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COMPRESSION, INVERSION, AND APPROXIMATE PCA OF
DENSE KERNEL MATRICES AT NEAR-LINEAR

COMPUTATIONAL COMPLEXITY\ast 

FLORIAN SCH\"AFER\dagger , T. J. SULLIVAN\ddagger , AND HOUMAN OWHADI\S 

Abstract. Dense kernel matrices \Theta \in \BbbR N\times N obtained from point evaluations of a covariance
function G at locations \{ xi\} 1\leq i\leq N \subset \BbbR d arise in statistics, machine learning, and numerical analy-
sis. For covariance functions that are Green's functions of elliptic boundary value problems and
homogeneously distributed sampling points, we show how to identify a subset S \subset \{ 1, . . . , N\} 2, with
\#S = \scrO (N log(N) logd(N/\epsilon )), such that the zero fill-in incomplete Cholesky factorization of the
sparse matrix \Theta ij1(i,j)\in S is an \epsilon -approximation of \Theta . This factorization can provably be obtained

in complexity \scrO (N log(N) logd(N/\epsilon )) in space and \scrO (N log2(N) log2d(N/\epsilon )) in time, improving upon
the state of the art for general elliptic operators; we further present numerical evidence that d can
be taken to be the intrinsic dimension of the data set rather than that of the ambient space. The
algorithm only needs to know the spatial configuration of the xi and does not require an analytic rep-
resentation of G. Furthermore, this factorization straightforwardly provides an approximate sparse
PCA with optimal rate of convergence in the operator norm. Hence, by using only subsampling
and the incomplete Cholesky factorization, we obtain, at nearly linear complexity, the compression,
inversion, and approximate PCA of a large class of covariance matrices. By inverting the order of the
Cholesky factorization we also obtain a solver for elliptic PDE with complexity \scrO (N logd(N/\epsilon )) in
space and \scrO (N log2d(N/\epsilon )) in time, improving upon the state of the art for general elliptic operators.

Key words. Cholesky factorization, covariance function, gamblet transform, kernel matrix,
sparsity, principal component analysis
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1. Introduction.

1.1. Dense kernel matrices and the \bfitN \bfthree -bottleneck. Kernel matrices, i.e.,
square matrices \Theta of the form

(1.1) \Theta ij := G(xi, xj),

obtained from pointwise evaluation of a symmetric positive-definite kernel G at a
collection of points \{ xi\} i\in I in a domain \Omega \subset \BbbR d, play an important role in statistics,
machine learning, and scientific computing. In statistics, they are used as covariance
matrices of Gaussian process priors. In machine learning, they equip the feature space
with a meaningful inner product via the kernel trick [42]. In scientific computing,
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they appear as Green's functions (i.e., fundamental solutions) of linear elliptic partial
differential equations (PDEs).

For all these applications, it is usually necessary to perform some or all of the
following tasks:

(1) compute v \mapsto \rightarrow \Theta v, given v \in \BbbR I ;
(2) compute v \mapsto \rightarrow \Theta  - 1v, given v \in \BbbR I ;
(3) compute log det\Theta ;
(4) sample from the normal/Gaussian distribution \scrN (0,\Theta );
(5) approximate eigenspaces corresponding to the leading eigenvalues of \Theta .
The first four of these tasks can be performed by computing the Cholesky fac-

torization of \Theta (i.e., the decomposition \Theta = LLT where L is lower triangular). For
many popular covariance functions, most notably those of smooth random processes,
the matrices \Theta will be dense. For large N := \#I this results in a computational
complexity of \scrO (N3) for the Cholesky factorization and a complexity of \scrO (N2) to
even store the matrix. When \Theta is sparse, i.e., has relatively few nonzero entries,
better complexity can be achieved---the obvious limiting case being \scrO (N) (i.e., lin-
ear) complexity if \Theta is diagonal. However, for practical problems, the cubic scaling
restricts dense Cholesky factorization to problems with N \lessapprox 105. The breadth of
kernel matrices' uses means that there is correspondingly high interest in achieving
approximate Cholesky factorization of \Theta at linear or near-linear cost.

1.2. Existing approaches. Many fast methods are available for approximating
dense kernel matrices and their applicability depends on specific assumptions made
on \Theta . If the precision matrix \Theta  - 1 is sparse and can be approximated directly (e.g.,
by discretizing a PDE), then sparse linear solvers can be used. These include multi-
grid solvers [22, 16, 36, 38] and sparse Cholesky factorization methods with nested
dissection ordering [29, 28, 55, 30]. This approach has been proposed for problems
arising in spatial statistics [54, 69, 70, 68]. In other situations, available methods di-
rectly approximate the covariance matrix based on low-rank approximations, sparsity,
and hierarchy. Low-rank techniques such as the Nystr\"om approximation [82, 77, 26]
or rank-revealing Cholesky factorization [4, 24] seek to approximate \Theta by low-rank
matrices whereas sparsity-based methods like covariance tapering [27] seek to approx-
imate \Theta with a sparse matrix by setting entries corresponding to long-range inter-
actions to zero. These two approximations can also be combined to obtain sparse
low-rank approximations [73, 66, 75, 5, 78], which can be interpreted as imposing
a particular graphical structure on the Gaussian process. When \Theta is neither suffi-
ciently sparse nor of sufficiently low rank, these approaches can be implemented in a
hierarchical manner. For low-rank methods, this leads to hierarchical (\scrH - and \scrH 2-)
matrices [40, 37, 39], hierarchical off-diagonal low rank (HODLR) matrices [2, 3],
and hierarchically semiseparable (HSS) matrices [18, 83, 52] that rely on computing
low-rank approximations of subblocks of \Theta corresponding to far-field interactions on
different scales. The interpolative factorization developed by [41] combines hierar-
chical low-rank structure with the sparsity obtained from an elimination ordering of
nested-dissection type. Hierarchical low-rank structure was originally developed as an
algebraic abstraction of the fast multipole method of [33]. In order to construct hi-
erarchical low-rank approximations from entries of the kernel matrix efficiently, both
deterministic and randomized algorithms have been proposed [8, 58]. For many popu-
lar covariance functions, including Green's functions of elliptic PDEs [7], hierarchical
matrices allow for (near-)linear-in-N complexity algorithms for the inversion and ap-
proximation of \Theta , at exponential accuracy. Wavelet-based methods [12, 31], using the

D
ow

nl
oa

de
d 

04
/2

1/
21

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



© 2021 Florian Schafer, T. J. Sullivan, Houman Owhadi

690 F. SCH\"AFER, T. J. SULLIVAN, AND H. OWHADI

separation and truncation of interactions on different scales, can be seen as a hierar-
chical application of sparse approximation approaches. The resulting algorithms have
near-linear computational complexity and rigorous error bounds for asymptotically
smooth covariance functions. [23] uses operator-adapted wavelets to compress the
expected solution operators of random elliptic PDEs. In [48], although no rigorous
accuracy estimates are provided, the authors establish the near-linear computational
complexity of algorithms resulting from the multiscale generalization of probabilisti-
cally motivated sparse and low-rank approximations [73, 66, 75, 5, 78].

1.3. Our main result and and overview of the paper. Our main result is to
show that a small modification of the Cholesky factorization algorithm is both accu-
rate and scalable, when applied to kernel matrices obtained from kernels G identified
as Green's functions of elliptic PDEs and a (roughly) homogeneously distributed cloud
of points. Such kernels are oftentimes used as covariance functions of smooth Gaussian
processes (to enforce a smoothness prior on the function to be recovered/interpolated)
and therefore a large class of popular kernels fall into this category. The cheap, ac-
curate, approximate Cholesky factors provided by our method thereby serve tasks
(1)--(4) from subsection 1.1. We furthermore show that by reversing the elimination
order we obtain a fast direct solver for elliptic PDEs.

Contrary to the present belief that fast solvers for elliptic integral operators re-
quire the use of hierarchical low-rank structure or wavelets with a high order of van-
ishing moments, we show that state-of-the-art performance can be obtained just by
zero fill-in Cholesky factorization (which just amounts to skipping some steps in the
Cholesky factorization algorithm---wavelets are only used in the detailed rigorous
analysis of the algorithm). While there is a huge literature on the sparse Cholesky
factorization of sparse matrices, we are not aware of any prior literature on the sparse
Cholesky factorization of dense matrices.

For elliptic PDEs with arbitrary L\infty -coefficients, \scrH -matrices can be used to com-
pute \epsilon -approximate Cholesky factors of both differential and integral operators in
computational complexity \scrO (N log2(N) log2d+2(\epsilon  - 1)) [7, 37, 40, 6]. \scrH 2-matrices can
improve these complexities to \scrO (N log(N) log2d+2(\epsilon  - 1)) [39, 13, 14]. The ``fast gam-
blet transform"" of [62, 63] can invert stiffness matrices of arbitrary elliptic oper-
ators in computational complexity \scrO (log2d+1(\epsilon  - 1)). Our computational complexi-
ties of \scrO (N log2d(N/\epsilon )) for the Cholesky factorization of differential operators and
\scrO (N log2(N) log2d(N/\epsilon )) for the Cholesky factorization of integral operators improve
upon the state of the art while using a much simpler algorithm.

Our method relies upon a cleverly constructed elimination ordering and spar-
sity pattern, which we use in the incomplete Cholesky factorization of the matrix
\Theta . Simplified versions of these constructions are given in section 2; section 3 gives
an overview, without detailed proof, of why the method yields the desired results.
In particular, subsection 2.4 shows how the method provides a sparse approximate
principal component analysis (PCA), thereby serving task (5).

Section 4 presents detailed numerical experiments that illustrate the power of our
method, and section 5 gives the mathematical proofs of correctness and accuracy vs.
complexity. Section 8 contains concluding remarks, and some technical results are
deferred to an appendix.

2. Overview of the algorithm and its setting. In this introductory section
we give a brief overview of the setting in which our theoretical results apply (the class
of kernels associated to elliptic operators) and highlight its main features. All detailed
numerical experiments and analysis will be deferred to sections 4 and 5, respectively.
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2.1. The class of elliptic operators. In order to establish rigorous, a priori,
complexity-vs.-accuracy estimates in section 5 we will assume that G is the Green's
function of an elliptic operator \scrL of order 2s > d (s, d \in \BbbN ), defined on a bounded
domain \Omega \subset \BbbR d with Lipschitz boundary, and acting on Hs

0(\Omega ), the Sobolev space of
(zero boundary value) functions having derivatives of order s in L2(\Omega ). More precisely,
writing H - s(\Omega ) for the dual space of Hs

0(\Omega ) with respect to the L2(\Omega ) scalar product,
our rigorous estimates will be stated for an arbitrary linear bijection

(2.1) \scrL : Hs
0(\Omega )\rightarrow H - s(\Omega )

that is symmetric (i.e.,
\int 
\Omega 
u\scrL v dx =

\int 
\Omega 
v\scrL udx), positive (i.e.,

\int 
\Omega 
u\scrL udx \geq 0), and

local in the sense that

(2.2)

\int 
\Omega 

u\scrL v dx = 0 \forall u, v \in Hs
0(\Omega ) such that suppu \cap supp v = \emptyset .

Let \| \scrL \| := supu\in Hs
0
\| \scrL u\| H - s/\| u\| Hs

0
and \| \scrL  - 1\| := supf\in H - s \| \scrL  - 1f\| Hs

0
/\| f\| H - s de-

note the operator norms of \scrL and \scrL  - 1. The complexity and accuracy estimates for
our algorithm will depend on (and only on) d, s,\Omega , \| \scrL \| , \| \scrL  - 1\| and the parameter

(2.3) \delta :=
mini \not =j\in I dist (xi, \{ xj\} \cup \partial \Omega )
maxx\in \Omega dist (x, \{ xi\} i\in I \cup \partial \Omega )

,

which is a measure of the homogeneity of the distribution of the cloud of points xi.
Since our algorithm only requires the locations of the points xi and is oblivious to

the exact knowledge of G, for our numerical experiments in section 4 we will consider
(2.1), general elliptic operators with or without boundary conditions (these include
Mat\'ern kernels with fractional values of s) and exponential kernels.

2.2. Zero fill-in incomplete Cholesky factorization (ICHOL(0)). A simple
approach to decreasing the computational complexity of Cholesky factorization is
the zero fill-in incomplete Cholesky factorization [60] (ICHOL(0)). When performing
Gaussian elimination using ICHOL(0), we treat all entries of both the input matrix
and the output factors outside a prescribed sparsity pattern S \subset I \times I as zero and
correspondingly ignore all operations in which they are involved. Figure 2.1 shows a
comparison of ordinary Cholesky factorization and ICHOL(0). Our approach to kernel
matrices consists of applying Algorithm 2.2 with an elimination ordering \prec and a
sparsity pattern S that are chosen based on the locations of the xi; Construction 5.25
gives the details of this elimination ordering and sparsity pattern.

Write \| \cdot \| Fro for the Frobenius matrix norm and C for a constant depending only
on d, \Omega , s, \| \scrL \| , \| \scrL  - 1\| , and \delta . To simplify notation, the asymptotic bounds in this
paper are stated in the case where the logarithmic factors are at least one. Our main
result is the following.

Theorem 2.1. Let \scrL and \delta be defined as in (2.1) and (2.3). For \rho \geq C log(N/\epsilon ),
the sparse Cholesky factor L\rho , obtained from Algorithm 2.2 with the elimination or-
dering \prec \rho and sparsity pattern \~S\rho \subset I \times I described in Construction 5.25, satisfies

(2.4)
\bigm\| \bigm\| \Theta  - L\rho L\rho ,\top \bigm\| \bigm\| 

Fro
\leq \epsilon .

The selection of the ordering and sparsity pattern, as well as Algorithm 2.2, can
be performed in computational complexity C\rho 2dN log2N in time and C\rho dN logN in
space. In particular, we can obtain an \epsilon -accurate approximation in Frobenius norm
in complexity CN log2(N) log(N/\epsilon )2d in time and CN log(N) log(N/\epsilon )d in space.
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Algorithm 2.1 Standard dense
Cholesky factorization.

Input: A \in \BbbR N\times N symmetric
Output: L \in \BbbR N\times N lower triang.

1: for i \in \{ 1, . . . , N\} do
2: L:i \leftarrow A:i/

\surd 
Aii

3: for j \in \{ i+ 1, . . . , N\} do
4: for k \in \{ j, . . . , N\} do
5: Akj \leftarrow Akj  - AkiAji

Aii

6: end for
7: end for
8: end for
9: return L

Algorithm 2.2 Incomplete Cholesky factor-
ization with sparsity pattern S.

Input: A \in \BbbR N\times N symmetric, nz(A) \subset S
Output: L \in \BbbR N\times N lower triang. nz(L) \subset S

1: for (i, j) /\in S do
2: Aij \leftarrow 0
3: end for
4: for i \in \{ 1, . . . , N\} do
5: L:i \leftarrow A:i/

\surd 
Aii

6: for j \in \{ i+ 1, . . . , N\} : (i, j) \in S do
7: for k \in \{ j, . . . , N\} : (k, i), (k, j) \in S

do
8: Akj \leftarrow Akj  - AkiAji

Aii

9: end for
10: end for
11: end for
12: return L

Fig. 2.1. Comparison of ordinary and incomplete Cholesky factorization. Here, for a matrix
A, nz(A) := \{ (i, j) | Aij \not = 0\} denotes the index set of the nonzero entries of A.

Remark 2.2. For problems arising in Gaussian process regression, there will typi-
cally be no domain \Omega on the boundary of which the process is conditioned to be zero;
equivalently, \Omega will be all of \BbbR d. This introduces an additional error, but we still
observe good approximation of the covariances even of points close to the boundary
(see subsection 4.2 for a detailed discussion).

We will now present a simplified version of the elimination ordering and sparsity
pattern (compared to the one mentioned in Theorem 2.1). Although the proof of
Theorem 2.1 does not cover the stability of ICHOL(0) under this simplified version
(rather, it covers the one described in Construction 5.25), extensive numerical experi-
ments suggest that ICHOL(0) remains stable under this simplified version, and since it
is also user-friendly we recommend this as the ``go-to"" version for a simple, practical
implementation.1

2.3. The elimination ordering and sparsity pattern. We use a maximum-
minimum distance ordering (maximin ordering) [34] as the elimination ordering. This
ordering is obtained by successively picking the point xi that is furthest away from
\partial \Omega and the points that were already picked. If \partial \Omega = \emptyset , then we select an arbitrary
i \in I as first index to eliminate; otherwise, we choose the first index as

(2.5) i1 := argmax
i\in I

dist(xi, \partial \Omega ).

Then, for the first k indices of the ordering already chosen, we choose

(2.6) ik+1 := argmax
i\in I\setminus \{ i1,...,ik\} 

dist(xi, \{ xi1 , . . . , xik\} \cup \partial \Omega )

until we have ordered all the N points (see Figure 2.2).

