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Abstract In this paper, composite dynamic movement

primitives (DMPs) based on radial basis function neu-

ral networks (RBFNNs) are investigated for robots skil-

l learning from human demonstrations. The compos-

ite DMPs could encode the position and orientation

manipulation skills simultaneously for human-to-robot

skills transfer. As the robot manipulator is expected to

perform tasks in unstructured and uncertain environ-

ments, it requires the manipulator to own the adap-

tive ability to adjust its behaviours to new situations

and environments. Since the DMPs can adapt to un-

certainties and perturbation, and spatial and temporal

scaling, it has been successfully employed for various

tasks, such as trajectory planning and obstacle avoid-

ance. However, the existing skill model mainly focuses

on position or orientation modelling separately; it is a
common constraint in terms of position and orientation

simultaneously in practice. Besides, the generalisation

of the skill learning model based on DMPs is still hard

to deal with dynamic tasks, e.g., reaching a moving tar-

get and obstacle avoidance. In this paper, we proposed

a composite DMPs-based framework representing posi-

tion and orientation simultaneously for robot skill ac-

quisition and the neural networks technique is used to

train the skill model. The effectiveness of the proposed

approach is validated by simulation and experiments.
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1 Introduction

Robot manipulator has been widely used in a number

of fields, such as industrial assembly [1], space explo-

ration [2], medical surgery [3] and so on. Specifically,

it has been utilised to perform tasks in specific and

structured environments due to the advantages of low-

cost, efficiency and safety. However, it is hard to pro-

gram robots for various scenarios, and it is also time-

consuming to program each robot manually. As the fast

development of machine learning techniques, robot skill

learning has attained increasing attention. Several ma-

chine learning techniques, e.g., reinforcement learning,

imitation learning and deep learning [4, 5], have been

successfully employed in robotic skill learning. Among

the various learning methods, the learning from demon-

stration (LfD) (also named programming by demon-

stration, PbD) has been proved as an effective way to

transfer manipulation skills from humans to robots eas-

ily [6]. Also, human often has substantial advantages

over robots in terms of complex manipulation skill. In

contrast to the traditional robot programming methods

which require expertise in coding and significant time

investment, the attractive aspect of LfD is its capability

to facilitate nonexpert robot programming. Thus, the

LfD has the potential to significantly benefit a variety

of industries, such as manufacturing and health care.

Currently, it is very common for industrial robot-

s to perform accurate position control tasks. However,

it is time-consuming to prepare the work environmen-

t and robot programs carefully. It often needs to re-

plan the trajectory when any variation happens, such

as the changes of object positions, the deviation be-

tween the real object and the programmed position,

limiting the application of automation, such as assem-

bly tasks in the industrial plant. For example in [7],
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object handover is a common task in human-robot in-

teraction/collaboration, and it is still very challenging

on the generalisation, temporal and spatial scaling. In

[8], the proposed method can be used to generate a tra-

jectory for the handover task, which could satisfy the

shape-driven and goal-driven requirement. It is ensured

to achieve the goal and also try to maintain the demon-

strated trajectory shape.

The LfD process consists of three phases: the human

demonstration, the model learning and skill reproduc-

tion. In the demonstration stage, humans teach robots

how to execute the tasks with various approaches, such

as kinesthetic teaching, teleoperation or passive obser-

vation, and the movement profiles of robots and hu-

mans will be recorded. In the next learning stage, the

manipulation skill models will be trained, which has

a significant impact on the performance of robot skill

learning and generalisation in practice. The skill model

is expected to be modular, compact and adaptive for

robotic manipulation skills. There already exists much

work to deal with skill modelling for human-robot skills

transfer, such as dynamic movement primitives (DMPs)

[9, 10], Gaussian mixture model (GMM) [11], the sta-

ble estimator of dynamical systems (SEDS) [12], ker-

nelized movement primitives (KMP) [13], probabilistic

movement primitives (ProMPs) [14] and hidden semi-

Markov model (HSMM) [15]. And some of these ap-

proaches are combined, such as integrating the HSM-

M with GMM to model the robot skills and perception

mechanism [16]. Usually, based on the modelling princi-

ple, they can be divided into two branches: dynamic sys-

tem method and statistic approach. The statistic-based

methods include GMM, KMP, ProMPs and HSMM,

which could easily represent multimodal sensory in-

formation. DMP is a general framework to realise the

movement planning, online trajectory modification for

LfD, which was originally proposed by Ijspeert et al.

