a weakly confined system. Non-linear gas-particle and particle-particle interactions resulting from
pulsed flow are associated with harmonic and sub-harmonic modes. While periodic structured bub-
ble patterns are observed at the meso-scale, particle-scale measurements reveal anomolous diffusion
in the driven granular medium. We use single-particle tracks to analyze ergodicity and ageing
properties at two pulsing frequencies having remarkably different meso-scale features. The scaling
of ensemble-averaged mean squared displacement is not unique. The distribution of time-averaged
mean squared displacements is non-Gaussian, asymmetric and has a finite trivial contribution from

particles in crowded quasi-static surroundings. Results indicate weak ergodicity breaking which
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I. INTRODUCTION

Multiphase flows contain a broad range of spatio-temporal scales corresponding to com-
plex non-linear dynamics [1-6]. Fluidization is a notable example in which particles are
suspended by an incoming stream of fluid, whereby they exhibit fluid-like behavior. Trav-
eling kinematic waves manifest as bubbles which create spatial inhomogeneities in solids
concentration. In particular, pulsed fluidized beds (PFBs) are characterized by recurring
bubble patterns resulting from dynamical structuring and suppression of chaos compared to
fluidized beds having non-perturbed inflow. PFBs have shown improved hydrodynamics by
reducing or eliminating channeling or clumping of particles, and enhanced heat and mass
transfer properties while being non-intrusive. Prior studies on PFBs are mostly restricted to
meso- and macro-scale observations [7-12|. Pulsing excites several interacting modes, and
particle-level description is pivotal in elucidating some of the observed features. Trajecto-
ries of fluidized particles evolve depending on multiple factors such as external forcing, mo-
mentum exchange with carrier-phase, interactions with neighbors, material properties, and
confinement, and transition through different states. For instance, particles in the vicinity
of bubble wakes experience a greater acceleration compared to those near the distributor or
other quasi-static regions.

Previous studies [13-17] have examined velocity fluctuations and reported deviations
from ideal Brownian motion. The simplistic assumption of Maxwellian distribution breaks
down quite easily in multi-particle systems, and results in anomalous diffusion where the

ensemble-averaged mean squared displacement (MSD) is described by,

(x*(A)) ~ A7 (1)

The process is sub-diffusive for v < 1 and super-diffusive for v > 1, both of which are observed
in nature and engineering applications [18-25|, while 47 = 1 describes Brownian diffusion.
There also exist diffusive environments which cannot be described by a unique value of v and
involve transition of regimes discussed above. Different sources of anomalous diffusion have
been studied in the past which include continuous-time random walk (CTRW), fractional
Brownian motion (FBM) and the motion governed by fractional Langevin equation (FLE),
scaled Brownian motion (SBM), transport on a fractal support, and heterogeneous diffusion

process (HDP). Previous analyses also include combining these parent processes such as
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CTRW-FLE [26] and SBM-HDP [27|, the latter was termed generalized diffusion process
(GDP), where diffusivity follows,

D(x,t) ~ (1 + 58)Dolx|*¢’ (2)

The above equation combines spatial and temporal dependence from the underlying HDP
and SBM respectively. GDP is sub-diffusive (7 < 1) when a > 23 + 4.

Based on the physics of PFB [10-12, 28|, we hypothesize the system hosts a combination
of parent processes discussed above, as will be shown in the remainder of this article. We
also study the effect of ageing, i.e., time lapse after initializing experiments. It must be
noted that PFB does not represent confinement in a strict sense. Boundaries or walls are
present in the lateral directions which reflect particles after inelastic collisions, while the
streamwise transport is constrained by balance between drag exerted by the carrier-phase
and gravity. Hence, we describe the PFB as a weakly confined system. In addition, our unit
is quasi-two-dimensional (quasi-2D), since the depth-wise extent is comparable to the size

of bubbles, further verified by high-speed videos which reveal their span.

