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Abstract

Particle tracking methods extract high-fidelity particle-scale velocity data

from digital video measurements of particle laden flow. This experimental

technique is often used to better understand the motion of particles and fluids

in chemical processes and other complex particulate systems. Velocimetry

measurements are also commonly used as benchmark data against which

computational models are validated. However, the methods, codes, and ex-

perimental setups all have limitations. It is imperative that practitioners

verify the velocimetry methods and their implementation as well as under-

stand the limitations of experimental setups. This work focuses on quantify-

ing the visible depth of field in a dense fluidized bed. Following a precedent

set by the particle imaging velocimetry community, a particle velocity field

is manufactured using a computational fluid dynamics and discrete element

method simulation. Photo realistic high-speed videos are rendered based on
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the simulated data using the three-dimensional creation software Blender.

Particle velocities are extracted from the synthetic high-speed videos using

three variants of Particle Tracking Velocimetry and Optical Flow Velocimetry

methodologies. The tracked results are then compared to the known solu-

tion, quantifying the error associated with the assumed visible depth. The

results indicate that at a depth of one particle diameter, all three particle

tracking codes give accurate measurements, largely within 5%. However, the

error increases when the full bed video measurements are compared to the

known solution at one particle diameter, i.e., mimicking a CFD validation

study. For some statistics the constant depth assumption only increases the

error slightly, for others significantly.

Keywords: velocimetry, particle, tracking, PTV, OFV, CFD-DEM,

granular, multiphase, flow

1. Introduction

Gas-solid (particulate) fluidized beds are used in a variety of energy and

chemical conversion devices due to their high interfacial transfer rates [1].

Collecting data in fluidized beds without intruding into the bed and a↵ecting

the flow can be challenging due to opacity of the particles. Some non-intrusive

experimental methods exist which are able to measure particle-scale proper-

ties internally, namely positron emission particle tracking (PEPT), e.g., see

[2–4], magnetic resonance imaging (MRI), e.g., see [5–7], and electrical ca-

pacitance tomography (ECT), e.g., see [8–10]. Yet, due to their ease of use,

lower cost, and ability to produce high-quality data, velocimetry methods

relying on digital images or high speed video (HSV) remain some of the most
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commonly used techniques to study dense gas-fluidized [11–33] and granular

[34–43] particle systems.

Velocimetry methods which extract particle position and speed from high

speed video are frequently used because they may be applied to any device

or section in which the internals may be imaged. This data is often treated

as error free and potentially even used to calibrate models [44]. However,

because the particles are most often opaque themselves, the imaging only

captures a certain depth into particle-laden flows. Further, it is a variable

depth which depends on the local particle concentration. Often this depth

is approximated as a constant value, e.g., “[t]he depth of field was approxi-

mately 8 mm” [30], a number of particles, e.g., “[t]he depth of field of view

was approximately one particle diameter,” [22], or not approximated at all,

e.g., “HSV imaging is taken to capture particle motion near the flat, front

face of the bed” [32]. In reality, though, the depth of the field of view de-

pends on the local hydrodynamics. In packed beds or dense emulsion regions

of bubbling beds, the depth is e↵ectively half a particle radius as the parti-

cles touching the wall obscure those behind them. In dilute transport flows

or bubble regions of bubbling beds the e↵ective depth depends on the light-

ing and the cameras’ field of view, among other factors. There is a need to

study this error in order to know how much confidence should be placed in

velocimetry measurements of dense particle flows with solids concentrations

greater than a few percent. In this work, we seek to quantify the level of

error incurred by the uniform depth assumption, which is typically applied

when post-processing CFD data to compare to the velocimetry data, i.e., for

validation.
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In order to make an error assessment, velocimetry results must be com-

pared to known particle position and velocity data which cannot be obtained

through traditional experimental measurements. Here, a non-trivial ground

truth is constructed from numerical simulations using the commonly ap-

plied CFD-DEM method which explicitly resolves the motion and collisions

of all particles in a system [3, 45, 46]. The numerical data are rendered

into high-resolution, photorealistic high-speed videos (HSV) imitating an ex-

isting real-world setup. Three state-of-the-art, open-source tracking codes

based on Particle Tracking Velcoimetry (PTV) and Optical Flow Velocime-

try (OFV) are used to measure particle velocity from the synthetic HSV. We

statistically evaluate the reliability of using HSV data at di↵erent internal

depths to quantify the accuracy of the codes and the constant imaging depth

assumption. An overview of the workflow is provided in Fig. 1.

The remainder of this work is organized as follows. In Sec. 2 the sim-

ulation method is briefly overviewed and the problem of interest, a bench-

scale fluidized bed, is described. Section 3 discusses how the raw simulation

data is rendered in to photorealistic HSV. Then, the velocimetry methods

used to take measurements from the synthetic data are reviewed in Sec. 4.

The velocimetry measurements are compared to the known simulated data

in Sec. 5, which begins by defining several statistical measures used in the

analysis. The work ends with a summary and outlook in Sec. 6.