1Although more complex, the ordering used in Theorem 2.1 has more potential for optimization
by exploiting parallelism and dense linear algebra operations.
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Fig. 2.2. The maximin order successively adds the point that is furthest away from both \partial \Omega 
and the set of points already added. The radius of the shaded circle is l[i].

Fig. 2.3. Upper row: radii of interaction of the different degrees of freedom, for \rho = 1. Lower
row: corresponding columns of the sparsity pattern. While the first columns are relatively dense,
subsequent columns become more and more sparse.

Let

(2.7) l[ik] := dist(xik , \{ xi1 , . . . , xik - 1
\} \cup \partial \Omega )

be the distance between xik and \partial \Omega and the earlier points in the ordering. For \rho > 0,
let S\rho \subset I \times I be the sparsity pattern defined by

(2.8) S\rho := \{ (i, j) \in I \times I | dist(xi, xj) \leq \rho max(l[i], l[j])\} .

Here, \rho parameterizes a trade-off between computational efficiency and accuracy. For
a given \rho , the sparsity pattern will have C\rho dN logN entries and the Cholesky fac-
torization will require C\rho 2dN log2N floating-point operations. Figure 2.3 shows the
sparsity pattern for \rho = 1. While a na\"{\i}ve implementation requires \scrO (N2) distance
evaluations, Theorem 4.1 shows that Algorithm 4.1 delivers this sparsity pattern at
computational complexity C\rho dN log2N .
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Fig. 2.4. Near-optimal sparse PCA: Approximation errors comparisons between low-rank
Cholesky (\rho = \infty ) and PCA for a Mat\'ern kernel with smoothness parameters \nu = 1 (left) and
\nu = 2 (right).

2.4. Sparse approximate PCA. The sparse Cholesky factorization described
in section 2 is also rank revealing in the sense that the low-rank approximation ob-
tained by using only the first k columns of the Cholesky factorization achieves an
accuracy within a constant factor of optimal rank-k approximation (measured in op-
erator norm). This is illustrated by Figure 2.4 and the following theorem.

Theorem 2.3. In the setting of Theorem 2.1, let L(k) be the rank-k matrix defined
by the first k columns of the (dense) Cholesky factor L of \Theta . Then

(2.9)
\bigm\| \bigm\| \Theta  - L(k)L(k),\top \bigm\| \bigm\| \leq C\| \Theta \| k - 2s

d ,

where \| \Theta \| is the operator norm of \Theta and C > 0 depends only on d, \Omega , s, \| \scrL \| , \| \scrL  - 1\| ,
and \delta .

The rank-k approximation estimate (2.9) is a numerical homogenization accuracy
estimate similar those obtained in [57, 65, 62, 63, 44]. Numerical homogenization basis
functions can be identified by the last k rows of the lower triangular Cholesky factor of
A := \Theta  - 1, obtained with the reverse elimination ordering described in subsection 6.2.

3. Why it works---justification of the method. The method described in
section 2 combines two crude approximations. First, it discards all but \scrO (\rho dN logN)
entries of the dense N \times N matrix \Theta . Second, it skips all but \scrO (\rho 2dN log2N) opera-
tions of the Cholesky factorization of \Theta (which has complexity \scrO (N3)). The obvious
question is, why is the resulting approximation of \Theta accurate for \rho \gtrsim logN?

3.1. Sparse Cholesky factors of dense matrices. The first part of the answer
is that the Cholesky factors of \Theta decay exponentially quickly away from the sparsity
pattern S\rho when the maximin ordering is used as the elimination ordering. This decay
is illustrated in Figure 3.1 and by Theorem 3.1. Write C for a constant depending
only on d, \Omega , s, \| \scrL \| , \| \scrL  - 1\| , and \delta .

Theorem 3.1. In the setting of Theorem 2.1, let L be the full Cholesky factor of
\Theta in the maximin ordering of section 2. Then, for \rho \geq C log(N/\epsilon ), S\rho as defined in
section 2, and

(3.1) L
S\rho 

ij := Lij1(i,j)\in S\rho 
=

\Biggl\{ 
Lij for (i, j) \in S\rho ,

0 else,

the inequality \| \Theta  - LS\rho LS\rho ,\top \| Fro \leq \epsilon holds.
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Fig. 3.1. The lexicographic (left) and maximin (right) ordering of points in \Omega := (0, 1)2 with
larger and darker nodes corresponding to earlier elements of the ordering, together with the corre-
sponding Cholesky factors of \Theta with entries plotted on a log10-scale.

Algorithm 2.2 computes the exact Cholesky factorization under the assumption
that the entries of L lying outside S\rho are zero. Theorem 3.1 shows that this assumption
holds true up to an approximation error that decays exponentially in \rho , which supports
the claim of accuracy of Algorithm 2.2 for \rho \gtrsim logN . We will now explain the
exponential decay of L based on a probabilistic interpretation of Gaussian elimination.

3.2. Gaussian elimination, conditioning of Gaussian random variables,
and the screening effect. The dense (block-)Cholesky factorization of a matrix \Theta 
can be seen as the recursive application of the matrix identity\biggl( 

\Theta 1,1 \Theta 1,2

\Theta 2,1 \Theta 2,2

\biggr) 
=

\biggl( 
Id 0

\Theta 2,1(\Theta 1,1)
 - 1 Id

\biggr) \biggl( 
\Theta 1,1 0
0 \Theta 2,2  - \Theta 2,1(\Theta 1,1)

 - 1\Theta 1,2

\biggr) \biggl( 
Id (\Theta 1,1)

 - 1\Theta 1,2

0 Id

\biggr) 
,

where, at each step of the outermost loop, the above identity is applied to the Schur
complement \Theta 2,2  - \Theta 2,1 (\Theta 1,1)

 - 1
\Theta 1,2 obtained at the previous step. If the Schur

complements appearing during the factorization are sparse, then the final Cholesky
factorization will also be sparse.

For X = (X1, X2) \sim \scrN (0,\Theta ), the well-known identities

\BbbE [X2 | X1 = a] = \Theta 2,1(\Theta 1,1)
 - 1a,(3.2)

Cov[X2 | X1] = \Theta 2,2  - \Theta 2,1(\Theta 1,1)
 - 1\Theta 1,2(3.3)

imply that the sparsity of Cholesky factors of \Theta is equivalent to conditional inde-
pendence of Gaussian vectors with covariance matrix \Theta . In the spatial statistics
literature, it is well known that many smooth Gaussian processes are subject to the
screening effect [79]. This effect, illustrated in Figure 3.2, means that the value of
the process at a given site, conditioned on the values at nearby sites, is only weakly
dependent on the values at distant sites.

Consider now the kth step of Cholesky factorization in the ordering described
in section 2. Any pair xi, xj with dist (xi, xj) \gtrapprox l[k] will have points between them
that have already been eliminated, as illustrated in Figure 3.3. Thus, the screening
effect suggests that their correlation will be weak, which supports choosing \rho l[k] as a
truncation radius.

3.3. Cholesky factorization and operator-adapted wavelets. Cholesky
factorization in the maximin ordering is intimately related to computing operator-
adapted wavelets. In section 5 we will use this connection to prove the accuracy of
our approximation.
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Fig. 3.2. Left: covariance between a single site of a Mat\'ern field with the values at the remaining
sites. Right: conditional covariance given the values at the sites marked in blue. The conditional
covariance decays significantly faster.

Fig. 3.3. Step k of the Cholesky factorization in the ordering described in section 2. The red
points have already been eliminated and form a covering of radius l[k]. The separation of the green
points xi and xj by points that have already been eliminated implies the weak correlation between
Xxi and Xxj conditional on \{ Xxi\} i\preceq k.

Operator-adapted wavelets. [62] and [63] introduced a novel class of operator-
adapted wavelets called gamblets (see also [64]). For an operator \scrL defined as in
(2.1), gamblets can be identified as conditional expectations of the Gaussian process
\xi \sim \scrN 

\bigl( 
0,\scrL  - 1

\bigr) 
. To construct the gamblets up to level q \in \BbbN we start with a hierarchy

of measurement functions \{ \phi (k)i \} 1\leq k\leq q,i\in I(k) \subset H - s(\Omega ); heuristically, k labels a scale,
and i a location at that scale. These measurement functions are linearly nested in the
sense that, for k < l,

(3.4) \phi 
(k)
i =

\sum 
j\in I(l)

\pi 
(k,l)
i,j \phi 

(l)
j

for some rank-| I(k)| matrices \pi (k,l) \in \BbbR I(k)\times I(l)

. Writing [ \cdot , \cdot ] for the duality product
between H - s(\Omega ) and Hs

0(\Omega ), the conditional expectations

(3.5) \psi 
(k)
i := \BbbE 

\Bigl[ 
\xi 
\bigm| \bigm| \bigm| [\phi (k)j , \xi ] = \delta ij \forall j \in I(k)

\Bigr] 
for i \in I(k)

act as \scrL -adapted prewavelets. These prewavelets can be identified as optimal recovery
splines in the sense of [61] through the representation formula

(3.6) \psi 
(k)
i =

\sum 
j\in I(k)

\Theta 
(k), - 1
i,j \scrL  - 1\phi 

(k)
j for i \in I(k),

where \Theta 
(k), - 1
i,j is the (i, j)th entry of the inverse \Theta (k), - 1 of the matrix \Theta (k) \in \BbbR I(k)\times I(k)

with entries \Theta 
(k)
i,j :=

\int 
\Omega 
\phi 
(k)
i \scrL  - 1\phi 

(k)
j dx. The linear nesting of the \phi 

(k)
i across scales

implies that the linear spaces V(k) := span\{ \psi (k)
i | i \in I(k)\} are nested (i.e., V(k - 1) \subset 
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Fig. 3.4. From left to right: an exemplary \phi 
(k)
i , the corresponding \psi 

(k)
i , a \phi 

(k),W
j , and the

corresponding \chi 
(k)
j , all in the setting of d = 1.

V(k)). The multiresolution decomposition V(q) := V(1) \oplus W(2) \oplus \cdot \cdot \cdot \oplus W(q) is then
obtained by defining W(k) as the orthogonal complement W(k) of V(k - 1) in V(k) with
respect to the energy scalar product \langle u, v\rangle :=

\int 
\Omega 
u\scrL v dx. Basis functions for W(k) are

identified (for 2 \leq k \leq q) by

(3.7) \chi 
(k)
i :=

\sum 
j

W
(k)
ij \psi 

(k)
j for i \in J (k),

or, equivalently, by

(3.8) \chi 
(k)
i := \BbbE 

\Bigl[ 
\xi 
\bigm| \bigm| \bigm| \Bigl[ \phi (k),Wj , \xi 

\Bigr] 
= \delta ij\delta kl \forall 1 \leq l \leq k, j \in J (l)

\Bigr] 
for i \in J (k),

with \phi 
(k),W
i :=

\sum 
j\in I(k) W

(k)
i,j \phi 

(k)
j , where J (k) \sim =

\bigl( 
I(k)\setminus I(k - 1)

\bigr) 
andW (k) is a J (k)\times I(k)

matrix such that ImW (k),\top = Ker\pi (k - 1,k) (writingW (k),\top for the transpose ofW (k)).
See Figure 3.4 for an illustration.

For simplicity we write J (1) := I(1) and \chi 
(1)
i := \psi 

(1)
i . Write B(k) for the J (k)\times J (k)

stiffness matrices B(k) :=
\bigl\langle 
\chi 
(k)
i , \chi 

(k)
j

\bigr\rangle 
. The gamblets \chi 

(k)
i are \scrL -adapted wavelets in

the sense that, under sufficient conditions on the \phi 
(k)
i , they satisfy the following three

properties:
\bullet Scale orthogonality in the energy scalar product, i.e.,

(3.9)
\bigl\langle 
\chi 
(k)
i , \chi 

(l)
j

\bigr\rangle 
= 0 for l \not = k and (i, j) \in J (k) \times J (l) .

This leads to the block-diagonalization of the operator (with the B(k) as
diagonal blocks).

\bullet Uniform Riesz stability in the energy norm: the condition numbers of the
blocks B(k) are uniformly bounded in k.

\bullet Exponential decay, which leads to sparse blocks B(k): the gamblets \chi 
(k)
i ex-

hibit exponential decay on the scale associated with k.
Although the scale-orthogonality property (3.9) is always satisfied, the two others

(exponential decay and uniform Riesz stability) depend on the properties of \scrL and the

\phi 
(k)
i . In the setting of the localization of numerical homogenization basis functions

(where \scrL is an elliptic PDE and the measurements \phi 
(k)
i are local and possibly not

explicitly introduced), rigorous exponential decay estimates were pioneered in [57]
and generalized in [50, 62, 44, 63]; see subsection 5.3.2 for detailed comparisons. For

\phi 
(k)
i spanning the space of local polynomials of order up to s - 1, bounded condition

numbers are shown by [62, 63]. The homogenization results obtained in the special
case q = 2 [57, 65, 44] are closely related to the lower bound on the spectrum of B(2)

(see subsection 5.3.3).

D
ow

nl
oa

de
d 

04
/2

1/
21

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



© 2021 Florian Schafer, T. J. Sullivan, Houman Owhadi

698 F. SCH\"AFER, T. J. SULLIVAN, AND H. OWHADI

Fig. 3.5. The implicit hierarchy of the maximin ordering. The maximin ordering has a hidden
hierarchical structure, which can be discovered by picking a scale factor h \in (0, 1) and defining
J(k) :=

\bigl\{ 
j \in I

\bigm| \bigm| hk \leq l[i]/l[1] < hk - 1
\bigr\} 

for 1 \leq k \leq q := \lceil logh (l[k]/l[1])\rceil . In the figure, we see J(1)

in red, J(2) in green, and J(3) in brown, for h = 1/2.

Relation to Cholesky factorization. To explain the connection between gam-
blets and Cholesky factorization, let J := J (1) \cup \cdot \cdot \cdot \cup J (q), let W (1) be the I(1) \times I(1)
identity matrix, let \pi (k,k) be the I(k) \times I(k) identity matrix, and let \=\Theta be the J \times J
symmetric matrix with the J (k) \times J (l) block defined for k \leq l by

(3.10) \=\Theta k,l :=W (k)\Theta (k)\pi (k,l)W (l),T ,

or equivalently by

(3.11)
\bigl( 
\=\Theta k,l

\bigr) 
ij
:=
\bigl[ 
\phi 
(k),W
i ,\scrL  - 1\phi 

(l),W
j

\bigr] 
.

Then, the block-Cholesky factorization of \=\Theta satisfies the identity

(3.12) \=\Theta = \=LD\=L\top ,

whereD is a block-diagonal matrix with the J (k)\times J (k) diagonal block equal to B(k), - 1

and

(3.13) \=Li,j :=

\left\{     
\delta i,j if i, j \in J (k),

0 if i \in J (k), j \in J (k\prime ), and k\prime > k,

[\phi 
(k)
i , \chi 

(k\prime )
j ] if i \in J (k), j \in J (k\prime ), and k\prime < k.

Therefore, computing gamblets associated to the operator \scrL and measurement func-
tions \phi i is equivalent to computing a block-Cholesky factorization of \Theta in the mul-

tiresolution basis given by the \phi 
(k),W
i .

The Cholesky decomposition of \Theta (1.1) belongs to this setting. Indeed, although
the maximin ordering of section 2 has no explicit multiscale structure, this structure
can be introduced, as described in Figure 3.5, by decomposing x1, . . . , xN into a nested

hierarchy \{ xi\} i\in I(1) \subset \{ xi\} i\in I(2) \subset \cdot \cdot \cdot \subset \{ xi\} i\in I(q) , and choosing \phi 
(k)
i = \bfitdelta ( \cdot  - xi) for

i \in I(k) and k \in \{ 1, . . . , q\} , where \bfitdelta denotes the unit (unscaled) Dirac delta function.

Under this choice, \pi 
(k,k+1)
i,j = 1 for j \in I(k) and \pi 

(k,k+1)
i,j = 0 for j \not \in I(k). Letting

J (k) label the indices in I(k)/I(k - 1) and choosing W
(k)
i,j = 1 for j \in I(k)/I(k - 1) and

W
(k)
i,j = 0 for j \in I(k - 1) implies \Theta = \=\Theta . The exponential decay of \=L and D - 1 follows

from known results [63] on exponential decay of the \chi 
(k)
j . The uniform bound on the

condition number of the B(k) is proved in subsection 5.3.3. The exponential decay
and uniform bound on the condition numbers of the blocks B(k) imply the exponential
decay of the Cholesky factors \^L of D and hence of L = \=L\^L. The approximation error
estimate (2.4) is then obtained by matching the sparsity set S with the near-sparse
structure of L.
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Algorithm 4.1 Ordering and sparsity pattern algorithm.
Input: Real \rho \geq 2 and Oracles \ttd \tti \tts \ttt ( \cdot , \cdot ), \ttd \tti \tts \ttt \partial \Omega ( \cdot ) such that \ttd \tti \tts \ttt (i, j) = dist (xi, xj) and
\ttd \tti \tts \ttt \partial \Omega (i) = dist (xi, \partial \Omega )
Output: An array l[:] of distances, an array P encoding the multiresolution ordering, and an array
of index pairs S containing the sparsity pattern.

