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SUMMARY
X chromosome inactivation (XCI) is a dosage compensation mechanism in female mammals whereby tran-
scription from one X chromosome is repressed. Analysis of human induced pluripotent stem cells (iPSCs)
derived from female donors identified that low levels of XISTRNAcorrelated strongly with erosion of XCI. Pro-
teomic analysis, RNA sequencing (RNA-seq), and polysome profiling showed that XCI erosion resulted in
amplified RNA and protein expression from X-linked genes, providing a proteomic characterization of
skewed dosage compensation. Increased protein expression was also detected from autosomal genes
without an mRNA increase, thus altering the protein-RNA correlation between the X chromosome and auto-
somes. XCI-eroded lines display an �13% increase in total cell protein content, with increased ribosomal
proteins, ribosome biogenesis and translation factors, and polysome levels. We conclude that XCI erosion
in iPSCs causes a remodeling of the proteome, affecting the expression of a much wider range of proteins
and disease-linked loci than previously realized.
INTRODUCTION

In humans and other mammalian species, female cells have two

copiesof theXchromosome,whereasmaleshaveasingleXchro-

mosome and amuch smaller Y chromosome that is not present in

females. In females, one of the two X chromosomes undergoes

silencing, causing repression of transcription and thereby inacti-

vating expression of alleles located on this second copy of the

X. This process is termed X chromosome inactivation (XCI).

The XCI process in female cells is considered a critical dosage

compensation mechanism that evolved in mammals as a way to

equalize X-linked gene expression between males and females

(Graves, 2016; Livernois et al., 2012). XCI is vital for embryonic

development, and failure to induce XCI has been shown to cause

embryonic lethality (Borensztein et al., 2017; Takagi and Abe,

1990). Furthermore, skewed XCI has also been shown to have

major clinical consequences, with the emergence of numerous

sex-specific genetic disorders, such as Rett’s syndrome (Lyst

and Bird, 2015).

The initiation of XCI is controlled by a specific locus, termed the

X-inactivation center (Xic) (Augui et al., 2011). The mechanism of

XCI involves a profound structural reorganization of the inacti-
This is an open access article und
vated copy of the X chromosome, which becomes heterochro-

matic and visibly compacted (Augui et al., 2011; Giorgetti et al.,

2016). Within the Xic, a long, non-coding RNA, called ‘‘XIST,’’

has been shown to be an important component of the XCI pro-

cess (Marahrens et al., 1997; Penny et al., 1996). Accumulation

of XIST RNA across the inactive copy of the X chromosome trig-

gers the changes that produce the transcriptionally inactive state

(Dossin et al., 2020; Galupa and Heard, 2018).

Over a decade ago, breakthrough studies reported that termi-

nally differentiated somatic cells could be reprogrammed back

into a pluripotent state by the exogenous expression of a small

set of transcription factors (Takahashi et al., 2007; Takahashi

and Yamanaka, 2006; Yu et al., 2007). The resulting human

induced pluripotent stem cells (iPSCs) were shown to share

the hallmarks of their embryonic counterparts, including the in-

duction of XCI (Wutz, 2012). However, for these cells, as well

as for human embryonic stem cells (hESCs), XCI has been shown

to be unstable in culture. Thus, some human primed iPSCs

exhibit erosion of XCI, for which the X chromosome loses

H3K27me3 marks, as well as XIST RNA expression (Anguera

et al., 2012; Dandulakis et al., 2016; Mekhoubad et al., 2012).

Although the role of XIST in relation to erosion of XCI remains
Cell Reports 35, 109032, April 27, 2021 ª 2021 The Authors. 1
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unclear, it has been reported that the loss of XIST expression is

characteristic of class III hESCs that display eroded XCI (Geens

and Chuva De Sousa Lopes, 2017).

In this study, we explore the global consequences for human

gene expression when XCI is eroded by using a collection of

iPSCs derived from healthy female donors that were all reprog-

rammed from primary skin fibroblasts (Kilpinen et al., 2017). Spe-

cifically, we have analyzed the impact of XCI erosion by using 74

independent HipSci (https://www.hipsci.org) iPSC lines derived

from female donors and also compared them to 46 lines derived

frommale donors by using both RNA sequencing (RNA-seq) and

proteomic data (Mirauta et al., 2020). The data show that for our

collection of iPSCs, a decrease in the expression of the lncRNA

XIST was correlated with significantly higher biallelic expression,

reflecting increased erosion of XCI.

We also report a global analysis comparing in parallel RNA and

protein expression levels for lines that were stratified based upon

having either high or low expression levels of XIST RNA. We pro-

vide an in-depth analysis of how erosion of XCI in human cells af-

fects gene expression at the protein level. The data show that

erosion of XCI increases both transcription and protein produc-

tion from genes on the inactive X chromosome, and compari-

sons to the male lines show this erosion significantly affects

dosage compensation at the protein level. Remarkably, we

also uncover a widespread increase in the abundance of many

proteins encoded by genes on the autosomes, independent of

a parallel increase in transcription. Female cell lines with low

levels of XIST RNA show amedian increase of�13% in total pro-

tein content, along with higher levels of polysomes and compo-

nents of the translational machinery. These data indicate that

erosion of XCI can affect the expression of a much wider range

of proteins and disease-linked gene loci than previously realized

based on RNA analysis alone.

All of the raw and processed mass spectrometry (MS) files are

available within PRIDE (Perez-Riverol et al., 2019; Vizcaı́no et al.,

2016) (PRIDE:PXD010557), and the RNA-seq data are available

within ENA (Amid et al., 2020) (ENA:PRJEB7388).

RESULTS

RNA-seq and proteomic datasets
All of the iPSC lines used for this study were generated by the

HipSci project (https://www.hipsci.org). They were reprog-

rammed from human primary skin fibroblasts and subjected to

rigorous quality-control procedures, which included array-based

genotyping and gene expression profiling, as well as an evalua-

tion of their pluripotency and differentiation properties (Kilpinen

et al., 2017). This study analyzes gene expression data (Brenes

et al., 2019; Mirauta et al., 2020) generated from 74 independent
Figure 1. Comprehensive coverage

For all boxplots, the top and bottom hinges represent the 1st and 3rd quartiles. Th

interquartile range (IQR) from the hinge; the bottom whisker extends from the hin

(A) The HipSci proteomics workflow from reprogramming to identification and qu

(B) Boxplot showing the number of proteins identified per line across the 56 filte

(C) Boxplot showing the sequence coverage for all proteins detected within the

(D) Pie chart showing the overlap between quantified gene products in the prote

(E) Scatterplot comparing the median log2 transcripts per million (TPM) versus th
iPSC lines derived from healthy female donors and 46 lines

derived from healthy male donors. The lines were grown using

identical culture conditions, and aliquots were divided for parallel

RNA-seq and proteomic analyses. The MS-based proteomic

data were acquired using a tandem mass tag (TMT) workflow

(see STAR Methods; Figure 1A).

The proteomic data for this study were processed using Max-

Quant (Cox and Mann, 2008; Tyanova et al., 2016) and searched

against the manually curated SwissProt database (The UniProt

Consortium, 2017) with a 1% false discovery rate (FDR)

threshold at the peptide spectrummatch (PSM) and protein level

(for more details see STAR Methods). Overall, it detected the

expression of >9,500 protein groups (i.e., proteins/protein iso-

forms without discriminating peptides; hereafter termed pro-

teins; Table S1), with amedian of 8,479 proteins identified across

all lines (Figure 1B), and a median protein sequence coverage of

42% across all proteins (Figure 1C). All downstream analyses

were performed on a subset of 8,908 proteins, which were

each identified with at least 3 ‘‘Razor + unique peptides’’ (RUP;

ie., the number of unique peptides, plus the number of shared

peptides used for the quantification of a protein; see STAR

Methods). To compare protein expression levels between the

respective iPSC lines, protein copy numbers were estimated us-

ing the ‘‘proteomic ruler’’ (Wi�sniewski et al., 2014) approach and

using the batch correction method previously described (Brenes

et al., 2019; Plubell et al., 2017). This is well suited for the analysis

of HipSci lines, which have been shown to have near-identical

DNA content (Kilpinen et al., 2017).