[17]. As the DMPs have several good characteristics,

such as resistance to perturbation and uncertainties,

spatial and temporal scaling, they have been gaining

much attention. The DMPs approach has the property

of generalising the learnt skills to new initial and goal

position, maintaining the desired kinematic pattern. S-

ince the original version of DMPs was proposed, a num-

ber of modified versions had been studied to improve

the performance of DMPs. Most of these works mainly

focus on the two issues, how to improve the generalisa-

tion ability of DMPs and how to overcome the inherent

drawbacks of DMPs. More recently, it also has been

further used to encode different modalities, such as s-

tiffness and force profiles. For example, DMPs with the

perceptual term have been proposed to execute physical

interaction tasks, which require robots to regulate the

contact force, torque, as well as the desired trajectory

[18]. Besides, some researchers proposed coupling DMP-

s to realise obstacle avoidance, interaction with objects

and bimanual manipulation by modifying the formula-

tion of DMPs model or adding control methods [19].

The reinforcement learning technique has been used to

optimise the parameters of DMPs, which could further

improve the generalisation ability of DMPs. RL-based

DMPs were proposed to increase the generalisation of

the original DMPs [20].

An essential aspect of LfD is how to generalise the

learnt skills to novel environments and situations. S-

ince the demonstration cannot cover all the robot work-

ing environments and situations, robots need to own

the ability to adapt their behaviours according to the

changes in environments. The adaptability of robot skill-

s often refers to spatial and temporal scaling, adjusting

their behaviours based on the perception information.

Such as tracking moving tasks, the robot needs to mod-

ify its trajectory based on the position and velocity of

the moving target [21]. Besides, many specific tasks re-

quire the generalisation of robot skills, such as obstacle

avoidance and performing tasks in dynamic environ-

ments and situations. Heiko et al. modified the original

DMP framework using biologically inspired dynamical

systems to increase the generalisation, achieving the

real-time goal adaptation and obstacle avoidance [22].

The sensory information has been integrated into the

DMP framework to increase the online generalisation,

which could generate a robust trajectory account for

external perturbations and perception uncertainty [23].

The neural network technique has been utilised to learn

the perception term in DMP to realise the reactive plan-

ning and control, which can pave the path for robots

working in dynamical environments. Further, the mod-

ulation of DMP has been exploited using force and tac-

tile feedback to increase the interaction ability and exe-

cute bimanual tasks [23]. In addition, a task-oriented re-

gression algorithm with radial basis functions has been

proposed to increase the generalisation of DMPs. For

dynamic tasks, such as tracking moving targets, it can

be seen that many researchers proposed modified ver-

sions of DMPs to deal with moving goals. For example

in [21], the authors modified the DMP by adjusting the

temporal scaling parameter online to follow a moving

goal, although it only focused on the position trajectory

in Cartesian space. To improve the generalisation, sin-

gle DMP could not produce complex behaviour. Merg-

ing the different DMP is very important to deal with

this challenge [24]. It also pointed out that building a

motion skill library for robots to produce complex be-

haviour is a useful tool. Also, the merging sequential

motion primitives have been studied to produce com-
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plex behaviours. Complex trajectories involving several

actions can be reproduced by sequencing multiple mo-

tion primitives. Each motion primitive is represented as

DMP; various approaches were investigated to connect

the motion primitives seamlessly [24]. However, most of

the existing work focused on the position motion prim-

itives in Cartesian or joint space, and there is a lack

of research on the orientation primitive trajectories in

Cartesian.

Most recently, various versions of DMP have been

proposed to increase the online adaptability to uncer-

tainties and novel tasks. However, the spatial scaling

is limited due to encoding the position trajectory for

each coordinate. Most of the current work focused on

DMPs representing position skills in Cartesian space,

ignoring the orientation requirements in some applica-

tion, such as obstacle avoidance [22, 25], picking and

placing [10], cutting task [9]. However, for some tasks,

such as ultrasound scanning in medical application, the

probe orientation has a significant impact on the im-

age quality in robot-assisted ultrasonography; hence the

orientation and position need to be considered simul-

taneously. For the nonlinear function term in DMPs

often use the Gaussian function to approximate, local-

ly weighted regression (LWR) technique to be used to

learn the weights of each basis functions. However, [26]

stated that forcing term approximation could influence

the accuracy and performance of DMP. And different

basis functions have been studied to improve the per-

formance of DMPs.

