forgetting factor tends to increase the cross correlations (as observed by the 

algorithm), causing the estimated parameter values to drift in symp,1.thy. For both the KF 

and EKF approaches, the process noise covariance matrix 8w is added and, since 8w is 

usually diagonal (or at least diagonally dominant), the observed cross correlations within 

the algorithms are not increased, leading possibly to the better performance of the 

KF/SKF and EKF schemes. The reduced performance of the EKF, in this case, is due 

possibly to the cross correlations introduced at the covariance update stage involving the 

Jacobian. 
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In [A15] the tandem RLS/ISO approach outlined in Chapter 3 is compared to 

the EKF approach when applied to the simulated bilinear system of section 4.3.3. The 

system is operated in open-loop and driven by and 'ideal' pseudo random input signal. In 

order to evaluate the integrity of the two estimation procedures the system is subjected to 

a number of test conditions. It is noted that the EKF can make more meaningful use of 

available a priori knowledge than the RLS/1SO approach and, in order to draw sensible 

conclusions, it is useful to consider the implications of different initialisation procedures 

outlined in [Al5]. 

The results presented in Figures 4.9, 4.10 and 4.11 illustrate the convergence 

behaviour of the estimated parameters for (a) the RLS/1SO scheme and (b) the EKF 

scheme and correspond, respectively, to Tests 1, 2 and 3 which are outlined as follows. 

In Test 1, the model parameters are fixed and the system is subjected to a 

range of noise levels. Both techniques are initiated to reflect an absence of a priori 

knowledge. It is found that for low noise levels there is little difference in performance. 

However, the RLS/ISO scheme becomes increasingly superior for higher noise levels as is 

evident in Figure 4.9 which corresponds to I e(t) I< 0.2. 

In Test 2, the model parameters are again fixed, but this time the estimation 

schemes are initialised to reflect the presence of a priori knowledge [A15]. Figure 4.10 

illustrates the corresponding convergence behaviour of the estimated parameters when 

subjected to the noise sequence in which I e(t) I < 0.2. Although, as expected, 

steady-state performance is similar, use of the tuned EKF gives rise to an improved 

transient performance. 

In Test 3, the parameter a1 within the model is varied linearly over the 

duration of the simulation with the two schemes initiated as in Test 2 except that the 

appropriate diagonal element in~. corresponding to the parameter a1, is increased by a 
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factor of ten. It is evident from Figure 4.11 that, due to its versatility, the tuned EKF can 

give rise to superior performance in terms of parameter tracking ability. The tracking 

ability of the RLS/1SO approach can be improved by reducing the value of the forgetting 

factor. However, it is noted that even in the case of 'ideal' input excitation signals, this is 

achieved at the expense of reduced estimation accuracy of the fixed parameters. 

Whilst it is shown that the tandem RLS/ISO scheme provides a robust 

approach requiring little or no a priori knowledge, it is noted that the EKF scheme, with 

its increased degrees of freedom, is able to make more meaningful use of such knowledge 

and, if tuned correctly, can give rise to a superior performance. 
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4.6 Cautious least squares 

4.6.1 The search for a simple yet effective approach 

Proposals outlined so far for enhanced estimation schemes have, to some 

extent, been found to alleviate the problems encountered in the implementation of STC. 

However, the fundamental conflict within an STC lies in the requirement that it must 

simultaneously perform the dual roles of estimation and control. In practice the 

performance of an STC may deteriorate as a result of non-ideal input excitation signals; 

unfortunately a condition experienced by well regulated plant particularly over prolonged 

periods of steady-state operation. Whilst combinations of the various enhanced parameter 

estimation techniques have been employed in an albeit ad hoc manner, the problem of 

compromise between robustness and adaptivity remains an outstanding issue. This is 

further compounded by the increased computational complexity which often accompanies 

the enhanced techniques. This in tum leads to an increased computational delay and the 

possibility of an overall deterioration in performance of the closed-loop STC, such that 

the potential benefits of the enhanced techniques may never be fully realised. 