From the RNA-seq data, after filtering, a total of 12,798 tran-

scripts were quantified, (see STAR Methods; Table S1), with

matching protein level data for 65% of them (Figure 1D). To

explore the relationship between RNA and protein abundance

levels in this set of iPSC lines, we calculated the Pearson corre-

lation of mRNA abundance versus protein abundance (Fig-

ure 1E). This resulted in a Pearson correlation coefficient of

0.62, which is similar to that reported by multiple previous

studies comparing mRNA and protein expression levels, both

in different human cell types and for other mammalian species

(Edfors et al., 2016; Lundberg et al., 2010; Ly et al., 2014).

Erosion of XCI
As it hadbeenpreviously reported that therewasacorrelationbe-

tween the loss of XIST RNA coating the inactive X chromosome

and erosion of XCI, we first evaluated the relationship between

the levels of XIST RNA expression and the erosion of XCI within

the HipSci iPSC lines, as measured by an allele-specific expres-

sion (ASE) analysis on X-linked genes (Figure 2A). This showed a

clear correlation between iPSC lines with low XIST expression

and increased levels of biallelic expression for X-linked genes.
e top whisker extends from the hinge to the largest value no further than 1.5 3

ge to the smallest value at most 1.5 3 IQR of the hinge.

antification.

red (see STAR Methods) female iPSC lines.

dataset.

omics and RNA-seq datasets.

e median log10 copy number for all gene products.
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Interestingly, a parallel analysis focused on XACT RNA, another

long non-coding RNA implicated in the mechanism of XCI in hu-

mans (Vallot et al., 2017), showed little to no correlation with

altered biallelic expression in these iPSC lines (Figure S1).

Next, the 74 iPSC lines were stratified into low, medium, and

high XIST RNA populations, based on the RNA-seq expression

data (Figure 2B; Table S2). This identified two main populations,

with 47.3% showing the expected high levels of XIST RNA and a

surprisingly elevated proportion, 40.5%, of the iPSC lines having

very low levels of XIST RNA expression (Figure 2C). Aminor pop-

ulation (12.2%) that showed an intermediate level of XIST

expression was also identified. However, as this population rep-

resented a low number of iPSC lines it was not used for the main

downstream analysis. The rest of the study focused on

comparing gene expression specifically between the popula-

tions stratified by high and low levels of XIST RNA expression.

We next set out to examine the relationship between XIST

expression levels and allelic expression within X-linked gene

products (Figure 2D). This analysis showed that iPSC lines with

high levels of XIST expression had a significantly lower (p =

2.2e�16) fraction of genes, with reads derived from the lowest ex-

pressed allele (hereafter termed secondary allele; see STAR

Methods), compared to the low XIST population. Gene products

within iPSC lines displaying high levels of XIST had a median of

99.5% of reads originating from the highest expressed allele

(hereafter termed primary allele; see STAR Methods), with only

0.5% from the secondary allele. iPSC lines with low levels of

XIST showed an increase in the proportion of reads derived

from the secondary allele, with a median of 22.6%, and with

77.4% of reads derived from the primary allele. We therefore

conclude that XIST expression levels provide a suitable marker

for detecting erosion of XCI within the iPSC lines analyzed.

We next mapped all the X-linked genes to their respective

bands within the X chromosome and studied allele expression

for genes across all bands, for both the high and low XIST

populations (Figure 2E). These data again emphasize that the

population with high XIST expression has much lower biallelic

expression than the low XIST population. However, it was

apparent that the level of biallelic expression is not uniform

across the X chromosome. Even within the high XIST population,

certain bands, such as Xp22, Xq23, and Xq26, are more prone to
Figure 2. XIST and XCI

For all boxplots, the bottom and top hinges represent the 1st and 3rd quartiles. Th

IQR from the hinge; the bottom whisker extends from the hinge to the smallest v

(A) Scatterplot showing the ratio of reads derived from the secondary allele (lowes

all X-linked transcripts versus the log2 XIST TPM for all healthy female lines. The si

(B) Boxplot showing log2 TPM for the long non-coding RNA XIST across all 3 po

(C) Pie chart showing the percentage of healthy female lines within each XIST-st

(D) Stacked density plot for all X-linked gene products across all lines showing the

both the high and low XIST populations.

(E) X chromosomemap showing the ratio of reads derived from the secondary alle

and low XIST populations. The size of the rectangles represents the number of g

(F) X chromosome map showing the log2 fold change (low/high XIST) across chro

rectangles represents the number of gene products per band.

(G) Boxplot showing the Pearson correlation coefficient comparing log2 fold chan

Autosomes are colored in gray; the X chromosome is colored in red.

(H) Bar plot showing the median log2 fold change (low/high XIST) for all gene pro

The error bars represent the SEM.
displaying increased expression from the secondary allele (Fig-

ure 2E). These same bands also displayed higher biallelic

expression within the low XIST population.

We expanded the chromosomal band analysis by calculating

the median log2 fold change between the high and low XIST pop-

ulations, for all gene products and across all bands, at both the

RNA-seq and proteomics levels (Figure 2F). As seen for the allelic

expression, the fold change across chromosomal bands was not

uniform. Interestingly, some of the hotspots highlighted by the

allelic analysis (e.g., bands Xp22, Xq23, and Xq26) were also

among the sites showing highest levels of change inRNA and pro-

tein expression. This is consistent with previous observations

showing that there are specific loci that can preferentially escape

XCI (BalatonandBrown,2016;Tukiainenet al., 2017).Wenote that

the independent transcriptomic and proteomic datasets both dis-

played very similar patterns of gene expression variation in

response to XIST levels across the X chromosome. This concor-

dance in RNA- and protein-level data is consistent with a predom-

inantly transcription-driven regulationofX-linkedgeneexpression.

We also wanted to understand how the changes in gene

expression between the high and low XIST populations behaved

for genes across all other chromosomes. Hence, we used all

gene products that were detected both in both the RNA-seq

and proteomics datasets, aggregated them at the chromosome

level, and compared their respective RNA and protein fold

changes. This chromosome-specific view showed that the high-

est fold change concordance is observed within X-linked genes,

with a Pearson correlation of 0.56 (Figure 2G). However, this

same level of concordance was not observed across all other

chromosomes, as each of the autosomes had a much lower cor-

relation coefficient than was seen for the X chromosome, with

the second highest being chromosome 10 with a correlation co-

efficient of 0.36 and the median being 0.27. The data thus indi-

cate a difference between X-linked genes and genes on all of

the autosomes.

To quantify these differences, we compared the median fold

change for RNAs and proteins across all chromosomes (Fig-

ure 2H). Unsurprisingly, the highest median increase observed

within the low XIST, compared to the high XIST population, at

both the RNA and protein levels, occurs for genes on the X chro-

mosome. However, the proteomics data, unlike the RNA-seq
e top whisker extends from the hinge to the largest value no further than 1.5 3

alue at most 1.5 3 IQR of the hinge.

t expressed allele) compared to the primary allele (highest expressed allele) for

ze of the circle is determined by the number of transcripts used for the analysis.

pulations, namely, low, medium, and high XIST.

ratified population.

ratio of readsmapped to the secondary allele compared to the primary allele for

le compared to the primary allele across chromosomal bands for both the high

ene products per band.

mosomal bands for both the RNA-seq and proteomic datasets. The size of the

ge (low/high XIST) at the RNa-seq and proteomics level for all chromosomes.

ducts aggregated at the chromosome level for both RNA-seq and proteomics.
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data, also displayed increased median fold changes across all

other chromosomes as well.