II. EXPERIMENTS

The setup used for experiments (Figure 1) consists of a bench-scale test section with a
cross-sectional area of 50mm x 5mm. The unit was filled with 18¢g of glass particles having
a sauter mean diameter of 394um and a density of 2.5g/cm?, classified under Geldart Group
B [29]. The resulting static height was 50mm. Flow rate at the inlet was pulsed in the form

of a sine wave,

Q(t) = A + B sin(2rft) (3)

where, the base flow rate, A = 2.61/min. The corresponding velocity is higher than the min-
imum fluidization velocity, Uy, which denotes the minimum velocity required to support the
weight of solids. Details regarding the measurement of U,,; can be found in Vaidheeswaran
et al. [30]. The amplitude, B is set to 2.1l/min, and two pulsing frequencies are used,
f=4Hz and 6Hz. A fractal distributor was 3-D printed using a high-precision ultraviolet
curing printer. High-speed videos were recorded at 300H z over a duration of 20s using a

120mm Nikon lens and Fastex ILSL sensor, and the unit was back-lit with an LED light
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source. The resulting spatial resolution was 0.71mm X 0.71mm. Glass particles were tracked
using an in-house code, PTVResearch [31]| based on optical flow equations. Optical distor-
tions were removed using calibrated grid and dewarping [32|, and outliers were detected
by proper orthogonal decomposition [33]. In a recent effort [34], our method was cross-
validated with other particle tracking algorithms when applied to a fluidized bed system,
and the predicted velocities compared well. We remark on a few noteworthy limitations
of our apparatus. Particle tracks are lost when they enter bubbles, where they become
out-of-focus due to back-lighting. Only particles tracked during the entire duration of our
experiments are considered for statistics to avoid unintended bias. Also, the unit is prone
to slugging from tight confinement along its depth, which prohibits exploring higher pulsing
frequencies and amplitudes as well as using unperturbed flow at the inlet. Further details

regarding the experiments can be found in Higham et al. [12].

\ LED Light

Source

Glass beads
(SMD =394 pm)

Distributor

Q(t) = A + Bsin2nft

FIG. 1: Schematic of the PFB set-up used in this study. The zoomed-in image and inset

show the frontal view and a rough sketch of fractal distributor (not drawn to scale).

Meso-scale responses to pulsing conditions are shown in Figure 2. Kinematic waves
originate as one-dimensional planar disturbances and transition into structured bubbles as
a consequence of interactions between harmonic and sub-harmonic modes. The recurring

patterns are sustained provided their wavelength, A fit the lateral dimension. Bubbles shift
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by A/2 between successive cycles. We notice \, associated with bubble size, reduces while
changing f from 4Hz to 6Hz. At 4Hz, bubbles are larger and switch sides every half cycle.
Wakes experience a greater compressive stress when defluidized, which makes bubbles less
stable and deformed as they propagate upward. The pattern changes to a bubble at the
center and two simultaneous bubbles along the walls at 6 Hz, having a smaller size and a

more distinct interface.

FIG. 2: Structured bubble patterns at (a) f=4Hz and (b) {=6H z.

IIT. RESULTS

Sample trajectories (Figure 3) indicate non-uniform diffusion in the PFB. We notice a
few particles transported over much shorter distances during the entire measurement period.
Even if a single particle track is considered, the motion is altered significantly depending
on instantaneous location. Particles in the wake of bubbles take longer steps, while they
undergo much shorter displacements in quasi-static regions. Their motion is confined by
walls in the lateral direction, and the balance between gravity and inter-phase drag governs
their streamwise transport. The dynamics are strongly coupled to the fluidizing medium, a

mechanism neither trivial nor explicitly modeled while describing anomalous diffusion. It is



worth mentioning that the effect of drag was included in the generalized Langevin equation
[35] to derive kinetic theory, more appropriate for fluidized granular media. Albeit, contin-
uum modeling efforts have failed to reproduce structured bubbles in PFBs [11]. Stress field
in granular medium is not adequately represented by the existing frictional models, which
is critical to sustain the recurring pattern. We also notice spiral trajectories possibly due
to strongly correlated directional changes [36]. In our case, this is caused by a combination
of unidirectional forcing, lateral confines and preferential movement of bubbles. Momentum
transfer from particle interactions is subdued compared to anisotropic wake-induced trans-
port which breaks the symmetry in turning-angle and forms clockwise or counterclockwise
patterns close to walls. However, diffusion characteristics vary spatially and spiraling motion

is not present throughout the domain.
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FIG. 3: Sample trajectories at (a) f=4Hz and (b) f=6H z.

Next, we look at autocorrelation, p between displacements in the cartesian directions.

