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Abstract 

Subsurface hydrology including flow and solute transport modelling is essential for 

designing many engineering processes such as seepage, remediation of 

contaminated groundwater, improved oil recovery, etc. The processes involved in 

such activities are observed across a wide range of length and timescales; from 

nanometres to kilometres and from nanoseconds to years. The recent growth in 

imaging technologies has shown that the size of a single pore in a porous medium 

may range from 0.1 nm to a few centimetres (Marry & Rotenberg, 2015). 

Therefore, to perform reliable field-scale simulations, a deep understanding of the 

processes happening at the pore-scale level and their consequences at larger scales 

is needed (Mehmani, 2014). Most of the previous work that modelled flow and 

solute transport at the pore-scale assumed laminar flow and applied Darcy’s law. 

However, in some cases, such as the flow of gases through porous media, flow 

near wellbores, and flow through the hyporheic zone, non-Darcy flow can be 

observed. It is not clear how solute transport processes are affected by the flow 

behaviour in the non-Darcy (Forchheimer) and turbulent flow regimes. In this 

work, a pore-network model (PNM) capable of simulating flow and solute 

transport within the Darcy, Forchheimer and turbulent flow regimes was 

developed. One of the aims of this work is to determine the onset of non-Darcy 

flow and the onset of turbulence, after which Darcy’s law loses its validity. Using 

PNM, any porous medium can be simplified into large pores connected to each 

other’s by narrow pores, then analytical or semi-analytical equations can be 

implemented to model the flow and transport processes through the medium. The 

proposed model was verified against experimental data of a packed spheres sample 

and other data in the literature. X-ray Computed Tomography scans of the packed 

spheres, sandstone and carbonate samples were used to extract the equivalent pore-

network. It was found that the onset of non-Darcy flow is highly dependent on the 

medium degree of heterogeneity, and in heterogeneous media, the onset velocity 

could be up to three orders of magnitude smaller compared to the homogenous 

media. In porous media with coarse particles, the assumption of fully developed 

flow in each pore is not valid and using the Hagen-Poiseuille equation does not 

predict the flow behaviour properly. After the onset of non-Darcy flow, if Darcy’s 

law is applied, this causes overestimation (up to ~10 times) of the Péclet number 

and the longitudinal dispersion coefficient (DL). In the turbulent flow regime, DL 

increased, due to the effect of turbulent diffusion, by a factor up to 1.6 compared to 

the DL value obtained under the Forchheimer flow conditions.   
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Nomenclature 

A Sample cross-sectional area 

𝐴1 Coefficient of 𝑋2 in the quadratic equation 𝐴1 𝑋
2 + 𝐴2 𝑋 + 𝐴3 = 0.0 

𝐴2 Coefficient of 𝑋 in the quadratic equation 𝐴1 𝑋
2 + 𝐴2 𝑋 + 𝐴3 = 0.0 

𝐴3 The constant term in the quadratic equation 𝐴1 𝑋
2 + 𝐴2 𝑋 + 𝐴3 = 0.0 

A` Ergun equation first constant 

a Pore cross-sectional area 

𝑎i Cross-sectional area of pore body i 

𝑎i−j Cross-sectional areas of the pore throat that connects the two 

connected pore bodies i and j 

B` Ergun equation second constant 

BTC Breakthrough curve 

C Concentration  

𝐶𝑖 Concentration at pore-unit i 

𝐶𝑜 Concentration of injected solute  

𝐶̅ Average concentration  

𝐶𝑐 Dimensionless jet contraction-area ratio (Vena-contraction) 

dp Diameter of a spherical particle  

𝑑𝑃𝑇ℎ Pore throat diameter 

dm Mean beads diameter 

d Diameter 

𝑑i−j Diameter of pore throat that connects the two pore bodies i and j 

Dm Coefficient of molecular diffusion 

𝐷𝑒𝑓𝑓 Effective diffusion coefficient 

DL Longitudinal dispersion coefficient 

dl Largest diameter of the beads 

ds Smallest diameter of the beads 

F Diffusive mass flux 

Fo Forchheimer number 

f Friction factor 

𝑓𝑝𝑜𝑟𝑒 Pore Friction factor 

g The gravitational acceleration 

𝑔pore Pore conductance 

𝑔i−j,tot Conductance of the pore throat and the two connected pore bodies i 

and j.  

G Shape factor 

h Head 

J Dispersion flux 

k A factor used to calculate the conductance and its value depends on 

the cross-sectional shapes of the pore 
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𝐾𝑐 Contraction coefficient 

kd Dimensionless momentum coefficients 

KD Medium Darcy permeability  

𝐾𝑒 Expansion coefficient 

KF Medium Forchheimer permeability  

𝐾𝐹
`  Modified Forchheimer permeability 

Kapp Apparent permeability 

𝐾∗ Dimensionless apparent permeability 

𝐾i−j,tot Hydraulic conductivity of the pore throat and the two connected pore 

bodies i and j 

Lcharc Characteristic length 

L  Sample length 

𝐿𝑖−𝑗 Pore throat length that connects the two connected pore bodies i and j 

𝐿𝑖 Pore body length  

𝐿𝑖−𝑗,𝑡𝑜𝑡 Length of pore throat and the connected two pore bodies i and j 

Lh Length of the entrance region 

𝐿pore Pore length  

Lx Length in x-direction 

Ly Length in y-direction 

Lz Length in z-direction 

𝑁𝑥 Number of pore bodies in x-direction 

𝑁𝑦 Number of pore bodies y-direction 

𝑁𝑧 Number of pore bodies z-direction 

NPB Number of pore bodies 

NPTh Number of pore throats 

𝑁i−j The coordination number of pore body i. 

P Pressure 

PB Pore body 

PN Pore-network 

PNM Pore-network model/modelling 

PTh Pore throat 

𝑃𝑒 Péclet number 

Pr Probability  

∆𝑃𝑖−𝑗
𝑡𝑜𝑡 Total pressure loss for any pore throat that connects the two pore 

bodies i and j 

𝛥𝑃i−j,tot
v  Viscous pressure loss between the two pore bodies i and j 

𝛥𝑃i−j,tot
f  Frictional pressure loss between the two pore bodies i and j 

∆𝑃i−j
exp

 Pressure loss due to expansion 

∆𝑃i−j
cont Pressure loss due to contraction 

p Perimeter  
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𝑝i−j Perimeter of pore throat that connects the two pore bodies i and j 

q Discharge 

𝑞i−j Discharge through any pore throat that connects the two pore bodies i 

and j 

r Radius 

𝑟i−j Radius of pore throat that connects the two pore bodies i and j 

𝑟𝑐 Radius of the largest inscribed circle 

𝑟𝑒 Radius of the circle that has area equal to the void area 

reff Effective radius 

𝑟pore Pore radius   

𝑟𝑃𝑇ℎ Pore throat radius   

R.PBmax Maximum pore body radius 

R.PBavg Average pore body radius 

R.PBmin Minimum pore body radius 

R.PThmax Maximum pore throat radius 

R.PThavg Average pore throat radius 

R.PThmin Minimum pore throat radius 

REV Representative elementary volume 

𝑅𝑒 Reynold’s number based on characteristic length 

𝑅𝑒𝐾 Reynold’s number based on fluid superficial velocity and the square 

root of the medium permeability 

𝑅̂𝑒𝐾 Reynold’s number based on fluid interstitial velocity and the square 

root of the medium permeability  

𝑠𝑝 Sphericity 

𝑆𝑣 Medium specific surface area  

t Time 

T Dimensionless time 

u Intrinsic or interstitial velocity 

𝑢avg Average interstitial velocity 

𝑢x x-component of interstitial velocity  

𝑢i−j Average fluid velocity through the pore throat that connects the two 

pore bodies i and j. 

𝑢L Average pore velocity in longitudinal direction 

𝑢∗i−j Shear velocity in pore throat that connects the two pore bodies i and j. 

V Volume 

Vo Voltage 

v Superficial velocity 

𝑫PTh
eff  Pore throat effective diffusion coefficients vector 

𝑳PTh Pore throat lengths vector 

𝑽PU Pore-unit volumes vector 

𝑽PTh Pore throat volumes vector 
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𝒒PU Pore-unit total absolute discharges vector 

𝒒PTh Pore throat discharges vector 

𝒕PU Vector of pore-unit residence times 

𝒕PTh Vector of pore throat residence times based on advection.  

𝒕̀PTh Vector of pore throat residence times based on dispersion. 

𝒖PTh Vector of average velocities through the pore throats 

𝜅 Kozeny-Carman constant 

ϕ Medium porosity 

𝜅𝑜 A factor used to calculate the effective diffusion coefficient and its 

value depends on the cross-sectional shapes of the pore  

α Dimensionless kinetic-energy coefficient 

𝛼𝐿 Longitudinal dynamic dispersivity 

𝛽 Non-Darcy (Forchheimer) coefficient 

β` Modified Non-Darcy (Forchheimer) coefficient 

µ Fluid dynamic viscosity 

ρ 
Fluid density 

δ Power law coefficient 

𝛾 Fluid specific weight 

ε Surface roughness 

σ Standard deviation  

σ2 Variance 

τ Tortuosity 
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  Chapter 1 

1 Introduction 

1.1 Motivations  

Flow and solute transport modelling through porous media are of high 

interest to many researchers and can be used to mimic flow near 

groundwater wells, in hydraulic fractures and at the bottom of canals and 

water bodies. The zone underneath a water body or a stream bed, which is 

called the hyporheic zone, is subjected to many flow and biogeochemical 

exchange processes between the surface water and groundwater and has 

been the focus of much research (Winter et al., 1998). Such flow and 

transport processes can be observed across a wide range of length and 

timescales; from nanometres to kilometres and from nanoseconds to years 

(Figure 1-1). Reliable field-scale simulations are highly dependent on 

understanding the flow and transport processes happening at the pore-scale 

and their consequences at larger scales (Mehmani, 2014). Most of macro-

scale models do not provide details about the basic processes and prevailing 

factors at the pore-scale (Meng & Yang, 2017). Some phenomena such as 

capillary pressure and solute dispersion cannot be understood from macro-

scale simulations, but need initially to be understood at the pore-scale level 

(Bear & Cheng, 2010). Moreover, most of macro-scale models do not allow 

one to simulate the macroscopic behaviour as a result of changing the 

porous medium characteristics at the pore-scale, e.g. changing the pore size 

distribution (Sorbie et al., 1989). Most of the previous studies that modelled 

flow and solute transport, at the pore-scale, through porous media focused 

on Darcy flow and assumed that the relationship between the pressure 

gradient and discharge through the medium is linear. However, in some 

cases, such as the flow of gases through porous media, flow near a wellbore, 

flow through the hyporheic zone, and flow through coarse porous media, 

non-Darcy flow can be observed. It is not fully understood how solute 

transport processes are affected by the flow behaviour in the Forchheimer 

and turbulent flow regimes. Nevertheless, the effect of changing the pore 
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space structure and topology on flow and solute transport within the non-

Darcy flow regime needs more investigations. In order to gain an in-depth 

understanding of these processes at the pore-scale, this research focuses on 

modelling single phase flow and solute transport in porous media within the 

Darcy, Forchheimer and turbulent macro-scale flow regimes. For this 

purpose, a pore-network modelling (PNM) approach has been chosen 

among other pore-scale simulation approaches as it is computationally less 

demanding and, in some cases, it can provide information that cannot be 

obtained by using other approaches (Joekar-Niasar & Hassanizadeh, 2012).  

 

Figure 1-1 Different length and timescales for flow and transport processes 

through porous media, after Wood et al. (2007). In this work, pore scale is 

defined as the scale of a single pore in a medium, the micro-scale ranges 

from 0.5 to 5 mm, and the macro-scale ranges from 50 to 200 mm. 

One of the applications of PNM is the process of geological carbon dioxide 

(CO2) storage, in which CO2 emissions from industrial factories are 

captured, compressed, transferred, injected and stored for hundreds or 

thousands of years in subsurface reservoirs such as depleted oil reservoirs. 

The aim of carbon dioxide storage is to reduce the greenhouse effect of CO2 

emissions and to enhance coal and natural gas productivity. The CO2 

injection process is performed at high pressure and temperature rates which 

makes it difficult to mimic experimentally, moreover, the process should be 
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designed in a way that does not allow CO2 to escape from the pores of the 

reservoir. The CO2 injection process into pores is affected by buoyance, 

capillary and viscosity forces, therefore, it requires a good understanding of 

the pore structures and the interplay between these forces. For such a case, 

PNM provides an affordable option for understanding and designing the 

process (Andrew et al., 2013; Ellis and Bazylak, 2012; Middleton et al., 

2012). 

1.2 Aims and Objectives  

The main aim of this research is to gain an in-depth understanding of the 

effect of porous media structure and topology on the non-Darcy flow and 

pressure fields, and to assess the effect of turbulence and inertial force on 

the transport processes happening at the pore-scale and, accordingly, at the 

macro-scale. Special attention has been given to the macro-scale 

Forchheimer and turbulent flow regimes, as the laminar Darcy flow regime 

has been extensively studied by many research, (e.g.(Bruderer & Bernabé, 

2001; Bijeljic et al., 2004; Bijeljic & Blunt, 2007; Mehmani et al., 2014; 

Babaei & Joekar-Niasar, 2016). The main aim has been achieved by 

conducting the following specific tasks:  

• Using Computed Tomography (CT) scans of micro-scale (0.5-5.0 

mm) beadpacks, sandstone and carbonate samples to gain 

information about their micro-scale structure and to extract their 

equivalent pore-networks. 

• Developing a pore-network model to simulate steady state single 

phase flow through porous media within different flow regimes 

(Darcy, Forchheimer and turbulent).  

• Defining the boundaries between the different flow regimes. 

• Verifying the developed pore-network flow model experimentally 

using macro-scale (50-200 mm) packed spheres samples and using 

available data in the literature.  

• Coupling the flow simulation model with a solute transport model to 

simulate the transient propagation of conservative solutes through 

porous media. 
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• Verifying the solute transport model experimentally and using 

certain data from the literature.  

1.3 Thesis Contents 

This thesis is divided into eight chapters as follows: 

Chapter 2 provides a detailed literature review including the modelling of 

fluid flow through porous media at the pore-scale and at the macro-scale, 

flow modelling and dispersion through a single capillary tube, defining the 

boundaries between different flow regimes in porous media and in a single 

capillary tube, simulating the transport of a conservative solute through 

porous media, different methods used to generate a pore-network equivalent 

to a specific medium, and defining some research gaps.   

Chapter 3 shows the experimental setup of the flow and solute transport 

experiments, in addition to the details of sample preparation and CT-

scanning of the porous medium used in the experiments.  

Chapter 4 explains the developed pore-network model for simulating non-

Darcy (Forchheimer) flow through porous media with different degrees of 

heterogeneity. In this chapter, the details of determining the onset of non-

Darcy flow are presented.   

Chapter 5 explains the developed general pore-network model for 

simulating the macro-scale Darcy, Forchheimer and turbulent flow regimes 

through porous media. It also presents the method followed to detect the 

boundaries between these different flow regimes.  

Chapter 6 provides the details of solute transport modelling within the non-

Darcy (Forchheimer) flow regime, and how the inertial forces affect the 

transport process.  

Chapter 7 provides the details of a general solute transport pore-network 

model which is capable of simulating solute transport within all possible 

flow regimes. 

Chapter 8 provides the final conclusions on the work performed and some 

proposed future work. 
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  Chapter 2 

2 Background and literature review  

Experimental work needs time and effort, and in some cases, it may have 

limitations either due to difficulties or uncertainties in measuring some 

quantities as well as the complexity of the process. In such cases, 

computational methods can provide an alternative tool for achieving an 

insight into an understanding of the process. The computational methods 

used to study fluid flow in fully saturated porous media can be divided into 

macro-scale continuum models and pore-scale models. A key advantage of 

the pore-scale models is their capability in describing details of the physical 

and chemical processes occurring at the pore-scale, and their consequences 

at the micro and macro scales (Joekar-Niasar & Hassanizadeh, 2012). 

In this Chapter, most of the previous work related to pore-scale and macro-

scale flow modelling, the boundaries between different flow regimes, flow 

and dispersion through a single capillary tube, solute transport through 

porous media and different methods used to extract pore-networks are 

reviewed.   

2.1 Flow modelling at the macro-scale 

To simulate single phase, incompressible, fully saturated, steady flow 

through rigid porous media at the macro-scale, Darcy’s law (Equation 2.1) 

(Darcy, 1856) is usually applied, neglecting the non-linear inertial effects 

according to Stokes law and assuming that the flow is in the laminar regime. 

Darcy’s law, which is a linear relationship between the pressure gradient, 
∆𝑃

𝐿
 

(
Pa

mm
), between two points separated by a distance, L (mm), and the flow 

superficial velocity, 𝑣 =
𝑞

𝐴
 (mm/s), where q (mm3/s) is the volumetric fluid 

discharge and A (mm2) is the whole cross-sectional area perpendicular to the 

flow direction, is given by: 

−
∆𝑃

𝐿
=

𝜇

𝐾𝐷
𝑣 2.1 
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where ∆𝑃 (Pa) is the pressure loss over the length L, µ (Pa·s) is the fluid 

dynamic viscosity and 𝐾𝐷 (mm2) is the Darcy permeability.  

However, for relatively high velocities, the above equation is not valid 

anymore, the inertial terms cannot be neglected and the relationship 

between the pressure gradient (
∆𝑃

𝐿
) and the flow superficial velocity (v) 

becomes non-linear (Muljadi et al., 2015). In other words, the flow regime 

changes from the laminar creeping flow regime (when viscous forces are 

dominant and larger if compared to the insignificant inertial forces, and 

Stokes law is applied (Kirby, 2010)) to the laminar non-Darcy flow regime 

which is also called the Forchheimer flow regime (Kececioglu & Jiang, 

1994; Bağcı et al., 2014). In cases such as flow through the hyporheic zone, 

near groundwater wells, through fractures or porous domains with relatively 

high porosity (e.g. porous media composed of coarse sand or gravel 

particles) and the flow of gases through porous media, non-Darcy flow may 

be observed. For the non-Darcy flow regime, the well-known Forchheimer’s 

equation is normally applied (Forchheimer, 1901). Forchheimer’s equation 

(Equation 2.2) is an extension of Darcy’s law which was developed by 

adding a quadratic velocity term to Darcy’s equation in order to account for 

the non-linear inertial effects in the flow, as follows:  

−
∆𝑃

𝐿
=

𝜇

𝐾𝐹
𝑣 + 𝜌𝛽𝑣2 2.2 

where 𝐾𝐹 (mm2) is the Forchheimer permeability that is very close to, but 

not the same as, Darcy permeability (𝐾𝐷) as will be shown later, ρ 

(Kg/m·mm2) is the fluid density and β (mm-1) is the non-Darcy coefficient 

which is also known as the Forchheimer coefficient and is a medium 

dependent parameter.  

In porous media, the inertial effects can be expressed in the form of drag 

forces, and as was shown by experiments (Fand et al., 1987; Kececioglu & 

Jiang, 1994), the pressure loss in such cases is proportional to the 

summation of two terms (see Equation 2.2); one term includes the fluid 

velocity and represents the force exerted to overcome fluid viscosity, while 

the other term includes the squared value of fluid velocity and represents the 
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force exerted to overcome fluid and solid medium interactions. The second 

term represents the inertial effects which is a function of the medium 

geometry, permeability and Reynold’s number (Vafai & Tien, 1981; Zeng 

& Grigg, 2006). These inertial effects are accounted for in the Navier-

Stokes equations in terms of local and convective accelerations and they 

result from tortuosity and the diverging-converging nature of the medium 

(Balhoff & Wheeler, 2009). In Equation 2.2, the non-Darcy coefficient (β) 

accounts for the inertial effects due to convergence, divergence and 

tortuosity in the flow path geometry (Thauvin & Mohanty, 1998; Balhoff & 

Wheeler, 2009). Normally, the β coefficient and the onset of a non-Darcy 

flow regime are determined experimentally, whereas some authors 

developed empirical relationships that predict β as a function of the medium 

permeability, 𝐾𝐷 (mm2), porosity, ϕ (%) and tortuosity, τ (-). In order to 

determine β and 𝐾𝐹 from Forchheimer’s equation, a linearised form of 

Forchheimer’s equation was proposed by Forchheimer (1901), which is 

presented in Equation 2.3. 

∆𝑃

𝐿𝜇𝑣
=

1

𝐾𝑎𝑝𝑝
=

1

𝐾𝐹
+ 𝛽

𝜌𝑣

𝜇
 2.3 

Forchheimer (1901) proposed using a Forchheimer plot, which is a plot 

describing the relation between 
∆𝑃

𝐿𝜇𝑣
 or 

1

𝐾𝑎𝑝𝑝
 (mm2), where 𝐾𝑎𝑝𝑝 is the 

apparent permeability, and 
𝜌𝑣

𝜇
 (1/mm). The resulting plot should be a 

straight line with slope β and intercept 
1

𝐾𝐹
.  

To simulate single phase, incompressible, non-Darcy (Forchheimer) flow in 

fully saturated porous media at the macro-scale, typically the Navier-Stokes 

equations are used, simplified, averaged over the simulation domains (fluid 

and solid phases), and then solved numerically. For example, Zimmerman et 

al. (2004) and Zhang and Xing (2012) solved Navier-Stokes equations for 

nonlinear flow using a finite-element mesh, Aly and Asai (2015) simulated 

non-Darcy flows through porous media by the incompressible smooth 

particle hydrodynamics method, and Belhaj et al. (2003) used the 

Forchheimer equation, which is a simplified form of the Navier-Stokes 

equations, to derive a finite difference model for Darcy and non-Darcy flow 
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in porous media. However, there are other models that can be used to 

simulate non-Darcy flow such as the Barree and Conway model, the 

hydraulic radius model, A. V. Shenoy’s Model, and the Fractal Model. 

Further details about these models can be found in the review by Wu et al. 

(2016).  

Many researchers have found that Forchheimer’s equation is capable of 

reproducing their experimental results (Blake, 1922; Fancher & Lewis, 

1933; E. Lindquist, 1933; Brownell et al., 1947; Mobasheri & Todd, 1963; 

Sunada, 1965; Ahmed, 1967; Kim, 1985), while others (Forchheimer, 1930; 

Barree & Conway, 2004, 2005) reported that Forchheimer’s equation is not 

a good match for their experiments. It is important to notice that 

Forchheimer’s equation has some limitations and it requires modifications 

of its coefficient values (KF and β) before it can be applied to the turbulent 

flow regime, i.e. for a specific medium, Forchheimer’s equation cannot be 

used to describe the flow behaviour in all flow regimes with constant values 

of KF and β.  

To simulate single phase, incompressible, turbulent flow in fully saturated 

porous media at the macro-scale, typically the Navier-Stokes equations 

(Equation 2.4 and 2.5) are used, averaged over the simulation domains 

(fluid and solid phases), and then solved numerically. This system of 

equations is not closed, i.e. the number of unknowns is more than the 

number of equations, and cannot be solved without further simplifications 

or additional closure models (Ferdos & Dargahi, 2016). Many commercial 

Computational Fluid Dynamics (CFD) software tools, such as ANSYS 

CFX, Fluent and OpenFOAM, provide numerical solutions for equations 

2.4 and 2.5, given by: 

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑃 + 𝜌𝑔 + 𝜇∇2𝑢 

2.4 

where u (mm/s) is the velocity vector, g (mm/s2) is the gravitational 

acceleration, and t (s) is time. 

The left-hand side of Equation 2.4 represents the inertial term, while on the 

right-hand side, the first term is the pressure term, the second term is the 
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body force due to gravity, and the third term is the effect of viscosity. 

Equation 2.4 is solved along with: 

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕 𝑢1

𝜕𝑥
+ 𝜌

𝜕 𝑢2

𝜕𝑦
+ 𝜌

𝜕 𝑢3

𝜕𝑧
= 0 2.5 

where 𝑢1, 𝑢1, and 𝑢3 are the velocity components in the x, y and z 

directions, respectively.  

For the laminar and Forchheimer flow regimes, Equations 2.4 and 2.5 can 

be simplified which results in the Darcy’s (i.e. Equation 2.1) and 

Forchheimer’s (i.e. Equation 2.2) equations (Whitaker, 1996; Bear & 

Cheng, 2010).  

The Kozeny-Carman equation (Equation 2.6) is a widely accepted equation 

for laminar flow through beadpacks that relates the medium Darcy 

permeability (KD) to the medium porosity (ϕ), specific surface area (𝑆𝑣) and 

a constant called the Kozeny–Carman constant (𝜅) which considers 

irregularity in bead shape and tortuosity of the medium. It was first 

developed by Kozeny (1927) and later modified by Carman (1937), and 

given by: 

𝐾D =
∅3

𝑆𝑣
2 𝜅 (1 − ∅)2

 
2.6 

where 𝑆𝑣 (1/mm) can be considered equal to 
6

𝑑
 (1/mm) for spherical particles 

of diameter d (Muljadi et al., 2015). 

Ergun (1952) extended the Kozeny-Carman equation for non-Darcy flow in 

a form (Equation 2.7) similar to Forchheimer’s equation, given by: 

−
∆𝑃

𝐿
= 𝐴`

𝜇  (1 − ∅)2

𝑠𝑝 
2 𝑑𝑚

2  ∅3
𝑣 + 𝐵`

𝜌 (1 − ∅)

𝑠𝑝 𝑑𝑚 ∅3
𝑣2 2.7 

where A` and B` are dimensionless constants known as Ergun’s first and 

second constants, dm (mm) is the mean bead diameter and 𝑠𝑝 (-) is the 

particle shape factor (sphericity). A linearised form of Equation 2.7 can be 

obtained by dividing the equation by v. Then, by fitting a straight line 

through the experimental results, A` and B` can be determined from the 

intercept and slope of the straight line. Different authors provided different 

values for A` and B`. For instance, Ergun (1952) suggested the values of 
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150 and 1.75 (for different gases through various-sized spheres, sand and 

pulverized coke), while Leva (1959) proposed 200 and 1.75 and Macdonald 

et al. (1979) recommended 180 and a range from 1.8 to 4.0 (for spherical 

glass beads, cylindrical fibres, consolidated media, variety of material with 

different porosities and a wide variety of coarse granular media) (Niven, 

2002). 

Ergun related the pressure gradient through a granular medium to the 

summation of two terms; the first term represents the pressure required to 

overcome viscous forces, while the second term represents the pressure loss 

due to inertial forces (kinetic energy losses) (Niven, 2002).   

Fand et al. (1987) carried out laboratory experiments aimed at defining the 

boundaries of different flow regimes through different porous media 

(uniform and non-uniform spherical beads) and developing some empirical 

correlations between the pressure gradient and velocity for these different 

regimes. In their experiments, they used porous media composed of 

spherical beads with uniform diameters (2.098, 3.072 and 4.029 mm) and 

others with non-uniform diameters (mean diameters of 3.690, 3.276 and 

2.759 mm). The beads were packed in a stainless-steel water tube of 86.6 

mm internal diameter and 457.2 mm length. Water was driven through the 

beads either by an electric pump or by gravity using a constant head tank, 

and the discharge rates were measured by a calibrated orifice plate. The 

pressure drop through the beads was measured either by a differential 

pressure cell (at low pressure values) or by manometers (at high pressure 

values). Using Reynold’s number (Re) based on the flow superficial 

velocity and the average diameter of the beads (dm) (Equation 2.12), they 

concluded that Darcy flow was observed for 𝑅𝑒 ≤ 2.3 (
𝑑𝑚

𝑑𝑙
), where dl is the 

largest diameter of the beads used. They also found that their measurements 

follow Forchheimer’s equation when 5 (
𝑑𝑚

𝑑𝑠
) ≤ 𝑅𝑒 ≤ 80 (

𝑑𝑚

𝑑𝑙
), where ds is 

the smallest diameter of the beads used. For all samples composed of 

uniform and non-uniform beads, the fully turbulent flow regime was 

observed when 𝑅𝑒 > 120. Fand et al. (1987) used a different coefficient 

value (𝜅 = 5.34) for the Kozeny-Carman equation instead of the widely 
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accepted value of 5 for spheres. Within the Forchheimer flow regime, Fand 

et al. (1987) obtained values of 182 and 1.92 for Ergun’s first and second 

constants, whereas, for the turbulent flow regime they proposed values of 

A` = 225 and B` = 1.61. Finally, when Fand et al. (1987) plotted the 

normalised dimensionless pressure (
𝛥𝑃 𝑑m

𝐿 𝜇 𝑣
) versus 𝑅𝑒, they suggested that 

the transition regimes between Darcy and Forchheimer regimes and 

between Forchheimer and turbulent regimes can be considered as points 

instead of defining a range of Reynold’s number for these transition 

regimes, and this results in a negligible error (<7%) in terms of the flow 

behaviour. This error was estimated as the maximum difference between the 

exact value of 
𝛥𝑃 𝑑m

𝐿 𝜇 𝑣
 in the transition regime and the corresponding value at 

the point that represents the transition regime, when 
𝛥𝑃 𝑑m

𝐿 𝜇 𝑣
 is plotted versus 

𝑅𝑒. 

A similar experimental study was carried out by Kececioglu and Jiang 

(1994) on two randomly packed uniform beads of 3 mm and 6 mm 

diameter. The beads were packed in a 920 mm long Plexiglas cylindrical 

tube with internal diameter of 57.15 mm. Water was driven through the 

beads either by gravity or by using an electric pump. The discharge rates, 

which ranged from 5070 to 4920×103 mm3/s, were measured by a 

flowmeter. The pressure drop through the beads was measured either by a 

differential pressure transducer (at low pressure values) or by manometers 

(at high pressure values). The aim of their work was to define the 

boundaries between different flow regimes. Kececioglu and Jiang (1994) 

used a Reynold’s number, 𝑅̂𝑒𝐾, (Equation 2.17) based on the fluid 

interstitial velocity and the square root of the medium permeability (as a 

characteristic length instead of the particles average diameter). They 

presented their pressure gradient results in the form of normalised 

dimensionless pressure (
𝛥𝑃 𝐾D

𝐿 𝜇 𝑣
) versus 𝑅̂𝑒𝐾, and in this form, the change of 

the slope of their results represents different flow regimes (pre-Darcy, 

Darcy, Forchheimer and turbulent). They concluded that the pre-Darcy, 
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Darcy, Forchheimer and turbulent flow regimes were observed when 𝑅̂𝑒𝐾 <

0.06, 0.06 < 𝑅̂𝑒𝐾 < 0.12, 0.34 < 𝑅̂𝑒𝐾 < 2.3 and 𝑅̂𝑒𝐾 > 3.4, respectively.  

2.2 Flow modelling at the pore-scale 

On the other hand, pore-scale models can be subdivided into percolation 

models (e.g. Wilkinson, 1984), Lattice-Boltzmann (LB) models (e.g. 

Kuwata and Suga, 2015), smoothed particle hydrodynamics (SPH) approach 

(e.g. Bandara et al. 2013),  level-set models (e.g. Amiri and Hamouda, 

2013), pore-network models (e.g. Joekar-Niasar et al. 2009) (Joekar-Niasar  

& Hassanizadeh, 2012) and direct numerical simulations (DNS) (e.g., 

Muljadi et al., 2015). In the following literature, due to the wide range of 

methodologies and applications for each method, a short summary of each 

method is given, then the most relevant pore-network modelling studies are 

summarised.          

Percolation models are stochastically based approaches used to predict the 

random movement of a fluid through a medium, and they were first 

implicitly introduced by Flory (1941) and Stockmayer (1943). They can be 

divided into Bernoulli percolation models (further subdivided into bond and 

site percolation models) and first-passage percolation models (Wierman, 

1982). In percolation models, the porous medium is represented by a 

network composed of bonds (throats) and sites (pores). In bond percolation 

models (Figure 2-1a), the bonds of the network are allowed to pass a fluid 

with probability Pr, or the bonds are blocked (or unoccupied) with 

probability 1- Pr. For single phase flow, the open bonds represent zones in 

the porous media with higher permeability while the blocked bonds 

represent less permeable or impermeable zones. If there is an open bond 

between any two sites, then the two sites are connected to each other. Any 

set of connected sites surrounded by blocked bonds is referred to as a 

“cluster”. In site percolation models (Figure 2-1b), the sites of the network 

are occupied by fluid with probability Pr, or the sites are blocked (or vacant) 

with probability 1- Pr. Any two neighbouring sites are connected if both of 

them are occupied by a fluid. Clusters are formed if groups of sites are 

connected to each other while surrounded by vacant sites. One of the most 
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critical issues in percolation models is the critical probability, which is the 

minimum fraction of lattice bonds or sites that should be occupied to create 

an interconnected path from one side to the other side of the network 

(Sahimi, 2011a). The first passage percolation models are considered as a 

generalised form of Bernoulli percolation (Kesten, 1987). More details 

about each of these percolation models can be found in the work done by 

Wierman (1982). The major disadvantage of percolation models is that they 

are static and cannot reveal any transient process information (Joekar-Niasar 

& Hassanizadeh, 2012).  

Figure 2-1 Percolation in a square network; a) bond percolation, b) site 

percolation, after Ghanbarian et al. (2013). 

In computational fluid dynamics, typically, the Navier-Stokes equations are 

simplified, averaged over the simulation domains, then solved numerically 

at the macro-scale using the finite difference, the finite volume or the finite 

element method. An alternative technique, applied in the Lattice-Boltzmann 

method (LBM), is to use the molecular dynamics concept to identify the 

location and velocity of fluid particles at the micro-scale. It is not necessary 

to identify the location and velocity of all fluid particles in the volume of 

interest, but the basic idea is to develop a simplified kinetic model that 

conserves the essential physics of the microscopic processes and results in 

macroscopic behaviour that obeys the desired macroscopic equations (for 

instance, the Navier-Stokes equations) (Chen & Doolen, 1998). LBM 

originates from the Lattice Gas Automaton (Frisch et al., 1986) which 

represents a simplified, imaginary molecular dynamic for discretised space, 

time and particle velocities. In the LBM, the lattice is occupied by fictitious 
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particles that represent the fluid. The microscopic particle movements are 

constricted to take place between regularly spaced lattice nodes while 

obeying a set of collision rules that organise the particles’ movement 

through the lattice and how they scatter when they collide with each other. 

Different discretisations can be considered for 2D and 3D simulations, e.g. 

D2Q9, D3Q15, D3Q19, D3Q27, where D2 and D3 represent whether the 

simulation is either two or three dimensional, while Q9, for instance, states 

that there are 9 discrete velocity directions (Figure 2-2) (Chen & Doolen, 

1998; Junk, 2001; Newman & Yin, 2011; Sahimi, 2011b; Chukwudozie et 

al., 2012; Al-Zoubi, 2014; Kuwata & Suga, 2015). Chen and Doolen (1998) 

provided an extensive review of LBM for fluid flow, nevertheless, LBMs 

have been proved to be computationally very expensive and require 

supercomputers in order to be able to obtain sufficient or meaningful 

results, especially for multiphase flow (Pan et al., 2004; Blunt et al., 2013).  

 

Figure 2-2 Velocity vectors for D2Q9 (left) and D3Q19 (right), by Al-

Zoubi (2014). 

The SPH method is a meshless, Lagrangian (i.e. using a moving coordinate 

system (Shadloo et al., 2016)), particle-based method in which the fluid is 

simulated by a finite number of independent moving particles. These 

particles carry the fluid physical properties, e.g. location, mass, pressure and 

velocity, while any change in the particle motions or properties should obey 

the governing equations. In fluid dynamics, the governing equations are the 

Lagrangian form of the mass and momentum balance equations. The SPH 

discretised equations can be obtained by approximating the two governing 

partial differential equations as ordinary differential equations discretised in 

time. Then, by using kernel and particle approximation techniques, 

approximate numerical solutions can be obtained for the flow. For the 



38 

 

kernel approximation technique, the field of interest for a specific particle is 

obtained by interpolating the values of all particles located within a 

predefined smoothing radius around the particle under concern, while the 

particle approximation technique is a further approximation process using 

interpolation. Full details of this method can be found in the reviews 

performed by Z-B. Wang et al. (2016) and Shadloo et al. (2016). Generally 

speaking, the SPH approach can easily capture the interface in the case of 

multiphase flow, however, it has been proven to be computationally 

expensive (Tartakovsky et al., 2015).   

Direct numerical simulation (DNS) has been used mainly to simulate 

creeping flow in porous media (e.g. Mostaghimi et al., 2012), however, it 

could be used to simulate other flow regimes as well (see Muljadi et al., 

2015). The method was initially developed by Orszag and Patterson (1972) 

and Rogallo (1981). Using DNS, the Navier-Stokes equations are solved 

numerically using a fine mesh based on the pore structure obtained via a 

micro-CT scan of the medium, while the solid domain is defined as an 

impermeable boundary surrounding the pores. On the other hand, DNS has 

been extensively used to simulate turbulent flow in pipes and open channels 

using a fine mesh and small-time steps in a way that resolves all the crucial 

turbulent scales. One of the advantages of DNS is that it considers the 

irregularities in the pore shapes and it can represent the geometry of porous 

media with complex structures better than other pore-scale methods. Using 

large mesh elements or large time steps leads to some errors at the small 

scales that will be transferred to the large scale and corrupt the solution. 

Consequently, DNS is quite computationally expensive, but at the same 

time, it helps to gain an insight into an understanding of turbulence physics 

which cannot be done easily in the laboratory (Poinsot et al., 1995; Moin & 

Mahesh, 1998; Alfonsi, 2011).  

The level set method is an Eulerian (using a reference coordinate system to 

transfer fluid properties from an element to another (Shadloo et al., 2016)) 

Computational Fluid Dynamics (CFD) approach that was originally 

developed by Osher and Sethian (1988). It is an implicit, mesh-based 
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method which is mainly used for tracking the surface of interaction in the 

case of two or multiphase flow. A level set function is used to define the 

distance to the surface of interaction at every point in the domain. The level 

set function has a zero value at the interface between the two phases, a 

positive value in one phase, and for the other phase it has a negative sign 

(Johansson, 2011; Hilton, 2012). The motion of the interface depends on the 

velocity field which can be assigned externally or by implementing the 

Navier-Stokes equations (Enright, 2002). The level set method sometimes 

produces physically unrealistic results and in general requires a large 

number of time steps, i.e. a long running time (Amiri & Hamouda, 2013). 

More details about the level set method can be found in the work by Osher 

and Sethian (1988) and Osher and Fedkiw (2003). 

2.3 Flow simulation using pore-network modelling  

Using Pore-Network Modelling (PNM), any porous medium can be 

simplified into large pores called Pore Bodies (PBs) connected to each other 

by narrow pores called Pore Throats (PThs). Then classical analytical or 

semi-analytical equations governing the flow and transport in pipes are used 

to simulate the fluid flow and transport processes at the pore-scale. 

Moreover, the magnitude of the medium parameters (e.g. Darcy 

permeability, friction coefficient and longitudinal dispersion coefficient) are 

determined for the whole medium. The basic principles of PNM were 

initiated by Fatt (1956a, b,c) who constructed a 2D network of capillary 

tubes with different radii to simulate the pore space. Many publications 

have been built based on Fatt’s (1956) work, who assumed volumeless 

nodes between the tubes (Celia et al., 1995). For instance, the majority of 

networks now represent pore throats by tubes that connect nodes (pore 

bodies). Generally, pore bodies are represented by spheres while pore 

throats are represented by cylinders or conical shapes, however, other 

shapes such as star-shape or hyperbolic triangular cross-sections have also 

been used (Joekar-Niasar et al., 2010). Connectivity is usually assigned by 

the coordination number, which is the number of pore throats connected to a 

pore body. The coordination number contributes to defining the topology of 
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the pore-network. Pore-networks can be classified into four types; i) 

structured or ii) unstructured according to the spatial location of pore 

bodies, and  iii) regular or iv) irregular according to the coordination 

number (Figure 2-3), and all pore-network types can be constructed either in 

2D or 3D (Joekar-Niasar  & Hassanizadeh, 2012).  

 

Figure 2-3 Types of pore-networks: a) structured regular, b) structured 

irregular (isolated pores are shown in red), d) unstructured regular, and e) 

unstructured irregular, by Joekar-Niasar and Hassanizadeh (2012). 

After Fatt (1956a, b, c), many authors have used PNM for different 

applications; e.g. single-phase (Pan et al., 2001), two-phase (Oren et al., 

1998; Al-Gharbi & Blunt, 2005; Joekar-Niasar & Hassanizadeh, 2011), 

multi-phase flow (Blunt, 1998; Piri & Blunt, 2005), prediction of 

permeability (Bryant et al., 1993), non-Newtonian flow (Lopez et al., 2003; 

Valvatne et al., 2005), Darcy and non-Darcy flow (Thauvin & Mohanty, 

1998; Martins et al., 2007; Balhoff & Wheeler, 2009), solute dispersion 

(Bruderer & Bernabé, 2001; Babaei & Joekar-Niasar, 2016), reactive 

transport (Li et al., 2006; Algive et al., 2010; Kim et al., 2011), interfacial 

area and capillary pressure (Held & Celia, 2001), evaporation (Freitas & 
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Prat, 2000), gas drive process (Bora et al., 2000) and gas condensation 

(Wang & Mohanty, 1999; Jamiolahmady et al., 2000).  

2.3.1 Flow through a single capillary tube 

Flow through macro-scale “commercial” pipes is governed by the Darcy-

Weisbach equation, Equation 2.8, (Weisbach, 1845; Darcy, 1857), given by: 

∆ℎ =
∆𝑃

𝛾
= 𝑓

𝐿

2𝑟

𝑢2

2𝑔
  2.8 

where 𝛥ℎ (mm) and 𝛥𝑃 (Pa) are the head loss and the pressure loss between 

the two ends of the tube, 𝛾 (N/m·mm2) is the fluid specific weight which is 

equal to the fluid density ρ (Kg/m·mm2) times the gravitational acceleration, 

𝑔 (mm/s2), 𝑓 (-) is the tube friction factor, 𝑢 (mm/s) is the average fluid 

velocity through the tube, and 𝐿 (mm) and 𝑟 (mm) stand for the tube length 

and radius, respectively.  

 

Figure 2-4 Moody Diagram for macro-scale pipes (Moody, 1944), obtained 

from (https://kdusling.github.io/teaching/Applied-

Fluids/Notes/FrictionLosses). 

Typically, the friction factor of the tube is determined from a Moody 

Diagram (Figure 2-4), then the pressure needed to pass a fluid at a 

specifically required discharge rate is obtained from Equation 2.8 using 

iterations. A Moody Diagram can be divided into four zones (Peiyi & Little, 

1983): 

a) The laminar flow zone when the Reynold’s number (Re) < 2200. In this 

zone, f depends only on Re. 

https://kdusling.github.io/teaching/Applied-Fluids/Notes/FrictionLosses
https://kdusling.github.io/teaching/Applied-Fluids/Notes/FrictionLosses
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b) The transition zone when 2200 < Re < 4000. In this zone, f is related to 

the initial turbulence and pressure waves. 

c) The first part of the turbulent flow regime when 4000 < Re < Recritical 

(Recritical is represented by the dashed curve in Figure 2-4). In this zone, f 

depends on both the Reynolds number (Re) and the relative roughness of the 

tube (𝜀/𝐷), and the curves of f follow the Colebrook equation (Equation 

5.2) (Colebrook & White, 1937). 

d) A complete turbulence zone or completely rough tube when Re > Recritical. 

In this zone, the curves of f appear as a group of horizontal lines and the 

value of f is dependent only on the relative roughness of the tube. When 

using PNM, implementing a suitable value of the friction factor for each of 

these zones at the pore-scale results in a smooth transition between the 

macro-scale flow regimes.  

Many previous studies investigated flow through microtubes aiming to 

investigate if the flow governing equations of macro-scale commercial pipes 

are valid for microtubes and to revise the boundaries (Re values) between 

different flow regimes (laminar, transition and turbulent). Some of these 

studies confirmed that the limits between the flow regimes are the same for 

micro and macro-tubes (Chung et al., 2002; Hegab et al., 2002; Judy et al., 

2002; Sharp & Adrian, 2004; Rands et al., 2006; Wibel & Ehrhard, 2009), 

while others (Peiyi & Little, 1983; Peng et al., 1994; Gui & Scaringe, 1995; 

Harms et al., 1999; Mala & Li, 1999; Weilin et al., 2000; Zeighami et al., 

2000; Wu & Cheng, 2003; Li et al., 2005) confirmed early transition from 

laminar to turbulent flow in microtubes; i.e. the Re at the onset of the 

transition and turbulent flow regimes in microtubes is less than the widely 

accepted values of 2200 and 4000, respectively, for macro-tubes. A 

summary of these studies is given in Table 2-1 and Table 2-2. Moreover, 

most of the studies that observed early transition to turbulence attributed 

this to the relatively high surface roughness in the microchannels (Li et al., 

2005).  

Despite the fact that macro-scale tubes are several orders of magnitude 

larger than microtubes, most of the previous experimental work suggested 
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that the flow in both systems is statistically and structurally the same. 

Therefore, all previous correlations and governing equations of macro-scale 

tubes are applicable to microtubes and any experimentally observed 

deviations from these governing equations can be considered as scaling 

effects, not new effects. In conclusion, macro-scale governing equations can 

be used as the starting point of modelling flow through microtubes (Weilin 

et al., 2000; Olsen, 2008).  

Table 2-1 Studies that observed earlier onset of transition and turbulent 

flow in microchannels. 

Reference Experimental method 

Re at 

onset of 

transitio

n flow 

Re at 

onset of 

turbulenc

e 

Peiyi and 

Little (1983) 

Pressure and discharge measurements 

through very fine channels used for 

microminiature Joule-Thomson 

refrigerators with hydraulic diameter 45-

83 µm. 

350 NA 

Peng et al. 

(1994) 

Pressure and discharge measurements of 

water through rectangular microchannels 

with hydraulic diameters of 0.133-0.367 

mm and height/width ratios of 0.333-1. 

200-700 400-1500 

Gui and 

Scaringe 

(1995) 

Flow and heat transfer through chemical 

etched microchannels with hydraulic 

diameters up to 388 μm. 

1400 NA 

Harms et al. 

(1999) 

Pressure and discharge measurements 

through deep rectangular microchannels, 

251 μm wide and 1000 μm deep. 

1500 2000 

Mala and Li 

(1999) 

Pressure and discharge measurements of 

water through cylindrical 

microtubes of fused silica and stainless 

steel with diameters ranging from 50 to 

254 μm. 

500 1500 

Weilin et al. 

(2000) 

Pressure measurements through silicon 

trapezoidal microchannels with hydraulic 

diameters ranging from 51 to 169 µm. 

500 NA 

Zeighami et al. 

(2000) 

Study of transition to turbulent in 150 

µm100 µm1 cm Silicon microchannels 

by using micron-resolution particle 

imaging velocimetry (μPIV). 

1200 1600 
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Wu and Cheng 

(2003) 

Pressure and discharge measurements of 

water through smooth silicon trapezoidal 

microchannels with hydraulic diameters 

ranging from 25.9 to 291.0 μm. 

1500 2000 

Li et al. (2005) 

Investigation of flow through 320320 

µm square microchannel using 

microscopic particle image velocimetry 

(μPIV). 

1535 2630-2853 

Table 2-2 Studies that did not observe earlier onset of transition and 

turbulent flow in microchannels. 

Reference Experimental method 

Re at onset 

of 

transition 

flow 

Re at onset 

of 

turbulence 

Chung et al. (2002) 

Visualization of deionized 

water and nitrogen gas 

flowing through capillary 

tubes with 100 μm inner 

diameter. 

2000 NA 

Judy et al. (2002) 

Measurement of discharge 

and pressure drop through 

microtubes with hydraulic 

diameters ranging from 15 to 

150 μm for three different 

fluids (water, methanol, 

isopropanol), two different 

tube materials (fused silica, 

stainless steel), and two 

different tube cross section 

geometries (circular, square).  

They did not detect any 

distinguishable 

deviation from the 

macro-scale viscous 

flow theory. 

Hegab et al. (2002) 

Investigating fluid flow and 

heat transfer through 

rectangular aluminium 

microchannels with hydraulic 

diameters ranging from 112 to 

210 μm and aspect ratios from 

1.0 to 1.5.  

2000 4000 

Sharp and Adrian (2004) 

Flow and pressure drop 

through glass microtubes with 

diameters ranging from 50 to 

247 µm. 

1800-2300 NA 

Rands et al. (2006) 

Measurements of flow, 

pressure drop and viscous 

heating-induced temperature 

rise through microtubes with 

varying lengths and diameters 

ranging from 16.6 to 32.2 µm. 

2100-2500 NA 
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 Wibel and Ehrhard (2009) 

μPIV measurements of 

velocity through stainless-

steel rectangular 

microchannels with a 

hydraulic diameter of ~133 

μm. 

1900-2000 NA 

To apply the Darcy-Weisbach equation, Equation 2.8, (Weisbach, 1845; 

Darcy, 1857) for a tube, the friction factor (f) is obtained, either from a 

Moody Diagram or from the equivalent equations, assuming that the flow is 

“fully developed” through the whole tube length. A fully developed flow is 

achieved when the velocity profile becomes fully developed (e.g. parabolic 

velocity profile in case of laminar flow) and remains constant after the 

hydrodynamic entrance region as shown in Figure 2-5 (Çengel & Cimbala, 

2006). When a fluid enters a tube, its velocity profile is more likely to be 

uniform, then, due to the no-slip condition and the effect of friction between 

the fluid and the tube wall, the fluid particles in contact with the tube wall 

slow down until their velocities reach zero. Meanwhile, the layers at the 

centre of the pipe speed up to compensate for the reduction of velocity and 

maintain a constant discharge rate through the tube. This process results in a 

developing velocity profile through the entrance region as shown in Figure 

2-5. The friction between the pipe wall and the fluid is related to the 

velocity profile and this friction is highest at the pipe entrance, then it 

decreases until it reaches a constant value when the flow becomes fully 

developed and the velocity profile remains unchanged (Figure 2-6). 

Consequently, the pressure drop is higher at the entrance region compared 

to the fully developed region and if the effect of the entrance region is taken 

into considerations, it will increase the average friction factor (f) of the 

whole pipe. For long pipes, the effect of the entrance region can be 

neglected and the whole pipe length can be used in the calculations, 

however, for short pipes this increase in the friction factor may be 

significant (Çengel & Cimbala, 2006).    
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Figure 2-5 The development of an average velocity (parabolic) profile for 

laminar flow through a circular pipe. For turbulent flow, the velocity profile 

is flatter or fuller, by Çengel and Cimbala (2006). uavg in the figure denotes 

the average velocity at any cross-section of the pipe.  

 
Figure 2-6 The variation of friction factor, f (-), for a pipe from the entrance 

region to the fully developed region, modified after Çengel and Cimbala 

(2006). 

For laminar flow, the length of the entrance region, Lh, laminar (mm), can be 

approximately estimated as proposed by Kays and Crawford (1993) and 

Shah and Bhatti (1987) (as mentioned by Çengel and Cimbala (2006)) as  

𝐿h,   laminar ≅ 0.05 𝑅𝑒 ×  𝑑; 2.9 

where d (mm) is the pipe diameter.   

For turbulent flow, the length of the entrance region, Lh, turbulent (mm), can be 

approximately estimated as proposed by Bhatti and Shah (1987) and Zhi-

qing (1982) (as mentioned by Çengel and Cimbala (2006)) as  

𝐿h,   turbulent ≅ 1.359 𝑑 × 𝑅𝑒0.25. 2.10 
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Çengel and Cimbala (2006) proposed that the Lh, turbulent is shorter for 

turbulent flow compared to laminar flow, and it is less dependent on 

Reynold’s number, so it can be considered as  

 𝐿h,   turbulent ≅ 10 𝑑. 2.11 

2.3.2 Single phase flow within the Darcy (laminar) and non-Darcy 

(Forchheimer) flow regimes  

Simulation of single-phase laminar Darcy flow in a fully saturated medium 

using PNM allows one to estimate the medium Darcy permeability (KD). 

Additionally, it could be used either to obtain an initial guess of the pressure 

distribution throughout a pore-network (PN) for simulating non-Darcy flow 

(e.g. Balhoff & Wheeler, 2009; Thauvin & Mohanty, 1998) or as part of a 

specific study, e.g. simulation of solute transport using PNM in the Darcy 

flow regime (Babaei & Joekar-Niasar, 2016). In such cases, the conductance 

of each pore (𝑔pore) is calculated analytically from the Hagen-Poiseuille 

equation (Equation 4.2) (Hagen, 1839; Poiseuille, 1841), while the overall 

medium Darcy permeability is estimated from Darcy’s law (Equation 2.1). 

The methodology describing this process is shown in detail in Section 4.2.  

According to my knowledge, there are only five studies that have modelled 

non-Darcy flow in porous media using PNM. One of these earliest studies 

was conducted by Thauvin and Mohanty (1998), nevertheless, their study 

was limited only to a 3D regular structured pore-network, i.e. all pore 

bodies were located on equally spaced lattice nodes and each pore body, 

except the pore bodies at the boundaries, was connected to six pore throats. 

In their isotropic pore-network, pore bodies were represented by spheres, 

while pore throats were represented by circular tubes. The pore body and 

pore throat radii were assigned arbitrarily using a Weibull distribution. At 

the pore-scale, they evaluated the viscous pressure loss through each pore 

throat by using the Hagen-Poiseuille equation and used an approximate 

equation for evaluating the pressure loss due to the change in flow direction. 