1: P = \emptyset 
2: for i \in \{ 1, . . . , N\} do
3: l[i]\leftarrow \ttd \tti \tts \ttt \partial \Omega (i)
4: p[i]\leftarrow \emptyset 
5: c[i]\leftarrow \emptyset 
6: end for
7: \{ Creates a mutable binary heap, containing pairs of indices and distances as elements:\} 
8: H \leftarrow \ttM \ttu \ttt \tta \ttb \ttl \tte \ttM \tta \ttx \tti \ttm \tta \ttl \ttB \tti \ttn \tta \ttr \tty \ttH \tte \tta \ttp 

\bigl( 
\{ (i, l[i])\} i\in \{ 1,...,N\} 

\bigr) 
9: \{ Instates the Heap property, with a pair with maximal distance occupying the root of the heap:\} 

10: \tth \tte \tta \ttp \ttS \tto \ttr \ttt !(H)
11: \{ Processing the first index:\} 
12: \{ Get the root of the heap, remove it, and restore the heap property:\} 
13: (i, l) = \ttp \tto \ttp (H)
14: \{ Add the index as the next element of the ordering\} \ttp \ttu \tts \tth (P, i)
15: for j \in \{ 1, . . . , N\} do
16: \ttp \ttu \tts \tth (c[i], j)
17: \ttp \ttu \tts \tth (p[j], i)
18: \tts \tto \ttr \ttt ! (c[i], \ttd \tti \tts \ttt ( \cdot , i))
19: \ttd \tte \ttc \ttr \tte \tta \tts \tte ! (H, j, \ttd \tti \tts \ttt (i, j))
20: end for
21: \{ Processing remaining indices:\} 
22: while H \not = \emptyset do
23: \{ Get the root of the heap, remove it, and restore the heap property:\} (i, l) = \ttp \tto \ttp (H) l[i]\leftarrow l

24: \{ Select the parent node that has all possible children of i amongst its children, and is closest
to i:\} 

25: k = argminj\in p[i]:\ttd \tti \tts \ttt (i,j)+\rho l[i]\leq \rho l[j] \ttd \tti \tts \ttt (i, j)

26: \{ Loop through those children of k that are close enough to k to possibly be children of i:\} 
27: for j \in c[k] : \ttd \tti \tts \ttt (j, k) \leq \ttd \tti \tts \ttt (i, k) + \rho l[i] do
28: \ttd \tte \ttc \ttr \tte \tta \tts \tte ! (H, j, \ttd \tti \tts \ttt (i, j))
29: if \ttd \tti \tts \ttt (i, j) \leq \rho l[i] then
30: \ttp \ttu \tts \tth (c[i], j)
31: \ttp \ttu \tts \tth (p[j], i)
32: end if
33: end for
34: \{ Add the index as the next element of the ordering\} 
35: \ttp \ttu \tts \tth (P, i)
36: \{ Sort the children according to distance to the parent node, so that the closest children can

be found more easily\} \tts \tto \ttr \ttt ! (c[i], \ttd \tti \tts \ttt ( \cdot , i))
37: end while
38: \{ Aggregating the lists of children into the sparsity pattern:\} 
39: for i \in \{ 1, . . . , N\} do
40: for j \in c[i] do
41: \ttp \ttu \tts \tth ! (S, (i, j))
42: \ttp \ttu \tts \tth ! (S, (j, j))
43: end for
44: end for

4. Implementation and numerical results.

4.1. Selection of the sparsity pattern and ordering. This section intro-
duces an \scrO (\rho dN log2N)-complexity algorithm (Algorithm 4.1) for selecting the spar-
sity pattern and ordering used as inputs in Algorithm 2.2. This algorithm does not
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Fig. 4.1. Localization of computation in Algorithm 4.1 based on hierarchy. When adding i to
the ordering, only consider indices j such that dist(xi, xj) \leq \rho l[i]. Those indices are a subset of the
children of the coarse-level index k if \rho l[k] \geq dist(xi, xj) + \rho l[i]]. Thus, the search for candidates j
can be restricted to those children of k.

explicitly query the position of the \{ xi\} i\in I and only uses pairwise distances by pro-
cessing points one by one by updating a mutable binary heap, keeping track of the
point to be processed at each step. With this approach, our proposed algorithm is
oblivious to the dimension d of the ambient space and, in particular, can automati-
cally exploit low-dimensional structure in the point cloud \{ xi\} i\in I . In order to avoid
computing all \scrO (N2) pairwise distances, as illustrated in Figure 4.1, Algorithm 4.1
uses the sparsity pattern obtained on the coarser scales to restrict computation at the
finer scales to local neighborhoods.

Theorem 4.1. The output of Algorithm 4.1 is the ordering and sparsity pattern
described in section 2. Furthermore, in the setting of Theorem 3.1, if the oracles
dist( \cdot , \cdot ) and dist\partial \Omega ( \cdot ) can be queried in complexity \scrO (1), then the complexity of
Algorithm 4.1 is bounded by C\rho dN log2N , where C is a constant depending only on
d, \Omega , and \delta .

Theorem 4.1 is proved in section SM1. As discussed therein, in the case \Omega = \BbbR d,
Algorithm 4.1 has the advantage that its computational complexity depends only on
the intrinsic dimension of the dataset, which can be much smaller than d.

4.2. The case of the whole space (\Omega = \BbbR \bfitd ). Many applications in Gaussian
process statistics and machine learning are in the \Omega = \BbbR d setting. In that setting,
the Mat\'ern family of kernels (4.5) is a popular choice that is equivalent to using the
whole-space Green's function of an elliptic PDE as covariance function [80, 81]. Let \=\Omega 
be a bounded domain containing the \{ xi\} i\in I . The case \Omega = \BbbR d is not covered in Theo-
rem 3.1 because in this case the screening effect is weakened near the boundary of \=\Omega by
the absence of measurement points outside of \=\Omega . Therefore, distant points close to the
boundary of \=\Omega will have stronger conditional correlations than similarly distant points
in the interior of \=\Omega (see Figure 4.2). As observed by [68] and [19], Markov random
field (MRF) approaches that use a discretization of the underlying PDE face similar
challenges at the boundary. While the weakening of the exponential decay at the
boundary worsens the accuracy of our method, the numerical results of subsection 4.4
(which are all obtained without imposing boundary conditions) suggest that its overall
impact is limited. In particular, as shown in Figure 4.2, it does not cause significant
artifacts in the quality of the approximation near the boundary. This differs from the
significant boundary artifacts of MRF methods, which have to be mitigated against by
a careful calibration of boundary conditions [68, 19]. Although the numerical results
presented in this section are mostly obtained with xi \sim UNIF([0, 1]d), in many practi-
cal applications, the density of measurement points will slowly (rather than abruptly)
decrease toward zero near the boundary of the sampled domain, which drastically de-
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Fig. 4.2. Weaker screening between boundary points. Left and center: ith (left) and jth (cen-
ter) column of the Cholesky factor L (normalized to unit diagonal) of \Theta in maximin ordering, where
xi is an interior point and xj is near the boundary. Although l[i] is of the order of l[j], the exponen-
tial decay of L:,j near the boundary is significantly weakened by the absence of Dirichlet boundary
conditions. Right: approximate correlations

\bigl\{ 
(L\rho L\rho ,\top )kj

\bigr\} 
k\in I

(with \rho = 3.0) and true covariance

function exp( - 2r) with r = | xk  - xj | . Correlations between xj and remaining points are captured
accurately, despite the weakened exponential decay near the boundary.

creases the boundary errors shown above. Accuracy can also be enhanced by adding
artificial points \{ xi\} i\in \~I at the boundary. By applying the Cholesky factorization to
\{ xi\} i\in I\cup \~I , and then restricting the resulting matrix to I \times I, we can obtain a very
accurate approximate matrix-vector multiplication. Although not in the form of a
Cholesky factorization, this approximation can be efficiently inverted using iterative
methods such as conjugate gradient [76] preconditioned with the Cholesky factoriza-
tion obtained from the original set of points.

4.3. Nuggets and measurement errors. In the Gaussian process regression
setting it is common to model measurement error by adding a nugget \sigma 2Id to the
covariance matrix:

(4.1) \~\Theta = \Theta + \sigma 2Id.

The addition of a diagonal matrix diminishes the screening effect and thus the ac-
curacy of Algorithm 2.2. This problem can be avoided by rewriting the modified
covariance matrix \~\Theta as

(4.2) \~\Theta = \Theta (\sigma 2A+ Id),

where A := \Theta  - 1. As noted in subsection 6.2, A can be interpreted as a discretized
partial differential operator and has near-sparse Cholesky factors in the reverse elim-
ination ordering. Adding a multiple of the identity to A amounts to adding a zeroth-
order term to the underlying PDE and thus preserves the sparsity of the Cholesky
factors. This leads to the sparse decomposition

(4.3) \~\Theta = LL\top P \updownarrow \~L\~L\top P \updownarrow ,

where P \updownarrow is the order-reversing permutation and \~L is the Cholesky factor of P \updownarrow (\sigma 2A+
Id)P \updownarrow . Figure 4.3 shows that the exponential decay of these Cholesky factors is robust
with respect \sigma .

This idea can be turned into an algorithm by first approximately computing L
using Algorithm 2.2; then using L to approximate A, which can be done in near-
linear complexity by exploiting sparsity; and then approximating \~L, again using Al-
gorithm 2.2. While this algorithm is asymptotically efficient, our preliminary results
suggest that the additional inversion step significantly increases the constants featured
in the approximation accuracy. Therefore, when low accuracy is sufficient, we instead
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Fig. 4.3. (Lack of) robustness to varying size of the nugget: We plot the log10 of the magnitude
of the Cholesky factors of \Theta +\sigma 2Id in maximin ordering (first row) and of A+\sigma 2 in reverse maximin
ordering (second row). As we increase \sigma 2 \in [0.0, 0.1, 1.0, 10.0] from left to right the decay of the
Cholesky factors of \Theta + \sigma 2Id deteriorates and that of the factors of A+ \sigma 2Id is preserved.

recommend simply applying Algorithm 2.2 to the matrix \Theta . This preserves the origi-
nal approximation accuracy and the matrix inversion can then efficiently be performed
using iterative methods such as conjugate gradient (CG) [76] by taking advantage of
the fast matrix-vector multiplication obtained from the sparse factorization. For small
values of \sigma (which would lead to slow convergence of CG) we can directly apply Algo-
rithm 2.2 to \~\Theta . For large values of \sigma , \~\Theta will be well conditioned and the convergence
of CG is fast. For intermediate values of \sigma , we can apply Algorithm 2.2 to \~\Theta and
use the resulting factors as a preconditioner for CG. Sampling from \scrN (0, \~\Theta ) can be
done by adding independent samples from \scrN (0,\Theta ) and \scrN (0, \sigma 2Id). Approximations
of the log-determinant could be obtained either by applying Algorithm 2.2 directly to
\~\Theta (with some loss of accuracy) or by combining iterative methods [72, 25] with the
fast matrix-vector multiplication obtained from the sparse factorization of \Theta . Just
like CG, these methods benefit from the fact that we can work with well-conditioned
matrices for small and large \sigma . A detailed investigation of the efficiency of the above
mentioned strategies for computing with nuggets is beyond the scope of this work.

4.4. Numerical results. We will now present numerical evidence in support
of our results. All experiments reported below were run on a workstation using an
Intel Core i7-6400 CPU with 4.00GHz and 64GB of RAM. The time-critical parts of
the code are run on a single thread, leaving the exploration of parallelism to future
work. The Julia scripts implementing the experiments can be found online under
https://github.com/f-t-s/nearLinKernel. In the following, nnz(L) denotes the number
of nonzero entries of the lower-triangular factor L; t\ttS \tto \ttr \ttt \ttS \ttp \tta \ttr \tts \tte denotes the time taken by
Algorithm 4.1 to compute the maximin ordering \prec and sparsity pattern S\rho ; t\ttE \ttn \ttt \ttr \tti \tte \tts 
denotes the time taken to compute the entries of \Theta on S\rho ; and t\ttI \ttC \ttH \ttO \ttL (\ttzero ) denotes
the time taken to perform Algorithm 2.2 (ICHOL(0)), all measured in seconds. The
relative error in Frobenius norm is approximated by

(4.4) E :=
\| LL\top  - \Theta \| Fro
\| \Theta \| Fro

\approx 

\sqrt{} \sum m
k=1

\bigm\| \bigm\| \bigl( LL\top  - \Theta 
\bigr) 
ikjk

\bigm\| \bigm\| 2\sqrt{} \sum m
k=1 \| \Theta ikjk\| 2

,
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Fig. 4.4. First panel: the increase in computational time taken by the Cholesky factorization,
as N increases (for \rho = 3.0). Second panel: the exponential decay of the relative error in Frobenius
norm, as \rho is increased. In the third (d = 2) and fourth panel (d = 3), we see the comparison of the
approximate and true covariance for \rho = 2.0 and \rho = 3.0.

where the m = 500000 pairs of indices ik, jk \sim UNIF(I) are independently and
uniformly distributed in I. This experiment is repeated 50 times and the resulting
mean and standard deviation (in brackets) are reported. For measurements in [0, 1]d,
in order to isolate the boundary effects, we also consider the quantity \=E which is
defined as E, but with only those samples ik, jk for which xik , xjk \in [0.05, 0.95]d. Most
of our experiments will use the Mat\'ern class of covariance functions [59], defined by

(4.5) GMat\'ern
l,\nu (x, y) :=

21 - \nu 

\Gamma (\nu )

\Biggl( \surd 
2\nu | x - y| 

l

\Biggr) \nu 

K\nu 

\Biggl( \surd 
2\nu | x - y| 

l

\Biggr) 
,

where K\nu is the modified Bessel function of second kind [1, section 9.6] and \nu , l are
parameters describing the degree of smoothness, and the length-scale of interactions,
respectively [67]. In Figure 4.5, the Mat\'ern kernel is plotted for different degrees of
smoothness. The Mat\'ern covariance function is used in many branches of statistics
and machine learning to model random fields with finite order of smoothness [35, 67].

As observed by [80, 81], the Mat\'ern kernel is the Green's function of an elliptic
PDE of possibly fractional order 2(\nu + d/2) in the whole space. Therefore, for 2(\nu +
d/2) \in \BbbN , the Mat\'ern kernel falls into the framework of our theoretical results, up
to the behavior at the boundary discussed in subsection 4.2. Since the locations of
our points will be chosen at random, some of the points will be very close to each
other, resulting in an almost singular matrix \Theta that can become nonpositive under the
approximation introduced by ICHOL(0). If Algorithm 2.2 encounters a nonpositive
pivot Aii, then we set the corresponding column of L to zero, resulting in a low-rank
approximation of the original covariance matrix. We report the rank of L in our
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Fig. 4.5. Mat\'ern kernels for different values of \nu (left), and the spectrum of \Theta , for 2000 points
xi \in [0, 1]2 (right). Smaller values of \nu correspond to stronger singularities at zero and hence lower
degrees of smoothness of the associated Gaussian process.

Table 4.1
GMat\'ern

\nu ,l with \nu = 0.5, l = 0.2, \rho = 3.0, and d = 2.

N nnz(L)/N2 rank(L) t\ttS \tto \ttr \ttt \ttS \ttp \tta \ttr \tts \tte t\ttE \ttn \ttt \ttr \tti \tte \tts t\ttI \ttC \ttH \ttO \ttL (\ttzero ) E \=E
20000 5.26e-03 20000 0.71 0.81 0.42 1.25e-03 (3.68e-06) 1.11e-03 (3.01e-06)
20000 5.26e-03 20000 0.71 0.81 0.42 1.25e-03 (3.68e-06) 1.11e-03 (3.01e-06)
40000 2.94e-03 40000 1.21 1.19 1.00 1.27e-03 (3.32e-06) 1.12e-03 (3.56e-06)
80000 1.62e-03 80000 2.72 2.82 2.55 1.30e-03 (3.20e-06) 1.21e-03 (3.29e-06)

160000 8.91e-04 160000 6.86 6.03 6.11 1.28e-03 (3.57e-06) 1.16e-03 (3.32e-06)
320000 4.84e-04 320000 17.22 13.79 15.66 1.23e-03 (3.19e-06) 1.11e-03 (2.40e-06)
640000 2.63e-04 640000 41.40 31.02 36.02 1.24e-03 (2.58e-06) 1.09e-03 (3.02e-06)

1280000 1.41e-04 1280000 98.34 65.96 85.99 1.23e-03 (3.72e-06) 1.10e-03 (3.74e-06)
2560000 7.55e-05 2560000 233.92 148.43 197.52 1.16e-03 (2.82e-06) 1.04e-03 (3.36e-06)

Table 4.2
GMat\'ern

\nu ,l with \nu = 0.5, l = 0.2, \rho = 3.0, and d = 3.