2. CFD-DEM Simulation

Synthetic particle data is generated in this work using computational

fluid dynamics (CFD) coupled with the discrete element method (DEM).
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CFD-DEM is a common Euler-Lagrange numerical method for the simulation

of gas-solids flows in which the particles are individually tracked, including

collisions [3, 45], but not explicitly resolved by the continuum, unlike particle

resolved direct numerical simulation (PR-DNS) [47]. The primary governing

equations are provided in the Supplementary Material and readers unfamiliar

with CFD-DEM are referred to, e.g., Zhu et al. [48], van der Hoef et al. [46],

and Capecelatro and Desjardins [49] for a thorough description of the model

equations. The open-source code MFiX (https://mfix.netl.doe.gov) is

used for numerical solution of the governing equations. MFiX solves the gas-

phase partial di↵erential equations in a finite volume formulation in the style

of Patankar [50] with a multiphase SIMPLE algorithm for pressure-velocity

coupling [51]. Additional details of the numerical solution are also provided

in the Supplementary Material.

In an e↵ort to ensure that the synthetic data would represent real-world

particle laden measurements, we choose to simulate an actual experiment

where HSV was collected and used for velocimetry analysis. The National

Energy Technology Laboratory’s small-scale challenge problem (SSCP-I) [22]

was selected to guide the formulation of the synthetic data used in this work.

The SSCP-I experiment is simulated with a CFD-DEM model described be-

low, similar to previous studies of the SSCP-I, primarily aimed at CFD val-

idation [52–54].

The SSCP-I bed is a 3-inch (7.62 cm) deep by 9-inch (22.86 cm) wide

rectangular channel with a modeled height of 121.92 cm. The particles have

a diameter and density of dp = 3.256 mm and ⇢p = 1131 kg/m3. The total

number of particles in the bed is Ntot = 92948. The gas is ambient air with
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constant density, ⇢g = 1.2 kg/m3, and viscosity, ⇢g = 1.8 ⇥ 10�5 Pa-s. The

domain is discretized by a CFD grid of 36⇥192⇥12 giving a uniform cell size

of approximately 2dp. The coe�cients of restitution (degree of inelasticity)

for particle-particle and particle-wall collisions are 0.84 and 0.92, respectively.

The Coulomb friction coe�cients for both particle-particle and particle-wall

collisions are 0.35. The spring constant of the linear spring dashpot model

is set at kn = 2529 N/m so that the collision time-scale is ⌧coll = 2⇥ 10�4 s.

The timestep of the DEM subcycling is set at ⌧coll/20 and the maximum

CFD timestep is limited to 5⌧coll. The experiment was operated at three

flow conditions corresponding to inlet gas velocities of 2-, 3-, and 4-times the

minimum fluidization velocity of Umf = 1.095 m/s. This work focuses on the

U = 3Umf condition.

In addition to bed pressure drop measurements, the SSCP-I experiment

recorded HSV imaging of the particle dynamics at the front of the bed.

Particle tracking was applied in five square averaging regions centered at an

elevation of 7.62 cm. The edge of each bin is 4.572 cm in length so that the

region of interest spans the width of the bed, see schematic in Fig. 2 and the

Graphical Abstract. The original video is reported to have a pixel resolution

of 1280 ⇥ 800 and that 22,000 frames were taken at rates between 1000 and

1500 frames/s (fps). The synthetic data is taken at the lower frequency of

1000 Hz and saved for a period of 25 s starting at 5 s to avoid any transient

behavior due to initialization.
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3. Synthetic Data Rendering

The open-source, 3-D creation software Blender (www.blender.org) is

used to generate photorealistic images from the CFD-DEM simulations re-

sults. Specifically, Blender’s physics based ray-tracing engine, Cycles, is used

to render the scene in Fig. 2 which shows the modeled bed, near-wall par-

ticles, the camera and its orientation, as well as the region of interest (red

boxes). The model bed contains opaque left and right side walls and clear

acrylic front and back walls. A texture mimicking scratches is placed on

the front acrylic wall to add noise and artifacts to the final rendering. Fig.

3(a) shows the cropped region of interest without particles, highlighting the

photorealistic e↵ects. Four high intensity light sources (lamps) were placed

around the camera and positioned so that reflections from the acrylic were

not observed. Although these lamps create harsh shadows, they are required

to provide enough light to see the particles.

Using an in-house plug-in, the MFiX native particle positions are read

directly into Blender. Each particle is represented as an ico-sphere, with

two subdivisions and smooth shading. The synthetic Blender camera cap-

tures the same field of view as the SSCP-I experiment at the pixel resolu-

tion of 1280 ⇥ 800. In each dataset, 25,000 frames are rendered using two

Nvidia Tesla P100s of the National Energy Technology Laboratory’s high-

performance computer Joule 2.0. The focal length of the synthetic camera is

set at 55 mm with a 32 mm (width) image sensor. Camera distortion is simu-

lated to ensure a fair representation of the experimental setup in the Blender

rendering process. Example frames of the rendered images are provided in

Fig. 3(b) and (c) showing only near-wall particles and all particles, respec-
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tively. An example image of the actual, physical SSCP-I HSV is provided in

Fig. 3(d) for comparison.