In order to simulate the converging-diverging flow behaviour, Thauvin and 

Mohanty (1998) modified two equations, 𝐾𝑒 = {1 − (
𝑟𝑖−𝑗

𝑟𝑗
)
2

} (
𝑟𝑖−𝑗

𝑟𝑗
)
2

and 
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𝐾𝑐 = {1.45 − 0.45 (
𝑟𝑖−𝑗

𝑟𝑖
)

2

− (
𝑟𝑖−𝑗

𝑟𝑖
)
4

} where 𝐾𝑒 and 𝐾𝑐 are the expansion 

and contraction coefficients respectively, while 𝑟𝑖−𝑗, 𝑟𝑖, 𝑟𝑗 are the pore throat 

and pore body radii respectively, for pressure loss due to sudden expansion 

(diverging flow) and sudden contraction (converging flow) after Bird et al. 

(1960), but they did not explain the reason for these modifications. At the 

macro-scale, they used Darcy’s law and Forchheimer equation to estimate 

the medium Darcy permeability (𝐾D) and Forchheimer coefficient (β). 

Moreover, they did not validate their model and the performance of the 

model for simulating flow through real porous media has not been tested. 

A following study by Wang et al. (1999), who extended the work of 

Thauvin and Mohanty (1998) and used the same previous modified 

equations after Bird et al. (1960), was conducted for anisotropic pore-

networks, and it was also limited to regular structured pore-networks. They 

used the same Weibull distribution to assign pore throat and pore body radii, 

however, in their pore-networks they considered the spatial correlation 

between pore bodies and the adjacent pore throats. They generated 

anisotropic pore-networks by either changing the pore throat radii in one 

direction with respect to the other two directions, removing some pore 

throats in a specific direction or changing the spatial correlation in a specific 

direction. They used a tensorial form of Forchheimer’s equation and 

concluded that, in most of the anisotropic cases, the Forchheimer coefficient 

increases while Darcy permeability decreases.  

Later, Lao et al. (2004) performed a non-Darcy flow study using 

Forchheimer’s equation for irregular unstructured pore-networks, but their 

study was conducted only in 2D and the maximum value of the coordination 

number in their pore-networks was set to 3, which might not represent real 

porous media with larger coordination number, and they also assumed 

volumeless nodes. Lao et al. (2004) generated different pore-networks with 

cylindrical tubes from known porosity and pore size distributions; a 

Gaussian distribution, a Beta distribution and experimentally measured 

distributions. Then, for a large number of pore-networks, they used a 

Monte-Carlo technique to estimate the mean and variance of the pore-
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network properties. In contrast to Thauvin and Mohanty (1998), Lao et al. 

(2004) concluded that the change in flow direction at each node has the 

largest effect on the non-Darcy coefficient (β), however, this conclusion 

might be specific for their pore-networks that assumed volumeless nodes 

(PBs). Finally, Lao et al. (2004) provided an empirical relationship that 

predicts the non-Darcy coefficient, β (1/mm), from Darcy permeability, 𝐾D 

(mm2), porosity, ϕ (-), and tortuosity, τ (-).  

Lemley et al. (2007) extended Lao et al.’s (2004) work for irregular 

unstructured 3D pore-networks composed of cylindrical tubes, but the upper 

limit of the coordination number in their networks was 3 and they also 

assumed volumeless node. Lemley et al. (2007) generated pore-networks 

with different porosity, pore throat lengths, diameters and orientations 

following the pore size probability density functions (PDFs) for glass beads 

and Berea sandstone provided by Yanuka et al. (1986). They used a Monte-

Carlo technique very similar to the method used by Lao et al. (2004) to 

estimate the average values of Darcy permeability (𝐾𝐷) and Forchheimer 

coefficient (β). For glass beads, they obtained a relationship between 𝐾𝐷 and 

β that recalls Ergun’s equation (Ergun & Orning, 1949), while for Berea 

sandstone they obtained a trend similar to the previous data presented by 

Jones (1987) with one order of magnitude difference. 

The most recent study for non-Darcy flow through 3D irregular 

unstructured pore-networks using Forchheimer’s equation was performed 

by Balhoff and Wheeler (2009). In order to account for the inertial effects in 

their model, they did not use the equations provided by Bird et al. (1960) 

and approximated in Thauvin and Mohanty (1998) and Wang et al. (1999)’s 

models arguing that these equations are valid only for turbulent flow, 

despite the fact that these equations can be derived from Bernoulli, 

continuity and momentum equations, so they are valid for all flow 

conditions including laminar flow. Balhoff and Wheeler (2009) also did not 

use the equation derived by Koplik (1982), which was specific for laminar 

flow, but they approximated the geometry of pore throats by axisymmetric 

sinusoidal ducts and calculated the pressure loss through these throats by 
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solving the Navier-Stokes equations using a finite element method (FEM). 

After performing the FEM simulations for pore throats with different 

dimensions, they provided a relatively complex approximated equation that 

describes the pressure loss due to expansion and contraction through each 

pore throat and depends on the flow rate and pore throat and pore body 

geometries. However, their equation was developed from axisymmetric 

ducts, and they defined the geometries of these ducts by a sinusoidal 

equation that implies the pore bodies at the two ends of a pore throat to have 

equal size, a scenario that is not likely to happen in real porous media. 

Balhoff and Wheeler (2009) applied their model to different pore-networks 

extracted from a computer-generated sphere packing and from a computer-

generated synthetic sandstone by using a modified Delaunay tessellation 

(MDT) algorithm developed by Al-Raoush et al. (2003). When they 

provided Forchheimer plots, most of their results showed a concave 

downward deviation from the Forchheimer equation solution at high 

velocities. They attributed this deviation to the inertial effects due to the 

change in flow direction at each node, which was not considered in their 

model.  

2.3.3 Single phase flow within the turbulent flow regimes  

To my knowledge, the only work that modelled turbulent flow using PNM 

is that by Martins et al. (2007). They developed a method to generate 

different 2D regular pore-networks (with different coordination number 

values, pore throat orientations and boundary conditions) equivalent to 

beadpacks by considering only the beadpack porosity and average particle 

diameter. Their networks were composed of pore bodies and pore throats 

represented by spheres and cylinders, respectively. The pore body and pore 

throat diameters were assigned using a log-normal distribution. For flow 

modelling, they tried to develop a model which is able to simulate flow 

through the Darcy, Forchheimer and turbulent flow regimes by predefining 

the boundaries between different flow regimes at the pore-scale. They 

considered that the limit of the laminar flow regime, in each pore throat, is 

when the pore throat Reynold’s number (Re, based on pore throat diameter 
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and average velocity) is equal to 2300 and the beginning of the turbulent 

flow regime is when Re = 5000, however, these values were obtained from 

studying flow through macro-scale commercial pipes which have very large 

dimensions compared to the dimensions of voids in porous media. Many 

studies (e.g.(Dybbs & Edwards, 1984; Ma & Ruth, 1993; Thauvin & 

Mohanty, 1998; Zeng & Grigg, 2006; Horton & Pokrajac, 2009) found that 

the onset of non-Darcy (Forchheimer) flow and the onset of turbulence 

occur earlier in porous media; for example, Dybbs and Edwards (1984) 

proposed that the onset of non-Darcy flow occurs when Re ≈ 1 and the 

onset of turbulence occurs when Re ≈ 300. Generally speaking, the onset of 

non-Darcy flow and the onset of turbulence are highly dependent on the 

medium properties and the degree of heterogeneity (El-Zehairy et al., 2019) 

as will be discussed in Chapter 4. To model the pressure loss through pore 

throats, Martins et al. (2007) used the Hagen-Poiseuille (Hagen, 1839; 

Poiseuille, 1841) equation to determine the pore throat friction factor when 

the pore throat Re < 2300, while for the turbulent flow regime (when the Re 

> 5000) they used the Blasius equation (Blasius, 1913). For the transition 

flow regime, when 2300 ≤ Re ≤ 5000, they determined the pore throat 

friction factor by using linear interpolation between the friction factor value 

obtained from the Hagen-Poiseuille equation at Re = 2300 and the friction 

factor value obtained from the Blasius equation at Re = 5000. Regarding the 

inertial effects due to expansion and contraction, they used a constant factor 

of 1.5 as the summation of the sudden expansion and sudden contraction 

coefficients, despite the fact that that these coefficients are dependent on the 

pore throat and pore body geometries. Finally, Martins et al. (2007) were 

able to obtain results that agree with previous experimental work by fitting 

the values of the coordination numbers together with the values of the 

sudden expansion and sudden contraction coefficients.   

2.4 Boundaries between different flow regimes in porous media 

Over the last four decades, different methods (e.g. visual inspection, Laser-

Doppler anemometry, particle image velocimetry, magnetic resonance 

imaging) have been used to investigate the fluid behaviour at the pore-scale 

and its consequences on the macroscopic flow regimes. In porous media, 
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unlike flow in straight pipes, the transition from Darcy to turbulent flow 

occurs gradually and it is important not to consider any deviation from 

Darcy’s law as an indication of the onset of turbulence (Hlushkou & 

Tallarek, 2006). When the fluid velocity increases and after a certain point, 

the relationship between the pressure gradient and fluid velocity becomes 

nonlinear (Equation 2.2). This point is considered as the onset of non-Darcy 

flow and can be determined “when the pressure loss due to the linear term 

becomes less than 99% of the total pressure loss” (Comiti et al., 2000; 

Muljadi et al., 2015). While at very high velocities, the inertial forces 

become dominant compared to the viscous forces, this leads to the 

occurrence of some turbulent eddies and the flow can be considered as fully 

turbulent. 

At the macro-scale, the flow regimes in porous media can be classified into 

three main regimes; a Darcy flow regime, a non-Darcy (Forchheimer) flow 

regime and a turbulent flow regime. These are the main flow regimes 

considered by Bear (1972) and they are the main focus of this work. 

However, some authors (e.g. Kececioglu & Jiang, 1994; Kundu et al., 2016) 

defined a pre-Darcy flow regime, while others proposed additional 

transition flow regimes from Darcy to Forchheimer and from Forchheimer 

to turbulent (e.g. Kececioglu & Jiang, 1994; Fand et al., 1987). In the pre-

Darcy regime, the fluid velocities are very low, the pressure gradient is non-

linearly related to the flow superficial velocity, and the fluid shows non-

Newtonian behaviour which might be due to capillary-osmotic forces in the 

medium (Kundu et al., 2016).    

Horton and Pokrajac (2009) defined different flow regimes in porous media 

based on the length scale; i.e. if the study is performed either at the pore-

scale or at the macro-scale. For macro-scale studies, they defined the 

previously mentioned three main regimes (Darcy, Forchheimer and 

turbulent flow regimes). While, for pore-scale studies, following Dybbs and 

Edwards (1984), these authors defined the following four regimes (steady 

laminar linear, steady laminar nonlinear, unsteady laminar or transition, and 

turbulent) for a single representative pore (Figure 2-7a):   
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1) steady laminar (linear): when the fluid velocities and Reynold’s 

numbers are low, and the inertial effects can be neglected compared 

to the viscous forces. In this regime, the pressure gradient is linearly 

related to the fluid velocity. 

2) steady laminar (nonlinear): when the inertial effects start to affect 

the fluid flow, and the relationship between the pressure gradient 

and the fluid velocity becomes nonlinear.  

3) unsteady laminar (i.e. transition): when the inertial effects are large 

enough to cause instabilities or oscillations in the streamlines.    

4) turbulent: occurs at very high flow velocities when the fluid flow is 

chaotic and turbulent. 

Different criteria (by different authors), based on different characteristic 

lengths (Lcharc) and velocities, have been used to identify flow regimes in 

porous media. For example, Dwivedi and Upadhyay (1977) mentioned the 

following three forms of Reynold’s number for porous media: 

𝑅𝑒 =
𝜌 𝑣 𝐿𝑐ℎ𝑎𝑟𝑐

𝜇
=

𝜌 𝑣 𝑑𝑚

𝜇
 , 2.12 

𝑅𝑒` =
𝜌 𝑣 𝑑𝑚

𝜇 𝜙
 , 2.13 

𝑅𝑒`` =
𝜌 𝑣 𝑑𝑚

𝜇 (1 − 𝜙)
 . 2.14 

While Ergun (1952) recommended the following equation for evaluating the 

Reynold’s number, after Zeng and Grigg (2006): 

𝑅𝑒``` =
𝜌 𝑢 𝑑𝑚

𝜇 (1 − 𝜙)
 2.15 

Other authors (e.g. Muljadi et al., 2015), preferred using the permeability 

based Reynold’s number, in which √𝐾𝐷 replaces the characteristic length, 

Lcharc (mm), in the conventional Reynold’s number (Re) in Equation 2.12, so 

that  

𝑅𝑒𝐾 =
𝜌 𝑣 √𝐾𝐷

𝜇
 2.16 

where √𝐾𝐷 is the Brinkman screening length (Durlofsky & Brady, 1987). 
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Kececioglu and Jiang (1994) used a Reynold’s number based on the fluid 

interstitial velocity, u (mm/s), the porosity and the square root of the 

medium permeability (Equation 2.17): 

𝑅̂𝑒𝐾 =
𝜌 𝑢 √

𝐾𝐷
∅

𝜇
 . 2.17 

Several authors (e.g. Cornell and Katz, 1953; Zeng and Grigg, 2006) 

recommended using Forchheimer’s number (Equation 2.18) due to the 

difficulty in determining the characteristic length (Lchrac) in the standard 

Reynold’s number, and given by:  

𝐹𝑜 =
𝐾𝐷 𝛽 𝜌 𝑣

𝜇
 . 2.18 

In PNM, different characteristic lengths have also been used for the 

standard Reynold’s number (Equation 2.12), i.e. mean bead diameter, dm 

(mm), mean pore throat diameter, dPTh (mm), and mean pore throat radius, 

rPTh (mm). Table 2-3 summarise some previous studies and the criteria used 

in each study to determine the onset of a non-Darcy Forchheimer flow 

regime after Zeng and Grigg (2006). To wrap up the information provided 

in Table 2-3, there are two main criteria that can be used to determine the 

onset of non-Darcy flow in porous media; the Reynold’s number (Re) and 

the Forchheimer’s number (Fo). For the Reynold’s number the critical value 

for the onset of non-Darcy flow varies from Re = 0.4 to 100, while for 

Forchheimer’s number the critical value for the onset of non-Darcy flow 

varies from Fo = 0.005 to 0.2. Due to the ambiguity in defining the 

characteristic length for different porous media, using Fo is recommended 

(Zeng & Grigg, 2006). Nevertheless, the onset of non-Darcy flow is 

dependent on the medium’s degree of heterogeneity (see Chapter 4).  

Table 2-3. The onset of non-Darcy Forchheimer flow according to different 

studies, after Zeng and Grigg (2006). 

Author criterion Method and samples 
Onset of non-Darcy 

flow 

Chilton and 

Colburn 

(1931) 

𝑅𝑒 =
𝜌 𝑣 𝑑𝑚

𝜇
 

Experiments on 

packed particles. 

The onset non-Darcy 

flow occurs in the range 

of Re = 40 to 80. 
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Fancher and 

Lewis (1933) 
𝑅𝑒 =

𝜌 𝑣 𝑑𝑚

𝜇
 

Experiments of crude 

oil, water and air flow 

through 

unconsolidated sands, 

lead shot, and 

consolidated 

sandstones. 

Re = 10 − 1000 for 

unconsolidated samples 

& Re = 0.4−3 in loosely 

consolidated samples. 

Green and 

Duwez (1951) 

𝐹𝑜

=
𝐾𝐷 𝛽 𝜌 𝑣

𝜇
 

N2 flow experiments 

through different 

porous metal samples. 

The non-Darcy 

behaviour initiated at Fo 

= 0.1–0.2. 

Ergun (1952) 

𝑅𝑒```

=
𝜌 𝑢 𝑑𝑚

𝜇 (1 − 𝜙)
 

Experiments of gas 

flow through packed 

particles. 

The onset of non-Darcy 

flow occurs when 

𝑅𝑒``` = 3 − 10. 

Bear (1972) 𝑅𝑒 =
𝜌 𝑣 𝑑𝑚

𝜇
 

Various data from the 

literature. 

The critical value for 

the onset of non-Darcy 

flow is when Re = 3 to 

10. 

Scheidegger 

(1974) 
𝑅𝑒 =

𝜌 𝑣 𝑑𝑚

𝜇
 N. A. 

The critical value for 

the onset of non-Darcy 

flow is when Re = 0.1–

75. 

Hassanizadeh 

and Gray 

(1987) 

𝑅𝑒

=
𝜌 𝑣 𝐿𝑐ℎ𝑎𝑟𝑐

𝜇
 

Various experimental 

data from the 

literature. 

The critical value for 

the onset of non-Darcy 

flow occurred when Re 

= 1−15 and they 

suggested Re = 10 as an 

average critical value. 

Blick and 

Civan (1988) 
𝑅𝑒 =

𝜌 𝑣 𝑑𝑚

𝜇
 

A capillary–orifice 

model to simulate 

fluid flow in porous 

media. 

Based on their model, 

the critical Re for the 

onset of non-Darcy 

flow is 100. 

Ma and Ruth 

(1993) 

𝑅𝑒

=
𝜌 𝑢 𝑑𝑃𝑇ℎ

𝜇
 

and 

𝐹𝑜

=
𝐾𝐷 𝛽 𝜌 𝑣

𝜇
 

They numerically 

modelled non-Darcy 

flow using a 

diverging–converging 

model. 

The critical Re is 3–10, 

while the corresponding 

Fo is 0.005–0.02. 

Thauvin and 

Mohanty 

(1998) 

𝑅𝑒

=
𝜌 𝑣 𝑟𝑃𝑇ℎ

𝜇
 

They used PNM to 

simulate the porous 

media. 

Their result showed that 

the critical Re is 0.11. 
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Andrade et al. 

(1999) 

𝐹o

=
𝐾𝐷 𝛽 𝜌 𝑣

𝜇
 

Flow simulation 

through disordered 

porous media. 

The critical 𝐹o is 0.01–

0.1. 

To determine the onset of turbulence in porous media, visual inspection can 

be used as was done by Dybbs and Edwards (1984). They used a dye to 

visualise the flow streamlines in porous media composed of either Plexiglas 

sphere packing or rods arranged in a complex 3D geometry. They 

determined the onset of the turbulent flow regime when the streamlines start 

to fluctuate inside the pores and the fluid moves in a chaotic manner. Other 

experimental studies (e.g. Fand et al., 1987; Kececioglu & Jiang, 1994) 

presented their results in the form of a normalised dimensionless pressure 

gradient (
𝛥𝑃 𝐾𝐷

𝐿 𝜇 𝑣
) versus Reynold’s number, and in this form, the change in 

the slope of their results represents different flow regimes. A more 

advanced method to determine the onset of the Forchheimer and turbulent 

flow regimes is to use particle image velocimetry (PIV) which allows one to 

visualise and track the instantaneous movement of fluid particles and to 

determine the velocity field (magnitude and direction) over time. From the 

velocity field measurements, obtained by Horton and Pokrajac (2009) inside 

the pores of a regular structured medium composed of uniform spheres, they 

were able to estimate the velocity moments, skewness and kurtosis, and to 

further determine the onset of the Forchheimer and turbulent flow regimes 

at the pore-scale. Figure 2-7 shows the onset of different flow regimes 

obtained by several studies using 𝑅𝑒` (Equation 2.13) and summarised by 

Horton and Pokrajac (2009). The figure shows that, at the macro-scale, 

there is no specific value or narrow range of Reynold’s number that can be 

used as a criterion for the onset of turbulence, which is attributed to 

different medium geometries and degrees of heterogeneity in each study. 

However, there is agreement between the only available two studies by 

Dybbs and Edwards (1984) and Horton and Pokrajac (2009) who 

determined the limits between different flow regimes by experimental 

measurement inside the pores. These two studies observed transitions of 

flow properties at 𝑅𝑒` ≈ 150, which represents the onset of transition flow 

and at 𝑅𝑒` ≈ 300, which represents the onset of turbulent flow.  
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It is important to take into considerations that flow through the pores of a 

porous medium differs from flow through a single long straight micro-tube. 

The chaotic nature of porous media causes an early occurrence of the 

transition and turbulent flow regimes inside the pores compared to singular 

micro-tubes. As shown in Section 2.3.1, there is an ongoing debate 

regarding determination of Reynold’s number values at the boundaries 

between different flow regimes in micro-tubes. Some authors found that the 

limits of macro-tubes are the same for micro-tubes, while others found early 

occurrence of the transition and turbulent flow regimes in micro-tubes. 

However, even those who observed early occurrence of the transition and 

turbulent flow regimes in micro-tubes determined Reynold’s number values 

larger than the values obtained by Dybbs and Edwards (1984) and Horton 

and Pokrajac (2009) when flow was observed inside the pores of the 

medium. Therefore, the Reynold’s number values at the onset of the 

transition and turbulent flow regimes determined by Dybbs and Edwards 

(1984) and Horton and Pokrajac (2009) (at 𝑅𝑒` ≈ 150 and 𝑅𝑒` ≈ 300, 

respectively) will be used later in Chapter 5.  
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 Figure 2-7 a) Classification of the pore- and macro-scale flow regimes. b) 

Boundaries of flow regimes. For pore-scale studies, the flow regimes are 

presented as follows: i) steady linear laminar (white), ii) steady, nonlinear 

laminar-inertial core (dark grey), iii) unsteady transition (hatched), and iv) 

turbulent (black). For macro-scale studies, the flow regimes are presented as 

follows: i) Darcian (white), ii) Forchheimer (light grey), and iii) turbulent 

(black). The flow regimes are determined using 𝑅𝑒` (Equation 2.13), and the 

figure is modified after Horton and Pokrajac (2009).   

In the following chapters, different porous samples are used to verify the 

proposed pore-network flow and solute transport models. At the micro-scale 

(0.5-5 mm), beadpack, Bentheimer sandstone, Berea sandstone, and 

Estaillades carbonate samples are used. At the macro-scale (50-200 mm), 
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two samples composed of randomly packed and regularly structured 

uniform spheres are used. The micro-scale samples are considered as a 

special case or a small crop of the macro-scale sample, but in the used 

samples, the size of pores in micro-scale samples is smaller than the size of 

pores in macro-scale samples (see Figure 4-3). The pore-scale is meant to be 

the length scale of a single pore body and pore throat.     

2.5 Modelling of solute transport through porous media 

The transport process in porous media is of high interest to many scientists 

and can affect groundwater wells, oil wells and agricultural activities. 

Pollutants can be classified into the following species; dissolved or 

immiscible, and conservative or reactive. Dissolved pollutants/solutes are 

aqueous phase pollutants which spread within the water due to advection, 

diffusion and dispersion, while immiscible pollutants are non-aqueous phase 

liquids (NAPL). Conservative pollutants are those which do not react with 

the porous medium solid matrix, nor with other pollutants and are not 

affected by biological activities. Reactive solutes may interact with the fluid 

(water) through chemical reactions, adsorption and/or biodegradation (van 

der Zee & Leijnse, 2013). The focus of this work is on dissolved 

conservative solutes.  

The system shown in Figure 2-8 is a container that contains a saline solution 

and distilled water separated by a removable barrier. All saline molecules 

are subjected to a random movement resulting from its Brownian motion 

related to the thermal energy of the liquid. When the barrier between the 

saline solution and the distilled water is removed, the molecules’ random 

movement causes some saline molecules to move from the saline solution to 

the distilled water. The number of saline molecules that crosses the 

boundary between the saline solution and the distilled water is proportional 

to the concentration gradient. The constant of proportionality is equal to the 

coefficient of molecular diffusion, Dm (mm2/s). Therefore, Fick’s first law 

of diffusion states that the diffusive flux (F) is proportional to the 

concentration gradient as per Equation 2.19 (Zheng & Bennett, 2002), 
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𝐹 = −𝐷m

𝜕𝐶

𝜕𝐿
  2.19 

where F is the diffusive mass flux (mol/mm2·s), and 
𝜕𝐶

𝜕𝐿
 (mol/mm4) is the 

concentration gradient.  

 

Figure 2-8 Illustration of molecular diffusion; a) a container with saline 

solution and distilled water separated by a removable barrier, b) saline 

molecular distribution right after removing the barrier, c) saline molecular 

distribution at time t1 after removing the barrier, and d) final saline 

molecular distribution, after Zheng and Bennett (2002). 

At the macro-scale, solute transport in porous media can be modelled using 

the following 1D Advection-Dispersion Equation (ADE) (Ogata & Banks, 

1961):  

𝜕𝐶

𝜕𝑡
= 𝐷L

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
 2.20 

where C (mol/mm3) is the concentration of the conservative solute, u 

(mm/s) is the fluid average pore velocity and 𝑥 is the longitudinal spatial 

coordinate in the mean flow direction, 𝐷L (mm2/s) is the longitudinal 

dispersion coefficient and t is the elapsed time. Advection is the movement 

of solute particles within the moving fluid, while dispersion is a result of 

two processes; a non-uniform velocity field and molecular diffusion 

(Bijeljic et al., 2004). When a solute is injected into a flowing water or 

fluid, the longitudinal dispersion coefficient (DL) is a measure of the solute 

spreading along the flow’s direction (Hart, 2013). Therefore, the 

longitudinal dispersion coefficient (DL) can be thought of as the summation 

of two components that account for the hydrodynamic effects and molecular 

diffusion as per Equation 2.21 (Kulasiri, 2013): 

𝐷L = 𝛼L𝑢L + 𝐷m 2.21 
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where 𝛼L (mm) is the longitudinal dynamic dispersivity, 𝑢L (mm/s) is the 

average pore velocity in the longitudinal direction, and Dm (mm2/s) is the 

coefficient of molecular diffusion. In most of solute transport applications, 

the effect of diffusion can be neglected compared to the effect of advection, 

then Equation 2.21 can be rewritten as 𝐷L ≈ 𝛼L𝑢L. 

In porous media, the dispersion flux in the longitudinal direction, J 

(mol/mm2·s), is proportional to the concentration gradient, dC/dL 

(mol/mm4). Additionally, due to the fluid movement, the dispersion flux (J) 

is assumed to be proportional to the average fluid seepage velocity in the 

longitudinal direction, 𝑢L (mm/s), while the longitudinal dispersivity, 𝛼L 

(mm), is the proportionality constant. These assumptions result in the final 

form of Equation 2.22 (Kulasiri, 2013); given by: 

𝐽 ≈ −𝛼L𝑢L
𝑑𝐶

𝑑𝐿
  . 2.22 

The term “Fickian transport” originates from the fact that in a manner 

similar to Fick’s law, the dispersion flux (J) in the longitudinal direction is 

proportional to the concentration gradient (Equation 2.22). In Fickian 

transport, the concentration spread within the medium follows a Gaussian 

distribution (Lee & Buchberger, 2001). However, in some cases, mainly due 

to medium heterogeneity, the concentration distribution deviates 

significantly from being Gaussian, the 1D ADE is not valid, and such a 

process is called “Non-Fickian transport” which is out of the scope of this 

work. 

Once a solute is injected into a porous medium, it needs some time to travel 

through the medium in order to be “asymptotically Fickian”; i.e. when the 

longitudinal dispersion coefficient reaches a constant value over time. This 

time is needed for solute particles to undergo a wide range of independent 

velocities. Once the asymptotically Fickian state is reached, the variance, σ2 

(mm2), of the Gaussian distribution increases linearly with time (Jha et al., 

2011; Mostaghimi, 2012). 

Different approaches have been reported in the literature to estimate the 

longitudinal dispersion coefficient (DL) from experimental or numerical 
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concentration profiles. One approach is to use the variance of the Gaussian 

distribution as per Equation 2.23 (Bruderer & Bernabé, 2001), but this 

approach requires extensive calculations (Lee & Buchberger, 2001), 

𝐷𝐿 =
1

2

𝑑𝜎𝑥
2(𝑡)

𝑑𝑡 
=

1

2

𝜎𝑥2
2 (𝑡2) − 𝜎𝑥1

2 (𝑡1)

𝑡2 − 𝑡1 
  

2.23 

where 𝜎𝑥
2(𝑡) is the solute particle positions variance at time t after injecting 

the solute pulse in the medium.   

A second method proposed by Fried and Combarnous (1971) when a solute 

of concentration Co is injected at the inlet boundary of a medium, and the 

concentration (C/Co) versus distance (x) profile is plotted at time t. The 

concentration profile can be approximated by a normal distribution function 

and a transition mixing zone (with width w (mm)) is generated between 

C/Co = 0.16 and C/Co = 0.84. Then, DL can be estimated according to 

equation 2.25 (Fried & Combarnous, 1971), where 

𝑤 = 2𝜎 = 2√2𝐷L𝑡 = 𝑥0.16 − 𝑥0.84 
2.24 

then, 
 

𝐷L =
(𝑥0.16 − 𝑥0.84)

2

8𝑡
=

𝑤2

8𝑡
 

2.25 

where t (s) is the time at which the concentration versus distance graph is 

plotted.  

Another approach, used in this study, is to estimate DL by fitting the 

analytical solution of the 1D ADE (Ogata & Banks, 1961) to the BTC 

obtained from PNM, and this can be done using CXTFIT computational 

software (Toride et al., 1995). The 1D ADE is valid under the assumptions 

that the porous medium is homogeneous, isotropic, saturated with fluid, and 

the transport is Fickian (Kulasiri, 2013; Sahimi, 2011b). A similar method 

was used before to obtain the longitudinal dispersion coefficient in some 

laboratory and field studies, pore-network modelling and other numerical 

studies (Coats & Smith, 1964; Zaretskiy et al., 2010; Köhne et al., 2011; 

Babaei & Joekar-Niasar, 2016; Oostrom et al., 2016). CXTFIT makes use of 

the analytical solution of the 1D ADE. Using a nonlinear least-squares 
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parameter optimisation approach, CXTFIT can quantify the solute transport 

parameters. CXTFIT can be used either in a forward mode to estimate the 

concentration as a function of time, distance or both, or in an inverse mode 

to estimate transport parameters (e.g. the coefficient of longitudinal 

dispersion and the retardation factor) from known experimental or 

numerical results.  

Dispersion in porous media has been investigated before using different 

methodologies either experimentally or numerically. For instance, 

Pfannkuch (1963) provided a summary of 175 values of the longitudinal 

dispersion coefficient (DL) determined experimentally by Rifai et al. (1956), 

Day (1956), Ebach and White (1958), Carberry and Bretton (1958), 

Blackwell (1959), Blackwell et al. (1959), Raimondi et al. (1959) and 

Brigham (1969) for graded sands and other single-grained materials. From 

this summary and by plotting the longitudinal dispersion coefficient scaled 

by the coefficient of molecular diffusion (DL/Dm) versus Péclet number 

(Pe), Pe is defined as the rate of transport by advection to the rate of 

transport by diffusion as per Equation 6.4 (Bear, 1972), Pfannkuch (1963) 

classified the transport process through porous media into 5 zones. Starting 

from low flow velocities, zone I is the diffusion dominated zone, where the 

value of DL/Dm is constant. In zone II, when 0.4 < Pe < 5, the effect of 

molecular diffusion is comparable to mechanical dispersion. In zone III, 

molecular diffusion acts in the transversal direction against the longitudinal 

spread of solute by mechanical dispersion and the power law [
𝐷𝐿

𝐷𝑚
=

𝛼 (𝑃𝑒)𝛿] can be applied with 𝛼 ≈ 0.5 and 1 < 𝛿 < 1.2. In zone IV, 

mechanical dispersion is dominant and DL/Dm is linearly dependent on Pe, 

as far as Darcy’s law is valid. The last zone (zone V) is a pure mechanical 

dispersion zone, but the flow inertial effects should not be neglected. The 

slope of the curve in zone V tends to be less than the slope in zone IV (Bear, 

1972; Lal & Shukla, 2004). 

Several researchers have studied dispersion experimentally using nuclear 

magnetic resonance (NMR) where fluid molecules can be tracked using 

their nuclear spins, instead of using tracers. For instance, Ding and Candela 
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(1996) used NMR to measure longitudinal and transverse dispersion 

through 15 μm diameter packed plastic beads for Reynold’s number < 1. 

They noticed a transfer from the diffusion dominated regime to the 

dispersion dominated regime at 𝑃𝑒~1. Despite the fact that the NMR is 

limited to a length scale of 100 μm or less, i.e. NMR can be used to 

determine only pore-scale processes, Ding and Candela (1996) used a 

Fourier transformation to obtain the macro-scale dispersion coefficients 

from the NMR pore-scale data. They concluded that further theoretical work 

is needed to obtain better results. Seymour and Callaghan (1997) used an 

NMR method to study flow and dispersion of water through 90.7 μm 

diameter packed spheres. They determined the fluid density, velocity, flow 

propagation, velocity fluctuation and dispersion using an NMR imaging 

technique and showed that their methodology provided good results, 

compared to previous results in the literature, for a length scale of ~ 90 μm. 

However, for a larger scale, an averaging technique should be used. 

Kandhai et al. (2002) used NMR to evaluate the effect of hold-up 

dispersion, i.e. the influence of stagnant zones on dispersion. They used 

random packings of porous particles with 34 μm and 50 μm average 

diameter, and they concluded that the effect of porous particle hold-up 

increases the dispersion significantly. The NMR method was successfully 

used by Khrapitchev and Callaghan (2003) who investigated the pre-

asymptotic dispersion (over time) and the asymptotic Fickian dispersion 

through randomly packed 500 μm diameter uniform spheres. Khrapitchev 

and Callaghan (2003) deduced that the asymptotic dispersion can be 

reached after a several order of magnitude larger length than the beads’ 

average diameter.   

Stöhr (2003) used an imaging technique to measure dispersion through 

sharp-edged silica grains and spherical plexiglass beads with average bead 

diameters of 0.8 mm and 0.6 mm, respectively. He implemented a refractive 

index matching method (Budwig, 1994) to detect the dynamics of the dye 

through the 3D structure of the media. Stöhr concluded that his obtained DL 

values follow the power law with 𝛿 = 1.2. Similarly, Theodoropoulou 

(2007) used an image analysis technique to experimentally detect the 
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concentration of a conservative solute through a transparent artificial glass-

etched pore-network. Additionally, she developed a 2D macro-scale finite 

element model to simulate Darcy flow and solute transport through a 2D 

domain similar to her pore-network and she verified the numerical results 

against the experimental measurements. When she compared the DL values 

calculated from the method of moments, which accounts for transverse 

dispersivity, to DL values estimated by fitting the breakthrough curves to the 

analytical solution of the 1D ADE, she concluded that the latter method 

underestimates DL. Another study was performed by Moroni and Cushman 

(2001) who used a 3D particle tracking velocimetry scanning technique to 

obtaine the trajectories of a tracer (air bubbles) flowing through glycerol in 

a homogenous porous medium composed of 1.9 cm spheres. By obtaining 

the 3D dispersion tensor from image analysis, they concluded that the 

longitudinal dispersion tensor becomes Fickian after travelling through five 

to six pore diameters, before this the dispersion is convolution-Fickian and 

time dependent.     

Despite the fact that most of solute transport studies have focused on the 

asymptotic dispersion rates, Maier et al. (2000) applied a random walk 

particle tracking technique using a Lattice-Boltzmann (LB) method to 

investigate the pore-scale pre-asymptotic time dependent (transient) 

behaviour of dispersion. Compared to previous results, Maier et al. (2000) 

presented results that showed shorter time and lower rates of longitudinal 

dispersion. They also found that the time needed to reach asymptotic 

longitudinal dispersion rates scales with Péclet number, Pe (-), in a manner 

similar to mechanical dispersion.   

Using DNS, Mostaghimi et al. (2012) modelled Stoke’s flow on a micro-

Computed Tomography (micro-CT) scan of Berea sandstone. They 

proposed a finite difference scheme to simulate the linear flow and pressure 

fields, while dispersion was modelled by considering the effect of advection 

and diffusion. Advection was modelled using a streamline tracing technique 

whereas a random-walk method was used to simulate diffusion. Mostaghimi 

et al. (2012) were able to detect the diffusion dominated, power law and 

pure advection regimes, however, when they compared their results to 
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various results in the literature, they found that their results underestimate 

the dispersion compared to bead packs. They attributed this to the neglected 

inertial effects in their flow simulations.  

Only few studies have tried to investigate the inertial effects on dispersion 

through porous media. For instance, starting from the pore-scale and using a 

volume averaging technique, Wood (2007) developed a macro-scale 

numerical solution for dispersion of conservative solutes in porous media. 

The main focus of Wood’s work was to investigate the inertial effects on 

both longitudinal and transverse dispersion coefficients. Using FEM, Wood 

(2007) determined a solution for the ancillary closure problems, a set of 

equations that governs the relation between pore-scale and macro-scale 

physics, over a small unit cell considered as a representative elementary 

volume (REV) of the medium. Wood (2007) found that the inertial forces 

affect the longitudinal dispersion coefficient (DL) much less than the 

transverse dispersion coefficient (DT). When the inertial effects are 

considered, DL increased by a factor of 1.13 while DT increased by a factor 

of up to 40, compared to DL and DT for Stoke’s flow. He attributed these 

unsatisfactory results to the use of very simple unit cell and suggested the 

use of more complex unit cells in future studies. Nezhad et al. (2019) 

investigated experimentally the flow inertial effects on dispersion through 

two samples composed of randomly packed uniform spheres with 1.85 and 

3 mm diameter. Most of their results were obtained in the mechanical 

dispersion regime and they concluded that the onset of non-Darcy flow 

occurred earlier, i.e. at a lower Re, in the fine medium (1.85 mm spheres) 

compared with the coarse medium (3 mm spheres). Nevertheless, reducing 

the particle size of the porous medium caused higher dispersion in 

comparison to the medium with larger particle size. However, their obtained 

DL values were several orders of magnitude higher than the data in the 

literature, and they attributed this to the large Dm value of tracer used in 

their experiments. 
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2.6 Pore-network modelling of solute transport  

2.6.1 Dispersion in pipes 

Taylor (1953, 1954) and later Aris (1956) investigated the motion of a 

passive tracer in a steady state laminar flow through a single circular tube. 

By studying the Fickian advection-diffusion in a tube, they stated that the 

effective diffusion coefficient in a single capillary tube, 𝐷𝑒𝑓𝑓 (mm2/s), can 

be expressed as 𝐷𝑒𝑓𝑓 = 𝐷𝑚 +
𝑢2𝑟2

48 𝐷𝑚
, where u (mm/s) is the mean fluid 

velocity through the tube, r (mm) is the tube radius and 𝐷𝑚 (mm2/s) is the 

coefficient of molecular diffusion. Taylor stated that his solution is valid 

when 
4 𝐿

𝑟
≫

𝑢 𝑟

𝐷𝑚
≫ 6.9, where L is the tube length, however, this condition 

was found to be severe and Gill and Sankarasubramanian (1970) stated that 

the Taylor-Aris solution (𝐷𝑒𝑓𝑓 = 𝐷𝑚 +
𝑢2𝑟2

48 𝐷𝑚
) is valid when 𝑇 ≥ 0.5, 

where T (-) is the dimensionless time, given as 𝑇 =
𝐷𝑚𝑡

𝑟2 , and t is the 

residence time in the capillary tube. When 𝑇 ≥ 0.5, the effective diffusion 

coefficient should be constant over time. In summary, the transport process 

in a capillary tube can be divided into three cases: Case 1 (asymptotic 

Fickian regime), when the fluid flows relatively slowly (i.e. the 

dimensionless residence time (T) ≥ 0.5) through the capillary tube. For this 

case, the effect of both advection and molecular diffusion should be 

considered and the Taylor-Aris solution is valid. Case 2 (pure advection); 

purely advective flow that occurs when the fluid flows relatively fast (i.e. 

the dimensionless residence time (T) < 0.01) through a capillary tube and 

the effect of molecular diffusion can be neglected compared to the advective 

transport. The results obtained by Bailey and Gogarty (1962) and 

Ananthakrishnan et al. (1965) confirmed that purely advective flow occurs 

when the dimensionless residence time is less than or equal to 0.01. A third 

case (pre-asymptotic time dependent regime), not tested by Taylor, is a 

transition case between case 1 and case 2 that occurs when 0.01 < 𝑇 < 0.5, 

i.e. the asymptotic state has not been achieved and the transport process is 

not purely advective. In case 3, the effective diffusion coefficient [𝐷𝑒𝑓𝑓(𝑡)] 

is time dependent and can be expressed as a small percentage of the 
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asymptomatic effective diffusion coefficient [𝐷𝑒𝑓𝑓]. Many authors have 

investigated this transition case (case 3) and provided an estimation of the 

effective diffusion coefficient as a function of the residence time, 

(e.g.(Bailey & Gogarty, 1962; Ananthakrishnan et al., 1965; Lighthill, 1966; 

Gill & Sankarasubramanian, 1970; Chatwin, 1977; Vedel & Bruus, 2011; 

Meng & Yang, 2017). However, the only work that provides an explicit 

equation for 𝐷𝑒𝑓𝑓(𝑡) was performed by Lee (2004), Figure 2-9, Equation 

6.3. Lee (2004)’s equation can accurately predict the analytical solution 

proposed by Gill and Sankarasubramanian (1970). 

 

Figure 2-9 The time dependent effective diffusion coefficient [Deff (t)] vs. 

dimensionless time (T) for a 1 mm diameter circular tube, after Lee (2004) 

equation (Equation 6.3).   

The mixed cell method (MCM), the method applied in this study, is based 

on the assumption that dispersion occurs mainly in pore throats, the fluid is 

perfectly mixed at each pore, and when the PNM approach is used, the mass 

balance equations are adapted for each node (pore body) (Mehmani et al., 

2014). For a pore-network that represents a specific medium, once Deff is 

defined for each pore throat in the pore-network, the mass balance equation 

(6.1) is adopted at each pore body and the resulting breakthrough curve can 

be used to obtain the longitudinal dispersion coefficient (DL). A common 

mistake in most of the previous solute transport studies performed using 

pore-network modelling and applying the mixed cell method using the 
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Taylor-Aris equation (𝐷eff = 𝐷m +
𝑢2𝑟2

48 𝐷m
) is that they did not check the 

residence time needed to reach an asymptotic state for each pore throat, 

such behaviour may result in overestimating the longitudinal dispersion 

coefficient (DL) predictions for the medium. Despite the flow at the macro-

scale being relatively slow (Darcy), at the pore-scale there might be some 

pore throats with high velocities or short lengths leading to T < 0.5. For 

such cases, the transport process might be purely advective or affected by 

both advection and diffusion, but the solute residence time is not long 

enough to reach an asymptotic state, i.e. the effective diffusion coefficient is 

time dependent.  

Taylor (1954b) estimated the effective diffusion coefficient of a passive 

tracer in a circular tube under turbulent flow conditions. He expressed the 

effective diffusion coefficient as 𝐷eff = 10.1 𝑟 𝑢∗, where 𝑢∗ (mm/s) is the 

shear velocity. This relationship is valid when the solute is fully mixed 

across the tube, i.e. when the ADE is valid. In most turbulent flow 

applications, the fully mixed condition is more likely to be achieved as a 

result of turbulent diffusion and rapid radial mixing (Hart et al., 2016). 

Taylor proposed that for an injected solute, the distance required for the 

solute to be fully mixed is equal to 100 times the tube radius. To my 

knowledge, no previous studies have investigated the value of the effective 

diffusion coefficient in short pipes under turbulent flow conditions.  

The previously mentioned information for estimating 𝐷eff will be applied to 

two different samples; the packed spheres (dm = 1.84 mm) sample used in 

the experimental work and a Berea sandstone sample (see Chapter 6).  

2.6.2 Pore-network modelling of Dispersion 

Solute transport using pore-network modelling has been investigated before 

(Bruderer & Bernabé, 2001; Bijeljic et al., 2004; Bijeljic & Blunt, 2006; 

Köhne et al., 2011; Babaei & Joekar-Niasar, 2016) but only within the 

Darcy flow regime. Bruderer and Bernabé (2001) used pore-network 

modelling to simulate dispersion through 2D pore-networks with different 

degrees of heterogeneity. They modelled advection using a particle tracking 



70 

 

technique while diffusion was modelled as a discrete random walk. They 

observed a transition from Taylor-Aris dispersion in homogenous pore-

networks, where the longitudinal dispersion coefficient is proportional to 

the square of the Péclet number (𝐷𝐿 ∝ 𝑃𝑒2), to the so-called mechanical 

dispersion in highly heterogeneous pore-networks, where the longitudinal 

dispersion coefficient is proportional to the Péclet number (𝐷𝐿 ∝  𝑃𝑒). 

Bijeljic et al. (2004) investigated the longitudinal dispersion for a 2D pore-

network equivalent to a Berea sandstone sample. They applied a 

Lagrangian-based transport model for a wide range of Péclet numbers and 

confirmed that diffusion dominates at low Péclet numbers (Pe ≤ 0.1), while 

the transition regime, in which combined effects of advection and diffusion 

occur, was noticeable at 0.1 < Pe < 10. They divided the advection 

dominated regime into two zones; the first zone when 10 < Pe < 400 and the 

second when Pe > 400. They referred to the first zone as the boundary-layer 

dispersion regime, when advection dominates the mixing process, but 

particles still have some time to encounter low velocities near the solid 

matrix (pore throat walls) where diffusion can be observed. In this zone the 

power law coefficient (δ) was equal to 1.19, 
𝐷𝐿

𝐷𝑚
≈ 𝑃𝑒

𝛿 . They referred to the 

second zone as the mechanical dispersion regime, when Pe > 400 and the 

longitudinal dispersion coefficient (DL) is linearly dependent on Pe. Later, 

Bijeljic and Blunt (2007) used the same pore-network used by Bijeljic et al. 

(2004) to study transverse dispersion and concluded that the ratio between 

the longitudinal and the transverse dispersion coefficients is not constant 

and it is inappropriate to assume that the longitudinal dispersion coefficient 

is always one order of magnitude larger than the transverse dispersion 

coefficient.  

Köhne et al. (2011) simulated solute transport, for both non-reactive and 

adsorbed solutes, through different intact soil samples using pore-network 

modelling and applying the mixed cell method. They used X-ray and 

Minkowski functions (Thompson, 1996) to generate pore-networks 

equivalent to the used soil samples and verified their results by performing 

laboratory experiments on the same samples. They acknowledged that using 
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Minkowski functions was a good predictive tool for producing the 

equivalent pore-networks and consequently for the pore-network 

simulations of the conservative solute. 

Using pore-network modelling and the MCM, Babaei and Joekar-Niasar 

(2016) investigated the effect of the correlation length, which is known to 

increase with heterogeneity (Bruderer & Bernabé, 2001), for stochastically 

generated pore-networks, on the transport regime. They created a transport 

phase diagram with three regimes (diffusion-controlled, mixed advection-

diffusion and advection-controlled regimes) at various correlation lengths 

ranging from small correlation length, which corresponds to an uncorrelated 

pore-network, to strongly correlated pore-networks with a larger correlation 

length. They concluded that the correlation length affects more the 

advection-controlled regime by causing an increase in the longitudinal 

dispersion coefficient in correlated (heterogeneity) pore-networks compared 

to uncorrelated (homogenous) pore-networks.  

Jha et al. (2011) investigated the effect of diffusion on the dispersion 

coefficient by applying a particle tracking technique and using the PNM 

approach. They created a representative pore-network from a computer-

generated random packing of equal spheres following the methodology 

proposed by Bryant and Blunt (1992). Jha et al. (2011) investigated, 

separately, the effect of streamlines splitting and joining at each pore body, 

the velocity gradient in pore throats due to the parabolic velocity profile in 

the direction perpendicular to the pore throat axis, and diffusion. They 

concluded that the advection movement causes solute particles to undergo a 

range of independent velocities and this leads to an asymptotically Fickian 

dispersion.  However, when they considered the effect of velocity variation 

in the transverse direction in pore throats due to the parabolic velocity 

profile, they noticed that solute particles next to the pore throat walls are not 

free to move and this causes non-Fickian convective spreading. Finally, 

when they superimposed diffusion on advection, diffusion allowed solute 

particles near pore throat walls to enter the main flow streams and this 

allows all solute particles to undergo a wide range of velocities leading to a 

Fickian behaviour of dispersion.      
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Based on optimisation and using PNM, Mehmani et al. (2014) developed a 

streamline splitting method (SSM) to determine how the inflowing 

streamlines are distributing among the outflowing streamlines at each pore 

body. The SSM showed better results for investigating transverse dispersion 

in porous media compared to the results obtained from the MCM and the 

Continuous-Time Random Walk (CTRW) method.  However, the Mehmani 

et al. (2014) study was limited to the Darcy flow regime.  

2.7 Generation of pore-networks   

In order to construct a 3D pore-network that is able to represent a real 

porous medium, there are three different approaches that can be followed. 

The first approach is called the grain-based model which was initiated by 

Bryant and Blunt (1992) and is used to generate a pore-network equivalent 

to a packing of grains by considering information about the grain diameters 

and locations. This approach was further extended to generate pore-

networks from grains affected by swelling, compaction or sedimentation. 

While the second approach is to construct a representative pore-network 

using statistical distributions of basic morphologic parameters, e.g. pore 

body and pore throat size distributions, throat length distribution, 

coordination number distribution, spatial correlation between: adjacent pore 

bodies, adjacent pore throats, and neighbouring pore throats and pore 

bodies. Pore-network models can predict medium parameters (e.g. 

permeability) similar to the measured values by carefully choosing the pore 

body, pore throat and coordination number distributions of the pore-

network. However, by using this second approach, the generated pore-

network may not represent a typical morphology of the real medium, but it 

is similar statistically only to the modelled porous media. Moreover, the 

second approach is simple and can quickly simulate fluid flow properties in 

complex (heterogeneous) porous structures (Al-Raoush et al., 2003; Dong & 

Blunt, 2009; Gao et al., 2012; Xiong et al., 2016). The third approach is to 

directly map the porous media, e.g. from a 3D micro X-ray Computed 

Tomography image (CT-image), focused ion beams, scanning electron 

microscopy, nuclear magnetic resonance, mercury intrusion porosimetry, 
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and gas adsorption (Xiong et al., 2016). The third approach provides a direct 

spatial correspondence between the porous medium structure and the 

network structure. In the following review, the most relevant network 

generation approaches are summarised, however, readers interested in other 

methods are referred to the review paper by Xiong and Jivkov (2015).  

Bryant and Blunt (1992) used 8000 measured coordinates of randomly 

packed uniform ball bearings provided by Finney (1968) to construct a 

representative pore-network of the medium. They performed Delaunay 

triangulation on the central 3367 spheres of the Finney pack. The vertices of 

the resulting tetrahedrons from Delaunay triangulation represent the bearing 

centres, while the inner volume of the tetrahedron represents a void space 

(pore body) (Figure 2-10). Each tetrahedral face represented a narrow 

entrance (pore throat) to the larger volume inside the tetrahedron. As each 

cell in the domain was represented by a tetrahedron, each pore body had 4 

connected pore throats represented by the four faces of the tetrahedron, i.e. 

the coordination number was 4. Bryant and Blunt (1992) estimated the 

spherical pore body volume as the volume of the tetrahedral Delaunay cell 

minus the volume of the sphere segments located inside that cell. They also 

defined the pore throat length to be the distance between the adjoining 

Delaunay cells, while the cylindric pore throat radius is defined as the 

effective radius, reff (mm), as shown in Figure 2-11. 

 

Figure 2-10 A Delaunay tetrahedral cell in a random packing of uniform 

spheres. The centre of the tetrahedral cell represents the pore body, while 
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each of the tetrahedral cell four faces represents a pore throat. The vertices 

of the cells represent the sphere centres, by Bryant and Blunt (1992). 

 

Figure 2-11 One face of a Delaunay cell with two definitions of an 

equivalent pore throat radius. rc (mm) is radius of the largest inscribed circle 

that can fit in the void space within the cell face. re (mm) is the radius of the 

circle that has an area equal to the void area (shaded in grey). The pore 

throat radius is estimated as reff = 0.5 (rc+re), by Bryant and Blunt (1992).  

Bryant et al. (1993) extended the previous work of Bryant and Blunt (1992) 

and used the same Finney coordination measurements (Finney, 1968) to 

obtain the simplicial cell (Delaunay cell) tessellation of 2000 central spheres 

of that packing. They acknowledged that the basis of their approach belongs 

to Mason (1967, 1971). In their pore-network, each cell was represented by 

a tetrahedron, so each cell had a fixed coordination number of four. Bryant 

et al. (1993) approximated their pore-network by a group of flow paths 

(pore throats) which simulate the bonds between cells. They divided each 

bond into a number of segments (12 segments) along its flow path axis. 

Each of these segments is represented by a conical frustum as shown in 

Figure 2-12. They defined the geometry of each conical frustum by 

assigning an inlet face radius, outlet face radius and axial length which all 

depend on the geometry of each Delaunay cell. They concluded that their 

proposed pore throat geometries provide a better estimation of the 

permeability.  
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Figure 2-12 A group of conical frusta used for estimating the conductance 

of each pore throat, by Bryant et al. (1993).  

Gao et al. (2012) presented two methods for generating pore-networks from 

porous media. The first method produces a pore-network from a random 

computer simulated packing of sphere. That method requires knowledge of 

all sphere radii and locations for which they used the PFC3D discrete 

element code. They used an algorithm (Chan & Ng, 1988) to construct the 

tetrahedral Delaunay tessellation between spheres. Then, they developed a 

method to solve the problem resulting from the division of a single void 

(pore body) into several zones by the tetrahedral tessellation. That method 

depended on defining three different interconnectivity levels between 

neighbouring pore bodies according to the extent of their overlapping. 