We use the following definition,

NP S IGES )

= (4)
\/Var [Ax;(t)] Var [Ax;(t + A)]

where, A and Ax; are lag time and particle displacement. This is ensemble-averaged to

obtain (p) shown in Figure 4. Again, we notice dominant harmonic and sub-harmonic
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responses at both the pulsing frequencies. Lateral steps show a rapid decay of (p) at f=4H z,
while the two components reveal comparable persistent memory at f=6H z. This occurs in
conjunction with redistribution of energy between harmonic and sub-harmonic modes as
explained using proper orthogonal decomposition in our previous study [12]. The long-
range correlation observed in the collective behavior of particles follows the idea of Kac [37],
wherein determinism evolves in multi-particle systems governed by individual stochastic

differential equations.

FIG. 4: Autocorrelation of displacements, Ax and Ay at (a) f=4Hz and (b) f=6Hz.

We then examine the behavior of MSD, typically used to study diffusion processes. At
this point, ergodicity is not known, and we use two different measures of MSD. First, is the

ensemble-averaged MSD defined as,

N
1
(x*(A)) = N > xi(A) = xi(0) (5)
i=1
where, N is the total number of tracked particles. The second measure is given by,

_ T-A
@) =g=5 [ (xe+2) —xoP) (©
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which involves both time-averaging and ensemble-averaging, and T is the total duration
of experiments. (x?) has a nonunique scaling exponent (Figure 5). Dynamically ordered
bubbles result in spatially varying diffusion which may not be apparent while probing the
ensemble behavior. (§2) has a sublinear exponent initially followed by a cross over to a linear
trend at long time scales similar to diffusing insulin granules [38]. More tracked particles
participate in wake transport over longer periods. Propagation of bubbles separates such
entrained particles from crowded surroundings and their displacements become increasingly
uncorrelated in time. This could cause an anti-persistent motion leading to sub-diffusion
at short time scales with a gradual transition to memoryless diffusion typical of a CTRW.
The final cross over to ~ A" for A — T is due to confinement as reported for GDPs and
SBMs [27, 39| in contrast to purely sub-diffusive CTRWs, where plateaus are not present for
time-averaged MSDs. Detailed measurements such as turning-angle distributions [36, 40, 41|
may be required to formulate a model describing these trends in (x> and (2).

Besides, we notice significant difference in scaling between (x?) and (92) indicating weak
non-ergodicity [39, 42-44|. This eliminates the possibility of ensemble diffusion in PFB
governed by transport on a fractal support, which is ergodic by definition. (x?) and (§2)
show the same limiting behavior at A/T" — 0 and A/T — 1. The latter is apparent from
Equation 6, which has a singularity for A — T, thus placing the constraint, (x?) = (62).
Also, the linear scaling in (02) is prevalent for an appreciable period at both the values of
f, previously observed for sub- and super-difussive unconfined HDPs [39]. This might lead
to a false impression of Brownian motion unless supported by complementary statistical
measures.

To elucidate non-ergodic dynamics in PFB, we define ergodicity-breaking parameter (EB)

as,

EB(A) = Ay (7)

EB represents dispersion in 62, and we examine its variation with T to identify deviation from
ergodic behavior. EB for a Brownian motion follows lima /7,0 EBgm(A) = %%, indicated by
the curve oc T~! in Figure 6. We observe a more gradual change in EB approaching a finite
value for A/T — 0 as reported for anomalous stochastic processes governed by HDPs and

CTRWs [45]. To further investigate the nature of ergodicity breaking, we use alternative
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FIG. 5: MSD from experiments at (a) f=4Hz and (b) {=6H z. Dashed lines represent A'

sacling.

ergodic parameter, EB following the definition of Godec and Metzler [46] given by,

EB(A) = —i (8)

At short time scales, there is a pronounced scatter in £B. Particles reside in a given state
for a duration determined by the spatio-temporal evolution of the system. As measurement
time increases, more particles transition between states and the change in £B becomes more
moderate. We notice EB # 1 at intermediate time scales, confirming deviation from ergodic
dynamics. We also find E8 =1 for A/T" — 1 due to confinement, which is not indicative of
ergodicity though it mathematically represents a necessary condition. A sufficient condition
for ergodicity is EB — 0 for A/T — 0 which is clearly not satisfied here.