In this work, a composite DMPs-based skill learning

framework is studied, which considers not only the po-

sition constraints but also the orientation requirement.

Both temporal and spatial generalisation capability has

been increased. Besides, the DMP-based framework can

be adapted temporally to moving targets with the spe-

cific requirement of orientation. Further, the RBFNNs

are utilised to learn the nonlinear functions in compos-

ite DMPs.

The contributions in this work are (1) combining

the DMPs and RBFNNs to improve the generalisation

of robot manipulation skills. The radial basis function

NN is employed to approximate the force term in the

composite DMPs. (2) A basic skill associated with po-

sition and orientation could be modelled by the com-

posite DMP simultaneously, coupled with the temporal

parameter. (3) The composite DMP could reach the

moving goals with generalisation in terms of temporal

and spatial scaling. The composite DMP-based frame-

work can guarantee to converge to moving goals while

being perturbed to obstacles.

The rest of the paper is organised as follows. Section

2 provides an overview of the position and orientation

DMP in Cartesian space and its limitations. The com-

posite DMPs framework based on RBFNNs is present-

ed in Sect. 3. The stability analysis for the DMP-based

model is present. Section 4 presents the simulation and

experimental results to validate the temporal and spa-

tial generalisation. RBFNNs have been utilised to learn

the nonlinear functions associated with the combined

DMPs. Section 6 concludes the paper finally.

2 Preliminaries and motivations

2.1 Radial basis function neural networks (RBFNNs)

The neural network has been proved to an effective ap-

proach to robot applications, and much work on the

neural network has been studied, such as the stability

of neural network [27, 28]. RBFNNs are a useful tool

to approximate nonlinear functions for robot control

and robot skills learning. For instance, RBFNNs is com-

bined with the broad learning framework to learn and

generalise the basic skills [29]. RBFNNs are employed to

approximate the nonlinear dynamics of the manipulator

robot to improve tracking performance [16, 30]. There-

fore, RBFNNs can approximate the nonlinear forcing

term in the DMP framework. Radial basis function net-

works consist of three layers: an input layer, a hidden

layer with a nonlinear RBF activation function and a

linear output layer. It is an effective approach to ap-

proximate any continuous function h : Rn → R,

h(x) = WTS(x) + ε(x) (1)

where x ∈ Rn is the input vector,W = [ω1, ω2, ..., ωN ]T ∈
RN denotes the weight vector for the N neural net-

work nodes. The approximation error ε(x) is bound.

S(x) = [s1(x), s2(x), ..., sN (x)]T is a nonlinear vector

function, where si(x) can be defined as a radial basis

function,

si(x) = exp(−hi(x− ci)T (x− ci)) i = 1, 2, ..., N (2)

where ci = [ci1, ci2, ..., cin]T ∈ Rn denotes the centres

of the Gaussian function and hi = 1
/
χ2
i , χi denotes

the variance. The ideal weight vector W is defined as,

W = arg min
Ŵ∈RN

{
sup

∣∣∣h(x)− ŴTS(x)
∣∣∣} (3)

which minimises the approximation error of nonlinear

function. The nonlinear functions in DMPs can be learn-

t by RBFNNs from demonstration data. In this work,

RBFNNs will be utilised to parameterise the nonlinear

functions in DMPs.
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2.2 Position and orientation DMP in Cartesian space

DMP is a useful tool to encode the movement profiles

via a second-order dynamical system with a nonlinear

forcing term. Robots skills learning by DMPs aims to

model the forcing term in such a way to be able to gen-

eralise the trajectory to a new start and goal position

while maintaining the shape of the learnt trajectory.