N nnz(L)/N2 rank(L) t\ttS \tto \ttr \ttt \ttS \ttp \tta \ttr \tts \tte t\ttE \ttn \ttt \ttr \tti \tte \tts t\ttI \ttC \ttH \ttO \ttL (\ttzero ) E \=E
20000 1.30e-02 20000 1.61 1.44 2.94 1.49e-03 (5.00e-06) 1.20e-03 (5.09e-06)
40000 7.60e-03 40000 3.26 3.32 8.33 1.21e-03 (4.29e-06) 9.91e-04 (3.72e-06)
80000 4.35e-03 80000 7.46 7.64 22.46 1.06e-03 (3.74e-06) 8.51e-04 (2.93e-06)

160000 2.45e-03 160000 20.95 18.42 57.64 9.81e-04 (2.33e-06) 7.88e-04 (3.23e-06)
320000 1.37e-03 320000 53.58 40.72 141.46 9.27e-04 (2.26e-06) 7.53e-04 (2.72e-06)
640000 7.61e-04 640000 133.55 96.67 350.10 8.98e-04 (3.25e-06) 7.25e-04 (3.02e-06)

1280000 4.19e-04 1280000 312.43 212.57 820.07 8.59e-04 (2.79e-06) 7.00e-04 (2.87e-06)
2560000 2.29e-04 2560000 795.68 480.17 1981.92 8.96e-04 (2.76e-06) 7.73e-04 (4.28e-06)

experiments and note that we obtain a full-rank approximation for moderate values
of \rho .

We begin by investigating the scaling of our algorithm as N increases. To this
end, we consider \nu = 0.5 (the exponential kernel), l = 0.2, and choose N randomly
distributed points in [0, 1]d for d \in \{ 2, 3\} . The results are summarized in Tables 4.1
and 4.3, and in Figure 4.4 and they confirm the near-linear computational complexity
of our algorithm.

Next, we investigate the trade-off between computational efficiency and accuracy
of the approximation. To this end, we choose d = 2, \nu = 1.0 and d = 3, \nu = 0.5,
corresponding to fourth-order equations in two and three dimensions. We choose
N = 106 data points xi \sim UNIF([0, 1]d) and apply our method with different values
of \rho . The results of these experiments are tabulated in Tables 4.3 and 4.4 and the
impact of \rho on the approximation error is visualized in Figure 4.4.
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Table 4.3
GMat\'ern

\nu ,l with \nu = 1.0, l = 0.2, N = 106, and d = 2.

nnz(L)/N2 rank(L) t\ttS \tto \ttr \ttt \ttS \ttp \tta \ttr \tts \tte t\ttE \ttn \ttt \ttr \tti \tte \tts t\ttI \ttC \ttH \ttO \ttL (\ttzero ) E \=E
\rho = 2.0 8.78e-05 254666 38.06 33.72 17.54 2.04e-02 (1.73e-02) 2.34e-02 (2.75e-02)
\rho = 3.0 1.76e-04 964858 71.07 67.85 61.35 2.32e-03 (6.02e-06) 2.09e-03 (7.50e-06)
\rho = 4.0 2.90e-04 999810 115.07 112.56 152.93 3.92e-04 (1.44e-06) 3.72e-04 (2.32e-06)
\rho = 5.0 4.26e-04 999999 165.91 166.60 312.19 6.70e-05 (2.98e-07) 5.68e-05 (2.55e-07)
\rho = 6.0 5.83e-04 1000000 227.62 229.76 566.94 1.45e-05 (6.69e-08) 1.08e-05 (5.01e-08)
\rho = 7.0 7.59e-04 1000000 292.52 300.65 944.33 4.05e-06 (4.96e-08) 2.10e-06 (1.69e-08)
\rho = 8.0 9.53e-04 1000000 363.90 380.07 1476.71 1.62e-06 (2.30e-08) 4.08e-07 (9.47e-09)
\rho = 9.0 1.16e-03 1000000 447.47 467.07 2200.32 8.98e-07 (1.44e-08) 1.42e-07 (5.14e-09)

Table 4.4
GMat\'ern

\nu ,l with \nu = 0.5, l = 0.2, N = 106, and d = 3.

nnz(L)/N2 rank(L) t\ttS \tto \ttr \ttt \ttS \ttp \tta \ttr \tts \tte t\ttE \ttn \ttt \ttr \tti \tte \tts t\ttI \ttC \ttH \ttO \ttL (\ttzero ) E \=E
\rho = 2.0 1.87e-04 998046 87.83 56.44 85.20 1.69e-02 (6.89e-04) 1.60e-02 (3.36e-04)
\rho = 3.0 5.17e-04 1000000 226.84 158.42 599.86 8.81e-04 (3.21e-06) 7.15e-04 (2.99e-06)
\rho = 4.0 1.05e-03 1000000 446.52 326.27 2434.52 1.85e-04 (5.37e-07) 1.59e-04 (5.30e-07)
\rho = 5.0 1.82e-03 1000000 747.65 567.06 7227.45 2.89e-05 (1.94e-07) 1.84e-05 (1.15e-07)
\rho = 6.0 2.82e-03 1000000 1344.59 928.27 17640.58 1.15e-05 (1.06e-07) 5.34e-06 (5.34e-08)

Table 4.5
We tabulate the approximation rank and error for \rho = 5.0 and N = 106 points uniformly

distributed in [0, 1]3. The covariance function is GMat\'ern
\nu ,0.2 for \nu ranging around \nu = 0.5 and \nu = 1.5.

Even though the intermediate values of \nu correspond to a fractional-order elliptic PDE, the behavior
of the approximation stays the same.

\nu = 0.3 \nu = 0.5 \nu = 0.7 \nu = 0.9 \nu = 1.1 \nu = 1.3 \nu = 1.5 \nu = 1.7
rank(L) 1000000 1000000 1000000 1000000 1000000 1000000 1000000 999893

E 7.04e-05 2.89e-05 2.49e-05 3.58e-05 6.03e-05 8.77e-05 1.18e-04 1.46e-04
(3.98e-07) (1.79e-07) (1.11e-07) (1.19e-07) (2.37e-07) (3.06e-07) (4.52e-07) (5.39e-07)

\=E 5.19e-05 1.85e-05 1.77e-05 2.82e-05 4.88e-05 6.87e-05 9.06e-05 1.13e-04
(2.26e-07) (1.18e-07) (8.11e-08) (1.30e-07) (2.37e-07) (3.50e-07) (5.14e-07) (5.45e-07)

Table 4.6
GCauchy

l,\alpha ,\beta for (l, \alpha , \beta ) = (0.4, 0.5, 0.025) (first table) and (l, \alpha , \beta ) = (0.2, 1.0, 0.20) (second table)

for N = 106 and d = 2.

\rho = 2.0 \rho = 3.0 \rho = 4.0 \rho = 5.0 \rho = 6.0 \rho = 7.0 \rho = 8.0 \rho = 9.0
rank(L) 999923 1000000 1000000 1000000 1000000 1000000 1000000 1000000

E 4.65e-04 5.98e-05 2.36e-05 1.19e-05 4.84e-06 4.17e-06 2.25e-06 1.42e-06
(4.23e-07) (1.56e-07) (9.53e-08) (6.32e-08) (4.14e-08) (4.99e-08) (1.86e-08) (1.64e-08)

\=E 3.81e-04 3.49e-05 9.83e-06 4.65e-06 1.47e-06 8.49e-07 4.25e-07 2.12e-07
(4.98e-07) (1.59e-07) (5.56e-08) (2.63e-08) (7.73e-09) (1.04e-08) (4.81e-09) (3.24e-09)

\rho = 2.0 \rho = 3.0 \rho = 4.0 \rho = 5.0 \rho = 6.0 \rho = 7.0 \rho = 8.0 \rho = 9.0
rank(L) 999547 1000000 1000000 1000000 1000000 1000000 1000000 1000000

E 1.08e-03 1.36e-04 2.89e-05 2.35e-05 5.33e-06 3.25e-06 2.53e-06 1.68e-06
(5.02e-06) (6.27e-07) (2.63e-07) (3.01e-07) (6.15e-08) (5.74e-08) (4.84e-08) (4.25e-08)

\=E 7.23e-04 8.96e-05 1.17e-05 5.65e-06 1.09e-06 5.84e-07 4.03e-07 2.40e-07
(4.07e-06) (2.63e-07) (7.10e-08) (1.47e-07) (7.71e-09) (5.48e-09) (3.44e-09) (2.23e-09)

While our theoretical results only cover integer-order elliptic PDEs, we observe no
practical difference between the numerical results for Mat\'ern kernels corresponding
to integer- and fractional-order smoothness. As an illustration, for the case d = 3,
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Fig. 4.6. A two-dimensional point cloud deformed into a two-dimensional submanifold of \BbbR 3

with \delta z \in \{ 0.1, 0.3, 0.5\} .

Table 4.7
GMat\'ern

\nu ,l for \nu = 0.5, l = 0.2, and \rho = 3.0 with N = 106 points chosen as in Figure 4.6.

\delta z = 0.0 \delta z = 0.1 \delta z = 0.2 \delta z = 0.3 \delta z = 0.4 \delta z = 0.5 \delta z = 0.6
nnz(L)

N2 1.76e-04 1.77e-04 1.78e-04 1.80e-04 1.82e-04 1.84e-04 1.85e-04

t\ttI \ttC \ttH \ttO \ttL (\ttzero ) 61.92 62.15 62.81 64.27 64.87 65.50 66.12
rank(L) 1000000 1000000 1000000 1000000 1000000 1000000 1000000

E 1.17e-03 1.11e-03 1.28e-03 1.60e-03 1.72e-03 1.89e-03 2.11e-03
(2.74e-06) (3.00e-06) (2.73e-06) (4.28e-06) (3.95e-06) (5.11e-06) (5.07e-06)

we provide approximation results for \nu ranging around \nu = 0.5 (corresponding to a
fourth-order elliptic PDE) and \nu = 1.5 (corresponding to a sixth-order elliptic PDE).
As seen in Table 4.5, the results vary continuously as \nu changes, with no qualitative
differences between the behavior for integer- and fractional-order PDEs. To further
illustrate the robustness of our method, we consider the Cauchy class of covariance
functions introduced in [32]

(4.6) GCauchy
l,\alpha ,\beta (x, y) :=

\biggl( 
1 +

\biggl( 
| x - y| 
l

\biggr) \alpha \biggr)  - \beta 
\alpha 

.

As far as we are aware, the Cauchy class has not been associated to an elliptic PDE.
Furthermore, it does not have exponential decay in the limit | x  - y| \rightarrow \infty , which
allows us to emphasize the point that the exponential decay of the error is not due to
the exponential decay of the covariance function itself. Table 4.6 gives the results for
(l, \alpha , \beta ) = (0.4, 0.5, 0.025) and (l, \alpha , \beta ) = (0.2, 1.0, 0.2).

In Gaussian process regression, the ambient dimension d is typically too large to
ensure computational efficiency of our algorithm. However, since our algorithm only
requires access to pairwise distances between points, it can take advantage of the low
intrinsic dimension of the dataset. We might be concerned that in this case, interaction
through the higher-dimensional ambient space will disable the screening effect. As a
first demonstration that this is not the case, we will draw N = 106 points in [0, 1]2

and equip them with a third component according to x
(3)
i :=  - \delta z sin(6x(1)i ) cos(2(1 - 

x
(2)
i ))+\xi i10

 - 3 for \xi i a standard Gaussian vector. Figure 4.6 shows the resulting point
sets for different values of \delta z, and Table 4.7 shows that the approximation is robust
to increasing values of \delta z.

An appealing feature of our method is that it can be formulated in terms of the
pairwise distances alone. This means that the algorithm will automatically exploit
any low-dimensional structure in the dataset. In order to illustrate this feature, we
artificially construct a dataset with low-dimensional structure by randomly rotating
four low-dimensional structures into a 20-dimensional ambient space (see Figure 4.7).
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Fig. 4.7. We construct a high-dimensional dataset with low-dimensional structure by rotating
the above structures at random into a 20-dimensional ambient space.

Table 4.8
GMat\'ern

\nu ,l for \nu = 0.5, l = 0.5, and N = 106 points as in Figure 4.7.

nnz(L)/N2 rank(L) t\ttS \tto \ttr \ttt \ttS \ttp \tta \ttr \tts \tte t\ttE \ttn \ttt \ttr \tti \tte \tts t\ttI \ttC \ttH \ttO \ttL (\ttzero ) E
\rho = 2.0 1.62e-04 997635 80.60 57.11 52.49 1.57e-02 (1.13e-03)
\rho = 3.0 3.76e-04 1000000 173.86 135.61 248.78 2.88e-03 (1.14e-05)
\rho = 4.0 6.76e-04 1000000 302.98 247.74 748.62 8.80e-04 (4.97e-06)
\rho = 5.0 1.05e-03 1000000 462.98 397.42 1802.44 3.44e-04 (2.54e-06)
\rho = 6.0 1.49e-03 1000000 645.56 556.72 3696.31 1.44e-04 (8.76e-07)
\rho = 7.0 2.02e-03 1000000 891.08 758.88 6855.23 7.61e-05 (5.66e-07)
\rho = 8.0 2.62e-03 1000000 1248.90 990.86 11598.66 4.57e-05 (4.36e-07)

Table 4.8 shows that the resulting approximation is even better than the one obtained
in dimension 3, illustrating that our algorithm did indeed exploit the low intrinsic
dimension of the dataset.

5. Analysis of the algorithm.

5.1. General setting. We will start the analysis in a more general setting than
that of section subsection 2.1. Let \scrB be a separable Banach space with dual space
\scrB \ast , and write [ \cdot , \cdot ] for the duality product between \scrB \ast and \scrB . Let \scrL : \scrB \rightarrow \scrB \ast be
a linear bijection and let G := \scrL  - 1. Assume \scrL to be symmetric and positive (i.e.,
[\scrL u, v] = [\scrL v, u] and [\scrL u, u] \geq 0 for u, v \in \scrB ). Let \| \cdot \| be the quadratic (energy)
norm defined by \| u\| 2 := [\scrL u, u] for u \in \scrB and let \| \cdot \| \ast be its dual norm defined by

(5.1) \| \phi \| \ast := sup
0\not =u\in \scrB 

[\phi , u]

\| u\| 
= [\phi ,G\phi ] for \phi \in \scrB \ast .

Let \{ \phi i\} i\in I be linearly independent elements of \scrB \ast (known as measurement functions)
and let \Theta \in \BbbR I\times I be the symmetric positive-definite matrix defined by

(5.2) \Theta ij := [\phi i, G\phi j ] for i, j \in I.

We assume that we are given q \in \BbbN and a partition I =
\bigcup 

1\leq k\leq q J
(k) of I. We

represent I \times I matrices as q \times q block matrices according to this partition. Given
an I \times I matrix M we write Mk,l for the (k, l)th block of M and Mk1:k2,l1:l2 for the
submatrix of M defined by blocks ranging from k1 to k2 and l1 to l2. Unless specified
otherwise we write L for the lower-triangular Cholesky factor of \Theta and define

\Theta (k) := \Theta 1:k,1:k, A(k) := \Theta (k), - 1, B(k) := A
(k)
k,k for 1 \leq k \leq q.(5.3)

We interpret the \{ J (k)\} 1\leq k\leq q as labeling a hierarchy of scales with J (1) representing

the coarsest and J (q) the finest. We write I(k) for
\bigcup 

1\leq k\prime \leq k J
(k\prime ).

Throughout this section we assume that the ordering of the set I of indices is
compatible with the partition I =

\bigcup 
k=1q J

(k), i.e., k < l, i \in J (k) and j \in J (l)
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Fig. 5.1. We illustrate the construction described in Example 5.2 in the case q = 2. On the left
we see the nested partition of the domain, and on the right we see (the signs of) a possible choice
for \phi 1, \phi 5, and \phi 6.

together imply i \prec j. We will write L or chol(\Theta ) for the Cholesky factor of \Theta in that
ordering.