In summary, the RNA expression data show that iPSC lines

with high levels of XIST RNA display significantly lower biallelic

expression than the iPSC lines with low levels of XIST, with

99.5% of the reads derived from the primary allele and only

0.5% from the secondary allele. The lines with low expression

of XIST showed a higher proportion of reads derived from the

secondary allele (22.6%), consistent with erosion of XCI. The

data also show that erosion of XCI in iPSCs results in both

increased transcription and protein expression for X-linked

genes. However, the same was not observed for genes on the

autosomes, for which the increased median fold change seen

across all chromosomes was detected only at the protein level.

Impact of XCI erosion on the autosomes and dosage
compensation
Next, we focused on a differential expression analysis,

comparing the high versus low XIST-stratified populations at

both the RNA and protein levels. This analysis showed that

�55% of X-linked genes in the low XIST population exhibited

significantly increased expression of both RNA and protein, as

compared to the high XIST population (Figures 3A and 3B; Table

S3). However, when comparing gene expression from auto-

somes, once again, we detected differences between the RNA

and protein datasets. Thus, 9% of autosomal transcripts (1,087

out of 12,042) were significantly increased in expression and

11.2% (1,344 out of 12,042; Table S4) were significantly

decreased in expression in the low XIST compared to the high

XIST population. In contrast, the proteomics data showed that

27.8% of the quantified autosome-encoded proteins (2,383 out

of 8,593; Table S4) were significantly increased in expression

in the low XIST population, whereas only 1.2% of autosome-en-

coded proteins (107 out of 8,593) were significantly decreased in

expression (Figure 3B). These results show that there is a clear

effect within the proteomics data that is not recapitulated by

the RNA-seq data.

Based on the increased fold change across all chromosomes

and significantly increased expression of over 2,300 autosomal

proteins, we suspected that the low XIST population of iPSC

lines may have a higher average protein content per cell, as

compared to the high XIST population. To test this hypothesis,

we used the MS data to estimate the total protein content and

compare both XIST-stratified populations to each other. Further-

more, this dataset also provided an opportunity to study the

impact of human dosage compensation at the protein level

and thus to determine how the global proteome may respond

to erosion of XCI. Hence, we also compared both XIST-stratified

populations to 46 iPSC lines derived from healthy male donors

(see STAR Methods).

No significant differences in total protein content were de-

tected between the high XIST female lines and the male lines

(Figure 3C). However, the low XIST population had a significant

increase (p = 0.042) of 7.3% in total protein content compared

to the male lines and an even more pronounced increase

(p = 0.006) of 13.2% compared to the high XIST lines (Figure 3C).

To check if these changes in protein content were related to po-

tential cell cycle differences between the respective stratified
6 Cell Reports 35, 109032, April 27, 2021
populations, we analyzed the expression of a panel of genes pre-

viously characterized as being cell cycle regulated (Ly et al.,

2014). Gene expression at both the RNA and protein levels

showed no significant differences for these known cell-cycle-

regulated genes between the high and low XIST populations

(Figure S2). Hence, we conclude that the observed differences

in protein content linked with erosion of XCI are likely not the

result of altered kinetics of cell cycle progression.

We drilled down on these comparisons further and focused on

the total copy numbers for all X-linked proteins across both

XIST-stratified female populations and the male lines. Once

again, this comparison revealed no significant differences be-

tween the high XIST female population and themales (Figure 3D).

In contrast, the low XIST population saw a dramatic increase in

protein copy numbers of 27% (p = 0.0032) compared to the

males (Figure 3D). When we repeated this analysis for autosomal

proteins (Figure 3E), the low XIST female population displayed

6.5% higher (p = 0.052) protein copy numbers than the males

and 11.8% higher (p = 0.00099) protein copy numbers than the

high XIST female population. Hence, these data suggested there

was little or no significant difference in total protein levels be-

tween the high XIST female population and iPSC lines from

male donors, whereas the low XIST female population was

significantly different from both. The medium XIST population

appeared to be more closely aligned to the high XIST than to

the low XIST population (Figure S3)

To obtain a more granular view, we compared the changes in

expression for each protein within both the high and low XIST fe-

male populations, in comparison to themale population, for each

of their respective chromosomes (Figure 3F). When comparing

the male to high XIST female lines, we found no significant fold

change difference between the X chromosome and any other

chromosome. This finding demonstrates that XCI is effective at

ensuring similar expression levels of X linked proteins between

males and females with robust XCI. However, the situation is

different when comparing male-derived lines with low XIST fe-

male lines, for which themedian fold change of proteins encoded

by genes on the X chromosome is significantly higher than for

genes on all other chromosomes.

Proteome-specific response to XCI
We next investigated in more detail how the proteome was

altered in the low XIST population and examined which types

of proteins and which protein functions showed changes. We

focused on proteins that showed significantly increased expres-

sion (q < 0.05) in the Low XIST population compared to the high

XIST population, but without a corresponding significant in-

crease in the RNA-seq data. We discovered that this group of

proteins were robust identifications, as they were enriched in

high abundance proteins (abundance greater than the 75th

percentile; see STAR Methods), with high numbers of RUPs de-

tected (RUP greater than the 75th percentile; Figures 4A and 4B).

A follow-up analysis, focused on biological processes, was

carried out by a Gene Ontology (GO) overrepresentation test, us-

ing Panther (Mi et al., 2017). This analysis showed that these pro-

teins were enriched specifically for the GO terms ‘‘ribonucleo-

protein complex biogenesis’’ and ‘‘mRNA metabolic process.’’

We note that these enriched GO terms are associated with



Figure 3. Multi-omic overview

For all boxplots, the bottom and top hinges represent the 1st and 3rd quartiles. The top whisker extends from the hinge to the largest value no further than 1.5 3

IQR from the hinge; the bottom whisker extends from the hinge to the smallest value at most 1.5 3 IQR of the hinge.

(A) Volcano plot showing the log2 fold change (low/high XIST) on the x axis, with the �log10 p value on the y axis for the RNA-seq dataset. X chromosome

transcripts are highlighted in red; autosome transcripts are colored gray. All transcripts above the orange line have a p value lower than 0.05.

(B) Volcano plot showing the log2 fold change (low/high XIST) on the x axis, with the�log10 p value on the y axis for the proteomic dataset. X chromosome proteins

are highlighted in red; autosomal proteins are colored gray. All proteins above the orange line have a p value lower than 0.05.

(C) Boxplot showing the estimated protein content (see STAR Methods) for the high XIST, low XIST, and male populations.

(D) Boxplot showing the sum of protein copy numbers across the X chromosome for the high XIST, low XIST, and male lines.

(E) Boxplot showing the sum of protein copy numbers across all autosomes for the high XIST, low XIST, and male lines.

(F) Boxplot showing the median protein log2 fold change (high XIST/Males and low XIST/Males) across all chromosomes.
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many proteins involved in post-transcriptional mechanisms that

could increase total protein expression from a constant amount

of mRNA. This includes genes related to processes including

ribosome subunit biogenesis, ribosome function, and the control

of protein translation. Consistent with this result, when

comparing changes in expression at the respective RNA and

protein levels between the XIST stratified populations, we found
that Pearson correlation coefficients were particularly low for the

ribosomal (0.09) and ribosome subunit biogenesis (0.15) proteins

(Figure 4C). This finding indicates a potentially important role for

post-transcriptional mechanisms in regulating protein expres-

sion from these genes.

