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Abstract 

Memory, the process of encoding, storing, and maintaining information over time in order to 

influence future actions, is very important in our lives. Losing it, it comes with a great cost. 

Deciphering the biophysical mechanisms leading to recall improvement should thus be of 

outmost importance. In this study we embarked on the quest to improve computationally the 

recall performance of a bio-inspired microcircuit model of the mammalian hippocampus, a 

brain region responsible for the storage and recall of short-term declarative memories. The 

model consisted of excitatory and inhibitory cells. The cell properties followed closely what 

is currently known from the experimental neurosciences. Cells’ firing was timed to a theta 

oscillation paced by two distinct neuronal populations exhibiting highly regular bursting 

activity, one tightly coupled to the trough and the other to the peak of theta. An excitatory 

input provided to excitatory cells context and timing information for retrieval of previously 

stored memory patterns. Inhibition to excitatory cells acted as a non-specific global threshold 

machine that removed spurious activity during recall. To systematically evaluate the model’s 

recall performance against stored patterns, pattern overlap, network size and active cells per 

pattern, we selectively modulated feedforward and feedback excitatory and inhibitory 

pathways targeting specific excitatory and inhibitory cells. Of the different model variations 

(modulated pathways) tested, ‘model 1’ recall quality was excellent across all conditions. 

‘Model 2’ recall was the worst. The number of ‘active cells’ representing a memory pattern 

was the determining factor in improving the model’s recall performance regardless of the 

number of stored patterns and overlap between them. As ‘active cells per pattern’ decreased, 

the model’s memory capacity increased, interference effects between stored patterns 

decreased, and recall quality improved.  
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1 Introduction 

The case of Henry Molaison (the famous ‘HM’ patient) has taught us a great deal of what 

memory is and what is the cost of losing it [1]. At a very early age HM experienced 

intractable epilepsy suffering from minor seizures, which became major in puberty. Later in 

life and despite high doses of anticonvulsant medication his seizures dominated his life so no 

longer could work or lead a normal life. In an attempt to cure his seizures, clinicians 

recommended bilateral medial temporal lobectomy to surgically resect his hippocampi, 

parahippocampal cortices, entorhinal cortices, piriform cortices, and amygdalae [2]. Although 

the surgery was a success and HM was able to control his epilepsy, a severe side effect from 

the surgery gave him a profound anterograde amnesia, an inability to form new episodic or 

factual long-term memories, although his memories up-to-surgery remained intact. Thanks to 

HM and other patients [3] we now know how important memory is in our lives and what is 

the cost of losing it. Without memory we cannot remember even our most basic experiences, 

such as what we had for breakfast or where did we park our car, let alone think about the 

future. Without memory we cannot learn anything new. 

 HM has also taught us that the hippocampus is an important brain structure 

responsible for short-term storage of declarative memories [4]. It is a well-studied brain area 

from which a wealth of knowledge of cell types and their anatomical, physiological, synaptic, 

and network properties has been gained [5]. Its principal excitatory neurons are the pyramidal 

cells (PCs) in regions CA3 and CA1 and granule cells in dentate gyrus (DG). In addition to 

excitatory cells, hippocampus has a large variety of inhibitory interneurons [6-8]. Excitatory 

and inhibitory cells in the hippocampus form intricate microcircuits, which compute 

information differently in each hippocampal region. DG microcircuits has been implicated in 

pattern separation [9-12], whereas CA3 ones in pattern completion [9-10] and CA1 ones in 

novelty detection [13] and mismatch of expectations [14]. These microcircuits exhibit also 
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different rhythms which correlate positively with different behavioral conditions. Theta (4-7 

Hz) and gamma (30-100 Hz) oscillations have been shown to co-exist [15] and their co-

existence has been hypothesized to support specific functional information processing [16]. 

Theta oscillations have been implicated in episodic and spatial memory formation [17-22] 

and disruption of them results in behavioral deficits [23]. 

 In 2010 a detailed computational model of the CA1 microcircuit (Fig 1) was first 

introduced which showed how memory formation (storage and recall) could be controlled 

[17]. The model was based upon the many details we knew then of the neuronal hippocampal 

circuit. It showed how theta modulated inhibition separated encoding and retrieval of 

memories in CA1 into two functionally independent processes and predicted functional roles 

of various guises (somatic, axonic, dendritic) of inhibition in these processes. In the model 

somatic inhibition allowed generation of dendritic calcium spikes that promoted synaptic 

long-term potentiation (LTP), while minimizing cell output. Proximal dendritic inhibition 

controlled cell firing, prevented LTP by suppressing dendritic calcium spikes and removed 

interference from spurious memories during recall, whereas distal dendritic inhibition 

removed interference from new memories been encoded during recall of old memories. The 

model’s memory capacity and recall performance was tested as more and more memories 

were stored in its synapses. Results showed that mean recall quality decreased as more 

memory patterns were loaded into the model’s synapses due to interference with previously 

stored ones.  