In addition, we examine the spread in 62 (Figure 7) using the non-dimensional parameter

¢ defined as,
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FIG. 6: (a) Ergodicity breaking parameter (EB) versus measurement time (T) at f=4Hz
and 6H z, where A=0.017s. Dashed lines represent different slopes for guidance. (b)
Variation of alternative ergodic parameter (£5) with lag time (A) at f=4Hz and 6H z.

§= (9)

The distribution, ¢(&) is Gaussian centered at 1 (£ = 1 represents ergodicity) for a Brownian
walker. For A/T < 1, ¢(§) has distinct peaks at & > 1 (f=4Hz) and £ < 1 (f=6Hz). We
notice a significant scatter in £ for growing lag times while deviating from ergodic dynamics.
®(€) is finite at £€=0 for all values of A, as observed for sub-diffusive CTRWs [47]. The
contribution from quasi-static particles is more prominent for longer lag times at f=4Hz.
These findings corroborate combination of parent stochastic processes dictating the under-
lying anomalous diffusion. Weak ergodicity breaking essentially results from information
content in single-particle trajectories which are not retained while ensemble-averaging. Be-

sides, wake transport is not truly reproducible and distances over which it occurs could vary
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leading to non-equilibrium relaxation.
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FIG. 7: Amplitude scatter distribution, ¢(&) at (a) f=4Hz and (b) 6Hz.

Finally we look at ageing characteristics, which along with ergodicity breaking determine
the (non-)stationary nature of a stochastic process. (92) shows a monotonic drop as a func-
tion of T (Figure 8) for different values of A. This is indicative of a collective sub-diffusive
anomalous process. Analogous ageing behavior in a sub-diffusive environment is found in
other instances including plasma membranes 23| and fibrin matrices [48]. As a consequence,
the system appears less diffusive as it evolves longer. More and more particles transition
through quasi-static regions which overpopulate the tails of wait-time distributions. If the
on-off response of particles switching between wake transport and interaction with neighbors
(through friction and collision) is considered, the occurrence and duration of these events
appear random at short time scales. Upon prolonged measurements, occasionally long on

and off states are obtained, characteristic of non-stationary and out-of-equilibrium dynam-
ics [49, 50]. This in essence results in the observed ageing behavior. But individual motion

of particles could vary depending on localized states. We further quantify the ensemble
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behavior using ageing factor [39] defined as,

NGy

10
(02(A)) o

2 refers to the time-averaged MSD considering the ageing time, ¢, given by,

T = | () xR (1)

“T-a-i ),

The above expression is ensemble-averaged while calculating A for different values of ¢,
shown in Figure 9. There is a steady drop in A even for A/T < 1 due to continued
localization of particles in quasi-static regions, again indicative of sub-diffusive behavior.
Even though the meso-scale response (bubble pattern) is completely different at f=4H z and

6H z, similar anomalous diffusion characteristics are observed.
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FIG. 8: Variation of time-averaged MSD, (62) with measurement time (T) at (a) f=4Hz
and (b) f=6H z.
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FIG. 9: Variation of ageing factor (A) with dimensionless ageing time (t,/T) at (a) f=4Hz
and (b) f=6H z for different values of A as indicated.

IV. CONCLUSION

We analyzed anomalous diffusion in PFB having a spatio-temporal dependence using
single-particle tracking, and found traits from a combination of parent stochastic processes.
PFDB represents a driven granular system having complex non-linear interactions. Finite
memory or long-range correlations stem from individual stochastic motions, in line with the
ideas of Kac surrounding propagation of chaos [37]. Time-averaged and ensemble-averaged
MSDs deviate indicating weak ergodicity breaking. MSDs approach a plateau similar to
constrained GDPs or SBMs, although our setup is weakly confined wherein the streamwise
transport is balanced between inter-phase drag and gravity. The distribution of amplitude
scatter is wide, non-Gaussian, asymmetric, and has a finite contribution at zero stemming
from particles in quasi-static surroundings, a feature prevalent in CTRWs. The system

also exhibits ageing as more traps are encountered over a prolonged duration. The ageing
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factor decays monotonically suggesting an overall subdiffusive process at the two pulsing

frequencies having a different meso-scale response altogether. We expect structured flow

patterns in PFBs while lowering the effective diffusivity compared to fluidized media having

an unperturbed inflow, which needs to be verified.
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