Overall, >36% of all proteins involved in ribosome subunit

biogenesis, as described in KEGG (Kanehisa and Goto, 2000),
Cell Reports 35, 109032, April 27, 2021 7
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showed significantly increased (q < 0.05) expression within the

low XIST population, and of these proteins, >70% of those

involved in the cytoplasmic stages of ribosome subunit biogen-

esis showed increased protein expression (Figure 4D). For

example, SPATA5 (a human homolog of yeast Drg1; p =

0.0095), SBDS (p = 0.0003), and LSG1 (p = 0.0084) (Figure 4E),

which are all involved in the final step of 60S maturation and

the atypical RIO kinases RIOK1 (p = 0.0097) and RIOK2 (p =

0.0076; Figure 4F), involved in the final step of 40S maturation

(Vanrobays et al., 2003), all showed significantly increased pro-

tein expression within the low XIST population. Interestingly, all

of these proteins are involved in the cytoplasmic quality control

of ribosomes (Cerezo et al., 2019; Karbstein, 2013; Peña et al.,

2017). To drill down further into the process of ribosome subunit

biogenesis, we performed a more granular enrichment analysis

on the proteins involved within this pathway and found the high-

est enrichment was on terms related to large subunit biogenesis

and ribosomal RNA (Figure 4G)

Proteome-specific changes affecting ribosomes and
translation initiation
When we focused on the total estimated copy numbers for the

cytoplasmic ribosomes, we noticed they mirrored the protein

content closely, with a mean increase of 13% (p = 0.0019) in

the low XIST population (Figure 5A). Interestingly, the changes

were not uniform between the large subunit (60S) and the small

subunit (40S). The largest increase in the low XIST population

affected proteins belonging to the 60S (Figure 5B), resulting in

a significant change (p = 0.0053) in the ratio of protein copy

numbers between 60S and 40S ribosomal proteins (Figure 5C).

Overall, �42% of the ribosomal proteins and ribosomal S6 ki-

nases detected were significantly increased in expression in

the low XIST population (Figure 5D). Of these proteins, the one

with the highest p value (p < 6.86e�07) was p90 ribosomal S6 ki-

nase (RPS6KA3), which is encoded on the X chromosome and is

linked to cell growth by increased cap-dependent translation

through phosphorylation of RPS6 (Roux et al., 2007) and RPTOR

(Carrière et al., 2008; for all significantly increased X-linked ki-

nases see Figure S4).

As RPS6KA3 is an X-linked kinase, we checked the ratio of

reads mapped to the secondary allele compared to the primary

allele and detected significant differences between the high

and low XIST lines (p = 0.00011). Thus, the median ratio for the

high XIST population was 0.07, whereas the median ratio in the
Figure 4. Ribosome biogenesis

For all boxplots, the bottom and top hinges represent the 1st and 3rd quartiles. Th

IQR from the hinge; the bottom whisker extends from the hinge to the smallest v

(A) Boxplot showing the number of proteinswith copy numbers greater than the 75

simulations and the actual experimental data (see STAR Methods).

(B) Boxplot showing the hypergeometric p value for proteins with copy numbers gr

percentile for the simulations and the actual experimental data (see STAR Metho

(C) Scatterplot showing the log2 fold change (low/high XIST) at the protein and R

proteins are highlighted, and Pearson correlation coefficients are provided.

(D) Schematic showing the cytoplasmic ribosome biogenesis proteins with prote

(E) Boxplot showing the protein copy numbers for SBDS, LSG1, and SPATA5 wi

(F) Boxplot showing the protein copy numbers for RIOK1 and RIOK2 within the l

(G) Treemap plot showing the results of a biological process overrepresentation te

to the enrichment level of the specific terms.
low XIST population was 0.44 (Figure 5E). We also detected a

significantly higher expression of RPS6KA3 within the low XIST

compared to the high XIST population, in both the RNA-seq (Fig-

ure 5F) and proteomics (Figure 5G) datasets. These data support

a model in which transcriptional derepression of the inactive X

chromosome in low XIST lines increases the expression of pro-

teins encoded on the X, which in turn can increase mRNA trans-

lation and protein expression for autosomal genes.

We next looked for additional X-linked gene products with the

potential to affect mRNA translation, focusing on the translation

initiation factors EIF2S3 and EIF1AX. These proteins both form

part of the 43S translation preinitiation complex (Jackson et al.,

2010). EIF2S3 is a member of the heterotrimeric eIF2 complex,

which delivers an initiator methionyl transfer RNA to the ribo-

some. Based on the protein expression data in this study,

EIF2S3 appears to be the rate-limiting subunit of the eIF2 com-

plex within the iPSC lines (Figure S5). As seen with RPS6KA3,

a significantly higher ratio of reads from the secondary allele of

EIF2S3 are seen within the low XIST compared to the high

XIST population (p = 9.2e�7; Figure 6A), together with signifi-

cantly higher expression at theRNA-seq (p = 2.67e�15; Figure 6B)

and proteomics (p = 0.0017; Figure 6C) levels . Similarly, EIF1AX

is involved in virtually all the steps in mRNA translation initiation,

from the pre-initiation to ribosomal subunit joining (Nag et al.,

2016), and it shows a dramatic median increase of over 2.3

million protein copies in the low XIST population. A higher me-

dian fraction of reads was seen from the EIF1AX secondary allele

(0.31 in the low XIST versus 0.13 in the high XIST; Figure 6D).

However, this difference did not meet a statistically significant

threshold, likely due to outlier lines within the high XIST popula-

tion with a high ratio of reads from the secondary allele. Nonethe-

less, the expression levels of EIF1AX at both the RNA-seq

(p = 2.16e�6; Figure 6E) and proteomics (p = 9.34e�8; Figure 6F)

levels were significantly increased in the low XIST population. To

validate further the MS-based identifications and quantifica-

tions, we mapped the peptide coverage for all 3 X-linked trans-

lational modulators (i.e., RPS6KA3, EIF2S3, and EIF1AX), which

revealed robust results with high numbers of RUPs (all over 10

RUP) detected, as well as high sequence coverage (all over

53%; Figure S6).

The potential impact of eroded XCI on factors affecting the ef-

ficiency of translation initiation was not limited to an upregulation

of proteins encoded by genes on the X chromosome only. For

example, eIF4F is another complex that is vital for translation
e top whisker extends from the hinge to the largest value no further than 1.5 3

alue at most 1.5 3 IQR of the hinge.
th percentile andRazor + unique peptides greater than the 75th percentile for the

eater than the 75th percentile and Razor + unique peptides greater than the 75th

ds).

NA level. Ribosome biogenesis and cytoplasmic and mitochondrial ribosomal

ins significantly increased in expression highlighted in orange.

thin the low and high XIST populations.

ow and high XIST populations.

st focused on ribosome biogenesis proteins. The rectangle size is proportional
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Figure 5. Ribosomes and translational initia-

tion

For all boxplots, the bottom and top hinges repre-

sent the 1st and 3rd quartiles. The top whisker ex-

tends from the hinge to the largest value no further

than 1.5 3 IQR from the hinge; the bottom whisker

extends from the hinge to the smallest value at most

1.5 3 IQR of the hinge.

(A) Boxplot showing the copy numbers for the sum

of all cytoplasmic ribosomal proteins within the high

and low XIST populations.

(B) Boxplot showing the copy numbers for the sum

of all 60S (large ribosomal subunit) and 40S (small

ribosomal subunit) proteins within the high and low

XIST populations.

(C) Boxplot showing the ratio of the sum of 60S to

40S ribosomal proteins within the high and low XIST

populations.

(D) Volcano plot showing the protein log2 fold

change (low/high XIST) on the x axis, with the�log10
p value on the y axis. Ribosomal proteins and ri-

bosomal S6 kinases are highlighted in pink; all other

proteins are colored gray. All proteins above the

orange line have a p value lower than 0.05.

(E) Boxplot showing the ratio of reads mapped to

the secondary allele compared to the primary allele

for RPS6KA3 within the High, Medium and Low

XIST populations.

(F) Boxplot showing the log2 TPM of RPS6KA3

within the high, medium, and low XIST populations.