DMPs can be used to model both periodic and discrete

motion trajectories. However, in this work, we will focus

on the discrete motion trajectories. Currently, the most

research on DMPs mainly focuses on the position DMP-

s and its modifications, which can be used to represent

arbitrary movements for robots in Cartesian or joint s-

pace by adding a nonlinear term to adjust the shape of

trajectory. For one degree of multiple-dimensional dy-

namical systems, the transformation system of position

DMP can be modelled as follows [31],

τsv̇ = αz(βz(pg − p)− v) + Fp(x) (4)

τsṗ = v (5)

where the pg is the desired position, p is the current

position; the v is the scaled velocity, τs is the tempo-

ral scaling parameter, αz, βz are the design parameters,

generally, αz = 4βz. Fp(x) is the nonlinear forcing ter-

m responsible for tuning the shape of trajectory. The

Fp(x) can be approximated by a set of radial basic func-

tions,

Fp(x) =

∑N
i=1 ψi(x)wi∑N
i=1 ψi(x)

x(pg − p0) (6)

ψi(x) = exp(−hi(x− ci)2) (7)

where ψi(x) is a Gaussian radial basis function with the

centre ci and width hi; p0 is the initial position, and wi

is the weight learning from demonstration. The phase

variable x is determined by the canonical system, which

can be represented as follows,

τsẋ = −αxx, x ∈ [0, 1] ; x(0) = 1 (8)

where αx is a positive gain coefficient, τs is the tem-

poral scaling parameter and the x0 = 1 is the initial

value of x, which can converge to 0 exponentially. For

the multiple degree-of-freedom (DoF) dynamic system,

each dimension can be modelled by a transformation

system, but they share a common canonical system to

synchronise them.

The orientation DMP has been first proposed by

[32], which is vital to robot learning and control. The

orientation in DMP is often represented by rotation

matrix or quaternions. For example in [33], the unit

quaternions are used to model the orientation, and the

unit quaternion set minus one single point also has been

proved to be contractible [34]. This property of the unit

quaternion set could guarantee the convergence of ori-

entation DMPs. In addition, as the quaternion formu-

lation has less variable than the rotation matrix, it has

been used widely in the orientation representation for

robot learning and control. In [32], the unit quaternion-

based transformation system can be described as,

τsż = −αz(βz2 log(qg ∗ q̄)− z) + Fo(x) (9)

τsq̇ =
1

2

[
0

z

]
∗ q (10)

where q ∈ S3 denotes the orientation as a unit quater-

nion, qg ∈ S3 represent the final orientation, ω denotes

the angular velocity, z = τsω ∈ R3 is the scaled angular

velocity, * denotes the quaternion product, q̄ represents

the quaternion conjugate which is equal to the inverse

quaternion for unit quaternions and 2 log(q2 ∗ q̄1) ∈ R3

denotes the rotation of q1 around a fixed axis to reach

q2. The forcing term Fo(x) ∈ R3 for each DMP will

learn the desired orientation skills from the demonstra-

tion data.

3 Composite position and orientation dynamic

movement primitives

Currently, the separate position or orientation DMP

has been studied widely [35]; however, research on the

composite DMPs, modelling the position and orienta-

tion simultaneously, is not common. In real practice,

most manipulation skills often mix the position and

orientation skills, which requires robots to satisfy the
specific position constraints as well the orientation for

many tasks, such as polishing, spraying, assembly [36,

37]. In addition, for human-robot interaction tasks, such

as two partners collaborating an object handover inter-

action, the target position is always changing. It is stil-

l open to guarantee various orientation requirements.

Inspired by the improvement in the orientation DMP,

the proposed framework has great generalisation and

adaptability to novel tasks and situations. Studying

on the DMPs to handle the moving goals is also vi-

tal to the practical application. Therefore, we propose

the composite DMPs, coupling the position and orien-

tation modelling in a framework, and the RBFNNs are

used to learn the nonlinear term in models.

3.1 The composite DMP formulation

As shown in Fig. 1, the manipulation skill modelled by

position and orientation DMPs consisted of recoding
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Fig. 1 The structure of human-robot skill transfer using the composite DMP model.

the demonstration data, training the RBFNNs and re-

producing the skills. The demonstration data include

the position and orientation trajectories, and the out-

put of skills reproducing is the reference of position and

orientation trajectories associated with specific tasks.