Finally, we note that a series of HSVs are rendered in an identical fashion

from the same Blender scene that di↵er only in a pre-processing filter applied

to the CFD-DEM simulation data. A sharp filter is used to mask particles

beyond a set distance, D, from the front wall. Depths of D = 1.5rp, 2rp, 3rp,

4rp, 6rp, 8rp, and 7.62 cm, the full bed depth (⇡ 46.8rp), are considered. All

particles with centroid positions satisfying zp > D are completely excluded

from the rendering.

4. Velocimetry Methods

Two di↵erent velocimetry techniques are used in this study: Particle

Tracking Velocimetry (PTV) and Optical Flow Velocimetry (OFV). Three

specific implementations, i.e., codes, of these techniques are applied:

• Tracker (https://mfix.netl.doe.gov/tracker) a PTV method writ-

ten in Python running on Windows, Linux and MacOS.

• flowonthego (https://flowonthego.org) an OFVmethod written Objective-

C running on Android and iOS.

• PTVResearch (https://github.com/jonnyhigham/PTVResearch) a hy-

brid PTV and OFV method written in Matlab running on Windows,

Linux and MacOS.

All three codes are free and open-source and developed by the authors of this

work. We note that this work is not intended to compare one particle tracking
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code or technique against another. Rather, multiple codes and methods are

used to help ensure the findings are not specific to a particular velocimetry

technique nor code implementation.

4.1. Tracker

PTV is a conceptually simple algorithmic technique in which an image

is fragmented into discrete, identifiable objects. An object’s displacement is

found by determining which of the identified objects in adjacent frames are

the same. Then, the velocity is simply the product of the displacement and

HSV frame rate. In practice, PTV is rather challenging because matching

seemingly similar objects across frames is not trivial. Additionally, image

processing remains a mix of art and science as algorithm parameters are

commonly selected to make the results “look better” qualitatively.

As a representative PTV algorithm, Tracker, an open-source particle

tracking application written in python, leveraging OpenCV [55], Numpy [56],

and Scipy [57] libraries, is used. In this work, the HSVs are pre-processed by

applying a Gaussian blur filter with a size of 3.0 and a sigma of 1.0 (pixels)

to remove noise from the image. Next, OpenCV’s contrast limited adaptive

histogram equalization (CLAHE) with a tile size of 8.0 ⇥ 8.0 and a clip

limit of 9.0 pixels is used to increase the contrast of the image. To actually

identify the particles in the image, OpenCV’s SimpleBlobDetector is used

which performs a series of thresholds, in this case from 30 to 255, to binarize

the image. Centroids are determined from the binarized images, with similar

centroids from the di↵erent thresholds being grouped to form one blob (ob-

ject). These blobs are then filtered based on their area (60 to 140 pixels) and

circularity (0.7 to 1.0). These values were manually adjusted to match the
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apparent area of the particles in the image, maximizing the labeled particles

and minimizing erroneous labels.

With the particles labeled, the next step is to identify the same particle

across multiple frames to determine their displacement and, hence, velocity.

Tracker’s poly-projection algorithm is applied for this purpose which adapts

from point (zeroth-order), linear and higher-order polynomials as successive

frames are added to a particle’s track history to predict where it will occur

in the next frame [58]. Some specifics of the poly-projection as implemented

in Tracker and used in this work can be found in the Supplementary Mate-

rial. Generally, we observe that the poly-projection algorithm performs well

because the HSVs are rendered at a su�ciently high frame rate. On aver-

age, displacements are found to be smaller than the apparent radius of the

particles ( 7-9 pixels) so that the closest object to the projected location is

typically the correct particle.

4.2. flowonthego

While the methods are very di↵erent, OFV is conceptually similar to

PTV in that there are essentially two primary steps involved: identifying

objects and tracking them across frames. Unlike PTV, which identifies object

centoids, OFV typically identifies “features” from the image gradients. In

the OFV code used here, flowonthego, features correspond to eigenfeatures

which are determined from a correlation matrix,

M =

2

4  x
2  x y

 x y  y
2

3

5 (1)

where  (x, y; t) is the pixel intensity and  x and  y are the intensity gradi-

ents in the x- and y-directions, respectively. Gradients are computed from a
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smoothed field using a Gaussian kernel with a width of five pixels. Eigenfea-

tures are defined as regions where the eigenvalues of M are at least 0.01. The

displacement of across frames is determined from the optical flow equation

[59]

 t + u x + v y
⇠= 0 , (2)

where  t is the partial derivative of pixel intensity with respect to time

between image pairs and u and v are the velocities in the x- and y-directions.

Equation (2) is solved in flowonthego by applying the Lucas-Kanade solution

method [60, 61] with a 15 ⇥ 15 pixel neighborhood (see Supplementary

Material for more detail).