 In this article, we systematically investigated the biophysical mechanisms that could 

improve the memory capacity and recall performance of the Cutsuridis’ and colleagues’ 

model [17] by selectively modulating feedforward and feedback excitatory and inhibitory 

pathways targeting specific excitatory and inhibitory cells in the network model. Our work 

investigated ways to remove spurious activity and improve the mean recall quality of the 
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network as a function of network size, stored patterns, pattern overlap and number of active 

cells. 

 

2 Materials and methods 

The complete computational CA1 microcircuit model of Cutsuridis and colleagues (2010) is 

depicted in Fig 1. The complete model consisted of 100 PCs, 1 axo-axonic cell (AAC), 2 

basket cells (BCs), 1 BSC and 1 oriens lacunosum-moleculare (OLM) cell. An entorhinal 

cortical (EC) excitatory input excited the distal dendrites of PCs, AAC and BC, whereas an 

excitatory Schaffer collateral CA3 input excited the proximal dendrites of PCs, AAC, BCs, 

and BSC. A medial septum (MS) inhibitory input inhibited all inhibitory cells in the network 

and caused them to fire at specific phases of a theta rhythm.  

In this study where only the recall ability of the microcircuit was tested when a growing 

number of memory patterns were stored in its synapses without examining the exact details of 

the learning (storage) process, a sub-network of the complete microcircuit model was 

utilized. The sub-network consisted of N PCs (N = 100 or 300), 1 BSC and 1 OLM cell (see 

Figure 2). Simplified morphologies including the soma, apical and basal dendrites and a 

portion of the axon, were used for each cell type. The biophysical properties of each cell were 

adapted from cell types reported in the literature, which were extensively validated against 

experimental data in [24-27]. BCs and AAC although present in the network were 

disconnected from it and they were inactive during the retrieval cycle due to strong MS 

inhibition and hence had no effect on the network dynamics. EC input although present also 

had no effect on the network cells, because it was also disconnected. The only excitation to 

the network was from CA3 which excited the dendrites of BSC and PCs. All simulations 

were performed using NEURON [28] running on a PC with 4 CPUs under Windows 8. 
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Voltage traces of all connected (PCs, BSC, OLM) and disconnected (AAC, BCs) cells to the 

network with respect to a single theta cycle are depicted in Figure 3. 

To assist the readers of this work and increase the readability of our manuscript, we 

provide below brief descriptions of each network’s components. Interested readers should 

refer to [17, 29] studies for more details of the microcircuit model and its components 

including the dimensions of their cells’ somatic, axonic, and dendritic compartments and 

distributions of passive and active conductances, synaptic waveforms and synaptic 

conductances along these compartments. The complete mathematical formalism of the model 

can be found in the Supplementary Online Materials document of [29]. 

 

2.1 Pyramidal cells 

Each PC had 15 compartments. Each compartment contained a calcium pump and buffering 

mechanisms, calcium activated slow after-hyperpolarized (AHP) and medium AHP K+ 

currents, a high voltage activated (HVA) L-type Ca2+ current, an HVA R-type Ca2+ current, a 

low voltage activated (LVA) T-type Ca2+ current, an h current, a fast sodium and a delayed 

rectifier K+ current, a slowly inactivating M-type K+ current and a fast inactivating A-type K+ 

current [24-25]. 

Each PC received mid-dendritic excitation from Schaffer collaterals (CA3-PCs), 

proximal excitation from around 1% of other CA1 PCs in the network (recurrent collaterals) 

[30], spatially-distributed (six contacts) proximal dendritic synaptic inhibition from the BSC, 

and distal synaptic inhibition on each distal (stratum lacunosum-moleculare (SLM)) dendritic 

branch from the OLM cell. 
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2.2 Bistratified cell 

The BSC had 13 compartments. Each compartment contained a leak conductance, a sodium 

current, a fast delayed rectifier K+ current, an A-type K+ current, L- and N-type Ca2+ currents, 

a Ca2+-dependent K+ current and a Ca2+- and voltage-dependent K+ current [26].  It received 

excitation from the CA3 Schaffer collaterals in its medial dendritic compartments, excitation 

from active CA1 PCs in its basal dendrites, inhibition from MS in its basal dendritic 

compartments. 

 

2.3 OLM cell 

The OLM cell had four compartments. Each compartment had a sodium (Na+) current, a 

delayed rectifier K+ current, an A-type K+ current, and an h-current [27]. It received 

excitation from the PCs in its basal dendrites and inhibition from MS in the soma. 