The canonical system is used to coordinate the position

and orientation constrains in the composite DMPs. The

nonlinear forcing terms associated with each DMP are

trained by using RBFNNs from the position and ori-

entation demonstration data. Six RBFNNs are used to

parameterise the nonlinear functions for position and

orientation DMPs, respectively. After the DMPs have

learned the demonstration, the dynamic and multiple

constraints can be guaranteed: (1) the goal and initial

position and orientation can be changed; (2) the targets

can be moved, the velocity profiles of DMP output will

keep in a safe bound; and (3) the requirements of posi-

tion and orientation can be achieved simultaneously.

The position DMP formulation can be described as,

τsv̇ = −αz(βzep + v) + diag(pg − p0)fp(x) (11)

τsėp = v (12)

where ep = pg−p ∈ R3 is the position error and v ∈ R3

is the scaled velocity error. The αz, βz are positive gain-

s, and fp(x) is trained by RBFNNs for each orientation

coordinate. The system is trained using a demonstra-

tion from the initial position p0,d to the stationary goal

pg,d with temporal scaling τd .

The orientation DMP formulation can be described

as [33],

τsż = −αz(βzeo + z) + diag(qg ∗ q̄0)fo(x) (13)

τsėo = z (14)

eo = 2 log(qg ∗ q̄) (15)

where the eo is the quaternion error, z is the scaled

quaternion error velocity. To obtain the orientation, we

solve equation (15),

q = exp(
1

2
eo) ∗ qg (16)

The angular velocity is,

ω = 2vec(q̇ ∗ q̄) (17)

where the q̇ can be obtained by the following equations,

q̇ = −1

2
q ∗ q̄g ∗ J log q(qg ∗ q̄)ėo ∗ q (18)

ėo = −2Jq(qg ∗ q̄)(qg ∗ q̄ ∗ q̇ ∗ q̄) (19)

Inspired by the work [38], the temporal scaling can

be adjusted based on the task and the velocity con-

straints. The target position and velocity update the

shared temporal parameter in the position and orienta-

tion DMPs, and it may be described as [21],

τ̇s= −γ(τs−τa)+τ̇a (20)
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where the γ is a design parameter, τa is determined by

τa =
‖e‖
‖ed‖

∗ τd (21)

e =
[
eTp , e

T
o

]T
ed =

[
eTp,d , e

T
o,d

]T (22)

where the ep is the position error between the goal and

the initial point, eo is the orientation error between goal

and start. The ep,d is the position error between the

goal and the initial point in the demonstration, eo,d is

the orientation error between the goal and start in the

demonstration. τd is the temporal scaling coefficient in

the demonstration. The temporal parameter update law

has been proved to converge to the moving goals in [21].

3.2 The training of DMPs by RBFNNs

Take one dimension for position and orientation DMP

as examples. The nonlinear forcing terms of position

and orientation DMP can be approximated by RBFNNs

respectively,

fp(s) =
∑
i

wi
pψ

i(s) (23)

fo(s) =
∑
j

wj
oψ

j(s) (24)

wi
p, w

j
o are the weight coefficients, ψi(s) and ψj(s) are

the Gaussian activation functions, defined as,

ψi(s) = exp(−hi(s− ci)2) (25)

ψj(s) = exp(−hj(s− cj)2) (26)

In the demonstration phase, one position trajectory

pd, ṗd, p̈d is recorded, from starting position p0,d, to the

target position pg,d. According to the position DMP

transformation system and the demonstration data, the

desired force function is,

fdp (s) =
1

pg,d − p0,d
(τ2d p̈d−αz(βz(pg,d−pd)−τdṗd))(27)

where the τd is the temporal scaling during demonstra-

tion. Similarly, the force term in the orientation DMPs

can be described as,

fdo (s) = (diag(2 log(qg,d ∗ q̄0,d)))−1

∗(τ2d ω̇d − αz(βz(2 log(qg,d ∗ q̄d)− τdωd)))
(28)

The following error function between the desired

force term and the approximated value is the objec-

tive function of the optimisation problem, which will

be minimised for learning the parameters of RBFNNs

in the DMPs.