5.2. Main examples. We will prove the main results of this section in the
setting where \scrL is defined as in subsection 2.1 and the \phi i are chosen as in Examples 5.1
and 5.2. We will assume (without loss of generality after rescaling) that diam(\Omega ) \leq 1.
As described in Figure 3.5, successive points of the maximin ordering can be gathered
into levels, so that, after appropriate rescaling of the measurements, the Cholesky
factorization in the maximin ordering falls in the setting of Example 5.1.

Example 5.1. Let s > d/2. For h, \delta \in (0, 1) let \{ xi\} i\in I(1) \subset \{ xi\} i\in I(2) \subset \cdot \cdot \cdot \subset 
\{ xi\} i\in I(q) be a nested hierarchy of points in \Omega that are homogeneously distributed at
each scale in the sense of the following three inequalities:

(1) supx\in \Omega mini\in I(k) | x - xi| \leq hk,
(2) mini\in I(k) infx\in \partial \Omega | x - xi| \geq \delta hk, and
(3) mini,j\in I(k):i\not =j | xi  - xj | \geq \delta hk.

Let J (1) := I(1) and J (k) := I(k) \setminus I(k - 1) for k \in \{ 2, . . . , q\} . Let \bfitdelta denote the unit
Dirac delta function and choose

(5.4) \phi i := h
kd
2 \bfitdelta (x - xi) for i \in J (k) and k \in \{ 1, . . . , q\} .

Given subsets \~I, \~J \subset I we extend a matrix M \in \BbbR \~I\times \~J to an element of \BbbR I\times J by
padding it with zeros.

Example 5.2 (see Figure 5.1). For h, \delta \in (0, 1), let (\tau 
(k)
i )i\in I(k) be uniformly Lip-

schitz convex sets forming a regular nested partition of \Omega in the following sense. For

k \in \{ 1, . . . , q\} , \Omega =
\bigcup 

i\in I(k) \tau 
(k)
i is a disjoint union except for the boundaries. I(k) is a

nested set of indices, i.e., I(k) \subset I(k+1) for k \in \{ 1, . . . , q  - 1\} . For k \in \{ 2, . . . , q\} and
i \in I(k - 1), there exists a subset ci \subset I(k) such that i \in ci and \tau 

(k - 1)
i =

\bigcup 
j\in ci

\tau 
(k)
j .

Assume that each \tau 
(k)
i contains a ball B\delta hk(x

(k)
i ) of center x

(k)
i and radius \delta hk and is

contained in the ball Bhk(x
(k)
i ). For k \in \{ 2, . . . , q\} and i \in I(k - 1), let the submatrices

w(k),i \in \BbbR (ci\setminus \{ i\} )\times ci satisfy
\sum 

j\in ci
w

(k),i
m,j w

(k),i
n,j | \tau 

(k)
j | = \delta mn and

\sum 
j\in ci

w
(k),i
l,j | \tau 

(k)
j | = 0

for each l \in ci \setminus \{ i\} , where | \tau (k)i | denotes the volume of \tau 
(k)
i . Let J (1) := I(1) and
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J (k) := I(k) \setminus I(k - 1) for k \in \{ 2, . . . , q\} . Let W (1) be the J (1) \times I(1) matrix defined by

W
(1)
ij := \delta ij . LettingW

(k) be the J (k)\times I(k) matrix defined byW (k) :=
\sum 

i\in I(k - 1) w(k),i

for k > 2, we set

(5.5) \phi i := h - kd/2
\sum 

j\in I(k)

W
(k)
i,j 1

\tau 
(k)
j

for each i \in J (k)

and define [\phi i, u] :=
\int 
\Omega 
\phi iudx. In order to keep track of the distance between the

different \phi i of Example 5.2, we choose an arbitrary set of points \{ xi\} i\in I \subset \Omega with the
property that xi \in supp(\phi i) for each i \in I.

5.3. Exponential decay of Cholesky factors. Our bound on the ICHOL(0)

approximation error will be based on the following exponential decay estimate on the
entries of the Cholesky factor L of \Theta :

(5.6) | Lij | \leq poly(N) exp( - \gamma d(i, j))

for a constant \gamma > 0 and a suitable distance measure d( \cdot , \cdot ) : I \times I \rightarrow \BbbR .

5.3.1. Algebraic identities and roadmap. The following block-Cholesky de-
composition of \Theta will be used to obtain the estimate (5.6).

Lemma 5.3. We have \Theta = \=LD\=LT , with \=L and D defined by
(5.7)

D :=

\left(       
B(1), - 1 0 . . . 0

0 B(2), - 1
. . .

...
...

. . .
. . .

...

0 0 . . . B(q), - 1

\right)       , \=L :=

\left(        

Id . . . . . . 0

B(2), - 1A
(2)
2,1

. . . 0
...

...
. . .

. . .
...

B(q), - 1A
(q)
q,1 . . . B(q), - 1A

(q)
q,q - 1 Id

\right)        

 - 1

.

In particular, if \~L is the lower-triangular Cholesky factor of D, then the lower-
triangular Cholesky factor L of \Theta is given by L = \=L\~L.

Proof. To obtain Lemma 5.3 we successively apply Lemma 5.4 to \Theta (see sec-
tion SM2 for details). Lemma 5.4 summarizes classical identities satisfied by Schur
complements.

Lemma 5.4 ([84, Chapter 1.1]). Let \Theta =
\bigl( \Theta 1,1 \Theta 1,2

\Theta 2,1 \Theta 2,2

\bigr) 
be symmetric positive defi-

nite and A =
\bigl( A1,1 A1,2

A2,1 A2,2

\bigr) 
its inverse. Then

\Theta =

\biggl( 
Id 0
L2,1 Id

\biggr) \biggl( 
D1,1 0
0 D2,2

\biggr) \biggl( 
Id L\top 

2,1

0 Id

\biggr) 
,(5.8)

A =

\biggl( 
Id  - L\top 

2,1

0 Id

\biggr) \biggl( 
D - 1

1,1 0

0 D - 1
2,2

\biggr) \biggl( 
Id 0
 - L2,1 Id

\biggr) 
,(5.9)

where

L2,1 = \Theta 2,1\Theta 
 - 1
1,1 =  - A - 1

2,2A2,1,(5.10)

D1,1 = \Theta 1,1 =
\bigl( 
A1,1  - A1,2A

 - 1
2,2A2,1

\bigr)  - 1
,(5.11)

D2,2 = \Theta 2,2  - \Theta 2,1\Theta 
 - 1
1,1\Theta 1,2 = A - 1

2,2.(5.12)
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Based on Lemma 5.3, (5.6) can be established by ensuring that
(1) the matrices A(k) (and hence also B(k)) decay exponentially according to

d( \cdot , \cdot );
(2) the matrices B(k) have uniformly bounded condition numbers;
(3) the products of exponentially decaying matrices decay exponentially;
(4) the inverses of well-conditioned exponentially decaying matrices decay expo-

nentially;
(5) the Cholesky factors of the inverses of well-conditioned exponentially decaying

matrices decay exponentially; and
(6) if a q \times q block lower-triangular matrix \=L with unit block-diagonal decays

exponentially, then so does its inverse.
We will carry out this program in the setting of Examples 5.1 and 5.2 and prove that
(5.6) holds with

(5.13) d(i, j) := h - min(k,l) dist(xi, xj) for each i \in J (k), j \in J (l).

To prove (1), the matrices \Theta (k), A(k) (interpreted as coarse-grained versions of G
and \scrL ), and B(1) will be identified as stiffness matrices of the \scrL -adapted wavelets
described in subsection 3.3. This identification is established on the general identities

\Theta 
(k)
i,j = [\phi i, G\phi j ] for i, j \in I(k), A(k) = (\Theta (k)) - 1, A

(k)
i,j = [\scrL \psi (k)

i , \psi 
(k)
j ], and B

(k)
i,j =

[\scrL \chi (k)
i , \chi 

(k)
j ], where the \psi 

(k)
i and \chi 

(k)
i are defined as in (3.6) and (3.7).

5.3.2. Exponential decay of \bfitA (\bfitk ). Our proof of the exponential decay of L
will be based on that of A(k) as expressed in the following condition.

Condition 5.5. Let \gamma ,C\gamma \in \BbbR + be constants such that for 1 \leq k \leq q and i, j \in 
I(k),

(5.14)
\bigm| \bigm| A(k)

ij

\bigm| \bigm| \leq C\gamma 

\sqrt{} 
A

(k)
ii A

(k)
jj exp( - \gamma d(i, j)).

The matrices A(k) are coarse-grained versions of the local operator \scrL and as such
inherit some of its locality in the form of exponential decay. Such exponential local-
ization results were first obtained by [57] for the coarse-grained operators obtained
from local orthogonal decomposition (LOD) applied to second-order elliptic PDEs
with rough coefficients. [62] gives similar results for measurement functions chosen
as in Example 5.2. [44] extends the results on exponential decay to higher-order op-
erators satisfying a strong ellipticity condition. These results were obtained using
similar mass chasing techniques that are difficult to extend to general higher-order
operators. [50] present a simpler proof of the exponential decay of the LOD basis
functions of [57] based on the exponential convergence of subspace iteration meth-
ods. [63] extends this technique (by presenting necessary and sufficient conditions
expressed as frame inequalities in dual spaces) to elliptic PDEs of arbitrary (integer)
order and new classes of (possibly nonconforming) measurements, including those of
Examples 5.1 and 5.2. More recently, [17] showed localization results for the fractional
partial differential operators by using the Caffarelli--Silvestre extension. The results of
[63] are sufficient to show that Condition 5.5 holds true in the setting of Example 5.1
and Example 5.2.

Theorem 5.6 ([63]). In Example 5.1, the matrices A(k) satisfy
(5.15)\bigm| \bigm| \bigm| A(k)

ij

\bigm| \bigm| \bigm| \leq C\gamma 

\sqrt{} 
A

(k)
ii A

(k)
jj exp

\Bigl( 
 - \gamma 

hk
dist(xi, xj)

\Bigr) 
\leq C\gamma 

\sqrt{} 
A

(k)
ii A

(k)
jj exp( - \gamma d(i, j))
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and in Example 5.2 they satisfy

(5.16)
\bigm| \bigm| A(k)

ij

\bigm| \bigm| \leq C\gamma exp
\Bigl( \gamma 
h

\Bigr) \sqrt{} 
A

(k)
ii A

(k)
jj exp( - \gamma d(i, j))

with the constants C\gamma and \gamma depending only on \| \scrL \| , \| \scrL  - 1\| , s, d, \Omega , and \delta . In
particular, they satisfy Condition 5.5 with the constants described above.

Proof. Our Example 5.1 is equivalent to Example 2.29 of [63]. In [63, Theo-

rems 2.25 and 2.26] it is shown that in the gamblets \{ \psi (k)
i \} i\in I(k) computed in this

setting decay exponentially on the length-scale hk, with respect to the energy norm.

By [63, Theorem 3.8] we have A
(k)
ij = [\psi 

(k)
i ,\scrL \psi (k)

j ] and, therefore, the exponential

decay of gamblets implies the exponential decay of the A(k).
We further note that Example 5.2 is equivalent to Example 2.27 in [63]. Therefore,

by the same theorems, as above, the results of [63] imply exponential decay of the
A(k) in this setting.2

See also [64, Theorem 15.45] for a detailed proof and [64, Theorem 15.43] for

required sufficient lower bounds on A
(k)
ii .

5.3.3. Bounded condition numbers. In this section, we will bound the con-
dition numbers of B(k) based on the following condition, which we will show to be
satisfied for Examples 5.1 and 5.2.

Condition 5.7. Let H \in (0, 1), C\Phi \geq 1 be constants such that for 1 \leq k < l \leq q,

\lambda min

\bigl( 
\Theta (k)

\bigr) 
\geq 1

C\Phi 
H2k,(5.17)

\lambda max

\bigl( 
\Theta 

(q)
l,l  - \Theta 

(q)
l,1:k\Theta 

(q), - 1
1:k,1:k\Theta 

(q)
1:k,l

\bigr) 
\leq C\Phi H

2k .(5.18)

Theorem 5.8. Condition 5.7 implies that, for all 1 \leq k \leq q,

(5.19) C - 1
\Phi H - 2(k - 1)Id \prec B(k) \prec C\Phi H

 - 2kId,

and, for \kappa := H - 2C2
\Phi ,

(5.20) cond
\bigl( 
B(k)

\bigr) 
\leq \kappa .

Proof. The lower bound in (5.19) follows from (5.18) and

(5.21) B(k) =
\bigl( 
\Theta 

(q)
k,k  - \Theta 

(q)
k,1:(k - 1)\Theta 

(q), - 1
1:k,1:k\Theta 

(q)
1:(k - 1),k

\bigr)  - 1
.

The upper bound in (5.19) follows from (5.17) and B(k) =
\bigl( \bigl( 
\Theta (k)

\bigr)  - 1\bigr) 
k,k

.

The following theorem shows that (5.18) is a Poincar\'e inequality closely related
to the accuracy of numerical homogenization basis functions [57, 65, 44] and (5.17) is
an inverse Sobolev inequality related to the regularity of the discretization of \scrL .

Theorem 5.9. Condition 5.7 holds true if the constants C\Phi \geq 1 and H \in (0, 1)
satisfy

(1) 1
C\Phi 
H2k \leq \| \phi \| 2

\ast 
| \alpha | 2 for \alpha \in \BbbR I(k)

and \phi =
\sum 

i\in I(k) \alpha i\phi i and

2We point out that the block A
(k)
m,l in our notation isW (m)\pi (m,k)A(k)\pi (k,l)W (l),\top in the notation

of [63].
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(2) min\varphi \in span(\phi i)i\in I(k - 1)

\| \phi  - \varphi \| 2
\ast 

| \alpha | 2 \leq C\Phi H
2(k - 1) for \alpha \in \BbbR J(l)

, k < l \leq q, and

\phi =
\sum 

i\in J(l) \alpha i\phi i.

Proof. Inequality (5.17) is a direct consequence of the first assumption of the
theorem, whereas (5.18) follows from the variational property [84, Theorem 5.1] of
the Schur complement:

\alpha \top 
\Bigl( 
\Theta l,l  - \Theta 

(q)
l,1:k\Theta 

(q), - 1
1:k,1:k\Theta 

(q)
1:k,l

\Bigr) 
\alpha = inf

\beta \in \BbbR I(k)
(\alpha  - \beta )\top \Theta (q)(\alpha  - \beta )(5.22)

= min
\varphi \in span\{ \phi i| i\in I(k)\} 

\| \phi  - \varphi \| 2\ast \leq C\Phi H
2k| \alpha | 2.(5.23)

We will now show that Examples 5.1 and 5.2 satisfy the conditions of Theorem 5.9.
For simplicity, for \~\Omega \subset \Omega and \phi \in H - s(\Omega ) we still write \phi for the unique element
\~\phi \in H - s(\~\Omega ) such that [ \~\phi , u] = [\phi , u] for u \in Hs

0(
\~\Omega ). The following Fenchel conjugate

identity [15, Example 3.27, p. 93] will be useful throughout this section:

(5.24) \| \phi \| 2H - s(\Omega ) = sup
v\in Hs

0 (\Omega )

2[\phi , v] - \| v\| 2v\in Hs
0 (\Omega ).

The first condition can be verified similarly as is done in [63].

Lemma 5.10. Let \Theta be given as in Examples 5.1 and 5.2. Then there exists a
constant C depending only on \delta , s, and d, such that

(5.25)
1

C\Phi 
h2sk \leq \| \phi \| 

2
\ast 

| \alpha | 2

for C\Phi = \| \scrL \| C, \alpha \in \BbbR I(k)

, and \phi =
\sum 

i \alpha i\phi i.

Proof. The proof can be found in section SM2.