 

2.4 Model inputs 

An excitatory input originating from CA3 Schaffer collateral pyramidal cell axons and an 

inhibitory input originating from MS drove the network’s cells during recall (see Fig. 4). The 

CA3 input was modelled as the firing of M (M = 5, 10 or 20) out of N (N = 100 or 300) CA3 

pyramidal cells at an average gamma frequency of 40 Hz (spike trains only modelled and not 

the explicit cells). PCs and BSC received CA3 excitatory input in their medial dendrites. MS 

inhibition was modelled as the rhythmic firing of two populations of 10 septal cells (MS1 and 

MS2) each modulated at opposite phases of a theta cycle (180° out of phase) [31] (see Fig. 4).  

Each septal cell output was modelled as bursts of action potentials using a presynaptic spike 

generator. Each spike train consisted of bursts of action potentials at a mean frequency of 8 

Hz for a half-theta cycle (70 ms) followed by a half-theta cycle of silence. Due to 8% noise in 
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the inter-spike intervals, the 10 spike trains in each septal population were asynchronous. 

During recall, MS1 cells inhibited the MS2 cells, which dis-inhibited the BSC and OLM cells 

in the network. 

 

2.5 Synaptic properties 

AMPA, NMDA, GABA-A and GABA-B synapses were considered. GABA-A were present 

in somatic and dendritic compartments, whereas GABA-B were present only in medial and 

distal dendrites. AMPA and NMDA synapses were present only in medial dendrites. 

 

2.6 Network testing 

The goal of this research work was to test the recall performance of the model when the 

network had already stored patterns without examining the exact details of the learning 

process. To test the recall performance of the model the methodology described in [17] was 

adopted. A memory pattern was stored by generating a weight matrix based on a clipped 

Hebbian learning rule. This weight matrix was used to pre-specify the CA3 to CA1 PC 

connection weights. Without loss of generality, the input (CA3) and output (CA1) patterns 

were assumed to be the same, with each pattern consisting of M (M = 5, 10 or 20) randomly 

chosen PCs (active cells) out of the population of N (N = 100 or 300) PCs. The NxN (NxN = 

100x100 or 300x300) dimensional weight matrix was created by setting matrix entry (i, j), wij 

= 1 if input PC i and output PC j are both active in the same pattern pair; otherwise weights 

are 0. Any number of pattern pairs could be stored to create this binary weight matrix. The 

matrix was applied to our network model by connecting a CA3 input to a CA1 PC with a high 

AMPA conductance (gAMPA = 1.5 nS) if their connection weight was 1, or with a low 

conductance (gAMPA = 0.5 nS) if their connection was 0. This approach is supported by 

experimental evidence favouring two-state synapses [32]. 
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2.7 Memory patterns 

Sets of memory patterns at different sizes (1, 5, 10, 20), pattern overlaps (0%, 10%, 20%, 

40%) and number of active cells per pattern (5, 10, 20) were created. A 0% overlap between 

for example five patterns in a set meant no overlap between patterns 1 and 2, 1 and 3, 1 and 

4, 1 and 5, 2 and 3, 2 and 4, 2 and 5, 3 and 4, 3 and 5, and 4 and 5. Similarly, a 40% overlap 

between five patterns in a set meant that 0.4*Μ cells were shared between patterns 1 and 2, a 

different 0.4*Μ cells were shared between patterns 2 and 3, a different 0.4*Μ cells between 

patterns 3 and 4, a different 0.4*Μ cells between patterns 4 and 5 and a different 0.4*Μ cells 

between patterns 5 and 1 (see Fig. 5). For twenty active cells per pattern meant a maximum 

of 5 patterns could be stored by a network of 100 PCs. For ten active cells per pattern a 

maximum of 10 patterns could be stored and for five active cells per pattern a maximum of 

20 patterns could be stored. Similar maximum number of patterns could be stored for 10%, 

20% and 40% overlap and 5, 10 and 20 active cells per pattern, respectively.  

 

 

2.8 Recall performance 

To measure the recall performance of our network the normalized dot product metric was 

used which measured the distance between the recalled output pattern, A, from the required 

output pattern, A*: 

 𝐶 =
𝐴⋅𝐴∗

(∑ 𝐴𝑖⋅∑ 𝐴𝑗
∗𝑁𝐴

𝑗=1
𝑁𝐴
𝑖=1 )

        (1) 

where NA is the number of output units. Correlation between the recalled and required output 

patterns took value from 0 (no correlation between output pattern A = [1 0 1 0 1 0] and output 
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pattern A* = [0 1 0 1 0 1]) to 1 (output pattern A =  [1 0 1 0 1 0] and output pattern A* = [1 0 

1 0 1 0] are identical). The higher the correlation value, the better the recall performance. 