4.3. PTVResearch

In addition to PTV and OFV, a hybrid of the two methods is also con-

sidered in PTVResearch. Like the PTV code Tracker, the hybrid OFPTV

code uses OpenCV’s SimpleBlobDetector to identify discrete objects. The

“blobs” are filtered based on their area (60 to 140 pixels) and circularity (0.7

to 1.0). The centroids of the N blobs identified in each frame are substituted

for the eigenfeatures and their displacements are determined using the same

optical flow solution method of the OFV code flowonthego.

5. Results and Discussion

5.1. Post-processing

In this section we provide the general methods in which the large volume

of simulation and velocimetry data are processed into more compact forms

suitable for error analysis. Mimicking the procedure used in the original
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SSCP-I experiment, the field of view is split into five square spatial regions

(bins) spanning the width of the channel and into which particle data are

averaged. The values computed from these bins are identified with subscripts

1 through 5 increasing from left to right. The 25,000 frame (25 s) video

is decomposed into five 5,000 frame (5 s) “segments.” The segments are

treated independently and used to compute 95% confidence intervals (CIs) for

calculated errors. Finally, all seven videos with sharp depths of field of D =

1.5rp, 2rp, 3rp, 4rp, 6rp, 8rp, and full are processed in the same manner. The

particle velocity data is post-processed using two distinct methods outlined

below in Sec. 5.1.1 and 5.1.2, and depicted visually in the Graphical Abstract.

Ultimately, we will study six primary quantities of interest, for each of the

two velocity components, in five spatial bins, using seven depth-dependent

variations of the five di↵erent video segments for a total of 2100 averaged

data points for each of the velocimetry methods. Hence, distilling the results

of this study into simple metrics is a considerable challenge.

5.1.1. Time-series analysis

Let Nj,i be the set of all particles contained in the the j-th spatial bin at

time ti = 0.001i+5.0s where i 2 [1, 5000] is the frame index of the s 2 [1, 5]

video segment. Then the time-dependent, spatially-averaged particle velocity

is given by,

wj,i =
1

Nj,i

Nj,iX

p=1

wp(ti) ,

13



where wp represents either the x or y particle velocity component. Due to

the uniform time interval between frames, the time-averaged mean is simply

Wj =
1P
�i

5000X

i=1

�iwj,i , (3)

where � is a masking function such that � = 0 if Nj,i = 0, and � = 1

otherwise. The time-averaged standard deviation is given by

w
0
j =

vuut 1P
�i

5000X

i=1

�i (wj,i �Wj)
2
, . (4)

It is, of course, possible to compute higher-order statistics from the wj,i time-

series, however, the time-averaged mean and standard deviation are by far

the most common quantities studied in practice.

5.1.2. Probabilistic analysis

Again let wp(ti) be the x- or y-velocity component of a p-th test particle

or track occurring in the j-th spatial bin of the i-th frame. Now, instead of

averaging wp(ti) together with like particles (tracks) of same time frame as

in Sec. 5.1.1, wp(ti) is grouped with like particles (tracks) of similar velocity

over all time frames. Normalizing by the total number of particles (track)

gives a discrete velocity probability distribution function (PDF) for the j-th

spatial bin of the s-th video segment. First, wp,i is rounded to the nearest

discrete k-th velocity bin as

wk = bwp,i/�w +�w + �w/2c ,

where the half-width, �w, and interval, �w, of the velocity distribution are

chosen to be 10.0 and 0.001 m/s, respectively. The probability of k-th velocity
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is incremented (by one) for each particle or track and normalized by the total

counts in each spatial bin at the end of each time segment producing pj(wk),

the discrete velocity PDF. The expected value of the distribution is defined

by

Ej(wk) =
+�W/�wX

k=��W/�w

wk pj(wk) . (5)

Then using the expected value of Eq. (5),

µw,j = Ej [wk] (6)

�w,j = Ej

⇥
(wk � µj)

2
⇤

(7)

�w,j = Ej

"✓
wk � µj

�j

◆3
#
and (8)

w,j = Ej

"✓
wk � µj

�j

◆4
#

(9)

are the mean, standard deviation, skewness and kurtosis of the pj(wk) veloc-

ity distribution.

5.1.3. Instantaneous time-series error

We begin the analysis by simply comparing the spatially binned time-

series results from the velocimetry analyses with the known CFD-DEM so-

lutions. In order to provide a clean comparison, each velocimetry method is

compared to the known data separately. Example plots are provided in the

Supplementary Material for the first time segment at key depths of D = 2rp

and the full bed depth. Qualitatively, all three velocimetry methods appear

to be in excellent agreement with the known solution at the near-face depth

of D = 2rp. However, there are some noticeable discrepancies between the

known and evaluated time-series at the full bed depth. By comparing the
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near-face and full bed images, it is apparent that the measured result has

changed little while the CFD-DEM solution itself has shifted. This indicates

that the bulk behavior deviates from the near-wall behavior, which is largely

what the velocimetry methods are able to measure due to a limited depth of

field.