Prompted by the need to overcome these problems, a computationally simple 

yet effective technique termed cautious least squares has been proposed [AlO]. Cautious 

least squares is a conceptually simple approach providing a robust estimation scheme 

which - is able to retain the desirable adaptive features of any enhanced technique, 

such as variable forgetting factors and covariance matrix reset, etc., which may readily be 

incorporated within its framework. Furthermore, it is able to alleviate problems arising 

during prolonged periods of closed-loop steady-state operation due to poor input 

excitation. 
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4.6.2 Derivation of cautious least squares 

Es.sentially, cautious least squares (CLS) attempts to minimise the modified 

cost function 

(4.32) 

i.e. Jc<O) = JI + Iz 

the first term of which corresponds to the normal RLS cost function in which y-xTo is 

the prediction error X (equation (4.6)) and A is the diagonal matrix 

A= diag p.M .... ,\2 ,\ ], 

see Appendix 7. The second 'cautious' term in the cost function attempts to minimise the 

deviation of the estimated parameter vector O(t) from some pre-specified 'safe' set of 

parameter values denoted Os. The CLS algorithm is realised as an additional sub-algorithm 

which operates in tandem with the RLS algorithm. It has the effect of realigning the 

estimated parameter vector O(t) generated from within the normal RLS algorithm towards 

the safe set 0
5

; the amount of realignment being associated with the user defined 

weighting matrix 'I'. The parameter vector which minimises the modified cost function 

(4.32) is defined as the cautious parameter vector 8(t). 

Making use of the vector differentiation given in Appendix 1 

which equating to zero and setting 0=6 gives 

- XTAy + XTAXO+ '1'8 - 'l'Os= 0 

(XTAX + 'I'W= XTAy + '1'85 

so that 

Since the estimated parameter vector 6 generated from RLS is given by 

it follows that equation (4.34) may be expressed as 
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(4.33) 

(4.34) 

(4.35) 



0= [ 4>-l + 9' rt [ 4>-19 + Os ] 

where 4>-[ XT AXr1 is the error covariance matrix. 

4.6.3 Realisation of the CLS approach 

(4.36) 

Since a recursive solution for equation (4.36) is not immediate, the approach 

is realised as a tandem operation of two separate procedures of: 

Obtain 8 from RLS by minimising 11 only, 

i.e. 11 (0) = (y-Xol A(y-XO) (4.37) 

followed by, obtain 8 from CLS by minimising 12 only, 

i.e. 12(0) = (8-6JT9'(6-6
5
) (4.38) 

8=8 

The tandem RLS/CLS approach outlined by equations (4.37) and (4.38) forms the basis of 

the algorithms adopted. Note that if CLS is applied at each time step then a further p 

(p-dim{0}) iterations would be required. Whilst such a sequential scheme would ensure 

that full weighting is given to the safe set the resulting algorithm would be 

computationally cumbersome. However, its operation is considered here since it forms the 

basis of a number of possible realisations. 

Although it has not been considered in this Thesis, it is interesting to note 

that the CLS approach could also be realised in the information matrix filtering domain 

[65]. 

The cautious parameter vector Os is obtained from either knowledge of the 

plant or time series analysis of input/output data. 
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Sequential opera/ion of CLS 

It should be noted that in the tandem operation of RLS and CLS, the 

weighting matrix f/1 provides the user with the flexibility to assign confidence in the 

individual safe set values; the overall influence on the safe set being dependent upon how 

frequently the CLS sub-algorithm is applied. 

In order to give a detailed description of the operation of sequential CLS it 

is useful to imagine that following each successive iteration of RLS time is 'frozen' until 

the cautious estimate has been generated. The approach may be illustrated schematically 

as in Figure 4.12. 

j RLS generates O(t) 

t { j CLS generates O(t) I 'frozen' tlllle 

j RLS generates O(t+l) 

t+l { j CLS generates O(t+l) I •frozen' tlllle 

Figure 4.12. 

The sequential operation of the CLS algorithm involves, at each time step, a further p 

iterations in order to minimise the cautious component J2 of the cost function (4.32). For 

clarity, it is convenient to assume that whilst time is 'frozen' between sucessive iterations 

of RLS the discrete time index tis replaced by the index j, where j-1,2, .. p. The 

sequential CLS algorithm then takes the form 
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o. = o. 1 + ""· ( e'f(O -e. 1) I J J- 'PJ J s J-

""· = • · 1 e. ( 1 + e'f • · 1 e. 1-1 
'PJ J- J J J- J 

•j = ( I--<f,j eJ I •j-t 

where the ej are the orthogonal unit vectors defined as 

eJ = [ 6 lj 62j 6 3j . .. 6pj ] 

in which 6ij is the Kronecker delta function 

i=j 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

Note that by making use of artificial data in the form of the orthogonal unit vectors the 

CLS algorithm is able to influence the overall estimation algorithm, tending to re-align the 

estimated parameter vector towards the safe set 8
5

• It is also noted that use of the 

orthogonal unit vectors effectively provides for an artificial excitation signal within the 

estimation algorithm, thus alleviating, to some extent, the problem of covariance blow-up 

during steady-state periods of operation without the need to disturb/perturb the plant. 