Later, depending on the interconnectivity level between each two 

neighbouring pore bodies, they assigned pore throat geometries as Biconical 

abscissa Asymmetric CONcentric (BACON) shapes. The second method 

produces a lattice structured (the pore body centres are located on regular 

lattice nodes and the pore bodies are separated by equal distances) pore-

network equivalent to the porous medium. In that method, the regular 

spacing between pore bodies was adjustable according to the porosity of the 

simulated porous medium. They started by connecting each pore body to the 

nearest neighbouring 26 pore bodies using pore throats in different 

directions and with variable lengths. They used a statistical distribution (e.g. 

Gaussian or log-normal distribution) to assign random pore body radii, and 

then correlate each pore body size and its corresponding coordination 

number. All pore throats were assigned a BACON shape using two power 
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functions. They concluded that the second method can be used as a 

predictive approach for quantitative analysis of flow though porous media.  

Joekar-Niasar et al. (2008) used two regularly structured 3D lattice pore-

networks to investigate the relationships between capillary pressure, 

saturation, interfacial area and relative permeability. Their first pore-

network, called the tube model, consisted of cylindrical pore throats only, 

while the second pore-network consisted of both spherical pore bodies and 

cylindrical pore throats. They used a truncated random log-normal number 

generator to assign the pore throat radii for the first network and the pore 

body radii for the second pore-network. They used a fixed coordination 

number of 6 for both types of networks and for the second pore-network 

they developed a procedure to assign a pore throat radius in a way that 

accounts for the correlation between the pore throat and its two 

neighbouring pore bodies. Joekar-Niasar et al. (2008) concluded that the 

second pore-network produced more accurate and realistic results compared 

to the oversimplified tube model.  

In Babaei and Joekar-Niasar (2016) work, the authors statistically generated 

pore-networks with different degrees of heterogeneity. Firstly, they filled 

the domain with randomly generated points that act as pore body centres, 

and they set a threshold for the minimum distance between any two 

neighbouring points to avoid pore bodies overlapping. Secondly, they 

generated correlated fields for pore body radii using the field generator 

developed by Nowak et al. (2008). The degree of heterogeneity in each 

pore-network was changed by changing the correlation length scale. Then, 

they used a Delaunay triangulation methodology to generate the connections 

between points (pore bodies), where the vertices of the triangulations 

represent pore body centre coordinates and the edges represent pore throats. 

As Delaunay triangulation results in a large number of pore throats/edges, 

they excluded some extra-long pore throats. Finally, they used the depth 

average search algorithm to label the network.  

Al-Raoush et al. (2003) showed two different methods to construct a pore-

network from 3D CT-images of unconsolidated porous media. For both 
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methods, they used a computer-generated packing of spheres. The first 

method was based on the medial-axis (MA) analysis of a digital image of 

the pore space. The medial axis of an object is known as the skeleton of that 

object that runs along its geometrical middle. In order to obtain the medial 

axis of the image, they used the 3DMA software package (Lee et al., 1994; 

Lindquist et al., 1996). The obtained medial axis represents the flow paths 

(pore throats) while the intersections of these paths represent pore bodies. 

Then they used a voxel-based calculation method to determine the inscribed 

radius of each pore body and pore throat. The second method was based on 

a modified Delaunay tessellation (MDT) of the grain locations. This method 

followed the same approach used by Bryant and Blunt (1992) except that 

they added some modifications for large pore bodies that occupy more than 

one tetrahedron. For this specific case, they allowed the merging between 

tetrahedrons into one larger polyhedral.  

Dong and Blunt (2009) used a maximal ball algorithm to extract the pore-

network equivalent to a medium from its CT-image. The maximal ball 

algorithm searches for the largest sphere that can be centred on each voxel 

of the image and just touches the grain. This process may result in some 

balls being included or intersecting with each other, in such cases all the 

smaller balls are discarded and the rest are considered as maximal balls. 

Finally, the largest maximal balls are defined as pore bodies, while the 

smallest maximal balls between pore bodies are defined as pore throats. The 

outputs from that code are pore body and pore throat radii, pore body 

Cartesian coordinates, pore body coordination numbers, pore throat lengths, 

pore body and pore throat volumes, and pore body and pore throat shape 

factors. Dong and Blunt (2009) obtained a good match for the resulting 

permeability of the pore-networks extracted using their method, however, 

they did not verify their method for the case of non-Darcy flow and they 

concluded that their pore-network extraction code underestimates the pore 

throats’ size and tends to generate many small pore throats.  

The most recent pore-network extraction code, used throughout this thesis, 

was developed by Raeini et al. (2017) in which they used a medial axis 

transform and coarse discretisation of the 3D CT-image combined with 
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single phase flow direct numerical simulation (DNS) to parameterise the 

pore-network. First, they identified pore bodies and pore throats by using a 

maximal ball algorithm in a way similar to that used by Dong and Blunt 

(2009). Second, they discretised the void space into pores, these pores are 

further divided into smaller elements called “half-throat connections”. Then, 

by using single phase flow direct numerical simulation on the underlaying 

CT-image at different discretisation levels, they defined the parameters (e.g. 

volume, cross-sectional area, and conductivity) of each half-throat. Finally, 

they defined the connectivity between pore throats and pore bodies, and the 

outputs files that contain pore body and pore throat radii, pore body 

Cartesian coordinates, pore body coordination numbers, pore throat lengths, 

pore body and pore throat volumes, and pore body and pore throat shape 

factors. The generated pore bodies and pore throats may have either 

triangular, square or circular cross sections. The shape of the pore cross-

sections is selected based on the level of irregularity over the wall of the 

narrow pores which is quantified with shape factor parameter, G (-). The 

shape factor is a dimensionless parameter, defined as 𝐺 =
𝑎

𝑝2 , where a 

(mm2) is the average cross-sectional area of the pore throat or the pore body 

and p is its average perimeter (Mason and Morrow, 1991; Valvatne and 

Blunt, 2004). The value of the shape factor decreases when the shape of the 

pore space wall surface becomes irregular. According to the geometrical 

definitions of 2D geometries, the value of the shape factor ranges from zero, 

for a slit shape triangle, to 
√3

36
 for an equilateral triangle, whilst for squares 

and circles, the shape factor has values of 
1

16
 and 

1

4𝜋
 (Figure 2-13), 

respectively (Oren et al., 1998; Valvatne & Blunt, 2004). The shape factor 

definition for more complex geometries such as hyperbolic polygonal cross-

sections can be found in Joekar-Niasar et al. (2010). 
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Figure 2-13 The dimensionless shape factor of any pore, after Dong (2007). 

2.8 Summary and research gaps  

All previously mentioned pore-scale modelling methods (percolation 

models, Lattice-Boltzmann models, smoothed particle hydrodynamics 

approach, level-set models and direct numerical simulations) are 

computationally more expensive compared to pore-network models which 

are computationally affordable for simulating larger domains. Nevertheless, 

when PNM is used, the pore geometries are idealised into simple geometries 

that represent the main features of the pores, and this may result in losing 

some geometrical information (Joekar-Niasar & Hassanizadeh, 2012). Blunt 

et al. (2002) stated that if the complex pore geometry of a medium can be 

effectively represented, then pore-scale models can provide accurate 

predictions of the flow behaviour. Therefore, to minimize the information 

that might be lost when generating a pore-network, and to accurately 

represent the void space, the state of the art pore-network extraction code 

developed by Raeini et al. (2017) has been used throughout the presented 

work.  

To my knowledge, there are only five previous studies that modelled non-

Darcy flow using PNM (Thauvin & Mohanty, 1998; Wang et al., 1999; Lao 

et al., 2004; Lemley et al., 2007; Balhoff & Wheeler, 2009) and none of 

these considered the effect of pore body and pore throat shape factors (G) 

on the flow simulation, which is considered of high importance for natural 
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porous media that are usually composed of pores with irregular shapes. It is 

also necessary for simulating two or multi-phase flow within the non-Darcy 

flow regime. Moreover, based on the above literature, it was found that a 

new 3D pore-network model, capable of simulating non-Darcy flow and 

which can overcome all the limitations in the above five pore-network 

modelling studies; i.e. fixed value for the maximum coordination number 

(Lao et al., 2004; Lemley et al., 2007), 2D simulations only (Lao et al., 

2004), uncertainty in some equations that calculate the inertial effects due to 

expansion and contraction (Thauvin & Mohanty, 1998; Wang et al., 1999; 

Lao et al., 2004; Balhoff & Wheeler, 2009), the use of regular structured 

pore-networks only (Thauvin & Mohanty, 1998; Wang et al., 1999), lack of 

calibration (Thauvin & Mohanty, 1998; Wang et al., 1999) and neglecting 

the effect of pore shape factors, is needed. It is important to determine the 

threshold (the onset of non-Darcy flow) after which this model should be 

applied and Darcy’s law is no longer valid. It is also noted that none of the 

above-mentioned studies that used pore-network modelling for non-Darcy 

flow investigated in detail the onset of non-Darcy flow. However, Thauvin 

and Mohanty (1998) mentioned that Darcy’s law was valid for Reynold’s 

numbers < 0.11, but this value was specific only for the regular structured 

pore-network used in their study. Nevertheless, Lemley et al. (2007) 

followed the value recommended by Janicek and Katz (1955) and 

mentioned that the onset of non-Darcy flow is usually observed when the 

Forchheimer’s number (Equation 2.18) is greater than or equal 0.1, 

however, this value was obtained from studying gas flow through different 

porous media. 

The work of Martins et al. (2007) was the only developed pore-network 

model to simulate turbulent flow, however, they assumed a constant value 

for the expansion and contraction coefficients for each pore throat and they 

were able to obtain results that agree with previous experimental work by 

fitting the values of this coefficient and the coordination numbers of the 

pore-network. Moreover, they applied Blasius equation to obtain the friction 

factor for each pore throat in the turbulent flow regime, but they did not 

verify if the flow is fully developed in each pore throat.    
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To my knowledge, all solute transport pore-network modelling studies were 

limited to the Darcy flow regime. The effect of non-Darcy flow and inertial 

forces on solute transport in porous media has never been investigated yet 

using PNM. The two studies (by Wood (2007) and Nezhad et al. (2019)) 

which investigated the inertial effects on dispersion did not provide 

satisfactory results. Moreover, all previous PNM studies that used the 

Taylor-Aris equation to model solute transport using the MCM, did not 

check the residence time needed to reach an asymptomatic state for each 

pore throat in the pore-network which may produce misleading results.  

Based on the above summary, and referring to Figure 2-7a, at the pore-

scale, flow and solute transport within the laminar linear and laminar 

nonlinear flow regimes will be modelled in Chapter 4 and Chapter 6. In 

Chapter 5 and Chapter 7, flow and solute transport within all possible flow 

regimes, including the pore-scale laminar, transition and turbulent flow 

regimes, will be modelled. The models presented in these chapters are 

proposed to overcome most of the mentioned limitations in the previous 

studies and to cover some of the previously mentioned research gaps which 

have not been investigated before. Moreover, the experimental work 

presented in Chapter 3, is performed to verify the proposed flow and solute 

transport models within all possible macro-scale flow regimes.  
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Chapter 3 

3 Sample preparation, scanning and experimental work  

3.1 Introduction 

Most of the previous work that used pore-network modelling to simulate 

flow through porous media assumed Darcy flow and applied the Hagen-

Poiseuille (Hagen, 1839; Poiseuille, 1841) analytical equation at the pore-

scale. They did not verify their models assuming that using analytical 

equations is sufficient, however, this is not the case for the Forchheimer and 

turbulent flow regimes where semi-analytical equations are used. There are 

two sources of uncertainties that may affect the results of the proposed 

Forchheimer and turbulent flow PNM simulation codes. The first is the 

proposed system of equations used for flow simulation, while the second is 

the approximations associated with the method used to generate a pore-

network equivalent to a specific medium and the uncertainties resulting 

from simplifying the irregular pore shapes into simple shapes for which 

analytical or semi-analytical equations can be applied (Balhoff & Wheeler, 

2009). It is very difficult to test a model’s performance with two main 

sources of uncertainties. Therefore, the laboratory experiments presented in 

this chapter were proposed to minimise the uncertainties that might affect 

the simulation results. A packed spheres sample was prepared for the 

laboratory experiments, then the same sample was CT-scanned and its CT-

image was used to produce an equivalent pore-network using the state-of-

the-art pore-network extraction code developed by Raeini et al. (2017). To 

my knowledge, no previous work used a medium CT-scan to simulate 

turbulent flow through porous media, i.e. using any previous data in the 

literature to verify the proposed turbulent flow code is prone to some 

uncertainties associated with the method used to generate a pore-network 

that represents the medium used in the literature.  

This chapter explains the procedures followed to prepare and scan the 

packed spheres sample used for the flow and solute transport experimental 

tests. The experimental facilities, procedures and results are presented. Two 
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types of experiments were conducted on the packed spheres sample; a) 

steady state flow tests to measure the discharge, velocity and pressure loss 

within the Darcy, Forchheimer and turbulent flow regimes, and b) solute 

transport tests to measure the breakthrough curves and magnitude of 

dispersion coefficients through the sample. 

3.2 Sample preparation and experimental setup 

The spheres’ average diameter and the dimensions of the packed spheres 

sample were designed to achieve all flow conditions (Darcy, Forchheimer 

and turbulent flow regimes) using the existing laboratory facilities at the 

School of Engineering, at the University of Warwick. For that purpose, the 

samples and results of the previous experimental work conducted by Fand et 

al. (1987), Kececioglu and Jiang (1994) and Bağcı et al. (2014) on packed 

spheres were studied and their data were used as a reference. The proposed 

sample is composed of uniform spherical glass beads with average diameter 

(dm) of 1.84 ± 0.14 mm. The spheres were packed in a Perspex circular pipe 

of 300 mm length and 50 mm internal diameter. Two fine steel meshes were 

used at both ends of the sample to hold the spheres in place. The packing 

process was done in layers and each layer was compacted to achieve 

minimum porosity of the sample (36%). The sample length was proposed to 

achieve head loss, through the sample, ranging from a few millimetres up to 

~2.5 m, while the sample diameter was chosen equal to the diameter of the 

main recirculating pipe of the test rig. The porous sample was placed in a 

recirculating pipe system (a diagram is shown in Figure 3-1) with a sump of 

approximately 2.5 m3. Water was used as the working fluid at different 

discharge rates ranging from ~0.001 to 0.18 l/s, and for each run, the 

discharge rate was measured manually since the readings of the provided 

digital flowmeter (Siemens Sitrans FM Magflo MAG 5100W flowmeter) 

were fluctuating especially at low discharges. The discharge was measured 

by collecting the volume of water over a specific time period. Depending on 

the discharge, the collected water volume ranged from ~0.1 to 2 litres and 

the collection time was measured using a digital stopwatch with ± 0.01 s 

accuracy. A 2-Litre measuring cylinder was used to measure the volume of 

water collected with ± 10.00 ml accuracy, while at very low discharges 
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another 0.25 Litre measuring cylinder with ± 2.0 ml accuracy was used. The 

head loss measurements were done using two manometer tubes located 50 

mm after the sample inlet and before the sample outlet to eliminate the 

effect of boundaries on the flow, i.e. the head loss was measured through a 

distance of 200 mm in the porous medium (Figure 3-1). To ensure the 

accuracy of manometric measurements at low pressure gradients, an SPI 

digital depth gauge with accuracy ± 0.01 mm was used to measure the 

manometric heads inside fixed, 25 mm wide manometric tubes. While at 

larger head differences (> 500 mm), graduated cylinders were used to 

measure the manometric head difference with ± 1 mm accuracy. Moreover, 

before taking any measurements, water was allowed to run through the 

recirculating system for a period sufficient to remove any air from the 

system.  

 

Figure 3-1 A schematic diagram of the laboratory test rig and a photograph 

of the packed spheres sample showing the position of the manometer 

measuring points, all dimensions are in millimetres. 

The solute transport tests were done at different discharge rates on the same 

packed spheres sample. The tests were performed using a conservative 

fluorescent dye (Rhodamine WT), with molecular diffusion (Dm) equal to 

2.910-10 (m2/s) (Chandler, 2012), as a tracer. A peristaltic pump was used 

to inject the dye at the beginning of the upstream recirculating pipe (20 cm 
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after the water pump, Figure 3-1) to ensure that the dye has travelled a long 

distance and is fully mixed with water before measuring its concentration 

using a Turner Designs Cyclops-7 Submersible Sensor (referred to as 

“Cyclops”). Four Cyclops sensors were used to measure the dye 

concentration over time for each test and their locations are shown in Figure 

3-1. The dye was injected continuously over time until the concentration 

detected at all Cyclops sensors reached a constant value over time. The 

solute transport tests were done using a methodology similar to that used by 

Guymer and Stovin (2011) to determine the dispersion through surcharged 

manhole structures. Following that methodology, and by recording the 

breakthrough curves (BTCs) at Cyclops 2 and Cyclops 3, then by fitting the 

BTCs to the 1D ADE, the longitudinal dispersion coefficient (DL, pipe+medium) 

is determined for the whole system (the porous medium and the 

recirculating pipe) in between these two Cyclops sensors. Then, by 

recording the BTCs at Cyclops 1 and Cyclops 2, or at Cyclops 3 and 

Cyclops 4, the longitudinal dispersion coefficient (DL, pipe) of the 

recirculating pipe only is determined. Finally, for each run, the longitudinal 

dispersion coefficient of the porous medium is determined by subtracting 

the value of DL, pipe from DL, pipe+medium.  

The Turner Designs Cyclops-7 Submersible Sensor has a front LED which 

produces a green light, and a front sensor that receives back the fluoresced 

light (Figure 3-2 a). Each Cyclops sensor is connected to a data logger and a 

power supply that provides an electric current with voltage range from 3 to 

15 Volts. The received fluoresced light is converted into a voltage output 

which can be interpreted as dye concentration using a calibration plot. Three 

different modes (gain settings) can be used for the Cyclops sensor; X1 

which can detect concentration from 0 to 1000 parts per billion (PPb), X10 

which can detect concentration from 0 to 100 PPb and X100 which can 

detect concentration from 0 to 10 PPb. When the gain increases, the 

concentration range decreases and the sensitivity of the Cyclops sensor 

increases. In this work only gain X1 and X10 were used and the Cyclops 

sensor calibration plots were developed for each gain. A 12-volt battery and 

a control box (Figure 3-2 b-c) were used for switching easily from one gain 
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to another. To calibrate the Cyclops sensors, a linear calibration plot needs 

to be established using samples with known concentrations. The Cyclops’ 

manual recommends using different samples, with known concentration, in 

a non-fluorescent glass beaker placed on a non-reflective black surface. 

Then, a linear relationship between the output voltage and the known 

concentration can be established. When this calibration method was 

followed, the obtained calibration plot was not accurate because the 

measurements were affected by the surrounding room lighting and also 

because the signals received from a Cyclops sensor placed in a glass beaker 

differ from the signals received from the same Cyclops sensor mounted in 

the test rig. So, following Hart (2013), the succeeding calibration 

procedures were used to calibrate the Cyclops while mounted in the test rig. 

The sump of the test rig was filled with a known volume of clear water, then 

the proposed amount of dye was added to the sump to yield a dilution with 

known concentration (Figure 3-3). The dye was mixed manually in the 

sump, then the flow was allowed to circulate for a few minutes to ensure 

that the dye was completely mixed with water. The sump of the test rig was 

filled with different known concentrations and the signal from all the 

cyclops sensors mounted in the test rig for these known concentrations were 

obtained to construct the calibration plot shown in Figure 3-7. Next to the 

mounted Cyclops sensors, the circulating tube was wrapped with black 

paper to minimise the error resulting from the room lighting. After 

calibration, and before performing the experiments, the water in the sump 

was replaced with clear water.  

 

Figure 3-2 Photographs of the a) Cyclops sensor, b) 12-Volt battery and c) 

power unit. 
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Figure 3-3 Filling the sump with a known concentration during the Cyclops 

sensor Calibration process. 

3.3 X-ray scanning and determining the REV of the sample   

Before performing the proposed flow and solute transport experiment, the 

packed spheres sample was scanned using a micro X-ray Computed 

Tomography (XCT) scanner to produce a 3D image of the sample micro-

structure (see Figure 3-5). The obtained 3D XCT-image was used later as 

input to the pore-network extraction code. The scanning process was done 

at Warwick Manufacturing Group (WMG). Four XCT scans were 

performed to examine the packed spheres sample utilising Nikon XT H 

225/320 LC (Figure 3-4) and the settings provided in Table 3-1. The XCT 

settings were chosen to achieve optimum penetration and minimise noise. A 

physical radiation filter was used to reduce beam hardening and cupping 

errors. The resolution of the scans (33 µm) was achieved based on the 

diameter of the specimen. The four scans were combined together to 

provide the full volume of the middle part (between the two manometer 

measuring points) of the sample. 
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Figure 3-4 The (Nikon XT H 225/320 LC) micro X-ray Computed 

Tomography scanner, located at Warwick Manufacturing Group (WMG), 

used to scan the packed spheres sample. 

 

Figure 3-5 The packed spheres sample field of view and a longitudinal 

cross-section through the sample. 
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Table 3-1 The micro-XCT scanning settings. 

XCT scanning settings  

Voltage (kV) 145 

Current (μA) 145 

Exposure time (s) 2 

Gain (dB) 24 

Filtration Sn (mm)  0.25 

Resolution (μm) 33 

Number of projections 3142 

All pore-scale modelling methodologies, described in Section 2.2, have 

limitations regarding the size of the sample. These limitations are attributed 

to the available computational power, and for this reason, modelling the 

flow behaviours for large samples is not possible and required the use of 

other upscaling techniques. Thus, all pore-scale modelling methodologies 

perform their computations on a Representative Elementary Volume (REV). 

An REV can be defined as a representative portion or subvolume of the 

medium, when selecting such a volume at different locations in the sample, 

the resulting parameters (ϕ, KD or β) of the subvolumes should not vary 

significantly (Bear, 1972), as seen in Figure 3-6. The scanned middle part of 

the packed spheres sample, which has the dimensions of 50 mm  50 mm  

177 mm, was used to determine the REV because using the whole volume 

for simulations required computational resources more than those available. 

To find an REV which represents the properties of the whole sample, a 

conventional approach was followed, and a code was developed to generate 

random coordinates for cubic subvolumes with different cube lengths (5, 10, 

15, 20, 25, 30, 35 and 50 mm), and 10 different crops at random locations 

were tested for each cube size. For each single crop of the XCT image, a 

pore-network was extracted using the pore-network extraction code 

developed by Raeini et al. (2017), and the developed pore-network non-

Darcy flow model, shown in Chapter 4, was used to estimate the porosity, ϕ 

(%), Darcy-permeability (Equation 2.1), KD (mm2), and non-Darcy 

coefficient (Equation 2.3), β (1/mm). 

Figure 3-6 shows an idealised relationship for the values of a medium 

parameter at different cubic subvolume lengths of the medium, after 

Costanza-Robinson et al. (2011). Three zones (I, II and III) are shown in 
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Figure 3-6. In zone I, the fluctuations in the parameter value (e.g. porosity) 

are due to pore-scale heterogeneity, i.e. due to the change of pore size from 

one location to another in the sample. In zone II, the parameter value is 

independent of the REV length and it should be representative of the 

medium at large scale. A minimum size for the REV is the size at the left-

hand boundary of zone II. In zone III, these changes in the parameter value 

are associated with the macro-scale heterogeneity of the medium. In a 

heterogeneous porous media, zone II may be difficult to define.  

 

Figure 3-6 Conceptual schematic representing the idealised relationship 

between a parameter (e.g. ϕ, KD or β) and the scale of the measurement 

(REV length), by Costanza-Robinson et al. (2011). 

3.4 Results 

3.4.1 The Cyclops calibration plots  

The calibration plots, shown in Figure 3-7, were obtained from the Cyclops 

sensors’ calibration process for X1 and X10 gains. The plots show a linear 

relationship between the output voltage received from the Cyclops sensor 

and the concentration. The correlation coefficient, obtained by fitting a 

straight line through the values, for all relationships is 0.999 or higher.  
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Figure 3-7 The calibration plot of the four Cyclops sensors, for a) X1 gain 

and b) X10 gain. The correlation coefficient for all relationships is 0.999 or 

higher.  

3.4.2 Determining the REV size  

Figure 3-8 shows the obtained porosity, Darcy-permeability and non-Darcy 

coefficient values for different subvolume cube lengths (5, 10, 15, 20, 25, 

30, 35 and 50 mm) of the packed spheres sample. It can be produced by 

applying the proposed non-Darcy flow model (Chapter 4) to the pore-

networks extracted from all subvolume crops of the packed spheres’ XCT-

image (see Section 3.3). In Figure 3-8, a suitable REV might be a 

subvolume cube with 30 or 35 mm length, which is a common value of the 

plateaus in figures 3-8(a-c) associated with minimum fluctuation, i.e. 

minimum standard deviation. However, this is not the case for the relatively 

small sample of 50 mm diameter used in the laboratory, considering its 

large average bead diameter of 1.84 mm. For this specific case, using an 

REV length less than 50 mm results in eliminating the effect of the 

containing pipe wall or boundaries. Due to the small size of the sample, the 

C = 500.4Vo - 18.393

C = 625.82Vo - 18.756

C = 562.86Vo - 19.317C = 569.99Vo - 18.042

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5

c
o
n
c
e
n
tr

a
ti
o
n
, 

C
(p

p
b
)

Voltage, Vo (volt)

a)

Cyclops 1

Cyclops 2

Cyclops 3

Cyclops 4

C = 42.034Vo - 2.4936

C = 52.177Vo - 2.0308

C = 47.234Vo - 2.3832

C = 48.021Vo - 1.59

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

c
o
n
c
e
n
tr

a
ti
o
n
, 

C
(p

p
b
)

Voltage, Vo (volt)

b)

Cyclops 1

Cyclops 2

Cyclops 3

Cyclops 4

Cyclops 2,

Cyclops 1,

Cyclops 3,

Cyclops 4,

Cyclops 2, 

Cyclops 3, 

Cyclops 4, 

Cyclops 1, 



92 

 

boundaries of the containing pipe have a high effect on the estimated 

medium parameters as shown in Figure 3-8. For that reason, an REV length 

of 50 mm was selected to consider the effect of the external pipe on the 

medium structure and on the flow behaviour through the medium.               

 

Figure 3-8 Variation of a) porosity, b) Darcy-permeability and c) the non-

Darcy coefficient for different cubic subvolumes (10 crops for each REV 

length) of the packed spheres (dm = 1.84 mm) sample. The values in blue 

represent the mean of 10 different values for each REV length, while the 
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error bars represent the standard deviation of these estimated 10 values of 

each parameter.  

3.4.3 Flow test experimental results 

During the flow test experiments, the measured discharge ranged from 

0.001 to 0.18 l/s. Figure 3-9 shows the dimensionless head gradient (Δh/L) 

versus flow superficial velocity (v), where v (mm/s) represents the discharge 

divided by the whole cross-sectional area of the sample. The head loss 

measurements were obtained through the intermediate 200 mm of the 

sample. The plot shown in Figure 3-9, shows a linear relationship at very 

low velocities (when v < 4 mm/s), and within this range, Darcy’s law 

(Equation 2.1) was applied to estimate the medium Darcy permeability, KD 

(mm2). Figure 3-10 and Figure 3-11 demonstrate the normalized 

dimensionless pressure gradient (
𝛥𝑃 𝐾𝐷

𝐿 µ 𝑣
) versus Reynold’s number (Re (-) 

and ReK (-)). For Re (Equation 2.12), the characteristic length was chosen 

equal to the average particle diameter of the packed spheres (dm = 1.84 

mm), while for ReK (Equation 2.16) the characteristic length is equal to the 

square root of the sample Darcy permeability. In Figure 3-10 and Figure 

3-11, the change of the slope of the results represents different flow 

regimes, and from the figures the onset of non-Darcy flow and the onset of 

turbulent flow are determined when Re is equal to 7.5 and 98, and when ReK 

is equal to 0.19 and 2.54, respectively. Using a Forchheimer plot (Section 

2.1) as presented in Figure 3-12, the Forchheimer coefficients for the non-

Darcy, β (1/mm), and turbulent flow regimes, β` (1/mm), can be 

determined. From the experimental results, the values of KD, β and β` are 

equal to 2,25010-12 m2 ± 7%, 10,871 m-1 ± 11% and 7,568 m-1 ± 11%, 

respectively.  
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Figure 3-9 The head gradient (Δh/L) vs. flow superficial velocity (v), 

obtained from flow test experiment for the middle part (L = 200 mm) of the 

packed spheres (dm = 1.84 mm) sample. 

 
Figure 3-10 The normalised dimensionless pressure (ΔPKD/Lµv) versus 

Reynold’s number (Re) for the packed spheres (dm = 1.84 mm) sample. The 

change of the slope of the results represents different flow regimes. 
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Figure 3-11 The normalised dimensionless pressure (ΔPKD/Lµv) versus 

Permeability based Reynold’s number (ReK) for the packed spheres (dm = 

1.84 mm) sample. The change of the slope of the results represents different 

flow regimes. 

 
Figure 3-12 A Forchheimer plot for the packed spheres (dm = 1.84 mm) 

sample. 
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average bead diameter, while the onset of non-Darcy flow and the onset of 
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it is noticed that the onset of non-Darcy flow obtained by Fand et al. (1987) 
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some uncertainties in their laboratory experiments for this sample (dm = 

2.098 mm), as they noticed a change in the sample structure and its 

permeability after passing high flow discharges through the sample.  

Table 3-2 The onset of non-Darcy flow and the onset of turbulent flow for 

the packed spheres sample (dm = 1.84 mm), compared to data in the 

literature.  

Sample 
KD10-6 

(mm2) 

Onset velocity 

(mm/s) 

Onset of non-

Darcy flow 

Onset of 

turbulent flow 

Non-

Darcy 
turbulence Re ReK Re ReK 

Experimental 

results, dm = 1.84 

mm 

2,250 ± 

7% 

4.1 ± 

3% 
53.5 ± 4% 

7.50 ± 

3% 

0.19 ± 

7% 

98.00 ± 

4% 

2.54 ± 

8% 

Fand et al. (1987), 

dm = 2.098 mm 
3,885 1.74 47.7 

2.30-

5.0 

0.068-

0.15 

80.00-

120.00 

2.37-

3.57 

Kundu et al. 

(2016), dm = 2.5 

mm 

5,488 7.24 N.A. 18.10 0.20 N.A. N.A. 

Bağcı et al. (2014), 

dm = 3 mm  
6,423 7.5 77.5 22.45 0.59 232.50 6.21 

3.4.4 Solute transport test experimental results 

Due to some limitations, the solute transport experiments covered only the 

turbulent flow regime. While performing the solute transport experiments in 

the Darcy and Forchheimer flow regimes, it was noticed that the obtained 

results were unreasonable and difficult to interpret compared to the results 

obtained within the turbulent flow regime (see Figure 3-13). In Figure 

3-13a, within the Forchheimer flow regime, the highest concentration 

measured at all Cyclops sensors is not the same, and the dye was detected at 

Cyclops 3 earlier than at Cyclops 2 (see Figure 3-1 for the Cyclops sensor 

positions), both of these observations are unreasonable. By investigating the 

reason behind these observations, it was found that, in the Darcy and 

Forchheimer flow regimes, the dye was not fully mixed with water in the 

recirculating pipe and therefore the Cyclops sensors did not detect accurate 

measurements of the concentration. In the turbulent flow regime, the flow is 

chaotic and characterised by high velocities, eddies and velocity 

fluctuations which led to rapid mixing. According to Taylor (1954a), for 

laminar flow, the solute can be fully mixed in a pipe cross-section when 
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4 𝐿

𝑟
≫

𝑢 𝑟

𝐷𝑚
≫ 6.9, where L (mm) is the pipe length, r (mm) is the pipe radius 

and u (mm/s) is the average velocity through the pipe. According to 

Taylor’s condition, and the experimental configurations shown in Figure 

3-1, the recirculating pipe length required for the solute to be fully mixed, 

before it reaches the Cyclops sensors, within the Darcy and Forchheimer 

flow regimes should range from 266 to 28827 m, depending on the 

discharge value, which is practically impossible. For this reason, the solute 

transport experiments were performed only within the turbulent flow 

regime. For the laminar and Forchheimer flow regimes, the condition 

proposed by Taylor (1954a) can be achieved by using smaller diameter and 

larger length of the recirculating pipe, but in this case the head loss through 

the small recirculating pipe will be higher than the maximum head that can 

be delivered by the pump. Another option is to use a mixing chamber to 

achieve fully mixed conditions, but the propeller motion may create some 

eddies and affect the flow.  
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Figure 3-13 The breakthrough curves for two selected cases, a) for 

Forchheimer flow when the porous medium Re = 76.50 and b) for turbulent 

flow when the porous medium Re = 140.20. 

As explained in Section 3.2, for each run, a first step to determine the 

longitudinal dispersion coefficient for the porous medium (DL, medium) and 

for the circulating pipe (DL, pipe) is to fit the measured breakthrough curves 

to the analytical solution of the 1D ADE (as shown in Figure 3-14). After 

analysing the results, it was found that the longitudinal dispersion 

coefficient (DL, medium) obtained for the porous medium is small compared to 

the value of DL, pipe+medium. Also, the values of DL, pipe+medium and DL, pipe 

were comparable to each other, despite the fact that DL, pipe+medium should 

always be larger than DL, pipe, which led to a relatively large error in the 

estimated values of DL, medium. Sometimes the obtained DL, medium values 
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were negative, but these values were excluded from the results shown in 

Figure 3-15.      

 

Figure 3-14 Fitting the observed breakthrough curves to the 1D ADE 

(Equation 2.20). The observed concentration is normalised by the maximum 

concentration obtained during the test, and Re = 140.20 for the porous 

medium.   

 
Figure 3-15 The obtained longitudinal dispersion coefficient (DL, medium) of 

the packed spheres sample at different pore velocities (u) within the 

turbulent flow regime. The error bars represent the root mean square error. 
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are used as inputs to the proposed models. The coefficient of determination 

(R2) is used to measure the goodness of fit between the experimental and 

numerical results. The coefficient of determination (R2) is given by: 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑓𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 3.1 

where 𝑦𝑖 is the experimentally observed value, 𝑓𝑖 is the numerically 

predicted value and 𝑦̅ is the mean of the experimentally observed values. R2 

is also used to measure the goodness of fit between the obtain numerical 

results and results in the literature.    

3.6 Conclusion 

The experimental facilities and procedures of the flow tests and solute 

transport experiments were explained. In addition, the porous medium 

(packed spheres) sample preparation and design were discussed. The details 

of the X-ray Computed Tomography (XCT) scanning and determining the 

representative elementary volume (REV) of the porous sample were 

demonstrated. 

The boundaries of the external containing pipe of the packed spheres sample 

were found to have a high effect on the estimated medium parameters, such 

as porosity and permeability. Thus, a cube of 50 mm length, which is equal 

to the sample diameter, was selected as an REV to consider the effect of the 

external pipe on the medium structure and flow behaviour.                 

The steady state flow test experiments extended from the Darcy flow regime 

to the turbulent flow regime and the corresponding discharge ranged from 

0.001 to 0.18 l/s. The onset of non-Darcy flow and the onset of turbulence, 

determined by plotting the normalised dimensionless pressure gradient 

versus Reynold’s number (Re), were observed at Re equal to 7.5 and 98, 

respectively, which agrees well to the previously published studies of Fand 

et al. (1987) and Kundu et al. (2016).  

For solute transport test experiments, within the Darcy and Forchheimer 

flow regimes, the dye was not fully mixed with the water and the Cyclops 

sensors did not provide accurate measurements for the concentration. 
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Within the turbulent flow regime, the velocity fluctuations and eddies 

enhanced the process of rapid mixing and the dye was cross-sectionally 

fully mixed with the water. The longitudinal dispersion coefficient for the 

porous medium was relatively small compared to the longitudinal dispersion 

coefficient of the recirculating pipe and the porous medium together, and 

this results in large errors when estimating the longitudinal dispersion 

coefficient values for the porous medium.  
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Chapter 4  

4 Pore-network modelling of Darcy and non-Darcy flow 

In this chapter, the PNM algorithm developed for modelling Darcy and non-

Darcy flow in porous media is explained. The proposed model has been 

applied on four porous media with different degrees of heterogeneity and 

additionally on the packed spheres sample used in the experimental work. 

The pore-networks of all samples have been extracted from their CT-

images. The onset of non-Darcy flow has been determined and compared to 

previous studies and to the values obtained using existing empirical 

relationships. The proposed model results are compared to the DNS results 

performed on the same media (by Mostaghimi et al. (2012) and Muljadi et 

al. (2015)) and to the experimental results shown in Chapter 3.    

4.1 Introduction  

Based on the literature review in Section 2.3.2, it has been found that a new 

3D pore-network model, capable of simulating non-Darcy flow and 

overcoming all the limitations in the previous non-Darcy flow pore-network 

modelling studies, is needed. Therefore, the main objective of this chapter is 

to develop a pore-network model that can represent the flow characteristics 

and predict the properties of the porous media within the non-Darcy flow 

regime. It is important to determine the velocity threshold, i.e. the onset of 

non-Darcy flow, above which this model should be applied and Darcy’s law 

is not valid. 

The reliability of predictions from pore-network modelling depends firstly 

on how accurately the approximated pore-network represents the porous 

medium; and secondly, on the accuracy of the equations and the numerical 

schemes used for simulating the physical or chemical process in the porous 

medium (Balhoff & Wheeler, 2009). Among the three different approaches 

that can be followed to generate a pore-network (explained in Section 2.7), 

in this study, for verification purposes, the third method is used to extract 
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the pore-networks from the available CT-image of each sample using the 

pore-network extraction code developed by Raeini et al. (2017). 

The proposed model has been applied to simulate flow through five pore-

networks extracted from the 3D CT-images of beadpack, Bentheimer 

sandstone, Estaillades carbonate, packed spheres, and Berea sandstone 

samples. The beadpack, Bentheimer sandstone and Estaillades carbonate are 

the same samples used for modelling non-Darcy flow using direct numerical 

simulation by Muljadi et al. (2015). The packed spheres sample is the same 

medium used in the experimental work (Chapter 3) it is referred to, 

throughout the whole thesis, as the “packed spheres” sample. Berea 

sandstone is the sample used to simulate flow and dispersion using direct 

numerical simulation by Mostaghimi et al. (2012). The beadpack, 

Bentheimer, Estaillades and Berea CT-images are obtained either from the 

Imperial Collage website (https://www.imperial.ac.uk/earth-

science/research/research-groups/perm/research/pore-scale-

modelling/micro-ct-images-and-networks/) or through direct contact with 

the authors. The properties of these CT-images together with the CT-image 

of the REV of the packed spheres sample (determined in Section 3.4.2) are 

shown in Table 4-1.  

4.2 Method  

4.2.1 Darcy and Non-Darcy flow modelling  

4.2.1.1 Viscous pressure loss at the pore-scale 

The average velocity through any pore, 𝑢pore (mm/s), is related to the 

pressure loss through the pore, ∆𝑃pore (Pa), using the Darcy-Weisbach 

equation (Weisbach, 1845; Darcy, 1857), Equation 2.8 (Δℎ𝑝𝑜𝑟𝑒 =
∆𝑃pore

𝛾
=

𝑓pore
𝐿pore

2 𝑟pore

𝑢pore
2

2𝑔
). For fully developed laminar flow, the pressure loss 

through the pore is caused mainly by fluid viscosity and the pore friction 

factor is only a function of Reynold’s number (Re) (e.g. for circular cross-

sections, 𝑓pore =
64

𝑅𝑒
) (Çengel & Cimbala, 2006; Rennels & Hudson, 2012), 

and Equation 2.8 can be rewritten as 

https://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
https://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
https://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
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𝑞pore = 𝐾pore Δ𝑃pore
v =

𝑔pore

𝐿pore
Δ𝑃pore

v   4.1 

where 𝑞pore (mm3/s) is the flow rate through the pore, 𝐾pore (mm3/Pa·s) is 

the hydraulic conductivity, 𝑔pore (mm4/Pa·s) is the fluid conductance that 

can be calculated using Equation 4.2 and Δ𝑃pore
v  (Pa) represents the viscous 

pressure loss through the pore. 

For a circular capillary tube (either a pore body or a pore throat), the 

conductance gpore is given analytically by the Hagen–Poiseuille equation 

(Hagen, 1839; Poiseuille, 1841) as follows 

𝑔pore = 𝑘
𝑎2𝐺

𝜇
=

1

2

𝑎2𝐺

𝜇
 4.2 

where a (mm2) is the pore cross-sectional area. 

For other cross-sectional shapes such as equilateral triangular and square 

cross sections, analytical expression can also be derived with k (-) equal to 

3/5 and 0.5623 respectively (Patzek & Silin, 2001; Valvatne & Blunt, 

2004). It has been also found that the conductance of irregular triangles 

(scalene triangle) can be approximated by Equation 4.2, using the same 

constant (k = 3/5) as for an equilateral triangle (Oren et al., 1998; Valvatne 

& Blunt, 2004). According to Oren et al. (1998), the pore cross-sectional 

area (𝑎) can be related to the shape factor (G) as 

𝑎 =
𝑟pore

2

4𝐺
 . 4.3 

 

Figure 4-1 Schematic of a pore throat (i-j) and two pore bodies (i and j). 
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For a pore-network, the conductance (𝑔i−j,tot) between any two pore bodies 

(i and j) is the harmonic mean of the conductances through the pore throat 

and the two connected pore bodies as per Equation 4.4 (Oren et al., 1998; 

Valvatne & Blunt, 2004; Raoof & Hassanizadeh, 2012):  

𝐿i−j,tot

𝑔i−j,tot
=

𝐿i

𝑔i
+

𝐿i−j

𝑔i−j
+

𝐿j

𝑔j
 4.4 

where i-j indicates the connecting throat, Li-j (mm) is the pore throat length 

excluding the lengths of the two connected pore bodies i and j, Li (mm) and 

Lj (mm) are the pore body lengths from the pore throat interface to the pore 

body centre, and 𝐿i−j,tot (mm) is the length between the two pore body 

centres (Figure 4-1). 

To determine the viscous pressure loss between any two pore bodies (i and 

j), Equation 4.1 can be rewritten as  

𝑞i−j = 𝐾i−j,tot Δ𝑃i−j,tot
v =

𝑔i−j,tot

𝐿i−j,tot
Δ𝑃i−j,tot

v  4.5 

where 𝑞i−j (mm3/s) is the discharge through any pore throat that connects 

the two pore bodies i and j, 𝐾i−j,tot (mm3/Pa·s) is the hydraulic conductivity, 

Δ𝑃i−j,tot
v  (Pa) represents the viscous pressure loss between the two pore 

bodies i and j.  

4.2.1.2 Pore-scale pressure loss due to inertial effects 

For relatively high flow velocities, the inertial effects cannot be neglected as 

in the Darcy creeping flow regime. The inertial effects due to expansion, i.e. 

when flow moves from a pore throat to a connected pore body, and 

contraction, i.e. when flow moves from a pore body to a connected pore 

throat, cause additional pressure loss that should be considered in the 

calculation of the total pressure loss through any pore throat. In the model 

developed, the pressure losses due to the inertial effects, expansion and 

contraction, are expressed using equations 4.6 and 4.7 (Kays, 1950; 

Abdelall et al., 2005; Guo et al., 2010; Momen et al., 2016): 
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∆𝑃i−j
exp

= 𝐾e

𝜌𝑢i−j
2

2
= [(

𝑎i−j

𝑎j
)
2

(2 𝑘𝑑j − 𝛼j) + 𝛼i−j − 2 𝑘𝑑i−j (
𝑎i−j

𝑎j
)]

𝜌𝑢i−j
2

2
,   4.6 

∆𝑃i−j
cont = 𝐾c

𝜌𝑢i−j
2

2
= {

1−[𝛼i−j (
𝑎i−j

𝑎i
)
2

−2 𝑘𝑑i−j+1−(
𝑎i−j

𝑎i
)
2

]𝐶𝑐2−2𝐶𝑐

𝐶𝑐2 }
𝜌𝑢i−j

2

2
.    

4.7 

where, in Equation 4.6, ∆𝑃i−j
exp

 (Pa) is the pressure loss due to expansion, 𝐾𝑒 

(-) is the expansion coefficient, 𝑎i−j (mm2) and 𝑎j (mm2) are the cross-

sectional areas of the pore throat and the connected pore body j, and 𝑢i−j 

(mm/s) is the average fluid velocity through the pore throat that connects 

the two pore bodies i and j. kd and α are the dimensionless momentum and 

kinetic-energy coefficients which depend on the velocity profile in each 

pore. 

In Equation 4.6, ∆𝑃i−j
cont (Pa) is the pressure loss due to contraction, 𝐾𝑐 (-) is 

the contraction coefficient, 𝑎i is the cross-sectional area of the connected 

pore body i, and Cc (-) is the dimensionless jet contraction-area ratio (Vena-

contraction) which can be estimated using Equation 4.8 (Geiger, 1964) as 

follows: 

𝐶𝑐 = 1 −
1− 

𝑎i−j

𝑎i

2.08 (1− 
𝑎i−j

𝑎i
)+0.5371

 . 
4.8 

For laminar flow, when the velocity is low and its profile is parabolic, kd is 

equal to 1.33, 1.39 and 1.43 for circular, square and equilateral triangular 

cross-sections respectively, while α is equal to 2 for circular cross-sections. 

For turbulent flow, when the velocity is high and its profile is almost 

uniform, kd and α are equal to ~1.0 (Kays, 1950).  

It has been found that using kd and α equal to 1.0 provides a better 

representation of non-Darcy flow which is characterised by higher velocities 

compared to the Darcy flow (El-Zehairy et al., 2019). This also agrees with 

the experimental findings of Abdelall et al. (2005) and Guo et al. (2010) 

performed on small channels. They showed that when using kd = 1.33 or α 

= 2.0 in equations 4.6 and 4.7, this result in overestimation of Ke and Kc in 
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most of the cases they tested. Moreover, when flow passes through a sudden 

expansion or contraction, this creates eddies and turbulence that make a 

uniform velocity profile a better approximation for the flow. Using kd and α 

equal to 1.0, equations 4.6 and 4.9 can be simplified and this results in the 

well-known Borda-Carnot equations (Crane, 1942; Bird et al., 1960). 

The total pressure loss for any pore throat in the network is the summation 

of pressure losses due to viscosity, expansion and contraction, and can be 

given according to Equation 4.9 as follows:  

∆𝑃i−j
tot = Δ𝑃i−j,tot

v + ∆𝑃i−j
exp

+ ∆𝑃i−j
cont = [

𝐿i−j,tot

𝑔i−j,tot
] 𝑞i−j + 𝐾e

𝜌𝑞i−j
2

2𝑎i−j
2 + 𝐾c

𝜌𝑞i−j
2

2𝑎i−j
2   , 

which can be written as  

4.9 

𝐴1 𝑞i−j
2 + 𝐴2 𝑞i−j + 𝐴3 = 0   4.10 

 

where  

𝐴1 = (𝐾e + 𝐾c)
𝜌

2𝑎i−j
2  , 𝐴2 = [

𝐿i−j,tot

𝑔i−j,tot
], 𝐴3 = − ∆𝑃i−j

tot. 

For the laminar Darcy flow regime, the inertial forces due to expansion and 

contraction are neglected, i.e. the term [𝐴1 𝑞i−j
2 ] in Equation 4.10 is 

neglected.  

4.2.1.3 Solving the final system of equations 

For each pore body i, considering incompressible steady flow, the mass 

conservation can be expressed as  

∑ 𝑞i−j

j∈𝑁i

= 0 4.11 

where 𝑁i is the coordination number of pore body i. 

For Darcy flow, the pressure losses due to expansion and contraction are 

neglected and, for the whole pore-network, Equation 4.5 is applied for each 

pore throat and Equation 4.11 is invoked at each pore body. This process 

results in a system of NPB linear algebraic equations, where NPB is the total 

number of pore bodies in the pore-network. Following Babaei and Joekar-

Niasar (2016), the resulting system of linear equations is arranged in matrix 
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form (𝐾̿𝑃̅ = 𝐵̅), where 𝐾̿ is the coefficient matrix which is a symmetric, 

sparse, diagonal matrix that contains the values of 𝐾i−j,tot (Equation 4.5) 

and has the dimension of NPB × NPB, 𝑃̅ is the unknown pressure vector and 

𝐵̅ is the right hand side vector which contains zero values except for the 

pores located at the inlet and outlet where the pressure is initially assigned. 

Then, solving this system of equations, the pressure value at each pore body 

can be obtained and by applying Equation 4.5, the discharge through each 

pore throat can be estimated. Finally, the overall Darcy permeability, KD 

(mm2), of the pore-network can be obtained by applying Darcy’s law 

(Equation 2.1) for the whole pore-network.  

For non-Darcy flow, for the whole pore-network, Equation 4.10 is applied 

for each pore throat and Equation 4.11 is invoked at each pore body. To 

apply the continuity equation at each pore body, Equation 4.10 is rewritten 

in the form of a simple quadratic equation (Equation 4.10), and because A1 

and A2 are always positive, then its positive root is equal to 𝑞𝑖−𝑗 =

−𝐴2+√𝐴2
2−4𝐴1𝐴3

2𝐴1
. This process results in an NPB system of non-linear 

algebraic equations. A FORTRAN code (Appendix A-4) has been 

developed with the use of HSL NS23 routine (HSL, 2013) to solve the 

resulting system of equations. The HSL NS23 routine uses the Marquardt 

algorithm (Marquardt, 1963) for solving the nonlinear system of algebraic 

equations. The initial guess of the pressure values at each pore body is 

provided from the Darcy flow case, then the HSL NS23 routine iterates until 

the final solution is achieved within an acceptable predefined error criterion 

(i.e. until the sum of squares of the residuals is less than 10-10). By solving 

this nonlinear system of algebraic equations, the pressure value at each pore 

body can be obtained and by applying Equation 4.9 the discharge through 

each pore throat can be obtained. Finally, the non-Darcy coefficient, β 

(1/mm), and Forchheimer permeability, 𝐾F (mm2), can be obtained using a 

Forchheimer plot (Equation 2.3).  

In all simulations, no-flow boundary condition is applied for all pore-

network outer boundaries except the inlet and outlet boundaries where 
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constant pressure values are applied. Water is considered as the working 

fluid with viscosity μ = 0.001 kg/m·s and density ρ = 1000 kg/m3. The 

overall volumetric fluid discharge, q (mm3/s), is obtained by summing up all 

pore throat discharges either at the inlet or at the outlet of the pore-network, 

while the flow superficial velocity, 𝑣 (mm/s), is estimated as 𝑣 =
𝑞

𝐴
 , where 

A (mm2) is the whole cross-sectional area perpendicular to the flow 

direction. However, for highly heterogeneous media such as Estaillades 

carbonate rocks, the pore’s cross-sectional area may differ significantly 

from one location to another, so using the whole cross-sectional area might 

cause uncertainties in v and KD values. For that reason, for heterogeneous 

porous media, the average pore velocity is estimated through each pore 

throat (as a length harmonic average velocity, Equation 4.12), then the 

superficial velocity, 𝑣 (mm/s), is derived as the average pore velocity times 

the medium porosity (ϕ):  

𝐿i−j,tot

𝑢i−j,tot
=

𝐿i

𝑢i
+

𝐿i−j

𝑢i−j
+

𝐿j

𝑢j
 4.12 

where ui-j (mm/s) is the flow velocity through the pore throat that connects 

the two pore bodies i and j, and ui (mm/s) and uj (mm/s) are the fluid 

velocities through the pore bodies i and j.   

Appendix A provides the algorithm and details of solving the nonlinear 

system of equations for the non-Darcy PNM flow simulation code.  

4.3 Verification, results and discussion  

4.3.1 Extracted pore-networks from the CT-images 

The properties of the five CT-images used in this chapter are shown in 

Table 4-1 and Figure 4-2. The 300300300 voxels beadpack CT-image 

(Figure 4-2a) represents a random packing of uniform spheres. The 

beadpack image was created by Prodanović and Bryant (2006) to represent 

the experimental measurements of the sphere centres obtained by Finney 

(1970). The only available CT-image of the Bentheimer sandstone sample is 

a 100010001000 voxels image. I did not manage to get the 500500500 

voxels cropped Bentheimer image used by Muljadi et al. (2015). I have tried 

to crop that large image into a 500500500 voxels image at some arbitrary 
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locations, but this results in different properties other than the properties 

mentioned by Muljadi et al. (2015). To cope with that, I arbitrary cropped 

the first 500 voxels in the x, y and z directions of the large image 

(100010001000 voxels), then I extracted the pore-network from that 

cropped image, but this process may result in some uncertainties with 

respect to the results obtained for the Bentheimer sandstone sample. 

Similarly, Mostaghimi et al. (2012) used a 300300300 voxels crop of the 

Berea sandstone sample, while in this work the whole 400400400 voxels 

CT-image has been used. Investigations on pore-scale flow behaviour and 

the morphological characteristics of Bentheimer sandstone and Estaillades 

carbonate, have revealed that Estaillades is more heterogeneous than 

Bentheimer (Bijeljic et al., 2013a; Bijeljic et al., 2013b; Guadagnini et al., 

2014; Muljadi et al., 2015). This is also confirmed by plotting the semi-

variograms of pore body radii and coordination numbers of each sample 

(Figure 2A and 3A in Appendix A). The properties of the extracted pore-

networks of the beadpack, Bentheimer sandstone, Estaillades carbonate, 

REV of the packed spheres (dm = 1.84 mm) and Berea sandstone samples 

are shown in Table 4-2 and Figure 4-2(f-k). The histograms of the inscribed 

pore body and pore throat radii for the five samples are shown in Figure 4-3. 