To begin quantitatively assessing the error in the velocimetry methods we

first look at the instantaneous discrepancy between the measured velocities,

w̃j(ti), and the ground truth, wj(ti), i.e., the velocities computed from the

known CFD-DEM data. The instantaneous error of all five segments at

a depth of D = 2rp for the two velocities are collapsed into parity plots

in Fig. 4. The parity plots also show the 1:1 line surrounded by ±10%

discrepancy lines; it can be observed that much of the data falls within these

bounds. Both velocities range from, roughly, �1 to 2 (m/s) and Fig. 4 does

not show a strong correlation deviating from the 1:1 line, indicating the

absence of a velocity-dependent error in the methods over the investigated

range. Error plots of the local discrepancy, �w = w̃j(ti)�wj(ti), provided in

the Supplementary Material are also devoid of strong wj-dependent trends.

The error plots and, to a lesser extent, the parity plots of Fig. 4 do not

appear to be representative of the good qualitative agreement observed when

the time-series are simply plotted against one another as in the Supplemen-

tary Material. This is largely due to the sheer volume of data, some 125,000

points per plot, causing the outliers to stand out visually. To further quan-

tify the comparison shown in the parity and error plots, the magnitude of

the instantaneous discrepancy, |�w|, is ordered into a cumulative distribution

function (CDF). We select the 95-th percentile, denoted �w95, as a scalar
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indicator of each distribution and provide their (absolute error) values in Ta-

ble 1. For quantities of interest that range from, roughly, �1 to +1 m/s, it

is reassuring that a vast majority (95%) of the data is accurately predicted

to within a few cm/s.

5.2. Global time-series error

In this section, the time-averaging described in Sec. 5.1.1 is applied to

determine the mean and standard deviation of each transient signal. In

order to reduce each quantity of interest to a single scalar for each depth, we

make use of an L2-norm defined by

L2(�) =

vuut
P5

j=1 (�̃j � �j)2
P5

j=1 �
2
j

(10)

where � is a quantity of interest (e.g., Uj or v0j) known from the CFD-DEM

simulation and �̃ is a velocimetry calculation of the rendered video of the

same data. The global error of the time-averaged mean and standard de-

viation of the time-series are presented as function of imaging depth, D, in

Fig. 5. The four plots show the same general behavior: the error is typi-

cally at a minimum at D = 2 or 3 rp, increases gradually with increasing D,

reaching a maximum at the full bed depth. Again, we note that the limit-

ing full case is approximately D = 46.8rp and the large increase causes the

discontinuity between D = 8rp and full bed depth. It is reassuring that the

visual approximation of Gopalan et al. [22] that the camera observes approx-

imately one particle diameter in depth, or D = 2rp, appears to be confirmed

quantitatively by Fig. 5.

Although all of the particles are guaranteed to have an unobstructed view

of the camera in the smallest imaging depth, D = 1.5rp, it does not minimize
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the error. This is due to the significant “noise” caused by the starting and

ending of tracks as particles move in and out of the imaging plane. Due

to the sharp filter, particles in the rendered HSV instantaneously appear

or disappear as their centroids cross into or out of the D-plane. Overall,

the error is acceptable, particularly at D = 2 to 4 rp where all velocity

methods have an error below 10% for all quantities, many of only a few

percent. However, judging by the excellent qualitative agreement observed

in the instantaneous comparisons (see Supplementary Material), 10% in mean

quantities may seem high. Further analysis of the data shows that this

is simply a quality of the sum of the mean values being relatively small.

Consequently, some of the largest error observed is for L2(U) simply because

U is the smallest value among these four quantities of interest. Although this

is certainly not a new finding, it may serve as an additional caution to run

both experiments and simulations for a long period of time when quantities

of interest fluctuate appreciably around relatively small mean values.

Finally, we comment on the error bars presented in Fig. 5 which show

95% confidence intervals computed using a simple t-test of the L2-norms of

the five di↵erent segments. In almost all cases, the largest error bars occur at

the full bed depth where the error is a convoluted measure of non-uniformity

(in the z-direction) of the particle flow. Specifically, the instantaneous time-

series comparisons show regions of agreement and obvious disagreement. In

almost all of such regions of good agreement, the CFD-DEM full result also

compares well with its own near-wall solution, i.e., the CFD-DEM result

at D = 2rp. In other words, the particle flow is approximately 2-D in these

instances. Hence, segments with substantial time periods of approximately 2-
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D flow will, somewhat artificially, be in good agreement with the velocimetry

measurements and, conversely, segments with relatively few time periods of

2-D flow will not agree well with the measurements computed from video

with near-wall particles obstructing the field of view.

In a few cases, large error bars are also observed at small imaging depths.

Further analysis has indicated that this is due to the sharp cut-o↵ of particles

in the imaging plane resulting in artificially high fragmentation of particle

tracks. For example, in Tracker, if the particle disappears in the rendered

image without meeting the required four consecutive points in the track,

no velocities will be measured. However, the CFD-DEM still has veloc-

ity measurements for the three time instances before leaving the imaging

plane. Similarly when solving of the optical flow equations in flowonthego

and PTVResearch, when a particle in the subsequent frame is missing, the

least squares method is still able find a solution. In this case, computing a

velocity for a missing particle will most likely result in an artificial value, as

the method may find a similar feature on a particle further away.