 

2.9 Mean recall quality 

We defined mean recall quality of our network model as the mean value of all recall qualities 

estimated from each pattern presentation when an P number of patterns were already stored in 

the network: 

𝑀𝐶 =
∑ 𝐶𝑖
𝑁𝑝
𝑖=1

𝑁𝑝
         (2) 

where Ci is the recall quality of pattern i and Np is total number of recalled patterns. For 

example, when ten patterns (Np = 10) were initially stored in the network and pattern 1 was 

presented to the network during recall, then a recall quality value for pattern 1 (C1) was 

calculated. Repeating this process for each of the other patterns (pattern 2 (C2), pattern 3 (C3), 

… , pattern 10 (C10)) a recall quality value was calculated. The mean recall quality (MC) of 

the network was then the mean value of these individual recall qualities. 

 

2.10 Model selection 

In [17] BSC inhibition to PC dendrites acted as a global non-specific threshold machine 

capable of removing spurious activities at the network level during recall. BSC inhibition was 

held constant as more patterns loaded onto the PC dendritic synapses. The recall quality of 

the model in [17] decreased as more and more memories were stored (see Fig. 14 in [17]).  

To improve the recall performance of [17] we artificially modulated the synaptic strength 

of selective excitatory and inhibitory pathways to BSC and PC dendrites as more and more 

patterns were stored in the network: 
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1. Model 1: Strengthening of CA3 feedforward excitatory synaptic drive to BSC 

dendrites (Fig. 6A) increased BSC’s firing rate. As a result, more IPSPs were 

generated in the PC dendrites producing a very strong inhibitory environment, which 

eliminated all spurious activity. 

2. Model 2: Strengthening of BSC feedforward inhibitory synaptic drive to PC dendrites 

(Fig. 6B) produced fewer IPSPs, but with greater amplitude. 

3. Model 3: Strengthening of PC feedback excitatory synaptic drive to BSC basal 

dendrites (Fig. 6C) had a similar effect as Model 1, but with smaller potency. 

 

3 Results 

A set of patterns (1, 5, 10, 20) at various percent overlaps (0%, 10%, 20%, 40%) were stored 

by different number of ‘active cells per pattern’ (5, 10, 20) without recourse to a learning rule 

by generating a weight matrix based on a clipped Hebbian learning rule, and using the weight 

matrix to prespecify the CA3 to CA1 PC connection weights. To test recall of a previously 

stored memory pattern in the model, the entire associated input pattern was applied as a cue 

in the form of spiking of active CA3 inputs (those belonging to the pattern) distributed within 

a gamma frequency time window. The cue pattern was repeated at gamma frequency (40 Hz). 

During the retrieval only the BSCs and OLM cells were switched on, whereas the AACs and 

BCs were switched off. The CA3 spiking drove the CA1 PCs plus the BSCs. The EC input, 

which excited the apical dendrites of PCs, AACs and BCs, was disconnected during the 

retrieval. 
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3.1 Recall quality as a function of pattern overlap 

Figure 7 depicts the mean recall quality of all three tested models (‘model 1’, ‘model 2’, 

‘model 3’) as a function of percent overlap between stored patterns. Recall quality was best 

for all three models (‘model 1’, model 2’, ‘model 3) when overlap was small (up to 10%) 

regardless of the number of ‘active cells per pattern’ (i.e. the number of cells needed to 

represent a memory pattern) and patterns stored in the network. For pattern overlaps greater 

than 10%, recall quality depended solely on the number of ‘active cells’ representing a 

pattern and it was independent of how many patterns were stored in the network. When five 

‘active cells’ were used to represent a memory, then recall quality was best for all three 

models across all overlaps and irrespective of memory patterns stored. When ten ‘active 

cells’ were used to represent a memory, the performance of all three models were comparably 

similar when 5 or 10 patterns were stored and across overlap percentages. When twenty 

‘active cells’ were used to represent a memory, then even for just 5 patterns stored, the recall 

quality for ‘model 2’ was consistently worst across all overlaps. The performance of ‘model 

1’ was consistently best across all condition, whereas the performance of ‘model 3’ was 

between ‘model 1’ and ‘model 2’. The performances of ‘model 2’ and ‘model 3’ get worse as 

overlap increased (from 10% to 40%). 

Similar recall performances were observed when the network size increased from 100 

PCs to 300 PCs, while keeping all other network components the same (1 BSC, 6 inhibitory 

synaptic contacts of BSC onto PCs dendrites, 1 OLM cell) (see Figure 8). When the network 

size increased, a performance improvement was evident even at 20% overlap for all three 

models and across conditions (active cells per pattern, and stored patterns). At larger overlaps 

as with the smaller network, the determinant factors for excellence in performance were the 

number of ‘active cells per pattern’, and modulated pathway. ‘Model 1’ (i.e. strengthening of 

CA3 feedforward excitatory synaptic drive to BSC dendrites) was consistently best across all 
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conditions (active cells per pattern, stored patterns, % overlaps) and against other models 

(‘model 2’ and ‘model 3’). A direct comparison of the mean recall quality of the small 

network (100 PCs) against the large network (300 PCs) showed no significant differences 

across all conditions (see Fig 9).  