Table 4-1 The properties and characteristic lengths of the beadpack, 

Bentheimer, Estaillades, packed spheres and Berea samples*.  

Sample 

R
eso

lu
tio

n
 

(µ
m

) 

P
o

ro
sity, 

ϕ
 

Characteristic 

length, Lcharc 

(µm) 

Total voxels Pore voxels 
𝐾𝐷 10-12 

(m2) 

 

Beadpack 2.0 0.359 100 300300300 9,700,082 

M
u
ljad

i et al. 

(2
0
1

5
) 

5.57 

Bentheimer 3.0035 0.211 139.9 500500500 26,413,875 3.50 

Estaillades 3.3113 0.108 253.2 500500500 13,522,500 1.70 

Packed 

spheres 
65.99 0.364 1,837 758758758 

124,612,70

0 

Lab 

data 

2250 

± 7% 

Berea 5.345 0.197 131.13 400400400 12,572,994 

M
o

stag
h
im

i 

et al. (2
0

1
2
) 

1.38 
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*For the first three samples, the characteristic length (Lcharc) values are obtained 

from Muljadi et al. (2015); for the unconsolidated beadpack they chose  Lcharc = 100  

µm, while for consolidate porous media (Bentheimer and Estaillades) they 

followed the methodology in Mostaghimi et al. (2012) to determine Lcharc as a 

function in the specific surface area of the pore-grain interface (the surface area 

divided by the whole volume including pores and grains). For the packed spheres 

sample, the characteristic length (Lcharc) is the beads’ mean diameter (dm = 1.84 

mm). For the Berea sandstone, Lcharc = 131.13 µm (Mostaghimi et al., 2012). 
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Table 4-2 The extracted pore-network properties for the beadpack, 

Bentheimer, Estaillades, packed spheres and Berea samples. 

Sample Beadpack 

Bentheimer 

(500500500 

voxels) 

Estaillades 
Packed 

spheres  

Berea 

(400400400 

voxels) 

Number of 

PBs 
347 1,033 954 10,315 2,822 

Number of 

PThs 
1,424 2,418 1,649 53,960 6,691 

Average 

coordination 

number 

7.9 4.5 3.4 10.4 4.6 

Maximum 

coordination 

number 

21 23 19 30 28 

Maximum 

inscribed 

PB radius 

(mm) 

0.0344 0.0862 0.0692 0.7673 0.0709 

Average 

inscribed 

PB radius 

(mm) 

0.0178 0.0231 0.0196 0.4103 0.0587 

Minimum 

inscribed 

PB radius 

(mm) 

0.0051 0.0058 0.0064 0.1408 0.0223 

Maximum 

inscribed 

PTh radius 

(mm) 

0.0287 0.0571 0.0575 0.6958 0.0116 

Average 

inscribed 

PTh radius 

(mm) 

0.0089 0.0122 0.0116 0.1952 0.0103 

Minimum 

inscribed 

PTh radius 

(mm) 

0.0009 0.0015 0.0016 0.0320 0.00261 
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Figure 4-2 The pore spaces of the (a) beadpack, (b) Bentheimer, (c) Estaillades (d) packed spheres and (e) Berea samples, and 

their equivalent pore-networks (f-k). 
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Figure 4-3 Histograms of the inscribed pore body and pore throat radii for 

the a) beadpack, b) Bentheimer, c) Estaillades d) packed spheres and e) 

Berea samples. 

4.3.2 The Darcy permeability (KD) and non-Darcy coefficient (β)   

The Darcy permeability (KD) values obtained from PNM, by applying 

Darcy’s law (Equation 2.1) while neglecting the inertial effects, are in a 

good agreement (varying less than 15.2%) with the corresponding values 

either in Muljadi et al. (2015), obtained from lab experiments or in 

Mostaghimi et al. (2012) as presented in Table 4-3. Relatively large 

discrepancies (14% and 15.2%) are observed for Bentheimer and the packed 

spheres (dm = 1.84 mm) because the large Bentheimer image was cropped in 

an arbitrary location and because the packed spheres sample was scanned 

prior to experiments, so during experiments the position of some particles 

might have changed slightly under the effect of flow at large velocities. 

Another possible reason for these discrepancies is the geometry 

simplification inherently used in pore-networks. Also, the pore-network 

extraction code defines the parameters of the pore-network elements using 

single phase direct numerical simulation on the CT-image, these details can 

be found in Raeini et al. (2017) and Raeini et al. (2018). That is why the 

PNM simulations can accurately reproduce the results predicted with direct 

simulation (by Muljadi et al., 2015) and slightly differ from the results 

achieved by experiments.  

Figure 4-4 shows a Forchheimer plot which is a plot of the inverse of 

apparent permeability (
1

𝐾𝑎𝑝𝑝
) versus (

𝜌𝑣

𝜇
) (Equation 2.3). The slope of each 

graph represents the non-Darcy coefficient (β) and it is equal to 1.49×105, 

4.67×106, 2.82×108, 5.232×103 and 4.66×106 (1/m) for the Beadpack, 

Bentheimer, Estaillades, packed spheres and Berea samples, respectively. 

The corresponding β values obtained by Muljadi et al. (2015) and in the 

laboratory are 2.57×105, 2.07×106, 6.15×108 and 10.87x103 (1/m), see Table 

4-3. The study performed by Mostaghimi et al. (2012) was in the Darcy 

flow regime and they did not estimate β for the Berea sample. It is 

noticeable that the values of β achieved with PNM are in good agreement 
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(within the same order of magnitude and with a maximum variation of 54%)  

with the values obtained by Muljadi et al. (2015) except Bentheimer which 

has larger discrepancy (126%) because the cropped image used for PNM 

differs from the cropped image used by Muljadi et al. (2015). These 

discrepancies related to β values might be because of the simplifications of 

pore shapes during the pore-network extraction. In general, there is less 

good agreement for β compared to KD when the obtained PNM results are 

compared to the results of Muljadi et al. (2015). This is because the value of 

β depends on the value of KD, the pore geometries and the assumed shape 

for the velocity profile in each pore. Therefore, the potential error in the 

value of β is larger than the potential error in the KD value which depends 

mainly on the pore geometries. In Figure 4-4, The shift in the horizontal part 

of each curve when comparing the obtained PNM results to those by 

Muljadi et al. (2015) or from lab experiments is due to the difference in KD 

obtained from different methodologies, whilst the trend of each curve 

depends mainly on the pressure losses obtained at different velocities.    

Table 4-4 shows some existing empirical equations for estimation of the 

non-Darcy coefficient (β). The estimated β values for the beadpack and 

packed spheres samples obtained by PNM agree well with values calculated 

using the equations proposed by Ergun (1952) and Macdonald et al. (1979) 

who used spherical beads in their experiments. A relatively larger deviation 

is observed for the packed spheres sample, which may be related to the 

effect of boundaries on the sample used in this study (Section 3.4.2). For 

Bentheimer and Berea sandstone, the obtained β values from PNM 

simulations are in good agreement with the values obtained from both 

Janicek and Katz (1955) and Li et al. (2001) who derived their equations 

after testing flow through sandstone, limestone and dolomite. However, the 

estimated β value from PNM for Bentheimer sandstone is significantly 

different from the values calculated by the equations proposed by Geertsma 

(1974), Coles and Hartman (1998) and Jones (1987) who used sandstone 

samples. Such a discrepancy in the predicted values of β was observed by 

Muljadi et al. (2015) as well. This may be related to the different degrees of 

heterogeneity that can be observed for different sandstone samples, 

concluding significant sensitivity of β to macro-sale heterogeneity of porous 
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media. The estimated β value for Estaillades carbonate agrees well with 

Janicek and Katz (1955) who performed their experiments on sandstone, 

limestone and dolomite. In the literature, there is a scarcity of studies that 

have provided β values for carbonate samples. It is noticed that the equation 

proposed by Friedel and Voigt (2006) provides accurate estimation for 

Bentheimer, Berea sandstone and Estaillades as well.  

 

Figure 4-4 Forchheimer plots for a) Beadpack, b) Bentheimer, c) 

Estaillades, d) packed spheres and e) Berea. The vertical dashed lines 

represent the onset of non-Darcy flow.   
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Table 4-3 The permeability (KD) and Forchheimer coefficient (β) for the 

three samples compared to those obtained by Muljadi et al. (2015). 

Sample 
Image total 

voxels 

𝐾𝐷 ×
10−12 

(m2), 

PNM 

𝐾𝐷 × 10−12 

(m2) 

∆𝐾𝐷 

(%) 

β×105 

(1/m), 

PNM 

β×105 (1/m) 
Δβ 

(%) 

Beadpack 300300300 5.43 M
u

ljad
i et 

al. (2
0

1
5

) 

5.57 2.5 1.49 
M

u
ljad

i et al. 

(2
0

1
5

) 

2.57 42 

Bentheimer 500500500 3.01 3.50 14.0 46.7 20.7 126 

Estaillades  500500500 0.19 0.170 11.8 2820 6150 54 

Packed 

spheres 
758758758 2593 

L
ab

 

2250 ± 

7% 
15.2 0.0523 

L
ab

 

0.1087 ± 

11% 
52 

Berea 400400400 1.47 

M
o

stag
h

ii 

et al. (2
0

1
2

) 

1.38 6.5 46.6 

M
o

stag
h

im
i 

et al. (2
0

1
2

) 

NA NA 

 

Table 4-4 The non-Darcy coefficient (β) estimated using empirical 

equations, modified from Wang et al. (2014). 

R
eferen

ce 

 empirical 

equations 

Investigation 

method 

B
ea

d
 p

a
ck, 

 

(1
0

5/m
)  

B
en

th
eim

er, 


 (1

0
5/m

) 

E
sta

illa
d

es, 
 

(1
0

5/m
) 

P
a

cked
 

sp
h

eres, 


 

(1
0

5/m
) 

B
erea

, 


 

(1
0

5/m
) 

Ergun 

(1952) 

𝛽

=
14.28 × 104

√𝐾𝐷 × 10−3 𝜙1.5
 

Flow 

through 

various sizes 

of spheres, 

sands, and 

pulverized 

coke. 

2.85 8.49 92.30 0.13 13.47 

Janicek 

and Katz 

(1955) 

𝛽 =
1.82 × 1010

𝐾𝐷
1.25 𝜙0.75

 

Flow 

through 

sandstone, 

limestone 

and 

dolomite. 

8.42 26.22 1,369.50 
0.00

4 
67.62 

Geertsma 

(1974) 
𝛽 =

1.59 × 105

𝐾𝐷
0.5 𝜙5.5

 

Both 

consolidated 

and 

unconsolidat

ed 

sandstone, 

limestone 

and 

dolomite. 

6.04 
150.8

6 

23,888.5

4 
0.26 

314.9

0 
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Macdona

ld et al. 

(1979) as 

reported 

by Wang 

et al. 

(2014) 

𝛽

=
100

𝜙
√

245 × 108

12 𝐾𝐷  𝜙
 

Experimenta

l data from 

previous 

work, 

including 

spherical 

glass beads, 

cylindrical 

fibre beds 

and 

consolidated 

media. 

2.85 8.50 29.21 0.13 13.48 

Jones 

(1987) 
𝛽 =

2.018 × 1011

𝐾𝐷
1.55  

Experiments 

of vuggy 

limestone, 

crystalline 

limestone 

and fine-

grained 

sandstone. 

3.28 8.19 592.72 
2×1

0-4 
24.86 

Coles 

and 

Hartman 

(1998) 

𝛽

=
3.51 × 1012 𝜙0.449

𝐾𝐷
1.88  

Sandstone 

and 

limestone 

samples for 

flow testing 

using the 

same 

porosity 

method. 

2.11 5.04 671.83 
2×1

0-5 
18.79 

Li et al. 

(2001) 
𝛽 =

1.15 × 109

𝐾𝐷 𝜙
 

Numerical 

simulation 

of N2 

flowing at 

various rates 

through 

wafer-

shaped 

Berea 

Sandstone. 

5.90 18.11 560.43 0.01 39.71 

Friedel 

and Voigt 

(2006) 

𝛽 =
4.1 × 1011

𝐾𝐷
1.5  

Experimenta

l data from 

previous 

studies. 

10.2

5 
24.83 1565.50 

0.00

1 
72.75 

*For all empirical equations, KD is in mD (≈10-3m2) and  in m-1. 

4.3.3 Onset of non-Darcy flow  

Following Muljadi et al. (2015), the onset of non-Darcy flow is the point at 

which the pressure loss due to the linear term becomes less than 99% of the 

total pressure loss. Figure 4-5 shows the pressure gradient versus superficial 

velocity at different Reynold’s numbers, the onset of non-Darcy flow is also 

indicated by a vertical dashed line. According to the Forchheimer equation, 

the pressure gradient is a function of two parameters (KD and β) where their 

values are dependent on the geometry of the porous samples. The figure 
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shows a good match with the previous results obtained by Muljadi et al. 

(2015) for Beadpack, Bentheimer and Estaillades while there are relatively 

larger discrepancies between PNM and laboratory results. A main cause of 

these larger discrepancies between PNM and laboratory results is that the 

pores of the packed spheres sample used in the experiments are significantly 

larger than the pores in the other four samples. For that reason, the flow in 

the majority of pores in the packed spheres sample is a developing flow, i.e. 

the pores are not long enough for a fully developed flow to be achieved, 

which causes underestimation of the friction factor of each pore in the 

sample if the Hagen–Poiseuille equation is used (Section 2.3.1). This 

explains why the pressure losses obtained by PNM are less than those 

obtained in the lab (Figure 4-5d). 

Following Section 2.3.1, and using Equation 2.9, the average values of the 

entrance region (Lh, laminar) for all pore throats in the five samples have been 

estimated within the applied ranges of pressure gradients. It has been found 

that Lh, laminar increases when the applied pressure gradient increases. At the 

maximum applied pressure gradients, the average values for Lh, laminar as a 

percentage of the average pore throats length was equal to 29%, 11%, 3% 

and 5% for the Beadpack, Bentheimer, Estaillades and Berea samples, 

respectively. For the packed spheres sample, at the maximum applied 

pressure gradients, the average value of Lh, laminar as a percentage of the 

average pore throats’ length reached 374%, which means that the pore 

lengths are very short and even shorter than Lh, laminar. This demonstrates that 

the PNM approach has some limitations and the proposed set of equations 

cannot be applied for coarse media with large pores. 

Another possible reason for the discrepancy between the predicted PNM 

results and those achieved in the laboratory or through direct numerical 

simulations presented by Muljadi et al. (2015) is the simplifications that 

were implemented by the pore-network method to describe the geometry of 

the samples. Also, the mesh size used by Muljadi et al. (2015) may have 

effects on the accuracy of their results. 
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The superficial velocities calculated using PNM at the onset of non-Darcy 

flow are 0.018, 0.001, 0.0001 and 0.0005 (m/s) for the Beadpack, 

Bentheimer, Estaillades and packed spheres samples, respectively, while the 

corresponding values presented in Muljadi et al. (2015) and measured in the 

lab are 0.0279, 0.0014, 0.000227 and 0.004 (m/s), see Table 4-5. It is 

noticeable that the onset of non-Darcy flow obtained by PNM is in good 

agreement with that obtained by Muljadi et al. (2015), but one order of 

magnitude lower than the values obtained from the experimental 

measurements which is attributed to the large pore sizes for the packed 

spheres sample and the large entrance length of its pores as explained 

earlier. In general, it is noticeable that the onset of non-Darcy flow occurs 

earlier, at a lower Reynold’s number, when the medium has a higher degree 

of heterogeneity. This is due to a reduction in the effective area (area of 

interconnected pores) for the fluid flow in heterogeneous media (see Section 

4.3.5). 
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Figure 4-5 The pressure gradient versus superficial velocity for both linear 

Darcy flow and nonlinear Forchheimer flow compared to the results by 

Muljadi et al. (2015) and laboratory measurements; a) Beadpack, b) 

Bentheimer, c) Estaillades, d) packed spheres and e) Berea. The coefficient 

of determination (R2) shows the goodness of fit for the Forchheimer flow 

case and the corresponding values obtained either by Muljadi et al. (2015) 

or via experimental measurements.   

Considering the dimensionless apparent permeability (K*) as  

𝐾∗ =
𝐾𝑎𝑝𝑝

𝐾𝐷
   4.13 

and following the same definition for the onset of non-Darcy flow, from 

equations 2.1 and 2.3, the onset of non-Darcy flow can be determined when 

K* is equal to 0.99 in Figure 4-6, Figure 4-7 and Figure 4-8. The predicted 

superficial velocities and Reynold’s number values for the onset of non-

Darcy flow and the corresponding values obtained either in the work of 

Muljadi et al. (2015) or in the laboratory are shown in Table 4-5.  

In Figure 4-6 and Figure 4-7, the dimensionless apparent permeability (K*) 

is plotted against ReK and Re (Section 2.4) while using the same 

characteristic lengths (Lcharc) shown in Table 4-1. The PNM curves in Figure 

4-6 and Figure 4-7 have similar trends to those results presented in Muljadi 

et al. (2015) and in the laboratory, but with some discrepancies. A better 

match is obtained, especially for Estaillades, in Figure 4-6 when ReK is used 

instead of Re. According to equations 2.3, 2.12, 2.16 and 4.13 these 

discrepancies are attributed either to the change in superficial velocities or 

pressure losses in PNM results compared to the results of other studies. 

Figure 4-6 and Figure 4-7 also confirm that the onset of non-Darcy flow 

occurs earlier in highly heterogenous media as in the case of Estaillades 

carbonate. 

When the dimensionless apparent permeability (K*) is plotted versus the 

Forchheimer number (𝐹𝑜 =
𝐾𝐷 𝛽 𝜌 𝑣

𝜇
) , (Equation 2.18), in Figure 4-8, the 

curves of all of the samples coincide. This unique relationship can be 

derived mathematically from the Forchheimer Equation (Ruth & Ma, 1992; 
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Ruth & Ma, 1993). In petrophysics, the relationship shown in Figure 4-8 

can be used to predict the apparent permeability for media with known KD 

and β, without the need to perform laboratory experiments at different flow 

rates. KD and β can be determined using literature data or empirical 

relationships such as those proposed by Kozeny (1927), Carman (1937), 

Ergun (1952), and Janicek and Katz (1955). In Figure 4-8, the onset of non-

Darcy flow occurs when K* = 0.99, and this corresponds to 𝐹𝑜 ≈ 0.01 for 

all PNM simulations and 𝐹𝑜 = 0.1 for the experimental results. These Fo 

values at the onset of non-Darcy flow are in agreement with the range (0.01-

0.1) proposed by Andrade et al. (1999).   

Table 4-6 shows the onset of non-Darcy flow reported by some other 

authors and their criteria used for obtaining the onset of non-Darcy flow. 

For beadpack and packed spheres samples, the onset of non-Darcy flow 

agrees, within less than one order of magnitude, with most of the criteria 

shown in the Table 4-6 except the formulas proposed by Chilton and 

Colburn (1931), who used various types of packed particles, Blick and 

Civan (1988), who used a capillary-orifice model, Green and Duwez (1951), 

who performed an N2 flow experiment through different porous media and 

Ma and Ruth (1993) who used a diverging-converging model. This shows 

that the obtained PNM results for these two samples agree well with 

previous studies that used similar methodology, fluid and porous medium. 

For Bentheimer and Berea sandstone samples, the obtained value for the 

onset of non-Darcy flow by PNM agrees well with the values obtained by 

Fancher and Lewis (1933) for loosely consolidated sand and Chukwudozie 

et al. (2012) for a 3D CT sandstone image. The onset of non-Darcy flow for 

Estaillades only agrees with the values proposed by Andrade et al. (1999) 

and Chukwudozie et al. (2012) who used the Forchheimer number in their 

analysis. This confirms the importance of using β for determining the onset 

of non-Darcy flow, especially for highly heterogenous media such as 

carbonate. It is worth mentioning that, in agreement with Muljadi et al. 

(2015), none of the studies in the Table 4-6 were performed on a highly 

heterogenous natural medium such as carbonate.    
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It is important to take into consideration the non-Darcy coefficient (β) when 

determining the onset on non-Darcy flow for different media. For that 

reason, in Figure 4-9, the pressure gradient is plotted versus the 

Forchheimer number, as this is a better comparison tool for follow up 

studies, instead of using velocities or Reynolds number as a criterion. The 

resulting curves are straight lines as expected according to the Forchheimer 

equation (Equation 2.2). The onset of non-Darcy flow shown in the figure is 

determined using the superficial velocity at K* = 0.99.  

 

Figure 4-6 The dimensionless apparent permeability K* versus ReK 

(Equation 2.16), compared to the results by Muljadi et al. (2015). 

 

Figure 4-7 The dimensionless apparent permeability K* versus Re 

(Equation 2.12), compared to the results by Muljadi et al. (2015). 
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Figure 4-8 The dimensionless apparent permeability K* versus Fo 

(Equation 2.18), compared to the results from experiments. 

 

Figure 4-9 The pressure gradient versus Forchheimer number (Fo), 

Equation 2.18 , for; a) Beadpack, b) Bentheimer, c) Estaillades, d) packed 

spheres and e) Berea. 
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Table 4-5 Reynold’s number and superficial velocity values for the onset of 

non-Darcy flow. 

Sample 

Onset of non-Darcy 

flow (PNM) 
Onset of non-Darcy flow Difference (%) 

v 

(mm/s) 
ReK Re ref. 

v 

(mm/s) 
ReK Re 

v 

(mm/s) 
ReK Re 

Beadpack 17.83 4.15×10-2 1.78 M
u

ljad
i et 

al. (2
0

1
5

) 

27.90 6.64×10−2 2.79 36 38 36 

Bentheimer 0.99 1.72×10−3 0.14 1.40 2.64×10−3 0.20 29 3 29 

Estaillades 0.11 4.79×10−5 0.03 0.23 9.40×10−5 0.02 52 5 22 

Packed 

spheres 
0.51 2.60×10-2 0.94 Lab 

4.09 ± 

3% 

1.94×10-1 

± 7% 

7.54 

± 3% 
88 87 88 

Berea 1.70 2.05×10−3 0.22 

M
o

stag
h
im

i 

et al. (2
0

1
2
) 

NA NA NA NA NA NA 

Table 4-6 The onset of non-Darcy flow reported by some other authors, 

modified after Wang et al. (2014). 

Criterion Reference 

Onset of 

non-Darcy 

flow 

Method 

The onset calculated using the 

criteria in the first column and 

the superficial velocity at K* = 

0.99, and Lcharc in Table 4-1. 

B
ead

p
ack

 

B
en

th
eim

er 

E
staillad

es 

P
ack

ed
 

sp
h

eres 

B
erea 

 

𝑅𝑒 =
𝜌 𝑑𝑚 𝑣

𝜇
 

where dm is 

the average 

diameter of 

particles. 

 

Chilton and 

Colburn 

(1931) 

40-80 

Experiments on 

various types of 

packed particles 

1.78 0.14 0.03 0.94 0.22 

Fancher and 

Lewis 

(1933) 

10–1000 for 

unconsolidat

ed sand, 

0.4–3 for 

loosely 

consolidated 

sand 

Crude oil, water 

and air through 

consolidated 

sandstones and 

unconsolidated 

sands 

Tek (1957) 1.0 

Air, water flow 

through 

Woodbine, 

Wilcox, Warren 

and 3rd Venango 

sands 

Bear (1972)  3–10  
Review and 

analysis 

Scheidegger 

(1974) 
0.1–75  

Review and 

analysis 

Dybbs and 

Edwards 

(1984) 

1–10 

Experiments in 

fixed beds of 

arranged spheres 
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and rods 

Blick and 

Civan 

(1988)  

100 

Simulation of 

capillary-orifice 

model 

Du Plessis 

and 

Masliyah 

(1988) 

3.4–17.1 

Representative 

unit cell 

simulation 

Hassanizade

h and Gray 

(1987) 

1-15 
Various previous 

experiments  

𝐹𝑜 =
𝐾𝐷 𝛽 𝜌 𝑣

𝜇
  

Green and 

Duwez 

(1951) as 

mentioned in 

Zeng and 

Grigg (2006) 

0.1-0.2 

N2 flow 

experiments 

through four 

different porous 

metal samples 

0.01 0.01 0.01 0.01 0.01 Andrade et 

al. (1999) 
0.01-0.1 

Simulation in 2D 

disordered 

porous media 

Chukwudozi

e et al. 

(2012) 

0.02-0.08 

Lattice 

Boltzmann 

simulation of 3D 

CT sandstone 

image 

𝑅𝑒 =
𝜌 𝑑𝑚 𝑣

𝜇 (1−∅)
  

Ergun 

(1952) as 

mentioned in 

Wang et al. 

(2014) 

3–10  

Gas flow 

experiments 

through packed 

particles 

2.78 0.18 0.03 1.47 0.28 

𝑅𝑒 =
𝜌 𝑑𝑃𝑇ℎ 𝑢

𝜇 
, 

𝑑𝑃𝑇ℎ is the 

throat 

diameter 

Ma and Ruth 

(1993) 

3–10  

 

Diverging-

converging 

model simulation 

0.442 0.057 0.012 0.274 0.089 

𝑅𝑒 =
𝜌 𝑟𝑃𝑇ℎ 𝑣

𝜇 
, 

𝑟𝑃𝑇ℎ is the 

average 

throat radius 

Thauvin and 

Mohanty 

(1998)  

0.11 

Simulation of a 

pore-network 

model 

0.221 0.029 0.006 0.137 0.044 

4.3.4 Friction factor  

Similar to the Hagen–Poiseuille equation (Hagen, 1839; Poiseuille, 1841) 

for laminar flow through pipes, the Moody chart, Figure 2-4, (Moody, 1944) 

is the most widely used chart for designing flow through pipes in all flow 

regimes. It is used to estimate the dimensionless friction factor, f (-), of a 

pipe at a specific Reynold’s number, and from this friction factor, the 

pressure needed to pass the flow at specific rate through the pipe can be 

determined. Thinking of porous media as a group of connected pipes, 

Carman (1937) developed a similar chart that relates the dimensionless 

friction factor to the Reynold’s number for porous media in all possible 
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flow regimes (Holdich, 2002). This friction factor can be used to evaluate 

the medium resistance to flow, or in other words, it can be used to estimate 

the pressure needed to pass flow at a specific rate through the porous 

medium within any flow regime (Hlushkou & Tallarek, 2006). 

The friction factor (f) in porous media can be determined by neglecting the 

small difference between KD and KF, then Equation 2.2 can be rewritten as 

𝑓 =
1

𝐹𝑜
+ 1, where 𝑓 =

∆𝑃

𝐿𝛽𝜌𝑣2 (-) and 𝐹𝑜 =
𝐾𝐷𝛽𝜌𝑣

𝜇
 (-) (Macdonald et al., 1979; 

Macedo et al., 2001; Pamuk & Özdemir, 2012). Figure 4-10 to Figure 4-12 

show that the friction between the medium particles and the fluid decreases 

when the fluid velocity increases. Figure 4-10 and Figure 4-11 show that 

higher head loss due to friction occurs earlier, i.e. at low Reynold’s 

numbers, for media with high degree of heterogeneity. The friction factor 

and Forchheimer number predictions for all samples are in excellent 

agreement with each other and in agreement with the experimentally 

measured values (Figure 4-12). This agreement is because all the parameters 

(f, KD and β) used to develop the figure are predicted from the Forchheimer 

equation. However, this is not the case when the friction factor is plotted 

versus the Reynold’s number (Figure 4-10 and Figure 4-11), and this shows 

that Forchheimer number is a better dimensionless parameter that can be 

used to describe the flow through porous media. The resulting friction factor 

versus Forchheimer number curve is a unique relationship that agrees very 

well with the results presented by Geertsma (1974) and can be used for all 

samples regardless of its degree of heterogeneity.   
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Figure 4-10 The medium friction factor (f) versus permeability-based 

Reynold’s number (ReK), Equation 2.16. 

 

Figure 4-11 The medium friction factor (f) versus Reynold’s number (Re), 

Equation 2.12. 

 

Figure 4-12 The medium friction factor (f) versus Forchheimer number 

(Fo), Equation 2.18. 
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4.3.5 Pressure distribution 

One of the advantages of pore-network modelling approach is that it 

provides a detailed overview of the pressure field at the pore-scale as 

presented in Figure 4-13. Figure 4-13 shows the pressure value at each pore 

body versus distance (x) along the flow direction when applying a 10,000 Pa 

pressure drop. The 3D pressure distribution at each pore body is shown at 

the top right corner for each sub-figure. The dotted black curve represents 

the average pressure value at any cross-section perpendicular to the flow 

direction. Inspection of Figure 4-13 shows that for the media with low 

degree of heterogeneity, i.e. beadpack, packed spheres, Bentheimer and 

Berea there is a regular change of pressure over distance. At any vertical 

cross-section perpendicular to the flow direction, the maximum pressure 

variation between pores remains within 25% of the overall pressure drop in 

the case of beadpack, 10% in the packed spheres, 45% in the Bentheimer 

and 37% in the Berea. Nevertheless, for highly heterogeneous media 

(Estaillades) the pressure variation between pores at one cross-section may 

extend up to 98% of the overall pressure drop. This is mainly caused by the 

medium’s heterogeneity that creates some stagnant zones with low pressure 

values next to the zones with high pressure. The pressure distribution in 

Figure 4-13c shows that the sample is composed of several zones, poorly 

connected to each other. Therefore, the pressure values within each zone are 

nearly equal and are significantly different from the pressure values of other 

zones. Consequently, the velocity distribution within the sample ranges 

from low in stagnant zones to high at the connection between zones where 

the inertial effects can be observed even at low pressure gradients. The 

pressure distribution along the flow direction in the beadpack ( Bentheimer) 

packed spheres and Berea samples can be approximated by a linear 

relationship (the dotted black curve in Figure 4-13), however, this is not the 

case for the Estaillades sample where a nonlinear relationship would be 

more appropriate.  
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Figure 4-13 Pressure values at each pore body vs. distance (x) along the 

flow direction when applying 10,000 Pa pressure drop; a) Beadpack, b) 

Bentheimer, c) Estaillades, d) packed spheres and e) Berea. The 3D pressure 

distribution at each pore body is shown at the top right corner of each sub-

figure. The dotted black curve represents the average pressure value at any 

cross-section perpendicular to the flow direction. The flow direction is from 

left to right. 

4.3.6 Tortuosity   

Wang et al. (1999) defined tortuosity, 𝜏 (-), in isotropic media as  

𝜏 =
𝐿̂

𝐿̃e
  4.14 

where 𝐿̂ (mm) is the average streamwise flow path or the actual distance 

including any encountered curves between two points and 𝐿̃e (mm) is the 

straight distance between these two points. Some other authors define 

tortuosity as the square of this ratio (Dullien, 1992). Thauvin and Mohanty 

(1998) and Wang et al. (1999) investigated the effect of tortuosity on the 

non-Darcy coefficient and concluded that its effect (< 2%) is tiny and 

negligible. As it is difficult to obtain tortuosity either experimentally or 

numerically, Muljadi et al. (2015) used the method proposed by Duda et al. 
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(2011) and Koponen et al. (1996) to obtain tortuosity from the fluid velocity 

field without the need to determine flow paths as follows:  

𝜏 =
〈|𝑢𝑎𝑣𝑔|〉

〈𝑢x〉
≥ 1  4.15 

where 〈|𝑢avg|〉 (mm/s) is the average magnitude of the interstitial velocity 

over the entire volume and 〈𝑢x〉 (mm/s) is the volumetric average of its 

component along the macroscopic flow direction. 

In the proposed PN model, the discharge through each pore throat can be 

easily determined after solving the pressure value at each pore body, then 

the velocity of flow in each pore throat can be determined by dividing the 

discharge value in each pore throat by the cross-sectional area of that pore 

throat. The velocity through the connected pore bodies can be determined 

by dividing the pore throat discharge by the cross-sectional area of the pore 

body as well. Then the overall average fluid velocity through the pore throat 

and the two connected pore bodies can be estimated as the length harmonic 

average of the velocities (Equation 4.12).  

Finally, the volumetric average interstitial velocity 〈|𝑢avg|〉 (mm/s) can be 

obtained as   

〈|𝑢𝑎𝑣𝑔|〉 =
∑𝑢i−j,tot 𝑎i−j

∑𝑎i−j
  4.16 

Similarly, 𝑢𝑥 (mm/s) for each pore throat can be estimated as the x-

component, along the macroscopic flow direction, corresponding to each 

𝑢𝑖−𝑗,𝑡𝑜𝑡 (mm/s). Then, 〈𝑢𝑥〉 (mm/s) can be obtained by replacing 𝑢𝑖−𝑗,𝑡𝑜𝑡 by 

𝑢𝑥 in Equation 4.16. 

Figure 4-14 shows that tortuosity increases slightly when the Reynold’s 

number increases, this is due to the increase in velocities and the possible 

occurrence of some eddies as a result of inertial effects. The PNM results 

for all samples in Figure 4-14 have a trend similar to that obtained by 

Muljadi et al. (2015) and Chukwudozie et al. (2012), and they are in 

agreement (varying within less than 8%) with the values obtained by 

Muljadi et al. (2015). It is noticeable that in Figure 4-14c, the increasing 

trend of 𝜏 is delayed compared to the results by Muljadi et al. (2015), this is 

attributed to some discrepancies in predicting the flow velocities and 

pressure losses (as in Figure 4-5c) for Estaillades sample. Due to the high 
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heterogeneity level of Estaillades sample, its tortuosity is larger than other 

samples. This is due to the poor connectivity between different zones in the 

sample, as in Section 4.3.5, so each fluid particle may need to travel a 

longer path. 

 

Figure 4-14 Tortuosity versus Re for; a) Bead pack, b) Bentheimer, c) 

Estaillades d) packed spheres, and e) Berea samples. 

4.4 Conclusion 

In this chapter, Darcy permeability, apparent permeability, the non-Darcy 

coefficient and tortuosity were estimated for five porous samples 

(Beadpack, Bentheimer sandstone, Estaillades carbonate, packed spheres 

and Berea sandstone) with different degrees of heterogeneity using pore-

network modelling and applying the Forchheimer Equation. The proposed 

model overcomes most of the limitations in all previous studies that used 

pore-network modelling to simulate non-Darcy flow; i.e. limited 

coordination number, 2D simulations only, inaccuracy of some equations, 

limitations regarding the use of regular structured networks only and lack of 

calibration. In addition, the onset of non-Darcy flow was fully investigated 

in detail for all samples.  

Based on the findings of this research, it is concluded that the Forchheimer 

number (Fo), instead of the permeability-based Reynold’s number (ReK) or 
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standard Reynold’s number (Re), is recommended as a criterion to 

determine the onset of non-Darcy flow. This is because the Forchheimer 

number accounts for Darcy permeability, the Forchheimer coefficient and 

the medium degree of heterogeneity. The onset of non-Darcy flow, 

determined at, the dimensionless apparent permeability, K* = 0.99 and 

using ReK, is highly dependent on the medium’s degree of heterogeneity. 

For Bentheimer sandstone the onset of non-Darcy flow is one order of 

magnitude smaller than in the case of beadpack, and for Estaillades the 

onset of non-Darcy flow is three orders of magnitudes smaller than that in 

the case of beadpack. Nevertheless, the Forchheimer number values for the 

onset of non-Darcy flow for the five samples ranged from 0.01 to 0.1 and 

this is in agreement with Andrade et al. (1999).   

The Darcy Permeabilities (KD) and Forchheimer coefficients (β) for all 

samples are in good agreement (varying within 15.2% and 54% 

respectively) with the values obtained either in the laboratory, by Muljadi et 

al. (2015) or by Mostaghimi et al. (2012) for the same samples, except in 

the case of Bentheimer, where its β value varied by 126%.   

The medium friction factor is a good feature that can be used to calculate 

the pressure gradient at different velocities for different flow regimes, 

regardless of the heterogeneity of the medium, if the Darcy permeability 

and Forchheimer coefficient are known. It was found that the medium 

friction coefficient decreases when the fluid velocity increases. Following 

the Forchheimer equation, the medium friction factor versus the 

Forchheimer number curve is identical for all media regardless of their 

degree of heterogeneity. Tortuosity was found to increase slightly when the 

flow velocity increases, in all samples.  

For highly heterogeneous media, i.e. Estaillades, the pressure variation 

between pores at one cross-section, perpendicular to the flow direction, may 

extend to up to 98% of the overall pressure drop. This is mainly caused by 

the medium’s heterogeneity that creates some stagnant zones with low 

pressure values next to other zones with high pressure values. 
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The pore-network modelling approach has been shown to be 

computationally more efficient in comparison to direct flow simulations and 

could dramatically reduce the running time from a few hours (3 hours and 

37 minutes for the Estaillades model in Muljadi et al. (2015) work) using 16 

parallel computer nodes to less than one minute using a standard PC, but it 

is still relatively memory demanding when a large number of pore bodies 

are used, especially for non-linear flow simulations. For instance, a pore-

network with 120,000 pore bodies requires 185 GB Ram. Nevertheless, in 

terms of pore geometries, direct numerical simulation is believed to be more 

accurate than pore-network modelling which simplifies the irregular pore 

shapes into pores with simple geometries for which the analytical flow 

equations can be applied.   
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Chapter 5  

5 Pore-network modelling of Darcy, Forchheimer and 

turbulent flow 

In this chapter, a PNM algorithm for modelling all flow regimes in porous 

media is developed. The limits of different flow regimes are predefined at 

the pore-scale for each pore body and pore throat (see Figure 5-1), then the 

boundaries between macro-scale flow regimes are detected from the results 

(as shown in Figure 5-5). The proposed model has been applied to two 

porous media; the packed spheres (dm = 1.84 mm) sample used in the 

experimental work explained in Chapter 3 and another regularly structured 

packing of 5 mm uniform beads. The experiments done on the second 

medium were performed by an undergraduate student (Richardson, 2019). 

The pore-network of the randomly packed spheres has been extracted from 

the available CT-images as explained before in Section 3.4.2 and Section 

4.3.1, while another method (the developed code and algorithm are 

explained in Appendix C) is applied to generate a pore-network equivalent 

to the 5 mm beads sample. The 5 mm beads sample has been used because, 

to my knowledge, no previous work has been done on simulating turbulent 

flow through porous media using a 3D CT-image that can be used as an 

additional case for verifying the proposed model. Also, the pore-network 

extraction process may affect the simulation results due to the 

simplifications made while converting from the irregular complex shape of 

a medium to its equivalent simplified pore-network. Therefore, a regularly 

structured medium can be used for the laboratory experiments (Richardson, 

2019), then its equivalent pore-network will be used to verify the proposed 

model against the experimental results. This will reduce the uncertainties 

associated with the pore-network extraction process as such regular 

structured medium has known pore locations and dimensions.     

In the experimental work of Richardson (2019), the same test rig and an 

experimental setup similar to that described in Section 3.2 were used. The 

sample used is composed of 5 mm uniform beads arranged in a regular 
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structured order (see Figure 5-2a). The sample length is 200 mm and the 

sample cross-section is square with 50 mm side length. Water was used as 

the working fluid at different discharge rates ranging from ~0.01 to 0.16 l/s, 

and for each run, the discharge rate was measured using the provided digital 

flowmeter (Siemens Sitrans FM Magflo MAG 5100W flowmeter). The 

head loss measurements were done using two manometer tubes located 25 

mm after the sample inlet and before the sample outlet to eliminate the 

effect of boundaries on the flow, i.e. the head loss was measured through a 

distance of 150 mm in the porous medium. The experiment was aimed at 

estimating the medium parameters (KD, β, and β`) and defining the onset of 

non-Darcy and turbulent flow regimes for a medium with known structure. 

Unfortunately, the error in the experimental work of Richardson (2019) 

cannot be quantified. For instance, the error resulting from using the 

flowmeter without calibration cannot be quantified.  

5.1 Introduction  

Turbulent flow in porous media has been the focus of many researchers due 

to the large number of engineering applications in which turbulent flow 

permeates through a porous medium. The spreading of contaminants 

through underground reservoirs, fluidised bed combustors, chemical 

catalytic reactors, accelerating flow near oil wells, movement of natural gas 

through sand, flow through the hyporheic zone (the zone beneath a stream 

bed where there is an exchange between shallow groundwater and surface 

water) and flow through porous media composed of coarse particles are 

such examples of turbulent flow through porous media (Carman, 1937; 

Pedras & de Lemos, 2000, 2001; Packman et al., 2004). For such 

applications pore-scale models, such as PNM, provide more details and help 

us to understand phenomena and mechanisms that cannot be understood 

using macro-scale models. Moreover, turbulent flow has a chaotic nature 

and is difficult to predict analytically. For such a case, numerical models 

provide an alternative affordable solution for the flow.   

As mentioned in Section 2.3.3, the only work that has been done to model 

turbulent flow using PNM is that presented by Martins et al. (2007), but this 
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work was performed with many assumptions which restrict its application to 

other cases. For example, they assumed fixed boundaries between laminar 

and transition flow (when 𝑅𝑒pore = 2300), Equation 2.12, and between 

transition and turbulent flow (when 𝑅𝑒pore = 5000) in each pore throat. 

However, these values were obtained from studying flow through macro-

scale commercial pipes with very large dimensions compared to the 

dimensions of voids in real porous media and do not represent the 

boundaries between flow regimes in porous media (Dybbs & Edwards, 

1984; Fand et al., 1987; Kececioglu & Jiang, 1994; Horton & Pokrajac, 

2009). They assumed a constant factor of 1.5 as the summation of the 

sudden expansion and sudden contraction coefficients (Section 4.2.1.2), 

despite the fact that these coefficients are dependent on the pore throat and 

pore body dimensions. Additionally, they assumed fully developed flow in 

each pore (Section 2.3.1) without checking the validity of this assumption. 

Also, the model proposed by Martins et al. (2007) was not verified or 

applied to the modelling of flow through any real porous media. 

The main objective of this chapter is to develop a pore-network model 

capable of overcoming the aforementioned limitations, which can represent 

the flow characteristics and predict the properties of the porous media 

within all flow regimes including the turbulent flow regime.  

5.2 Method 

Bearing in mind that any porous medium is composed of pores with various 

dimensions and geometries, then, while applying a constant pressure drop 

across a single porous medium, the flow regime may vary from one pore to 

another. At the pore-scale, some pores may exhibit laminar flow, while the 

flow in other pores may be transitional or turbulent. To model the flow 

behaviour under all these possible flow regimes, the following strategy is 

followed. 

• First, the non-Darcy flow model (presented in Chapter 4) is applied 

to the pore-network and this provides an initial guess of the pressure 

value and velocity in each pore, then the Reynold’s number of each 

pore is estimated. 
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• Following the method proposed by Martins et al. (2007), and based 

on the Reynold’s number (Equation 2.12) value in each pore, the 

flow regime at the pore-scale (for each pore body and pore throat) is 

determined using the predefined limits discussed in Section 2.4 

(laminar when 𝑅𝑒pore < 150, transition when 150 ≤ 𝑅𝑒pore ≤ 300, 

and turbulent when 𝑅𝑒pore > 300). 

• Then, the friction factor of each pore (fpore) is recalculated depending 

on the new defined flow regime in the pore (see Figure 5-1). The 

transition and turbulent flow regimes were found to initiate locally 

in each pore in a porous medium at the Reynold’s number values of 

150 and 300, see Section 2.4, (Dybbs and Edwards, 1984; Horton 

and Pokrajac, 2009). 

• Then, the proposed set of equations (Equations 5.1 to 5.7) shown 

below are applied to the whole pore-network. The proposed solution 

requires few iterations before fpore reaches a constant value in each 

pore. 

• Finally, the medium parameters (e.g. KD and β), Equation 2.3, can be 

obtained and the limits between the flow regimes at the macro-scale 

can be determined. For instance, the onset of non-Darcy and 

turbulent flow regimes can be obtained by plotting the results in the 

form of normalized dimensionless pressure (
𝛥𝑃 𝐾𝐷

𝐿 𝜇 𝑣
) versus 

Reynold’s number, and a change in the slope of the results 

represents the different flow regimes (Section 5.3.3).  

5.2.1 Flow modelling 

5.2.1.1 Pressure loss due to friction at the pore-scale 

The average velocity through any pore, 𝑢pore (mm/s), can be related to the 

pressure loss using the Darcy-Weisbach equation (Weisbach, 1845; Darcy, 

1857), Equation 2.8 (𝛥ℎ𝑝𝑜𝑟𝑒 =
∆𝑃pore

𝛾
= 𝑓pore

𝐿pore

2 𝑟pore

𝑢pore
2

2𝑔
). For fully 

developed laminar flow, the pore friction factor, 𝑓pore (-), is a function of 

the Reynold’s number, 𝑅𝑒pore (-), only, and it can be estimated using 

Equation 5.1 (Çengel & Cimbala, 2006):  
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𝑓pore (laminar) =
32

𝑘 𝑅𝑒pore
  5.1 

where 𝑅𝑒pore =
𝜌 𝑢pore (2 𝑟pore)

𝜇
, is the pore Reynold’s number, and 𝑘 (-) is a 

constant that depends on the cross-sectional shape of the pore, which is 

equal to 1/2, 3/5, and 0.5623 for circular, triangular and square cross-

sections, respectively (Çengel & Cimbala, 2006). Substituting Equation 5.1 

into Equation 2.8 leads to the Hagen–Poiseuille equation (Hagen, 1839; 

Poiseuille, 1841), Equation 4.1, for laminar flow.   

In the turbulent flow regime, unlike laminar flow and due to the complexity 

caused by the randomness and fluctuations in the fluid particle movements, 

the expressions for velocity and pressure loss are based on both analysis and 

experimental measurements, therefore, they are considered semi-empirical 

and may have some constants obtained from experimental data (Çengel & 

Cimbala, 2006). For fully developed turbulent flow, 𝑓𝑝𝑜𝑟𝑒 is a function of 

the Reynold’s number and the average internal surface roughness of the 

pore, ε (mm), and it can be expressed implicitly using Equation 5.2 

(Colebrook & White, 1937), by: 

𝑓pore (turbulent) = [2 𝑙𝑜𝑔10 (
2.51

𝑅𝑒pore √𝑓pore(turbulent)
+

𝜀

3.7 𝐷pore
)]

−2

  5.2 

where Dpore (mm) is the diameter of the maximum inscribed circle inside the 

pore and the ratio 𝜀/𝐷pore (-) is the relative roughness of the pore. For the 

case of smooth pores, the relative roughness term (
𝜀

3.7 𝐷𝑝𝑜𝑟𝑒
) in Equation 5.2 

can be neglected (Çengel & Cimbala, 2006; Rennels & Hudson, 2012), 

which is the case for the media composed of glass beads with smooth 

surface used. In the proposed model, 𝑓pore (turbulent) is estimated at a 

constant 𝑅𝑒pore, using Equation 5.2, by iterations. The iterations continue 

until the relative error between (∆𝑓pore% =
|𝑓pore(𝑛+1)−𝑓pore(𝑛)|

𝑓pore(𝑛+1)
× 100) 

between the last two successive values of 𝑓pore (turbulent) is less than 1%.  

For transitional flow, when 150 ≤ 𝑅𝑒pore ≤ 300, following the method 

proposed by Martins et al. (2007), 𝑓pore (transition) is calculated by 

interpolation, i.e. 𝑓pore (laminar) is estimated using Equation 5.1 at 𝑅𝑒pore =
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150, and 𝑓pore (turbulent) is estimated using Equation 5.3 at 𝑅𝑒pore = 300, 

then 𝑓pore (transition) is calculated at 𝑅𝑒pore using interpolation between 

these two values. 

 

Figure 5-1 The pore friction coefficient (fpore) vs. pore Reynold’s number 

(Repore) for a 0.5 mm radius circular tube, following Equation 5.1 for 

laminar flow and Equation 5.2 for turbulent flow, while fpore for transition 

flow is obtained by linear interpolation between the two values obtained at 

Repore =150 and Repore =300. 

The Darcy-Weisbach equation, Equation 2.8, can be rewritten as, 

𝑞pore
2 =

𝑔pore
𝑓

𝐿pore
Δ𝑃pore

𝑓
    5.3 

where Δ𝑃pore
𝑓

 (Pa) represents the pressure loss due to friction (between fluid 

particles, and between the fluid and the pore internal surface) through the 

pore, and the conductance, 𝑔pore
𝑓

 (mm4/Pa·s), of any pore cross-section, is 

given by 

𝑔pore
𝑓

=
4 𝑟pore 𝑎2

𝑓pore 𝜌
 . 5.4 

From Equation 5.3 and using the same harmonic mean concept of Equation 

4.4, the friction pressure loss, Δ𝑃i−j,tot
f  (Pa), between any two pore bodies (i 

and j) can be related to the discharge as  

𝑞i−j
2 =

𝑔i−j,tot
𝑓

𝐿i−j,tot
𝛥𝑃i−j,tot

f  5.5 

1E-2

1E-1

1E+0

1E+1

1E+2
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1E+4

1E-2 1E+0 1E+2 1E+4 1E+6

f p
o
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where 𝐿i−j,tot (mm) is the length between the centres of the two pore bodies 

(i and j) and 
𝑔i−j,tot

𝑓

𝐿i−j,tot
=

1

𝐿i
𝑔i

+
𝐿i−j

𝑔i−j
+

𝐿j

𝑔j

, see Figure 4-1 and Equation 4.4. 

5.2.1.2 Pressure loss due to inertial effects at the pore-scale 

The inertial effects due to expansion, i.e. when flow moves from a pore 

throat to a connected pore body, and contraction, i.e. when flow moves from 

a pore body to a connected pore throat, can be calculated across each pore 

throat using equations 4.6 and 4.7 (Crane, 1942; Bird et al., 1960). Then, the 

total pressure loss for any pore throat in the network is the summation of the 

pressure losses due to friction, expansion and contraction, and can be 

estimated according to Equation 5.6 as follows: 

∆𝑃i−j
tot = 𝛥𝑃i−j,tot

f + ∆𝑃i−j
exp

+ ∆𝑃i−j
cont = [

𝐿i−j,tot

𝑔
i−j,tot
𝑓 ] 𝑞i−j

2 + 𝐾e

𝜌𝑞i−j
2

2𝑎i−j
2 + 𝐾𝑐

𝜌𝑞i−j
2

2𝑎i−j
2    5.6 

where 𝐾e (-) and 𝐾c (-) were previously defined in Section 4.2.1.2 as the 

expansion and contraction coefficients. 

Equation 5.6 can then be rewritten as,  

𝑞i−j =
√

∆𝑃i−j
tot

[
𝐿i−j,tot

𝑔
i−j,tot
𝑓 ]+𝐾e

𝜌

2𝑎i−j
2 +𝐾c

𝜌

2𝑎i−j
2

  . 
5.7 

5.2.1.3 Solving the final system of equations 

For the whole pore-network, Equation 5.7 is applied for each pore throat 

and the continuity equation (i.e. Equation 4.11) is invoked at each pore 

body. This process results in a system of NPB non-linear equations, where 

NPB is the total number of pore bodies in the pore-network. The resulting 

system of equations is solved for pressure using a developed FORTRAN 

code with the use of the HSL NS23 routine (HSL, 2013). The initial guess 

of the pressure values at each pore body is provided, as input, from the non-

Darcy flow case (presented in Chapter 4). Then, the HSL NS23 routine 

iterates until the sum of the squares of the residuals is less than the 

predefined value of 10-10. It is worth mentioning that the resulting system of 

equations is implicit, which means that the equations are solved to obtain 

the pressure value at each pore body, while the friction factor (𝑓pore) used 
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to obtain the conductance (𝑔i−j,tot
𝑓

) between any two pore bodies (in 

Equation 5.7) is a function of velocity which depends on the pressure 

values. This requires another iterative process until a constant value of 𝑓pore 

is obtained for each pore. The following steps summarise the procedures 

followed to achieve a final solution of the nonlinear system of equations: 

1. Using the non-Darcy flow case (presented in the Chapter 4) as an 

initial guess for the pressure value at each pore body, the velocity 

(upore), Equation 4.1, and Reynold’s number (𝑅𝑒pore), Equation 2.12, 

for each pore can be estimated. Then, the friction factor (𝑓pore) and 

conductance (𝑔pore
𝑓

) for each pore in the pore-network are initially 

estimated using equations 5.1, 5.2 and5.4.  

2. Using Equation 4.4, an initial value for 𝑔i−j,tot
𝑓

 is obtained for each 

pore throat and invoked in Equation 5.7. After that, the continuity 

equation is applied at each pore body to generate a system of non-

linear algebraic equations. 

3. The HSL NS23 subroutine (HSL, 2013) is called to solve the 

proposed system of equations and to provide an updated pressure 

value at each pore body. 

4. The updated pressure values are used to recalculate the velocity 

(upore), Reynold’s number (𝑅𝑒pore), friction factor (𝑓pore) and 

conductance (𝑔pore
𝑓

) for each pore in the pore-network.  

5. The steps 2 to 4 are repeated iteratively. At each iteration, the 

Reynold’s number of each pore (𝑅𝑒pore) from the current iteration 

(iteration number n+1) is compared to the value from the previous 

iteration (iteration number n). If the relative error between the two 

values (∆𝑅𝑒pore% =
|𝑅𝑒pore(𝑛+1)−𝑅𝑒pore(𝑛)|

𝑅𝑒pore(𝑛+1)
× 100) for any single 

pore is larger than a predefined relative error of 1%, then the code 

continues iterating. The iterations stop if the relative error 

(∆𝑅𝑒pore%) for all pores in the pore-network is less than 1%, or if 

the relative error of the overall discharge through the medium is less 

than 1% as well.  
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By solving this nonlinear system of algebraic equations, the final pressure 

value at each pore body is obtained, then Equation 5.7 is used to determine 

the discharge through each pore throat. Finally, at the macro-scale and after 

the onset of turbulence, the Forchheimer equation can be applied to describe 

the turbulent flow behaviour with modified values of the Forchheimer 

coefficient (β`) and the Forchheimer permeability (𝐾F
` ) that can be obtained 

using a Forchheimer plot (See Equation 2.3).  