CLS is initiated at each time step with 80=6(t) and • 0=4>(t) where O(t) and 

(f>(t) are the estimated parameter vector and covariance matrix generated from RLS 

respectively. Following the p iterations of CLS, the cautious parameter estimate and 

covariance matrix become OP and •P respectively, with the cautious estimate O(t)..OP used 

for control purposes. At the next time step O(t) and •Pare fed back to the RLS algorithm 

such that O(t-1)--0(t) and '1>(t-1)4P. The overall procedure corresponding to the use of 

sequential CLS for a linear system, as viewed by the estimator, then becomes 
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y(t-1) = y(t-2) y(t-3) ... y(t-1-na) u(t-1-k) u(t-2-k) .. u(t-1-k-ni) B<t-1) 

~ 
0s1 1 0 0 81 

052 0 1 0 82 

0s. 0 0 0 8i J 

~ 
05p 0 0 1 8 -O(t-1) p 

y(t) = y(t-1) y(t-2) . . . y(t-na) u(t-k) u(t-1-k) .. u(t-k-ni) B<t> 

0s1 1 0 0 81 

052 0 1 0 82 

0 0 0 

0 0 1 

. . . (4.43), 

which may be readily extended to the bilinear case. Note that the maximum influence of 

the safe set is obtained if CLS is applied at each time step. It is clear that many variants 

of the sequential approach are possible and two such variants are outlined here. 

• 
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Cyclic operation of CLS 

A natural extension of the sequential approach is the cyclic, or selective, 

operation of CLS. In this way, only one parameter is 'cautioned' after each iteration of 

RLS. In the cyclic approach all the parameters are cautioned 'cyclically' whereas in the 

selective approach only the problematic parameters are cautioned. In the latter approach, 

some form of fault detection mechanism would need to be incorporated. The cyclic 

operation of CLS may be viewed as 

05p 0 0 

y(t) = y(t-1) y(t-2) 

05( 1 0 

y(t+l) = y(t) y(t-1) 

052 0 1 

CLS on reset 

1 

... y(t-na) u(t-k) u(t-1-k) . . u(t-k-ni) 

0 

... y(t-n
3
+1) u(t-k+l) u(t-k) .. u(t-k-nb+l) 

0 

O(t-1) 

O(t) 

~ 
O(t) 

O(t+l) 

~ 
O(t+l) 

(4.44) 

• 

In this approach CLS is combined within a variable forgetting factor and 

covariance matrix reset procedure which is implemented whenever a fault condition, 

indicative of large estimation errors, is detected. The reset mechanism, being a function 

of the estimation prediction error, is triggered when the demand for the variable 

forgetting factor -falls below some pre-specified threshold level ;,_p (see section 4.3.2). Such 

a combined procedure facilitates, at reset stages, an efficient means of cautioning all 

parameters in a single iteration; this being made possible by exploiting the diagonal 
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properties of the newly updated covariance matrix. The algorithm takes the form: 

If the demand for the forgetting factor A.(t)<Ap (Note that the actual value of the 

forgetting factor is bounded such that A£<A(t)<I.0 where Ai>;._p·> then the 

cautious covariance matrix 4>P becomes µI so that the cautious parameter estimate 

6(t) from (4.36) becomes 

O(t) = (1-w)O(t) + mOS 

where W=µ(l+µt1. 

(4.45) 

The value of a, in (4.45) may be interpreted as a measure of the users confidence in the 

safe set 65, which then determines the value ofµ used in the resetting. In order to retain 

the influence of 6
5 

in subsequent iterations, RLS is re-initiated with the covariance 

matrix 4> reset to the identity matrix I. 

• 

4.6.4 Simulation studies 

The bilinear system used previously 

y(t) = -a1(t)y(t-1) - 0.7y(t-2) + u(t-1) + 0.5u(t-2) + 0.12x(t-l)u(t-1) + e(t) 

is again adopted for investigative purposes where a 1 (t) is a time varying parameter. 

Oosed-loop poles are specified at -3 and -5 in the s-plane with a sampling interval of 

T-0.1 second. The objectives of the simulation studies are to investigate the use of 

caution on reset combined with variable forgetting factor and covariance matrix reset and 

to compare the resulting performance to that obtained in the absense of caution. 