It has been observed that despiking the velocimetry results can have a

significant e↵ect on the results. For example, all of the flowonthego time-

series output at the D = 1.5rp imaging depth were despiked using the Goring-

Nikora method [62]. Consequently the global error in the standard deviation

of the transverse velocity decreased from L2(u0) = 11.8 ± 13.3 % to just

L2(u0) = 4.0 ± 0.8 %. Although this post-processing step does improve the

results slightly in several other cases, and significantly in this example case,

despiking is not an implicit step (at least currently) in any of the three

velocimetry tools and, quite frankly, likely would not have been applied here
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in a blind setting, i.e., if the authors had not known the correct solution a

priori. Hence, despiking of the velocimetry data is not applied in this work

beyond this illustrative example. However, it has shown to be a useful tool

for PTV and OFV analysis of particle laden videos, specifically in dilute cases

where relatively short tracks and regions temporarily devoid of particles may

be common.

5.3. Global probability distribution error

The same analysis applied to the time-series measurements can also be

directly applied the the velocity probability distribution analysis using the

L2-norm defined by Eq. (10). The error in the mean and standard deviation

of the measured distributions is provided in Fig. 6 as function of imaging cut-

o↵ depth, D. Similar to the time-series analysis, there is a general increase

in error with increasing D. Often there is a minor up-tick at the smallest

imaging depth, below a single particle diameter, due to the noise caused by

the high frequency of particles entering and exiting the sharp cut-o↵ plane.

At D = 2rp the error is acceptable with means under 10% and standard

deviations under 5%. We note that the general L2(µw) > L2(�w) pattern is

due to the near-zero mean of the distributions, i.e., µw < �w. It is of minor

note that, by comparing Fig. 6 to Fig. 5, we see a diminished increase in

error at the full bed depth in the PDF analysis compared the time-series

analysis. This finding is consistent with the intuitive understanding that the

particle dynamics at di↵erent depths may visit the same phase space though

not necessarily at the same time, an artifact of thin, “quasi-2D” system.

Because higher-order statistics of distributions are more intuitive than

of time-series, skewness and kurtosis measures are also considered. The L2-
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norms of �w and w are provided in Fig. 7 which, perhaps unsurprisingly,

show the same general trend as the previous statistics. On average, there

is more error in the skewness than the lower order statistics. However, the

fourth order statistic, kurtosis, is predicted quite well. This could be, again,

simply due to the normalization of the error; |w| is roughly an order of mag-

nitude larger than |�w| on average. One data point breaking the established

trend is the large error, and larger error bar, in L2(u) measured by flowon-

thego at a depth of D = 2rp. Further investigation of this dataset shows

that the large global error is due to a relatively small number of singular

discrepancies. We consider, for example, the kurtosis in the fifth bin of the

fourth segment where the measured value is ̃u,5 = 24.9 and the actual value

is u,5 = 7.66. A qualitative comparison shows no obvious issues unless the

PDFs are viewed in semi-log scale. As shown in the Supplementary Material,

while the bulk of the distribution is well-captured, there are a handful of low

probability, of O(�6), points in the measured PDF which are null in the

known PDF. When these points are eliminated (we set any p(u)  2 · 10�6

to p(u) = 0 and re-normalize the distribution to unity), the measured kur-

tosis drops to ̃u,5 = 6.85. Similar manipulation of the known distribution

gives u,5 = 6.48, shrinking the relative error from over 200% to just 5%

by removing just 0.02% of the cumulative distribution. While it may be

straightforward to massage the data to give a better comparison, we would

not have considered doing so had the known solution not been available.

Furthermore, no data manipulation was preformed in the original, physical

SSCP-I experiment nor recommended for numerically simulated results, al-

though the present analysis suggests such considerations may be warranted
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in future challenge problems.

5.4. Constant depth error

Finally, now, we are in a position to estimate the error in the constant

depth assumption for post-processing of simulation data. In the previous

analyses, as the depth increased beyond D = 2rp the possibility of particles

being obscured by other particles closer to the (synthetic) camera increases.

Hence, the growth in error with D, while certainly an error in the sense that

it represents a disagreement between the measured values and the known

values, becomes less and less a measure of the algorithmic error. In real,

physical systems the depth is always full. The sharp cuto↵ is applied to the

numerical predictions as a way to mimic the depth of view challenge with

opaque particles.

While only approximate, we believe that the error in this methodology

can be estimated by subtracting the L2-norms at D = 2rp as previously

defined from modified L2-norms computed using velocimetry measurements

from D = full video and the (known) CFD-DEM data at D = 2rp. This

di↵erence in L2-norms quantifies the additional error in using D = full video

compared to the best possible scenario of using D = 2rp, which does not

exist in the real world. The cut-o↵ error is provided in Table 2 for all twelve

quantities of interest considered previously. In some cases the additional

error is almost negligible, specifically the standard deviation in the vertical

velocity of both the time-series and probabilistic analysis. However in many

metrics the error is non-negligible, on the order of 5%, often closer to 10%.