(G) Boxplot showing the protein copy numbers of

RPS6KA3 within the high, medium, and low XIST

populations.
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Figure 6. Translational machinery

For all boxplots, the bottom and top hinges represent the 1st and 3rd quartiles. The top whisker extends from the hinge to the largest value no further than 1.5 3

IQR from the hinge; the bottom whisker extends from the hinge to the smallest value at most 1.5 3 IQR of the hinge.

(A) Boxplot showing the ratio of readsmapped to the secondary allele (lowest expressed allele) compared to the primary allele (highest expressed allele) of EIF2S3

within the high, medium, and low XIST populations.

(B) Boxplot showing the log2 TPM for EIF2S3 within the high, medium, and low XIST populations.

(C) Boxplot showing the protein copy numbers for EIF2S3 within the high, medium, and low XIST populations.

(D) Boxplot showing the ratio of reads mapped to the secondary allele compared to the primary allele for EIF1AX within the high, medium, and low XIST pop-

ulations.

(E) Boxplot showing the log2 TPM of EIF1AX within the high, medium, and low XIST populations. The bottom and top hinges represent the 1st and 3rd quartiles.

(F) Boxplot showing the protein copy numbers of EIF1AX within the high, medium, and low XIST populations.

(G) Schematic showing the protein copy numbers for the eIF4F complex and its inhibitors displayed for both the high and low XIST populations. Proteins rep-

resented by red boxes are significantly increased, light blue boxes are significantly decreased, and elements in gray boxes remain unchanged.

(H) Ribo-Mega-SEC-derived line plot showing the mean high and low XIST polysome profile, with the colored ribbon representing the standard deviation.
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initiation (Merrick, 2015). It is composed of the alpha (EIF4A1 and

EIF4A3), epsilon (EIF4E), and gamma (EIF4G1 and EIF4G3) sub-

units. The stoichiometry of EIF4E, the cap-binding subunit

(located on chromosome 4), to its inhibitors EIF4EBP1 (located

on chromosome 8) and EIF4EBP2 (located on chromosome 10)

has been proposed as one of the regulatory mechanisms for

eIF4F translational control (Richter and Sonenberg, 2005).
Interestingly, in the low XIST population, there is a significant in-

crease (p = 0.0006) in EIF4E levels compared to the high XIST

population, alongside a parallel significant decrease (p = 0.007)

in the levels of EIF4EBP1 (Figure 6G). The decrease in EIF4EBP1

is particularly relevant in this case, as only �1.2% of all proteins

are significantly decreased in expression in the low XIST

population.
Cell Reports 35, 109032, April 27, 2021 11
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In summary, the data are consistent with erosion of XCI in the

low XIST population, causing a major change in the proteome

that results in a global increase in total protein levels, which is

mediated, at least in part, by increased levels of translation. To

test the hypothesis that the low XIST population has increased

translational capacity, we compared polysome and ribosome

profiles between iPSC lines showing either high or low levels of

XIST RNA by using the Ribo Mega-size exclusion chromatog-

raphy (SEC) method (Yoshikawa et al., 2018). This SEC-based

method can separate large protein complexes, including poly-

somes, 80S monosomes, and ribosome subunits.

The Ribo Mega-SEC data were remarkably consistent with the

MS-based proteomics data. This result showed that both the

polysome-containing fractions and 80S-monosome-containing

fractions are increased significantly in extracts from iPSC lines

with low levels of XIST RNA compared to extracts from iPSC lines

with high levels of XIST RNA (Figure 6H). Moreover, the SEC data

show amore pronounced increase within the low XIST population

in the ratio of the 60S to the 40S ribosome subunits, consistent

with a larger increase in 60S ribosomal protein levels in the MS

data (Figures 5B and 5C). The polysome fractionation data are

thus consistent with a model in which erosion of XCI in the iPSC

lines expressing low levels of XIST RNA upregulates the protein

translation capacity and leads to a global increase in protein levels

from multiple genes on both autosomes and the X chromosome.

DISCUSSION

This study provides an in-depth global analysis of how erosion of

X chromosome inactivation (XCI) affects gene expression and

dosage compensation at the protein level in human cells and

compares this analysis to matching RNA-seq data. We analyzed

RNA expression in 74 independent human iPSC lines derived

from healthy female donors that were generated by the HipSci

consortium (Kilpinen et al., 2017). This analysis showed that

�40% of these lines expressed very low levels of XIST, a long

non-coding RNA vital for the establishment of XCI (Marahrens

et al., 1997; Penny et al., 1996). Further analysis of allelic expres-

sion fromX-chromosome-encoded genes showed that low levels

of XIST RNA strongly correlated with erosion of XCI, as reflected

by a significantly increased fraction of reads beingmapped to the

lowest expressed (secondary) allele (higher biallelic expression).

We therefore characterized how the erosion of XCI remodels

gene expression and the human proteome by comparing in detail

the levels of RNA and protein expression across 56 female iPSC

lines, stratified according to high versus low XIST RNA levels, as

well as comparing them to 46 lines derived from healthymale do-

nors, which have only 1 X chromosome.

First, the data show that the low XIST population significantly

upregulated the expression of many gene products on the X

chromosome at both RNA and protein levels. Considering the

evidence of increased biallelic expression within that same pop-

ulation, these data indicate that erosion of XCI causes increased

protein expression from X-linked genes, primarily by a transcrip-

tional mechanism.

We also leveraged the distinct characteristics of our dataset to

compare how protein expression levels are affected by dosage

compensation in the respective high and low XIST-stratified fe-
12 Cell Reports 35, 109032, April 27, 2021
male lines versus the male lines. The data indicate that

compared to the males, the high XIST lines, which exhibit robust

XCI, show similar patterns of expression for genes derived from

the X chromosome. This result suggests that when XIST levels

are high, there is effective dosage compensation for the extra

X chromosome copy, acting at the protein level. However, for

the lines with low XIST expression levels, which exhibit higher

erosion of XCI, a very different situation is evident. In this case,

the total copies of X-chromosome-encoded proteins are

increased in expression by 27% compared to males, which

makes the gene expression from the X chromosome significantly

different between males and females.

Second, we also detected a significant increase in protein

expression levels from 26% of autosomal genes within the low

XIST female lines. In contrast to genes on the X chromosome,

21% of all autosomal gene products were increased only at

the protein level and not the RNA level. Thus, autosome-en-

coded genes showed a low overall RNA:protein fold change cor-

relation (median Pearson correlation for autosomes of 0.27,

compared with 0.56 for the X chromosome).

It should be noted that, unlike the RNA-seq data, protein copy

numberscanbeestimated fromtheMSdataby theproteomic ruler

without the need for spike-ins (Wi�sniewski et al., 2014). The esti-

mated copynumbers allowus tocalculate and explore differences

in absolute protein content. With this RNA-seq dataset and

normalization approach, which did not include spike-in controls,

it is not possible to detect potential transcriptional amplificationef-

fects (Lovén et al., 2012). Furthermore, recent reports have sug-

gested that in mESCs, changes in ERK signaling can cause hypo-

methylation (Choi et al., 2017; Song et al., 2019), potentially also

affectingglobal transcription.Ourdata reveal thatmultipleX-linked

kinases associated with ERK signaling are significantly increased

in expression within the low XIST population (Figure S4). Their

contribution to cell phenotypes here remains to be determined.

Therefore,wecannot completely exclude thepossibility that abso-

lute changes at the transcript level may also occur for autosomal

genes, which would be masked due to technical issues in the

detection of transcriptional amplification. Moreover, although

erosion of XCI is generally thought to specifically affect the expres-

sion of X-linked genes, we note that increased transcription from

autosomal genes has been reported in murine trophoblasts

when they failed to induce XCI (Sakata et al., 2017). Nonetheless,

the data from our study indicate that erosion of XCI in human cells

can affect protein levels encoded by amuchwider range of genes

than was previously shown by RNA-seq data alone, including

autosome-linked genes and disease loci.