The system is again subjected to a step input r(t)=0.05 and an output 

disturbance e(O represented by discrete white noise, where I e(t) I < 0.04, with the 

parameter a 1 (t) varied according to 
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.,(t) = I -1.5 t<50 

-1.5-(t-50)/1200 50<t<650 

-1.5 t>,650 

with each simulation being run over 750 iterations. The algorithm is initiated with 

cJ'>(0)- 1051 and 8;=(1.7 -0.7 1.0 0.5 0.12], a confidence factor w=0.75 and an initial value 

of forgetting factor being -l0--0.97. 

Figures 4.13(a) and 4.13(b) illustrate, respectively, the system response y(t) 

and control input u(t) when caution is employed whilst those of Figures 4.14(a) and 

4.14(b) give corresponding responses in the absence of caution. It is clear that use of 

caution on reset gives rise to a markedly superior performance. Figures 4.15(a) and 

4.15(b) illustrate, for the case of caution on reset, the convergence behaviour of the 

parameter estimates and the state space control law parameters respectively. These again 

show an improvement when compared to Figures 4.16(a) and 4.16(b) which correspond to 

the same conditions in the absence of caution. 
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4.7 Concluding remarks 

A number of enhanced parameter estimation techniques have been 

investigated and developed with specific attention being directed towards their 

effectiveness when incorporated within the bilinear STC framework introduced in 

Chapter 3. 

The proposed enhanced techniques are essentially extensions and adaptations 

of existing techniques for linear systems and include; a hybrid variable forgetting factor 

for slow parameter variation; a combined two-tier variable forgetting factor and 

covariance matrix resetting technique for both slow and sudden parameter variation; an 

alternative form of the recursive instrumental variables technique for improved 

convergence behaviour; Kalman and extended Kalman filtering techniques allowing the 

incorporation of engineering knowledge; and a novel cautious least squares procedure 

which may be applied sequentially, cyclically or on reset conditions to provide a simple 

yet robust approach capable of retaining the desirable adaptive properties of any other 

coexisting enhanced technique. 

Whilst the enhancements have been aimed at improving the integrity of the 

bilinear STC, the results are applicable for linear systems although the level of 

improvement may not be as significant. When appliying STC to practical systems 

exhibiting bilinear characteristics, it is anticipated that any enhancement to the parameter 

estimation scheme will largely depend upon the application under consideration and may 

well involve a combination of the schemes which have been outlined here. 
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5. Real-time laboratory scale trials 

5.1 Introduction 

In order to evaluate the effectiveness of both the enhanced linear STC and 

extended bilinear STC algorithms, developed in Chapters 3 and 4, real-time laboratory 

scale trials are undertaken. 

The first system considered is the coupled tanks apparatus, marketed by 

TecQuipment Ltd. (66], in which the control objective is to regulate the liquid level in the 

secondary tank by controlling the fluid flow into the primary tank; the tanks being 

coupled via an orifice. The system is known to exhibit non-linearities, due to the square 

law relationship between output flow and liquid head and, in order to accommodate for 

this, use of enhanced linear STC schemes are investigated. The second system is the 

heating-cooling system, marketed by Flight Electronics Ltd. [67], in which the control 

objective is to regulate the surface temperature of a heated bar onto which air is blown 

from an ambient source; the air flow being regarded as a disturbance on the system. The 

resulting overall system is known from physical considerations to exhibit bilinear 

characteristics and it is used as a basis for evaluating the bilinear STC algorithms 

developed in Chapter 3. 

5.2 Coupled tanks hydraulic system 

The system under investigation in this section is the coupled tanks hydraulic 

system which is illustrated diagrammatically in Figure 5.1. 
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u(t) 

Figure 5.1. Coupled tanks apparatus. 

Investigations are focused on developing STC algorithms to regulate the 

liquid level L2 in the secondary tank by controlling the input flow F to the primary tank. 

Whilst from physical considerations it is known that the system behaves in a non-linear 

manner. it is never the less useful to consider an approximate linear model structure. 

- -
Define L 1- L 1+/1 and ~ - Li+/2 where 11 and /2 are. respectively small variations in liquid 

- -
level about mean operating levels L 1 and~- By applying the law of conservation to each 

tank an approximate linear model for determining / 1 and /2 is readily obtained. Such a 

model may be expressed in the state-space form 

l/A J 

= + (5.1) 

0 

where A is the cross sectional area of each tank, f is the variation in input flow rate 

- -
about a steady-state flow F (i.e. F- F+ f) and k1 and ki are constants of proportionality 

- -
which are themselves dependent on the mean operating levels L 1 and L2. 

The implications of equation (5.1) are that for small variations about mean 

operating levels the system may be adequately modelled as a linear second order system. 