By and large, the values in Table 2 indicate that particle flow modelers should

not expect better than roughly 10% error compared to PTV data when post-
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processed with a constant depth cut-o↵.

6. Summary, Conclusions, and Future Work

Particle tracking methods are a pervasive measurement technique in chem-

ical engineering and related fields which utilize particle fluidization processes.

While comparison with other measurement techniques has been studied [20],

a method to assess the error in realistic data processed by PTV and re-

lated methods has not been performed. In this work, we borrow from a long

standing concept in Particle Image Velocimetry (PIV) whereby photoreal-

istic images or video is synthetically generated. This technique, commonly

used in PIV challenge problems, may be used to directly quantify measure-

ment error because the velocity fields underlying the manufactured data are

known.

In this relatively novel study, known underlying data is taken from an

MFiX CFD-DEM simulation, a Lagrangian particle method, of NETL’s

Small-scale Challenge Problem-I (SSCP-I). SSCP-I consists of a small, rect-

angular fluidized bed of (approximately) 3 mm particles. The data is ren-

dered into a photorealistic scene using the open-source 3D creation software

Blender [63]. Realistic light sources creating shadows are included, as are

synthetic noise such as scratches on the face of the bed and fuzziness near

the edges of the region of interest. Images from the scene are rendered into

five 5.0 s replicate videos at 1000 Hz. To study the impact on the depth of

field, the synthetic videos are generated by only considering particles within

a specified distance from the inside of the front face: D = 1.5rp, 2rp, 3rp,

4rp, 6rp, 8rp, and the full bed depth (D ⇡ 46.8rp). Particles with centroid
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depths zp > D are masked from the underlying CFD-DEM dataset and not

rendered in the scene at all.

The synthetic data are processed using three distinct velocimetry meth-

ods: Tracker, a pure PTV method; flowonthego, a pure optical flow ve-

locimetry (OFV) method; and PTVResearch, a hybrid of the OFV and PTV

schemes (see Sec. 4 for further description). The tracked velocities (i.e., a

particle or feature) are binned into five square regions spanning the width of

the bed at a prescribed height and post-processed using a time-series anal-

ysis (transient signals) and a probabilistic analysis (velocity distributions).

Qualitative comparison between the known and measured data in the Supple-

mentary Material indicates very good agreement when the depth of particles

rendered into the synthetic video is restricted to D = 2rp. The time-series

are quantified by their mean and standard deviation and the velocity PDFs

by their mean, standard deviation, skewness and kurtosis. The error in the

measurements are quantified by comparing averaged statistics from the mea-

surements with the known data and summing into L2-norms for each quan-

tity of interest. The five replicate segments are used to compute confidence

intervals (95% by t-test) for the error analyses. At D = 2rp, all methods

give quantitatively accurate measurements. While this work is not intended

to pit one method against another, the data did show that the pure PTV

Tracker scheme provided the best results with this specific data-set with all

but one of the twelve quantities of interest inside of 5% error, nine of them

approximately 2% or less.

However, the error between the measured and known averaged quantities

grows with the depth of field, D. At full depth, the di↵erence is appreciable,
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often exceeding 20%. Yet this discrepancy does not (only) quantify the error

in the algorithms; we do not expect the velocimetry methods to measure

the velocity of particles which are obscured from the view of the camera by

other particles closer to the face of the bed. To avoid this obvious error, it

is common practice of modelers (particularly using numerical methods with

Lagrangian particles) to consider only particles within a given distance of the

bed face. The error in such an assumption can be estimated by considering a

modified L2-norm in which the full-bed depth video is taken for velocimetry

measurement and compared to the CFD-DEM data at D = 2rp and subtract-

ing o↵ the standard (one-to-one) L2-norm at D = 2rp. The quantification of

this “delta error,” provided in Table 2, is an important benchmark for any-

one performing numerical studies and comparing the results to velocimetry

measurements. Even if the tracking method results are so accurate that they

could be considered error free in themselves, an additional 5% to 10% error

may be rolled up into the post-processing due to this simple assumption.

There is, of course, one obvious solution to avoiding some of this er-

ror: simply follow the present workflow and render the numerical solution

into a photorealistic HSV and process it with the same velocimetry method.

However, such an approach is almost certainly too cumbersome for most re-

searchers. Useful future work might investigate how to minimize the error

due to the constant cut-o↵ depth of field in a more practical manner.

This work utilized three di↵erent velocimetry methods ranging from PTV

to OFV. Rather than comparing one method against another, the three codes

were used largely to ensure that the conclusions drawn from this study were

not implementation nor method specific. The synthetic data in this case was
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amenable to all three methods: the simulated experiment was simple (thin,

rectangular), the rendering was relatively clean and the maximum particle

displacements were rather small. It would be interesting in the future if the

current workflow was used to push the extremes of the schemes to determine

the robustness of the methods and, perhaps, find regions where di↵erent

methods shine over others.