Third, the comparison of high versus low XIST iPSC popula-

tions showed that the low-XIST-expressing cell lines had a me-

dian increase of �13% in total protein content, which was also

significantly higher than the protein content of the lines derived

from healthy male donors. Considering potential mechanisms

that could cause this increased protein content, we found

several lines of evidence that suggest it may result, at least

in part, from post-transcriptional regulation affecting the transla-

tion efficiency of a subset of mRNAs. It has been proposed that

translation rates positively correlate with protein abundance

(Brockmann et al., 2007; Liu et al., 2016; Marguerat et al.,

2012). Congruently, our data show the autosome-encoded
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proteins that are significantly increased in expression, but

without a corresponding mRNA increase, are enriched in high

abundance proteins with high peptide counts.

Focusing on the proteins that show statistically significant,

RNA-independent increases in expression in low XIST popula-

tion revealed an enrichment for GO terms associated with ribo-

nucleoprotein complex biogenesis. Furthermore, by conducting

independent polysome profiling analyses comparing high and

low XIST iPSC lines, using the Ribo Mega-SEC method (Yoshi-

kawa et al., 2018), we also showed a significant increase in the

polysomes and 80S ribosomes within the low XIST lines. Thus,

analyses using both the separate MS proteomics and polysome

methods, support the view that iPSCs derived from healthy fe-

male donors showing XCI erosion have increased protein trans-

lation activity, resulting in a global increase in total protein levels.

It will be interesting to analyze in the future whether mRNAs en-

coding the subset of autosomal proteins that show increased

abundance share some common features or sequence motifs

that promote efficient translation.

In light of the elevated protein content and polysome levels

observed in the low XIST iPSC population, it is interesting that

two X-linked genes that encode important regulators of transla-

tional initiation (EIF1AX and EIF2S3), as well as a kinase known to

modulate translation (RPS6KA3), all show highly increased

expression at both the RNA and protein levels. It has been pro-

posed that protein synthesis is principally regulated at the initia-

tion stage (Jackson et al., 2010). Therefore EIF1AX and EIF2S3

are thus candidates for mediating, at least in part, the mecha-

nismwhereby erosion of XCI causes an increase in protein trans-

lational capacity. Interestingly, both the EIF1AX and EIF2S3

genes have previously been categorized as facultative XCI es-

capees (Belling et al., 2017; Zhang et al., 2013), meaning they

are among a subset of X-linked genes that can escape transcrip-

tional repression, despite the globally repressed state. This local

increased gene dosage effect suggests that even female lines

with normal XCI may differ in translational capacity from male

cells with only a single X chromosome.

Our data show that erosion of XCI in human cells has the po-

tential to cause major changes at the level of protein expression,

which in turn could have important implications for disease pro-

gression and response to therapy in females. The potential clin-

ical relevance is amplified by our finding that the expression of

numerous autosomal genes also respond to erosion of XCI at

the protein level. Many of these significantly increased proteins

encoded on autosomes, such as ERK2, FYN, and CDK6, are

linked to cancer and other diseases (Papa et al., 2019; Saito et

al., 2010; Yang et al., 2017). It will also be of interest to analyze

whether, or to what extent, the loss of XIST expression can

display similar consequences in vivo, as it has been reported

that multiple cell types and tissues have reduced or no XIST

expression (Syrett et al., 2017; Wang et al., 2016).
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Angus I. Lamond (a.i.

lamond@dundee.ac.uk)

Materials availability
This study did not generate new unique reagents.

Data and code availability
The mass-spectrometry dataset, PXD010557, supporting the current study is available in PRIDE (https://www.ebi.ac.uk/pride/

archive/projects/PXD010557). The RNaseq dataset, PRJEB7388, supporting the current study is available in the ENA project

(https://www.ebi.ac.uk/ena/browser/view/PRJEB7388).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All lines included in this study are part of the HipSci resource and were reprogrammed from primary fibroblasts as previously

described (Kilpinen et al., 2017). Out of the total of more than 800 iPSC lines available within the HipSci resource (https://www.

hipsci.org), 120 derived from healthy donors andwith proteomic analysis were used in this study. All lines derived from healthy female

donors (subset of 74 iPSC lines) were then used for the XCI analysis and included all lines derived from healthymale donors (subset of

46 iPSC lines) for the dosage compensation analysis.

METHOD DETAILS

TMT Sample preparation
The data presented here is a subset of the total HipSci proteomics dataset (Brenes et al., 2019; Mirauta et al., 2020). For protein

extraction, iPSC cell pellets were washed with ice cold PBS and redissolved immediately in 200 mL of lysis buffer (8 M urea in

100 mM triethyl ammonium bicarbonate (TEAB)) and mixed at room temperature for 15 minutes. The DNA content of the cells

was sheared using ultrasonication (6 X 20 s on ice). The proteins were reduced using tris-carboxyethylphosphine TCEP (25 mM)

for 30 minutes at room temperature, then alkylated in the dark for 30 minutes using iodoacetamide (50 mM). Total protein was quan-

tified using the EZQ assay (Life Technologies). The lysates were diluted with 100 mM TEAB 4-fold for the first digestion with mass

spectrometry grade lysyl endopeptidase, Lys-C (Wako, Japan), then further diluted 2.5-fold before a second digestion with trypsin.
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Lys-C and trypsin were used at an enzyme to substrate ratio of 1:50 (w/w). The digestions were carried out overnight at 37�C, then
stopped by acidification with trifluoroacetic acid (TFA) to a final concentration of 1% (v:v). Peptides were desalted using C18 Sep-Pak

cartridges (Waters) following manufacturer’s instructions.

For tandemmass tag (TMT)-based quantification, the dried peptides were re-dissolved in 100 mM TEAB (50 ml) and their concen-

tration wasmeasured using a fluorescent assay (CBQCA, Life Technologies). 100 mg of peptides from each cell line to be compared,

in 100 mL of TEAB, were labeled with a different TMT tag (20 mg ml�1 in 40 mL acetonitrile) (Thermo Scientific), for 2 h at room tem-

perature. After incubation, the labeling reaction was quenched using 8 mL of 5% hydroxylamine (Pierce) for 30 min and the different

cell lines/tags were mixed and dried in vacuo.

The TMT samples were fractionated using offline high-pH reverse-phase (RP) chromatography: samples were loaded onto a 4.63

250 mm Xbridge BEH130 C18 column with 3.5-mm particles (Waters). Using a Dionex bioRS system, the samples were separated

using a 25-min multistep gradient of solvents A (10 mM formate at pH 9) and B (10 mM ammonium formate pH 9 in 80% acetonitrile),

at a flow rate of 1mLmin�1. Peptides were separated into 48 fractions, whichwere consolidated into 24 fractions. The fractions were

subsequently dried and the peptides re-dissolved in 5% formic acid and analyzed by LC–MS/MS.

TMT LC–MS/MS
The data presented here is a subset of the total HipSci proteomics dataset (Brenes et al., 2019; Mirauta et al., 2020). Samples were

analyzed using an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific), equipped with a Dionex ultra-high-pressure liquid-

chromatography system (RSLCnano). RPLC was performed using a Dionex RSLCnano HPLC (Thermo Scientific). Peptides were

injected onto a 75 mm 3 2 cm PepMap-C18 pre-column and resolved on a 75 mm 3 50 cm RP- C18 EASY-Spray temperature-

controlled integrated column-emitter (Thermo Scientific), using a four-hour multistep gradient from 5% B to 35% B with a constant

flow of 200 nL min�1. The mobile phases were: 2% ACN incorporating 0.1% FA (solvent A) and 80% ACN incorporating 0.1% FA

(solvent B). The spray was initiated by applying 2.5 kV to the EASY-Spray emitter and the data were acquired under the control of

Xcalibur software in a data-dependentmode using top speed and 4 s duration per cycle. The survey scanwas acquired in the orbitrap

covering the m/z range from 400 to 1,400 Thomson with a mass resolution of 120,000 and an automatic gain control (AGC) target of

2.03 105 ions. The most intense ions were selected for fragmentation using CID in the ion trap with 30%CID collision energy and an

isolation window of 1.6 Th. The AGC target was set to 1.03 104 with a maximum injection time of 70 ms and a dynamic exclusion of

80 s.