E =
1

2
((fdp (st)− fp(st))2 + (fdo (st)− fo(st))2) (29)

st is the value of s. A gradient descent approach is used

to derive the weight update law as [39],

wi
p(t+ 1) = wi

x(t)− λ1
∂E

∂wi
p

(30)

wj
o(t+ 1) = wj

o(t)− λ2
∂E

∂wj
o

(31)

∂E
∂wi

p
= (fdp (st)− fp(st)) ∂

∂wi
p
(−
∑
i

wi
pψ

i(s))

= (fdp (st)− fp(st))(−ψi(st))
(32)

The weight update law of wi
p is given as,

wi
p(t+ 1) = wi

p(t) + λ1(fdp (st)− fp(st))ψi(st) (33)

Similarly, the weight wi
o is updated by,

wj
o(t+ 1) = wj

o(t) + λ2(fdo (st)− fo(st))ψj(st) (34)

The weights in the RBFNNs can be attained through

the gradient descent approach and demonstration data.

4 Experimental results

As a complex task can be hierarchically decomposed

into different subtasks involving multiple primitive ac-

tions and manipulated objects, several basic motion

skills could be synthesised to complex tasks. Thus, in

the paper, we will conduct several typical motion skills

through simulation and experiments. Omni Phantom is

an input device for human-robot skill transfer, which

has been used in the teleoperation applications. This

haptic device could provide the operator force feedback

when interacting with the objects or the environments.

In this paper, the Omni Phantom is used to acquire

training data of human demonstration in 3D Cartesian

space for training the DMP model.

We use Omni Phantom to demonstrate trajectories,

including the position and orientation in Cartesian s-

pace. We then used the demonstrated data to train all

DMPs and executed the DMPs with new start and goal

position and orientation. Omni Phantom can record the

position and pose of the end. During the demonstra-

tion, both the position and orientation trajectories are

recorded, used to train the skill model. In the execu-

tion, we modify the desired task to test the generalisa-

tion performance. The parameters in DMP are shown

in Table 1.
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Fig. 2 Six-DoF Omni Phantom.

Table 1 Parameters in DMP

Parameter Descriptions Value

N Number of RBFNNs 10
αz Coefficient of DMP 60
βz Coefficient of DMP 15
λ1 Learning rate for position 0.1
λ2 Learning rate for orientation 0.15
γ Coefficient for tracking target blue 2

4.1 Spatial scaling of composite DMP

To demonstrate the spatial generalisation ability, we

carried out simulation experiments to test the compos-

ite DMPs. When the DMP reproduces trajectory, we

set a new goal position; the proposed DMPs could con-

verge to the desired position. We test the spatial gen-

eralisation of DMPs through the task shown in Fig. 3,

simulating the picking and placing skill in the industrial

case. First, we demonstrate an obstacle-free trajectory

from point A to point B for robots. However, when the
robot performs the task, the target moves from Point B

to Point C. Our experiment assumes the target moves

from B to C at a constant velocity, which is known. The

position DMP could generate one trajectory online to

adapt the dynamic tasks.

(a) (b)

Fig. 3 a Represents the human demonstration from Point A
to Point B; b represents the target goal moving from Point B
to Point C.

In Fig. 4, the trajectory generated by DMPs could

reach the desired position of the moving goal even when

we learn the DMP using a static goal. (a) shows the

human demonstration trajectory and trajectory repro-

duced by DMP. Although the goal is moving, the tra-

jectory generated by DMP maintains the shape of the

demonstration. The red dash line in (c) represents the

target velocity, and the green line is the velocity trajec-

tory generated by DMP. From the (d), it can be seen

that the temporal scaling parameter τs is increasing.

In the beginning, since the target velocity is relatively

high, the rate of change of τs is also relatively large,

until it decreases to zero. When the target does not

move, the τs does not change. Since the temporal scal-

ing coefficient is tuned based on the goals position and

velocity, it could achieve the target and maintain the

demonstrated shape. In original DMP, the temporal s-

caling parameter is fixed; hence, it is hard to deal with

the dynamic perturbance, such as the moving target

and the stopping by an obstacle. Therefore, the com-

posite DMP could adapt to a dynamic environment and

tasks based on the position and velocity of the goal.

4.2 The temporal scaling of orientation DMP

(a) (b)

Fig. 5 Human demonstrating to changing the pose of the
Omni from (a) to (b) through the three orientation joints
(red arrow).