 

3.2 Recall quality as a function of active cells 

Figures 10 and 11 depict the mean recall quality of models 1, 2, and 3 of the small network 

(100 PCs) against number of ‘active cells per pattern’ for various overlaps (0%, 10%, 20% 

and 40%) when five (Fig 10) and ten (Fig 11) patterns were stored in the network. When 5 or 

10 ‘active cells’ were used to represent a memory, then the recall performances of all three 

models when number of stored patterns were 5 or 10 were comparable at 0%, 10%, 20% and 

40%, respectively. This meant that the number of patterns stored in the network did not had 

any effect in its recall quality. When ‘active cells’ were increased (from 10 to 20), then the 

recall qualities of models 2 and 3 progressively got worse as overlap between patterns 

increased (from 0% to 40%). ‘Model 1’ recall quality was consistently best (C = 1) across 

‘active cells’, stored patterns, and overlap conditions. 

Figures 12 and 13 depict the mean recall qualities of models 1, 2 and 3 of the large 

network (300 PCs) against number of ‘active cells per pattern’ for various overlaps (0%, 

10%, 20% and 40%) when five (Fig 12) and ten (Fig 13) patterns were stored in the network. 

Comparable recall quality results to the smaller network are evident. As before the number of 

stored patterns had a minor effect on the recall quality of the network (‘model 1’, ‘model 2’, 

and ‘model 3’). When ‘active cells per pattern’ were increased (from 10 to 20), then the recall 

qualities of models 2 and 3 progressively got worse as overlap between patterns increased 

(from 0% to 40%). As before, ‘model 1’ recall quality was consistently best (C = 1) across 

‘active cells per pattern’, stored patterns, and overlap conditions.  
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 Direct comparisons of the mean recall quality of the smaller network (100 PCs) 

against the larger network (300 PCs) when five (Fig 14) and ten (Fig 15) patterns were stored 

showed no significant differences across all conditions.  

 

4 Discussion 

4.1 General model considerations 

A biologically realistic microcircuit model of region CA1 of the hippocampus with 

morphologically simplified neurons was employed [17, 29]. The model [17] demonstrated 

that encoding and retrieval of memories can be separated into two independent theta half-

cycles paced by theta modulated intra- and extra-hippocampal inhibition. The model 

simulated the timing of different extra- and intra-hippocampal cells types relative to the theta 

rhythm in anesthetized animals [31, 33-34]. Out of the possible excitatory and inhibitory 

pathways affecting the network’s dynamics, we selected in this study to quantitatively 

modulate the following three pathways: (1) Strengthening of the feedforward CA3 excitatory 

synaptic drive to BSC dendrites (‘model 1’), (2) Strengthening of the feedforward BSC 

inhibitory synaptic drive to PC dendrites (‘model 2’), and (3) Strengthening of the feedback 

PC excitatory drive to BSC basal dendrites (‘model 3’). 

4.2 Outstanding questions of memory research our model addressed 

A number of outstanding questions of memory research were addressed by our study. What 

constitutes a memory at the network level? How many ‘active cells’ can accurately represent 

a memory pattern and how do these ‘active cells’ affect the recall performance of the 

network? Is the network’s performance affected as more and more memory patterns with 
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greater degrees of overlap are stored in the network? How does an increase in network size 

affect the network’s recall performance? 

Our study showed that a memory pattern at the network level can be represented by a 

high gamma coordinated activity of a population of cells (called here ‘active cells per 

pattern’) (see Fig. 4b). We found that the number of ‘active cells’ coding for a memory 

pattern was a key determinant factor for improving the recall performance of each model 

tested. Our simulations showed that as the number of ‘active cells’ coding for a memory 

pattern decreased, then the better the recall performance of the model was regardless of how 

many patterns were stored and the degree of overlap between them. This was the case 

because as fewer active cells represented a memory even though many patterns were stored in 

the network, then the network’s memory weight matrix was dominated with fewer ‘1s’ and 

more ‘0s’ and hence interference between the stored patterns was not so strong to decrease 

the network’s recall performance. As soon as the number of ‘active cells’ coding for a 

memory pattern was increased, then the network weight matrix was populated with more ‘1s’ 

and fewer ‘0s’, and hence interference effects between stored patterns took over and the 

network’s recall performance decreased. We found the latter finding to be also depended on 

the chosen model. ‘Model 1’ performance was excellent across all conditions (‘active cells’, 

‘stored patterns’, ‘degree of overlap’, ‘network size’), whereas ‘model 2’ performance was 

the worst and ‘model 3’ performance was somewhere between ‘model 1’ and ‘model 2’.   