In order to verify the second condition in Theorem 5.9, we will construct a \varphi such
that \phi  - \varphi integrates to zero against polynomials of order at most s - 1 on domains of
size hk. Then an application of the Bramble--Hilbert lemma [20] will yield the desired
factor hks. To avoid scaling issues we define, for 1 \leq k \leq q and i \in I(k),

(5.26) \phi 
(k)
i :=

\Biggl\{ 
\bfitdelta xi in Example 5.1,

1
\tau 
(k)
i
/| \tau (k)i | in Example 5.2,

noting that span\{ \phi (k)i | i \in I(k)\} = span\{ \phi i | i \in I(k)\} . To obtain estimates inde-
pendent of the regularity of \Omega , for the simplicity of the proof and without loss of
generality, we will partially work in the extended space \BbbR d (rather than on \Omega ). We

write v for the zero extension of v \in Hs
0(\Omega ) to Hs(\BbbR d) and \phi 

(k)
i for the extension

of \phi 
(k)
i \in H - s(\Omega ) to an element of the dual space of Hs

loc(\BbbR d). We introduce new
measurement functions in the complement of \Omega as follows. For 1 \leq k \leq q we consider
countably infinite index sets \~I(k) \supset I(k). We choose points (xi)i\in \~I(q)\setminus I(q) satisfying

sup
x\in \BbbR d\setminus \Omega 

min
i\in \~I(k)

dist (xi, x) \leq \delta  - 1hk, min
i \not =j\in \~I(k)\setminus I(k)

dist(xi, xj \cup \partial \Omega ) \geq \delta hk.(5.27)

We then define, for 1 \leq k \leq q and i \in \~I(k), \phi 
(k)
i := \delta xi

for Example 5.1, and

\phi 
(k)
i :=

\bfone B
\delta hk (xi)

| B
\delta hk (xi)| for Example 5.2. Let \scrP s - 1 denote the linear space of polynomials

of degree at most s - 1 (on \BbbR d).
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Lemma 5.11. Let \Theta be as in Example 5.1 or Example 5.2. Given \rho \in (2,\infty ) and

1 \leq k < l \leq q let w \in \BbbR J(l)\times \~I(k)

be such that

(5.28)

\int 
B

\rho hk (xi)

\left(  \phi i  - \sum 
j\in \~I(k)

wij\phi 
(k)
j

\right)  (x)p(x) dx = 0 \forall p \in \scrP s - 1 and i \in J (l)

and wij \not = 0 \Rightarrow supp(\phi 
(k)
j ) \subset B\rho hk(xi). Then, for \alpha \in \BbbR J(l)

, \phi :=
\sum 

i\in J(l) \alpha i\phi i and

\varphi :=
\sum 

i\in J(l),j\in I(k) \alpha iwij\phi 
(k)
j satisfy

(5.29) \| \phi  - \varphi \| 2\ast \leq \| \scrL  - 1\| C(d, s)\rho 
d+2s

\delta d
\bigl( 
1 + h - ld\omega 2

l,k

\bigr) 
h2sk| \alpha | 2

with \omega l,k := supi\in J(l)

\sum 
j\in \~I(k) | wij | and \| \phi \| \ast := supu\in Hs

0 (\Omega )[\phi , u]/[\scrL u, u]
1
2 as in (5.1).

We proceed by proving Lemma 5.11 in the setting of Example 5.1. The proof
in the setting of Example 5.2 can be found in section SM2. For u \in Hs(\Omega ) write
D0u := u and for 1 \leq k \leq s write Dku for the vector of partial derivatives of u of

order k, i.e., Dku := ( \partial ku
\partial i1

\cdot \cdot \cdot \partial ik
)i1,...,ik=1,...,d. The proof of Lemma 5.11 will use the

following version of the Bramble--Hilbert lemma.

Lemma 5.12 ([20]). Let \Omega \subset \BbbR d be convex and let \phi be a sublinear functional on
Hs(\Omega ) for s \in \BbbN such that

(1) there exists a constant \~C such that, for all u \in Hs(\Omega ),

(5.30) | \phi (u)| \leq \~C

s\sum 
k=0

diam(\Omega )k\| Dku\| L2(\Omega );

(2) and \phi (p) = 0 for all p \in \scrP s - 1.
Then, for all u \in Hs(\Omega ),

(5.31) | \phi (u)| \leq \~CC(d, s) diam(\Omega )s\| Dsu\| L2(\Omega ).

The following lemma is obtained from Lemma 5.12.

Lemma 5.13. For 1 \leq k < l \leq q and i \in J (l), let \phi i, wij be as in Lemma 5.11 and

Example 5.2 and define \varphi i :=
\sum 

j\in I(k) wij\phi 
(k)
j . Then there exists a constant C(d, s)

such that, for all v \in Hs
0(\Omega ),\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
B

\rho hk (xi)

(\phi i  - \varphi i)(x)v(x) dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C(d, s)\rho s - d/2h(s - d/2)k(5.32) \left(  hld/2 + \sum 
j\in \~I(k)

| wij | 

\right)  \| Dsv\| L2(B\rho hk (xi)).

Proof. We apply Lemma 5.12 to the linear functional u \mapsto \rightarrow 
\int 
B

\rho hk
(\phi i - \varphi i)u. Since

the second requirement of Lemma 5.12 is fulfilled by definition, it remains to bound
\~C. We only execute the proof for Example 5.1; the proof for Example 5.2 is analogous.
We first note that while the sum in the definition of \varphi i only ranges over j \in I(k), we
can increase it to run over all of j \in \~I(k), since for j \in \~I(k) \setminus I(k), the support of \phi 

(k)
j
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is disjoint from that of v \in Hs
0(\Omega ). Let u \in Hs(\Omega ). Writing C(d, s) for the continuity

constant of the embedding of Hs(B1(0)) into Cb(B1(0)), the inequalities

max
B

\rho hk (xi)
| u( \cdot )| 

= max
x\in B1(0)

\bigm| \bigm| u \bigl( \rho hk (x - xi)\bigr) \bigm| \bigm| \leq C(d, s) s\sum 
m=0

(\rho hk)m
\bigm\| \bigm\| [Dmu]

\bigl( 
\rho hk( \cdot  - xi)

\bigr) \bigm\| \bigm\| 
L2(B1(0))

and \bigm\| \bigm\| [Dmu]
\bigl( 
\rho hk( \cdot  - xi)

\bigr) \bigm\| \bigm\| 
L2(B1(0))

= (\rho hk) - d/2\| Dmu\| L2(B
\rho hk (xi))

imply that

| \phi i (u) - \varphi i (u)| 

(5.33)

\leq 

\left(  hld/2 + \sum 
j\in \~I(k)

| wij | 

\right)  max
x\in B

\rho hk (xi)
| u(x)| 

\leq C(d, s)\rho  - d/2h - kd/2

\left(  hld/2 + \sum 
j\in \~I(k)

| wij | 

\right)  s\sum 
m=0

(\rho hk)m\| Dmu\| L2(B
\rho hk (xi)).

Therefore the first condition of Lemma 5.12 holds with

(5.34) \~C = C(d, s)\rho  - d/2h - kd/2

\left(  hld/2 + \sum 
j\in \~I(k)

| wij | 

\right)  ,

and we conclude the proof by writing C(d, s) for any constant depending only on d
and s.

We can now conclude the proof of Lemma 5.11.

Proof of Lemma 5.11. Write \varphi :=
\sum 

i\in J(l) \alpha i\varphi i and \varphi i :=
\sum 

j\in I(k) wij\phi 
(k)
j . Equa-

tion (5.24) implies that
(5.35)

\| \phi  - \varphi \| 2H - s(\Omega ) = sup
v\in Hs

0 (\Omega )

\left(  \sum 
i\in J(l)

2\alpha i

\int 
B

\rho hk (xi)

(\phi i  - \varphi i) (x)v(x) dx

\right)   - \| v\| 2Hs
0 (\Omega ) .

The packing inequality
\sum 

i\in J(l) \| Dsv\| 2
L2(B\rho hk (xi))

\leq C(d)
\bigl( 
hk - l\rho /\delta 

\bigr) d \| v\| 2Hs
0 (\Omega ) to-

gether with Lemma 5.13 yields

\| \phi  - \varphi \| 2H - s(\Omega )

(5.36)

\leq sup
v\in Hs

0 (\Omega )

\sum 
i\in J(l)

\Biggl[ 
2| \alpha i| C(d, s)\rho s - 

d
2 h(s - 

d
2 )k

\left(  h ld
2 +

\sum 
j\in I(k)

| wij | 

\right)  \| Dsv\| L2(B
\rho hk (xi))

 - (C(d)) - 1
\bigl( 
hk - l\rho /\delta 

\bigr)  - d \| Dsv\| 2
L2(B\rho hk (xi))

\Biggr] 
.
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Applying the inequality 2ax - bx2 \leq a2/b to each summand yields

\| \phi  - \varphi \| 2H - s(\Omega ) \leq C(d)
\bigl( 
hk - l\rho /\delta 

\bigr) d \sum 
i\in J(l)

\left(  \alpha jC(d, s)\rho 
s - d

2 h(s - 
d
2 )k

\left(  h ld
2 +

\sum 
j\in J(k)

| wij | 

\right)  \right)  2

\leq C(d, s)\rho 
2s

\delta d
\bigl( 
1 + h - ld\omega 2

l,k

\bigr) 
h2sk| \alpha | 2 .

Since, for all f \in H - s(\Omega ),

(5.37) \| f\| 2\ast = [f,\scrL  - 1f ] \leq \| f\| H - s(\Omega )\| \scrL  - 1f\| Hs
0 (\Omega ) \leq \| \scrL  - 1\| \| f\| 2H - s(\Omega ),

we have \| \phi  - \varphi \| \ast \leq 
\sqrt{} 
\| \scrL  - 1\| \| \phi  - \varphi \| H - s(\Omega ), and this completes the proof.

The following geometric lemma shows that the assumption (5.28) of Lemma 5.11
can be satisfied with a uniform bound on the value of \rho and the norm of weights wi,j .

Lemma 5.14. There exist constants \rho (d, s) and C(d, s, \delta ) such that for all 1 \leq 
k < l \leq q there exist weights w \in \BbbR J(l)\times \~I(k)

satisfying (5.28) and (with \omega l,k defined as
in Lemma 5.11)

(5.38) \omega 2
l,k \leq hldC(d, s, \delta ) .

Proof. For Example 5.1, (5.28) is equivalent to

(5.39) hld/2p(xi) =
\sum 

j\in \~I
(k)
\rho 

wijp(xj) \forall p \in \scrP s - 1,

where \~I
(k)
\rho := \{ j \in \~I(k) | xj \in B(xi, \rho h

k)\} .
Fix i \in J (l), let \lambda > 0, and write x\lambda j :=

xj - xi

\lambda . Write 0 := (0, . . . , 0) \in \BbbR d. Since

the function p( \cdot ) \mapsto \rightarrow p( \cdot  - xi

\lambda ) is surjective on \scrP s - 1, (5.39) is satisfied if

(5.40) hld/2p(0) =
\sum 

j\in \~I
(k)
\rho 

wijp(x
\lambda 
j ) \forall p \in \scrP s - 1.

For a multiindex n = (n1, . . . , nd) \in \BbbN d and a point z = (z1, . . . , zd) \in \BbbR d, write

zn :=
\prod d

m=1 z
nm
m . Use the convention 0n = 0 if n \not = 0 and 0\bfzero = 1. To satisfy (5.40) it

is sufficient to identify a subset \sigma of \~I
(k)
\rho and wi, \cdot \in \BbbR \~I(k)

such that \#\sigma = sd, wi,j = 0
for j \not \in \sigma , and

(5.41) hld/20n =
\sum 
j\in \sigma 

wij(x
\lambda 
j )

n \forall n \in \{ 0, . . . , s - 1\} d .

Let \BbbV \lambda \in \BbbR \{ 0,1,...,s - 1\} d\times \sigma be the sd \times sd matrix defined by

(5.42) \BbbV \lambda 
n,j :=

\bigl( 
x\lambda j
\bigr) n

for a multiindex n \in \BbbN d and a point x \in \BbbR d xn :=
\prod d

m=1 x
nm . Let w \in \BbbR \sigma be defined

by wj := wi,j for j \in \sigma . Equation (5.41) is then equivalent to

(5.43) hld/2e = \BbbV \lambda w,
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where e \in \BbbR \{ 0,1,...,s - 1\} d

is defined by en := 0n for n \in \{ 0, 1, . . . , s  - 1\} d. We will
now identify w by inverting (5.43). To achieve this while keeping the norm of w
under control we will seek to identify the subset \sigma and \lambda > 0 such that \sigma min(\BbbV \lambda ) (the
minimal singular value of \BbbV \lambda ) is bounded from below by a constant depending only
on s and d.

For \alpha \geq 0 let (\epsilon j)j\in \{ 0,1,...,s - 1\} d be elements of \BbbR d satisfying | \epsilon j | \leq \alpha for all

j \in \{ 0, 1, . . . , s  - 1\} d. Let 1 := (1, . . . , 1) \in \BbbR d and, for j \in \{ 0, 1, . . . , s  - 1\} d, let
zj := 1 + j + \epsilon j . Observe that for \alpha = 0 the points zj are on a regular grid. Let
\=\BbbV \alpha \in \BbbR \{ 0,1,...,s - 1\} d\times \{ 0,1,...,s - 1\} d

be the sd \times sd matrix defined by \=\BbbV \alpha 
n,j := (zj)

n
. Let

V be the s \times s Vandermonde matrix defined by Vi,j = ij . Writing \sigma min(V ) for the
minimal singular value of V we have, for \alpha = 0, by [43, Theorem 4.2.12],

(5.44) \sigma min

\bigl( 
\=\BbbV 0
\bigr) 
= (\sigma min(V ))

d
.

Since univariate polynomial interpolation on s points with polynomials of degree s - 1
is uniquely solvable, we have \sigma min (V ) > 0 and \sigma min(\=\BbbV 0) > C(d, s) > 0. Therefore, the
continuity of the minimal singular value with respect the entries of \=\BbbV \alpha implies that
there exists \alpha \ast , \sigma \ast > 0 depending only on s, d such that \alpha \leq \alpha \ast implies \sigma min(\=\BbbV \alpha ) > \sigma \ast .
Since (by construction) the (xi)i\in \~I(k) form a covering of \BbbR d of radius hk, the (x\lambda i )i\in \~I(k)

form a covering of \BbbR d of radius hk/\lambda and for each n \in \{ 0, 1, . . . , s - 1\} d there exists an
x\lambda jn that is at distance at most hk/\lambda from n. Let \sigma := \{ jn | n \in \{ 0, 1, . . . , s - 1\} d\} \subset 
\~I(k) be the collection of corresponding labels. It follows from | x\lambda jn | \leq 

\surd 
ds+hk/\lambda that

| xjn  - xi| \leq \lambda 
\surd 
ds + hk, and \sigma \subset \~I

(k)
\rho for \rho > 1 + \lambda 

\surd 
ds/hk. Selecting \lambda = hk/\alpha \ast 

implies that \sigma min(\BbbV \lambda ) > \sigma \ast and \sigma \subset \~I
(k)
\rho for \rho > 1 +

\surd 
ds/\alpha \ast . Defining

(5.45) wij :=

\Biggl\{ \bigl( 
(\BbbV \lambda ) - 1hld/2e

\bigr) 
n

if j = jn \in \sigma ,
0 otherwise,

the weights wij satisfy \omega kl \leq C(s, d)hld/2 and (5.28) with a \rho depending only on s and
d. This concludes the proof for Example 5.1. The proof is similar for Example 5.2
with minor changes (the bound on \omega also depends on \delta ).

The following lemma concerns the satisfaction of the second condition of Theo-
rem 5.9.

Lemma 5.15. In the setting of Examples 5.1 and 5.2, there exists some constant

C(d, s, \delta ) > 0 such that, for 2 \leq k < l \leq q, \alpha \in \BbbR J(l)

and \phi =
\sum 

i \alpha i\phi i,

(5.46) min
\varphi \in span(\phi i)i\in I(k - 1)

\| \phi  - \varphi \| 2\ast 
| \alpha | 2

\leq C(d, s, \delta )\| \scrL  - 1\| h2s(k - 1) .

Proof. Apply Lemma 5.11 with the bounds on \rho and \omega obtained in Lemma 5.14.

The following theorem is a direct consequence of Theorem 5.9 and Lemmas 5.10
and 5.15.

Theorem 5.16. In the setting of Examples 5.1 and 5.2 there exists a constant
C(d, s, \delta ) such that Condition 5.7 is fulfilled with C\Phi := max(\| \scrL \| , \| \scrL  - 1\| )C(d, s, \delta )
and H := hs.

5.3.4. Propagation of exponential decay. We will now derive the exponen-
tial decay of the Cholesky factors L by combining the algebraic identities of Lemma 5.3
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with the bounds on the condition numbers of the B(k) (implied by Condition 5.7) and
the exponential decay of the A(k) (specified in Condition 5.5). The core of our proof
is based on a combination/extension of the results of [21, 47, 10, 9, 51, 11] on decay
algebras. The pseudodistance d( \cdot , \cdot ) appearing in (5.6) is not a pseudometric because
it does not satisfy the triangle inequality. However, to prove (5.6) we we will only
need the following weaker version of the triangle inequality.

Definition 5.17. A function d : I\times I  - \rightarrow \BbbR + is called a hierarchical pseudomet-
ric if

(1) d(i, i) = 0 for all i \in I;
(2) d(i, j) = d(j, i) for all i, j \in I;
(3) for all 1 \leq k \leq q, d( \cdot , \cdot ) restricted to J (k) \times J (k) is a pseudometric;
(4) for all 1 \leq k \leq l \leq m \leq q and i \in J (k), s \in J (l), j \in J (m), we have

d(i, j) \leq d(i, s) + d(s, j).