During the MS3 analysis for more accurate TMT quantifications, 5 fragment ions were co-isolated using synchronous precursor

selection using a window of 2 Th and further fragmented using HCD collision energy of 55%. The fragments were then analyzed

in the orbitrap with a resolution of 60,000. The AGC target was set to 1.0 3 105 and the maximum injection time was set to 105 ms.

Ribo Mega-SEC iPSC lines cell culture
For the Ribo Mega-SEC analyses 4 iPSC lines with High XIST RNA levels (‘iiyk_20, ‘iiyk_4’, ‘nufh_30 and nufh_4’) and 3 lines with Low

XIST RNA levels (‘fawm_4’, ‘bawa_1’ and ‘aizi_30) were used. The lines were maintained in TESR medium (Ludwig et al., 2006), sup-

plemented with FGF2 (Peprotech, 30 ng/ml) and noggin (Peprotech, 10 ng/ml), on growth factor reduced geltrex basement mem-

brane extract (Life Technologies, 10 mg/cm2) coated dishes at 37�C in a humidified atmosphere of 5% CO2 in air.

Cells were routinely passaged twice a week as single cells, using TrypLE select (Life Technologies) and replated in TESR medium

that was further supplemented with the Rho kinase inhibitor Y27632 (Tocris, 10 mM), to enhance single cell survival. Twenty-four

hours after replating, Y27632 was removed from the culture medium. For proteomic analyses, cells were plated in 100 mm geltrex

coated dishes at a density of 5x104 cells cm-2 and allowed to grow to for 3 days, until confluent, with daily medium changes.

Ribo Mega-SEC
Ribo Mega-SEC for the separation of polysomes and ribosomal subunits using size exclusion chromatography was performed as

previously reported (Yoshikawa et al., 2018), with a slight modification. Briefly, 2.5 3 106 cells were washed once with ice-cold

PBS, scraped in ice-cold PBS and collected by centrifugation at 500 g for 5 min (all centrifugations at 4�C). The cells were lysed

by vortexing for 10 s in 250 mL of polysome extraction buffer (20 mM HEPES-NaOH (pH 7.4), 130 mM NaCl, 10 mMMgCl2, 5% glyc-

erol, 1%CHAPS, 0.2 mg/ml heparin, 2.5 mMDTT, 20 U SUPERase In RNase inhibitor, cOmplete EDTA-free Protease inhibitor), incu-

bated for 15 min on ice, and centrifuged at 17,000 g for 10 min. Supernatants were filtered through 0.45 mm Ultrafree-MC HV

centrifugal filter units (Millipore).

Using a Dionex Ultimate 3,000 Bio-RS uHPLC system (Thermo Fisher Scientific), a SEC column (Agilent Bio SEC-5, 2,000 Å pore

size, 7.83 300 mmwith 5 mmparticles) was equilibrated with three column volumes of filtered SEC buffer (20 mMHEPES-NaOH (pH

7.4), 60mMNaCl, 10mMMgCl2, 0.3%CHAPS, 0.2mg/ml heparin, 2.5mMDTT, 5%glycerol) (all column conditioning and separation

at 5�C) and 100 mL of 10mg/ml of filtered bovine serum albumin (BSA) solution diluted by PBSwas injected once to block the sites for

non-specific interactions. After monitoring the column condition by injecting standards, including 10 mL of 10 mg/mL BSA solution

and 5 mL of HyperLadder 1 kb (BIOLINE), 200 mL of the filtered cell lysates was injected onto the pre-equilibrated SEC column. The

flow rate was 0.4 mL/min and the chromatogram was monitored by measuring UV absorbance at 215, 260 and 280 nm with a 1 Hz

data collection rate by the Diode Array Detector.
Cell Reports 35, 109032, April 27, 2021 e2
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RNA-seq data processing
Raw RNA-seq data were obtained from the ENA project: PRJEB7388. CRAM files were merged on a sample level and converted to a

single FASTQ file per sample. Sequencing reads were trimmed to remove adapters and low-quality bases (Trim Galore!), followed by

read alignment using STAR (v.020201) (Dobin et al., 2013), using the two-pass alignment mode and the default parameters as pro-

posed by ENCODE (c.f. STAR manual). All alignments were relative to the GRCh37 reference genome, using ENSEMBL 75 as tran-

script annotation (Zerbino et al., 2018).

Samples with low quality RNA-seq were discarded if they had either less than 2 billion bases aligned, had less than 30% coding

bases, or had a duplication rate higher than 75%. Gene-level RNA expression was quantified from the STAR alignments using fea-

tureCounts (Liao et al., 2014) (v1.6.0), which was applied to the primary alignments using the ‘‘-B’’ and ‘‘-C’’ options in stranded

mode, using the ENSEMBL 75 GTF file. Quantifications per sample were merged into an expression table using the following normal-

ization steps. First, gene counts were normalized by gene length. Second, the counts for each sample were normalized by

sequencing depth using the edgeR (Robinson et al., 2010) adjustment. Transcript isoform expression was quantified directly from

the (unaligned) trimmed reads using Salmon (Patro et al., 2017) (v0.8.2), using the ‘–seqBias’, ‘–gcBias’ and ‘VBOpt’ options in

‘ISR’mode tomatch our inward stranded sequencing reads. The transcript databasewas built on transcripts derived from ENSEMBL

75. The TPM values as returned by Salmon were combined into an expression table.

Allele specific analysis
Allele-specific quantification of expression from the X chromosome was calculates using RNA-Seq reads mapping to the X chromo-

some. Allele-specific counts were obtained from SNPs present in DBSNP using GATK ReadCounter with the command ‘GenomeA-

nalysisTk.jar -T ASEReadCounter -U ALLOW_N_CIGAR_READS –minMappingQuality 10 –minBaseQuality 20, restricted to SNPs

which were known to be heterozygous in the analyzed sample. The allele-specific fraction of expression was defined as the fraction

of transcript readsmapping to the less expressed allele, restricting to heterozygous X chromosomeSNPswith at least 20 overlapping

reads. These fractions were then averaged across SNPs at a whole-chromosome level (Figures 2A and 2C), and for individual genes

(Figures 6A and 6D). Note that, for a given gene in a given sample, this quantification could only be performed when the donor for that

sample carries a heterozygous common variant in that gene. This reduced the number of samples for which allele-specific expression

could be computed for each gene.

Primary versus secondary allele
The primary allele for each iPSC line is defined as the allele with the highest number of transcript reads mapping to it. Conversely the

secondary allele is defined as the allele with the lowest number of transcript reads mapped to it.

Proteomics data processing
The TMT-labeled samples were collected and analyzed using Maxquant (Cox and Mann, 2008; Tyanova et al., 2016) v. 1.6.3.3. The

FDR threshold was set to 1% for each of the respective Peptide Spectrum Match (PSM) and Protein levels. The data were searched

with the following parameters; type was set to Reporter ion MS3 with 10plex TMT, stable modification of carbamidomethyl (C), var-

iable modifications, oxidation (M), acetylation (protein N terminus), deamidation (NQ), Glutamine to pyro-glutamate (N terminus), with

a 2 missed tryptic cleavages threshold, reporter mass tolerance set to 0.03 ppm. Minimum peptide length was set to 7 amino acids.

Proteins and peptides were identified using UniProt (SwissProt December 2018). Run parameters have been deposited to PRIDE

(Perez-Riverol et al., 2019) along with the full MaxQuant quantification output (PDX010557).