The use of HSVs and image processing will continue to be widely used

techniques for extracting high quality information from multiphase flow ex-

periments, especially as cameras continue to become cheaper and faster. It is

imperative that practitioners understand the limitations of the optical exper-

imental setups and validate their image processing algorithms with known

solutions so that accurate results can be obtained and analysed. Without

this validation step, results based on image processing are suspect. To help

this community grow and facilitate validation of image processing codes, the

authors are providing the HSV and processed known solutions from this work

and are further working towards the release of blind PTV challenge problems

to the community.
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35



Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cim-

rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.

Ribeiro, F. Pedregosa, P. van Mulbregt, S. . . Contributors, SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python, Nature

Methods 17 (2020) 261–272.

[58] C. Cierpka, B. Lütke, C. J. Kähler, Higher order multi-frame particle

tracking velocimetry, Experiments in Fluids 54 (2013) 1533.

[59] J. J. Gibson, The perception of the visual world., Houghton Mi✏in,

Boston, 1950.

[60] B. D. Lucas, T. Kanade, An iterative image registration technique with

an application to stereo vision, in: Proceedings of the 7th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), Vancouver,

BC Canada, Aug. 24–28, 1981, pp. 121–130.

[61] B. D. Lucas, Generalized image matching by the method of di↵erences,

Ph.D. thesis, Carnegie Mellon University, 1985.

[62] D. G. Goring, V. I. Nikora, Despiking acoustic doppler velocimeter data,

Journal of hydraulic engineering 128 (2002) 117–126.

[63] B. O. Community, Blender - a 3D modelling and rendering package,

Blender Foundation, Stichting Blender Foundation, Amsterdam, 2020.

36



Table 1: The 95
th
-percentile of the instantaneous discrepancy of the time-series velocity

measurement at a cut-o↵ depth of D = 2rp.

Tracker

�u95 1.5 3.2 4.5 3.1 1.3

�v95 5.2 4.6 5.6 4.3 4.2

PTVResearch

�u95 5.6 9.8 12.4 8.9 4.8

�v95 12.1 4.3 5.2 4.3 13.2

flowonthego

�u95 2.9 8.9 12.2 9.0 4.0

�v95 4.4 7.2 9.3 11.7 15.3
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Table 2: Approximate error incurred by assuming a constant depth of D = 2rp in the

CFD-DEM data.

statistic Tracker PTVResearch flowonthego

U 6.36± 2.41 2.88± 11.57 3.55± 3.33

V 0.74± 1.83 ±6.35 1.02± 1.14

u
0 5.20± 2.04 2.03± 1.69 4.27± 2.89

v
0 1.00± 1.12 0.60± 1.92 1.12± 1.25

µu 8.74± 6.47 6.85± 8.18 9.01± 10.42

µv 2.17± 2.01 0.93± 4.98 4.73± 2.38

�u 11.46± 2.74 4.99± 2.54 13.62± 4.19

�v 1.62± 1.66 0.88± 1.25 3.98± 2.39

�u 21.71± 13.37 18.92± 30.37 22.43± 15.93

�v 12.36± 7.85 13.42± 11.66 11.86± 14.27

u 7.94± 3.46 7.89± 9.21 -

v 2.92± 2.05 5.35± 2.39 3.51± 2.25
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Figure 1: Flowchart outlining the novel workflow of this study.
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Figure 2: Rendering of the virtual experiment, showing the model bed containing near-wall

particles (white), the camera and its orientation pointing towards the region of interest

(red boxes) and the orientation and spread of the four surrounding light sources.
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(a)

(b)

(c)

(d)

Figure 3: Example renderings of the scene: (a) without particles, highlighting scratches

on front acrylic wall, (b) first frame of the 1.5rp case in which only particles with centroids

within a distance of 1.5rp from the wall are visible, (c) the same first frame of the full case

when all particles are considered, and (d) an example taken from the real SSCP HSV used

for particle tracking.
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Figure 4: Parity plots comparing the instantaneous u- (a, b, c), and v-velocity (d, e, f)

components measured by Tracker (a, d), PTVResearch (b, e), and flowonthego (c, f) to

the known CFD-DEM solution at a cut-o↵ depth of D = 2rp.
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Figure 5: L2-norm of measurement error as a function of imaging cut-o↵ depth, D, of the

mean (a, b) and standard deviation (c, d) of the time-series analysis of the u- (a, c), and

v-velocity (b, d) components.

43



1.5r 2r 3r 4r 6r 8r full
0

0.1

0.2

0.3

0.4

0.5

0.6

1.5r 2r 3r 4r 6r 8r full
0

0.05

0.1

0.15

0.2

0.25

0.3

1.5r 2r 3r 4r 6r 8r full
0

0.05

0.1

0.15

0.2

0.25

0.3

1.5r 2r 3r 4r 6r 8r full
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6: L2-norm of measurement error as a function of imaging cut-o↵ depth, D, of the

mean (a, b) and standard deviation (c, d) of the probability distribution analysis of the

u- (a, c), and v-velocity (b, d) components.
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Figure 7: L2-norm of measurement error as a function of imaging cut-o↵ depth, D, of the

skewness (a, b) and kurtosis (c, d) of the probability distribution analysis of the u- (a, c),

and v-velocity (b, d) components.
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