Note that the d( \cdot , \cdot ) specified in (5.13) for Examples 5.1 and 5.2 is a hierarchical
pseudometric. For a hierarchical pseudometric d( \cdot , \cdot ) and \gamma \in \BbbR +, let

(5.47) cd(\gamma ) := sup
1\leq k\leq l\leq q

sup
j\in J(l)

\sum 
i\in J(k)

exp( - \gamma d(i, j)).

The following theorem states the main result of this section.

Theorem 5.18 (exponential decay of the Cholesky factors). Assume that \Theta 
fulfils Conditions 5.5 and 5.7 with the constants \gamma ,C\gamma , H,C\Phi and the hierarchical
pseudometric d( \cdot , \cdot ). Then
(5.48)\bigm| \bigm| \bigm| (chol(\Theta ))ij

\bigm| \bigm| \bigm| \leq 2C\Phi cd (\~\gamma /8)
2

(1 - r)2

\Biggl( 
4cd (\~\gamma /4)

C\Phi C\gamma (cd (\~\gamma /2))
2

(1 - r)2

\Biggr) q

exp

\biggl( 
 - \~\gamma 

8
d(i, j)

\biggr) 
,

where

CR := max

\biggl\{ 
1,

2C\gamma C\Phi 

1 + \kappa 

\biggr\} 
, r :=

1 - \kappa  - 1

1 + \kappa  - 1
, \~\gamma :=

 - log(r)

1 + log(cd(\gamma /2)) + log(CR) - log(r)

\gamma 

2
,

and \kappa = H - 2C2
\Phi is defined as in Theorem 5.8.

The remaining part of this section will present the proof of Theorem 5.18. We
will use the following lemma on the stability of exponential decay under matrix mul-
tiplication, the proof of which is a minor modification of that of [47].

Lemma 5.19. Let I be an index set that is partitioned as I = J (1) \cup \cdot \cdot \cdot J (q) and
let d : I \times I \rightarrow \BbbR \geq 0 satisfy

d(i1, in+1) \leq 
n\sum 

k=1

d(ik, ik+1) \forall 1 \leq n \leq q  - 1 and ik \in J (k).

Let M (k) \in \BbbR J(k)\times J(k+1)

be such that | M (k)
i,j | \leq C exp( - \gamma d(i, j)) for 1 \leq k \leq q - 1 and

let

(5.49) cd(\gamma /2) := sup
1\leq k\leq q - 1

sup
j\in J(k+1)

\sum 
i\in J(k)

exp
\Bigl( 
 - \gamma 
2
d(i, j)

\Bigr) 
for \gamma \in \BbbR +.
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Then, for 1 \leq n \leq q  - 1,\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl( 

n\prod 
k=1

M (k)

\Biggr) 
i,j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq (cd (\gamma /2)C)
n
exp

\Bigl( 
 - \gamma 
2
d(i, j)

\Bigr) 
.

Proof. Set i1 := i, in+1 := j. Then\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl( 

n\prod 
k=1

M (k)

\Biggr) 
i,j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq Cn
\sum 

i2,...,in\in J(2),...,J(n)

exp

\Biggl( 
 - \gamma 

n\sum 
k=1

d (ik, ik+1)

\Biggr) 

\leq Cn exp
\Bigl( 
 - \gamma 
2
d (i1, in+1)

\Bigr) \sum 
i2,...in\in I

exp

\Biggl( 
 - \gamma 
2

n\sum 
k=1

d (ik, ik+1)

\Biggr) 

\leq (cd (\gamma /2)C)
n
exp

\Bigl( 
 - \gamma 
2
d(i, j)

\Bigr) 
.

The proof of the following lemma (on the stability of exponential decay under
matrix inversion for well conditioned matrices) is nearly identical to that of [47]. (We
only keep track of constants; see also [21] for a related result on the inverse of sparse
matrices.)

Lemma 5.20. Let A \in \BbbR I\times I be symmetric and positive definite with | Ai,j | \leq 
C exp( - \gamma d(i, j)) for some C, \gamma > 0 and a metric d( \cdot , \cdot ) on I. It holds true that

\bigm| \bigm| (A - 1)i,j
\bigm| \bigm| (5.50)

\leq 4

(\| A\| + \| A - 1\|  - 1) (1 - r)2
exp

\biggl( 
 - 

log( 1r )

(1 + log (cd (\gamma /2)) + log(CR)) + log( 1r )

\gamma 

2
d(i, j)

\biggr) 
,

where

cd(\gamma /2) := sup
j\in I

\sum 
i\in I

exp
\Bigl( 
 - \gamma 
2
d(i, j)

\Bigr) 
,

CR := max

\biggl\{ 
1,

2C

\| A\| + \| A - 1\|  - 1

\biggr\} 
= max

\biggl\{ 
1,

2C\| A - 1\| 
1 + \kappa 

\biggr\} 
,

r :=
1 - 1

\| A\| \| A - 1\| 

1 + 1
\| A\| \| A - 1\| 

=
1 - \kappa  - 1

1 + \kappa  - 1
,

and \kappa := \| A\| \| A - 1\| is the condition number of A.

Proof. On a compact set not containing 0, the function x \mapsto \rightarrow x - 1 can be accurately
approximated by low-order polynomials in x. Then, the spread of the exponential
decay can be controlled by Lemma 5.19. See section SM2 for details.

By representing Schur complements as matrix inverses, Lemma 5.20 can also be
used to show that the Cholesky factors of well-conditioned exponentially decaying
matrices are exponentially decaying. The following lemma appears in a similar form
in [11] for banded matrices and in [51] without explicit constants.

Lemma 5.21. Let B \in \BbbR I\times I \simeq \BbbR N\times N be symmetric and positive definite with
condition number \kappa and such that | Bi,j | \leq C exp( - \gamma d(i, j)) for some constant C > 0
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and some metric d on I. Let L be the Cholesky factor (in an arbitrary order) of B - 1

(B - 1 = LLT ). Then

| Li,j | \leq 
4
\sqrt{} 
\| B\| 

(\| B\| + \| B - 1\|  - 1) (1 - r)2
exp

\biggl( 
log(r)

1 + log (cd (\gamma /2)) + log(CR) - log(r)

\gamma 

2
d(i, j)

\biggr) 
,

(5.51)

where

cd(\gamma /2) := sup
j\in I

\sum 
i\in I

exp( - \gamma 
2
d(i, j)), CR := max\{ 1, 2C\| B

 - 1\| 
1 + \kappa 

\} ,

and r := 1 - \kappa  - 1

1+\kappa  - 1 .

Proof. Lemma 5.4 implies that the Schur complements of B - 1 can be expressed
as inverses of submatrices of B. The result then follows from Lemma 5.20 (see Proof 9
for details).

The last ingredient needed to prove the exponential decay of the Cholesky factors
of \Theta is the following lemma showing the stability of exponential decay under inversion
for block-lower-triangular matrices. (This operation appears in the definition of \=L in
(5.7)).

Lemma 5.22. Let I be an index set that is partitioned as I = J (1)\cup \cdot \cdot \cdot J (q) and as-
sume that the matrix L \in \BbbR I\times I is block-lower triangular with respect to this partition,
with identity matrices as diagonal blocks. If d( \cdot , \cdot ) is a hierarchical pseudometric
such that | Lij | \leq C exp ( - \gamma d(i, j)) (for some C \geq 1 and \gamma > 0), then it holds true
that

(5.52)
\bigm| \bigm| (L - 1)ij

\bigm| \bigm| \leq 2q (cd (\gamma /2)C)
q
exp

\Bigl( 
 - \gamma 
2
d(i, j)

\Bigr) 
with cd(\gamma ) := sup1\leq k\leq l\leq q supj\in J(l)

\sum 
i\in J(k) exp ( - \gamma d(i, j)).

Proof. The Neumann series of a q\times q block-lower-triangular matrix with identity
matrices on the (block) diagonal can be written as

(5.53) L - 1 =

q\sum 
k=0

(Id - L)k .

Since the sum terminates in q steps, the thickening of the exponential decay can
be bounded using Lemma 5.19. See section SM2 in the supplementary material for
details.

By applying the above results to the decomposition obtained in Lemma 5.3, we
conclude the proof of Theorem 5.18. See section SM2 in the supplementary material
for details.

5.4. Complexity and error estimates. The results of the previous sections
allow us to prove the following theorem on the exponential decay of the Cholesky
factors and the accuracy of their truncation.

Theorem 5.23. In the setting of Examples 5.1 and 5.2 there exist constants
C, \gamma , \alpha > 0 depending only on d, \Omega , s, \| \scrL \| , \| \scrL  - 1\| , h, and \delta , such that the entries of
the Cholesky factor L of \Theta satisfy

(5.54) | Lij | \leq CN\alpha exp( - \gamma d(i, j)) ,
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where d : I \times I \rightarrow \BbbR is the hierarchical pseudometric defined by

(5.55) d(i, j) := h - min(k,l) dist (supp (\phi i) , supp (\phi j)) \forall i \in J (k), j \in J (l).

As a consequence, writing

(5.56) LS
ij :=

\Biggl\{ 
Lij for (i, j) \in S,
0 else

with S \supset Sd,\rho := \{ (i, j) | d(i, j) \leq \rho \} , we have
\bigm\| \bigm\| \Theta  - LSLS,\top 

\bigm\| \bigm\| 
Fro
\leq \epsilon for \rho \geq 

\~C(C, \gamma ) log(N/\epsilon ). Furthermore, writing E := \Theta  - LSLS,\top , using the \epsilon -perturbation
\Theta  - E of \Theta as the input to Algorithm 2.2 returns LS as the output.

Proof. Theorems 5.6 and 5.16 imply that Conditions 5.5 and 5.7 are fulfilled with
constants depending only on d, s, \| \scrL \| , \| \scrL  - 1\| , h, and \delta . Theorem 5.18 concludes the
exponential decay of L. The accuracy of the truncated factors follows directly from
the exponential decay.

Theorem 3.1 is a direct consequence of Theorem 5.23.

Proof of Theorem 3.1. As described in subsection 3.3, the maximin ordering can
be represented as a hierarchical ordering satisfying the conditions of Example 5.1. The
result follows from Theorem 5.23 by observing that the sparsity pattern S\rho specified
in section 2 satisfies

(5.57) Sd,(\delta h) - 1\rho \supset S\rho \supset Sd,\delta h\rho .

Scaling the weights of the measurement functions \phi i to 1 increases the error by a factor
that is at most polynomial in N , which can be subsumed into the log(N)-dependence
of \rho by increasing the constants in the decay estimates.

While accurate (per Theorem 5.23), it is computationally inefficient to compute
the full Cholesky factor first (with Algorithm 2.1) and then truncate it according to
S\rho . Instead, we want to directly compute an approximation of L from the incomplete
factorization Algorithm 2.2, whose complexity is bounded by the following theorem.

Theorem 5.24. In the setting of Examples 5.1 and 5.2, there exists a constant
C(d, \delta ), such that, for S \subset \{ (i, j) | d(i, j) \leq \rho \} , the application of Algorithm 2.2
has computational complexity C(d, \delta )Nq\rho d in space and C(d, \delta )Nq2\rho 2d in time. In
particular, q \propto logN/ ln 1

hd implies the upper bounds of C(d, \delta , h)\rho dN logN on the

space complexity, and of C(d, \delta , h)\rho 2dN log2N on the time complexity.

Proof. Defining m := maxj\in I,1\leq k\leq q \#\{ i \in J (k) | i \prec j and d(i, j) \leq \rho \} , | xi  - 
xj | \geq \delta  - 1hl for i, j \in I(l) implies that m \leq C(d, \delta )\rho d. Therefore \#\{ i \in I | i \prec 
j and d(i, j) \leq \rho \} \leq qmN implies the bound on space complexity.

Consider the structure of the nested for-loops of Algorithm 2.2 and observe that,
for every k in the innermost loop, the number of distinct (i, j) satisfying i \prec j \prec k,
(j, k) \in S, and (i, j) \in S is at most (qm)2. This implies the upper bound N(qm)2 on
the time complexity.

Theorems 5.23 and 5.24 imply that the application of Algorithm 2.2 to \Theta  - E
(the \epsilon -perturbation of \Theta described in Theorem 5.23) returns an \epsilon -accurate Cholesky
factorization of \Theta in computational complexity \scrO (N log2(N) log2d(N/\epsilon )). In practice
we do not have access to E, so we need to rely on the stability of Algorithm 2.2 to
deduce that \Theta and \Theta  - E (used as inputs) would yield similar outputs, for sufficiently
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small E. Even though such a stability property of ICHOL(0) would also be required
by prior works on incomplete LU-factorization such as [31], we did not find this type
of result in the literature. We also found it surprisingly difficult to prove (and were
unable to do so) for the maximin ordering and sparsity pattern, although we always
observed the stability of Algorithm 2.2 in practice, for reasonable values of \rho . We
can, however, prove the stability of Algorithm 2.2 when using a slight modification
of the ordering and sparsity pattern that compromises neither the computational
complexity nor the accuracy of the factorization. The modified ordering and sparsity
pattern, being inspired by the concepts of red-black orderings [46] and supernodal
factorizations [71, 56], also allows one to take advantage of parallelism and dense linear
algebra operations and could therefore be used to improve the practical performance
of the algorithm. For r > 0, 1 \leq k \leq q, and i \in J (k), write

(5.58) B(k)
r (i) := \{ j \in J (k) | d(i, j) \leq r\} .

Construction 5.25 (supernodal multicolor ordering and sparsity pattern). Let
\Theta \in \BbbR I\times I with I :=

\bigcup 
1\leq k\leq q J

(k) and let d( \cdot , \cdot ) be a hierarchical pseudometric. For
\rho \geq 1, define the supernodal multicolor ordering \prec \rho and sparsity pattern S\rho as

follows. For each k \in \{ 1, . . . , q\} , select a subset \~J (k) \subset J (k) of indices such that

\forall \~i, \~j \in \~J (k), \~i \not = \~j =\Rightarrow B
(k)
\rho /2

\bigl( 
\~i
\bigr) 
\cap B(k)

\rho /2

\bigl( 
\~j
\bigr) 
= \emptyset ,(5.59)

\forall i \in J (k), \exists \~i \in \~J (k) : i \in B(k)
\rho 

\bigl( 
\~i
\bigr) 
.(5.60)

Assign every index in J (k) to the element of \~J (k) closest to it, using an arbitrary
method to break ties. That is, writing j \rightsquigarrow \~j for the assignment of j to \~j,

(5.61) \~j \in argmin
\~j\prime \in \~J(k)

d
\bigl( 
j, \~j\prime 

\bigr) 
,

for all j \in J (k) and \~j \in \~J (k) such that j \rightsquigarrow \~j. Define \~I :=
\bigcup 

1\leq k\leq q
\~J (k) and define the

auxiliary sparsity pattern \~S\rho \subset \~I \times \~I by

(5.62) \~S\rho :=
\Bigl\{ \bigl( 

\~i, \~j
\bigr) 
\in \~I \times \~J

\bigm| \bigm| \bigm| \exists i\rightsquigarrow \~i, j \rightsquigarrow \~j : d(i, j) \leq \rho 
\Bigr\} 
.

Define the sparsity pattern S\rho \subset I \times I as

(5.63) S\rho :=
\Bigl\{ 
(i, j) \in I \times I

\bigm| \bigm| \bigm| \exists \~i, \~j \in \~I : i\rightsquigarrow \~i, j \rightsquigarrow \~j,
\bigl( 
\~i, \~j
\bigr) 
\in \~S\rho 

\Bigr\} 
and call the elements of \~J (k) supernodes. Color each \~j \in \~J (k) in one of p(k) colors
such that no \~i, \~j \in \~J (k) with

\bigl( 
\~i, \~j
\bigr) 
\in \~S\rho have the same color. For i \in J (k) write

node(i) for the \~i \in \~J (k) such that i \rightsquigarrow \~i and write color(\~i) for the color of \~i. Define
the supernodal multicolor ordering \prec \rho by reordering the elements of I such that

(1) i \prec \rho j for i \in J (k), j \in J (l), and k < l;
(2) within each level J (k), we order the elements of supernodes colored in the

same color consecutively, i.e., given i, j \in J (k) such that color(node(i)) \not =
color(node(j)), i \prec \rho j =\Rightarrow i\prime \prec \rho j

\prime for color(node(i\prime )) = color(node(i)), and
color(node(j\prime )) = color(node(j)); and

(3) the elements of each supernode appear consecutively, i.e., given i, j \in J (k)

such that node(i) \not = node(j), i \prec \rho j =\Rightarrow i\prime \prec \rho j
\prime for node(i\prime ) = node(i), and

node(j\prime ) = node(j).
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Starting from a hierarchical ordering and sparsity pattern, the modified ordering
and sparsity pattern can be obtained efficiently.