In all simulations, a no-flow boundary condition is applied to all pore-

network boundaries except the inlet and outlet boundaries where constant 

pressure values are applied. The same fluid properties used for modelling 

the non-Darcy flow regime are applied, i.e. μ = 0.001 kg/ms and ρ = 1000 

kg/m3. The overall volumetric fluid discharge (q) is obtained by summing 

up all the pore throat discharges either at the inlet or the outlet of the pore-

network, while the flow superficial velocity (𝑣) is estimated as the 

volumetric fluid discharge (q) divided by the whole cross-sectional area (A) 

perpendicular to the flow direction.  

The algorithm and details of the approach used for solving the resulting 

nonlinear system of algebraic equations for the proposed pore-network 

model are shown in Appendix B. 

5.2.2 Numerical instability  

An instability problem was discovered during the development of the pore-

network flow code developed in this chapter. This problem happens when 

either the velocity through any pore throat, in the pore-network, is equal to 

zero or the pressure values of two connected pore bodies are exactly the 

same. If the velocity through a pore throat is equal to zero, the Reynold’s 

number for this pore throat is equal to zero as well, and the value of the 

friction factor for this pore throat, which is calculated either from Equation 

5.1 or Equation 5.2, goes to infinity due to the division by zero. Also, during 

the iterative processes, explained in the Section 5.2.1.3, the pressure values 

of any two connected pore bodies (i and j) can be the same, then any 

derivative value that contains ∆𝑃i−j
tot will be equal to infinity due to the 

division by zero as shown in Appendix B.  
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To resolve this instability problem, the code was designed to check the 

velocity through each pore throat and the pressure values of each two 

connected pore bodies before each iteration. Then, if any of the two cases 

that cause instability are identified for any pore throat, then the pore throat 

is marked and excluded from the calculations (during the current iteration 

only). The final system of equations and the Jacobian matrix that contains 

the nonzero derivatives are updated and the iterations continue as normal.       

5.3 Verification, Results and Discussion 

5.3.1 Extracted pore-networks 

The same extracted pore-network for the REV selected from the packed 

spheres (dm = 1.84 mm) sample which was used in the experimental work 

(Chapter 3) has been used to verify the code developed for the turbulent 

flow regime. The properties of this extracted pore-network together with the 

pore-network equivalent to the regularly structured uniform beads (dm = 5 

mm) sample are shown in Table 5-1 and Figure 5-2.   

Table 5-1 Properties and characteristics length of the packed spheres (dm = 

1.84 mm) and regularly structured uniform beads (dm = 5 mm) samples. 

Sample 

R
eso

lu
tio

n
 

(µ
m

) 

P
o
ro

sity, 

ϕ
 

Characteristic 

length, Lcharc 

(mm) 

Sample size Pore voxels 

𝐾𝐷 

10-9 

(m2), 

Lab. 

Packed 

spheres 

(dm = 1.84 

mm)  

65.99 0.364 1.837 
758758758 

voxels 
124,612,700 

2.25 

± 7% 

Regularly 

structured 

uniform 

beads (dm 

= 5 mm) 

NA 0.48 5.0 
5050100 

mm3 
NA 29.70 
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Table 5-2 The properties of the pore-networks equivalent to the packed 

spheres (dm = 1.84 mm) and regularly structured uniform beads (dm = 5 mm) 

samples. 

Sample 
No. of 

PBs 

No. of 

PThs 

Average 

coordination 

number 

Maximum 

coordination 

number 

Packed spheres (dm 

= 1.84 mm)  
10,315 53,960 10.4 30 

Regularly structured 

uniform beads (dm = 

5 mm) 

2,299 6,600 5.6 6 

 

 

Figure 5-2 The porous media used in the laboratory and their equivalent 

pore-networks; a) the REV of the randomly packed spheres (dm = 1.84 mm), 

and b) is 5 mm diameter uniform beads, packed regularly in a 50 mm  50 

mm  100 mm Perspex duct. 
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5.3.2 Flow behaviour  

PNM has been used in the literature for small samples and narrow pores 

compared to the two samples used in this chapter. Most of the previous 

work done using PNM was performed in the Darcy laminar flow regime, 

while only five studies were done in the laminar non-Darcy flow regime 

(Section 4.1). The sizes of the pores used in most of these studies ranged 

from 1 nm to 0.1 mm in terms of pore diameters (Dong et al., 2007; 

Lawrence & Jiang, 2017) and the length of each pore ranged from less than 

the pore diameter up to ~40 times the pore diameter. Within this range of 

pore dimensions, the Reynold’s number in each pore is small and the pore 

entrance length (Lh), see Section 2.3.1, is small compared to the whole 

length of the pore, so the assumption of the fully developed flow is valid. 

Meanwhile, the pore diameters in the packed spheres’ (dm = 1.84 mm) 

sample ranged from 0.06 mm to 1.4 mm. In the regularly structured uniform 

(dm = 5 mm) beads, the pore body and pore throat diameters are fixed, and 

they are equal to 4.25 mm and 2.34 mm, respectively. As mentioned in 

Chapter 4, for the Forchheimer flow regime in the packed spheres’ (dm = 

1.84 mm) sample, the Reynold’s number in each pore is relatively high, and 

the flow in most pores is a developing flow, i.e. within these relatively large 

pores, the pores are not long enough for a fully developed flow to be 

achieved. In such cases, if the flow is assumed to be fully developed in each 

pore, this causes underestimation of the friction factor for each pore in the 

sample and consequently underestimation of the pressure loss through the 

pore.  

For the turbulent flow regime, by checking the entrance length (𝐿h,turbulent) 

for both samples using either Equation 2.10 or 2.11, it has been found that 

the flow in both samples is also a developing flow. Even for samples that 

have a small pore such as the Bentheimer and Estaillades samples used in 

Chapter 4, using Equation 2.11, it has been found that the flow cannot 

achieve a fully developed state in each pore. Unfortunately, this conclusion 

could not have been achieved before proposing and checking the results of 

the pore-network turbulent flow model that assumed fully developed 

turbulent flow in all pores. The only previous study that modelled turbulent 



148 

 

flow using PNM (by(Martins et al., 2007) assumed a fully developed flow 

in each pore and they did not find that the flow is a developing flow in most 

of the pores. 

From the literature related to previous studies that modelled developing 

turbulent flow through pipes, it has been found that there is scarcity in such 

studies. To my knowledge, there is only one study presented by Bhatti and 

Shah (1987) that determines the friction coefficient through short pipes 

within the developing turbulent flow regime, but this study has some 

limitations in terms of the entrance length and the range of Reynold’s 

number for which their proposed solution is valid. Nevertheless, the 

analysis of the proposed model results, that do not fully agree with the 

experimental results, are done based on the current model that assumed 

fully developed flow in each pore.  

The proposed PNM code developed in this chapter is capable of simulating 

flow through the laminar, Forchheimer and turbulent flow regimes, 

however, in the following discussion, this code will be referred to, in short, 

as the “turbulent flow code”. Figure 5-3 shows the pressure gradient (ΔP/L) 

versus superficial velocity (v) obtained by PNM for both non-Darcy 

Forchheimer flow and turbulent flow compared to the experimental results. 

As shown in Chapter 3, the packed spheres sample (dm = 1.84 mm) was 

designed to achieve flow measurements in the three flow regimes (Darcy, 

Forchheimer and turbulent flow regimes) within the laboratory capacity. It 

can be seen from Figure 5-3a that neither the Forchheimer flow model 

(presented in Chapter 4) nor the turbulent flow model can predict the 

experimental results, except at very low velocities (when v < 0.01 m/s). At 

any specific velocity larger than 0.01 (m/s), the pressure loss predicted by 

PNM is less than the measured value in the laboratory. This is because 

PNM assumes fully developed flow in all pore throat, which leads to 

underestimation of the friction factor and the pressure loss in all pores and, 

consequently, less pressure loss in the whole medium (El-Zehairy et al., 

2019). On the other hand, Figure 5-3b shows a good match with the 

experimental results when v < 0.045 (m/s). Also, the results of the non-

Darcy flow model and the turbulent flow model are close to each other. This 
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is because in such a medium (5 mm beads) with large pores, the flow 

behaviour is dominated by the inertial effects due to expansion and 

contraction, while the pressure loss due to friction in each pore may be 

neglected as shown in Section 5.3.5. In Figure 5-3b, when v > 0.045, there 

is a mismatch between the PNM and the experimental results which might 

be due to some uncertainties related to using the digital flowmeter, in the 

test rig, used to estimate the discharge for the 5 mm beads sample, while the 

discharge rates for the 1.84 mm beads sample was measured manually for 

each run.  

 

Figure 5-3 The pressure gradient (ΔP/L) versus superficial velocity (v) for 

both non-Darcy Forchheimer flow and turbulent flow compared to the 

experimental results; a) is for the 1.84 mm diameter randomly packed 

spheres, and b) is for the 5 mm diameter regularly packed beads. The 
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vertical dashed lines represent the onset of turbulence determined according 

to Section 5.3.3.   

5.3.3 Onset of turbulent flow 

The results for both samples used in the experimental work (Figure 5-5) and 

the majority of the previous experimental work carried out through different 

porous media (Fand et al., 1987; Kececioglu & Jiang, 1994; Bağcı et al., 

2014) showed that the rate of pressure loss, or pressure gradient, within the 

turbulent flow regime decreases compared to the pressure loss rate in the 

Forchheimer regime. The fact that turbulent flow is characterised by flow 

fluctuations and eddies, i.e. larger pressure losses, made this phenomenon 

strange and difficult to understand. On the other hand, the experiments 

performed by Lage et al. (1997) using air flow through three different 

aluminium blocks (layers) showed a different behaviour; the rate of pressure 

loss within the turbulent flow regime increases compared to the pressure 

loss rate in the Forchheimer flow regime. Lage et al. (1997) attributed this 

different behaviour to the medium morphology.  

 

Figure 5-4 The friction factor for a single pore with 0.5 mm radius 

assuming laminar flow (Equation 5.1) and turbulent flow (Equation 5.2). 

The vertical lines represent the onset of the transition (Repore = 150) and 

turbulent (Repore = 300) flow regimes.  
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In PNM, any porous medium can be simplified into a group of single pores 

(tubes) connected to each other. While the friction factor in each pore is 

obtained using equations equivalent to Moody’s Diagram (Figure 2-4). 

However, in Moody’s Diagram, the laminar friction factor is not shown at 

high Reynold’s number (i.e. in the turbulent flow regime). Additionally, 

Moody’s Diagram is specific for large tubes and not micro-tubes. Therefore, 

Equation 5.1 and Equation 5.2 were used to developed Figure 5-4 for a 

single capillary tube with 0.5 mm radius. Different pore diameters (other 

than 0.5 mm) were tested as well and the intersection point of the two 

curves in Figure 5-4 is always around Re = 1000. From Figure 5-4, it is 

shown that when the pore Reynold’s number is less than 1000, at any 

specific velocity, the turbulent flow friction factor is less than the laminar 

flow friction factor. According to Equation 2.8, at any constant velocity, the 

pressure loss through any pore increases when the pore friction factor 

increases. From the Forchheimer and turbulent flow PNM results, for both 

of the porous media used in the experiments (1.84 mm and 5 mm beads), 

within the maximum applied pressure drop through the media, the 

Reynold’s number in most of the pores did not exceed 1000. Therefore, the 

pore friction factors within the turbulent flow regime are always less than 

the pore friction factors when laminar flow is assumed. This leads to less 

pressure loss through the porous medium within the turbulent flow regime 

compared to the pressure loss if a Forchheimer flow regime is assumed (at 

any constant velocity after the onset of turbulence).      

From Moody’s diagram (Figure 2-4), it can be seen that the friction factor in 

a single tube depends on its relative roughness. For smooth tubes, the 

friction factor of the tube is the lowest, while the tube friction factor 

increases when the relative roughness of the tube increases. Therefore, all 

porous media composed of beads with smooth surface (Fand et al., 1987; 

Kececioglu & Jiang, 1994; Bağcı et al., 2014) exhibited a lower pressure 

loss rate in the turbulent flow regime, while the medium with high relative 

roughness used by Lage et al. (1997) exhibited a higher pressure loss rate in 

the turbulent flow regime compared to the pressure loss rate in the 
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Forchheimer flow regime. This means that the flow behaviour depends on 

the medium’s morphology as concluded by Lage et al. (1997). 

The onset of turbulent flow can be determined when the pressure gradient 

results are plotted in the form of normalised dimensionless pressure (
Δ𝑃 𝐾D

𝐿 𝜇 𝑣
) 

versus Reynold’s number (Equation 2.12), as shown in Figure 5-5, and the 

change in the slope of the results represents the different flow regimes. 

Table 5-4 shows the onset of non-Darcy flow, determined according to 

Section 4.3.3, and the onset of turbulence for the two porous media used in 

this chapter compared to some results in the literature. For the results 

presented in Figure 5-5a, it is noticed that the onset of turbulent flow 

obtained by PNM (when Re = 92.7) is in good agreement with the onset 

obtained from experiments (when Re = 98) and obtained by Fand et al. 

(1987) for the 2.098 mm mean diameter packed spheres (Re = 80-120). 

However, in Figure 5-5b, the onset of turbulent flow obtained by PNM 

(when Re = 116), does not agree with the onset obtained from experiments 

(when Re = 204). This could be because of some uncertainties in the 

discharge measurements for the 5 mm beads sample which was done using 

a digital flowmeter (without calibration). Nevertheless, for the 5 mm beads, 

when ReK (2.16) is used instead of Re (2.12) to determine the onset of 

turbulence, a good match between the PNM results (ReK = 7.42) and the 

experimental results (ReK = 6.56) is obtained. 

In Table 5-3, different porous media with different properties are presented, 

therefore, the presented Darcy permeability (KD) and Reynold’s number 

values are not expected to match with each other. For instance, when the 

average bead diameter of the sample increases, the permeability (KD) 

increases as it is easier for the flow to move through the medium. Moreover, 

in general, it is noticed that the onset of non-Darcy flow and the onset of 

turbulent flow occur earlier (at lower Reynold’s number) in fine media 

compared to media composed of coarse particles. This is because media 

composed of fine particles have a more complex pore structure compared to 

media composed of coarse particles. 
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Figure 5-5 The normalised dimensionless pressure (ΔPKD/Lµv) versus 

Reynold’s number, Re, (Equation 2.12) for a) the 1.84 mm diameter 

randomly packed spheres, and b) the 5 mm diameter regular packed beads.  
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Table 5-4 The onset of non-Darcy flow, determined according to Section 

4.3.3, and the onset of turbulence for the two porous media used in this 

chapter compared to some results in the literature. 

sample 
KD10-

9 (m2) 

Onset velocity, v 

(mm/s) 

Onset of non-

Darcy flow 

Onset of turbulent 

flow 

Non-

Darcy 
turbulence Re ReK Re ReK Fo 

Lab 

results, 

dm = 

1.84 mm 

2.25 ± 

7% 

4.1 ± 

3% 
53.5 ± 4% 

7.50 

± 3% 

0.19 ± 

7% 

98.0 

± 4% 

2.54 

± 7% 

1.20 

± 

21% 

PNM, dm 

= 1.84 

mm 

2.59 0.51 50.4 0.94 0.03 92.7 2.56 0.43 

Fand et 

al. 

(1987), 

dm = 

2.098 

mm 

3.89 1.74 47.7 
2.30-

5.0 

0.068-

0.15 

80.0-

120.0 

2.37-

3.57 
1.84 

Kundu et 

al. 

(2016), 

dm = 2.5 

mm 

5.49 7.24 N.A. 18.10 0.20 N.A. N.A. N.A. 

Bağcı et 

al. 

(2014), 

dm = 3 

mm  

6.42 7.5 77.5 22.45 0.59 232.5 6.21 2.85 

Lab 

results, 

dm=5 

mm 

29.7 19.6 40.8 98 3.15 204.0 6.56 0.61 

PNM, dm 

= 5 mm 
101.53 0.1 23.3 0.5 0.03 116.5 7.42 3.62 

5.3.4 Forchheimer plots 

The Forchheimer equation (i.e. Equation 2.2) can be used to describe the 

flow behaviour in the turbulent flow regime in a similar way to how it was 

used to describe the flow in the Forchheimer flow regime, but it requires 

adjustments to the values of β and KF. In the turbulent flow regime, the non-

Darcy coefficient (β) is denoted by β` and the Forchheimer permeability 

(KF) is denoted by 𝐾𝐹
` . In Figure 5-6, the slope of each line in the turbulent 

flow regime represents the modified non-Darcy coefficient (β`) and its 

intercept is 1/𝐾𝐹
`  (Equation 2.3).  
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The β` values predicted by PNM for the packed spheres (dm = 1.84 mm) and 

the 5 mm regular packed beads in the turbulent flow regime are 3.30×103 

(1/m) and 1.53×103 (1/m), respectively. The corresponding values measured 

in the experiments are 7.57×103 and 0.58×103 (1/m) as presented in Table 

5-5. For the packed spheres (dm = 1.84 mm), there is a good match between 

β` obtained from PNM and the experimental results, this can be confirmed 

from Figure 5-6a as the two curves are almost parallel to each other, i.e. 

they have a similar trend. While for the regular packed beads, the difference 

between β` obtained by PNM and the corresponding experimental value is 

~164%, which is associated with the aforementioned uncertainties related to 

the discharge measurements done using the digital flowmeter without 

calibration and also due to the difference between the Darcy permeability 

value obtain by PNM (101.5×10-9 m2) and in the lab (29.7×10-9 m2) as β` 

depends on Darcy permeability. The difference in the Darcy permeability 

could be due to two reasons. The first reason is the assumption of fully 

developed flow in each pore, which causes underestimation of the pore 

friction factors and this leads to less resistance to the flow’s motion and 

higher permeability obtained by PNM. The second reason is due to the high 

potential error related to the experimental measurements at low discharges, 

because at low discharges the difference between the manometer readings is 

small and the potential error is high.     

The predicted 𝐾𝐹
`  value, by PNM, for the packed spheres (dm = 1.84 mm) 

and the 5 mm regular packed beads in the turbulent flow regime are 

2.33×10-9 (m2) and 181.8×10-9 (m2), respectively. The corresponding values 

obtained from the experimental results are 1.7×10-9 and 23.26×10-9 (m2), 

Table 5-5. For the packed spheres (dm = 1.84 mm), there is a good match for 

the 𝐾𝐹
`  values obtained by PNM and by experiments, while for the 5 mm 

beads sample there is about one order of magnitude difference. There are a 

few reasons that may cause this mismatch for the 5 mm beads. First, 

permeability depends on the flow velocity and the corresponding pressure 

loss at low velocities, and the flowmeter is more likely to give inaccurate 

measurements at very low velocity, i.e. the flowmeter reading keeps 

fluctuating with a high degree of inaccuracy. Second, as explained in 
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sections 5.3.2 and 2.3.1, the entrance length of a pore (where the flow is 

developing) increases when the size of the pore increases, i.e. the flow is 

developing in each pore and it is far away from the assumption that the flow 

is fully developed. This is why the mismatch between the experimental 

results and the PNM results for the 5 mm beads is larger than the mismatch 

for the 1.84 m packed spheres sample.  

 

 

Figure 5-6 Forchheimer plot for a) packed spheres (dm = 1.84 mm) and b) 

regularly structured uniform beads (dm = 5 mm).  
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Table 5-5 The Darcy permeability (KD), Equation 2.1, modified 

Forchheimer permeability (KF
`) and modified Forchheimer coefficient (β`), 

Equation 2.3, for the two samples (dm = 1.84 mm and dm = 5 mm). 

Sample 
∆𝐾𝐷 (10-9×m2) ∆𝐾𝐷 

[%] 

𝐾𝐹
`  (10-9×m2) ∆𝐾𝐹

`  

[%] 

β` (103/m) Δβ` 

[%] Lab PNM Lab PNM Lab PNM 

dm = 

1.84 

mm 

2.25± 

7% 
2.59 15.2 

1.70± 

7% 
2.33 37 

7.57± 

11% 
3.30 56.4 

dm = 5 

mm 
29.70 101.53 243.4 23.26 181.80 681 0.58 1.53 163.8 

5.3.5 Decoupling inertial effects from friction losses 

The proposed pore-network model was adjusted to decouple the pressure 

loss due to inertial effects (expansion and contraction) from the pressure 

loss due to friction in each pore, and the results are presented in Figure 5-7. 

In Figure 5-7a, both the inertial effects and the friction in each pore affect 

the flow behaviour. However, at higher velocities, when v > 0.075 (m/s), the 

pressure loss due to inertial effects is larger than the pressure loss due to 

friction. Another behaviour can be observed for the 5 mm beads sample, in 

Figure 5-7b, due to the large pore sizes in the 5 mm beads sample. In Figure 

5-7b, the inertial effects dominate the flow behaviour except at very low 

velocities (when v < 0.1 mm/s) which is difficult to measure experimentally 

using the current laboratory capabilities.   
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Figure 5-7 Decoupling the inertial effects from friction losses for a) the 

packed spheres (dm = 1.84 mm) and b) the regularly structured uniform 

beads (dm = 5 mm). 

5.3.6 Friction factor  
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3.6). In Table 5-4, all previous experimental results, by Fand et al. (1987), 

Bağcı et al. (2014) and also for the 1.84 mm packed spheres, obtained the 

onset of turbulence when Fo > 1.20. Therefore, the onset of turbulence 

obtained for the 5 mm beads in the lab (at Fo=0.6) is attributed to some 

uncertainties in the experimental measurements for this sample as discussed 

earlier.   

 

 

Figure 5-8 The medium friction factor (f) versus Forchheimer number (Fo), 

Equation 2.18, for a) the packed spheres (dm = 1.84 mm) and b) the 

regularly structured uniform beads (dm = 5 mm). The vertical dashed lines 

represent the onset of turbulent flow.  
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were used to estimate the pressure losses due to friction and inertial effects 

at the pore-scale. At the pore-scale, the limits between different flow 

regimes (laminar, transition and turbulent) were predefined using the 

Reynold’s number limits obtained by Dybbs and Edwards (1984) and 

Horton and Pokrajac (2009) who experimentally measured the onset of 

transition and turbulent flow inside the pores of different porous media 

(laminar when 𝑅𝑒pore < 150, transition when 150 ≤ 𝑅𝑒pore ≤ 300, and 

turbulent when 𝑅𝑒pore > 300). Assuming fully developed flow in each 

pore, the pore friction factor was estimated based on the flow regime. The 

model was verified against the experimental results obtained for two 

different samples. There were some discrepancies between the PNM results 

and the experimental measurements because the assumption of fully 

developed flow in each pore is not valid.  

At the macro-scale, the Forchheimer equation was used to describe the 

turbulent flow behaviour with modified values for the Forchheimer 

coefficient (β`) and the Forchheimer permeability (𝐾F
` ) that can be obtained 

using a Forchheimer plot. When the size of the pores is large, the inertial 

effects dominated the flow behaviour and the friction loss in each pore is 

negligible (as concluded for the 5 mm uniform beads sample).   

At the macro-scale, the onset of the turbulent flow regime was obtained 

using the conventional Reynold’s number (Re), the permeability-based 

Reynold’s number (ReK) and the Forchheimer number (𝐹𝑜). The onset of the 

turbulent flow obtained by the conventional Reynold’s number (Re), for the 

tested samples, had a wide range of values (93-204) depending on the 

medium characteristic length and size of the pores, this is due to the 

ambiguity in defining the characteristic length and because a conventional 

Reynold’s number does not account for the medium’s degree of 

heterogeneity. Nevertheless, the onset of turbulent flow obtained using ReK 

ranged from 2.5 to 7.4, and the onset of turbulent was flow obtained where 

𝐹𝑜 ranged from 0.4 to 3.6.  

The medium friction factor decreases when the fluid velocity increases. The 

relationship between the medium friction factor (f) and the Forchheimer 
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number (𝐹𝑜) is unique for all media, and it can be derived from the 

Forchheimer equation. 

To obtain better results from PNM within the turbulent flow regime, it is 

recommended to modify or replace the equations used to estimate the pore 

friction factor by other equations capable of estimating the pore friction 

factor for developing flow.   
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Chapter 6 

6 Pore-network modelling of solute transport for Darcy and 

Non-Darcy flow 

This chapter contains an introduction in which some commonly used 

terminologies and principles are explained, then the developed PNM 

algorithm for modelling solute transport within the Darcy and non-Darcy 

flow regimes in porous media is explained. According to my knowledge, all 

previous studies that modelled solute transport using PNM were limited to 

the Darcy flow regime only. The proposed solute transport pore-network 

model is the first model which can be applied to both Darcy and non-Darcy 

flow regimes. For verification, the proposed model has been applied to two 

porous media; Berea Sandstone and packed spheres (dm = 1.84 mm) samples 

used in Chapter 4. The pore-networks of the Berea sandstone and packed 

spheres have been extracted from available CT-images using the same 

method explained before in Chapter 4. The results of each sample are 

presented, discussed and compared with related results existing in the 

literature. 

6.1 Introduction 

Modelling solute transport in porous media is essential for designing many 

engineering processes such as tracking contaminants in groundwater 

(Buselli & Lu, 2001), remediation of  contaminated groundwater (Hashim et 

al., 2011), enhanced oil recovery (Ju et al., 2006), geological carbon storage 

(Andrew et al., 2013) and the fate of nuclear waste repositories in the long-

term (Kumblad et al., 2006). The transport process through porous media is 

controlled by the geometry of the pore space and flow conditions. 

Considering that pore-network models are simplified representations of 

complex pore geometries, by changing the geometrical characteristics of 

pore-networks or by using porous media with different characteristics and 

estimating the associated effects on flow and solute transport, our 

understanding of the relationship between a porous media structure and 
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transport properties can be improved (Vogel & Roth, 2001). Moreover, 

PNM can be used to predict averaged macroscopic flow and transport 

parameters for porous media which are difficult to obtain experimentally 

(Mostaghimi, 2012). The focus of this chapter is on dissolved conservative 

solutes, which spread within water under the processes of advection and 

hydrodynamic dispersion. Hydrodynamic dispersion is a result of two 

processes; molecular diffusion and mechanical dispersion. Molecular 

diffusion results from the random molecular movement of solute molecules. 

Mechanical dispersion is caused by tortuosity (specified by streamlines 

distributions) and nonuniform velocity in each pore (Figure 6-1) which 

causes shear stress between fluid layers (Gaganis et al., 2005).  

 

Figure 6-1 The two processes that cause mechanical dispersion in porous 

media; a) tortuosity, and b) the nonuniform velocity profile in each pore, 

where grey spheres represent the soil particles, after Mostaghimi (2012). 

Figure 6-2 shows the propagation of a pulse of solute injected into a 2D (3 

mm  30 mm) regular structured pore-network equivalent to a regular 

packing of uniform beads with 0.3 mm diameter. The concentration decays 

with time and its distribution can be treated as a Gaussian distribution 

according to the 1D ADE. After ~3.4 s, the variance , σ2 (mm2), of the 

Gaussian distribution increases linearly with time (Figure 6-3), the 

“asymptotic Fickian” regime is reached and the longitudinal dispersion 

coefficient reaches a constant value over time (Jha et al., 2011; Mostaghimi, 

2012).  
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Figure 6-2 The concentration decays of a pulse of solute injected into a 2D 

(3 mm  30 mm) pore-network equivalent to 0.3 mm diameter beads 

arranged in a regular structured order, a) is the average cross-sectional 

concentration distribution at different times, and b) is visualisation of the 

solute propagation through the medium.   

 

Figure 6-3 The variance grows over time for the system shown in Figure 

6-2. The variance starts to grow linearly after ~3.4 seconds.  
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6.2 The Mixed Cell Method (MCM) 

The first step before modelling solute transport in porous media is 

modelling the fluid flow and solving the flow and pressure fields 

everywhere in the medium. Then, the transport equations can be applied. 

The details of modelling Darcy and non-Darcy flow using PNM were 

explained before in Chapter 4, therefore, this chapter focuses on the solute 

transport equations only.  

 

Figure 6-4 A 2D schematic diagram of a pore-unit (PU). The hatched area 

represents a pore-unit which is a pore body and half of all pore throats 

connected to it.  

In the MCM, dispersion is assumed to occur mainly in pore throats and 

perfectly mixed conditions are assumed at each pore, i.e. the concentration 

is assumed to be constant in each pore body. Following Acharya et al. 

(2005) and Köhne et al. (2011), the transport equation for any pore-unit i, 

PU(i), defined as a pore body and half of all pore throats connected to it 

(Figure 6-4), in the pore-network is given by  

𝑉i
𝐶i(𝑡+𝑑𝑡)−𝐶i(𝑡)

𝑑𝑡
= ∑ 𝑞i−j𝐶i(𝑡)𝑞i−j<0

+ ∑ 𝑞i−j𝐶j(𝑡)𝑞i−j>0
+

∑ 𝑎i−j𝐷i−j
eff 𝐶j(𝑡)−𝐶i(𝑡)

𝐿i−j
j∈𝑁i

     
6.1 

which can be written as 
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𝐶i(𝑡 + 𝑑𝑡) = 𝐶i(𝑡) +
𝑑𝑡

𝑉i
(∑ 𝑞i−j𝐶i(𝑡)𝑞i−j<0

+ ∑ 𝑞i−j𝐶j(𝑡)𝑞i−j>0
+

∑ 𝑎i−j𝐷i−j
eff 𝐶j(𝑡)−𝐶i(𝑡)

𝐿i−j
𝑗∈𝑁i

)    

6.2 

where the subscript i denotes the index of the pore body (pore-unit) for 

which the mass balance is calculated and j is a neighbouring pore body, 𝑉i 

(mm3) is the volume of pore-unit i, dt (s) is the time step, 𝐶i(𝑡) is the solute 

concentration of PU(i) at time t in mol/mm3, 𝐷i−j
eff (mm2/s) is the pore throat 

effective diffusion coefficient. According to Section 2.6.1, all previous 

studies, that used PNM and applied the Taylor-Aris solution (𝐷i−j
eff = 𝐷𝑚 +

𝑢2𝑟2

48 𝐷𝑚
) in each pore throat, did not check the residence time needed to reach 

an asymptomatic state in each pore throat in the pore-network. However, in 

the proposed solution, 𝐷i−j
eff depends on the residence time in each pore 

throat and is given by the following equation proposed by Lee (2004): 

𝐷i−j
eff = 𝐷m + 𝜅𝑜𝐷m𝑃𝑒i−j

2 [1 − 𝑒𝑥𝑝 (−
𝑡

𝜏𝑜
)] 6.3 

where t (s) is the solute residence time in the pore throat that connects the 

two pore bodies i and j, 𝜏𝑜 is the Lagrangian time scale reflecting molocular 

diffusivity across the pipe radius and it is given by: 𝜏𝑜 =
𝑟𝑖−𝑗

2

16 𝐷m
 (s), 𝑟i−j is the 

average radius of the inscribed circle inside the pore throat, 𝐷m (mm2/s) is 

the molecular diffusion coefficient, 𝜅𝑜 (-) is a factor that can be determined 

analytically and it is approximately equal to 0.0208, 0.0342 and 0.019 for 

circular, square and triangular cross-sectional pores (Bijeljic et al., 2004), 

respectively, and 𝑃𝑒i−j (-) is the pore throat Péclet number. The factor 𝜅𝑜 

indicates higher dispersion in the throats with higher cross-sectional 

irregularity; 𝜅𝑜 is higher for square cross-section because the higher number 

of corners causes nonuniformity in the velocity field (Bijeljic et al., 2004). 

Different characteristic lengths were used in the literature to calculate the 

Péclet number (Huysmans & Dassargues, 2005). If the pore throat inscribed 

radius, 𝑟i−j (mm), is consider as the characteristic length, then following 

Bruderer and Bernabé (2001) and Babaei and Joekar-Niasar (2016), the pore 

throat Péclet number can be calculated as 
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𝑃𝑒i−j =
𝑢i−j𝑟i−j

𝐷m  
 . 6.4 

In Equation 6.1, dispersion due to flow field heterogeneity, as a result of 

tortuosity and change of flow-paths, is represented by ∑ 𝑞i−j𝐶i(𝑡)𝑞i−j<0
+

∑ 𝑞i−j𝐶j(𝑡)𝑞i−j>0
, while dispersion through each pore throat is represented 

by ∑ 𝑎i−j𝐷i−j
eff 𝐶j(𝑡)−𝐶i(𝑡)

𝐿i−j
𝑗∈𝑁i

. Equation 6.3 is applied when the pore throat 

dimensionless residence time (𝑇 =  
𝐷𝑚

𝑟𝑖−𝑗
2  𝑡

) is larger than 0.01. The 

investigations of Bailey & Gogarty (1962) and Ananthakrishnan et al. 

(1965) have proven that the transport regime in a pore throat is purely 

advective and 𝐷i−j
eff = 0.0 when T ≤ 0.01. Moreover, Romero-Gomez and 

Choi (2011) concluded that Equation 6.3 overestimates the effective 

diffusion coefficient by 25% when T ≤ 0.01 (Hart et al., 2016). In Equation 

6.3, if the solute residence time t is a few times larger than 𝜏𝑜, the equation 

leads to the well-known Taylor-Aris effective diffusion coefficient in the 

asymptotic Fickian regime (Figure 2-9).  

While using the mixed cell method (MCM), the solution stability depends 

mainly on the selected time step (dt). Acharya et al. (2007) who used a 

similar methodology, but neglected dispersion in pore throats, proposed that 

the time step (dt) should be selected based on the minimum value of the 

residence time either in each pore-unit or in each single pore throat as per 

equations 6.5 and 6.6 (Acharya et al., 2007), namely  

0 < 𝑑𝑡 ≤ 𝑚𝑖𝑛{𝒕PU} = 𝑚𝑖𝑛 {
𝑽PU

𝒒PU
} , 6.5 

and  

0 < 𝑑𝑡 ≤ 𝑚𝑖𝑛{𝒕PTh} = 𝑚𝑖𝑛 {
𝑳PTh

𝒖PTh
} = 𝑚𝑖𝑛 {

𝑽PTh

𝒒PTh
} , 6.6 

where 𝑽PU (mm3) and 𝒒PU (mm3/s) are the vectors of the pore-unit volumes 

and total absolute discharges either from or into the pore-units, respectively, 

and 𝒕PU (s) is the vector of pore-unit residence times. 𝒒PTh (mm3/s) and 

𝒖PTh (mm/s) are the vectors of discharges and average velocities through 

the pore throats, and 𝑽PTh (mm3) and 𝑳PTh (mm) are the vectors of the pore 

throat volumes and lengths.  
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Additionally, because dispersion is considered in each pore throat, the 

following case is proposed (Equation 6.7), 

0 < 𝑑𝑡 ≤ 𝑚𝑖𝑛{𝒕̀PTh} = 𝑚𝑖𝑛 {
𝑳PTh

2

𝑫PTh
eff }  6.7 

where 𝑳PTh
2  (mm2) and 𝑫PTh

eff  (mm2/s) are the vectors of the squared pore 

throat lengths and the pore throat effective diffusion coefficients. Because 

Equation 6.6 is derived from the advection rate of each pore throat in 

Equation 6.1, similarly, Equation 6.7 is derived from the dispersion rate of 

each pore throat in Equation 6.1. Finally, dt (s) should be selected less than 

or equal to the minimum value of the components of the three vectors 

𝒕PU, 𝒕PTh, 𝒕̀PTh. Using a larger time step results in instability in the 

numerical solution (Section 6.3.1).  

After solving the pressure and flow fields in the pore-network, Equation 6.1 

is solved explicitly for each time step as per Equation 6.2. Appendix D 

shows the flow chart, algorithm and details of the proposed pore-network 

transport model.  

Then, based on averaging, the overall average concentration, 𝐶̅ (mol/mm3), 

at each time step and the medium average Péclet number, 𝑃𝑒̅̅̅̅  (-), can be 

estimated according to equations 6.8 (Babaei & Joekar-Niasar, 2016) and 

6.9, 

𝐶̅ =
∑𝑉𝑖𝐶𝑖

  ∑𝑉𝑖
 , 6.8 

𝑃𝑒̅̅̅̅ =
𝑢𝑎𝑣𝑔 𝐿𝑐ℎ𝑎𝑟𝑐

  𝐷𝑚
 , 6.9 

where 𝑢𝑎𝑣𝑔 (mm/s) is the average value of the fluid velocities through all 

pore throats (Equation 4.16) and 𝐿𝑐ℎ𝑎𝑟𝑐 (mm) is the medium characteristic 

length, which is equal to the average bead diameter (1.84 mm) in the case of 

the packed spheres sample and 131.13 μm for the Berea Sandstone sample 

used (Mostaghimi et al., 2012). 

6.3 Verification, results and discussion  

In this section, because the proposed pore-network flow model 

overestimates the velocities in the packed spheres sample due to its 
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relatively large size of pores (as mentioned in Section 4.3.3), more detail 

will be given for the Berea Sandstone sample results while less discussion 

and results will be shown for the packed spheres sample.  

For all simulations, the coefficient of molecular diffusion (Dm) is considered 

equal to 10-9 m2s-1 (Bijeljic et al., 2004; Babaei & Joekar-Niasar, 2016). 

Dirichlet boundary conditions are applied at the inlet, i.e. the conservative 

solute is injected continuously at the inlet boundary with constant 

concentration (Co) equal 1 mol/mm3. The simulation continues until the 

concentration of the solute is nearly equal to 1 mol/mm3 at every pore-unit. 

Using continuously injected solute is better than a pulse injection because 

by the end of the simulation, the final concentration values at each PU are 

expected to be equal to Co, and the effect of dead ends and stagnant zones 

can be easily detected and visualised. A wide range of pressure drops (1×10-

5 to 80,000 Pa) across the pore-network were applied. For flow simulation, 

the same fluid properties and boundary conditions explained in Section 

4.2.1.3 are used.  

For each run, i.e. for each applied pressure drop across the pore-network, 

the longitudinal dispersion coefficient is determined by fitting the analytical 

solution of the 1D ADE (Ogata & Banks, 1961) to the breakthrough curve 

(BTC) obtained from pore-network simulation by using the CXTFIT 

computational software (Toride et al., 1995). The BTC for each run is 

measured at the middle of the sample, i.e. where x = L/2, where L is the 

length of the pore-network along the flow direction, then the concentration 

values over time (i.e. the BTC) are used as inputs to CXTFIT. These 

concentrations and time values are fitted to the analytical solution of the 1D 

ADE (Equation 2.20) to obtain the DL estimate and the average pore 

velocity (𝑢𝑎𝑣𝑔) values.  
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6.3.1 The effect of time step on the solution’s stability  

 

Figure 6-5 The pore-unit concentration values for the Berea sandstone 

sample at different times when a conservative solute with concentration (Co) 

equal 1 mol/mm3 is injected continuously at the inlet boundary; a), b) and c) 

are for the stable case when dt = 0.00356 s, while d), e) and f) are for the 

unstable case when dt = 0.356 s.   

The stability of the proposed numerical solution depends mainly on the time 

step (dt). Using a larger time step other than dt defined by equations 6.5, 6.6 

and 6.7 results in some pore-units having concentration values larger than 

the concentration of the injected solute (Co), and in addition, there may be 

other pore-units with negative concentration values. Figure 6-5 shows a 

comparison between a stable case (Figure 6-5(a-c) when dt is selected based 

on equations 6.5, 6.6 and 6.7, and the unstable case (Figure 6-5(d-f)) when a 

larger dt value is used.   
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6.3.2 Breakthrough curves and the longitudinal dispersion coefficients  

 

Figure 6-6 Snapshots of the concentration distribution for the Berea 

Sandstone sample at a)  𝐶̅/𝐶𝑜 = 0.25, b) 𝐶̅/𝐶𝑜 = 0.50, c) 𝐶̅/𝐶𝑜 = 0.75 

when ΔP = 0.1 Pa and 𝑃𝑒̅̅̅̅  = 0.1; d)  𝐶̅/𝐶𝑜 = 0.25, e) 𝐶̅/𝐶𝑜 = 0.50, 

f) 𝐶̅/𝐶𝑜 = 0.75 when ΔP = 10,000 Pa and 𝑃𝑒̅̅̅̅  = 9933. The flow direction is 

from left to right. 

Figure 6-7 Snapshots of the concentration distribution for the packed 

spheres sample; a)  𝐶̅/𝐶𝑜 = 0.25, b) 𝐶̅/𝐶𝑜 = 0.50, c) 𝐶̅/𝐶𝑜 = 0.75 when 

ΔP = 0.001 Pa and 𝑃𝑒̅̅̅̅  = 0.31; d) 𝐶̅/𝐶𝑜 = 0.25, e) 𝐶̅/𝐶𝑜 = 0.50, f) 𝐶̅/𝐶𝑜 =

0.75 when ΔP = 400 Pa and 𝑃𝑒̅̅̅̅  = 103,064. The flow direction is from left 

to right. 
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Figure 6-6 shows snapshots of the solute transport simulations at different 

times for the Berea Sandstone sample; a), b) and c) are for Darcy flow when 

ΔP = 0.1 Pa and 𝑃𝑒̅̅̅̅ = 0.1, while d), e), and f) are for non-Darcy flow when 

ΔP = 10,000 Pa and 𝑃𝑒̅̅̅̅ = 9,933. Figure 6-6(a-c), represent a diffusion 

dominated transport case, when the concentration front moves regularly 

over time in the longitudinal direction. In this case, the residence time in 

each pore throat is long and the effective diffusion coefficient for each pore 

throat is a maximum and equal to the Taylor-Aris effective diffusion 

coefficient. Moreover, the advection through each pore throat is negligible 

and solute particles are allowed to move freely through each pore throat 

depending on the concentration gradient between the two ends of the pore 

throat (as per the RHS of Equation 6.1). This allows all solute particles to 

move from high concentration to low concentration resulting in a nearly 

uniform distribution of the solute over any cross-section perpendicular to 

the longitudinal flow direction. As explained by Bruderer and Bernabé 

(2001), molecular diffusion acts in the transverse direction and works 

against the increasing longitudinal dispersion, which allows the solute 

particles to encounter a wide range of velocities and results in a uniform or 

semi-uniform distribution of solute concentrations. While in Figure 6-6(d-f), 

when the fluid moves with higher speed, the effect of advection increases, 

and the concentration front extends over a larger length depending on the 

velocity value in each pore. The final concentration distribution for the case 

shown in Figure 6-6(d-f) is controlled by the amount of discharge entering 

or leaving each pore-unit. If the pore-unit receives high discharge, this leads 

to a high concentration, while a low discharge is associated to a relatively 

lower concentration because this case represents an advection dominated 

transport regime.  

Comparing both cases (ΔP = 0.1 Pa and ΔP = 10,000 Pa) in Figure 6-6, the 

existence of a few pores with low concentration (blue colour) within the 

zones with high concentration (red colour), when ΔP = 10,000 Pa, can be 

noticed. But these low concentration pores do not exist in the diffusion 

dominated case. These blue pores represent pore-units with low discharge or 

dead-ends where the flow velocity is zero and the solute spreads by 
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diffusion only. A similar behaviour can be observed in highly heterogenous 

media (not Berea Sandstone) due to the existence of some stagnant zones in 

the medium. This phenomenon is referred to as “hold-up dispersion” (Koch 

& Brady, 1985; Bijeljic et al., 2004). Such pores with low concentration 

require a long time to gain the concentration value of Co. The total 

simulation time in the first case, when ΔP = 0.1 Pa, is longer (~2,400 s) than 

the total simulation time (0.12 s) of the second case when ΔP = 10,000 Pa. 

The long simulation time in the first case allows these pores to gain 

concentration by diffusion, but the short simulation time in the second case 

allows only the effect of advection to occur. 

The packed spheres sample, in Figure 6-7, shows a behaviour similar to that 

in Figure 6-6, but without the existence of dead ends because the packed 

sphere sample has a more homogenous structure compared to Berea 

Sandstone. In Figure 6-7(d-f), it is noticed that the solute concentration in 

most of the pore-units located at the boundary of the sample (close to the 

external containing circular pipe) have a higher concentration compared to 

the inner pore-units. This is because the sample boundary has a high effect 

on the overall porosity (see Section 3.4.2) and the pores located at the 

boundary have a relatively larger size and higher discharges compared to 

the inner pores.  
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 Figure 6-8 The Berea Sandstone breakthrough curves at different Péclet 

numbers, fitted to the analytical solution of the 1D ADE (Equation 2.20), 

the concentration C is obtained at the middle (x = L/2) of the sample under 

a) Darcy flow and b) Forchheimer flow conditions. The grey dashed curves 

represent the onset of non-Darcy flow, when 𝑃𝑒̅̅̅̅  = 2,570, determined using 

Equation 6.9 and the average pore velocity at the onset of non-Darcy flow. 

The breakthrough curves shown in Figure 6-8 show a very good match with 

the analytical solution of the 1D ADE (Equation 2.20) obtained using the 

CXTFIT software. This is due to the well-defined effective diffusion 

coefficient [𝐷𝑖−𝑗
𝑒𝑓𝑓

] for each pore throat (Equation 6.3) which is based on the 

pore throat transport regimes including; the asymptotic Fickian regime, the 
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pre-asymptotic time dependent regime and the pure advection regime (see 

Figure 2-9). In Figure 6-8, it is shown that for 𝑃𝑒̅̅̅̅ > ~2,570, if the inertial 

forces are ignored (as in Figure 6-8a) and the flow is assumed to be within 

the Darcy flow regime, then the solute spreads faster through the medium 

and the predicted velocity is higher compared to the non-Darcy case at the 

same applied pressure drop. This results in overestimation of the overall 

Péclet numbers and the longitudinal dispersion coefficients. Therefore, it is 

concluded that the flow inertial effects reduce the fluid velocity and 

consequently cause a time delay for solute dispersion.  

Figure 6-9 shows the longitudinal dispersion coefficient (DL) scaled by the 

molecular diffusion (Dm) versus Péclet number (𝑃𝑒̅̅̅̅ ). The figure shows the 

obtained PNM results compared to various results from the literature, i.e. 

experimental data for graded sands and other single-grained materials 

(Pfannkuch, 1963), for packed spheres (Ding & Candela, 1996; Seymour & 

Callaghan, 1997; Kandhai et al., 2002), for Latex spheres (Khrapitchev & 

Callaghan, 2003), for silica grains with many sharp edges and spherical 

plexiglass (Stöhr, 2003), in addition to numerical and experimental 

measurements for artificial glass-etched 2D pore-network (Theodoropoulou, 

2007), PNM for Berea Sandstone (Bijeljic et al., 2004), and DNS for Berea 

Sandstone (Mostaghimi et al., 2012). From Figure 6-9, it can be seen that 

the results of the proposed model, for Berea Sandstone, match well with 

Pfannkuch’s (1963) results for graded sands and other single-grained 

materials when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < 3.0, i.e. before the onset of non-Darcy flow. Also, 

they match with the results achieved by Theodoropoulou (2007) for the 

artificial pore-network. After the onset of non-Darcy flow, the proposed 

model underestimates DL compared to the results by Pfannkuch (1963) and 

Stöhr (2003), this is because the proposed model assumed laminar flow and 

neglected the effect of turbulent diffusion on the transport process (more 

details are given in Chapter 7), and the results obtained by Pfannkuch 

(1963) and Stöhr (2003) are more likely to be in the turbulent flow regime 

when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) > 3.0.  



176 

 

 

Figure 6-9 The longitudinal dispersion coefficient (DL) scaled by molecular diffusion (Dm) vs. Péclet number (𝑃𝑒̅̅̅̅ ) compared 

with previous experimental and numerical data. The blue vertical dashed line represents the onset of non-Darcy flow, when 𝑃𝑒̅̅̅̅  

≈3,000.
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Figure 6-10 Detecting different transport regimes for the Berea Sandstone 

sample results in the Darcy flow regime by using construction lines.  

Comparing the results achieved using the proposed model for Berea 

Sandstone with the previous results obtained for a similar Berea Sandstone 

sample by Bijeljic et al. (2004) and Mostaghimi et al. (2012), a good match 

can be detected, however, both the results of Bijeljic et al. (2004) and 

Mostaghimi et al. (2012) underestimate DL in the diffusion dominated 

regime, by ~170%,  when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < 0.5, and they attributed this 

underestimation to the existence of the solid matrix which works as a barrier 

to molecules resulting in 𝐷𝐿 < 𝐷𝑚.  

For the packed spheres sample, the proposed model overestimates DL, by 

~200%, at low Péclet numbers, when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < 0.5. This is because the 

packed spheres sample has pores with relatively large size and it was 

assumed that dispersion occurs over the pore throat length only (see the last 

term in the RHS of Equation 6.1), and the lengths of the pore bodies 

connect to both ends of the pore throats were neglected. So, using shorter 

lengths resulted in higher dispersion rates especially at low flow velocities 

when the effect of advection is negligible compared to the effective 

diffusion at the pore throats.  

Three different transport regimes can be detected from the Berea Sandstone 

results shown in Figure 6-9, depending on the change of the curvature of the 
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obtained results as explained in Figure 6-10, following the method proposed 

by Babaei and Joekar-Niasar (2016). First, the diffusion dominated regime 

is detected by a horizontal line, when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < −1.5, this is in agreement 

with Bijeljic et al. (2004) who found that diffusion dominates when 

𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < −1.0 for Berea Sandstone. The small deviation between the two 

values (-1.5 and -1.0) is because Bijeljic et al. (2004) underestimated DL in 

the diffusion dominated regime and because the proposed model neglects 

dispersion in the pore bodies. Second, the transition regime is the region 

between the horizontal dashed line and the 45-degree dashed line in Figure 

6-10, where both advection and diffusion affect the transport process. This 

regime is observed when −1.5 < 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < 0.5, compared to the range of 

−1 < 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < 1 by Bijeljic et al. (2004). Third, the advection dominates 

when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) > 0.5, and this zone can be further divided into two zones. 

The first zone in the advection dominated regime (0.5 < 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) < 3.0) is 

referred to as the boundary-layer dispersion regime, when advection 

dominates the mixing process, but the dimensionless residence time (T) in 

most of the pore throats is still > 0.01, i.e. there is small effect of dispersion 

through the pore throats, more details are given in Section 6.3.3. In this 

zone, the power law according to the obtained PNM results obeys the 

relation 
𝐷𝐿

𝐷𝑚
= 0.65 𝑃𝑒

1.05, this is in agreement with the power (δ = 1.02-1.13) 

obtained by Sorbie et al. (1987) and Gist et al. (1990) for various 

Sandstones, and still close to the value of δ = 1.19 obtained by Bijeljic et al. 

(2004) for Berea Sandstone. The second zone is referred to as the 

mechanical dispersion zone, when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) > 3.0, which is a purely 

advective regime and the dimensionless residence time (T) in most of the 

pore throats is < 0.01. In this zone DL is directly proportional to 𝑃𝑒̅̅̅̅ . 

Even though in Figure 6-6 there is evidence of hold-up dispersion, the 

number of dead-ends did not exceed 7 % of the total number of pore bodies 

in the Berea pore-network and this did not affect the dispersion or showed 

evidence that DL in this zone scales with 𝑃𝑒̅̅̅̅ 2 as proposed by Bijeljic et al. 

(2004) and Sahimi (2011b). In the advection dominated regime, DL is 

directly proportional to 𝑃𝑒̅̅̅̅ . Moreover, Bijeljic et al. (2004) confirmed that 
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hold-up dispersion does not exist at a small-scale (few centimetres) in Berea 

sandstone. 

In Figure 6-9, when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) > 3.45, neglecting the inertial force in the flow, 

i.e. assuming Darcy flow, causes an overestimation of both the Péclet 

number and the longitudinal dispersion coefficient. This is also observed for 

the packed spheres sample and is further shown in Figure 6-11.  

 

 

Figure 6-11 The longitudinal dispersion coefficient (DL) scaled by 

molecular diffusion (Dm) vs. Péclet number (𝑃𝑒̅̅̅̅ ) for a) Berea Sandstone and 

b) packed spheres. The vertical blue dashed line represents the onset of non-

Darcy flow.  

To further explain the inertial effects on the longitudinal dispersion, the 

longitudinal dispersion coefficient (DL) scaled by molecular diffusion (Dm) 

versus Péclet number (𝑃𝑒̅̅̅̅ ) is replotted on a normal scale (not a log-log 

scale as in Figure 6-9). In Figure 6-11, after the onset of non-Darcy flow, 
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the longitudinal dispersion coefficient is directly proportional to the Péclet 

number and it increases when the fluid velocity increases. If the inertial 

forces are not accounted for, i.e. assuming Darcy flow, this causes 

overestimation in the longitudinal dispersion coefficient and the Péclet 

number. In Figure 6-11a, for Berea Sandstone at the maximum applied 

pressure drop, the Péclet number for the Darcy flow case is 1.17 times 

higher than the non-Darcy flow case, while DL is 1.35 times higher 

compared to the non-Darcy flow case. However, these factors may differ for 

other media and for different ranges of velocities. For instance, the onset of 

non-Darcy flow occurs much earlier in heterogenous media such as 

Carbonate compared to less heterogenous media such as packed beads or 

Sandstone (El-Zehairy et al., 2019). For the case of heterogeneous media, 

Pe and DL values for non-Darcy flow are expected to differ significantly 

from the values obtained when Darcy flow is assumed. In Figure 6-11b, at 

the maximum applied pressure drop for Packed spheres, the Péclet number 

for the Darcy flow case (not shown in the figure) is 6.36 times higher than 

the non-Darcy case, while DL is 9.7 times higher compared to the non-

Darcy case. 