Our simulations further showed that the effect of the degree of overlap between stored 

memory patterns was heavily depended on the modulated pathway (i.e. the model tested). As 

degree of overlap increased (from 10% to 40%), the performances of ‘model 2’ and ‘model 3’ 

got worse. This finding was independent of the number of patterns stored in the network. An 

increase in the network size (from 100PCs to 300 PCs) had ‘no effect’ on average on the 

recall performances of the three models tested. This was because although we increased the 
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number of PCs in the network, we kept all other network components (1 BSC, 1 OLM, 6 

BSC inhibitory synaptic contacts onto the PC dendrites) and conditions (‘active cells’, ‘stored 

patterns’, ‘pattern overlap’) the same. As we mentioned above, in the smaller network 

(100PCs) its weight matrix was not saturated (i.e. it had fewer ‘1s’ and more ‘0s’), so an 

increase in network size and in network’s weight matrix from 100x100 to 300x300 

dimensions had a very little effect on the network’s performance.  

 So why was ‘model 1’ performance so consistently better than ‘model 2’ and ‘model 

3’ across all conditions? Why the recall performance of ‘model 1’ was always so outstanding 

even when more and more patterns were stored, less or more ‘active cells per pattern’ were 

utilized and greater degree of overlap between patterns was used? As we described in section 

“2.10 – Model selection”, ‘model 1’ was the case where CA3 feedforward excitatory drive to 

BSC was strengthened, causing the BSC’s firing rate to increase. As a result, more IPSPs 

were generated in the PC dendrites producing a very strong inhibitory environment (‘cloud’), 

which eliminated all spurious activity (see Fig. 6A). ‘Model 3’ was the case the PC feedback 

excitatory drive to BSC basal dendrites increased as more and more patterns were stored, 

causing the BSC’s firing rate to also increase but not as much as in ‘model 1’. As a result, 

IPSPs were generated in the PC dendrites producing though a less strong inhibitory cloud, 

which eliminated most spurious activity, but not all (see Fig. 6C). ‘Model 2’ was the case 

where strengthening of BSC feedforward inhibitory synaptic drive to PC dendrites produced 

fewer IPSPs on them, but with greater amplitude (see Fig. 6B).  In all simulations, ‘model 1’ 

outperformed ‘model 3’ across all conditions (overlaps and ‘active cells per pattern’). The 

main reason for such an outstanding performance of ‘model 1’ was because the BSC 

dendrites were excited by a higher frequency (40 Hz) excitatory drive (100 CA3-PCs), 

whereas in ‘model 3’ BSC dendrites were excited by a much lower frequency excitatory drive 

originating from the M ‘active cells’ (CA1-PCs) that represented the pattern (CA1 PCs fired 
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once or twice per retrieval cycle). Since in ‘model 1’ the BSC firing frequency response was 

higher than in ‘model 3’, then the postsynaptic effect the BSC had on the PC dendrites in 

‘model 1’ was higher in frequency and duration (but not in amplitude) than in ‘model 3’ (see 

Fig. 6A & 6C). Thus, ‘model 1’ had a better success at removing spurious activities and 

improving recall quality than ‘model 3’. Since the BSC frequency response in ‘model 2’ was 

fixed, but its postsynaptic effect (weight) on PC dendrites was strengthened, then the 

amplitude of the inhibitory postsynaptic potentials (IPSPs) on PC dendrites increased 

(compared to the IPSP amplitudes in models 1 and 3), but their frequency responses were low 

(lower than in models 1 and 3; see Fig. 6B). Each IPSP decayed to almost zero before another 

IPSP was generated post-synaptically on the PC dendrites. 

 

4.3 Future extensions 

Several extensions to the basic idea deserve further consideration. Although in this study only 

three excitatory and inhibitory pathways were selected to be modulated in order to examine 

their effects on the recall performance of the CA1 microcircuit model, there are several other 

pathways that can be modulated (e.g. a combination of ‘model 1’ with ‘model 3’, or a 

combination of ‘model 2’ with ‘model 3’, etc). Another idea worth pursuing further is to 

examine quantitatively the effect of the BSC inhibitory cloud on the PC dendrites. What will 

be the effect on the network’s recall performance if the potency of the postsynaptic inhibitory 

cloud is decreased or increased? What will be its effect when OLM inhibition is removed 

from the network? What will be the network’s recall performance when the same memory 

pattern that is retrieved is also being encoded? What will the effect when a new memory 

pattern is trying to be encoded when an old one is being retrieved? Under what network 

conditions (network size, active cells, stored patterns, etc) will the performance of ‘model 2’ 
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become better? These are some of the questions our research is currently attempting to 

address. 