It often requires robots to satisfy the orientation re-

quirements when the robot coordinates with humans or

other robots in the industrial application. To demon-

strate the temporal scaling ability in the orientation

of composite DMP, we modify the execution duration

when DMP is reproducing the trajectory. As shown in

Fig. 5, a human demonstrates how to change Omni’s

orientation from (a) to (b) and the demonstration da-

ta are recorded for training the orientation DMP. In

reproduced period, we set the duration time as twice,

and the result is shown in Fig. 6.
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(a) (b)

(c) (d)

Fig. 4 In (a), the blue line is the human demonstration trajectory; the green line is the reproduced trajectory by DMPs; the
red dash line represents the moving target. b The position trajectory generated by demonstration and DMP; the red dash line
is the goal’s position trajectory. c The velocity trajectory generated by demonstration and DMP; the red dash line is the goal’s
velocity trajectory. d Provides the evolution of the temporal coefficient and its derivative.

(a) (b)

Fig. 6 (a) Pose of Omni: the blue line is the demonstration trajectory; the green one is the output of DMP when the execution
time is set twice the demonstration one; b provides the angular velocity generated by demonstration and DMP

From the (a) in Fig. 6, we can find the orientation

DMPs can be scaled temporally, and since the execu-

tion time is longer, the angular velocity is slower than

the demonstration one. The orientation scaling could be
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(a) (b)

(c) (d)

Fig. 7 a 3D trajectory. The blue and green lines in b show the demonstration and DMP trajectory in each direction; the
red dash line is the goal trajectory in XYZ directions. c The orientation error between the current orientation and the goal
orientation. d provides the evolution of the temporal coefficient and the phase variable x with time.

achieved by adjusting the temporal parameter. When

the temporal coefficient τs is twice, the execution time

is double, and the trajectory shape is maintained. Also,

from the (b), the angular velocity trajectory has the

same pattern with the demonstrated one, when modi-

fying the execution time. The trajectory is also smooth

and can be adjusted temporally based on the task re-

quirement and perception information on the external

environment. This property could be used to adjust the

orientation dynamically and satisfy the orientation re-

quirement. When the DMP couples the position and

orientation, the temporal coefficient is adjusted based

on the position and orientation tasks, and the external

environment.

4.3 The performance of composite DMP for a moving

goal

For the tasks with position and orientation constraints,

the composite DMPs between the position and orienta-

tion are necessary. Test the performance of composite
DMPs to the tasks requiring the position and orienta-

tion simultaneously. For this case, we first demonstrate

a trajectory involving the position and orientation and

then train the composite DMPs using the demonstra-

tion data. During the reproducing stage, the DMPs

need to generate position and orientation trajectory for

the moving goal and satisfy the orientation constrain-

s. The performance of reaching a moving target with

orientation constraint can be found in Fig. 7.

Through (a) and (b) in Fig. 7, the trajectory gen-

erated by DMPs could reach the moving goal with the

desired orientation. Due to the moving goal, the tem-

poral scaling τs is increasing. Although the target has a

constant velocity, the shape of position and orientation

is consistent with the demonstration. Due to the goal’s

velocity, the temporal scaling is increasing, which guar-

antees the velocity shape is similar to the learned pat-

tern. The position and orientation constraints are sat-

isfied simultaneously. For the composite DMP, because
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the goal’s motion information could influence the tem-

poral scaling and phase variable, it could influence the

trajectory shape. The position and orientation could

be coupled and adjusted based on the task and the ex-

ternal environments through the temporal scaling. The

proposed composite DMP considers the moving goal

and the orientation requirements simultaneously.

5 Conclusion

This paper proposed composite DMPs, coupling the

position and orientation representation simultaneous-

ly and using the RBFNNs to approximate the nonlin-

ear forcing term in DMPs. The composite DMPs can

track moving goals and guarantee the velocity stays in a

safe range. The generalisation performance of temporal

and spatial scaling is validated through several primi-

tive skills. In the future, we will consider extending the

DMPs to model various pieces of sensory information,

making the DMPs interact with the environment. It al-

so can be used in the cooperation manipulation tasks

for the bimanual manipulator.
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