 

Figure 6-12 Tortuosity (τ), Equation 4.15, versus average pore velocity (u) 

for the Berea sandstone and packed spheres samples. The onset of non-

Darcy flow occurs when u = 20 mm/s and u = 1.7 mm/s for the Berea and 

packed spheres samples, respectively.  
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In Figure 6-9 and Figure 6-11, after the onset of non-Darcy flow, the curve 

that represents the relationship between DL/Dm versus 𝑃𝑒̅̅̅̅  for non-Darcy 

flow deviates from the same relationship for Darcy flow for the same 

medium. This is because when the inertial effects are taken into account, 

after solving the flow and pressure field at each pore body in the medium, 

the pressure values at each pore body for the non-Darcy flow case are not 

the same as the pressure values for the Darcy flow case (even when the 

discharge or average pore velocity is the same in both cases; Darcy and non-

Darcy flow). Consequently, at the same average pore velocity, the tortuosity 

value (Equation 4.15) for the non-Darcy case is not the same as the 

tortuosity values for the Darcy flow case according to Figure 6-12. In Figure 

6-12, for the Berea sandstone and packed spheres samples, within the Darcy 

flow regime, tortuosity is almost constant at any velocity. While in the non-

Darcy flow regime, tortuosity increases when pore velocity increases. This 

change in tortuosity for the same medium indicates that, after the onset of 

non-Darcy flow, for a constant value of velocity or discharge through the 

medium, the longitudinal dispersion coefficient (DL) is not the same within 

the Darcy and the non-Darcy flow regimes.   

6.3.3 Decoupling pore-scale dispersion from dispersion due to flow 

field heterogeneity  

The right-hand side of Equation 6.1 represents two different processes; 

dispersion due to flow field heterogeneity which results from tortuosity and 

change of flow-paths [∑ 𝑞i−j𝐶i(𝑡)𝑞i−j<0
+ ∑ 𝑞i−j𝐶j(𝑡)𝑞i−j>0

] and (time-

dependent Taylor-Aris) dispersion through each pore throats 

[∑ 𝑎i−j𝐷i−j
eff 𝐶j(𝑡)−𝐶i(𝑡)

𝐿i−j
𝑗∈𝑁i

]. In this section, each model run was repeated, 

while the effects of dispersion due to flow field heterogeneity, DL, hetero, and 

(time-dependent Taylor-Aris) dispersion, DL, T-A, were decoupled from each 

other. The results of both cases are shown in Figure 6-13 for the Berea 

sandstone sample.   
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Figure 6-13 The longitudinal dispersion coefficient due to flow field 

heterogeneity, pore-scale (time-dependent Taylor-Aris) dispersion and both 

processes scaled by molecular diffusion vs. Péclet number for the Berea 

sandstone sample; a) Darcy flow and b) Forchheimer flow. 

Figure 6-13 shows that the longitudinal dispersion coefficient due to flow 

field heterogeneity only, DL, hetero, while neglecting the effect of pore-scale 

dispersion, is directly proportional to the average pore velocity. The 

relationship between DL, hetero and u (or 𝑃𝑒̅̅̅̅ ), is linear within the Darcy flow 

regime, then it becomes nonlinear in the Forchheimer flow regime. The 

longitudinal dispersion coefficient due to pore-scale dispersion only, DL, T-A, 

while neglecting the effect of DL, hetero, shows a different behaviour. In the 

diffusion dominated regime and in the first part of the transition regime, DL, 
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T-A is constant because the average pore velocity and the pore throat Péclet 

number are small, and molecular diffusion dominates the transport process 

in each pore throat as per Equation 6.3. Then, DL, T-A increases gradually in 

the transition regime and in the boundary-layer dispersion regime because 

when pore velocity increases, the Péclet number increases and the effective 

diffusion coefficient for each pore throat (𝐷i−j
eff) increases as per Equation 

6.3. After that, in the mechanical dispersion regime, when pore velocity 

increases, the residence time in each pore throat decreases and, as a result, 

DL, T-A decreases gradually.   

6.4 Conclusion 

Solute transport has been modelled within the laminar Darcy and non-Darcy 

flow regimes using a pore-network modelling approach and applying the 1D 

Advection-Dispersion Equation (ADE). Berea Sandstone and packed 

spheres samples were used to investigate the effect of non-Darcy flow on 

solute transport for a wide range of Péclet number (𝑃𝑒̅̅̅̅  = 0.003- 24106). 

When applying Dirichlet boundary conditions, at low flow velocities within 

the Darcy flow regime, the concentration front moves regularly over time in 

the longitudinal direction. While at higher velocities, within the non-Darcy 

flow regime, the effect of advection increases, and the concentration front 

extends over a larger length.  

Based on the solute residence time in each pore throat, three cases have 

been defined to calculate the effective diffusion coefficient for each pore 

throat; an asymptotic Fickian regime, a pre-asymptotic time dependent 

regime and a pure advection regime, and consequently the breakthrough 

curves show a very good match with the analytical solution of the 1D ADE.  

When the longitudinal dispersion coefficient (DL) scaled by the molecular 

diffusion (Dm) is plotted versus the Péclet number (𝑃𝑒̅̅̅̅ ), a good match 

between the proposed model results and the previous results found in the 

literature has been observed, except at low velocities in the packed spheres 

sample where relatively higher values for the longitudinal dispersion 

coefficient were obtained. This has been attributed to the large size of the 
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pores in the packed spheres sample and to the assumption that dispersion 

occurs over the pore throat length only, neglecting the length of pore bodies 

connected to both ends of the pore throat.  

At higher flow velocities, i.e. after the onset of non-Darcy flow, the 

longitudinal dispersion coefficient is directly proportional to the fluid 

velocity. After the onset of non-Darcy flow, if the inertial forces are not 

accounted, i.e. assuming Darcy flow, this causes overestimation in the 

Péclet number and in the longitudinal dispersion coefficient, which may be 

up to ~10 times higher than the true value obtained under Forchheimer flow 

conditions. However, this depends mainly on the degree of heterogeneity of 

the medium, and the factor of 10 might differ for other media.   

By decoupling the effects of dispersion due to flow field heterogeneity from 

pore-scale dispersion, it was found that pore-scale dispersion is constant in 

the macro-scale diffusion dominated regime and in the first part of the 

transition regime, because the average pore velocity is very small and 

molecular diffusion dominates the transport process. Then, the effect of 

pore-scale dispersion increases gradually in the macro-scale transition 

regime and in the boundary-layer dispersion regime. After that, the effect of 

pore-scale dispersion decreases gradually in all of the macro-scale 

mechanical dispersion regime before it vanishes. Meanwhile, in all macro-

scale transport regimes, dispersion due to flow field heterogeneity is directly 

proportional to the average pore velocity. 
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Chapter 7 

7 Pore-network modelling of solute transport for turbulent 

flow 

This chapter contains a short introduction about the effect of turbulence on 

solute transport, then the developed PNM algorithm for modelling solute 

transport within all flow regimes (Darcy, Forchheimer and turbulent) in 

porous media is explained. According to my knowledge, solute transport 

within the turbulent flow regime has never been investigated before using 

PNM. The proposed model has been applied on the packed spheres (dm = 

1.84 mm) sample used in the experimental work. The results are presented, 

discussed and compared to related results existing in the literature and to the 

observed experimental results. 

7.1 Introduction  

Turbulent flow differs from Darcy and Forchheimer flow because it is 

characterised by high levels of velocity fluctuations and random motion 

which lead to rapid diffusivity and kinetic energy dissipation. Such 

characteristics enhance the process of solute mixing and results in higher 

values of DL. In Darcy and Forchheimer flow through porous media, solute 

transport occurs due to molecular diffusion and mechanical dispersion (see 

Section 6.1). In turbulent flow, in addition to the previously mentioned two 

mechanisms, there is an additional process called turbulent diffusion which 

results from the chaotic movements of fluid particles and velocity 

fluctuations. Turbulent diffusion causes rapid solute mixing and its effect is 

much higher than the effect of molecular diffusion within the turbulent flow 

regime (Shen et al., 2002).  

7.2 The Mixed Cell Method 

Following the methodology introduced in Section 6.2 and by dividing the 

pore-network into pore-units, the transport equation for any pore-unit, 

PU(i), in the pore-network is given by Equation 6.2. However, for turbulent 
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flow, the pore throat effective diffusion coefficient, 𝐷i−j
eff (mm2/s), is given 

by Equation 7.1 (Taylor, 1954b): 

𝐷i−j
eff = 10.1 𝑟i−j 𝑢∗i−j = 10.1 𝑟i−j√

𝑎i−j ∆𝑃i−j
tot

𝜌 𝑝i−j 𝐿i−j 
 7.1 

where 𝑢∗i−j (mm/s) is the pore throat shear velocity which depends on the 

friction between the fluid and the pore throat walls, and 𝑝i−j (mm) is the 

pore throat average perimeter. For each pore throat in the pore-network, 

𝐷i−j
eff is estimated using Equation 7.1, then the mass balance equation 

(Equation 6.2) is invoked at each pore body in the pore-network. Equation 

7.1 can be applied without any restrictions regarding the pore throat length 

or the solute residence time as far as the flow is fully developed (Sittel et al., 

1968) and the solute is fully mixed with water (Hart et al., 2016) which 

agrees with the definition of the MCM that assumes fully mixed conditions 

in each pore body.  

Recalling that any porous medium is composed of pores with various 

geometries, so at the pore-scale, the flow regime may vary from one pore to 

another, i.e. some pores may exhibit laminar flow, while the flow in other 

pores may be transitional or turbulent. Then, based on the Reynold’s 

number (Equation 2.12) value at each pore throat, the flow regime at the 

pore-scale is determined using the predefined limits discussed in Section 2.4 

(laminar when 𝑅𝑒pore < 150, transitional when 150 ≤ 𝑅𝑒pore ≤ 300, and 

turbulent when 𝑅𝑒pore > 300). In the literature, there is a scarcity of studies 

that have determined the effective diffusion coefficient for tubes under 

transitional flow conditions. Most of these studies determined the effective 

diffusion coefficient using empirical equations or by regression analysis of 

experimental measurements. However, these studies were performed on 

macro-scale tubes and their equations were derived only for a high range of 

Reynold’s number values (> 2,000), which is much higher than the range of 

Reynold’s number values in porous media. Moreover, in the transitional 

flow regime, i.e. when 150 ≤ 𝑅𝑒pore ≤ 300, it is inappropriate to 

determine the effective diffusion coefficient by interpolation, in a way 

similar to that used in Chapter 5 to determine the pore friction factor in the 
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transitional flow regime, because the effective diffusion coefficient is not 

directly related to the Reynold’s number. Therefore, in the proposed model, 

if 𝑅𝑒pore ≤ 300, the effective diffusion coefficient is calculated using 

Equation 6.3, while if 𝑅𝑒pore > 300, the effective diffusion coefficient is 

calculated using Equation 7.1. Equations 6.8 and 6.9 are used to estimate 

the overall average concentration (𝐶̅) at each time step and the overall 

medium average Péclet number (𝑃𝑒̅̅̅̅ ), Equation 6.9. 

The algorithm and details of the proposed pore-network transport model are 

very similar to the details of the algorithm developed for modelling solute 

transport within the non-Darcy flow regime which are presented in 

Appendix D.  

7.3 Verification, results and discussion 

The properties of the extracted pore-network for the packed spheres sample 

were presented in Section 4.3.1. A wide range of pressure drops (ΔP) 

ranging from 0.00001 to 80,000 Pa was applied for each run to obtain all 

possible flow conditions including the turbulent flow regime, and this 

corresponded to average Péclet numbers (𝑃𝑒̅̅̅̅ ) ranging from 0.003 to 

3.88×106 (Equation 6.9). For each run, a fixed pressure drop across the pore-

network is applied. After solving the flow equations and predicting the 

pressure and flow fields in the pore-network (the simulation results were 

presented in Chapter 5), Equation 6.2 is solved explicitly at each time step. 

For all simulations, following Bijeljic et al. (2004) and Babaei & Joekar-

Niasar (2016), the coefficient of molecular diffusion (Dm) is considered 

equal to 10-9 m2s-1 and Dirichlet boundary conditions are applied, i.e. a 

conservative solute is injected continuously at the inlet boundary 

maintaining a constant concentration (Co) equal to 1 mol/mm3. Water is 

considered as the working fluid with viscosity μ = 0.001 kg/m·s and density 

ρ = 1000 kg/m3. The simulation continues until the concentration of the 

solute is nearly equal to 1 mol/mm3 at every pore-unit. For each run, the 

longitudinal dispersion coefficient is determined by fitting the analytical 

solution of the 1D ADE (Ogata & Banks, 1961), Equation 2.20, to the 

breakthrough curve (BTC) obtained from pore-network simulation by using 
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the CXTFIT computational software (Toride et al., 1995). The BTC for 

each run is measured at the middle of the sample, i.e. when x = L/2, where x 

is the longitudinal flow direction, then the concentration values over time 

(BTC) are used as inputs to CXTFIT. These concentration and time values 

are fitted to the analytical solution of the 1D ADE (Equation 2.20) to obtain 

the DL and the average pore velocity (𝑢𝑎𝑣𝑔) values.  

7.3.1 Solute concentration distribution and breakthrough curves 

Figure 7-1 shows snapshots of a solute transport simulation when ΔP = 

10,000 Pa across the pore-network and 𝑃𝑒̅̅̅̅ = 1.19106. In this run, only 

29% of the pore throats exhibit turbulent flow conditions while flow in the 

remaining pore throats is either laminar or transitional. The figure represents 

an advection dominated regime, similar to the non-Darcy flow case shown 

in Figure 6-7(d-f). Very few pore-units with low concentration values can 

be observed in the dark red zone which represents a high concentration 

value in Figure 7-1. These few pore-units represent dead ends, i.e. a pore 

body connected to a single pore throat and this pore body gains 

concentration as a result only of effective diffusion. Such pore bodies can 

gain higher concentrations after a long time, compared to other pore bodies 

where the effect of advection causes a faster increase in concentration.     

 

Figure 7-1 Snapshots of the concentration distribution at three different 

time steps for the packed spheres sample; a)  𝐶̅/𝐶𝑜 = 0.25, b) 𝐶̅/𝐶𝑜 = 0.50, 

c) 𝐶̅/𝐶𝑜 = 0.75 when ΔP = 10,000 Pa. The flow direction is from left to 

right.  

Figure 7-2 shows the breakthrough curves, at different Péclet numbers, 

fitted to the 1D ADE analytical solution. There is a good match between the 

results obtained using PNM and the analytical solution of the 1D ADE 
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(Equation 2.20). The figure demonstrates that the breakthrough curves, 

within the turbulent flow regime, can be developed within a very short time 

ranging from ~0.06 seconds for the largest Péclet number, and up to ~1 

second for the lowest Péclet number. This is because turbulent flow is 

characterised by high velocities compared to the Darcy and Forchheimer 

flow regimes, and also due to the effect of turbulent diffusion which 

enhances the solute mixing.  

 

 

Figure 7-2 The packed spheres breakthrough curves at different Péclet 

numbers fitted to the analytical solution of the 1D ADE (Equation 2.20). 

The concentration C is obtained at the middle (x = L/2) of the sample, where 

x is the longitudinal flow direction. The dashed grey curves represent the 

onset of non-Darcy flow and the onset of turbulence.  

7.3.2 Verification against experimental measurements and data in the 

literature 

The longitudinal dispersion coefficients (DL) scaled by molecular diffusion 

(Dm) versus Péclet numbers (𝑃𝑒̅̅̅̅ ) are shown in Figure 7-3. The figure shows 

the obtained PNM results for Darcy, Forchheimer and turbulent flow 

regimes compared to the obtained experimental results and various results 

in the literature. There is a scarcity in the literature data at very high 

velocities that represent turbulent flow, also most previous work did not 
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investigate the effect of flow regime on the transport process but they 

investigated different transport regimes apart from the flow regime. To my 

knowledge, the only available data within the turbulent flow regime, i.e. at 

high Péclet numbers, are those obtained experimentally by Pfannkuch 

(1963) for graded sands and other single-grained materials, Carberry and 

Bretton (1958) for fixed packed spheres and rings, and Ebach and White 

(1958) for spherical glass beads, Porcelain Raschig rings, Berl saddles and 

Intalox saddles. From Figure 7-3, the results of the proposed PNM model, in 

the turbulent flow regime, show a reasonable match with all presented 

previous results and the obtained experimental results. However, in the 

turbulent flow regime, the obtained PNM results may underestimate DL (by 

a factor of ~2 or less) when compared to the data by Pfannkuch (1963) and 

Ebach and White (1958), this might be attributed to the use of different 

characteristic length (used to calculate 𝑃𝑒̅̅̅̅ ) or due to different degrees of 

heterogeneity of the samples they used. When 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ )>~3, i.e. after the 

onset of non-Darcy flow, there is a downward shift in the obtained PNM 

results compared to the results in the literature. A possible reason for this 

downward shift is that the data in the literature were analysed using Darcy’s 

law, as Forchheimer’s law was quite new and not well known at that time 

(1958, 1963). Analysing the data using Darcy’s law causes overestimation 

of the DL values as explained below. The obtained experimental results 

(shown in cyan coloured squares) are limited to a narrow range of 𝑃𝑒̅̅̅̅  

because for larger discharge values, the manometric tubes used to measure 

the pressure in the lab are flooded with water. Additionally, in the Darcy 

and Forchheimer flow regimes, the solute is not fully mixed with water (see 

Section 3.4.4) and the experimental setup used cannot provide accurate 

measurements for concentration. Moreover, these experimental results 

(shown in cyan coloured squares) show high variations among each other, at 

any specific 𝑃𝑒̅̅̅̅ , due to the possible large error in the measurements as 

explained in Section 3.4.4. It is noticed that all the results obtained using 

PNM for the turbulent flow regime are within the advection dominated 

(mechanical dispersion) transport regime due to high fluid velocities in the 

turbulent flow regime that dominate the transport process.  
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The results of the proposed model presented in this chapter (shown in light 

green) follow the Darcy flow PNM results (shown in yellow) from very low 

𝑃𝑒̅̅̅̅  values until the onset of non-Darcy flow at 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) ≈ 3.45. After the 

onset of non-Darcy flow, it follows the Forchheimer flow PNM results 

(shown in dark blue) until the onset of turbulence at 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) = 5.35. After 

the onset of turbulence, DL increases gradually due to the effect of turbulent 

diffusion, and this results in higher DL values compared to the values 

obtained by PNM when Forchheimer flow is assumed at the same Péclet 

number. It is difficult to find a relationship between DL and 𝑃𝑒̅̅̅̅  in the 

turbulent flow regime, however in this region, DL is directly proportional to 

𝑃𝑒̅̅̅̅ . After the onset of turbulence, by comparing the two curves that 

represent Forchheimer and turbulent flow PNM modelling results, we notice 

that DL values represented by turbulent flow are higher (by a factor up to 

1.62) than DL values represented by Forchheimer flow at the same Péclet 

number. This is attributed to the presence of turbulent diffusion, accounted 

for in Equation 7.1, which enhances the longitudinal dispersion process. In 

other words, in the turbulent flow regime, if the effect of turbulent diffusion 

is neglected, i.e. if the flow is assumed to be in the Forchheimer flow 

regime, this causes underestimation of DL by a factor of 0.6.  

If the flow inertial effects are neglected, i.e. if the flow is assumed to be 

Darcian even at very high velocities after the onset of turbulence, the 

resulting DL and 𝑃𝑒̅̅̅̅  values are much higher than DL and 𝑃𝑒̅̅̅̅  in the 

Forchheimer and turbulent flow regimes. For instance, at the maximum 

applied pressure drop across the sample (when ΔP = 80,000 Pa), DL and 𝑃𝑒̅̅̅̅  

obtained when the inertial effected are neglected (assuming Darcy flow) are 

higher than the values obtain for Forchheimer flow by factors of 10 and 6, 

respectively. While in the same case (when ΔP = 80,000 Pa), DL and 𝑃𝑒̅̅̅̅  

obtained when the inertial effects are neglected (assuming Darcy flow) are 

higher than the values obtained for turbulent flow by factors of 6 and 6.5, 

respectively. In conclusion, neglecting the inertial effects and assuming 

Darcy flow, after the onset of non-Darcy flow, causes up to one order of 

magnitude overestimation in the Péclet number and the longitudinal 

dispersion coefficient.   
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Figure 7-3 The longitudinal dispersion coefficients (DL) scaled by molecular diffusion (Dm) vs. Péclet numbers (𝑃𝑒̅̅̅̅ ) compared 

to experimental measurements and data in the literature. The two blue dashed vertical lines represent the onset of non-Darcy 

and the onset of turbulent flow.  
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7.3.3 Decoupling pore-scale dispersion from dispersion due to flow field 

heterogeneity  

We recall that the right-hand side of Equation 6.1 represents two different 

processes; dispersion due to flow field heterogeneity which results from 

tortuosity and change of flow-paths [∑ 𝑞i−j𝐶i(𝑡)𝑞i−j<0
+ ∑ 𝑞i−j𝐶j(𝑡)𝑞i−j>0

] 

and Taylor-Aris dispersion through each pore throat 

[∑ 𝑎i−j𝐷i−j
eff 𝐶j(𝑡)−𝐶i(𝑡)

𝐿i−j
𝑗∈𝑁i

]. Additional model runs were performed by 

dropping one of these two processes while considering the other and vice 

versa. Figure 7-4 shows the overall longitudinal dispersion coefficient (DL, 

hetero + DL, T-A) due to the combined actions of flow field heterogeneity and 

dispersion through each pore throat, due to flow field heterogeneity (DL, 

hetero) only, and due to dispersion through each pore throat (DL, T-A) only, at 

different Péclet numbers (𝑃𝑒̅̅̅̅ ). The figure demonstrates that DL, hetero is 

directly proportional to the average pore velocity or Péclet number. The 

relationship between DL, hetero and u (or 𝑃𝑒̅̅̅̅ ), is linear within the Darcy flow 

regime, then it becomes nonlinear within the Forchheimer and turbulent 

flow regimes. The longitudinal dispersion coefficient due to pore-scale 

dispersion (DL, T-A) shows a different behaviour compared to DL, hetero. In the 

diffusion dominated regime, DL, T-A is constant because the flow is Darcian, 

the average pore velocity and 𝑃𝑒̅̅̅̅   values are very small and the coefficient 

of molecular diffusion (Dm) dominates the transport process in each pore 

throat as per Equation 6.3. In other words, due to the long residence time in 

each pore throat, the molecules jump from one streamline to another under 

the effect of molecular diffusion while the effect of velocity can be 

neglected. Then, DL, T-A increases gradually in the boundary-layer transport 

regime because when pore velocity increases, the Péclet number increases 

and the effective diffusion coefficient of each pore throat (𝐷i−j
eff) increases as 

a result of increased shear stress between the fluid layers (as per Equation 

6.3). After that, in the mechanical dispersion regime, before the onset of 

turbulent flow, when the pore velocity increases, the residence time in each 

pore throat decreases and DL, T-A decreases gradually, as long as the 

Reynold’s number in most of the pore throats does not exceed the onset of 
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turbulence (Repore<300). The reason that DL, T-A decreases is the small 

residence time in the pore throats which is not long enough for molecules to 

move from one streamline to another, i.e. there is no dispersion in the pore 

throats. However, once the Reynold’s number in any pore throat exceeds 

300, i.e. the Reynold’s number exceeds the predefined onset of turbulence 

for each pore throat, then the 𝐷i−j
eff value increases due to the effect of 

turbulent diffusion (considered via Equation 7.1) and DL, T-A increases again. 

In the turbulent flow regime, the effect of flow field heterogeneity on 

dispersion is comparable to the pore-scale (Taylor-Aris) dispersion, and this 

confirms that turbulent diffusion enhances the longitudinal dispersion 

process.  

In Figure 7-4, there is a gap in the curve that represents dispersion through 

each pore throat (DL, T-A) within the turbulent flow regime. This is because 

within this range of Péclet numbers (when 𝑙𝑜𝑔(𝑃𝑒̅̅̅̅ ) = 5.5 − 6.0), the 

Reynold’s number in most of the pore throats is less than 300 and only a 

few pore throats have Reynold’s number > 300. In most of the pore throats 

that have Reynold’s number < 300, 𝐷i−j
eff = 0.0, because the dimensionless 

residence time in these pore throats is less than 0.01. In the meantime, only 

few pore throats have Re > 300 and 𝐷i−j
eff > 0.0, and this causes the solute 

concentration to be trapped only in a few pore-units, while the concentration 

in the rest of the pore-units is zero. Therefore, it is difficult to obtain the 

BTC or DL value for these cases.  
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Figure 7-4 The longitudinal dispersion coefficients, due to flow field 

heterogeneity (DL, hetero), pore-scale (Taylor-Aris) dispersion (DL, T-A) and 

both processes (DL, hetero + DL, T-A), scaled by molecular diffusion (Dm) 

versus Péclet number (𝑃𝑒̅̅̅̅ ). 

7.3.4 Conclusion 

Solute transport within the Darcy, Forchheimer and turbulent flow regimes 

has been modelled using pore-network modelling for a wide range of Péclet 

numbers (𝑃𝑒̅̅̅̅ ), from Pe = 310-3 to 3.88106. The model has been applied to 

the packed sphere sample and verified against the obtained experimental 

results for the same sample and previous data in the literature. The obtained 

turbulent flow results were found to be in the advection dominated transport 

regime where the longitudinal dispersion coefficient (DL) is directly 

proportional to the Péclet number.    

In the turbulent flow regime, the transport process is governed mainly by 

advection and turbulent diffusion. Turbulent diffusion results from velocity 

fluctuations and the chaotic movements of fluid particles. It causes the 

solute to be mixed rapidly and transversely through the sample and works 

against the longitudinal spread of the solute due to advection.  
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If Darcy flow is assumed at high flow velocities and inertial effects are 

neglected, then this causes overestimation of the Péclet number and the 

longitudinal dispersion coefficient by a factor up to 10. In the turbulent flow 

regime, if the effect of turbulent diffusion is neglected, the obtained value of 

DL is less (by a factor up to 0.6) than the value obtained when Forchheimer 

flow is assumed at the same Péclet number. 

When the longitudinal dispersion coefficient (DL) scaled by the molecular 

diffusion (Dm) is plotted versus Péclet number (𝑃𝑒̅̅̅̅ ), a good match between 

the proposed model results and previous data in the literature has been 

obtained.  

By investigating the effect of flow field heterogeneity and pore-scale 

dispersion separately, it has been found that dispersion due to flow field 

heterogeneity is directly proportional to the average pore velocity. In the 

turbulent flow regime, turbulent diffusion increases gradually when the 

average pore velocity increases. Consequently, pore-scale dispersion 

increased gradually, and was comparable to the effect of flow field 

heterogeneity. This confirms that in the turbulent flow regime, turbulent 

diffusion enhances the longitudinal dispersion process.  

 

 

 

 

 

 

 

 



197 

 

Chapter 8 

8 Conclusion and future studies 

8.1 Conclusion 

In this work, flow and solute transport were modelled using pore-network 

modelling across two different scales; the micro (0.5-2.5 mm) and macro 

(50-200 mm) scales. At the micro-scale, the proposed models were applied 

on X-ray Computed Tomography (XCT) scans of beadpack, sandstone and 

carbonate samples, while at the macro-scale two samples composed of 

randomly packed and regularly structured uniform spheres were used. At 

the micro-scale, flow and solute transport were modelled within the Darcy 

and non-Darcy (Forchheimer) flow regimes, while at the macro-scale, all 

possible flow regimes, including the Darcy, Forchheimer and turbulent flow 

regimes, were modelled. When using pore-network modelling, any porous 

medium can be simplified into pore bodies, which represent large pores in 

the medium, connected to each other by pore throats, which represent 

narrow pores in the medium. Then, analytical or semi-analytical equations 

can be used to model the flow behaviour and the transport process through 

the medium. The simplifications made to the porous medium and the use of 

analytical equations reduce the computational resources needed for the 

simulations.  

Three different approaches can be followed to generate a pore-network 

equivalent to a specific medium. The first approach is to directly map the 

porous media, e.g. from a CT-image, while the second method is to 

construct a representative pore-network using statistical distributions of 

basic morphological parameters. The third approach is called the grain-

based model which is used to generate a pore-network equivalent to a 

packing of grains by considering information about the grain diameters and 

locations. To verify the proposed models, the equivalent pore-networks of 

the porous media used were generated using two different methods. First, 

the pore-network extraction code developed by Raeini et al. (2017) was 

used to extract the pore-networks equivalent to all samples, excluding the 



198 

 

regularly structured uniform spheres sample, from their CT-images. Second, 

to save time and effort in the CT-scanning process, another in-house pore-

network generation code was developed to generate a regularly structured 

pore-network equivalent to the regularly structured uniform spheres sample 

used. 

For non-Darcy flow, the Forchheimer equation was used to model the flow 

at the micro and macro scales, and the proposed model was able to predict 

the Darcy Permeability (KD) and Forchheimer coefficient (β) for all tested 

samples to a reasonable degree of accuracy (with a maximum percentage of 

error of 15.2% and 54%, respectively). The onset of non-Darcy flow was 

dependent on the medium’s degree of heterogeneity. The Reynold’s number 

and superficial flow velocity at which the onset of non-Darcy flow occurs 

were two or three orders of magnitude lower for highly heterogenous media, 

while the obtained Forchheimer number values at the onset of non-Darcy 

flow for all of the tested samples ranged from 0.01 to 0.1. The medium 

friction coefficient decreased when the fluid velocity increased, and 

following the Forchheimer equation, the medium’s friction factor versus 

Forchheimer number curve was identical for all media regardless of their 

degree of heterogeneity. 

For turbulent flow, the Forchheimer equation was used to describe the flow 

behaviour at the macro-scale, but with modified parameters (Forchheimer 

Permeability, 𝐾𝐹
` , and Forchheimer coefficient, β`). Because turbulent flow 

occurs at high velocities and through large pores, the assumption of a fully 

developed flow in each pore is not valid, and this caused some discrepancies 

between the obtained PNM results and the experimental measurements. For 

the macro-scale samples, the onset of turbulent flow obtained using the 

conventional Reynold’s number (Re) ranged from 93 to 204, depending on 

the medium characteristic length and size of pores. While the onset of 

turbulent flow obtained using the permeability-based Reynold’s number 

(ReK) ranged from 2.5 to 7.4, and using the Forchheimer number (𝐹𝑜), the 

onset of turbulent flow occurred when 𝐹𝑜 = 0.4-3.6. In the turbulent flow 

regime, if the medium’s average size of particles increases (≥ 5 mm), then 
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the pressure loss due to inertial effects dominates the flow behaviour, while 

the frictional pressure loss becomes negligible.    

To model solute transport within the non-Darcy flow regime, the Taylor-

Aris diffusion coefficient cannot be used for all pore throats because the 

residence time is less than the time required for the dye to be fully mixed 

cross-sectionally, i.e. to reach an asymptotic state. Therefore, three cases 

were defined to calculate the effective diffusion coefficient for each pore 

throat, depending on the residence time; asymptotic Fickian regime, pre-

asymptotic time dependent regime and pure advection regime. Then, the 

mass balance equation was applied at each pore body. Consequently, the 

breakthrough curves showed a very good match with the analytical solution 

of the 1D Advection Dispersion Equation (ADE). In the diffusion 

dominated regime, the concentration front moved regularly over time in the 

longitudinal direction, in a way that the concentration at any cross-section 

perpendicular to the flow direction is almost constant. At higher velocities, 

in the non-Darcy flow regime, the effect of advection increased, and the 

concentration front extends over larger length. After the onset of non-Darcy 

flow, if the inertial forces are not accounted for, i.e. if Darcy flow is 

assumed, then this causes overestimation of the overall Péclet number and 

longitudinal dispersion coefficient (DL), which may be up to 10 times higher 

than the true value.  

In the macro-scale (50-200 mm) turbulent flow regime, depending on the 

pore throat geometries and the pressure distribution in the medium, the flow 

nature in the pore throats may be either laminar, transition or turbulent. For 

turbulent flow, the Taylor-Aris effective diffusion coefficient, which 

accounts for turbulent diffusion, was used and the mass balance equation 

was applied at each pore body. The transport process was governed mainly 

by advection and turbulent diffusion, i.e. the effect of molecular diffusion 

was negligible. Turbulent diffusion results from velocity fluctuations and 

the chaotic movements of fluid particles, it mixes the solute rapidly over the 

sample cross-sectional area and works against the longitudinal spread of 

solute due to advection. The effect of pore-scale (Taylor-Aris) dispersion, 

which accounts for turbulent diffusion, on the longitudinal dispersion 
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increased gradually when the average pore velocity increased. After the 

onset of turbulent flow, pore-scale dispersion was lower than dispersion due 

to flow field heterogeneity, then it increased gradually until it was 

equivalent to the effect of the flow field heterogeneity. This confirms that in 

the turbulent flow regime, turbulent diffusion enhances the longitudinal 

dispersion process. In the turbulent flow regime, if the effect of turbulent 

diffusion is neglected, by considering only dispersion due to flow field 

heterogeneity, then the obtained value of DL was less (by a factor up to 0.6) 

than the value obtained when Forchheimer flow is assumed at the same 

Péclet number (𝑃𝑒̅̅̅̅ ). 

The pore network modelling (PNM) approach has proved to be 

computationally more efficient in comparison to other pore-scale modelling 

techniques and could dramatically reduce the running time from few hours 

(3 hours and 37 minutes for the Estaillades model in Muljadi et al. (2015) 

work) using 16 parallel computer nodes to less than one minute using a 

standard PC. 

8.2 The achieved aims and main contributions of the work 

The following aims and contributions have been achieved: 

• A pore-network model has been developed to simulate flow and 

solute transport through porous media within all possible flow 

regimes including the macro-scale Darcy, Forchheimer and 

turbulent flow regimes.  

• The proposed model can determine the boundaries between 

different flow regimes, i.e. the onset of non-Darcy flow and the 

onset of turbulence after which Darcy’s law loses its validity.  

• An in-depth understanding of the flow behaviour and the pressure 

distribution in porous media, including heterogenous media, has 

been obtained. 

• The effect of inertial forces and turbulence on the longitudinal 

solute transport process has been quantified. 

• The different possible pore-scale transport processes through porous 

media have been quantified and understood separately.  
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8.3 Future work 

Most of the previous work that modelled flow using pore-network 

modelling assumed fully developed flow in each pore, i.e. the velocity 

profile is assumed to be fully developed and the entrance length is small 

compared to the total pore length. This assumption is not valid for coarse 

porous media with wide pores and relatively large diameters. In the case of 

developing flow, the friction between the pore walls and the fluid is higher 

compared to fully developed flow, and the Hagen–Poiseuille equation is not 

valid. For more accurate results, more specific equations, such as those 

presented by Shah and Bhatti (1987) for laminar flow and by Bhatti and 

Shah (1987) for turbulent flow, can be used to predict the pore friction 

factor for developing flow, and this will provide more accurate results.  

The focus of this thesis was on single phase flow, however, a next step is to 

further extend the models to include two phase or multiphase flow within 

the non-Darcy and turbulent flow regimes which is important for petroleum 

engineering applications. Nevertheless, the solute transport work may be 

further extended to model reactive transport and account for the chemical 

reactions that might occur through the porous medium.   

The presented solute transport study was specific to Fickian transport. More 

work is needed to further extend this work for modelling non-Fickian 

transport in heterogenous porous media. Moreover, the inertial effects on 

transverse dispersion can be determined as well.  

The solute transport laboratory experiments in the Darcy and Forchheimer 

flow regimes did not provide accurate results because the dye was not fully 

mixed with water at any cross-section perpendicular to the flow direction. 

Consequently, the Cyclops sensors did not provide accurate measurements. 

In the turbulent flow regime, the velocity fluctuations and eddies enhanced 

the process of rapid mixing and the dye was cross-sectionally fully mixed 

with the water. For the Darcy and Forchheimer flow regimes, better results 

can be achieved, following the study by Taylor (1954a), if a smaller 

diameter and larger length of the recirculating pipe is used, but in this case 

the head loss through the small recirculating pipe may exceed the maximum 
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head that the pump can deliver. Also, if a smaller diameter of the 

recirculating pipe is used, a smooth transition section is required to transfer 

from the small pipe diameter to the 50 mm diameter of the packed spheres 

sample to avoid disturbing the flow. Another option is to use a mixing 

chamber to mix the dye properly with water before it reaches the Cyclops 

sensors, but this requires a specific design for the mixing chamber 

dimensions, propeller size and motor horsepower. Nevertheless, the 

propeller motion may create some eddies and affect the flow. 

To apply the proposed flow and solute transport models at larger scales, e.g. 

at the field scale, a suitable upscaling technique, such as the method of 

volume averaging (Whitaker, 1999), could be used.   

The proposed models can be further extended to couple surface flow with 

subsurface flow and to account for the biogeochemical and contamination 

exchange processes that occur in the hyporheic zone. 
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9 Appendices 

Appendix A: Algorithm of the Non-Darcy flow regime PNM code 

A-1. Code flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-Read the pore-network data; number of PBs, PB 

cartesian coordinates, the coordination number of each PB, 

PB radii, connectivity between PBs and PThs, and Lcharc. 

2-Read pressure at inlet and outlet boundaries, and fluid 

properties. 

Sum PB volumes and PTh volumes, 

then calculate the medium porosity. 

Calculate the conductance of each PTh and PB using 

the Hagen-Poiseuille equation (Equation 4.2). 

Calculate the expansion and contraction coefficients 

(A1 and A2 in Equation 4.10) for each PTh. 

Call the “Non_linear” subroutine to solve the final system of nonlinear 

equations (section A-2). The “Non_linear” subroutine iterates until it 

reaches the correct solution (pressure at each PB) within the predefined 

error criteria. 

Using the new pressure values at each PB, calculate the discharge 

through each PTh, the inflow and outflow at the inlet and outlet 

boundaries of the PN, the average interstitial velocity, and tortuosity. 

Start 

Write the output files: pressure at each PB, velocity 

through each PTh and PB, the overall discharge and 

pressure gradient, superficial velocity, Re, ReK and 

tortuosity.  

End 
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A-2. Solving the nonlinear system of equations 

Assuming the following simple pore-network: 

  
Figure 1A A simple example of a pore-network. 

Starting from Equation 4.10: 

𝐴1 𝑞i−j
2 + 𝐴2 𝑞i−j + 𝐴3 = 0.0   4.10 

where  

𝐴1 = (𝐾𝑒 + 𝐾𝑐)
𝜌

2𝑎i−j
2  , 𝐴2 = [

𝐿i−j,tot

𝑔i−j,tot
], 𝐴3 = − ∆𝑃i−j

tot 

𝑞i−j =
−𝐴2 + √𝐴2

2 − 4𝐴1𝐴3

2𝐴1
 

9.1 

And by applying the continuity equation (Equation 4.11) at each node (pore 

body) in Figure 1A, the following system of equations can be obtained:   

At node 1:          

Σqi-j = 0.0 

Then  

𝑞2−1 + 𝑞3−1 − 𝑞1−bot = 0.0      

Then       

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)∆𝑃2−1

𝑡𝑜𝑡

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)∆𝑃3−1

𝑡𝑜𝑡

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)∆𝑃1−𝑏𝑜𝑡

𝑡𝑜𝑡

2(𝐴11−𝑏𝑜𝑡)
= 0.0  

Then       

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

2(𝐴11−𝑏𝑜𝑡)
= 0.0  

Then       
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−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

2(𝐴11−𝑏𝑜𝑡)
+ 𝑃1 − 𝑃1 = 0.0   

9.2 
 

At node 2: 

𝑞4−2 + 𝑞5−2 − 𝑞2−3 − 𝑞2−1 = 0.0           

Then       

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
−

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
= 0.0  

Then       

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
−

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+ 𝑃2 − 𝑃2 =

0.0  9.3 

 

At node 3: 

𝑞5−3 + 𝑞2−3 − 𝑞3−1 = 0.0           

Then       

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
+

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
= 0.0  

Then       

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
+

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
+ 𝑃3 − 𝑃3 = 0.0  

9.4 

At node 4: 

𝑞𝑡𝑜𝑝−4 − 𝑞4−2 = 0.0           

Then       
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−𝐴2𝑡𝑜𝑝−4+√𝐴2𝑡𝑜𝑝−4
2+4(𝐴1𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]

2(𝐴1𝑡𝑜𝑝−4)
−

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
=

0.0  

Then       

−𝐴2𝑡𝑜𝑝−4+√𝐴2𝑡𝑜𝑝−4
2+4(𝐴1𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]

2(𝐴1𝑡𝑜𝑝−4)
−

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+

𝑃4 − 𝑃4 = 0.0  9.5 

 

At node 5: 

𝑞𝑡𝑜𝑝−5 − 𝑞5−3 − 𝑞5−2 = 0.0           

 Then 

−𝐴2𝑡𝑜𝑝−5+√𝐴2𝑡𝑜𝑝−5
2+4(𝐴1𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]

2(𝐴1𝑡𝑜𝑝−5)
−

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
−

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
= 0.0  

Then 

−𝐴2𝑡𝑜𝑝−5+√𝐴2𝑡𝑜𝑝−5
2+4(𝐴1𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]

2(𝐴1𝑡𝑜𝑝−5)
−

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
−

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
+ 𝑃5 − 𝑃5 = 0.0   

9.6 

 

The final five equations (9.2, 9.3, 9.4, 9.5 and 9.6) can be written in the 

form required by the of HSL NS23 routine (HSL, 2013), used to solve a 

system of nonlinear equations in FORTRAN, as follows: 

 
−𝐴22−1+√𝐴22−1

2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

2(𝐴11−𝑏𝑜𝑡)
+ 𝑃1 − 𝑃1 = 𝐹1(𝑃1, 𝑃2, 𝑃3) − 𝑃1 = 0 

 9.2` 

where 𝐹1(𝑃1, 𝑃2, 𝑃3) =
−𝐴22−1+√𝐴22−1

2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

2(𝐴11−𝑏𝑜𝑡)
+ 𝑃1 

And  
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−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
−

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+ 𝑃2  −

𝑃2 = 𝐹2(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5) − 𝑃2 = 0.0  9.3` 

And  

  
−𝐴25−3+√𝐴25−3

2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
+

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
+ 𝑃3 − 𝑃3 = 𝐹3(𝑃1, 𝑃2, 𝑃3, 𝑃5) − 𝑃3 = 0.0 

9.4` 

And  

−𝐴2𝑡𝑜𝑝−4+√𝐴2𝑡𝑜𝑝−4
2+4(𝐴1𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]

2(𝐴1𝑡𝑜𝑝−4)
−

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+

𝑃4 − 𝑃4 = 𝐹4(𝑃2, 𝑃4) − 𝑃4 = 0  

9.5` 

And  

 
−𝐴2𝑡𝑜𝑝−5+√𝐴2𝑡𝑜𝑝−5

2+4(𝐴1𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]

2(𝐴1𝑡𝑜𝑝−5)
−

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
−

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
+ 𝑃5 − 𝑃5 = 𝐹5(𝑃2, 𝑃3, 𝑃5) − 𝑃5 = 0  

9.6` 

 
 

The HSL NS23 routine (HSL, 2013), requires nonzero derivatives of each 

equation (the Jacobian matrix) as shown below: 
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𝜕𝐹𝑖

𝜕𝑃𝑗
=

[
 
 
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑃1

𝜕𝐹1

𝜕𝑃2

𝜕𝐹1

𝜕𝑃3

𝜕𝐹1

𝜕𝑃4

𝜕𝐹1

𝜕𝑃5

𝜕𝐹2

𝜕𝑃1

𝜕𝐹2

𝜕𝑃2

𝜕𝐹2

𝜕𝑃3

𝜕𝐹2

𝜕𝑃4

𝜕𝐹2

𝜕𝑃5

𝜕𝐹3

𝜕𝑃1

𝜕𝐹3

𝜕𝑃2

𝜕𝐹3

𝜕𝑃3

𝜕𝐹3

𝜕𝑃4

𝜕𝐹3

𝜕𝑃5

𝜕𝐹4

𝜕𝑃1

𝜕𝐹4

𝜕𝑃2

𝜕𝐹4

𝜕𝑃3

𝜕𝐹4

𝜕𝑃4

𝜕𝐹4

𝜕𝑃5

𝜕𝐹5

𝜕𝑃1

𝜕𝐹5

𝜕𝑃2

𝜕𝐹5

𝜕𝑃3

𝜕𝐹5

𝜕𝑃4

𝜕𝐹5

𝜕𝑃5]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑃1

𝜕𝐹1

𝜕𝑃2

𝜕𝐹1

𝜕𝑃3

0 0

𝜕𝐹2

𝜕𝑃1

𝜕𝐹2

𝜕𝑃2

𝜕𝐹2

𝜕𝑃3

𝜕𝐹2

𝜕𝑃4

𝜕𝐹2

𝜕𝑃5

𝜕𝐹3

𝜕𝑃1

𝜕𝐹3

𝜕𝑃2

𝜕𝐹3

𝜕𝑃3

0
𝜕𝐹3

𝜕𝑃5

0
𝜕𝐹4

𝜕𝑃2

0
𝜕𝐹4

𝜕𝑃4

0

0
𝜕𝐹5

𝜕𝑃2

𝜕𝐹5

𝜕𝑃3

0
𝜕𝐹5

𝜕𝑃5]
 
 
 
 
 
 
 
 
 
 

 

 

𝐹1(𝑃1, 𝑃2, 𝑃3) =
−𝐴22−1+√𝐴22−1

2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

2(𝐴11−𝑏𝑜𝑡)
+

𝑃1 = 0.0  

Then  

𝜕𝐹1(𝑃1,𝑃2,𝑃3)

𝜕𝑃1
=

𝜕

𝜕𝑃1
[
−𝐴22−1+√𝐴22−1

2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
−

−𝐴21−𝑏𝑜𝑡+√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

2(𝐴11−𝑏𝑜𝑡)
] +

𝜕

𝜕𝑃1
𝑃1 = −

1

√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

−
1

√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

−

1

√𝐴21−𝑏𝑜𝑡
2+4(𝐴11−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]

+ 1  

and 
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𝜕𝐹1(𝑃1,𝑃2,𝑃3)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[
−𝐴22−1+√𝐴22−1

2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
] =

1

√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

  

and 

𝜕𝐹1(𝑃1,𝑃2,𝑃3)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[
−𝐴23−1+√𝐴23−1

2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
] =

1

√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

  

𝐹2(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5) =
−𝐴24−2+√𝐴24−2

2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
−

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
+ 𝑃2 = 0.0  

then 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃1
=

𝜕

𝜕𝑃1
[−

−𝐴22−1+√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

2(𝐴12−1)
] =

1

√𝐴22−1
2+4(𝐴12−1)[𝑃2−𝑃1]

  

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[
−𝐴24−2

+√𝐴24−2
2+4(𝐴14−2

)[𝑃4−𝑃2]

2(𝐴14−2
)

+

−𝐴25−2
+√𝐴25−2

2+4(𝐴15−2
)[𝑃5−𝑃2]

2(𝐴15−2
)

−
−𝐴22−3

+√𝐴22−3
2+4(𝐴12−3

)[𝑃2−𝑃3]

2(𝐴12−3
)

−

−𝐴22−1
+√𝐴22−1

2+4(𝐴12−1
)[𝑃2−𝑃1]

2(𝐴12−1
)

+ 𝑃2] = −
1

√𝐴24−2
2+4(𝐴14−2

)[𝑃4−𝑃2]
−

1

√𝐴25−2
2+4(𝐴15−2

)[𝑃5−𝑃2]
−

1

√𝐴22−3
2+4(𝐴12−3

)[𝑃2−𝑃3]
−

1

√𝐴22−1
2+4(𝐴12−1

)[𝑃2−𝑃1]
+ 1   

and 
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𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[−

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
] =

1

√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

  

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃4
=

𝜕

𝜕𝑃4
[
−𝐴24−2+√𝐴24−2

2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
] =

1

√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2] 

  

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃5
=

𝜕

𝜕𝑃5
[
−𝐴25−2+√𝐴25−2

2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
] =

1

√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

   

𝐹3(𝑃1, 𝑃2, 𝑃3, 𝑃5) =
−𝐴25−3+√𝐴25−3

2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
+

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
+ 𝑃3  

then 

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃1
=

𝜕

𝜕𝑃1
[−

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
] =

1

√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

  

and 

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[
−𝐴22−3+√𝐴22−3

2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
] =

1

√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

  

and 
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𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[
−𝐴25−3+√𝐴25−3

2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
+

−𝐴22−3+√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

2(𝐴12−3)
−

−𝐴23−1+√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

2(𝐴13−1)
+ 𝑃3] =

−
1

√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

−
1

√𝐴22−3
2+4(𝐴12−3)[𝑃2−𝑃3]

−

1

√𝐴23−1
2+4(𝐴13−1)[𝑃3−𝑃1]

+ 1      

and  

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃5
=

𝜕

𝜕𝑃5
[
−𝐴25−3+√𝐴25−3

2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
] =

1

√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

  

𝐹4(𝑃2, 𝑃4) =
−𝐴2𝑡𝑜𝑝−4+√𝐴2𝑡𝑜𝑝−4

2+4(𝐴1𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]

2(𝐴1𝑡𝑜𝑝−4)
−

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+ 𝑃4 = 0.0  

then 

𝜕𝐹4(𝑃2,𝑃4)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[−

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
] =

1

√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

  

and 

𝜕𝐹4(𝑃2,𝑃4)

𝜕𝑃4
=

𝜕

𝜕𝑃4
[
−𝐴2𝑡𝑜𝑝−4+√𝐴2𝑡𝑜𝑝−4

2+4(𝐴1𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]

2(𝐴1𝑡𝑜𝑝−4)
−

−𝐴24−2+√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

2(𝐴14−2)
+ 𝑃4] = −

1

√𝐴2𝑡𝑜𝑝−4
2+4(𝐴1𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]

−

1

√𝐴24−2
2+4(𝐴14−2)[𝑃4−𝑃2]

+ 1  

𝐹5(𝑃2, 𝑃3, 𝑃5) =
−𝐴2𝑡𝑜𝑝−5+√𝐴2𝑡𝑜𝑝−5

2+4(𝐴1𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]

2(𝐴1𝑡𝑜𝑝−5)
−

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
−

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
+ 𝑃5  

then 
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𝜕5(𝑃2,𝑃3,𝑃5)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[−

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
] =

1

√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

  

and 

𝜕𝐹5(𝑃2,𝑃3,𝑃5)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[−

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
] =

1

√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

  

and 

𝜕𝐹5(𝑃2,𝑃3,𝑃5)

𝜕𝑃5
=

𝜕

𝜕𝑃5
[
−𝐴2𝑡𝑜𝑝−5+√𝐴2𝑡𝑜𝑝−5

2+4(𝐴1𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]

2(𝐴1𝑡𝑜𝑝−5)
−

−𝐴25−3+√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

2(𝐴15−3)
−

−𝐴25−2+√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

2(𝐴15−2)
+ 𝑃5] =

−
1

√𝐴2𝑡𝑜𝑝−5
2+4(𝐴1𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]

−
1

√𝐴25−3
2+4(𝐴15−3)[𝑃5−𝑃3]

−

1

√𝐴25−2
2+4(𝐴15−2)[𝑃5−𝑃2]

+ 1   

After providing the previous equations and derivatives to the HSL NS23 

routine (HSL, 2013), the HSL NS23 routine iterates until the correct 

solution of each equation is achieved. Then the pressure value at each PB 

(i.e. 𝑷𝟏, 𝑷𝟐, … , 𝑷𝐍 ) is the output of the HSL NS23 routine. 
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A-3. Semi-variograms of pore body radii and pore body coordination 

numbers for Beadpack, Bentheimer, Estaillades, packed spheres 

and Berea samples. 

A semi-variogram describes how data are correlated with distance. The 

semi-variogram function, 𝛾(ℎ), represents half of the average squared 

difference between a group of points (in pairs) separated by a distance (h), 

and is given by 

𝛾(ℎ) =
1

2|𝑁(ℎ)|
∑(𝑍𝑖 − 𝑍𝑗)

2

𝑁(ℎ)

 9.7 

where N(h) is the number of point pairs (i and j) separated by a distance h.  

Zi and Zj are the data values at the location of points i and j. 

In the following figures, semi-variograms are presented for pore body radii 

and pore body coordination numbers. Because the five samples (beadpack, 

Bentheimer, Estaillades, packed spheres and Berea) are different in size and 

characteristics, in both figures, the separation distance (h) of each sample is 

normalized by the maximum separation distance. While 𝛾(ℎ) is normalized 

by the mean value of the data presented for each sample. The figures show 

that Estaillades is the most heterogeneous sample as the variations of pore 

body radii and coordination numbers increase when the separation distance 

between pore bodies increases. The variation in 𝛾(ℎ) for Estaillades is 

larger compared to the other four samples.  