 

5 Conclusions 

A bio-inspired microcircuit model of region CA1 region of the hippocampus [5] was 

employed to systematically evaluate its mean recall quality against growing numbers of 

stored patterns, increased percentages of overlaps and decreasing numbers of ‘active cells per 

pattern’. The strengths of three selective excitatory and inhibitory pathways to BSC and PC 

dendrites were chosen to be strengthened as more and more patterns were stored in the 

network, which resulted in three different network models, the performances of which were 

compared against each other. The recall performance of ‘model 1’ was found to be excellent 

(C = 1) across all conditions, whereas the recall performance of ‘model 2’ was the worst. One 

of our key findings of our study was that the number of ‘active cells per pattern’ had a 

massive effect on the recall quality of the network regardless of how many patterns were 

stored in it. As the number of dedicated cells representing a memory (‘active cells per 

pattern’) decreased, the memory capacity of the CA1-PC network increased, so interference 

effects between stored patterns decreased, and mean recall quality increased. An increase in 

network size (from 100PCs to 300PCs) had no effect on the performance of the three models 

tested. Another key finding of our study was that increased firing frequency response of a 

presynaptic inhibitory cell (BSC) inhibiting a network of PCs had a better success at 

removing spurious activity at the network level and thus improving recall quality than an 

increased synaptic efficacy of a presynaptic inhibitory cell (BSC) on a postsynaptic PC while 

keeping its presynaptic firing rate fixed. 
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Figure legends 

Figure 1. Hippocampal CA1 microcircuit showing major cell types and their connectivity. 

SLM: stratum lacunosum moleculare; SR: stratum radiatum; SP stratum pyramidale; SO: 

stratum oriens; PC: pyramidal cell; AAC: axo-axonic cell; BC: basket cell; BSC: bistratified 

cell; CA3: CA3 Schaffer collateral input; MS: medial septum. Black lines: excitatory input; 

Blue lines: inhibitory input; Maroon lines: MS inhibitory input. 

 

Figure 2. (Left) Recall microcircuit model of region CA1 of the hippocampus and (Right) 

CA1-PC model with one excitatory (CA3) and six inhibitory (BSC) synaptic contacts on its 

dendrites. EC: Entorhinal cortical input; CA3: Schaffer collateral input; AAC: Axo-axonic 

cell; BC: basket cell; BSC: bistratified cell; OLM: oriens lacunosum-moleculare cell; SLM: 

stratum lacunosum moleculare; SR:  stratum radiatum; SP: stratum pyramidale; SO: stratum 

oriens. During recall only PCs, BSC, and OLM cell are active. AAC and BCs are inactive due 

to strong medial septum inhibition. BSC and PC are driven on their SR dendrites by a strong 

CA3 excitatory input, which represented the contextual information. EC input is disconnected 

from the network, thus has no effect on it. Red circles on PC dendrites represent loaded 

synapses, whereas black circles on PC dendrites represent unloaded synapses. 

 

Figure 3. Voltage traces of model cells with respect to a single theta cycle. 

 

Figure 4. (a) Raster plot showing septal (top 20) and CA3 input (bottom 100) spikes. (b) 

Raster plot showing twenty ‘active cells’ activity coding for a particular memory pattern. (c) 

Twenty ‘active cells’ spike count in a sliding 10-ms bin. (d) Recall quality in a sliding 10 ms 

bin. 
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Figure 5. Exemplar set of five memory patterns with 40% overlap between them. 

 

Figure 6. Schematic drawing of (A) ‘Model 1’, (B) ‘Model 2’ and (C) ‘Model 3’. In ‘Model 

1’ a strong excitatory CA3 input increases BSC firing response, which generates on PC 

dendrite numerous small amplitude IPSPs, thus producing a very strong inhibitory 

environment which filters out spurious neuronal activities. In ‘Model 2’ a strong BSC 

inhibitory drive to PC dendrite causes postsynaptically fewer, but with larger amplitude 

IPSPs. In ‘Model 3’ a strong excitatory PC feedback signal to BSC increases its firing 

response, which generates fewer than ‘Model 1’ IPSPs on PC dendrite, and hence a less 

strong inhibitory environment than ‘Model 1’. 

 

 

Figure 7. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of percent 

overlap (0%, 10%, 20%, 40%). Each model was a network of 100PCs, 1 BSC and 1 OLM 

cell. 

 

Figure 8. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of percent 

overlap (0%, 10%, 20%, 40%). Each model was a network of 300PCs, 1 BSC and 1 OLM 

cell. 

 

Figure 9. Comparison of mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a 

function of network size (100 PCs vs 300 PCs) for different numbers of stored patterns, 

active cells, and 40% pattern overlap. 
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Figure 10. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 5 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 100PCs, 1 BSC and 1 OLM cell. 