Lemma 5.26. In the setting of Examples 5.1 and 5.2, given \{ (i, j) | d(i, j) \leq 
\rho \} , there exist constants C and pmax depending only on the dimension d and the
cost of computing d( \cdot , \cdot ) such that the ordering and sparsity pattern presented in
Construction 5.25 can be constructed with p(k) \leq pmax, for each 1 \leq k \leq q, in
computational complexity Cq\rho dN .

Proof. The aggregation into supernodes can be done via a greedy algorithm by
keeping track of all nodes that are not already within distance \rho /2 of a supernode
and removing them one-at-a-time. We can then go through \rho -neighbourhoods and
remove points within distance \rho /2 from our list of candidates for future supernodes.
To create the coloring, we use the greedy graph coloring of [45] on the undirected
graph G with vertices \~J (k) and edges

\bigl\{ 
(\~i, \~j) \in \~S\rho 

\bigm| \bigm| \~i, \~j \in \~J (k)
\bigr\} 
. Defining deg(G)

as the maximum number of edges connected to any vertex of G, the computational
complexity of greedy graph coloring is bounded above by deg(G)\#

\bigl( 
J (k)

\bigr) 
and the

number of colors used by deg(G) + 1. A sphere-packing argument shows that deg(G)
is at most a constant depending only on the dimension d, which yields the result.

Theorem 5.27. In the setting of Examples 5.1 and 5.2, there exists a constant
C depending only on d, s, \| \scrL \| , \| \scrL  - 1\| , h, and \delta such that, given the ordering \prec \rho 

and sparsity pattern S\rho defined as in Construction 5.25 with \rho \geq C log(N/\epsilon ), the
incomplete Cholesky factor L obtained from Algorithm 2.2 has accuracy

(5.64) \| LLT  - \Theta \| Fro \leq \epsilon .

Furthermore, Algorithm 2.2 has complexity of at most CN\rho 2d log2N in time and at
most CN\rho d logN in space.

Proof. The triangle inequality implies that S\rho \subset \{ (i, j) | d(i, j) \leq 2\rho \} and hence
the bound on the complexity of Algorithm 2.2 follows from Theorem 5.24. The approx-
imation property of the incomplete factors follows from the last part of Theorem 5.23
and a stability result for the incomplete Cholesky factorization with the supernodal
multicolor ordering and sparsity pattern detailed in section SM3.

This allows us to prove the main theorem presented in the introduction.

Proof of Theorem 2.1. Theorem 2.1 follows from Theorem 5.27 since rescaling the
weights of the measurements to 1 increases bounds on errors by at most a multiplica-
tive polynomial factor in N . By increasing the constant, this factor can be subsumed
in the N -dependence of \rho .

We have now established the results on exponential decay of the Cholesky factors
of \Theta and the accuracy of Algorithm 2.2. Before proceeding to the next section, we
will quickly establish a result on low-rank approximation of the Cholesky factors.

Theorem 5.28 (approximate PCA). In the setting of Theorem 3.1, take \rho =\infty 
and let L(k) be the matrix formed by the leading k columns of the Cholesky factors of
\Theta in the maximin ordering. Let l[ik] be as in (2.7). Then there exists a constant C
depending only on \| \scrL \| , \| \scrL  - 1\| , d, and s such that

(5.65)
\bigm\| \bigm\| \Theta  - L(k)L(k),\top \bigm\| \bigm\| \leq Cl2s - d

ik+1
.

Proof. Write I = I1\cup I2 with I1 := \{ i1, . . . , ik\} and I2 := I\setminus I1. By Lemma 5.4, the
approximation error made by keeping only the first k columns of the Cholesky factor-
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ization is equal to the Schur complement \Theta 2,2 - \Theta 2,1\Theta 
 - 1
1,1\Theta 1,2. Consider the implicit hi-

erarchy of the maximin ordering as in Figure 3.5 with h = 1/2 and let p \in \{ 1, . . . , q\} be
such that 2 - p \leq l[k]/l[1] \leq 2 - p+1. Write I = Ia \cup Ib with Ia := I(p) and Ib := I \setminus I(p).
The variational property (5.22) implies that \Theta 2,2 - \Theta 2,1\Theta 

 - 1
1,1\Theta 1,2 \leq \Theta b,b - \Theta b,a\Theta 

 - 1
a,a\Theta a,b.

Theorem 5.16 (with h = 1/2 obtained from the implicit hierarchy of Figure 3.5) im-
plies that \Theta b,b - \Theta b,a\Theta 

 - 1
a,a\Theta a,b \leq C( 12 )

2s(p - 1) - d. (The extra multiplicative ( 12 )
 - d term

arises because the measurement functions are scaled by hkd/2 in Example 5.1 with
h = 1

2 .) We conclude the proof using 2 - p - 1 \leq l[k + 1]/l[1] \leq 2 - p+1.

6. Extensions and byproducts.

6.1. The cases \bfits \leq \bfitd /2 or \bfits /\in \BbbN . Theorem 3.1 requires that s > d/2 to
ensure that the elements ofHs(\Omega ) are continuous (by the Sobolev embedding theorem)
and that pointwise evaluations of the Green's function are well defined. The accuracy
estimate of Theorem 3.1 can be extended to s \leq d/2 by replacing pointwise evaluations
of the Green's function by local averages and using variants of the Haar prewavelets of
Example 5.2 instead of variants of the subsampled Diracs of Example 5.1 to decompose
\Theta as in (3.12). Numerical experiments also suggest that the exponential decay of
Cholesky factors still holds for s \leq d/2 if the local averages of Example 5.2 are sub-
sampled as in Example 5.1, whereas the low-rank approximation becomes suboptimal.
As illustrated in Table 4.5, for Mat\'ern kernels we observe no difference (in accuracy
vs. complexity) between integer and noninteger values of s.

6.2. Sparse factorization of \bfitA = \Theta  - \bfone . Let LL\top = \Theta be the Cholesky factor-
ization of the covariance matrix \Theta . Writing P \updownarrow for the order-reversing permutation,

(6.1) P \updownarrow \Theta  - 1P \updownarrow = P \updownarrow L - \top L - 1P \updownarrow =
\bigl( 
P \updownarrow L - \top P \updownarrow \bigr) \bigl( P \updownarrow L - 1P \updownarrow \bigr) .

Since P \updownarrow L - \top P \updownarrow is lower triangular, it is the Cholesky factor of \Theta  - 1 in the reverse
elimination ordering. Furthermore, since L - \top = AL and both A and L are expo-
nentially decaying, the Cholesky factors of A are also exponentially decaying if the
Gaussian elimination is performed using the reverse of section 2's ordering. In fact,
the following, stronger, theorem holds.

Theorem 6.1. In the setting of Theorem 3.1, let

\r S\rho := \{ (i, j) \in I \times I | dist (supp(\phi i), supp(\phi j)) \leq \rho min(l[i], l[j])\} ,(6.2)

let L be the Cholesky factor of A in the reverse ordering, and define

L
\r S\rho 

ij :=

\Biggl\{ 
Lij for (i, j) \in \r S\rho ,

0 else.
(6.3)

Then there exists a constant C depending only on d, \Omega , s, \| \scrL \| , \| \scrL  - 1\| , and \delta such

that for \rho \geq C log(N/\epsilon ), we have
\bigm\| \bigm\| PAP  - L\r S\rho L

\r S\rho ,\top 
\bigm\| \bigm\| 
Fro
\leq \epsilon .

Using this result and the fact that \#\r S\rho has \scrO (\rho d+1) nonzero entries per column,
one can prove that using Algorithm 2.2 with a supernodal ordering as described in
Construction 5.25 yields an \epsilon -approximate Cholesky factorization of A in computa-
tional complexity \scrO (N log(N/\epsilon )2d) in time and \scrO (N log(N/\epsilon )d) in space. The matrix
A is essentially a discretized elliptic partial differential operator, and analogous re-
sults can be obtained in the setting where A is obtained as a discretization of \scrL with
regular finite elements and \Theta is the inverse of that discretized operator. Numeri-
cal experiments suggest that exponential decay properties also hold for discretized
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second-order elliptic equations in two or three dimensions (where s = 1 \leq d/2) when
using subsampling as in Example 5.1; see [74, section 3.1] for a special case of this
result on regular meshes. Thus, by computing the incomplete Cholesky factorization,
we obtain a direct solver for general elliptic PDEs with complexity \scrO (N log(N/\epsilon )2d)
in time and \scrO (N log(N/\epsilon )d) in space. To the best of our knowledge, this is the best
asymptotic complexity reported for such a solver in the literature (for elliptic PDEs
with rough coefficients and rigorous a priori estimates of complexity vs. accuracy).
It is not surprising that we obtain a fast solver for elliptic PDEs because our work
is based on the fast solvers introduced in [62, 63], which in turn can be shown to
be a blockwise version of the Cholesky factorization in nonstandard form introduced
by [31], where the inverses of diagonal blocks are computed using iterative methods.
By instead applying the Cholesky factorization in nonstandard form, the logarithmic
factor in the complexity of the gamblet transform can be improved. However, the er-
ror estimates of [62] and [63] improve significantly upon those in [31] by establishing
that exponential accuracy can be obtained with a finite number of vanishing moments
even for rough coefficients. The present work further extends the results on Cholesky
factorization to the setting of multiresolution schemes based on subsampling (without
any vanishing moments). For such multiresolution basis the nonstandard form just
reduces to computing an ordinary incomplete Cholesky factorization with the smaller
sparsity pattern \r S\rho , thus greatly simplifying the implementation. We note that by
using direct inversion methods similar to [53] it would be possible in principle to di-
rectly compute \epsilon -approximations of the Cholesky factors of \Theta  - 1 from \scrO (N log(N/\epsilon )d)
entries of \Theta at computational cost of \scrO (N log(N/\epsilon )2d), but we defer a more detailed
investigation to future work.

7. Comparison to related work.

7.1. \bfscrH -matrix approximations from sparse Cholesky factorization. The
\scrH -matrix data structure [37] uses low-rank approximations for blocks \Theta \=I \=J (\=I, \=J \subset I)
fulfilling the admissibility condition

(7.1) min
\bigl( 
diam\{ xi\} i\in \=I ,diam\{ xi\} i\in \=J

\bigr) 
\leq \eta dist

\bigl( 
\{ xi\} i\in \=I , \{ xi\} i\in \=J

\bigr) 
.

The approximation property of the incomplete Cholesky factorization in maximin
ordering (Theorem 3.1) directly implies bounds on the spectral decay of admissible
blocks in the \scrH -matrix framework, as can be seen from the representation

(7.2) \Theta = LL\top \Leftarrow \Rightarrow \Theta =

N\sum 
i=1

L:i \otimes L:i

of the Cholesky factorization of \Theta . If L is sparse according to the sparsity pattern
obtained in section 2, then L:i \otimes L:i can contribute to the rank of the submatrix \Theta \=I \=J

only if
(7.3)
2\rho l[i] \geq dist

\bigl( 
\{ xj\} j\in \=I , \{ xj\} j\in \=J

\bigr) 
and max

\bigl( 
dist

\bigl( 
xi, \{ xj\} j\in \=I

\bigr) 
,dist

\bigl( 
xi, \{ xj\} j\in \=J

\bigr) \bigr) 
\leq \rho l[i].

The number of i \in I satisfying (7.3) is at most C(\eta , d)\rho d logN , which recovers (up
to constants) the same rank bounds as obtained in [7] for second-order elliptic PDEs
with rough coefficients. However, the converse is not true and most hierarchical matrix
representations cannot be written in terms of a sparse Cholesky factorization of \Theta .
For example, adding a diagonal matrix to \Theta does not affect the ranks of admissible
blocks, but it diminishes the screening effect and thus the approximation property of
the incomplete Cholesky factorization as obtained in section 2 (see subsection 4.3).

D
ow

nl
oa

de
d 

04
/2

1/
21

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



© 2021 Florian Schafer, T. J. Sullivan, Houman Owhadi

COMPRESSION AND INVERSION OF DENSE KERNEL MATRICES 725

7.2. Comparison to Cholesky factorization in wavelet bases. [31] com-
putes sparse Cholesky factorizations of (discretized) differential/integral operators
represented in a wavelet basis. Using a fine-to-coarse elimination ordering, they
establish that the resulting Cholesky factors decay polynomially with an exponent
matching the number of vanishing moments of the underlying wavelet basis.

For differential operators, this coincides algorithmically with the Cholesky factor-
ization described in subsection 6.2 and the gamblet transform of [62] and [63], whose
estimates guarantee exponential decay. In particular, Gines, Beylkin, and Dunn [31]
numerically observe a uniform bound on cond(B(k)) which they relate to the approx-
imate sparsity of their proposed Cholesky factorization.

For integral operators, [31] uses a fine-to-coarse ordering and we use a coarse-
to-fine ordering. While their results rely on the approximate sparsity of the integral
operator represented in the wavelet basis, our approximation remains accurate for
multiresolution bases (e.g., the maximin ordering in section 2) in which \Theta is dense,
which avoids the \scrO (N2) complexity of a basis transform (or the implementation of
adaptive quadrature rules to mitigate this cost).

7.3. Vanishing moments. Let \scrP s - 1(\tau ) denote the set of polynomials of order
at most s - 1 that are supported on \tau \subset \Omega . [62] and [63] show that (5.18) and (5.17)
hold when \scrL is an elliptic partial differential operator of order s (as described in
subsection 2.1) and the measurements are local polynomials of order up to s - 1 (i.e.,
\phi i,\alpha = 1\tau ip\alpha with p\alpha \in \scrP s - 1(\tau i)). Using these \phi i,\alpha as measurements is equivalent to
using wavelets \phi i satisfying the vanishing moment condition

(7.4) [\phi i, p] = 0 \forall i \in I, p \in \scrP s - 1.

The requirement for vanishing moments has three important consequences. First, it
requires that the order of the operator be known a priori, so that a suitable number of
vanishing moments can be ensured. Second, ensuring a suitable number of vanishing
moments greatly increases the complexity of the implementation. Third, in order to
provide vanishing moments, the measurements \phi i, i \in J (k), have to be obtained from
weighted averages over domains of size of order hk. Therefore, even computing the
first entry of the matrix \Theta in the multiresolution basis will have complexity \scrO (N2),
since it requires taking an average over almost all of I\times I. One of the main analytical
results of this paper is to show that these vanishing moment conditions and local
averages are not necessary for higher-order operators (which, in particular, enables
the generalization of the gamblet transform to hierarchies of measurements defined as
in Examples 5.1 and 5.2).

7.4. Comparison to multiresolution approximation (M-RA). In spatial
statistics, the method most closely related to ours is the M-RA of [48], where a
Gaussian process is approximated by a sum, at different scales, of predictive processes
described in [5]. Following the intuition of the screening effect, these processes are
assumed to be block-independent with respect to a domain decomposition at the
respective scale, allowing for near-linear computational complexity. Although the
specific multiresolution scheme and its accuracy are a function of the specific choice
of basis functions and of the knots to be conditioned upon at each scale, no systematic
strategy and no theoretical error bounds are provided for best accuracy. We suspect
that no scheme relying on block-sparsity assumptions can also guarantee exponential
accuracy in near-linear computational complexity, though we note that the taper-M-
RA introduced by [49], independently of and after the first version of the present
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article, does not impose conditional block-independence and could therefore be made
exponentially accurate. While our present work and that of [48] are both motivated by
a hierarchical exploitation of the screening effect, we identify a concrete and simple
algorithm that has a guaranteed exponential accuracy for a wide range of kernel
matrices.

8. Conclusions. We have shown that the dense covariance matrices obtained
from a wide range of covariance functions associated to smooth Gaussian processes
have almost sparse Cholesky factors. Using this property, these matrices can be in-
verted in near-linear computational complexity just by applying zero fill-in incomplete
Cholesky factorization with an a priori ordering and sparsity pattern. Sparse Cholesky
factorization of sparse matrices is by now a classical field, but we are not aware of
prior work on the sparse factorization of dense matrices, other than for the purpose
of preconditioning. While our algorithm is subject to the curse of high dimension-
ality like other hierarchy-based methods, it is able to exploit low dimensionality in
the data without any user intervention. Our results are motivated by the proba-
bilistic interpretation of Cholesky factorization and proved rigorously by using and
generalizing recent results on operator-adapted wavelets. By reversing the elimina-
tion order, we also obtain a fast direct solver for elliptic PDEs whose rigorous a priori
accuracy-vs.-complexity estimates advance the current state of the art for general
elliptic PDEs.
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