 Figure 2A Pore body radii semi-variograms. 
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Figure 3A Pore body coordination numbers semi-variograms. 
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A-4. The developed FORTRAN code 

Main code: 

program pore_tubes 
implicit none  
integer:: step,porebody_vol_index, 
Non_Zero_deriv,non_zero_deriv_bot,non_zero_deriv_top 
Real:: KK,KK_F,BB, max_h,dh,dh_upper,dh_lower  
real::deltaStep,diffusion, sum_1, sum_2, sum_3  
integer::n_pore, m_throat,max_coord 
integer::n_bot, n_top 
real, dimension(:,:), allocatable::pb_coordinates, h, 
gamma_h,gamma_h_2  
integer, dimension(:), allocatable::bndry_pores,exclude 
real::deltaZ,network_length, r_eff, charc_L  
real,dimension (:),allocatable::L,PB_shp,PTh_shp,PB_vol, PTh_vol, 
PTh_length_c2c, g_PTh, g_tot,A_PB,A_PTh,HA_A_PTh,A_Kw_tot  
real,dimension (:),allocatable::R ,R_2 
real,dimension(:),allocatable:: D,poreunit 
real,dimension(:),allocatable:: Velocity, VELOCITY_2, VELOCITY_3, 
VELOCITY_4, VELOCITY_5, VELOCITY_x, 
VELOCITY_2_x,VELOCITY_3_x,VELOCITY_4_x,VELOCITY_5_x,theta 
real,dimension(:,:),allocatable:: PB_Velocity, PB_length, g_PB 
real,dimension(:),allocatable:: max_nod_velocity 
integer,dimension(:),allocatable:: out_nod 
real,dimension(:),allocatable:: Concent 
real,dimension(:),allocatable:: Concent_old 
real:: cross_section, min_x, max_x, max_y,max_z 
real:: alpha  
real::nrpowr 
real::Vthroat 
real::Vpore 
real::Vtot 
real::ff 
double precision,dimension(:),allocatable::KW 
double precision,dimension(:),allocatable::KW1 
double precision,dimension(:),allocatable::Kb 
double precision,dimension(:),allocatable::Ke 
double precision,dimension(:),allocatable::Kc 
double precision,dimension(:),allocatable::K3 
double precision,dimension(:),allocatable::Wet_P 
double precision,dimension(:),allocatable::new_P 
double precision,dimension(:),allocatable::X 
real::Ptop 
real::Pbot 
real::Inflow      
real::outflow 
Integer, dimension(:),allocatable::COORDMAT 
Integer, dimension(:),allocatable::ConThrCounter 
Integer, dimension(:,:),allocatable::CONNODTHRT 
Integer, dimension(:,:),allocatable::CONTHRTNOD 
double precision, dimension(:),allocatable::B_Mat 
real::MuW 
real::RoW 
integer:: generator  
real:: pi=3.141592653589793D0 
character filename*8 
character satOutputFormat*12 
character presOutputFormat*12 
character Long_SatFormat*12 
real::term1,term2 
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integer:: i,j,k,m,n,TODAY(3),NOW(3), iterm1, iterm2 
integer:: IERR 
real::lowBoundary 
integer::SUMNODSTATIC 
integer::SUMTUBSTATIC 
real::R_min 
real::R_max 
real::r_mean 
real::var 
integer:: Distribution_graph 
integer:: snapshot_graph 
integer::no_snapoff=0  
real,dimension(:), allocatable::Pressure_BC 
REAL::LOWCUT,HIGHCUT,BINS=30.0d0, BINSIZE,LOWERBIN,HIGHERBIN 
integer:: counter, counter_2 
REAL, DIMENSION(:),  ALLOCATABLE::PTH_BIN,PB_BIN  
CALL system('mkdir result_folder')  
CALL system('mkdir .\result_folder\snapshots')  
CALL system('mkdir .\result_folder\snapshots\PN')  
CALL system('mkdir .\result_folder\snapshots\PW')  
CALL system('mkdir .\result_folder\snapshots\SW')  
CALL system('mkdir .\result_folder\snapshots\Tube') 
CALL system('mkdir .\result_folder\snapshots\Visu') 
print*, 'PROGRAM READS FROM THE INPUT DATA!' 
open(unit=10, file="./result_folder/output_T_C.txt") 
open(unit=20, file="./result_folder/nodes_coordinations.txt") 
open(unit=60, file="./result_folder/aspect ratio.txt") 
open(unit=70, file="./result_folder/long_averag_c.txt") 
open(unit=444, file="./result_folder/linear_pressure.txt") 
open(unit=445, file="./result_folder/linear_PTH_velocities.txt") 
open(unit=446, file="./result_folder/Frochheimer_PTH_velocities.txt") 
open(unit=555, file="./result_folder/Frochheimer_pressure.txt") 
open(unit=666, file="./result_folder/PTh_length.txt") 
open(unit=777, file="./result_folder/PTH_Radii_output.txt") 
open(unit=888, file="./result_folder/PB_radii_output.txt") 
open(unit=999, file="./result_folder/Ke.txt") 
open(unit=998, file="./result_folder/Kc.txt") 
open(unit=997, file="./result_folder/calculations_dp=.txt") 
open(unit=996, file="./result_folder/K3.txt") 
open(unit=995, file="./result_folder/Kw.txt") 
open(unit=994, file="./result_folder/velocity_2.txt") 
open(unit=993, file="./result_folder/velocity_3.txt") 
open(unit=992, file="./result_folder/A_PTH.txt") 
open(unit=5001, file="./result_folder/D_velocity.txt") 
open(unit=5002, file="./result_folder/D_velocity_x.txt") 
open(unit=5003, file="./result_folder/D_velocity_3.txt") 
open(unit=5004, file="./result_folder/D_velocity_3_x.txt")    
open(unit=5005, file="./result_folder/D_theta.txt") 
open(unit=1001, file="./result_folder/F_theta.txt") 
open(unit=1002, file="./result_folder/F_velocity.txt") 
open(unit=1003, file="./result_folder/F_velocity_4.txt") 
open(unit=1004, file="./result_folder/F_velocity_5.txt")  
open(unit=1005, file="./result_folder/F_velocity_x.txt") 
open(unit=1006, file="./result_folder/F_velocity_2_x.txt") 
open(unit=1007, file="./result_folder/F_velocity_3_x.txt") 
open(unit=1008, file="./result_folder/F_velocity_4_x.txt") 
open(unit=1009, file="./result_folder/F_velocity_5_x.txt") 
open(unit=1010, file="./result_folder/exclude_2.txt") 
open(unit=1012, file="./result_folder/A_PTh_exclude.txt") 
open(unit=2000, file="./result_folder/Vari_PB_radii.txt") 
open(unit=2001, file="./result_folder/Vari_coord_no.txt") 
write(10,*) "time(s) "," concentration(-)" 
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open(unit=30, file="input.txt") 
 
filename="pore.txt" 
read (30,*)r_min 
print*,"r_min",r_min 
read (30,*)r_mean 
print*,"r_mean",r_mean 
read (30,*)r_max  
print*,"r_max",r_max 
read (30,*)var    
print*,"var",var 
read (30,*)MuW   
print*,"MuW", MuW 
read (30,*)RoW   
print*,"RoW", RoW 
read (30,*)alpha    
print*,"alpha",alpha 
read (30,*)nrpowr     
print*,"nrpowr",nrpowr 
read (30,*)Distribution_graph 
print*,"Distribution_graph",Distribution_graph 
read (30,*)snapshot_graph   
print*,"snapshot_graph",snapshot_graph 
read (30,*)generator     
          
print*,"generator",generator 
read(30,*)ptop    
print*,"ptop",ptop 
read(30,*)pbot    
print*,"pbot",pbot 
read(30,*) satOutputFormat    
print*,"satOutputFormat",satOutputFormat 
read(30,*) presOutputFormat    
print*,"presOutputFormat",presOutputFormat  
read(30,*) Long_SatFormat   
print*,"Long_SatFormat",Long_SatFormat 
read (30,*)iterm1   
step=iterm1 
print*, "number of window along the flow", step 
read (30,*)DeltaStep  
print*, "spacing of moving window along the flow", deltaStep 
read (30,*) porebody_vol_index 
read (30,*) lowBoundary 
read (30,*)ff  
print*, "The friction factor", ff 
read (30,*)min_x  
read (30,*)max_x  
read (30,*)max_y  
read (30,*)max_z  
read (30,*)charc_L  
close(30) 
 
SUMNODSTATIC=0 
SUMTUBSTATIC=0 
diffusion=1.0D-3  
open(unit=21, file="./result_folder/generalinfo.txt") 
call idate(today) 
call itime(now)      
write ( *, 1000 )  today(2), today(1), today(3), now 
write (55, 1000 )  today(2), today(1), today(3), now 
1000  format ( 'Date ', i2.2, '/', i2.2, '/', i4.4, '; time ', i2.2, 
':', i2.2, ':', i2.2 ) 
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write(55,554) "time ","sat ","<Pc> ","<Pc>_all ","<Pn>-<Pw>_all 
","GlobalPc ","Ca ","Int_area ", "<pc_arith> ", "<Pc>_front " 
write(90,301) "Time ","Sat ","NW_ph_ALL ","NW_ph_CNT ","NW_simp ", 
"W_ph_ALL ","W_ph_CNT ","W_simp ", "NW-W(Ph_All) ","NW-W(Ph_CNT) 
","NW_W(Simp) ","Pc_front ","Pc_Ph_UCnt ","Pc_Ph_All ","Pc_Sim " 
554 Format (A7,A6,A7,A12, A12,A11,A5,A11,A13, A18) 
555 Format (F10.7,F7.4, 2F11.2,F11.2,F10.2,F15.10,2F11.2,F11.2) 
301 Format (15A16) 
  
open (unit = 100, file = "pb2pth.txt")! 
read(100,*) n_pore 
read(100,*) max_coord 
 
open (unit = 200, file = "coord_nr.txt") 
allocate (COORDMAT(n_pore)) 
do  
read(200,FMT=*, end=1111) CoordMat 
end do 
1111  close(200) 
 
allocate (CONNODTHRT(max_coord,n_pore)) 
CONNODTHRT=0 
i=1  
do  
read(100,FMT=*, end=1112) CONNODTHRT(1:CoordMat(i),i) 
i=i+1 
If (i.eq.(n_pore+1)) goto 1112 
end do 
1112 close (100)  
   
open (unit = 100, file = "pth2pb.txt") 
read(100,*) m_throat 
read(100,*) n_bot 
read(100,*) n_top 
allocate (CONTHRTNOD(2,m_throat)) 
CONTHRTNOD=0 
do i=1,n_top+n_bot 
read(100,*)CONTHRTNOD(1:2,i)  
end do 
 
i=n_top+n_bot+1 
do 
read(100,*,end=1113) CONTHRTNOD(1:2,i) 
i=i+1 
end do 
1113  close (100) 
       
open (unit = 100, file = "pb_coordinates.txt")! 
allocate (pb_coordinates(3,n_pore)) 
i=1  
do  
read(100,*, end=1114)pb_coordinates(1:3,i) 
i=i+1 
end do 
1114 close (100) 
      
network_length=(max_x-min_x) 
write(70,'(A5,9999F10.6)')  'time', (k/real(step),k=1,step) 
  
open (unit = 100, file = "bndry_pores.txt")! 
allocate (bndry_pores(n_top+n_bot)) 
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do i=1, n_top+n_bot 
read(100,*)bndry_pores(i) 
end do 
close (100) 
 
allocate (L(m_throat),PTh_shp(m_throat)) 
allocate (R(m_throat),R_2(m_throat)) 
allocate (D(n_pore),PB_shp (n_pore)) 
allocate (poreunit(n_pore))      
allocate (ConThrCounter(m_throat)) 
allocate (KW(m_throat)) 
allocate (KW1(m_throat)) 
allocate (Kb(m_throat)) 
allocate (Ke(m_throat)) 
allocate (Kc(m_throat)) 
allocate (K3(m_throat)) 
allocate(velocity(m_throat),VELOCITY_x(m_throat), 
theta(m_throat),VELOCITY_2_x(m_throat),VELOCITY_3_x(m_throat),VELOCITY
_4_x(m_throat),VELOCITY_5_x(m_throat) ) 
allocate(velocity_2(m_throat), VELOCITY_3(m_throat), 
VELOCITY_4(m_throat), VELOCITY_5(m_throat),exclude(m_throat))     
allocate(PB_Velocity(2,m_throat)) 
allocate(Concent_old(n_pore)) 
allocate(Concent(n_pore)) 
allocate(PB_length(2,m_throat))     
allocate(g_Pth(m_throat))  
allocate(g_tot(m_throat)) 
allocate(g_PB(2,m_throat))  
allocate(PTh_length_c2c(m_throat)) 
allocate (A_PB(n_pore),A_PTh(m_throat),PB_vol(n_pore), 
PTh_vol(m_throat),HA_A_PTh(m_throat),A_Kw_tot(m_throat)) 
allocate ( h(n_pore,n_pore), 
gamma_h(n_pore,n_pore),gamma_h_2(n_pore,n_pore) ) 
     
A_PB=0.0 
HA_A_PTh=0.0 
A_PTh=0.0 
A_Kw_tot=0.0 
velocity=0.0D0 
velocity_2=0.0d0 
velocity_3=0.0d0 
velocity_4=0.0d0 
VELOCITY_5=0.0 
VELOCITY_x=0.0 
VELOCITY_2_x=0.0 
VELOCITY_3_x=0.0 
VELOCITY_4_x=0.0 
VELOCITY_5_x=0.0 
exclude=0 
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
h=0.0 
gamma_h=0 
gamma_h_2=0 
theta=0.0 
PB_Velocity=0.0d0 
max_nod_velocity=0.0D0 
out_nod=0.0 
g_Pth=0 
g_Pb=0 
g_tot=0 
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PTh_length_c2c=0 
PB_vol=0 
PTh_vol=0 
 
write(1011,*) exclude 
     
allocate (B_Mat(n_pore)) 
allocate (Pressure_BC(1)) 
ALLOCATE(PTH_BIN(INT(BINS)),PB_BIN(INT(BINS))) 
allocate (Wet_P(n_pore)) 
allocate (new_P(n_pore)) 
allocate (X(n_pore)) 
 
PB_length=0.0 
     
open (unit = 81, file = "pb_length.txt") 
do i = 1, m_throat 
read (81,*) PB_length(1,i), PB_length(2,i)  
end do 
CLOSE(81) 
open (unit = 82, file = "pth_tot_length_c2c.txt") 
do i = 1, m_throat 
read (82,*) PTh_length_c2c(i) 
end do 
CLOSE(82) 
 
L=0 
R=0 
D=0 
open (unit = 4, file = "pb_radii.txt") 
read (4,*) n_pore 
read (4,*) (D(i),i=1,n_pore)  
D=2.0D0*D 
CLOSE(4) 
 
L=0.0D0 
 
open (unit = 31, file = "pth_length.txt") 
read (31,*) (L(i),i=1,M_THROAT)  
CLOSE(31) 
      
if(minval(D).LE.0) then 
PRINT*, "WARNING D" 
PAUSE  
end if 
 
if(minval(L).LE.0) then 
PRINT*, "WARNING L" 
PAUSE 
end if 
 
open (unit = 32, file = "pth_radii.txt") 
read (32,*) (r(i),i=1,M_THROAT) 
CLOSE(32) 
      
open (unit = 33, file = "pth_shp.txt") 
read (33,*) (PTh_shp(i),i=1,M_THROAT) 
CLOSE(33)     
      
open (unit = 34, file = "pb_shp.txt") 
read (34,*) (PB_shp(i),i=1,n_pore)  
CLOSE(34) 
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open (unit = 35, file = "pb_vol.txt") 
read (35,*) (PB_vol(i),i=1,n_pore) 
CLOSE(35)      
      
open (unit = 36, file = "pth_vol.txt") 
read (36,*) (PTh_vol(i),i=1,m_throat)  
CLOSE(36)     
      
Do i=1,m_throat 
A_PTh(i)=r(i)*r(i)/(4.0*Pth_shp(i)) 
write(992,*) A_PTh(i) 
end do 
     
Do i=1, n_pore 
A_PB(i)=D(i)*D(i)/(16.0*Pb_shp(i)) 
end do    
      
      
Vthroat=sum(A_PTh*L) 
write (*,*)"Vthroat:", Vthroat 
 
Vpore=sum(PB_vol) 
write (*,*)"Vpore:", Vpore 
write (*,*)"Vth/Vpore:",Vthroat/Vpore 
     
Vtot=(maxval(pb_coordinates(1,:))-
minval(pb_coordinates(1,:)))*(maxval(pb_coordinates(2,:))-
minval(pb_coordinates(2,:)))*(maxval(pb_coordinates(3,:))-
minval(pb_coordinates(3,:))) 
 
write (*,*)"Total Vol:", Vtot 
write (*,*)"initial Porosity:",(Vthroat+Vpore)/(max_x*max_y*max_z) 
write (997,*)"initial Porosity:",(Vthroat+Vpore)/(max_x*max_y*max_z) 
cross_section= (max_y*max_z) 
write (997,*)"cross_section(mm2)=",cross_section 
 
if (minval(R).LT.0) then 
print*, "wrong radius" 
pause 
end if 
 
if (minval(L).LT.0) then 
print*, "wrong Length" 
pause 
end if 
 
if (minval(D).LT.0) then 
print*, "wrong diameter" 
pause 
end if 
 
WRITE(*,*)'network generation accomplished' 
CALL SLEEP (3) 
  
Vthroat=sum((Pth_vol)) 
write (*,*)"Vthroat:", Vthroat 
Vpore=sum(PB_vol) 
write (*,*)"Vpore:", Vpore 
write (*,*)"final Porosity:",(Vthroat+Vpore)/(max_x*max_y*max_z) 
write (997,*)"final Porosity:",(Vthroat+Vpore)/(max_x*max_y*max_z) 
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KW=0.0d0 
KW1=0.0d0 
Kb=0.0d0 
Ke=0.0d0  
Kc=0.0d0  
K3=0.0d0  
ConThrCounter=0 
 
WRITE(*,*)'network generation accomplished' 
CALL SLEEP (3) 
 
poreunit=0 
do i=1,n_pore 
poreunit(i)=(4.0/3.0*pi*(D(i)/2.0D0)**3)*porebody_vol_index 
do j=1,coordmat(i) 
poreunit(i)=poreunit(i)+0.5*pi*R(connodthrt(j,i))**2.0D0*L(connodthrt(
j,i)) 
enddo 
end do 
 
lowcut=minval(R) 
highcut=maxval(D/2.0d0) 
binsize=(highcut-lowcut)/bins 
lowerbin=minval(R) 
higherbin=lowerbin+binsize 
PTH_bin=0 
       
counter=1 
do while (higherbin.LE.highcut) 
do i=1,m_throat 
if(R(i).LE.higherbin.and.R(i).GE.lowerbin) then 
PTH_bin(counter)=PTH_bin(counter)+1 
end if 
end do 
lowerbin=higherbin 
higherbin=higherbin+binsize 
counter=counter+1 
end do 
       
lowerbin=minval(R) 
higherbin=lowerbin+binsize 
PB_bin=0 
counter=1 
do while (higherbin.LE.highcut) 
do i=1,n_pore 
if(D(i)/2.0d0.LE.higherbin.and.D(i)/2.0d0.GE.lowerbin) then 
PB_bin(counter)=PB_bin(counter)+1 
end if 
end do 
lowerbin=higherbin 
higherbin=higherbin+binsize 
counter=counter+1 
end do 
       
PB_bin=PB_bin/real(n_pore) 
PTH_bin=PTH_bin/real(m_throat)  
        
OPEN (UNIT=4,file="./result_folder/histogram.txt") 
do i=1,int(bins) 
write(4,*) i, lowcut+binsize*(i-1),PB_bin(i),PTH_bin(i) 
end do 
write (4,*)"Min R=", minval(R) 
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write (4,*)"avg R=", sum(R)/m_throat 
write (4,*)"Max R=", maxval(R) 
write (4,*)"Max D/2=", maxval(D)/2.0d0 
write (4,*)"avg D/2=", sum(D)/2.0d0/n_pore 
write (4,*)"Min D/2=", minval(D)/2.0d0 
close(4) 
print*, "probabality summation,", sum(PB_bin),sum(PTH_bin) 
 
do j=1, m_throat  
if (CONTHRTNOD(2,j).le.0) then 
write(60,*)0.5d0*D(CONTHRTNOD(1,j))/R(j) 
else 
write(60,*)min(0.5d0*D(CONTHRTNOD(1,j))/R(j),0.5d0*D(CONTHRTNOD(2,j))/
R(j)),max(0.5d0*D(CONTHRTNOD(1,j))/R(j),0.5d0*D(CONTHRTNOD(2,j))/R(j)) 
endif 
end do 
CLOSE(60) 
 
counter=0 
sum_1=0 
sum_2=0 
k=0 
    
Do i=1,n_pore 
Do j=1, n_pore 
h(i,j)=sqrt((pb_coordinates(1,i)-pb_coordinates(1,j))**2 + 
(pb_coordinates(2,i)-pb_coordinates(2,j))**2+(pb_coordinates(3,i)-
pb_coordinates(3,j))**2) 
end do 
end do 
 
Do i=1,n_pore 
Do j=1, n_pore 
gamma_h(i,j)=0.5*(( (D(i)/2)-(D(j)/2) )**2) 
end do 
end do 
    
max_h=maxval(h) 
dh=max_h/50 
    
do k=1,50 
sum_1=0.0 
counter_2=0 
dh_upper=dh*k+0.499*dh 
dh_lower=dh*k-0.4999*dh 
    
Do i=1,n_pore 
Do j=1, n_pore 
if ((i.le.j).and.(h(i,j).ge.dh_lower).and.(h(i,j).le.dh_upper)) then 
counter_2=counter_2+1 
sum_1=sum_1+gamma_h(i,j) 
        
end if 
end do 
end do 
write (2000,*)dh*k, sum_1/counter_2 
end do   
    
sum_1=0.0 
counter=0 
sum_1=0 
sum_2=0 
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k=0   
 
Do i=1,n_pore 
Do j=1, n_pore 
gamma_h_2(i,j)=0.5*(( coordmat(i)-coordmat(j) )**2) 
end do 
end do 
max_h=maxval(h) 
dh=max_h/50 
do k=1,50 
sum_1=0.0 
counter_2=0 
dh_upper=dh*k+0.499*dh 
dh_lower=dh*k-0.4999*dh 
    
Do i=1,n_pore 
Do j=1, n_pore 
if ((i.le.j).and.(h(i,j).ge.dh_lower).and.(h(i,j).le.dh_upper)) then 
counter_2=counter_2+1 
sum_1=sum_1+gamma_h_2(i,j) 
        
end if 
end do 
end do 
write (2001,*)dh*k, sum_1/counter_2 
end do   
    
sum_1=0.0 
77 PI = 3.14159265358979d0 
B_Mat=0.0d0  
        
Do i=1,m_throat 
if(pth_shp(i).le.0.049) then 
kw(i)=(3*((a_pth(i))**2.0d0)*pth_shp(i))/(5*MuW*L(i))  
else if ((pth_shp(i).le.0.0625).and.(pth_shp(i).gt.0.049)) then 
kw(i)=(0.5623*((a_pth(i))**2.0d0)*pth_shp(i))/(MuW*L(i)) 
else if (pth_shp(i).gt.0.0625)then 
kw(i)=(0.5*((a_pth(i))**2.0d0)*pth_shp(i))/(MuW*L(i)) 
else if (pth_shp(i).gt.0.0796) then 
write (*,*) "warning, shape factor greater than 0.0796 for a circle" 
end if 
end do   
g_pth=kw*L 
  
Do i=1,m_throat 
if (conthrtnod(2,i).le.0) then     
iterm1=conthrtnod(1,i) 
     
if(pb_shp(iterm1).le.0.049) then  
g_PB(1,i)=(3*((a_pb(iterm1))**2.0d0)*pb_shp(iterm1))/(5*MuW) 
else if ((pb_shp(iterm1).le.0.0625).and.(pb_shp(iterm1).gt.0.049)) 
then 
g_PB(1,i)=(0.5623*((a_pb(iterm1))**2.0d0)*pb_shp(iterm1))/(MuW) 
else if (pb_shp(iterm1).gt.0.0625)then 
g_PB(1,i)=(0.5*((a_pb(iterm1))**2.0d0)*pb_shp(iterm1))/(MuW) 
else if (pb_shp(iterm1).gt.0.0796) then 
write (*,*) "warning, shape factor greater than 0.0796 for a circle" 
end if 
     
endif 
end do     
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Do i=1, m_throat 
if (conthrtnod(2,i).gt.0) then      
iterm1=conthrtnod(1,i)  
iterm2=conthrtnod(2,i)  
     
if(pb_shp(iterm1).le.0.049) then 
g_PB(1,i)=(3*((a_pb(iterm1))**2.0d0)*pb_shp(iterm1))/(5*MuW) 
else if ((pb_shp(iterm1).le.0.0625).and.(pb_shp(iterm1).gt.0.049)) 
then 
g_PB(1,i)=(0.5623*((a_pb(iterm1))**2.0d0)*pb_shp(iterm1))/(MuW) 
else if (pb_shp(iterm1).gt.0.0625)then 
g_PB(1,i)=(0.5*((a_pb(iterm1))**2.0d0)*pb_shp(iterm1))/(MuW) 
else if (pb_shp(iterm1).gt.0.0796) then 
write (*,*) "warning, shape factor greater than 0.0796 for a circle" 
end if 
     
if(pb_shp(iterm2).le.0.049) then 
g_PB(2,i)=(3*((a_pb(iterm2))**2.0d0)*pb_shp(iterm2))/(5*MuW) 
else if ((pb_shp(iterm2).le.0.0625).and.(pb_shp(iterm2).gt.0.049)) 
then 
g_PB(2,i)=(0.5623*((a_pb(iterm2))**2.0d0)*pb_shp(iterm2))/(MuW) 
else if (pb_shp(iterm2).gt.0.0625)then  
g_PB(2,i)=(0.5*((a_pb(iterm2))**2.0d0)*pb_shp(iterm2))/(MuW) 
else if (pb_shp(iterm2).gt.0.0796) then 
write (*,*) "warning, shape factor greater than 0.0796 for a circle" 
end if 
endif 
end do  
 
Do i=1,m_throat       
if (conthrtnod(2,i).le.0) then 
g_tot(i)=(PB_length(1,i)+L(i))/((PB_length(1,i)/g_PB(1,i))+(L(i)/g_pth
(i))) 
kw(i)= g_tot(i)/(PB_length(1,i)+L(i)) 
endif 
end do  
     
Do i=1, m_throat 
if (conthrtnod(2,i).gt.0) then 
g_tot(i)=(PTh_length_c2c(i))/((PB_length(1,i)/g_PB(1,i))+(L(i)/g_pth(i
))+(PB_length(2,i)/g_PB(2,i))) 
kw(i)= g_tot(i)/PTh_length_c2c(i) 
endif 
end do  
 
do i=1,m_throat 
write (995,*) KW(i) 
end do 
         
DO i=1,m_throat 
iterm1=ConThrtNod(1,i)  
iterm2=ConThrtNod(2,i) 
if (iterm2.eq.0) then   
B_Mat(iterm1)=B_Mat(iterm1)+KW(i)*Pbot 
else if (iterm2.eq.-1) then 
B_Mat(iterm1)=B_Mat(iterm1)+KW(i)*Ptop 
endif                   
end do  
     
Wet_P=0.5*(pbot+ptop) 
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call 
A_B_Matrix_single_phase(n_pore,m_throat,KW,CONTHRTNOD,ConThrCounter,We
t_P,ptop,pbot,B_Mat,ConNodThrt,coordmat,n_bot,n_top,max_coord,IERR) 
Write(*,*)"Linear initialization is done." 
     
KK=0.0 
KK_F=0.0 
BB=0.0 
inflow=0 
outflow=0 
term1=0 
term2=0 
DO i=1,m_throat  
if (ConThrtNod(2,i).eq.0) then  
term1=Kw(i)*(Wet_P(ConThrtNod(1,i))-pbot) 
outflow=outflow+term1 
end if  
END DO 
  
Do i=1, m_throat 
if (ConThrtNod(2,i).eq.-1) then  
term2=Kw(i)*(ptop-Wet_P(ConThrtNod(1,i))) 
inflow=inflow+term2 
end if  
END Do 
     
KK=inflow*muw/(real(ptop-pbot)*cross_section)*1.0D6*network_length 
write(*,263)"linear permeability(* 10^-6 to be in m2):" 
write(*,*) KK 
KK=inflow*muw/(real(ptop-pbot)*cross_section)*network_length 
call sleep(1) 
     
Write (997,*)"pressure gradient(pa/mm)=", (Ptop-Pbot)/network_length 
Write (997,*)"Darcian inflow (mm3/s)=", inflow  
Write (997,*)"Darcian outflow (mm3/s)=", outflow 
Write (997,*)"Darcian permeability [KD] in mm2)=",KK 
     
263 FORMAT(A35,f15.12) 
      
DO i=1,m_throat 
if (ConThrtNod(2,i).eq.0) then    
VELOCITY(i)=KW(i)*(WET_P(ConThrtNod(1,i))-pbot)/(a_pth(i)) 
VELOCITY_x(i)=VELOCITY(i)  
end if  
END DO 
   
DO i=1,m_throat 
if (ConThrtNod(2,i).eq.-1) then 
VELOCITY(i)=KW(i)*(ptop-WET_P(ConThrtNod(1,i)))/(a_pth(i))  
VELOCITY_x(i)=VELOCITY(i) 
endif  
END DO 
         
DO i=1,m_throat 
if (ConThrtNod(2,i).gt.0) then 
VELOCITY(i)=abs(KW(i)*(WET_P(ConThrtNod(1,i))-
WET_P(ConThrtNod(2,i))))/(a_pth(i)) 
VELOCITY_x(i)=VELOCITY(i)  
endif 
END DO 
         
do i=1, m_throat      
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if (ConThrtNod(2,i).gt.0) then 
m=conthrtnod(1,i)  
n=conthrtnod(2,i)  
     
if (wet_p(m).GT.wet_p(n)) then 
theta(i)=acosd(abs(pb_coordinates(1,n)-
pb_coordinates(1,m))/PTh_length_c2c(i)) 
     
if (pb_coordinates(1,m).le.pb_coordinates(1,n))then     
VELOCITY_x(i)=VELOCITY(i)*cosd(theta(i))    
elseif (pb_coordinates(1,m).gt.pb_coordinates(1,n))then     
VELOCITY_x(i)=-1.0*VELOCITY(i)*cosd(theta(i)) 
endif 
     
else 
theta(i)=acosd(abs(pb_coordinates(1,n)-
pb_coordinates(1,m))/PTh_length_c2c(i))         
     
if (pb_coordinates(1,m).le.pb_coordinates(1,n))then    
VELOCITY_x(i)=-1.0*VELOCITY(i)*cosd(theta(i))    
elseif (pb_coordinates(1,m).gt.pb_coordinates(1,n))then     
     
VELOCITY_x(i)=VELOCITY(i)*cosd(theta(i)) 
endif    
          
endif 
end if  
end do 
         
Do i=1,m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 5010 
end do     
Write(5001,*)VELOCITY(i) 
write (5002,*)VELOCITY_x(i) 
write (5005,*)theta(i)  
5010 end do 
 
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 5011 
end do 
sum_1= sum_1+VELOCITY(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_x(i)*A_PTh(i) 
 
5011 end do 
       
write(*,*)    sum_1, sum_2,sum_3 
do i=1,m_throat 
write(1010,*) exclude(i) 
enddo 
Write (997,*)"Darcy Turtosity1: intererstial V/V_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3     
         
Do i=1,m_throat  
if (ConThrtNod(2,i).eq.0) then  
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PB_Velocity(1,i)=Kw(i)*(WET_P(conthrtnod(1,i))-
Pbot)/(A_PB(conthrtnod(1,i))) 
end if  
end do 
     
Do i=1,m_throat 
if (ConThrtNod(2,i).eq.-1) then     
PB_Velocity(1,i)=Kw(i)*abs(Ptop-
WET_P(conthrtnod(1,i)))/(A_PB(conthrtnod(1,i))) 
end if  
end do 
     
DO i=1,m_throat 
if (ConThrtNod(2,i).gt.0) then       
PB_Velocity(1,i)=Kw(i)*abs(WET_P(conthrtnod(1,i))-
WET_P(conthrtnod(2,i)))/(A_PB(conthrtnod(1,i))) 
PB_Velocity(2,i)=Kw(i)*abs(WET_P(conthrtnod(1,i))-
WET_P(conthrtnod(2,i)))/(A_PB(conthrtnod(2,i))) 
end if  
end do 
         
do i=1,m_throat  
if (ConThrtNod(2,i).le.0) then  
VELOCITY_3(i)=(PB_length(1,i)+L(i))/(((PB_length(1,i))/PB_Velocity(1,i
))+(L(i)/VELOCITY(i))) 
end if     
enddo  
        
do i=1, m_throat  
if (ConThrtNod(2,i).gt.0) then     
VELOCITY_3(i)=(PTh_length_c2c(i))/((PB_length(1,i)/PB_Velocity(1,i))+(
L(i)/VELOCITY(i))+(PB_length(2,i)/PB_Velocity(2,i))) 
end if      
enddo 
 
VELOCITY_3_x=VELOCITY_3*cosd(theta)     
Do i=1,m_throat 
if (velocity_x(i).lt.0) then 
VELOCITY_3_x(i)=-1.0*VELOCITY_3_x(i) 
end if 
end do  
     
Do i=1,m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 5012 
end do 
write(5003,*) VELOCITY_3(i) 
write(5004,*) VELOCITY_3_x(i) 
5012    enddo     
     
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 5013 
end do 
sum_1= sum_1+VELOCITY_3(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_3_x(i)*A_PTh(i) 
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5013 end do 
Write (997,*)"Darcy_Turtosity3(PTH_Area): intererstial V3/V3_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3     
Write(*,*)"[linear]inters.velocity(mm/s): ", 
sum(VELOCITY*a_pth)/sum(a_pth) 
Write (997,*)"[linear]inters.velocity(mm/s)=", 
sum(VELOCITY*a_pth)/sum(a_pth)  
Write (997,*)"[linear]inters.velocity_3(mm/s)=", 
sum(VELOCITY_3*a_pth)/sum(a_pth)    
KK_F=(sum(VELOCITY_3*a_pth)/sum(a_pth))*((Vthroat+Vpore)/(max_x*max_y*
max_z))*muw/(real(ptop-pbot))*network_length 
Write (997,*)"Darcian permeability [KD_F] from Vpore mm2=",KK_F 
         
Write(997,*)"[linear]Pore_Peclet: ", 
sum(abs(VELOCITY)*R/diffusion)/real(m_throat) 
Write(997,*)"[linear]Charc_L_Peclet: ", 
(sum(VELOCITY*a_pth)/sum(a_pth))*charc_L/diffusion 
Write(*,*)"[linear]inflow (mm3/s): ", inflow  
Write(*,*)"[linear]outflow (mm3/s): ", outflow 
Write (997,*)"Darcian (KD) superficial velocity (mm/s)=", 
outflow/cross_section 
Write (997,*)"Darcian ReL based on charc_L & superficial V=", Row*1e-
6*outflow*charc_L/cross_section/MuW 
call sleep(2) 
         
Do i =1, n_pore 
Write (444,*) pb_coordinates(1,i), 
pb_coordinates(2,i),pb_coordinates(3,i),Wet_P(i) 
End do  
     
VELOCITY=0.0 
VELOCITY_x=0.0 
PB_Velocity=0.0 
VELOCITY_2_x=0.0 
VELOCITY_3=0.0 
VELOCITY_3_x=0.0 
     
     
Write(*,*) "Start of Forchheimer calculations" 
 
KW1=1/kw 
DO i=1,m_throat   
if (ConThrtNod(2,i).eq.0) then    
Ke(i)=0.0d0 
m=conthrtnod(1,i)  
Kc(i)=((0.45d0-0.45d0*(A_PTh(i)/A_PB(m)))*(row*(1e-
6)/2.0d0))/((A_PTh(i))**2)  
if (A_PTh(i).ge.A_PB(m)) kc(I)=0.0 
iF (kc(I).lt.0.0d0) THEN  
Kc(i)=0.0d0      
end if      
K3(i)= Ke(i)+Kc(i) 
If (k3(i).le.0) then 
k3(i)=1e-6 
end if   
end if       
end do 
     
50  DO i=1,m_throat  
if (ConThrtNod(2,i).eq.-1) then 
Kb=0 
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Kc(i)=0.0d0  
m=conthrtnod(1,i) 
Ke(i)=(((1.0d0-(A_PTh(i)/A_PB(m)))**2)*ROW*(1e-
6)/2.0d0)/((A_PTh(i))**2)  
if (A_PTh(i).ge.A_PB(m)) Ke(i)=0.0d0 
iF (ke(i).lt.0.0d0) THEN 
Ke(i)=0.0d0 
end if      
K3(i)= Ke(i)+Kc(i) 
If (k3(i).le.0) then 
k3(i)=1e-6 
end if   
endif    
end do 
     
do i=1, m_throat     
if (ConThrtNod(2,i).gt.0) then 
Kb(i)=0  
m=conthrtnod(1,i)  
n=conthrtnod(2,i)  
if (wet_p(m).GT.wet_p(n)) then  
Kc(i)=((0.45d0-0.45d0*(A_PTh(i)/A_PB(m)))*(row*(1e-
6)/2.0d0))/((A_PTh(i))**2)  
Ke(i)=(((1.0d0-(A_PTh(i)/A_PB(n)))**2)*ROW*(1e-
6)/2.0d0)/((A_PTh(i))**2)    
if (A_PTh(i).ge.A_PB(m)) Kc(i)=0.0 
if (A_PTh(i).ge.A_PB(n)) Ke(i)=0.0 
else 
Kc(i)=((0.45d0-0.45d0*(A_PTh(i)/A_PB(n)))*(row*(1e-
6)/2.0d0))/((A_PTh(i))**2) 
Ke(i)=(((1.0d0-(A_PTh(i)/A_PB(m)))**2)*ROW*(1e-
6)/2.0d0)/((A_PTh(i))**2)  
if (A_PTh(i).ge.A_PB(n)) Kc(i)=0.0 
if (A_PTh(i).ge.A_PB(m)) Ke(i)=0.0    
endif 
K3(i)= Ke(i)+Kc(i) 
If (k3(i).le.0) then 
k3(i)=1e-6 
end if   
end if 
end do       
 
Do i =1, m_throat  
Write (999,*) ke(i) 
End do 
 
Do i =1, m_throat 
Write (998,*) kc(i) 
End do 
     
Do i =1, m_throat 
Write (996,*) k3(i) 
End do 
     
X=0.0d0 
New_P=0.0d0 
 
Non_Zero_deriv=0d0 
non_zero_deriv_bot=0d0 
non_zero_deriv_top=0d0 
Non_Zero_deriv=Sum(Coordmat)+n_pore-n_bot-n_top 
Do i=1, n_bot 
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non_zero_deriv_bot=non_zero_deriv_bot+Coordmat(i) 
end do 
Do i=n_bot+1, n_bot+n_top 
non_zero_deriv_top=non_zero_deriv_top+Coordmat(i) 
end do 
call 
Non_linear(n_pore,m_throat,CONTHRTNOD,Ptop,Pbot,ConNodThrt,coordmat,n_
bot,n_top,Wet_p,K3,Kw1,max_coord,X,Non_Zero_deriv) 
 
New_p=X 
inflow=0d0 
outflow=0d0 
term1=0.0d0 
term2=0.0d0 
theta=0.0 
K=0 
DO i=1,m_throat  
if (ConThrtNod(2,i).eq.0) then 
term1=(-Kw1(i)+sqrt 
(abs(Kw1(i)**2.0d0+4.0d0*K3(i)*(new_P(conthrtnod(1,i))-
Pbot))))/(2.0d0*K3(i)) 
outflow=outflow+term1 
endif 
END DO 
 
DO i=1,m_throat  
if (ConThrtNod(2,i).eq.-1) then  
term2=(-Kw1(i)+sqrt(abs(Kw1(i)**2.0d0+4.0d0*K3(i)*abs(Ptop-
new_P(conthrtnod(1,i))))))/(2.0d0*K3(i)) 
inflow=inflow+term2 
Endif    
END DO 
     
Write(*,*)"Forchheimer inflow (mm3/s): ", inflow 
Write(*,*)"Forchheimer outflow (mm3/s): ", outflow 
     
Do i=1, m_throat 
if ((conthrtnod(2,i)).gt.0) then    
If 
((wet_p(conthrtnod(1,i)).gt.wet_p(conthrtnod(2,i))).and.(New_p(conthrt
nod(1,i)).lt.New_p(conthrtnod(2,i))))then 
wet_p=x 
go to 50 
else 
if((wet_p(conthrtnod(1,i)).lt.wet_p(conthrtnod(2,i))).and.(New_p(conth
rtnod(1,i)).gt.New_p(conthrtnod(2,i))))then 
wet_p=X 
go to 50 
endif 
end if 
end do     
 
call sleep(1) 
223 FORMAT(A25,f15.12) 
VELOCITY=0.0d0  
     
DO i=1,m_throat  
if (ConThrtNod(2,i).eq.0) then  
VELOCITY(i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*(new_P(conthrtnod(1,i))-
Pbot))))/(2.0d0*K3(i)))/(A_PTh(i)) 
VELOCITY_x(i)=VELOCITY(i)  
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end if  
END DO 
   
DO i=1,m_throat  
if (ConThrtNod(2,i).eq.-1) then    
VELOCITY(i)=((-Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(Ptop-
new_P(conthrtnod(1,i))))))/(2.0d0*K3(i)))/(A_PTh(i)) 
VELOCITY_x(i)=VELOCITY(i)  
endif  
END DO 
         
DO i=1,m_throat  
if (ConThrtNod(2,i).gt.0) then      
VELOCITY(i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(new_P(conthrtnod(1,i))-
new_P(conthrtnod(2,i))))))/(2.0d0*K3(i)))/(A_PTh(i)) 
VELOCITY_x(i)=VELOCITY(i) 
end if  
END DO 
     
do i=1, m_throat           
if (ConThrtNod(2,i).gt.0) then 
m=conthrtnod(1,i)  
n=conthrtnod(2,i)  
     
if (new_p(m).GT.new_p(n)) then 
theta(i)=acosd(abs(pb_coordinates(1,n)-
pb_coordinates(1,m))/PTh_length_c2c(i)) 
     
if (pb_coordinates(1,m).le.pb_coordinates(1,n))then     
VELOCITY_x(i)=VELOCITY(i)*cosd(theta(i))    
elseif (pb_coordinates(1,m).gt.pb_coordinates(1,n))then     
VELOCITY_x(i)=-1.0*VELOCITY(i)*cosd(theta(i)) 
endif 
     
else 
theta(i)=acosd(abs(pb_coordinates(1,n)-
pb_coordinates(1,m))/PTh_length_c2c(i))         
     
if (pb_coordinates(1,m).le.pb_coordinates(1,n))then      
VELOCITY_x(i)=-1.0*VELOCITY(i)*cosd(theta(i))    
elseif (pb_coordinates(1,m).gt.pb_coordinates(1,n))then     
     
VELOCITY_x(i)=VELOCITY(i)*cosd(theta(i)) 
endif    
endif 
end if  
end do 
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 202 
end do 
write (1002,*)VELOCITY(i) 
write (1005,*)VELOCITY_x(i) 
write (1001,*)theta(i)  
 
202 end do 
Write (997,*)"[froch]inters.velocity[V](mm/s)=", 
sum(VELOCITY*a_pth)/sum(a_pth) 
      
sum_1=0.0 
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sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 203 
end do 
sum_1= sum_1+VELOCITY(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_x(i)*A_PTh(i) 
203 end do 
       
write(*,*)    sum_1, sum_2,sum_3 
do i=1,m_throat 
write(1010,*) exclude(i) 
enddo 
Write (997,*)"Turtosity1: intererstial V/V_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3 
 
Do i=1,m_throat  
if (ConThrtNod(2,i).eq.0) then     
PB_Velocity(1,i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*(new_P(conthrtnod(1,i))-
Pbot))))/(2.0d0*K3(i)))/(A_PB(conthrtnod(1,i))) 
end if 
end do 
     
Do i=1, m_throat 
if (ConThrtNod(2,i).eq.-1) then     
PB_Velocity(1,i)=((-Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(Ptop-
new_P(conthrtnod(1,i))))))/(2.0d0*K3(i)))/(A_PB(conthrtnod(1,i))) 
end if  
end do 
     
DO i=1,m_throat 
if (ConThrtNod(2,i).gt.0) then     
PB_Velocity(1,i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(new_P(conthrtnod(1,i))-
new_P(conthrtnod(2,i))))))/(2.0d0*K3(i)))/(A_PB(conthrtnod(1,i))) 
PB_Velocity(2,i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(new_P(conthrtnod(1,i))-
new_P(conthrtnod(2,i))))))/(2.0d0*K3(i)))/(A_PB(conthrtnod(2,i))) 
end if  
end do 
     
do i=1,m_throat 
if (ConThrtNod(2,i).le.0) then  
VELOCITY_2(i)=2/((1/PB_Velocity(1,i))+(1/VELOCITY(i))) 
end if  
enddo  
     
do i=1, m_throat 
if (ConThrtNod(2,i).gt.0) then  
VELOCITY_2(i)=3/((1/PB_Velocity(1,i))+(1/VELOCITY(i))+(1/PB_Velocity(2
,i))) 
end if  
enddo 
     
VELOCITY_2_x=VELOCITY_2*cosd(theta) 
     
Do i=1,m_throat 
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if (velocity_x(i).lt.0) then 
VELOCITY_2_x(i)=-1.0*VELOCITY_2_x(i) 
end if 
end do 
     
Do i=1,m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 208 
end do 
write(994,*) VELOCITY_2(i) 
write(1006,*) VELOCITY_2_x(i) 
 
208 enddo 
Write (997,*)"[froch]inters.velocity[V2](mm/s)=", 
sum(VELOCITY_2*a_pth)/sum(a_pth)  
     
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 204 
end do 
sum_1= sum_1+VELOCITY_2(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_2_x(i)*A_PTh(i) 
 
204 end do 
Write (997,*)"Turtosity2(PTH_Area): intererstial V2/V2_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3 
     
do i=1, m_throat 
if (ConThrtNod(2,i).le.0) then  
VELOCITY_3(i)=(PB_length(1,i)+L(i))/(((PB_length(1,i))/PB_Velocity(1,i
))+(L(i)/VELOCITY(i))) 
end if  
enddo  
     
do i=1, m_throat 
if (ConThrtNod(2,i).gt.0) then 
VELOCITY_3(i)=(PTh_length_c2c(i))/((PB_length(1,i)/PB_Velocity(1,i))+(
L(i)/VELOCITY(i))+(PB_length(2,i)/PB_Velocity(2,i))) 
end if  
enddo 
     
VELOCITY_3_x=VELOCITY_3*cosd(theta)  
Do i=1,m_throat 
if (velocity_x(i).lt.0) then 
VELOCITY_3_x(i)=-1.0*VELOCITY_3_x(i) 
end if 
end do 
    
Do i=1,m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 209 
end do 
write(993,*) VELOCITY_3(i) 
write(1007,*) VELOCITY_3_x(i) 
209    enddo 
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Write (997,*)"[froch]inters.velocity[V3](mm/s)=", 
sum(VELOCITY_3*a_pth)/sum(a_pth)  
     
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 205 
end do 
sum_1= sum_1+VELOCITY_3(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_3_x(i)*A_PTh(i) 
 
205 end do 
Write (997,*)"Turtosity3(PTH_Area): intererstial V3/V3_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3 
 
Do i=1,m_throat 
if (ConThrtNod(2,i).le.0) then  
HA_A_PTh(i)=(PB_length(1,i)+L(i))/(((PB_length(1,i))/A_PB(conthrtnod(1
,i)))+(L(i)/A_PTh(i)))     
end if  
enddo 
     
Do i=1, m_throat 
if (ConThrtNod(2,i).gt.0) then  
HA_A_PTh(i)=(PTh_length_c2c(i))/((PB_length(1,i)/A_PB(conthrtnod(1,i))
)+(L(i)/A_Pth(i))+(PB_length(2,i)/A_PB(conthrtnod(2,i))))     
end if  
enddo 
     
DO i=1,m_throat 
if (ConThrtNod(2,i).eq.0) then   
VELOCITY_4(i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*(new_P(conthrtnod(1,i))-
Pbot))))/(2.0d0*K3(i)))/(HA_A_PTh(i)) 
endif 
END DO 
   
DO i=1,m_throat 
if (ConThrtNod(2,i).eq.-1) then      
VELOCITY_4(i)=((-Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(Ptop-
new_P(conthrtnod(1,i))))))/(2.0d0*K3(i)))/(HA_A_PTh(i)) 
endif 
END DO 
         
DO i=1,m_throat 
if (ConThrtNod(2,i).gt.0) then      
VELOCITY_4(i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(new_P(conthrtnod(1,i))-
new_P(conthrtnod(2,i))))))/(2.0d0*K3(i)))/(HA_A_PTh(i)) 
end if  
END DO 
     
VELOCITY_4_x=VELOCITY_4*cosd(theta) 
 
Do i=1,m_throat 
if (velocity_x(i).lt.0) then 
VELOCITY_4_x(i)=-1.0*VELOCITY_4_x(i) 
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end if 
end do 
     
Do i=1,m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 211 
end do 
write(1003,*) VELOCITY_4(i) 
write(1008,*) VELOCITY_4_x(i) 
211   enddo 
Write (997,*)"[froch]inters.velocity[V4](mm/s)=", 
sum(VELOCITY_4*a_pth)/sum(a_pth) 
 
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 206 
end do 
sum_1= sum_1+VELOCITY_4(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_4_x(i)*A_PTh(i) 
 
206 end do 
Write (997,*)"Turtosity4(PTH_Area): intererstial V4/V4_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3 
 
R_2=0.0 
     
Do i=1,m_throat  
if (ConThrtNod(2,i).le.0) then 
if(pth_shp(i).le.0.049) then 
R_2(i)=(80*kw(i)*MuW*(PB_length(1,i)+L(i))*pth_shp(i)/3)**0.25d0 
A_Kw_tot(i)=R_2(i)*R_2(i)/(4*pth_shp(i)) 
     
else if ((pth_shp(i).le.0.0625).and.(pth_shp(i).gt.0.049)) then 
R_2(i)=(kw(i)*MuW*(PB_length(1,i)+L(i))/0.5623)**0.25d0 
A_Kw_tot(i)=R_2(i)*R_2(i)/(4*pth_shp(i)) 
     
else if (pth_shp(i).gt.0.0625)then 
R_2(i)=(kw(i)*8.0d0*MuW*(PB_length(1,i)+L(i))/pi)**0.250d0 
A_Kw_tot(i)=R_2(i)*R_2(i)/(4*pth_shp(i)) 
end if 
end if  
end do 
         
Do i=1,m_throat  
if (ConThrtNod(2,i).gt.0) then 
if(pth_shp(i).le.0.049) then 
R_2(i)=(80*kw(i)*MuW*(PTh_length_c2c(i))*pth_shp(i)/3)**0.25d0 
A_Kw_tot(i)=R_2(i)*R_2(i)/(4*pth_shp(i)) 
     
else if ((pth_shp(i).le.0.0625).and.(pth_shp(i).gt.0.049)) then 
R_2(i)=(kw(i)*(MuW*PTh_length_c2c(i))/0.5623)**0.25d0 
A_Kw_tot(i)=R_2(i)*R_2(i)/(4*pth_shp(i)) 
     
else if (pth_shp(i).gt.0.0625)then 
R_2(i)=(kw(i)*(8.0d0*MuW*PTh_length_c2c(i))/pi)**0.250d0 
A_Kw_tot(i)=R_2(i)*R_2(i)/(4*pth_shp(i)) 
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end if 
end if  
end do   
     
DO i=1,m_throat 
if (ConThrtNod(2,i).eq.0) then      
VELOCITY_5(i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*(new_P(conthrtnod(1,i))-
Pbot))))/(2.0d0*K3(i)))/(A_Kw_tot(i)) 
endif 
END DO 
     
DO i=1,m_throat 
if (ConThrtNod(2,i).eq.-1) then    
VELOCITY_5(i)=((-Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(Ptop-
new_P(conthrtnod(1,i))))))/(2.0d0*K3(i)))/(A_Kw_tot(i)) 
endif 
END DO 
         
DO i=1,m_throat 
if (ConThrtNod(2,i).gt.0) then     
VELOCITY_5(i)=((-
Kw1(i)+sqrt((Kw1(i)**2.0d0+4.0d0*K3(i)*abs(new_P(conthrtnod(1,i))-
new_P(conthrtnod(2,i))))))/(2.0d0*K3(i)))/(A_Kw_tot(i)) 
end if  
END DO 
     
VELOCITY_5_x=VELOCITY_5*cosd(theta)  
     
Do i=1,m_throat 
if (velocity_x(i).lt.0) then 
VELOCITY_5_x(i)=-1.0*VELOCITY_5_x(i) 
end if 
end do 
     
Do i=1,m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 212 
end do 
write(1004,*) VELOCITY_5(i) 
write(1009,*) VELOCITY_5_x(i) 
212 enddo 
Write (997,*)"[froch]inters.velocity[V5](mm/s)=", 
sum(VELOCITY_5*a_pth)/sum(a_pth) 
 
sum_1=0.0 
sum_2=0.0 
sum_3=0.0  
 
Do i=1, m_throat 
do j=1,m_throat 
if (exclude(j).eq.i)goto 207 
end do 
sum_1= sum_1+VELOCITY_5(i)*A_PTh(i) 
sum_2= sum_2+A_PTh(i) 
sum_3=sum_3+VELOCITY_5_x(i)*A_PTh(i) 
 