 

Figure 11. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 10 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 100PCs, 1 BSC and 1 OLM cell. 

 

Figure 12. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 5 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 300PCs, 1 BSC and 1 OLM cell. 

 

Figure 13. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 10 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 300PCs, 1 BSC and 1 OLM cell. 

 

Figure 14. Comparison of mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a 

function of network size (100 PCs vs 300 PCs) for 5 stored patterns, 20 active cells, and 

different % pattern overlaps. 

 

Figure 15. Comparison of mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a 

function of network size (100 PCs vs 300 PCs) for 10 stored patterns, 10 active cells, and 

different % pattern overlaps. 
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Figure 1. Hippocampal CA1 microcircuit showing major cell types and their connectivity. 

SLM: stratum lacunosum moleculare; SR: stratum radiatum; SP stratum pyramidale; SO: 

stratum oriens; PC: pyramidal cell; AAC: axo-axonic cell; BC: basket cell; BSC: bistratified 

cell; CA3: CA3 Schaffer collateral input; MS: medial septum. Black lines: excitatory input; 

Blue lines: inhibitory input; Maroon lines: MS inhibitory input. 
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Figure 2. (Left) Recall microcircuit model of region CA1 of the hippocampus and (Right) 

CA1-PC model with one excitatory (CA3) and six inhibitory (BSC) synaptic contacts on its 

dendrites. EC: Entorhinal cortical input; CA3: Schaffer collateral input; AAC: Axo-axonic 

cell; BC: basket cell; BSC: bistratified cell; OLM: oriens lacunosum-moleculare cell; SLM: 

stratum lacunosum moleculare; SR:  stratum radiatum; SP: stratum pyramidale; SO: stratum 

oriens. During recall only PCs, BSC, and OLM cell are active. AAC and BCs are inactive due 

to strong medial septum inhibition. BSC and PC are driven on their SR dendrites by a strong 

CA3 excitatory input, which represented the contextual information. EC input is disconnected 

from the network, thus has no effect on it. Red circles on PC dendrites represent loaded 

synapses, whereas black circles on PC dendrites represent unloaded synapses.  
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Figure 3. Voltage traces of model cells with respect to a single theta cycle. 
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Figure 4. (a) Raster plot showing septal (top 20) and CA3 input (bottom 100) spikes. (b) 

Raster plot showing twenty ‘active cells’ activity coding for a particular memory pattern. (c) 

Twenty ‘active cells’ spike count in a sliding 10-ms bin. (d) Recall quality in a sliding 10 ms 

bin. 
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Figure 5. Exemplar set of five memory patterns with 40% overlap between them. 
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Figure 6. Schematic drawing of (A) ‘Model 1’, (B) ‘Model 2’ and (C) ‘Model 3’. In ‘Model 

1’ a strong excitatory CA3 input increases BSC firing response, which generates on PC 

dendrite numerous small amplitude IPSPs, thus producing a very strong inhibitory 

environment which filters out spurious neuronal activities. In ‘Model 2’ a strong BSC 

inhibitory drive to PC dendrite causes postsynaptically fewer, but with larger amplitude 

IPSPs. In ‘Model 3’ a strong excitatory PC feedback signal to BSC increases its firing 

response, which generates fewer than ‘Model 1’ IPSPs on PC dendrite, and hence a less 

strong inhibitory environment than ‘Model 1’.   
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Figure 7. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of percent 

overlap (0%, 10%, 20%, 40%). Each model was a network of 100PCs, 1 BSC and 1 OLM 

cell.  
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Figure 8. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of percent 

overlap (0%, 10%, 20%, 40%). Each model was a network of 300PCs, 1 BSC and 1 OLM 

cell. 
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Figure 9. Comparison of mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a 

function of network size (100 PCs vs 300 PCs) for different numbers of stored patterns, 

active cells, and 40% pattern overlap.  
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Figure 10. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 5 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 100PCs, 1 BSC and 1 OLM cell. 
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Figure 11. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 10 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 100PCs, 1 BSC and 1 OLM cell. 
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Figure 12. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 5 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 300PCs, 1 BSC and 1 OLM cell. 
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Figure 13. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of active 

cells per pattern (5, 10, 20) when 10 patterns were stored with various percentages of pattern 

overlap. Each model was a network of 300PCs, 1 BSC and 1 OLM cell. 
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Figure 14. Comparison of mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a 

function of network size (100 PCs vs 300 PCs) for 5 stored patterns, 20 active cells, and 

different % pattern overlaps. 
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Figure 15. Comparison of mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a 

function of network size (100 PCs vs 300 PCs) for 10 stored patterns, 10 active cells, and 

different % pattern overlaps. 

 

  