When considering the application of STC it is first necessary. as outlined in Chapter 2, to 

identify an appropriate linear model structure. For a second order system such a discrete 

representation takes the form 
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y(t) = -aly(t-1)- apr(t-2) + bou(t-k) + bl u(t-k-1) + e(t) (5.2) 

where in the case of the coupled tanks system u(t), y(t) and e(t) are, respectively, the 

input flow rate, output liquid level in the secondary tank and an assumed white noise 

measurement disturbance. The integer k> 1 is the system time delay expressed as an 

integer multiple of the sampling interval. Adopting a sampling interval of T=8.75 second 

gives rise to a value of k- 1. The corresponding state-space representation of equation 

(5.2), as outlined in Chapter 2, becomes 

x(t+l) = Px(t)+ Qu(t)+ Re(t) 

y(t) = Hx(t)+ e(t) 

(5.3a) 

(5.3b) 

where x(t) € R2 and the matrices P, Q, Rand ff following the necessary reduction in 

dimension are given by 

P= 

[ 
o -az l 
1 -a1 

Q= [ ::] R= (5.4) 

Based on the assumption that variations in system behaviour, including the 

effects due to non-linearities, may be absorbed into the time varying nature of the 

adopted model parameters, equations (5.2) and (5.3) are taken to be an appropriate model 

structure for implementing linear STC. 

5.2.1 Implementation of enhanced linear STC 

For small variations in head height, standard linear STC is found to be more 

effective than conventional PIO control [68]. However, for large variations in head height 

both standard linear STC and PIO schemes are found to be inappropriate. In [Al 7] a 

switched model linearisation approach is introduced in an attempt to accommodate the 

system non-lin~ties and in [A16] the approach is extended to combine switched model 

linearisation with cautious least squares. 
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The performance of the various STC schemes are compared to that achieved 

when use is made of variable forgetting factors and covariance reset only. In each case 

the adopted STC makes use of the state-space pole-placement strategy [6] and in order to 

achieve a first order type response closed-loop poles are specified at -0.229 and -100 in 

the s-plane. Each test was taken over 300T second (T=8.75 second) and the system 

subjected to a set-point demand equivalent to a square wave reference input of period 

150T second. The reference levels r(t) are specified as 10cm and 18cm of fluid head in 

the secondary tank, corresponding to transducer readings of 2 volt and 4 volt respectively. 

Figures 5.2a and 5.2b illustrate the responses corresponding to the use of 

variable forgetting factors [A2,A6] and covariance reset action coincident with set-point 

change. It is evident from Figure 5.2a that reasonable set-point following is achieved only 

at the expense of a relatively high and possibly unacceptable input variance. Whilst use of 

reset action at set-point change should remove all a priori information from within the 

algorithm and facilitate rapid adaptation Figure 5.2b, which corresponds to this, shows 

that this improvement is not forthcoming, rather surprisingly leading to a deterioration in 

response. 

Recognising the apparent shortfalls in the use of variable forgetting factors 

and covariance resetting techniques, when dealing with this non-linear system, prompted 

the need for an alternative approach and the use of switched model linearisation in 

conjunction with cautious least squares (CLS) is investigated [A16]. Simulation studies 

which make use of switched linear model structures given in [Al 7] are used as a basis to 

asses.s the approach. Figures 5.3a and 5.3b correspond to the use of sequential CLS and 

caution on reset respectively. Whilst these Figures would seem to imply comparable 

results in terms of set-point following and control input variance, it should be noted that 

the sequential approach is computationally more intensive. Real-time implementation 

trials corresponding to the above gives rise to the responses shown in Figures 5.4a and 

5.4b. As expected, results given in Figures 5.3b and 5.4b are similar, whilst those of 
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Figures 5.3a and 5.4a indicate a deterioration in the real-time implementation; this being 

due possibly to the increased computational delay. 

It is readily observed that in this application, the use of caution on reset 

gives rise to a superior performance in terms of increased accuracy in set-point following 

and reduced control input variance. 

5.3 Heating-cooling system 

This section describes investigative studies into the application of the bilinear 

STC techniques developed in Chapter 3. A laboratory scale non-linear heating-cooling 

system [67], which is known from physical considerations to exhibit bilinear 

characteristics, forms the test facility for evaluating the applicability of the bilinear 

approach. The system which has been used previously [69] for simulating the effects of a 

controlled glass house, is illustrated schematically in Figure 5.5. 

Fixed 
fan 

speed 

............... 

u( t) 

Current 

·-............. _ 
Air flow .... __ 

Figure 5.5. Schematic of heating-cooling system. 
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Figure 5.2(b) 
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