207 end do 
Write (997,*)"Turtosity5(PTH_Area): intererstial V5/V5_x", 
(sum_1/sum_2)/(sum_3/sum_2) 
Write (997,*)"sum_1",sum_1,"sum_2",sum_2,"sum_3",sum_3 
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Do i=1,m_throat 
Write(446,*)VELOCITY(i) 
End do 
         
Do i=1,m_throat 
Write(447,*)VELOCITY_2(i) 
End do 
         
Write(997,*)"inters.velocity_2(mm/s): ", 
sum(VELOCITY_2*A_PTh)/sum(A_PTh) 
Write(*,*)"inters.velocity(mm/s): ", sum(VELOCITY_2*A_PTh)/sum(A_PTh) 
Write(997,*)"Pore_Peclet:V_1", 
sum(abs(VELOCITY)*R/diffusion)/real(m_throat)  
Write(997,*)"[froch]Charc_L_Peclet:V1", 
(sum(VELOCITY*a_pth)/sum(a_pth))*charc_L/diffusion      
Write(997,*)"Pore_Peclet:V_2 ", 
sum(abs(VELOCITY_2)*R/diffusion)/real(m_throat)  
Write(*,*)"Pore_Peclet: V_2", 
sum(abs(VELOCITY_2)*R/diffusion)/real(m_throat)  
BB=((real(ptop-pbot)/network_length)-
MuW*inflow/(KK*cross_section))/(RoW*(1e-6)*inflow**2/cross_section**2)  
Write(*,*)"Frochheimer Coefficient (units[mm^-1] because Row in 
Kg/(mm2*m)): " 
write(*,*) BB, " *10^3 to be in 1/m" 
write (*,*) " Row*1e-6=", Row*1e-6 
 
20 call idate(today)    
print*,no_snapoff 
call itime(now) 
write (21, 1000 )  today(2), today(1), today(3), now 
     
Do i =1, n_pore 
Write (444,*) pb_coordinates(1,i), 
pb_coordinates(2,i),pb_coordinates(3,i),Wet_P(i) 
End do 
     
Do i =1, n_pore 
Write (555,*) pb_coordinates(1,i), 
pb_coordinates(2,i),pb_coordinates(3,i), New_p(i) 
End do  
Do i =1, m_throat 
Write (666,*) L(i) 
End do 
 
Do i =1, m_throat 
Write (777,*) R(i) 
End do 
 
write(888,*)n_pore 
Do i =1, n_pore 
Write (888,*) D(i)/2 
End do 
    
Write (997,*)"Forchheimer inflow (mm3/s)=", inflow  
Write (997,*)"Forchheimer outflow (mm3/s)=", outflow 
Write (997,*)"Forchheimer coefficient[mm^-1] as Row in Kg/(mm2*m))not 
exact",BB 
write(997,*) "Forchheimer coefficient*10^3 to be in 1/m"  
Write (997,*)"top pressure (Pa)=", Ptop 
Write (997,*)"bottom pressure (Pa)=", Pbot 
Write (997,*)"Forchheimer superficial velocity (mm/s)=", 
outflow/cross_section 
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Write (997,*)"Forchheimer ReL based on charc_L & superficial V=", 
Row*1e-6*outflow*charc_L/cross_section/MuW 
Write (997,*)"Forchheimer ReK based on KD & superficial V=", Row*1e-
6*outflow*sqrt(kk)/cross_section/MuW 
Write (997,*)"Forchheimer 1/Kapp=DP/(L*mu*V)[1/mm2]", (Ptop-
Ptop)/((max_x-min_x)*muw*outflow/cross_section) 
Write (997,*)"Forchheimer row*V/mu[1/mm])", (row*1e-
6*outflow/cross_section)/muw 
deallocate(L,R,D,poreunit,ConThrCounter,Kw,kw1,kb,ke,kc,k3, 
velocity,velocity_2,PB_Velocity, 
Concent_old,Concent,B_Mat,Pressure_BC,PTH_BIN,PB_BIN,Wet_P,new_P,X) 
end program  pore_tubes 
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Subroutine A_B_Matrix_single_phase: 

SUBROUTINE  
A_B_Matrix_single_phase(n_pore,m_throat,KW,CONTHRTNOD,ConThrCounter,Pb
ar,Ptop,Pbot,B_Mat,ConNodThrt,coordmat,n_bot,n_top,max_coord,IERR) 
implicit none 
integer::i,j,k,n_pore,m_throat,n_top,n_bot,counter,max_coord 
integer:: 
ConThrCounter(m_throat),ConThrtNod(2,m_throat),ConNodThrt(max_coord,n_
pore),coordmat(n_pore) 
double precision,dimension(m_throat):: KW  
double precision, dimension(n_pore)::B_Mat 
double precision::term1,term2 
real::ptop,pbot,SUMT 
integer:: 
MatrixOrder,nonzero,ISYM,NSAVE,ITOL,ITMAX,ITER,IERR,IUNIT,LENW,LENIW,N
L,NU 
double precision::Pbar(n_pore) 
double precision::TOL,ERR 
  
integer,dimension(:), allocatable::ArrI,ArrJ 
Double Precision,dimension(:), allocatable::AA 
Double Precision, dimension(:),ALLOCATABLE::RWORK 
Integer, dimension(:),ALLOCATABLE::IWORK 
  
ITMAX=3000 
ISYM=1   
NSAVE=400 
ITOL=2      
TOL=1.0E-7 
MatrixOrder=n_pore 
nonzero=0 
term1=0.0_8 
term2=0.0_8 
    
nonzero=n_pore+(m_throat-n_top-n_bot) 
allocate(ArrI(nonzero),ArrJ(nonzero),AA(nonzero)) 
ArrI=0 
ArrJ=0 
AA=0.0 
nonzero=0 
Do i=1,n_pore 
nonzero=nonzero+1 
ArrI(nonzero)=i  
ArrJ(nonzero)=i   
Do j=1,coordmat(i) 
AA(nonzero)=AA(nonzero)+KW(connodthrt(j,i)) 
End Do 
End Do 
 
Do i=1, m_throat 
if (CONTHRTNOD(2,i).gt.0) then     
nonzero=nonzero+1 
ArrI(nonzero)=min(CONTHRTNOD(1,i),CONTHRTNOD(2,i)) 
ArrJ(nonzero)=max(CONTHRTNOD(1,i),CONTHRTNOD(2,i)) 
AA(nonzero)=-(KW(i)) 
endif 
End Do 
  
IUNIT=0 
NL=n_pore+2*(m_throat-n_top-n_bot) 
NU=NL 
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LENW=1+MatrixOrder*(NSAVE+7) + NSAVE*(NSAVE+3)+NL+NU 
LENIW =(NL+NU+4*MatrixOrder+32.0) 
Allocate (RWORK(LENW),IWORK(LENIW)) 
RWORK=0 
IWORK=0 
call DSDBCG 
(MatrixOrder,B_Mat,Pbar,nonzero,ArrI,ArrJ,AA,ISYM,ITOL,TOL,ITMAX, 
ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW) 
if (IERR.ne.0) then 
print*, "wrong solution of A-B-Matrix" 
print*,"IERR=",IERR 
pause 
end if 
deallocate (ArrI,ArrJ,AA,RWORK,IWORK) 
return 
END SUBROUTINE  
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Subroutine Non_linear: 

      SUBROUTINE Non_linear(n_pore,m_throat,CONTHRTNOD,Ptop 
     *,Pbot,ConNodThrt,coordmat,n_bot,n_top,Wet_p,K3,Kw1, 
     * max_coord,X,Non_Zero_deriv) 
      integer:: ConThrtNod(2,m_throat),ConNodThrt(max_coord,n_pore), 
     *coordmat(n_pore),m_throat, max_coord 
      Real ::Ptop, pbot  
      Double precision:: Kw1(m_throat),Kw(m_throat),k3(m_throat), 
     * wet_p(n_pore),X(n_pore) 
      EXTERNAL NS23AD, FUNC 
      INTEGER:: M,N,LIW,LW,K,K1,k2,k4,n_pore,iterm1,iterm2,iterm3  
      PARAMETER (LIW=8500000, LW=8500000) 
      DOUBLE PRECISION:: SAC,STPMIN,HMAX 
      INTEGER MAXFUN,IPRINT,IFLAG, I, J 
      INTEGER, dimension(:), allocatable::IW,IRN,IP,IRNA,IPA 
      INTEGER, dimension(:,:), allocatable::Row_indices 
      DOUBLE PRECISION, dimension(:), allocatable::W,F,A,DERIV 
      DOUBLE PRECISION, dimension(:,:), allocatable::F1_DERIV,F1 
      PARAMETER (SAC=1D-10, STPMIN=1D-10, MAXFUN=3000000, IPRINT=1) 
      INTEGER ICNTL(5),INFO(10),KEEP(130) 
      DOUBLE PRECISION CNTL(5),RINFO(5),RKEEP(72)  
      LOGICAL LKEEP(10) 
      Allocate (IW(LIW),IRN(Non_Zero_deriv+1), IP(n_pore+1), 
     * IRNA(n_pore), IPA(n_pore+1),F(n_pore),A(n_pore), 
     * DERIV(Non_Zero_deriv)) 
 Allocate (W(LW)) 
      Allocate (Row_indices(n_pore,n_pore),F1_DERIV(n_pore,n_pore), 
     * F1(n_pore,n_pore))  
      M=n_pore 
      N=n_pore 
      CALL NS23ID(ICNTL,CNTL,KEEP,RKEEP,LKEEP) 
      WRITE(6,'(A,I7,A,1P,E11.4,A,E11.4)') 
     *     ' N =',N, ',  SAC =',SAC, ',  STPMIN =',STPMIN 
 
        X=Wet_p 
        F=0.0d0 
        K1=0 
        K2=0 
        iterm1=0 
        iterm2=0 
        iterm3=0 
        Row_indices=0 
        IRN=0 
        IRNA=0 
        K4=1 
        A=0 
 
      Do I=1, m_throat  
      if (ConThrtNod(2,i).eq.0) then  
      K2=CONTHRTNOD(1,i)  
      Do K=1, Coordmat(K2) 
      iterm3=Connodthrt(K,K2) 
      iterm1=Conthrtnod(1,iterm3)  
      iterm2=Conthrtnod(2,iterm3)  
      IF (iterm2.LE.0) then 
      Row_indices(iterm1,iterm1)=iterm1     
      go to 11 
      End if  
      IF (iterm1.NE.K2) then  
      Row_indices(iterm1,k2)=iterm1 
      else 
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      Row_indices(iterm2,k2)=iterm2 
      End if 
11    end do 
      endif 
      end do 
     
      Do I=1,n_pore 
      Do K=1, Coordmat(I)+1 
      If (K==(Coordmat(I)+1))then 
          Row_indices(I,I)=I 
          goto 55 
      endif 
      iterm3=Connodthrt(K,I) 
      iterm1=Conthrtnod(1,iterm3)   
      iterm2=Conthrtnod(2,iterm3)   
      IF (iterm2.LE.0) go to 66  
      IF (iterm1.NE.I) then  
      Row_indices(iterm1,I)=iterm1 
      else 
      Row_indices(iterm2,I)=iterm2 
      End if 
55    end do 
66    end do  
       
      Do I=1, m_throat 
      if (ConThrtNod(2,i).eq.-1) then   
      K2=CONTHRTNOD(1,i)    
      Do K=1, Coordmat(K2) 
      iterm3=Connodthrt(K,K2) 
      iterm1=Conthrtnod(1,iterm3) 
      iterm2=Conthrtnod(2,iterm3)  
      IF (iterm2.LE.0) then  
      Row_indices(iterm1,iterm1)=iterm1     
      go to 44  
      End if  
      IF (iterm1.NE.K2) then  
      Row_indices(iterm1,k2)=iterm1 
      else 
      Row_indices(iterm2,k2)=iterm2  
      End if 
44    end do 
      endif 
      end do 
      Do I=1, n_pore 
      Do j=1, n_pore     
 If (Row_indices(J,I).NE.0)then 
      IRN(K4)=Row_indices(J,I) 
      K4=K4+1 
      else 
      go to 43 
      end if 
43    end do 
      end do       
      IP(1) = 1 
      Do I =1, n_pore 
      K4=0     
      Do J=1,n_pore 
      If (Row_indices(J,I).NE.0)then 
      K4=K4+1 
      end if  
      End do 
      IP(I+1)= IP(I)+ k4 
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      End do 
      DO I=1,n_pore 
         A(I)=-1 
         IRNA(I)=I 
         IPA(I)=I 
      end do 
      IPA(n_pore+1)=n_pore+1 
      IFLAG = 1 
      HMAX = 0 
   40 CONTINUE 
      CALL FUNC ( N, X, F,F1, DERIV,coordmat,connodthrt,CONTHRTNOD 
     *,Kw1,k3,Wet_p,Pbot,Ptop,n_bot, n_top, n_pore, 
     *m_throat, max_coord,F1_DERIV,Non_Zero_deriv) 
   
      CALL NS23AD( M, N, SAC, STPMIN, MAXFUN, IPRINT, IRN, IP, 
     *        A, IRNA, IPA, HMAX, LIW, IW, LW, W, X, F, DERIV, IFLAG, 
     *        ICNTL,CNTL,INFO,RINFO,KEEP,RKEEP,LKEEP) 
      IF(IFLAG.GT.0) GO TO 40 
      IF (IFLAG.EQ.0) THEN 
      WRITE(*,*) ' INFO matrix',(INFO(I),I=1,5)     
      WRITE(*,*) ' IFLAG =',IFLAG  
      WRITE(6,'(A,/,(5I9))') 'ICNTL vector',(ICNTL(I),I=1,5) 
      WRITE(6,'(A,/,(5F9.5))') 'CNTL vector',(CNTL(I),I=1,5) 
      WRITE(*,*) ' Solution is',(X(I),I=1,5) 
      ELSE 
          WRITE(6,'(A,I4)') ' Failure. INFO(1:5) =',(INFO(I),I=1,5) 
          WRITE(6,'(A,/,(5I9))') 'ICNTL vector',(ICNTL(I),I=1,5) 
          WRITE(6,'(A,/,(5F9.5))') 'CNTL vector',(CNTL(I),I=1,5) 
      END IF 
      deallocate (IW,W,IRN,IP,IRNA,IPA,F,A,Deriv,Row_indices,F1_deriv 
     * ,F1) 
      END SUBROUTINE 
 
      SUBROUTINE FUNC ( N, X, F,F1, 
DERIV,coordmat,connodthrt,CONTHRTNOD 
     *,Kw1,k3,Wet_p,Pbot,Ptop,n_bot, n_top, n_pore, 
     *m_throat, max_coord,F1_DERIV,Non_Zero_deriv) 
      INTEGER:: N, i, j, k, K1,k2,n_bot, n_top, n_pore, m_throat, 
     * coordmat(n_pore),ConThrtNod(2,m_throat),max_coord, 
     * ConNodThrt(max_coord,n_pore),PB_index_2nd_end(max_coord,n_pore) 
      DOUBLE PRECISION 
X(N),F(N),DERIV(Non_Zero_deriv),F1(N,N),Wet_p(N), 
     *Kw1(m_throat),k3(m_throat), bb_mat(n_pore),F1_DERIV(N,N), term1 
     *,c(5), term2 
      Real Pbot,Ptop 
      F1=0.0d0 
      F1_DERIV=0.0d0 
      PB_index_2nd_end=0 
      bb_mat(n_pore)=0.0 
      term1=0 
       
      Do i =1, m_throat  
      if (ConThrtNod(2,i).eq.0) then    
      K2=CONTHRTNOD(1,i)   
      do j=1,coordmat(k2)  
      K=connodthrt(j,K2)  
      iterm1=CONTHRTNOD(1,k) 
      iterm2=CONTHRTNOD(2,k) 
      PB_index_2nd_end(j,k2)=iterm1 
      if (k2==iterm1) then 
      PB_index_2nd_end(j,k2)=iterm2 
      end if 
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      If (i/=k) then 
      If (wet_p(PB_index_2nd_end(j,k2)).GT.wet_p(k2)) then 
      If (((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).GT.x(k2))) then 
      F1(PB_index_2nd_end(j,k2),K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     *k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2))))/(2.0d0*k3(k))  
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2)))) 
      else if 
(((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).LT.x(k2))) then 
      F1(PB_index_2nd_end(j,k2),K2)=-1.0d0*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2)))))/(2.0d0*k3(k))   
      F1_DERIV(k2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2))))) 
      else 
      F1(PB_index_2nd_end(j,k2),K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     *k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2))))/(2.0d0*k3(k))  
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2)))) 
       end if 
      else 
           
      if (((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).LT.x(k2))) then     
      F1(PB_index_2nd_end(j,k2),K2)=-1.0d0*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2)))))/(2.0d0*k3(k))   
      F1_DERIV(k2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2))))) 
      else if(((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).GT.x(k2))) then 
      F1(PB_index_2nd_end(j,k2),K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     *k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2))))/(2.0d0*k3(k))  
       
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2)))) 
      else 
      F1(PB_index_2nd_end(j,k2),K2)=-1.0d0*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2)))))/(2.0d0*k3(k))   
 
      F1_DERIV(k2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2))))) 
      end if        
      end if  
      elseIf (i==k) then    
      F1(k2,K2)=-1.0d0*(-Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     * 4.0d0*k3(k)*(X(k2)-Pbot)))/(2.0d0*k3(k)) 
 
      F1_DERIV(k2,K2)=-1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     * 4.0d0*k3(k)*(X(k2)-Pbot))) 
       
      End if 
      End do 
      Term2=F1_DERIV(k2,K2) 
      F1_DERIV(k2,K2)=0 
      F1_DERIV(k2,K2)=-1.0d0*sum((F1_DERIV(k2,1:n_pore)))+term2+1 
      F(k2)=sum(F1(1:n_pore,k2))+x(k2) 
      endif  
      end do  
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      Do i =1, m_throat 
      if (ConThrtNod(2,i).eq.-1) then    
      K2=CONTHRTNOD(1,i)  
      do j=1,coordmat(k2) 
      K=connodthrt(j,K2)  
      iterm1=CONTHRTNOD(1,k) 
      iterm2=CONTHRTNOD(2,k) 
      PB_index_2nd_end(j,k2)=iterm1 
      if (k2==iterm1) then 
      PB_index_2nd_end(j,k2)=iterm2 
      end if      
      If (i/=k) then 
      If (wet_p(PB_index_2nd_end(j,k2)).GT.wet_p(k2))then 
      If (((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and.  
     * (x(PB_index_2nd_end(j,k2)).GT.x(k2))) then              
                 
      F1(PB_index_2nd_end(j,k2),K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0 
     **k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2))))/(2.0d0*k3(k))  
 
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2)))) 
       
      else if 
(((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).LT.x(k2))) then                      
      F1(PB_index_2nd_end(j,k2),K2)=-1.0d0*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     * 4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2)))))/ 
     *(2.0d0*k3(k)) 
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*abs(X(k2)-X(PB_index_2nd_end(j,k2))))) 
      else   
      F1(PB_index_2nd_end(j,k2),K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0 
     **k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2))))/(2.0d0*k3(k))  
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2)))) 
      endif 
      else 
           
      if (((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).LT.x(k2))) then  
      F1(PB_index_2nd_end(j,k2),K2)=-1.0d0*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     * 4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2)))))/ 
     *(2.0d0*k3(k)) 
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*abs(X(k2)-X(PB_index_2nd_end(j,k2))))) 
      else if 
(((x(PB_index_2nd_end(j,k2)).ne.0).and.(x(k2).ne.0)).and. 
     * (x(PB_index_2nd_end(j,k2)).GT.x(k2))) then  
      F1(PB_index_2nd_end(j,k2),K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0 
     **k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2))))/(2.0d0*k3(k))  
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,k2))-X(k2)))) 
      Else  
      F1(PB_index_2nd_end(j,k2),K2)=-1.0d0*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+ 
     * 4.0d0*k3(k)*(X(k2)-X(PB_index_2nd_end(j,k2)))))/ 
     *(2.0d0*k3(k)) 
      F1_DERIV(K2,PB_index_2nd_end(j,k2))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*abs(X(k2)-X(PB_index_2nd_end(j,k2)))))           
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      endif     
      end if     
      elseIf (i==k) then   
      F1(k2,K2)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*abs(ptop-X(k2))))/(2.0d0*k3(k))  
      F1_DERIV(k2,K2)=-1.0d0/(sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*abs(ptop-X(k2)))) 
 
      End if 
      End do 
      Term2=F1_DERIV(k2,K2) 
      F1_DERIV(k2,K2)=0 
      F1_DERIV(k2,K2)=-1.0d0*sum((F1_DERIV(k2,1:n_pore)))+term2+1 
      F(k2)=sum(F1(1:n_pore,k2))+x(k2) 
      endif 
      end do  
       
      Do i =1, n_pore  
      Do K=1, Coordmat(I) 
      iterm3=Connodthrt(K,I) 
      iterm1=Conthrtnod(1,iterm3)   
      iterm2=Conthrtnod(2,iterm3)  
      IF (iterm2.LE.0) go to 7     
      End do  
      do j=1,coordmat(I)  
      K=connodthrt(j,I) 
      iterm1=CONTHRTNOD(1,k) 
      iterm2=CONTHRTNOD(2,k) 
      PB_index_2nd_end(j,I)=iterm1 
      if (I==iterm1) then 
      PB_index_2nd_end(j,I)=iterm2 
      end if 
      If (wet_p(PB_index_2nd_end(j,I)).GT.wet_p(I))then 
      If (((x(PB_index_2nd_end(j,I)).ne.0).and.(x(I).ne.0)).and.  
     * (x(PB_index_2nd_end(j,I)).GT.x(I))) then                              
       F1(PB_index_2nd_end(j,I),I)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*(X(PB_index_2nd_end(j,I))-X(I))))/(2.0d0*k3(k))   
      F1_DERIV(I,PB_index_2nd_end(j,I))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,I))-X(I)))) 
      else if (((x(PB_index_2nd_end(j,I)).ne.0).and.(x(I).ne.0)).and. 
     * (x(PB_index_2nd_end(j,I)).LT.x(I))) then                       
      F1(PB_index_2nd_end(j,I),I)=-1*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*(X(I)-X(PB_index_2nd_end(j,I)))))/(2.0d0*k3(k))   
      F1_DERIV(I,PB_index_2nd_end(j,I))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(I)-X(PB_index_2nd_end(j,I)))))  
      else 
       F1(PB_index_2nd_end(j,I),I)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*(X(PB_index_2nd_end(j,I))-X(I))))/(2.0d0*k3(k))   
      F1_DERIV(I,PB_index_2nd_end(j,I))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,I))-X(I)))) 
      
      end if 
      else  
      if (((x(PB_index_2nd_end(j,I)).ne.0).and.(x(I).ne.0)).and. 
     * (x(PB_index_2nd_end(j,I)).LT.x(I))) then     
       F1(PB_index_2nd_end(j,I),I)=-1*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*(X(I)-X(PB_index_2nd_end(j,I)))))/(2.0d0*k3(k))   
      F1_DERIV(I,PB_index_2nd_end(j,I))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(I)-X(PB_index_2nd_end(j,I))))) 
      else if (((x(PB_index_2nd_end(j,I)).ne.0).and.(x(I).ne.0)).and.  
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     * (x(PB_index_2nd_end(j,I)).GT.x(I))) then  
      F1(PB_index_2nd_end(j,I),I)=(-Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*(X(PB_index_2nd_end(j,I))-X(I))))/(2.0d0*k3(k))   
      F1_DERIV(I,PB_index_2nd_end(j,I))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(PB_index_2nd_end(j,I))-X(I)))) 
      else 
      F1(PB_index_2nd_end(j,I),I)=-1*(-
Kw1(k)+sqrt(Kw1(k)**2.0d0+4.0d0* 
     * k3(k)*(X(I)-X(PB_index_2nd_end(j,I)))))/(2.0d0*k3(k))   
      F1_DERIV(I,PB_index_2nd_end(j,I))=1.0d0/(sqrt(Kw1(k)**2.0d0+ 
     *4.0d0*k3(k)*(X(I)-X(PB_index_2nd_end(j,I))))) 
      end if  
       end if 
      end do 
      F1_DERIV(I,I)=-1.0d0*sum((F1_DERIV(I,1:n_pore)))+1 
      F(I)=sum(F1(1:n_pore,I))+x(I) 
7     End do 
      K=1 
      Do I =1, n_pore 
      Do j = 1, n_pore 
      If (F1_DERIV(J,I).NE.0.0) then      
      Deriv(K)=F1_DERIV(J,I) 
      K=K+1 
      endif 
      end do 
      end do 
      END SUBROUTINE  
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Yes 

No 

Appendix B: Algorithm of the laminar, Forchheimer and turbulent 

flow regimes PNM code 

B-1. Code flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-Read the pore-network data; number of PBs, PB cartesian coordinates, 

the coordination number of each PB, PB radii, connectivity between PBs 

and PThs, and Lcharc. Read the Repore at the onset of transition and 

turbulent flow. 

2-Read pressure at inlet and outlet boundaries, fluid properties and an 

initial guess for the fiction factor of all pore (for example: fpore = 0.02).   

Sum PB volumes and PTh volumes, then calculate the medium porosity. 

Solve the flow and pressure field for the Non-Darcy Forchheimer flow as shown in Appendix A, 

then used the pressure value at each PB as initial guess. 

1-Using the pressure values at each PB (from the previous iteration), estimate the velocity 

(upore), Repore,  𝑓pore and 𝑔pore
𝑓

 for each PB and PTh in the pore-network. 2- Exclude any 

PTh with zero velocity from the calculations. 

Call the “Non_linear_turbulent” subroutine to solve the final system of nonlinear equations. The 

“Non_linear_turbulent” subroutine iterates until it reaches the correct solution (pressure at each 

PB) within the predefined error criteria. 

Using the new pressure values at each PB, calculate the discharge through each PTh, the inflow and 

outflow at the inlet and outlet boundaries of the PN, average upore and tortuosity. 

Start 

Write the output files: pressure at each PB, velocity 

through each PTh, superficial velocity, Re, ReK, the 

overall discharge, pressure gradient and tortuosity.  

End 

Using the new pressure values at each PB, estimate the new values of upore, 

Repore, 𝑓pore and 𝑔pore
𝑓

 for each pore in the pore-network. 

Is (the number of iteration > predefined Max. 

number of iterations) or is 

(|𝑅𝑒pore(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) −

𝑅𝑒pore(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)|<10-2) for all pores? 
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B-2. Solving the nonlinear system of equations 

Assuming the following simple pore-network: 

  
Figure 1B A simple example of a pore-network. 

Starting from Equation 5.7: 

𝑞i−j =
√

∆𝑃i−j
tot

[
𝐿i−j,tot

𝑔
𝑖−𝑗,𝑡𝑜𝑡
𝑓 ]+𝐾𝑒

𝜌

2𝑎i−j
2 +𝐾𝑐

𝜌

2𝑎i−j
2

   
5.7 

Equation 5.7 can be written as  

   𝑞i−j = √
∆𝑃i−j

tot

𝐾3
 9.8 

Where 𝐾3 = [
𝐿i−j,tot

𝑔𝑖−𝑗,𝑡𝑜𝑡
𝑓 ] + 𝐾𝑒

𝜌

2𝑎i−j
2 + 𝐾𝑐

𝜌

2𝑎i−j
2     

And by applying the continuity equation (Equation 4.11) at each node (pore 

body) in Figure 1B, the following system of equations can be obtained:   

At node 1:          

𝑞2−1 + 𝑞3−1 − 𝑞1−𝑏𝑜𝑡 = 0.0         

Then    

√
∆𝑃2−1

𝑡𝑜𝑡

𝐾32−1
+ √

∆𝑃3−1
𝑡𝑜𝑡

𝐾33−1
− √

∆𝑃1−𝑏𝑜𝑡
𝑡𝑜𝑡

𝐾31−𝑏𝑜𝑡
= 0.0  

Then 

√
[𝑃2−𝑃1]

𝐾32−1
+ √

[𝑃3−𝑃1]

𝐾33−1
− √

[𝑃1−𝑃𝑏𝑜𝑡]

𝐾31−𝑏𝑜𝑡
+ 𝑃1 − 𝑃1 = 0.0  

9.9 

At node 2: 

𝑞4−2 + 𝑞5−2 − 𝑞2−3 − 𝑞2−1 = 0.0           

Then  

√
∆𝑃4−2

𝐾34−2
+ √

∆𝑃5−2

𝐾35−2
− √

∆𝑃2−3

𝐾32−3
− √

∆𝑃2−1

𝐾32−1
= 0.0  

Then                                                  
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√
[𝑃4−𝑃2]

𝐾34−2
+ √

[𝑃5−𝑃2]

𝐾35−2
− √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃2−𝑃1]

𝐾32−1
+ 𝑃2 − 𝑃2 = 0.0  

9.10 

 

At node 3: 

𝑞5−3 + 𝑞2−3 − 𝑞3−1 = 0.0           

Then  

√
[𝑃5−𝑃3]

𝐾35−3
+ √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃3−𝑃1]

𝐾33−1
= 0  

Then  

√
[𝑃5−𝑃3]

𝐾35−3
+ √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃3−𝑃1]

𝐾33−1
+ 𝑃3 − 𝑃3 = 0.0  

9.11 

 

At node 4: 

𝑞𝑡𝑜𝑝−4 − 𝑞4−2 = 0.0           

Then 

√
∆𝑃𝑡𝑜𝑝−4

𝐾3𝑡𝑜𝑝−4
− √

∆𝑃4−2

𝐾34−2
= 0.0  

Then  

√
[𝑃𝑡𝑜𝑝−𝑃4]

𝐾3𝑡𝑜𝑝−4
− √

[𝑃4−𝑃2]

𝐾34−2
+ 𝑃4 − 𝑃4 = 0.0  9.12 

At node 5: 

𝑞𝑡𝑜𝑝−5 − 𝑞5−3 − 𝑞5−2 = 0.0           

Then  

√
[𝑃𝑡𝑜𝑝−𝑃5]

𝐾3𝑡𝑜𝑝−5
− √

[𝑃5−𝑃3]

𝐾35−3
− √

[𝑃5−𝑃2]

𝐾35−2
= 0.0  

Then  

√
[𝑃𝑡𝑜𝑝−𝑃5]

𝐾3𝑡𝑜𝑝−5
− √

[𝑃5−𝑃3]

𝐾35−3
− √

[𝑃5−𝑃2]

𝐾35−2
+ 𝑃5 − 𝑃5 = 0.0  9.13 

The final five equations (9.9, 9.10, 9.11, 9.12 and 9.13) can be written in the 

form required by the of HSL NS23 routine (HSL, 2013), used to solve a 

system of nonlinear equations in FORTRAN, as follows: 

 √
[𝑃2−𝑃1]

𝐾32−1
+ √

[𝑃3−𝑃1]

𝐾33−1
− √

[𝑃1−𝑃𝑏𝑜𝑡]

𝐾31−𝑏𝑜𝑡
+ 𝑃1 − 𝑃1 = 𝐹1(𝑃1, 𝑃2, 𝑃3) − 𝑃1 = 0  

 

 

9.9` 
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Where 𝐹1(𝑃1, 𝑃2, 𝑃3) = √
[𝑃2−𝑃1]

𝐾32−1
+ √

[𝑃3−𝑃1]

𝐾33−1
− √

[𝑃1−𝑃𝑏𝑜𝑡]

𝐾31−𝑏𝑜𝑡
+ 𝑃1  

And  

√
[𝑃4−𝑃2]

𝐾34−2
+ √

[𝑃5−𝑃2]

𝐾35−2
− √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃2−𝑃1]

𝐾32−1
+ 𝑃2  − 𝑃2 =

𝐹2(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5) − 𝑃2 = 0.0  

9.10` 

And  

√
[𝑃5−𝑃3]

𝐾35−3
+ √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃3−𝑃1]

𝐾33−1
+ 𝑃3 − 𝑃3 = 𝐹3(𝑃1, 𝑃2, 𝑃3, 𝑃5) − 𝑃3 =

0.0  

9.11` 

And  

√
[𝑃𝑡𝑜𝑝−𝑃4]

𝐾3𝑡𝑜𝑝−4
− √

[𝑃4−𝑃2]

𝐾34−2
+ 𝑃4 − 𝑃4 = 𝐹4(𝑃2, 𝑃4) − 𝑃4 = 0  9.12` 

And  

 √
[𝑃𝑡𝑜𝑝−𝑃5]

𝐾3𝑡𝑜𝑝−5
− √

[𝑃5−𝑃3]

𝐾35−3
− √

[𝑃5−𝑃2]

𝐾35−2
+ 𝑃5 − 𝑃5 = 𝐹5(𝑃2, 𝑃3, 𝑃5) − 𝑃5 = 0 

9.13` 

 
 

The of HSL NS23 routine (HSL, 2013), requires the nonzero derivatives of 

each equation (the Jacobian matrix) as shown below: 

𝜕𝐹𝑖

𝜕𝑃𝑗
=

[
 
 
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑃1

𝜕𝐹1

𝜕𝑃2

𝜕𝐹1

𝜕𝑃3

𝜕𝐹1

𝜕𝑃4

𝜕𝐹1

𝜕𝑃5

𝜕𝐹2

𝜕𝑃1

𝜕𝐹2

𝜕𝑃2

𝜕𝐹2

𝜕𝑃3

𝜕𝐹2

𝜕𝑃4

𝜕𝐹2

𝜕𝑃5

𝜕𝐹3

𝜕𝑃1

𝜕𝐹3

𝜕𝑃2

𝜕𝐹3

𝜕𝑃3

𝜕𝐹3

𝜕𝑃4

𝜕𝐹3

𝜕𝑃5

𝜕𝐹4

𝜕𝑃1

𝜕𝐹4

𝜕𝑃2

𝜕𝐹4

𝜕𝑃3

𝜕𝐹4

𝜕𝑃4

𝜕𝐹4

𝜕𝑃5

𝜕𝐹5

𝜕𝑃1

𝜕𝐹5

𝜕𝑃2

𝜕𝐹5

𝜕𝑃3

𝜕𝐹5

𝜕𝑃4

𝜕𝐹5

𝜕𝑃5]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑃1

𝜕𝐹1

𝜕𝑃2

𝜕𝐹1

𝜕𝑃3

0 0

𝜕𝐹2

𝜕𝑃1

𝜕𝐹2

𝜕𝑃2

𝜕𝐹2

𝜕𝑃3

𝜕𝐹2

𝜕𝑃4

𝜕𝐹2

𝜕𝑃5

𝜕𝐹3

𝜕𝑃1

𝜕𝐹3

𝜕𝑃2

𝜕𝐹3

𝜕𝑃3

0
𝜕𝐹3

𝜕𝑃5

0
𝜕𝐹4

𝜕𝑃2

0
𝜕𝐹4

𝜕𝑃4

0

0
𝜕𝐹5

𝜕𝑃2

𝜕𝐹5

𝜕𝑃3

0
𝜕𝐹5

𝜕𝑃5]
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𝐹1(𝑃1, 𝑃2, 𝑃3) = √
[𝑃2−𝑃1]

𝐾32−1
+ √

[𝑃3−𝑃1]

𝐾33−1
− √

[𝑃1−𝑃𝑏𝑜𝑡]

𝐾31−𝑏𝑜𝑡
+ 𝑃1 = 0.0  

Then  

𝜕𝐹1(𝑃1,𝑃2,𝑃3)

𝜕𝑃1
=

𝜕

𝜕𝑃1
[√

[𝑃2−𝑃1]

𝐾32−1
+ √

[𝑃3−𝑃1]

𝐾33−1
− √

[𝑃1−𝑃𝑏𝑜𝑡]

𝐾31−𝑏𝑜𝑡
] +

𝜕

𝜕𝑃1
𝑃1 =

−
1

2√(𝐾32−1)[𝑃2−𝑃1]
−

1

2√(𝐾33−1)[𝑃3−𝑃1]
−

1

2√(𝐾31−𝑏𝑜𝑡)[𝑃1−𝑃𝑏𝑜𝑡]
+ 1  

and 

𝜕𝐹1(𝑃1,𝑃2,𝑃3)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[√

[𝑃2−𝑃1]

𝐾32−1
] =

1

2√(𝐾32−1)[𝑃2−𝑃1]
  

and 

𝜕𝐹1(𝑃1,𝑃2,𝑃3)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[√

[𝑃3−𝑃1]

𝐾33−1
] =

1

2√(𝐾33−1)[𝑃3−𝑃1]
  

𝐹2(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5) = √
[𝑃4−𝑃2]

𝐾34−2
+ √

[𝑃5−𝑃2]

𝐾35−2
− √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃2−𝑃1]

𝐾32−1
+ 𝑃2 =

0.0  

then 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃1
=

𝜕

𝜕𝑃1
[−√

[𝑃2−𝑃1]

𝐾32−1
] =

1

2√(𝐾32−1)[𝑃2−𝑃1]
  

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[√

[𝑃4−𝑃2]

𝐾34−2
+ √

[𝑃5−𝑃2]

𝐾35−2
− √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃2−𝑃1]

𝐾32−1
+ 𝑃2] =

−
1

2√(𝐾34−2)[𝑃4−𝑃2]
−

1

2√(𝐾35−2)[𝑃5−𝑃2]
−

1

2√(𝐾32−3)[𝑃2−𝑃3]
−

1

2√(𝐾32−1)[𝑃2−𝑃1]
+

1   

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[−√

[𝑃2−𝑃3]

𝐾32−3
] =

1

2√(𝐾32−3)[𝑃2−𝑃3]
  

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃4
=

𝜕

𝜕𝑃4
[√

[𝑃4−𝑃2]

𝐾34−2
] =

1

2√(𝐾34−2)[𝑃4−𝑃2]
  

and 

𝜕𝐹2(𝑃1,𝑃2,𝑃3,𝑃4,𝑃5)

𝜕𝑃5
=

𝜕

𝜕𝑃5
[√

[𝑃5−𝑃2]

𝐾35−2
] =

1

2√(𝐾35−2)[𝑃5−𝑃2]
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𝐹3(𝑃1, 𝑃2, 𝑃3, 𝑃5) = √
[𝑃5−𝑃3]

𝐾35−3
+ √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃3−𝑃1]

𝐾33−1
+ 𝑃3  

then 

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃1
=

𝜕

𝜕𝑃1
[−√

[𝑃3−𝑃1]

𝐾33−1
] =

1

2√(𝐾33−1)[𝑃3−𝑃1]
  

and 

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[√

[𝑃2−𝑃3]

𝐾32−3
] =

1

2√(𝐾32−3)[𝑃2−𝑃3]
  

and 

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[√

[𝑃5−𝑃3]

𝐾35−3
+ √

[𝑃2−𝑃3]

𝐾32−3
− √

[𝑃3−𝑃1]

𝐾33−1
+ 𝑃3] =

−
1

2√(𝐾35−3)[𝑃5−𝑃3]
−

1

2√(𝐾32−3)[𝑃2−𝑃3]
−

1

2√(𝐾33−1)[𝑃3−𝑃1]
+ 1    

and  

𝜕𝐹3(𝑃1,𝑃2,𝑃3,𝑃5)

𝜕𝑃5
=

𝜕

𝜕𝑃5
[√

[𝑃5−𝑃3]

𝐾35−3
] =

1

2√(𝐾35−3)[𝑃5−𝑃3]
  

𝐹4(𝑃2, 𝑃4) = √
[𝑃𝑡𝑜𝑝−𝑃4]

𝐾3𝑡𝑜𝑝−4
− √

[𝑃4−𝑃2]

𝐾34−2
+ 𝑃4 = 0.0  

then 

𝜕𝐹4(𝑃2,𝑃4)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[−√

[𝑃4−𝑃2]

𝐾34−2
] =

1

2√(𝐾34−2)[𝑃4−𝑃2]
  

and 

𝜕𝐹4(𝑃2,𝑃4)

𝜕𝑃4
=

𝜕

𝜕𝑃4
[√

[𝑃𝑡𝑜𝑝−𝑃4]

𝐾3𝑡𝑜𝑝−4
− √

[𝑃4−𝑃2]

𝐾34−2
+ 𝑃4] = −

1

2√(𝐾3𝑡𝑜𝑝−4)[𝑃𝑡𝑜𝑝−𝑃4]
−

1

2√(𝐾34−2)[𝑃4−𝑃2]
+ 1   

𝐹5(𝑃2, 𝑃3, 𝑃5) = √
[𝑃𝑡𝑜𝑝−𝑃5]

𝐾3𝑡𝑜𝑝−5
− √

[𝑃5−𝑃3]

𝐾35−3
− √

[𝑃5−𝑃2]

𝐾35−2
+ 𝑃5   

then 

𝜕𝐹5(𝑃2,𝑃3,𝑃5)

𝜕𝑃2
=

𝜕

𝜕𝑃2
[−√

[𝑃5−𝑃2]

𝐾35−2
] =

1

2√(𝐾35−2)[𝑃5−𝑃2]
  

and 

𝜕𝐹5(𝑃2,𝑃3,𝑃5)

𝜕𝑃3
=

𝜕

𝜕𝑃3
[−√

[𝑃5−𝑃3]

𝐾35−3
] =

1

2√(𝐾35−3)[𝑃5−𝑃3]
  

and 
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𝜕𝐹5(𝑃2,𝑃3,𝑃5)

𝜕𝑃5
=

𝜕

𝜕𝑃5
[√

[𝑃𝑡𝑜𝑝−𝑃5]

𝐾3𝑡𝑜𝑝−5
− √

[𝑃5−𝑃3]

𝐾35−3
− √

[𝑃5−𝑃2]

𝐾35−2
+ 𝑃5] =

−
1

2√(𝐾3𝑡𝑜𝑝−5)[𝑃𝑡𝑜𝑝−𝑃5]
−

1

2√(𝐾35−3)[𝑃5−𝑃3]
−

1

2√(𝐾35−2)[𝑃5−𝑃2]
+ 1  

After providing the previous equations and derivatives to the HSL NS23 

routine (HSL, 2013), the HSL NS23 routine iterates until the correct 

solution of each equation is achieved. Then the pressure value at each PB 

(i.e. 𝑃1, 𝑃2, … , 𝑃N ) is the output of the HSL NS23 routine. 
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Appendix C: A regular structured pore-network generation code 

C-1. Introduction 

As explained in Chapter 2, there are three approaches that can be followed 

to generate a pore-network that represents a real porous medium. The first 

approach is to directly map the porous media, e.g. from a CT-image, while 

the second method is to construct a representative pore-network using 

statistical distributions of basic morphologic parameters. The third approach 

is called the grain-based model and is used to generate a pore-network 

equivalent to a packing of grains by considering information about the grain 

diameters and locations. All these approaches may have some uncertainties 

due to the simplification done while converting from the irregular complex 

shape of a porous medium to its equivalent simplified pore-network or due 

to the difficulties in determining the location of grains. Therefore, to 

initially test the performance of the proposed models, a regular structured 

medium (Figure 1C) with known grain locations and dimensions can be 

used, experimentally and numerically, to avoid the effect of these 

uncertainties on the simulation results.  

 

Figure 1C a) Regularly structured uniform packed spheres and b) its 

equivalent pore-network.  

C-2. Method 

The following method explains the procedures used to generate a pore-

network equivalent to regularly structured uniform spherical beads, as 
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shown in Figure 1C. All pore bodies are assigned a spherical shape and all 

pore throats are assumed to have a cylindrical shape.  

• The required inputs are the beads uniform diameter (Dbeads), the external 

dimensions of the porous medium (Lx, Ly and Lz) and the number of 

pore bodies (Nx, Ny and Nz) in x, y, and z directions.  

• The total number of pore bodies (NPB) is equal to 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 , and 

each pore body is assigned an index from 1 to NPB.  

• The total number of pore throats (NPTh) is equal to 

𝑁PTh = 3𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 − 𝑁𝑥 × 𝑁𝑧 − 𝑁𝑥 × 𝑁𝑦 + 𝑁𝑦 × 𝑁𝑧 9.14 

The above equation comes from the fact that the pore-network can be 

constructed by repeating a unit composed of one pore body and three 

pore throats perpendicular on each other’s (Figure 2C) in the x, y, and z 

directions. Then, the excess pore throats at the boundaries are removed 

and additional pore throats are added at the inlet boundary.  

 

Figure 2C The basic elements of a regular structured pore-network, each 

colour represents a unit composed of one pore body and three pore throats 

perpendicular on each other’s.  

• The first pore body is assigned (0, 0, 0) coordinates, then the remaining 

pore body coordinates are assigned by adding a step equal to Dbeads in 

the x, y, and z directions based on the number of pore bodies in x, y, and 

z direction.  
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• Each pore throat is assigned an index from 1 to NPTh, and the x, y, and z 

coordinates of each pore throat are calculated at the middle of its 

centreline.   

• Based on pore body and pore throat coordinates, the connectivity of the 

whole pore-network is assigned, i.e. each pore throat, except the pore 

throats located at the inlet and outlet boundaries, is connected to the 

nearest two pore bodies.   

• Then, the coordination number of each pore body is calculated and 

checked not to exceed 6, which is the maximum coordination number 

for any pore body in the proposed regular structured pore-network.  

• The pore body and pore throat geometries are calculated according to 

Section C-3 below. 

C-3. Pore body and pore throat geometries 

Regularly packed uniform spheres with a constant diameter (Dbeads) have the 

advantage of having known geometries, i.e. known pore body inscribed 

radii, pore throat inscribed radii, pore body coordination numbers and equal 

distances between each two neighbouring pore bodies. Following Kruyer 

(1958), Al-Raoush et al. (2003), Gao et al. (2012) and Bryant and Blunt 

(1992), the following methodology is adapted to define the pore throat and 

pore body geometries. The medium is divided into cells, each cell is a cube 

that has eight corners located at the eight nearest sphere centres (Figure 3C-

a, b). The interior of the cell represents a pore body while the six faces of 

each cell represent pore throats connected to the pore body located inside 

the cell, i.e. the coordination number of each pore body is equal to six, 

except those pore bodies at the boundaries.  

The volume of a pore body space can be calculated as the cell volume 

minus the volumes of the sphere segments contained within it. If the pore 

body volume is represented by a sphere, then its radius (𝑟PB,e) is equal to 

0.485 Dbeads following Equation 9.15.  

Pore body volume =
4

3
𝜋(𝑟PB,e)

3
= (𝐷beads)

3 −
4

3
𝜋 (

𝐷beads

2
)
3
 

9.15 

Inside the pore body volume, the radius of the inscribed sphere (𝑟PB,c) that 

just touches the external surface of the beads is given as 
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𝑟PB,c =
√3(𝐷𝑏𝑒𝑎𝑑𝑠

2)

2
−

𝐷beads

2
= 0.366 𝐷beads 

9.16 

For flow simulation and for estimating the medium parameters, the pore 

body effective radius (𝑟PB,eff) is used, which can be calculated using 

Equation 9.17. 

𝑟PB,eff =
(𝑟PB,c + 𝑟PB,e)

2
= 0.4255 𝐷beads 9.17 

For each pore throat, the radius of the maximum inscribed circle within the 

cell face (𝑟c) is equal to 0.207 Dbeads (Figure 3C-c), while the radius of the 

circle that has an area equivalent to the cell face area minus the area of 

sphere segments contained within it (the red area in Figure 3C-d), 𝑟𝑒, is 

0.261 Dbeads according to Equation 9.18.  

Pore throat equivalent area = 𝜋 (𝑟𝑒)
2 = (𝐷beads)

2 − 𝜋 (
𝐷beads

2
)
2
 

9.18 

For flow simulation and for estimating the medium parameters, the pore 

throat effective radius (𝑟eff) is used, which is calculated using Equation 

9.19.  

𝑟eff =
(𝑟c+𝑟e)

2
= 0.234 𝐷beads  9.19 

The pore throat and pore body lengths are assigned from the geometry of 

Figure 3C-e and they are equal to 0.289 Dbeads and 0.355 Dbeads, respectively. 
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Figure 3C a) An eight corners cell, the centre of the cell represents a void 

space (pore body) and b) the cell faces represent six narrower restrictions 

(pore throats), the vertices of the cells are located at the sphere centres. c) 

One cell face with the radius of the maximum inscribed circle inside the cell 

face (rc). d) One cell face with the radius of the circle (re) whose area is 

equal to the void area (shaded in red). e) The geometry of one pore throat 

and the connected two pore bodies (shown in green). Hint: a) and b) are 

obtained from: 

(https://commons.wikimedia.org/wiki/File:CNX_Chem_10_06_SimpleCub

3.png).   

https://commons.wikimedia.org/wiki/File:CNX_Chem_10_06_SimpleCub3.png
https://commons.wikimedia.org/wiki/File:CNX_Chem_10_06_SimpleCub3.png


295 

 

Appendix D: Details of the proposed pore-network model used to 

simulate solute transport for the Darcy and Non-Darcy 

flow regimes  

D-1. Code flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1-Read the pore-network data; number of PBs, PB 

cartesian coordinates, the coordination number of each 

PB, PB radii, connectivity between PBs and PThs and 

Lcharc. 

2-Read fluid properties and pressure at inlet and outlet 

boundaries. 

3-Read the coefficient of molecular diffusion, solute 

concentration at top and bottom boundaries, and the solute 

injection method (continuous or pulse). 

Do the flow simulation either for the Darcy or 

non-Darcy flow as explained in Appendix A.  

After solving the flow and pressure fields, calculate the 

effective dispersion coefficient (𝐷i−j
eff) of each pore throat 

(Equation 6.3) and solve the mass balance equation (Equation 

6.2) at each node every time step (as shown in Section D-2).  

Calculate the medium average Péclet number and, from 

the updated concentration of each pore unit every time 

step, produce the breakthrough curve at the middle of the 

sample.  

Start 

Write the breakthrough curve output 

file. 

End 
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D-2. Solving the mass balance (Equation 6.2) explicitly at each time 

step 

Assuming the following simple pore-network: 

 

Figure 1D A simple example of a pore-network and its boundary 

conditions. 

Applying Equation 5.7 at each pore-unit (pore body) in Figure 1D, the 

following system of equations can be obtained:  

At node 1: 

𝐶1(𝑡 + 𝑑𝑡) = 𝐶1(𝑡) +
𝑑𝑡

𝑉1
[𝑞3−1𝐶3(𝑡) + 𝑞2−1𝐶2(𝑡) − 𝑞1−bot𝐶1(𝑡) +

𝑎3−1𝐷3−1
eff 𝐶3(𝑡)−𝐶1(𝑡)

𝐿3−1
+ 𝑎2−1𝐷2−1

eff 𝐶2(𝑡)−𝐶1(𝑡)

𝐿2−1
+ 𝑎1−bot𝐷1−bot

eff 𝐶bot(𝑡)−𝐶1(𝑡)

𝐿1−bot
]   

9.20 

At node 2: 

𝐶2(𝑡 + 𝑑𝑡) = 𝐶2(𝑡) +
𝑑𝑡

𝑉2
[𝑞5−2𝐶5(𝑡) + 𝑞4−2𝐶4(𝑡) − 𝑞2−3𝐶2(𝑡) −

𝑞2−1𝐶2(𝑡) + 𝑎5−2𝐷5−2
eff 𝐶5(𝑡)−𝐶2(𝑡)

𝐿5−2
+ 𝑎4−2𝐷4−2

eff 𝐶4(𝑡)−𝐶2(𝑡)

𝐿4−2
+

𝑎2−3𝐷2−3
eff 𝐶3(𝑡)−𝐶2(𝑡)

𝐿2−3
+ 𝑎2−1𝐷2−1

eff 𝐶1(𝑡)−𝐶2(𝑡)

𝐿2−1
]     

9.21 

At node 3: 

𝐶3(𝑡 + 𝑑𝑡) = 𝐶3(𝑡) +
𝑑𝑡

𝑉3
[𝑞5−3𝐶5(𝑡) + 𝑞2−3𝐶2(𝑡) − 𝑞3−1𝐶3(𝑡) +

𝑎5−3𝐷5−3
eff 𝐶5(𝑡)−𝐶3(𝑡)

𝐿5−3
+ 𝑎2−3𝐷2−3

eff 𝐶2(𝑡)−𝐶3(𝑡)

𝐿2−3
+ 𝑎3−1𝐷3−1

eff 𝐶1(𝑡)−𝐶3(𝑡)

𝐿3−1
]    

9.22 

At node 4: 

𝐶4(𝑡 + 𝑑𝑡) = 𝐶4(𝑡) +
𝑑𝑡

𝑉4
[𝑞top−4𝐶top − 𝑞4−2𝐶4(𝑡) +

𝑎top−4𝐷top−4
𝑒𝑓𝑓 𝐶top−𝐶4(𝑡)

𝐿top−4
+ 𝑎4−2𝐷4−2

eff 𝐶2(𝑡)−𝐶4(𝑡)

𝐿4−2
]     

9.23 

At node 5: 

𝐶5(𝑡 + 𝑑𝑡) = 𝐶5(𝑡) +
𝑑𝑡

𝑉5
[𝑞top−5𝐶top − 𝑞5−2𝐶5(𝑡) − 𝑞5−3𝐶5(𝑡) +

𝑎𝑡𝑜𝑝−5𝐷top−5
eff 𝐶top−𝐶5(𝑡)

𝐿top−5
+ 𝑎5−2𝐷5−2

eff 𝐶2(𝑡)−𝐶5(𝑡)

𝐿5−2
+ 𝑎5−3𝐷5−3

eff 𝐶3(𝑡)−𝐶5(𝑡)

𝐿5−3
]  

9.24 
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The above system of equations is solved explicitly at each time step to 

evaluate the concentration values in each pore-unit. The simulation 

continues using an iterative process until the medium is fully saturated with 

the solute, i.e. the concentration is equal to Ctop at every pore-unit in the 

pore-network.  
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