Razor + unique peptides
Peptides that are unique to a single protein sequence are known as ‘‘unique peptides’’ and peptides that are shared betweenmultiple

protein sequences are known as ‘‘shared peptides.’’ Within MaxQuant, shared peptides are assigned to a single protein group,

following Occam’s Razor. The number of unique peptides, plus the number of shared peptides used for the quantification of a protein

group, is referred to as Razor + unique peptides.

iPSC Copy number generation
Protein copy numbers were calculated using the proteomic ruler (Wi�sniewski et al., 2014) and using the MS3 reporter intensity. An

additional batch correction factor for each TMT experiment was applied as previously described (Brenes et al., 2019).

Protein content
The protein content for all iPSC lines was calculated based on the copy numbers. The molecular weight of each protein (converted to

picograms) was multiplied by the number of copies for the corresponding protein and this was then summed for all proteins across

each line to calculate the protein content.
e3 Cell Reports 35, 109032, April 27, 2021
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Chromosome mapping
To map gene products to their specific chromosomes, we utilized the UniProt (The UniProt Consortium, 2017) protein-chromosome

mapping service.We used their output to produce a list of unique proteins for each specific chromosome. Subsequently, wemapped

the proteins detected in our iPSC dataset to their corresponding chromosomes, based on the UniProt mapping file.

X-inactivation stratification and analysis
Based on the RNaseq data, 74 iPSC lines were classified into 3 distinct categories, based on XIST expression. 30 iPSC lines where

XIST expression was < 1 Log2 TPM were classified as ‘Low XIST’. 35 iPSC lines where XIST expression was higher than 2.75 Log2
TPM were classified as High XIST and the remaining 9 lines were classified as ‘Medium’ XIST.

High XIST filtering
The High XIST population contained two proteomic experiments, PT7422 and PT6386, contributing a large number of High XIST rep-

licates within their 10-plex TMT experiment. As the maximum number of replicates per 10-plex within the Low XIST group was 4, we

performed hierarchical clustering to reduce the number of lines contributed by PT7422 and PT6386 to a maximum of 4, in order to

minimize batch effects. The final number of lines with High XIST, post filtering, was 26.

GO Enrichment analysis
All of the GO enrichment analyses were done using Panther (Mi et al., 2017) and used the 8,511 proteins that were detected in both

the RNaseq and proteomics datasets as background. We performed a biological process overrepresentation analysis for all proteins

that were significantly increased (q-value < 0.05), where the corresponding transcript was not significantly increased in expression.

Furthermore, an additional biological process overrepresentation of significantly increased (q-value < 0.05) ribosome biogenesis pro-

teins was carried out.

Hypergeometric analysis
The hypergeometric analyses were all done in R using the phyper function from the stats package (v.3.6.0). For this analysis, a subset

of proteins (1,825), which were significantly increased in expression without a correspondingmRNA increase, were selected. We first

looked at the number of proteins within the previous subset with a peptide count either greater than, or equal to, the 75th percentile (26

peptides) and used phypher to determine hypergeometric p values. We then compared this result to the one produced by randomly

selecting 1,825 proteins and repeating the previous process. This was done 100,000 times. We also looked at the number of proteins

with copy numbers either greater than, or equal to, the 75th percentile (407,724 copies) and used phypher to determine hypergeo-

metric p values. We then compared this result to the one produced by randomly selecting 1,825 proteins and repeating the previous

process. This was done 100,000 times.

60S/40S ratio
The ratios were calculated by summing the copy numbers from all proteins of the 60S ribosomal subunit, divided by the sum of all

copy numbers from the 40S ribosomal subunit, for each individual iPSC line.

UniProt to Ensembl mapping
Mapping of UniProt accessions to Ensembl gene identifiers was done in R using the ‘‘UniProt.ws’’ package version 2.24.1

Kinase map
The kinase map was generated within the Encyclopedia of Proteome Dynamics (Brenes et al., 2018) using the KinoViewer (Brenes

and Lamond, 2019).

Sequence coverage maps
The sequence coverage maps for EIF1AX, EIF2S3 and RPS6KA3 were generated using Jalview (Waterhouse et al., 2009) version

2.11.1.3

QUANTIFICATION AND STATISTICAL ANALYSIS

The proteomics data used for the analysis were obtained from the ProteinGroups.txt output of Maxquant (Cox andMann, 2008; Tya-

nova et al., 2016) v. 1.6.3.3. Contaminants, reverse hits and ‘only identified by site’ proteins were excluded from analysis. Overall, we

quantified 9,631 protein groups in at least one of the samples. For additional stringency and to reduce batch variation, only proteins

with 3 or more ‘Razor + unique peptides’ were considered.

Fold changes and P values were calculated in R utilizing the bioconductor package LIMMA (Ritchie et al., 2015) version 3.7. FDR

calculations were performed in R with the ‘‘qvalue’’ package version 2.10.0. For both the RNaseq and proteomics differential expres-

sion analyses, gene products with a Q-value % 0.05 were considered significant. For comparisons looking at individual gene prod-

ucts or aggregated gene families, Welch’s t test was used. In this case results with a p value % 0.05 were considered significant.
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Figure S1 – XACT and XCI: (a) Scatter plot showing the fraction of reads derived from the secondary (lowest 

expressed) allele compared to the primary (highest expressed) allele for all X-linked transcripts vs the log2 XACT 

TPM for all healthy female lines. The size is determined by the number of transcripts used for the analysis. Related 

to Figure 2. 

 



 
 
Figure S2 – Cell cycle markers: All box plots show the log2 TPM and estimated protein copy numbers within 

the High, Medium and Low XIST populations for a gene product. The upper whisker extends from the hinge to 

the largest value no further than 1.5 * IQR from the hinge, the lower whisker extends from the hinge to the smallest 

value at most 1.5 * IQR of the hinge. (a) Boxplots for AURKA. (b) Boxplots for AURKB. (c) Boxplots for BUB1. 

(d) Boxplots for BUB1B. (e) Boxplots for CCNA2. (f) Boxplots for CCNB1. (g) Boxplots for CCNB2. (h) 

Boxplots for CCND1. (i) Boxplots for CCND2. (j) Boxplots for CDT1. (k) Boxplots for ORC1. (l) Boxplots for 

UNG. Related to Figure 3. 
 

 



 
 

 
Figure S3 – High, Medium and Low XIST protein level data : For all box plots the upper whisker extends 

from the hinge to the largest value no further than 1.5 * IQR from the hinge, the lower whisker extends from the 

hinge to the smallest value at most 1.5 * IQR of the hinge. (a) Box plot showing the estimated protein content 

(see methods) for the High, Medium and Low XIST. (b) Boxplot showing the sum of protein copy numbers across 

the X chromosome for the High XIST, Medium and Low XIST lines. (c) Boxplot showing the sum of protein 

copy numbers across all autosomes for the High XIST, Medium and Low XIST lines. (d) Boxplot showing the 

median protein log2 fold change for the High, Medium and Low XIST populations when compared to the male 

lines across all chromosomes. Related to Figure 3. 



 
Figure S4 – X-linked Kinome: Protein level kinase map for all kinases showing the log2 fold change (Low/High 

XIST) for the kinases that were significantly in expression within the Low XIST population. Related to Figure 5. 
 

 

 



 
Figure S5 – eIF2 copy numbers: Box plot for the High and Low XIST populations showing the estimated copy 

numbers for EIF2S1, EIF2S2 and EIF2S3. The lower and upper hinges represent the 1st and 3rd quartiles. The 

upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge, the lower 

whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Related to Figure 6. 
 

 

 

 



 
Figure S6 – Peptides and sequence coverage: (a) Map showing the amino acid sequence and MS derived peptide 

coverage for RPS6KA3. (b) Map showing the amino acid sequence and MS derived peptide coverage for EIF2S3. 

(c) Map showing the amino acid sequence and MS derived peptide coverage for EIF1AX. Related to Figures 5 & 

6. 
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